三水铝石
2018-12-29 09:43:03
三水铝石的化学组成为Al(OH)3、晶体属单斜晶系 P21/n空间群的氢氧化物矿物。与拜三水铝石(bayerite)和诺三水铝石 (nordstrandite)成同质多象。旧称三水铝矿或水铝氧石。以矿物收藏家C.G.吉布斯(Gibbs)的姓于1822年命名。晶体结构与水镁石相似,由夹心饼干式的(OH)-Al-(OH)配位八面体层平行叠置而成,只是Al3+不占满夹层中的全部八面体空隙,仅占据其中的2/3。三水铝石的晶体一般极为细小,呈假六方片状,并常成双晶﹔通常以结核状、豆状、土状集合体产出。白色,或因杂质染色而呈淡红至红色。玻璃光泽,解理面显珍珠光泽。底面解理极完全。摩斯硬度2.5~3.5,比重2.40。三水铝石主要是长石等含铝矿物化学风化的次生产物,是红土型铝土矿的主要矿物成分。但也可为低温热液成因。俄罗斯南乌拉尔的兹拉托乌斯托夫斯克的热液脉中产出有达5厘米大小的晶体。用途见铝土矿。
三水铝石(Gibbsite)
Al(OH)3
[晶体化学] 理论组成(wB%):Al2O3 65.4,H2O 34.6。常见类质同像替代有Fe和Ga,Fe2O3可达2%,Ga2O3可达0.006%。此外,常含杂质CaO、MgO、SiO2等。
[结构与形态]单斜晶系,a0=0.864nm,b0=0.507nm,c0=0.972nm,β=94°34';Z=8。晶体结构与水镁石相似,属典型的层状结构。不同者是Al3 仅充填由OH-呈六方最紧密堆积层(∥(001))相间的两层OH-中2/3的八面体空隙,因为Al3具有比Mg2 高的电荷,故以较少的Al3 数即可平衡OH-的电荷。
斜方柱晶类,C2h-2/m(L2PC)。晶体呈假六方板状,极少见。主要单形:平行双面a、c,斜方柱m。常依(100)和(110)成双晶。常见聚片双晶。集合体呈放射纤维状、鳞片状、皮壳状、钟乳状或鲕状、豆状、球粒状结核或呈细粒土状块体。主要呈胶态非晶质或细粒晶质。 [物理性质]白色或因杂质呈浅灰、浅绿、浅红色调。玻璃光泽,解理面珍珠光泽。透明至半透明。解理极完全。硬度2.5~3.5。相对密度2.30~2.43。具泥土臭味。
偏光镜下:无色。二轴晶( ),2V=0°。Ng=1.587,Nm=Np=1.566。
[产状与组合] 主要由含铝硅酸盐经分解和水解而成。热带和亚热带气候有利于三水铝石的形成。在区域变质作用中,经脱水可转变为软水铝石、硬水铝石(140~200℃);随着变质程度的增高,可转变为刚玉。
锡酸钠
2017-06-06 17:50:01
锡酸钠是一种投资者想知道,因为了解它可以帮助操作。【中文名称】锡酸钠 【英文名称】sodium stannate 锡酸钠【结构或分子式】Na2SnO3·3H2O 【分子量】 266.73 【CAS号】12209-98-2 【性状】 白色至浅褐色晶体 【溶解情况】 溶于水,不溶于乙醇、丙酮。 【用途】 可用作纺织品的防火剂、增重剂和媒染剂,也可用于制玻璃、陶瓷,碱性镀锡和镀酮锡合金、锌锡合金等。 【制备或来源】 由锡与氢氧化钠、硝酸钠灼烧共熔,或由锡与氰酸钠溶液共沸而制得。 【其他】 加热至140℃时失去结晶水。在空气中易吸收水分和二氧化碳而分解为氢氧化锡和碳酸钠,因而水溶液呈碱性。化学性质无色六角板状结晶或白色粉末。溶于水,不溶于醇和丙酮。加热至140℃时失去结晶水而成无水物。在空气中吸收二氧化碳而成碳酸钠和氢氧化锡。熔点 140°C如果你想更多的了解关于锡酸钠的信息,你可以登陆上海
有色
网进行查询和关注。
三水铝石(Gibbsite)
2019-01-21 10:39:10
Al(OH)3
【化学组成】常有少量的Fe2+和Ga3+呈类质同像替换Al3+。
【晶体结构】单斜晶系, ;a0=0.864 nm,b0=0.507 nm,c0=0.972 nm,β=94°34′;Z=8。具水镁石型结构,但Al3+只充填于每两层相邻的OH-羟离子之间的2/3八面体空隙,组成配位八面体的结构层。
【形态】单晶呈假六方形极细片状。通常成结核状、豆状集合体或隐晶质块状集合体。
【物理性质】白色,常带灰、绿和褐色;玻璃光泽,解理面呈珍珠光泽,集合体和隐晶质者暗淡。解理平行{001}极完全。硬度2.5~3.5。相对密度2.30~2.43。
【成因及产状】主要是长石等铝硅酸盐经风化作用而形成。部分三水铝石为低温热液成因。在区域变质作用中,三水铝石经脱水作用变为一水硬铝石;而在更深的区域变质条件下,可变为刚玉;如有SiO2存在时则变为含铝硅酸盐矿物。
【主要用途】为铝的主要矿石矿物。也可用于制造耐火材料和高铝水泥原料。
锡酸钠溶解度
2017-06-06 17:50:01
锡酸钠溶解度是一种投资者想知道,因为了解它可以帮助操作。无色六角板状结晶或白色粉末。溶于水,不溶于醇和丙酮。加热至140℃时失去结晶水而成无水物。在空气中吸收二氧化碳而成碳酸钠和氢氧化锡。【中文名称】锡酸钠 【英文名称】sodium stannate 锡酸钠【结构或分子式】Na2SnO3·3H2O 【分子量】 266.73 【CAS号】12209-98-2 【性状】 白色至浅褐色晶体 【溶解情况】 溶于水,不溶于乙醇、丙酮。 【用途】 可用作纺织品的防火剂、增重剂和媒染剂,也可用于制玻璃、陶瓷,碱性镀锡和镀酮锡合金、锌锡合金等。 【制备或来源】 由锡与氢氧化钠、硝酸钠灼烧共熔,或由锡与氰酸钠溶液共沸而制得。 【其他】 加热至140℃时失去结晶水。在空气中易吸收水分和二氧化碳而分解为氢氧化锡和碳酸钠,因而水溶液呈碱性。 如果你想更多的了解关于锡酸钠溶解度的信息,你可以登陆上海
有色
网进行查询和关注。
锡酸钠价格
2017-06-06 17:49:54
锡酸钠价格是锡投资者会感兴趣的一个话题,其关系到锡的投资与操作。产品名称:柠檬酸亚锡酸钠类别: 食品添加剂 / 防腐剂品牌:国产/进口规格型号:25kg/袋价格:65.0 元/千克分子式:MS Song">Na2SnO3·MS Song">3H2O性状:无色六角板状结晶或白色粉末;溶于水,不溶于醇和丙酮;加热至140℃时失去结晶水而成无水物;在空气中吸收二氧化碳而成碳酸钠和氢氧化锡。用途:其最重要的用途是用于电镀工业的碱性镀锡及其合金(例如:锡>-锌、锡>-镉、锡>-铜和锡>-铝合金)。此外,还用于纺织工业用作防火剂、增重剂;染料工业用作媒染剂;也用于玻璃、陶瓷等工业。在电镀工业中,其性能稳定可靠,易于操作并能获得高质量镀层,且对钢无腐蚀。该镀层经过“流动熔化”处理可变得光亮。锡酸钠也用于浸没镀锡,可在汽车铝合金活塞等零件上形成光洁镀层。另外,锡酸钠还用于制造在相当大的温度范围内具有均匀介电常数的陶瓷电容器的基体、颜料和催化剂。包装:塑料袋包装,外用纸板桶密封,或按用户要求包装。每袋净重5Kg,每桶净重25kg。 【中文名称】锡酸钠 【英文名称】sodium stannate 锡酸钠【结构或分子式】Na2SnO3·3H2O 【分子量】 266.73 【CAS号】12209-98-2 【性状】 白色至浅褐色晶体 【溶解情况】 溶于水,不溶于乙醇、丙酮。 【用途】 可用作纺织品的防火剂、增重剂和媒染剂,也可用于制玻璃、陶瓷,碱性镀锡和镀酮锡合金、锌锡合金等。 【制备或来源】 由锡与氢氧化钠、硝酸钠灼烧共熔,或由锡与氰酸钠溶液共沸而制得。 【其他】 加热至140℃时失去结晶水。在空气中易吸收水分和二氧化碳而分解为氢氧化锡和碳酸钠,因而水溶液呈碱性。如果你想更多的了解锡酸钠价格等其他信息,你可以登陆上海有色网进行查询。
高岭石-三水铝石型铝土矿
2019-02-12 10:07:54
首要矿藏为三水铝石、高岭石、赤铁矿、针铁矿等。关于低档次的三水铝石的铝土矿,一般以为浮选都是比较有用的,有主线正浮选三水铝石,也有建议反浮选含硅矿藏,药方与一般氧化矿浮选根本相同。以为参加和辅佐捕收剂(火油、机油)能够强化浮选,浮选流程方面留意泥沙分选及分支浮选等。
某高岭石-三水铝石型铝土矿选用泥、水分选,粗等级(-50mm+3mm)磨矿后用磁选除铁,矿泥磨矿后浮选,其选别工艺流程如图1所示。选别后得三种产品,铝土精矿用于出产电炉刚玉或拜耳法炼铝氧,高岭石产品用烧结法收回,含铁产品出产铁精矿,从而使铝土矿得到归纳收回。图1 某高岭石-三水铝石铝土矿选别示意图
磁选磁场强度为3000~3500奥斯特,浮选捕收剂为油酸:塔尔油:机油=1:1:1,其总用量为300g/t。其选别成果见表1。从表1中可见,铝土矿精矿含Al2O3为49.8%、收回率为58.8%,铝硅比从4.7提高到8.4,取得了必定分选作用。
表1 某高岭石-三水铝石型铝土矿选别目标产品名称产率/%Al2O3/%SiO2/%Fe2O3/%铅硅比档次收回率档次收回率档次收回率铝土矿精矿
高岭石产品
含铁产品
原矿50.10
21.70
25.10
100.0049.80
39.30
30.70
24.4058.80
23.00
18.20
100.005.95
21.80
2.97
9.1332.70
59.10
8.20
100.0014.00
23.00
30.40
17.5340.10
16.30
43.60
100.008.4
1.8
10.3
4.7
铝土矿床的主要成分--三水铝石
2018-12-28 09:57:34
三水铝石(Gibbsite) Al(OH)3 三水铝石是铝的氢氧化物矿物,在铝土矿床中它是主要的成分。三水铝石的晶体极细小,晶体聚集在一起成结核状、豆状或土状,一般为白色,有玻璃光泽,如果含有杂质则发红色。它们主要是长石等含铝矿物风化后产生的次生矿物。
化学组成为Al(OH)3﹑晶体属单斜晶系 P21/n空间群的氢氧化物矿物。与拜三水铝石(bayerite)和诺三水铝石 (nordstrandite)成同质多象。旧称三水铝矿或水铝氧石。以矿物收藏家C.G.吉布斯 (Gibbs)的姓于1822年命名。晶体结构与水镁石相似﹐由夹心饼干式的(OH)-Al-(OH)配位八面体层平行叠置而成﹐只是Al3+不占满夹层中的全部八面体空隙﹐仅占据其中的2/3。三水铝石的晶体一般极为细小﹐呈假六方片状﹐并常成双晶﹔通常以结核状﹑豆状﹑土状集合体产出。白色﹐或因杂质染色而呈淡红至红色。玻璃光泽﹐解理面显珍珠光泽。底面解理极完全。摩斯硬度2.5~3.5﹐比重2.40。三水铝石主要是长石等含铝矿物化学风化的次生产物﹐是红土型铝土矿的主要矿物成分。但也可为低温热液成因。俄罗斯南乌拉尔的兹拉托乌斯托夫斯克的热液脉中产出有达5厘米大小的晶体。用途见铝土矿。
三水铝石[晶体化学] 理论组成(wB%):Al2O3 65.4,H2O 34.6。常见类质同像替代有Fe和Ga,Fe2O3可达2%,Ga2O3可达0.006%。此外,常含杂质CaO、MgO、SiO2等。
[结构与形态] 单斜晶系,a0=0.864nm,b0=0.507nm,c0=0.972nm;Z=8。晶体结构与水镁石相似,属典型的层状结构。不同者是Al3 仅充填由OH-呈六方最紧密堆积层(∥(001))相间的两层OH-中2/3的八面体空隙,因为Al3 具有比Mg2 高的电荷,故以较少的Al3 数即可平衡OH-的电荷。
斜方柱晶类,C2h-2/m(L2PC)。晶体呈假六方板状,极少见。主要单形:平行双面a、c,斜方柱m。常依(100)和(110)成双晶。常见聚片双晶。集合体呈放射纤维状、鳞片状、皮壳状、钟乳状或鲕状、豆状、球粒状结核或呈细粒土状块体。主要呈胶态非晶质或细粒晶质。
[物理性质] 白色或因杂质呈浅灰、浅绿、浅红色调。玻璃光泽,解理面珍珠光泽。透明至半透明。解理极完全。硬度2.5~3.5。相对密度2.30~2.43。具泥土臭味。
偏光镜下:无色。二轴晶。Ng=1.587,Nm=Np=1.566。
[产状与组合] 主要由含铝硅酸盐经分解和水解而成。热带和亚热带气候有利于三水铝石的形成。在区域变质作用中,经脱水可转变为软水铝石、硬水铝石(140~200℃);随着变质程度的增高,可转变为刚玉。
浮选方法提高三水铝石铝硅比的研究
2019-01-24 09:38:19
Abstract The flotation experiments of Indonesia gibbsite ore were conducted using oxidized paraffin soap and tall oil as the collectors and sodium carbonate, sodium silicate and sodium hexametaphosphate as the regulators. Through the con- ditional experiments of multi-factors such as grinding fineness, collector and regulator dosage and pulp concentration, the factors influencing the improvement of the silicon-aluminum ratio of gibbsite and the suitable flotation conditions were inves- tigated. The experiment results show that a flotation concentrate having a recovery of 63.49% and an aluminum to silicon ratio of 11.18 could be obtained at a grinding fineness of 75% -200 mesh, sodium carbonate dosage of 4000g/t, sodium silicate dosage of 2kg/t, sodium hexametaphosphate dosage of 250g/t , collector dosage of 700g/t and pulp concentration of28.57%.
铝土矿是生产氧化铝、耐火材料及建材的主要原料,随着经济的快速发展,金属铝的消耗量将日益增加。随着铝土矿高品位矿石急剧减少,对中低铝硅比铝土矿采用选矿一拜尔法是生产氧化铝的有效方法,即采用选矿方法脱除矿石中的含硅矿物,获得高铝硅比精矿作为拜尔法生产氧化铝的原料。目前国内外都在探索铝土矿选矿脱硅的方法和工艺。
根据铝土矿的化学组成和晶体结构不同,可分为三水铝石、-水软铝石和-水硬铝石等。铝土矿的分子式为Al203·nH2O,属氢氧化物类。主要形成于外生风化和沉积作用中,与褐铁矿、碳页岩、粘土矿物密切共生,含杂质较多。三水铝石又名水铝氧石、氢氧铝石,分子式为A1203·3H2O,晶体结构属层状。氢氧离子成六方最紧密堆积,铝离子填充于邻接的两层氢氧离子之间的2/3八面体空隙,组成配位八面体的结构层。结构层内属离子键,结构层间属分子键,其层状结构决定了它的片状形态。三水铝石通常与高岭石、针铁矿、赤铁矿、伊利石等共生。三水铝石脱水可变成一水软铝石、一水硬铝石和α刚玉,可以被高岭石、多水高岭石等交代。高岭石为主要含硅矿物,分子式Al4(Si4010)(OH)8,因本身含铝,在选矿脱除高岭石时,会造成少量铝的损失。
浮选的方法包括正浮选和反浮选两种。正浮选一般采用脂肪酸或磺酸盐类捕收剂浮选铝土矿,反浮选则采用胺类捕收剂,以六偏磷酸钠、水玻璃、丹宁和苏打等作为调整剂。早在20世纪30—40年代,美国采用浮选法选别阿肯色地区的三水铝石铝土矿,可以将铝土矿的铝硅比由3—8提高到10~19,不足之处是回收率较低。70年代初,针对含高岭石、石英的三水铝石型铝土矿采用塔尔油、机油和油酸的混合物作捕收剂,硅酸钠、六偏磷酸盐作调整剂进行了浮选回收三水铝石的研究,同样精矿回收率很低[1]。Weston等人的专利提出,将NaOH(或 KOH)、Na2CO3和分散剂六偏磷酸钠等加入球磨机中进行湿磨,pH保持在9.5~12.5进行调浆浮选,可获得满意的结果。前苏联处理乌克兰境内的维考波里斯克铝土矿时,采用塔尔油脂肪酸和阳离子药剂AH lI一14的混合物作捕收剂,并添加苏打和0II-7型药剂,可使铝硅比由原矿的5左右提高到9左右。前苏联对三水铝石铝土矿采用筛洗一脱泥一浮选流程,铝硅比由4.7提高到9.00,回收率为58.80%[2.3 J。V.V.Ishchenko[4]等使用十二胺对铝硅比为2.4~2.7的原矿进行反浮选,获得铝硅比>7的精矿。N.M.Anishchenko[5]等使用月桂胺成功地实现了鲕绿泥石与三水铝石的分离。
近年来,我国主要是对一水硬铝石型铝土矿浮选脱硅进行了研究,而对三水铝石型铝土矿的选矿研究很少。20世纪90年代,正浮选铝硅分离研究获得进展,具代表性的是选择性磨矿一选择性聚团浮选分离工艺和阶段磨浮分离工艺。根据铝土矿中各种矿物可磨性差异,通过选择性磨矿+分级获得部分粗粒级合格产品,再脱泥后对剩余窄级别物料进行浮选[6]。针对我国一水硬铝石型铝土矿含硅矿物硬度低、密度小、易磨,一水硬铝石嵌布粒度细等特点,近年来开展了铝土矿反浮选研究[78]。本研究以印尼的三水铝土矿为原料,通过磨矿细度、捕收剂和调整剂用量、浮选浓度等多因素条件试验,探讨正浮选方法脱硅影响因素和适宜工艺条件。
一、矿石性质与试验方法
印尼三水铝石型铝土矿主要含铝矿物为三水铝石,含硅矿物主要为高岭石和石英,并含赤铁矿、钛针铁矿、锐钛矿等。原矿矿物含量和化学组成如表1和表2所示。原矿粒度组成如表3所示。
表1 原矿矿物含量 %矿物名称三水铝石高岭石石英赤铁矿钛针铁矿锐钛矿含量759~102542表2 原矿化学组成 %矿物名称SiO2Al2O3Fe2O3TiO2MgOCaO含量5.6550.317.341.180.100.17原矿铝硅比为8.67。为了分析+200目、-200目级别的铝硅比,原矿用-200目筛子分为+200目和-200目两个级别,分别进行了化学分析。其分析结果见表4。从表4可看出,原矿中+200目和-200目级别铝硅比明显不同,+200目级别的铝硅比达到10以上。
浮选试验采用XFDl-63型单槽式浮选机,浮选槽容量500mL,浮选温度32℃,调浆时间3min,浮选时间为10min。试验以氧化石蜡皂和塔尔油作为捕收剂,碳酸钠、水玻璃、六偏磷酸钠作为调整剂。碳酸钠在磨矿过程中加入。
二、试验结果与分析
(一)磨矿细度对浮选精矿铝硅比和回收率的影响。不同磨矿细度的浮选试验结果如表5所示。其中碳酸钠用量5kg/t,捕收剂用量0.5kg/t,矿浆浓度28.6%。从表5可看出,浮选精矿A1203品位和铝硅比随着磨矿细度的增加而逐渐增加,在磨矿细度为75%-200目时分别达到最大值50.67%和10.92;当磨矿细度大于75%-200目时精矿A12O3品位和铝硅比开始下降。精矿A1203回收率则随着磨矿细度的增加不断增加,磨矿细度为一200目含量92%时精矿中A1203的回收率达到66.19%。可认为磨矿细度为75%一200目时铝土矿中含铝矿物基本达到单体解离,随着磨矿细度继续增大,脉石矿物产生泥化,从而使浮选精矿中夹杂了更多脉石矿物,导致精矿的铝硅比降低。
(二)碳酸钠用量对浮选的影响。在磨矿细度为75%一200目条件下,进行了不同碳酸钠用量浮选试验。试验结果如表6所示。从表6可见,随着碳酸钠用量从3000g/t增加到7000g/t,精矿A1203品位和铝硅比变化不大, A1203品位介于50.03%~50.54%,铝硅比介于10.52-lO.88;而精矿A1203回收率随着碳酸钠用量增加先增大而后逐渐降低,在4000g/t时达到最大值64.07%。因为精矿Al203品位和铝硅比受碳酸钠用量影响不大,所以可认为碳酸钠主要是起调整矿浆pH的作用,而在矿浆中的分散作用并不明显。碳酸钠用量增大使捕收剂在高碱性条件下有更强的捕收性,从而提高精矿A1203回收率。
佛山市三水雄鹰金属防护材料厂有限公司
2019-01-15 09:49:27
佛山市三水雄鹰金属防护材料厂有限公司是专门从事铝表面处理技术研究、生产和服务的高科技公司。
自公司成立以来,依托北京理工大学国家重点实验室的技术、设备和人才优势,相继研究开发了铝合金整平光亮技术、铝合金光亮酸蚀技术和铝合金化学磨砂无烟抛光技术等多项专利技术及系列产品。特别是新近推出的铝合金光亮酸蚀技术和铝合金化学磨砂无烟抛光技术,更是带来了铝合金表面处理的重大技术变革。
目前,我国铝合金阳极氧化处理生产厂家中,基于传统表面前处理技术的占绝大多数,产品同质化非常严重,缺乏国际竞争力,许多厂家生产的铝合金产品附加值很低,一吨铝材的利润还不到5%,许多中小厂家生存都很困难。大厂依靠品牌的优势,虽然占据了一定的市场份额,但也只能靠量上取得利润,技术上并没有得到提高。随着其它发展中国家的进步和我国劳动力优势的丧失及环保机制的健全,我国现有铝材加工业的成本会越来越高,越来越多的厂家会逐步走向衰落,只有不断提高技术才是发展之路。
铝合金整平光亮技术工艺简单、无烟、无流痕,不仅能生产抛光平光材,同时能生产抛光磨砂材,其化学砂面是除酸砂、碱砂外的一种新的化学砂面,克服了传统抛光的许多弊端。该技术已申报一项国家发明专利。目前整平光亮技术已在佛山金兰集团等多家铝材厂以及众多的五金厂投入使用,是公司目前的主打技术之一。
铝合金光亮酸蚀技术解决了普通酸蚀铝材表面发暗的世界难题,生产一种全新的光亮酸蚀磨砂材种,极大地提升铝合金表面质量,是现有普通酸蚀、碱蚀、低温抛光等传统工艺的换代技术。该技术已申报两项国家发明专利。光亮酸蚀技术的市场前景十分广阔,以2005年全国生产了约150万吨普通氧化材为例,若全部换代,产品项目可增加产值15亿元;下游生产厂家因表面质量改善可额外增加附加值30亿元左右,同时可节约5-6万吨原铝。该项技术已成功地在广东兴发集团等多家大型企业投入生产,并出口到东南亚等国家和地区。目前亚洲铝厂、凤铝铝业、南山集团、南平铝业等国内大型铝加工企业正积极洽谈和准备中。
铝合金化学磨砂无烟抛光技术彻底解决了三酸抛光存在的黄烟、流痕、高药耗、低成品率的世界难题,是现有三酸抛光、电解抛光的升级换代技术。该技术已申报两项国家发明专利。以2005年全国共生产了约50万吨抛光材为例,若全部换代,可节约各类酸(以磷酸为主)约15万吨、黄烟及废水处理成本近15亿元,提升产品成品率减少生产厂家损失约5亿元,有着巨大的环保价值和经济价值。该技术已成功地在广西南南铝业及多家五金厂投入使用。亚洲铝厂、兴发集团、南平铝业正积极洽谈和准备中。
广东佛山三水金雄鹰有限公司 ◆ 酸蚀光亮技术 ◆ 获得
2019-01-09 09:34:23
广东佛山三水金雄鹰有限公司 ◆ 酸蚀光亮技术 ◆ 获得巨大成功广东佛山三水金雄鹰有限公司酸蚀光亮技术收到愈来愈多的生产厂家及销售商的欢迎,大量的海外客户及台商争相订购经酸蚀光亮技术处理的铝材。酸蚀光亮作为一种铝材表面处理的前沿技术,是在酸蚀槽后配备酸性光亮槽,对酸蚀材进行光亮处理,不仅保留了酸蚀去机械纹能力强、起砂快、铝耗低的优点,而且解决了酸蚀材表面发暗的弊端,是一项难得的技术突破。经酸蚀和其配套技术酸蚀光亮工艺处理的型材,表面无纹、细砂、亮丽。此外,酸蚀光亮可以取代低温抛光槽,以及三合一槽,生产平光料,即型材直接进酸蚀光亮槽进行除油,去膜,增亮,两道水洗后直接氧化。可以预见,随着酸蚀光亮技术的迅速普及,我国酸蚀铝型材的国际竞争能力有望得到迅速提升。服务电话:0757-5511262