您所在的位置: 上海有色 > 有色金属产品库 > 锗煤露天矿 > 锗煤露天矿百科

锗煤露天矿百科

锗矿

2019-02-11 14:05:30

粉末状呈暗蓝色,结晶状,为银白色脆金属。密度5.35克/厘米3。熔点937.4℃。沸点2830℃。化合价+2和+4。榜首电离能7.899电子伏特。是一种稀有金属,重要的半导体材料。不溶于水、、稀苛性碱溶液。溶于、浓硝酸或硫酸、熔融的碱、过氧化碱、硝酸盐或碳酸盐。在空气中不被氧化。其细粉可在氯或中焚烧。   性质:  具有半导体性质。对固体物理和固体电子学的开展有重要效果。锗的熔密度5.32克/厘米3,锗可能性划归稀散金属,锗化学性质安稳,常温下不与空气或水蒸汽效果,但在600~700℃时,很快生成二氧化锗。与、稀硫酸不起效果。浓硫酸在加热时,锗会缓慢溶解。在硝酸、中,锗易溶解。碱溶液与锗的效果很弱,但熔融的碱在空气中,能使锗敏捷溶解。锗与碳不起效果,所以在石墨坩埚中熔化,不会被碳所污染。锗有着杰出的半导体性质,如电子迁移率、空穴迁移率等等。锗的开展仍具有很大的潜力。现代工业生产的锗,首要来自铜、铅、锌冶炼的副产品。

锗矿石中锗的提取工艺

2019-02-22 15:05:31

归纳收回锗的办法许多,常用的是氯化蒸馏的经典办法。该法是使原猜中的锗转入硫酸溶液,参加单宁得单宁锗沉积物,经氧化焙烧脱砷及脱有害物后,在83~100℃下氯化蒸馏得GeCl4。在氯化蒸馏过程中发作如下反响: GeO3+4HCl=GeCl4+2H2O GeCl4经水解得纯GeO2,过程中发作下列反响: GeCl4+2H2O=GeO2+4HCl GeO2通复原得到约具有10~20Ω·cm电阻率的金属锗,其反响为: GeO2+2H2=Ge+2H2O (1)优先蒸发法收回锗先把质料制团,经复原蒸发硫化锗,蒸发锗率达90%~98%;然后将尘按经典法提锗,锗的收回率听说高达90%。在我国,曾实验用此法从含0.006%~0.008%Ge的锌精矿中提锗,通过两次复原蒸发,所得硫化物尘再用经典法提锗,锗收回率达75%~80%。 (2)硫酸化-载体沉积法收回锗此法处理含0.022%锗的扎伊尔锗矿,经浮选得含锗0.13%的铜精矿,经铜冶炼得含0.36%Ge的烟尘,经硫酸化使锗转入硫酸系统,净化后用MgO作载体沉积出溶液中的锗,然后按经典法提锗。比利时的巴伦厂选用此法出产,锗的收回率达75%。 (3)碱土金属氯化蒸馏法收回锗。 (4)烟化法收回锗。 (5)氧化复原焙烧收回锗。 (6)再次蒸发收回锗。 (7)萃取法收回锗近年来,国内外溶剂萃取锗的研讨工作进展较大,在系统中可用火油、CCl4、MIBK、Lix63及二等萃取锗;在硫酸系统中可用TOA、P204+YW100、Lix63及Kelex100等萃取锗,此法可根据具体情况进行出产。 (8)鼓风炉蒸发法收回锗。

锗的性质和用途

2018-10-23 10:18:07

锗单质是一种灰白色类金属,有光泽,质硬,属于碳族,化学性质与同族的锡与硅相近,不溶于水、HCl、稀苛性碱溶液,溶于王 水、浓硝酸或硫酸,具有两 性,故溶于熔融的碱、过氧化碱、碱金属硝酸盐或碳酸盐,在空气中较稳定,在自然界中,锗共有五种同位素:70,72,73,74,76,在700℃以上与氧作用生成GeO2,在1000℃以上与氢作用,细粉锗能在氯或 Br 中燃烧,锗是优良半导体,可作高频率电流的检波和交流电的整流用,此外,可用于红外光材料、精密仪器、催化剂。锗的化合物可用以制造荧光板和各种折射率高的玻璃。锗化学性质稳定,常温下不与空气或水蒸汽作用,但在600~700℃时,很快生成二氧化锗。与HCl、稀硫酸不起作用。浓硫酸在加热时,锗会缓慢溶解。在硝酸、王 水中,锗易溶解。碱溶液与锗的作用很弱,但熔融的碱在空气中,能使锗迅速溶解。锗与碳不起作用,所以在石墨坩埚中熔化,不会被碳所污染。??锗在电子工业中的用途,已逐渐被硅代替。但由于锗的电子和空穴迁移率较硅高,在高速开关电路方面,锗比硅的性能好。锗在红外器件、γ辐射探测器方面,有新的用途。金属锗能通过?2~15微米的红外线,又和玻璃一样易被抛光,能有效地抵制大气的腐蚀,可用以制造红外窗口、三棱镜和红外光学透镜材料。锗酸铋用于闪烁体辐射探测器。锗还同铌形成化合物,用作超导材料。二氧化锗是聚合反应的催化剂。用二氧化锗制造的玻璃有较高的折射率和色散性能,可用于广角照相机和显微镜镜头;GeO2-TiO2-P2O5类型的玻璃有良好的红外性能,在空间技术上,可用来保护超灵敏的红外探测器。

锗常识

2019-03-14 09:02:01

锗为银灰色金属,密度5.35克,熔点937.4℃,沸点2830℃。室温下,晶态锗性脆,可塑性很小。锗的化学性质安稳,常温下锗在空气中不被氧化,但在加热时,锗能在氧气、和蒸气中焚烧。锗不与水效果,不溶于和稀硫酸,硝酸和热的浓硫酸能将金属锗氧化为二氧化锗,锗还溶于。锗易溶于熔融的或,生成锗酸钠或锗酸钾。在过氧化氢、次等氧化剂存鄙人,锗能溶解在碱性溶液中,生成锗酸盐。锗具有半导体性质,在高纯锗中掺入三价元素(如铟、镓、硼)、得到P型锗半导体;掺入五价元素(如锑、砷、磷),得到N型锗半导体。  锗一般以涣散状况存在于其他矿藏中,独立的矿藏很少。可从含锗的氧化铅锌矿、闪锌矿和煤灰中收回锗。锗的提取办法是首先将锗的富集物用浓氯化,制取,再用溶剂萃取法除掉首要的杂质砷,然后经石英塔两次精馏提纯,再经高纯洗刷,可得到高纯,用高纯水使水解,得到高纯二氧化锗。一些杂质会进入水解母液,所以水解进程也是提纯进程。纯二氧化锗经烘干煅烧,在复原炉的石英管内用于650-680℃复原得到金属锗。  锗在电子工业中的用处已逐步被硅替代。但因为锗的电子和空穴迁移率较硅高,在高速开关电路方面,锗比硅的功用好。锗首要用来出产低功率半导体二极管三极管,锗在红外器材、γ辐射探测器方面有着新的用处,金属锗能让2-15微米的红外线经过,又和玻璃相同易被抛光,能有效地抵抗大气的腐蚀,可用以制作红外窗口、三棱镜和红外光学透镜材料。锗还与铌构成化合物,用作超导材料。用氧化锗制作的玻璃有较高的折射率和色散功用,可用于广角照像镜头和显微镜。  镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。  稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。  稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。  我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。

锗知识

2019-03-08 11:19:22

锗为银灰色金属,密度5.35克,熔点937.4℃,沸点2830℃。室温下,晶态锗性脆,可塑性很小。锗的化学性质安稳,常温下锗在空气中不被氧化,但在加热时,锗能在氧气、和蒸气中焚烧。锗不与水效果,不溶于和稀硫酸,硝酸和热的浓硫酸能将金属锗氧化为二氧化锗,锗还溶于。锗易溶于熔融的或,生成锗酸钠或锗酸钾。在过氧化氢、次等氧化剂存鄙人,锗能溶解在碱性溶液中,生成锗酸盐。锗具有半导体性质,在高纯锗中掺入三价元素(如铟、镓、硼)、得到P型锗半导体;掺入五价元素(如锑、砷、磷),得到N型锗半导体。 锗一般以涣散状况存在于其他矿藏中,独立的矿藏很少。可从含锗的氧化铅锌矿、闪锌矿和煤灰中收回锗。锗的提取办法是首先将锗的富集物用浓氯化,制取,再用溶剂萃取法除掉首要的杂质砷,然后经石英塔两次精馏提纯,再经高纯洗刷,可得到高纯,用高纯水使水解,得到高纯二氧化锗。一些杂质会进入水解母液,所以水解进程也是提纯进程。纯二氧化锗经烘干煅烧,在复原炉的石英管内用于650-680℃复原得到金属锗。 锗在电子工业中的用处已逐步被硅替代。但因为锗的电子和空穴迁移率较硅高,在高速开关电路方面,锗比硅的功用好。锗首要用来出产低功率半导体二极管三极管,锗在红外器材、γ辐射探测器方面有着新的用处,金属锗能让2-15微米的红外线经过,又和玻璃相同易被抛光,能有效地抵抗大气的腐蚀,可用以制作红外窗口、三棱镜和红外光学透镜材料。锗还与铌构成化合物,用作超导材料。用氧化锗制作的玻璃有较高的折射率和色散功用,可用于广角照像镜头和显微镜。 镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。 稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。 稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。 我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。

难处理富锗铅锌硫化氧化矿新技术

2019-01-21 18:04:55

为开发利用云南驰宏锌锗股份有限公司深部铅锌矿资源,北京矿冶研究总院和云南驰宏锌锗股份有限公司创造性地开发出“等可浮-异步选铅-锌硫异步混选-铅锌硫分离-氧化铅锌矿不脱泥硫化电位控制浮选”新技术,并成功应用于复杂难选铅锌硫化氧化混合矿的选矿过程,技术上取得了突破性进展。 1、依据铅硫、锌硫关系密切的特点,根据等可浮的原理把铅锌硫分成两部分:“铅硫”部分和“锌硫”部分,首次将异步和等可浮两个流程的核心技术有机结合起来,形成等可浮异步浮选和混选流程结构,成为硫化矿浮选的骨干流程;采用有效的针对性捕收剂,保证了铅、锌、硫、银、锗等金属得到最大限度的回收,确保了铅硫在低pH下分离,为后续氧化矿有效浮选创造了必要条件。 2、氧化铅锌矿不脱泥硫化浮选新技术,解决了矿石中铅锌氧化矿物和脉石矿物同为碳酸盐矿物、泥化程度高的难题,是获得混合矿浮选技术指标突破性进展的关键技术。 最终的选矿产品结构简单,便于操作管理,该技术整体上达到国际领先水平。

锗有哪些性质

2019-03-07 11:06:31

锗具有半导体性质。对固体物理和固体电子学的开展有重要效果。锗的熔密度5.32克/厘米3,锗可能性划归稀散金属,锗化学性质安稳,常温下不与空气或水蒸汽效果,但在600~700℃时,很快生成二氧化锗。与、稀硫酸不起效果。浓硫酸在加热时,锗会缓慢溶解。在硝酸、中,锗易溶解。碱溶液与锗的效果很弱,但熔融的碱在空气中,能使锗敏捷溶解。锗与碳不起效果,所以在石墨坩埚中熔化,不会被碳所污染。锗有着杰出的半导体性质,如电子迁移率、空穴迁移率等等。锗的开展仍具有很大的潜力。现代工业生产的锗,首要来自铜、铅、锌冶炼的副产品。

锗的工业用途

2018-08-29 09:58:12

锗具备多方面的特殊性质,在半导体、航空航天测控、核物理探测、光纤通讯、红外光学、太阳能电池、化学催化剂、生物医学等领域都有广泛而重要的应用,是一种重要的战略资源。在电子工业中,在合金预处理中,在光学工业上,还可以作为催化剂。高纯度的锗是半导体材料。从高纯度的氧化锗还原,再经熔炼可提取而得。掺有微量特定杂质的锗单晶,可用于制各种晶体管、整流器及其他器件。锗的化合物用于制造荧光板及各种高折光率的玻璃。锗单晶可作晶体管,是第一代晶体管材料。锗材用于辐射探测器及热电材料。高纯锗单晶具有高的折射系数,对红外线透明,不透过可见光和紫外线,可作专透红外光的锗窗、棱镜或透镜。20世纪初,锗单质曾用于治疗贫血,之后成为最早应用的半导体元素。单质锗的折射系数很高,只对红外光透明,而对可见光和紫外光不透明,所以红外夜视仪等军用观察仪采用纯锗制作透镜。锗和铌的化合物是超导材料。二氧化锗是聚合反应的催化剂,含 二氧化锗的玻璃有较高的折射率和色散性能,可作广角照相机和显微镜镜头,三GeCl4还是新型光纤材料添加剂。据数据显示,2013年来光纤通信行业的发展、红外光学在军用、民用领域的应用不断扩大,太阳能电池在空间的使用,地面聚光高效率太阳能电站推广,全球对锗的需求量在持续稳定增长。全球光纤网络市场尤其是北美和日本光纤市场的复苏拉动了光纤市场的快速增长。21世纪全球光纤需求年增长率已经达到了20%。未来中国光纤到户、3G建设及村通工程将拉动中国光纤用锗需求快速增长。锗在红外光学领域的年需求量占锗消费量的20-30%,锗红外光学器件主要作为红外光学系统中的透镜、棱镜、窗口、滤光片等的光学材料。红外市场对锗产品的未来需求增长主要体现在两个方面:军事装备的日益现代化带动了对红外产品的需求和民用市场对红外产品的需求。太阳能电池用锗占据锗总消耗量的15%,太阳能电池领域对锗系列产品的未来需求增长主要体现在两个方面:航空航天领域及卫星市场快速发展和地面光伏产业快速增长。从全球产量分布来看,中国供给了世界71%的锗产品,是全球最大的锗生产国和出口国,这主要是由于中国高附加值深加工产品技术环节薄弱,导致内需相对有限,产品多以初加工产品出口为主。但是在需求旺盛刺激下,中国锗生产技术能力提升迅速,目前中国企业已经能够生产光纤级、红外级、太阳能级锗系列产品。加之来政策推动力度大,中国光纤领域锗需求明显增长。2013年PET催化剂用锗约占25%,电子太阳能用锗约占15%,红外光学用锗比重从42%降至25%,而光纤通讯约占锗消费30%左右的市场份额。2011年中国锗消费量为45金属吨,2012年锗消费量为50金属吨,同比增长11.11%;2013年锗消费量为59金属吨,同比增长18.00%。

锗的提取方法

2019-02-25 13:30:49

锗的提取办法是首先将锗的富集物用浓氯化,制取,再用溶剂萃取法除掉首要的杂质砷,然后经石英塔两次精馏提纯,再经高纯洗刷,可得到高纯,用高纯水使水解,得到高纯二氧化锗。一些杂质会进入水解母液,所以水解进程也是提纯进程。纯二氧化锗经烘干煅烧,在复原炉的石英管内用于650-680℃复原得到金属锗。 锗具有多方面的特殊性质,在半导体、航空航天测控、核物理勘探、光纤通讯、红外光学、太阳能电池、化学催化剂、生物医学等范畴都有广泛而重要的使用,是一种重要的战略资源。

从四氯化锗水解母液中回收锗

2019-02-11 14:05:44

高纯二氧化锗(GeO2)是将高纯(GeCl4)参加去离子水分化而成的。经过过滤使固体GeO2与水解液别离,水解液中的锗含量一般为2~4g/L。现在,一般选用直接往水解液中加氯盐法或参加等质量的进行蒸馏的办法收回其间的锗,锗以GeCl4的方式得到收回。驰宏公司选用第二种办法收回水解液中的锗,需耗费30%的工业约110t/a,发生H+浓度为6.5mol/L的蒸馏残液约200m3/a,环保处理时困难比较大。本研讨就是为了寻觅一个成本低和残液发生量较少的环境友好型锗收回新工艺。       一、试验部分       (一)质料       试验所用水解液是从高纯GeCl4水解生成GeO2后的水解上清液,为淡黄色的酸性溶液,悬浮有少数白色漂浮物,其化学组成见表1。此外,试验所用试剂MgCl2·6H2O,MgSO4·7H2O,MgO均为分析纯(广东省汕头市达濠精密化学品有限公司出产);NaOH,NH3·H2O为分析纯(上海化学试剂有限公司出产)。   表1  水解液首要化学组成水解母液c(H+)/(mol·L-1)ρ(Ge)/(g·L-1)1#4.513.402#4.822.753#5.032.12       (二)试验原理       高纯GeCl4水解成高纯GeO2的化学反应式为: GeCl4+2H2O=GeO2+4HCl   或:GeCl4+(x+2)H2O=GeO2·xH2O+4HCl       水解生成的GeO2具有必定的溶解度(0.004mol/L),是一种可溶性的结晶氧化物。       向水解液中参加与氯化镁,首要生成溶于水的锗酸钠,后生成不溶性的锗酸镁,此进程的化学反应式为:   GeO2+2NaOH=Na2GeO3+H2O   Na2GeO3+MgCl2=MgGeO3↓+2NaCl       过滤枯燥后将锗酸镁与按1∶6(质量比)参加到蒸馏釜中一起蒸馏,运用GeCl4沸点低(83.1℃)的性质,锗便以GeCl4的方式得到收回,此进程的化学反应式为:   MgGeO3+6HCl=MgCl2+GeCl4+3H2O       (三)试验办法       试验在室温下(25℃)进行,锗收回首要包含以下几步(图1):图1  从水解母液中收回锗的工艺流程   (因故图件不清,需求者可来电免费讨取)       过程1:选用NaOH与NH3·H2O调理水解液的pH值为7.0~8.0,参加MgCl2、MgSO4和MgO作为沉积剂,使锗生成不溶于水的锗酸镁(MgGeO3)。       过程2:将过程1所得溶液过滤,得到含锗滤饼。       过程3:将含锗滤饼进行枯燥,能够削减滤饼40%~60%的含水量,以便蒸馏。       过程4:将枯燥脱水后的滤饼与一起蒸馏,在大约70~100℃使锗以GeCl4的方式蒸发,用分析纯吸收蒸馏出来的GeCl4。       二、成果与评论       试验发现,选用NaOH或NH3·H2O来调理水解液的pH值,对锗收回率几乎没有影响。运用NH3·H2O调理水解液的pH值时,会有必定量的NH3冒出,因而从往后的工业使用考虑,试验选用NaOH来调理水解液的pH值。       (一)Mg/Ge摩尔比对锗收回率的影响       试验中选用MgCl2作为沉积剂,沉积时刻为24h,Mg/Ge摩尔比对锗收回率的影响见表2。由表2能够看到随Mg/Ge摩尔比的添加,锗的收回率也是不断添加的。含锗量高的水解液,锗的收回率也比较高,但锗沉积后的上清液中含锗量根本一起。当Mg/Ge摩尔比到达1.5时,锗的收回率比较抱负,持续添加Mg/Ge摩尔比对锗收回率的影响不是十分显着。因而,将Mg/Ge摩尔比确定为1.5。   表2  不同Mg/Ge摩尔比条件下的锗收回率/%水解母液n(Mg)/n(Ge)00.511.522.51#65.392.495.998.599.199.12#57.190.594.998.298.898.93#41.687.193.197.598.598.5       (二)不同镁化合物对锗收回率的影响       试验中选用MgCl2、MgSO4或MgO作为沉积剂,Mg/Ge摩尔比为1.5,沉积时刻24h,锗收回率见表3。由表3可知,MgCl2与MgSO4作为沉积剂,锗的收回率都比较抱负,而MgO的沉积作用不抱负,这可能是因为MgCl2与MgSO4在水溶液中都能够电离出Mg2+,而MgO则不能。   表3  不同镁化合物对锗收回率的影响镁化合物收回率/%MgCl298.3MgSO498.2MgO85.3       (三)氯化铵对锗收回率的影响       据有的材料介绍,溶液中若有NH4+存在时,水解液中的锗更简单沉积分出。试验中选用MgCl2作为沉积剂,沉积时刻为24h,参加不同量的NH4Cl,锗收回率见表4。由表4成果能够看到,NH4Cl的参加量对锗收回率几乎没有影响。   表4  氯化铵对锗收回率的影响n(NH4Cl)/n(Ge)收回率/%098.20.598.5197.81.597.1296.82.595.6       (四)沉积时刻对锗收回率的影响       试验中选用MgCl2作为沉积剂,Mg/Ge摩尔比为1.5,沉积时刻对锗收回率的影响见表5。试验发现,参加MgCl2后,能够在4h内根本完成沉积。   表5  沉积时刻对锗收回率的影响沉积时刻/h收回率/%292.5498.11298.0       (五)蒸馏法收回锗沉积中的锗       将枯燥后的锗沉积滤饼均匀混合后,锗的档次测定为31.55%。试验时每次称取1000g锗沉积滤饼,参加6000g工业一起蒸馏,锗以GeCl4的方式得到收回。依据公司多年的出产经历,1kg的锗能够出产GeCl4为1576mL,蒸馏工艺锗的收回率见表6。   表6  蒸馏工艺锗的收回率水解母液GeCl4理论产值/mLGeCl4实践产值/mL收回率/%1#497.2491.598.852#497.2489.598.453#497.2488.598.25均匀497.2489.598.52       三、结语       本研讨获得了一种新的从水解母液中收回锗的工艺,此工艺首要包含用NaOH或调理水解液的pH值,参加镁化合物生成锗酸镁沉积,过滤得到锗沉积并烘干,再用传统的蒸馏工艺收回锗。选用此工艺能够使锗的收回率到达98%以上,最佳试验条件为:选用NaOH来调理水解液的pH值至7~8,MgCl2或MgSO4作为沉积剂,Mg/Ge(摩尔比)为1.5∶1,沉积时刻为4h。       驰宏公司水解母液的发生量为110m3/a,含锗均匀为3g/L,选用此工艺发生档次为31.55%的锗沉积约为1046kg,需求30%的工业约6.5t/a,选用新工艺比选用旧收回工艺每年可节省工业100t左右,而锗总的收回率根本一起。

锗的用途

2019-02-11 14:05:44

美国与日本的锗使用举例及结构示于表1。   表1  锗的使用举例及结构        (%)年份国别使用光纤红外探测器+半导体催化剂其他1985美国651510-10日本17.2-9.135.538.21996美国401515255日本10.7-10.771.47.21997美国4010202010日本13.3-13.466.76.61998美国441117226日本   (72.4) 1999美国501510205日本   (91.1) 2000美国501510205日本   (84.0) 2001美国501510205日本            一、锗作为红外光学材料,具有红外折射率高,红外透过波段规模宽,吸收系数小、色散率低、易加工、亮光及腐蚀等影响,特别适用军工及严重民用中的热成像仪与红外雷达及其他红外光学设备的窗口、透镜、棱镜与滤光片的材料;高纯锗或锗锂用于天文学的γ-谱仪,核反应能谱仪及等离子物理X-射线仪;Si-Ge10与掺、镉、铜与镓的锗单晶用于红外探测器。       二、锗半导体器材用作二极管、晶体三极管及复合晶体管、锗半导体光电器材作光电、霍耳及压阻效应的传感器,作光电导效应的放射线检测器等,广泛用于间响、彩电、电脑、电话及高频设备中,锗管特别适用于高频大功率器材中,且在强辐射与-40℃下工作正常;Ge-Si与Ge-Te作温差发电用于宇航、卫星与空间站的发动电源等。       三、掺锗光纤具有容量大、光损小、色散低、传输间隔长及不受环境等的搅扰,是现在仅有能够工程化使用的光纤,是光通讯网络的主体,近年取得大发展(表2)。   表2  全球耗费光纤量年份199019911992199319941995199619971998199920002001耗光纤量/(万km·a-1)51078011001200144018692252~30502677~37703260~45903882~63304702~ 788010190       1万km光纤需GeCl4量:单模为6.8-25kg,多模为34-100kg左右,而且15年就需要替换。此外,GeCl4还用于高速光纤网,链路,光纤传感器,光纤制导及光纤系留设备等。       GeO2是出产聚对笨二乙二醇酯(PET)的催化剂,具有长纤维,由其制备的饮料与食用液体的各式容器,无毒、通明且气密性好。锗用于医药,如Ge-132[β-羧乙基锗倍半氧化物-(GeCH2CH2COOH)2O3]临床使用于防治癌症。BGO作X-射线、CT-仪、PCT-仪,用于确诊肿瘤及骨骼结构与安排坏死等。锗化合物及其有机化合物可作牙膏与高效止痛膏等。

伊塔比拉露天铁矿山

2019-01-29 10:09:41

全球最大铁矿石厂商巴西淡水河谷(CVRD)昨日称,堪称全球最大的铁矿石矿山本周将开始运转。这座矿山归CVRD所有。     公司一高级主管表示,位于Minas Gerais州Brucutu新矿山的年产能将高达3,000万吨。他进一步解释说,该矿山在正式投产前将试运转一段时间,其中试运转将在今年年底前展开。他预计该矿山今年铁矿石产量将达700万吨,明年将实现全能生产。     这位主管称,Brucutu是迄今为止所有铁矿山中启用产能最大的矿山。     通常铁矿石矿山的初期产能较低,只有通过数年的扩张才能逐步提高产能。     CVRD是全球第一大铁矿石生产和出口商,也是第二大锰和铁合金生产商,占有11%的国际市场份额。其铁矿石产量占巴西全国产量的80%。

锗主要的回收工艺

2019-02-12 10:08:00

归纳收回锗的办法许多,常用的是氯化蒸馏的经典办法。该法是使原猜中的锗转入硫酸溶液,参加单宁得单宁锗沉积物,经氧化焙烧脱砷及脱有害物后,在83~100℃下氯化蒸馏得GeCl4。在氯化蒸馏过程中发作如下反响:   GeO3+4HCl=GeCl4+2H2O   GeCl4经水解得纯GeO2,过程中发作下列反响:   GeCl4+2H2O=GeO2+4HCl   GeO2通复原得到约具有10~20Ω·cm电阻率的金属锗,其反响为:   GeO2+2H2=Ge+2H2O       (1)优先蒸发法收回锗  先把质料制团,经复原蒸发硫化锗,蒸发锗率达90%~98%;然后将尘按经典法提锗,锗的收回率听说高达90%。在我国,曾实验用此法从含0.006%~0.008%Ge的锌精矿中提锗,通过两次复原蒸发,所得硫化物尘再用经典法提锗,锗收回率达75%~80%。     (2)硫酸化-载体沉积法收回锗  此法处理含0.022%锗的扎伊尔锗矿,经浮选得含锗0.13%的铜精矿,经铜冶炼得含0.36%Ge的烟尘,经硫酸化使锗转入硫酸系统,净化后用MgO作载体沉积出溶液中的锗,然后按经典法提锗。比利时的巴伦厂选用此法出产,锗的收回率达75%。     (3)碱土金属氯化蒸馏法收回锗。     (4)烟化法收回锗。     (5)氧化复原焙烧收回锗。     (6)再次蒸发收回锗。     (7)萃取法收回锗  近年来,国内外溶剂萃取锗的研讨工作进展较大,在系统中可用火油、CCl4、MIBK、Lix63及二等萃取锗;在硫酸系统中可用TOA、P204+YW100、Lix63及Kelex100等萃取锗,此法可根据具体情况进行出产。     (8)鼓风炉蒸发法收回锗。

石煤提钒配煤焙烧技术

2019-02-19 09:09:04

石煤中的钒以三价为主,三价钒以类质同像办法存在于粘土矿藏的硅氧四面体结构中,结合巩固且不溶于酸碱,只要在高温文添加剂的作用下,才干转变为可溶性的五价钒,因而焙烧是从石煤中提钒不行短少的进程。     实验室中提钒进程的高温氧化焙烧多选用马弗炉电加热等办法,因为炉内温度散布不均匀,导致部分矿样温度偏低然后氧化不充沛;一起也存在焙烧温度较高、时刻较长、能耗较高级缺陷。针对以上问题,考虑在焙烧进程中添加适量的无烟煤,既不影响氧化气氛,又能使其焚烧时与石煤点对点触摸传热,进步部分矿样温度,加快氧化反响进程,然后下降焙烧温度、缩短反响时刻。因而,研讨石煤配煤氧化焙烧对进步转化率、改进焙烧条件、下降焙烧能耗及优化提钒出产有必定指导意义。     一、实验部分     (一)实验质料     本实验所用矿样取自江西某地钒矿,其首要化学成分见表1。 表1  石煤化学成分(质量分数)/%V2O5SiO2Al2O3Fe2O3CaOMgOK2ONa2OC挥发份灰分0.8266.146.463.492.961.431.650.699.384.5985.98     (二)实验试剂及仪器     实验质料为钠盐复合添加剂(MX)、无烟煤(山西晋城);实验仪器为SXZ-10-B马弗炉、101-3型干燥箱、XZM-100振动磨样机、SHB-Ⅲ循环水真空泵等。     (三)实验办法     在前期实验已断定的最佳脱碳、磨矿及复合添加剂用量条件下,取必定量原矿破碎至0~5mm,700℃下脱碳30min,将原矿或脱碳样磨至0~0.125mm,配加12%复合添加剂,配煤实验时配加必定量的无烟煤,混合均匀后,置于马弗炉中于必定温度(焙烧温度指焙烧设备外表设定温度)进行焙烧。熟料在液固比为2.5︰1,90℃下水浸40min;水浸渣在40℃下用1%HCl酸浸60min。选用亚铁容量法测定浸出液中钒浓度,核算钒的浸出率。浸出率核算式为:         (四)实验原理     碳钒氧化物自由能-温度联系如图1所示。    由图1可知,碳焚烧比钒氧化的吉布斯自由能小,因而在焙烧进程中,第一个反响是碳的焚烧;当碳量较低时,三价钒的氧化进程才开端。石煤在氧化焙烧前,原矿一般要通过预先脱碳处理。石煤与复合钠盐添加剂高温氧化焙烧时,首要的化学反响有:     C+1/202==CO  (1)     CO+1/202==CO2  (2)     V203+O2==2V02  (3)     2V02+1/202==V205   (4)     2NaCl==2Na+Cl2   (5)     2Na+1/202==Na2O  (6)     xNa20+yV2O5==xNa20·yV205  (7)     石煤钠化氧化焙烧首要分为碳的氧化、钒从贱价转化成高价、盐的分化和氧化、与五氧化二钒的结合4个进程。     二、实验成果与评论     (一)石煤原矿和脱碳样氧化焙烧比照实验     在复合添加剂为12%,焙烧时刻为1.5h时,不同焙烧温度对浸出率的影响如图2所示。脱碳样的焙烧温度为850℃及原矿的焙烧温度为790℃时,不同焙烧时刻对浸出率的影响如图3所示。    由图2、图3可知,原矿经脱碳后再氧化焙烧比原矿直接氧化焙烧作用好。这是因为原矿经脱碳后,部分有机质、碳及一些还原性矿藏发作氧化,使其不影响钒在高温氧化焙烧时的转价反响;另脱碳可进步钒的档次并使原矿结构松懈,脱碳样更易与氧化气体充沛触摸然后发作氧化反响。因而原矿需经脱碳后再氧化焙烧。     焙烧温度及时刻是氧化焙烧的首要影响要素。当焙烧温度小于760℃时,首要是其他还原性物质的氧化按捺了钒的氧化反响,导致钒转化率不高;温度升高,硅氧四面体结实的晶格结构被损坏,钒脱节捆绑,大部分V(Ⅲ)和V(Ⅳ)转化为V(V);温度大于850℃时,高价钒发作二次反响,生成不溶性钒酸盐,石煤组分之间亦发作反响,尤其是SiO2参加反响,构成杂乱难溶的硅酸盐,影响钒的浸出率。氧化焙烧时刻小于1.5h时,反响不充沛,浸出率低;焙烧时刻大于2.5h后,导致副反响发作,且影响出产周期。由实验成果可知:原矿通过脱碳,在850℃下焙烧1.5h,浸出率可达80.12%;原矿直接在790℃下焙烧1.5h,浸出率最高为68.41%。     (二)配煤焙烧实验     无烟煤具有煤化程度高、挥发份低、密度大、燃点高、无粘结性等特色,因而选用无烟煤作为配煤焙烧实验的煤种。本实验选用无烟煤的含碳量为92.61%,挥发份为3.28%,灰分为4.11%,热值为31500kJ/kg。     1、石煤原矿配煤焙烧实验     配加必定量无烟煤焙烧,可使石煤与无烟煤充沛触摸并点对点传热,有利于钒氧化,但焚烧需很多氧气,会按捺钒的氧化;因而调查石煤配煤焙烧是否可行。     将原矿与必定量的无烟煤及12%复合添加剂混合,790℃下焙烧1.5h,不同无烟煤添加量对浸出率的影响成果见图4。    由图4可知,原矿配加无烟煤氧化焙烧,浸出率较未配煤时下降起伏较大。因为焙烧进程先发作碳的氧化反响,然后是钒的氧化,虽然添加无烟煤可为焙烧供给必定的热量,但原矿及无烟煤中的碳焚烧需求很多氧气,影响钒转价的氧化气氛。此进程中无烟煤的还原性是主导要素。因而,原矿不宜配煤氧化焙烧。     2、脱碳样配煤焙烧实验     将脱碳样与必定量的无烟煤及12%复合添加剂混合,820℃下焙烧1h,不同无烟煤添加量对浸出率的影响成果见图5。    由图5可知,跟着无烟煤用量的添加,浸出率略有上升趋势,当无烟煤用量为5%时,总浸率最高为81.96%,阐明无烟煤与石煤点对点触摸传热有利于钒氧化,且不影响钒氧化所需的氧化气氛;持续添加煤量,浸出率下降,阐明无烟煤用量过多,焚烧放热所需氧量添加,损坏了焙烧的氧化气氛,且煤量过多,简单形成部分温度过高,使矿样部分烧结。因而,无烟煤的最佳参加量为5%。     将脱碳样与5%无烟煤及12%复合添加剂混合,在不同温度下焙烧1h,焙烧温度对浸出率的影响成果见图6。    由图6可知,脱碳样配加5%的无烟煤在820℃下焙烧1h浸出率可达81.96%,比照图2,脱碳样不配煤在850℃下焙烧1.5h浸出率为80.12%。配加必定量的无烟煤后,可为氧化焙烧供给热量,下降外部环境温度,且不影响钒转价作用。因而,配加5%的无烟煤后,焙烧温度可下降30℃,且总浸出率略有升高。     将脱碳样与5%无烟煤及12%复合添加剂混合,在820℃下焙烧,焙烧时刻对浸出率的影响成果见图7。    由图7可知,脱碳样配加5%无烟煤在820℃下焙烧1.5h,浸出率为82.08%;焙烧时刻为1h时,浸出率为81.96%。脱碳样配加无烟煤高温焙烧,这种点对点触摸传热有利于钒氧化,加快钒的转价进程。脱碳样配加无烟煤后不只能够下降焙烧温度30℃,亦可缩短焙烧时刻0.5h,且不影响浸出率,大起伏下降了焙烧能耗。     三、定论     (一)原矿经脱碳后氧化焙烧浸出率可达80.12%,较原矿直接氧化焙烧浸出率高11.71个百分比。因而石煤原矿需经脱碳再氧化焙烧。     (二)原矿以无烟煤作为添加煤种氧化焙烧时,浸出率低,因而石煤原矿不适宜配煤焙烧。     (三)脱碳样配加5%无烟煤氧化焙烧,焙烧温度由850℃下降为820℃,焙烧时刻由1.5h缩短为1h,浸出率为81.96%,浸出率较不配煤焙烧时略有添加,且大起伏下降了焙烧能耗。

煤-油聚团选金设备

2019-02-15 14:21:10

吸附设备是煤-油聚团选金新工艺完结工业使用的最中心设备。已规划和选用的设备有下行式串级型搅拌吸附设备(Down stream multistage stirring tank,简称DSMST)和偏疼提高管凹型歪斜筛环流式吸附床(Gas一lift loop reactor with eccentric tube and inclined sieve,简称EILR),以满意操作功能好和出资费用低的要求。    1)下行式串级型搅拌吸附设备(DSMST)    下行式串级型搅拌吸附设备的结构如图1所示。在所规划的DSMST吸附设备中,使用桨叶发生的抽力将浆相和煤一油聚团从混合室上端进口吸入混合室,混合相从槽底出口经提高管排出,从而使煤一油聚团散布均匀,并且无需空气提高设备就能完结浆相或火油聚团的级间传递。把一个搅拌室分红多槽,一起削减槽与槽之间的返混,浆相在搅拌槽内的活动趋向柱塞流,浆相和火油聚团各微元有更多的平等时机进行触摸和吸附别离。    设备级间筛分设备能够使通过上一级槽子吸附的浆相进入下一级槽子进行吸附,一起使煤一油聚团保留在本来的槽内,进行恣意次数的循环。该进程以半回流方法进行。级间筛分设备由提高管和Z型筛组成,省去了紧缩气体和振荡机械系统。混合相的提高量由提高管的高度调理。Z型筛筛网孔径应在煤-油聚团直径和矿粉直径之间。实验结果标明,以筛分替代浮选,能使工艺流程缩短,设备简化。[next]    从DSMST吸附设备与全混式高速搅拌吸附槽的吸附功能比较可知,在矿的含金档次为4.0~5.5g/t条件下,1L的全混式高速搅拌吸附槽在搅拌速度为1400r/min时,金的回收率为84.0%;3.6L的DSMST在搅拌速度为580r/min时,金的回收率为84.0%~85.5%。    DSMST吸附设备的扩大功能列于表1。表1  DSMST吸附设备的扩大功能(间歇操作)吸附槽容积/L处理矿重/kg停留时刻/min原矿档次/(g·t-1)渣档次/(g·t-1)金吸附回收率/%0.50.15605.720.9483.60.50.156010.651.6184.950143093.68050146093.580.6     通过30kg/h级接连工作,三槽串联吸附,每槽吸附时刻0.5h。榜首槽吸附量达90%以上,第二、三槽吸附量只占总量的百分之几。流量为0.6~2.1m3/h时,金的回收率到达80%以上,渣中金档次可降至0.9g/t。吸附总时刻可缩短至1h(而化炭浆法搅拌吸附时刻长达28h)。经60余次循环后,载金聚团进行焙烧,金档次达2559g/t,富集600倍以上。经接连化实验证明,DSMST吸附设备具有扩大功能好、出资费用低和功率高级特色。    2)偏疼提高管凹型歪斜筛环流式吸附床(EILR )    EILR吸附床,如图2所示。它归于气体提高式触摸器。为了便于气体一起完结物料的搅拌和运送使命,置中心管于偏疼方位。当接连操作时凹型歪斜筛替代溢流口,使浆相溢出而使煤一油聚团停留床内。EILR吸附床内部无滚动部件,结构简略,制作成本低,操作修理便利。该吸附床扩大实验标明,当尺度从40mm×600mm扩大到800mm×3000mm,操作方法从接连改为接连时,金的吸附回收率从83.6%改变到82.4%~83.3%,扩大功能杰出。曾用该设备在中科院化冶所进行了吨级接连性实验,金的吸附回收率达85%。[next]    在接连操作条件下EILR吸附床与DSMST吸附设备的吸附功能如表5.3.2所示。从表2能够看出,EILR吸附床与DSMST吸附设备吸附功能附近,但EILR吸附床结构简略、出资费用低、操作和修理便利,应该为煤一油聚团选金的首选设备。表2  EILR吸附床与DSMST吸附设备吸附功能比较吸附槽类型处理矿重/kg停留时刻/min原矿档次/(g·t-1)渣档次/(g·t-1)金吸附回收率DSMST50L143016.84.181.5DSMST50L146016.83.882.9EILRФ800mm×3000mm403014.93.184EILRФ800mm×3000mm406014.8384.6

煤基还原铁生产法

2019-01-04 11:57:16

近年世界钢产量随着亚洲特别是中国经济的快速发展而持续增长,现在的生铁主要靠高炉生产,而高炉生产效率的提高主要靠大型化,但伴随着增大的烧结设备和焦炉,也增加了对生态环境的污染。和高炉法类似的还原法生产中,典型如MIDREX法属于气基还原法,由于受天然气资源的限制难以在全球普遍推广,据此,神户制钢和美国Midrex公司共同开发成功煤基还原的FASTMET法、FASTMELT法和ITmk3法则具有以下优点:         (1)有利于节能和降低对生态环境污染;(2)投资和运行成本低;(3)对原料和能源的适应性广。以下对其系统介绍,以供参考选用。煤基还原铁生产法(1)煤基还原铁生产法的地位。从目前世界上的还原铁生产量来看,气基用块矿的MIDREX法和HYI法居首位,以粉矿为原料的CIRCOREO法、FIOR法和FINMET法等次之;而煤基用粉矿为原料的FASTMET法,FASTMELT法和ITmk3法则居第三位,以块矿为原料的SL/RL法和COREX法则居第四位,并已呈现出后来居上的趋势。        (2)其工艺流程如下:将矿粉和煤粉混合后用造球机制成球状团块,经干燥后加入环形炉内加热并还原。团块在炉内铺成1-2层,FASTMET和FASTMELT法为加热到1250-1350℃还原为还原铁后排出炉外;ITmk3法则在加热到1450℃并还原、熔融为粒铁后排除炉外。FASTMET法将高温还原铁冷却后制成低温原铁的DRI成品,或者趁热将高温还原铁压成更大团块的HBI成品,以便对外出口海运途中不至于因氧化而发热,从而有利于扩大直接还原铁的市场。FASTMELT法则将是将从环形炉出炉的高温还原铁趁热装入熔化炉制成铁水。ITmk3法则将在环形炉和渣分离的粒铁与渣一块出炉后,再经过磁选机将粒铁选出为成品。         (3)煤基还原铁生产法的反应过程。首先以FASTMET法为例对团块在环形炉的反应简介如下:含碳团块在炉内加热至700-1400℃,氧化铁被所含碳还原而产生CO在炉内燃烧并成为主要热源,同时并加入15-20%的辅助燃料,采用LNG、LPG、COG和重油均可。主要的还原反应式为:Fe3O4+4C=3Fe+4CO,Fe3O4+4CO=3Fe+4CO2,Fe2O3+3C=2Fe+3CO,Fe2O3+3CO=2Fe+3CO2,C+CO2=2CO。由上可以看出,由含碳团块产生的CO可充分燃烧使碳的使用率增高,从而可降低能耗和CO2的发生量。且还原过程仅6-12分钟,还原结束后即冷却至1000-1200℃出炉。由于反映过程非常短,故开炉、停炉及调整产量均较为方便。而FASTMELT法则将出炉的高温还原铁直接加入熔化炉化为铁水,为降低熔化过程的负荷,应按固体还原的最大限度适当延长在环形炉的还原时间,ITmk3法除在环形炉内加热到1450℃外,从时间上务必保证渣铁分离。经试验炉分段取样观察,固块入环形炉3分钟后,固块部分被还原但中心尚未还原,5分钟后一部分开始熔融,6分钟后基本熔融,9分钟后熔融的铁和渣完全分离。

煤-油聚团选金原理

2019-01-25 15:49:15

煤一油聚团法选金的基础是用油将亲油性的煤浸润而形成煤、油聚团。在一定酸度和充分搅拌的条件下,亲油的金颗粒从矿浆中有选择性地被俘获到煤、油团聚物中。这些团聚物可循环吸附新鲜矿浆中的金粒直至很高的载金量,然后同矿浆分离。载金聚团再用湿法或火法处理选金。    煤聚团是用中性油作为桥联液,亲油性的煤粒被浸润而互相聚集成团。控制表面活性剂的加入量可以调节聚团的大小和稳定性。煤一油聚团与金粒和脉石之间存在着由动量差、重力差、范得华力和静电斥力所造成的排斥势垒,也存在着相互间的疏水结合能。利用金粒与脉石两者间存在疏水作用能的差别,使得金粒而不是脉石被煤-油聚团吸附。    在选择性地使金疏水化和降低金粒与煤-油聚团之间的作用势垒的同时,用化学方法抑制脉石等杂质的疏水性就会扩大金粒与脉石等杂质的吸附行为的差异。金粒表面的疏水化预处理通常是加入一些表面活性剂,例如黄药和黑药,使金的表面形成一层疏水膜。    煤-油聚团的选金速率是取决于煤-油聚团与含裸露金的矿粒之间的碰撞频率和碰撞能量。碰撞频率主要由含裸露金的矿粒的浓度和运动速度所决定;碰撞能量则由含裸露金的矿粒的质量和相对运动速度所决定,增加搅拌强度,能使矿粒运动加快,也使金粒表面受到擦洗而增大吸附速率。    由于金粒和煤-油聚团的向心力不同,金粒又以一定速率从煤一油聚团上脱落,最后达到动态平衡。此外,原矿的磨矿粒度,原矿中细泥的含量和铁含量等均会影响浆相与煤-油聚团的接触。对矿砂进行脱泥除铁预处理,能够显著提高金的吸附速率和回收率。

锗的基本知识

2019-03-12 11:03:26

锗为银灰色金属,密度5.35克,熔点937.4℃,沸点2830℃。室温下,晶态锗性脆,可塑性很小。锗的化学性质安稳,常温下锗在空气中不被氧化,但在加热时,锗能在氧气、和蒸气中焚烧。锗不与水效果,不溶于和稀硫酸,硝酸和热的浓硫酸能将金属锗氧化为二氧化锗,锗还溶于。锗易溶于熔融的或,生成锗酸钠或锗酸钾。在过氧化氢、次等氧化剂存鄙人,锗能溶解在碱性溶液中,生成锗酸盐。锗具有半导体性质,在高纯锗中掺入三价元素(如铟、镓、硼)、得到P型锗半导体;掺入五价元素(如锑、砷、磷),得到N型锗半导体。  锗一般以涣散状况存在于其他矿藏中,独立的矿藏很少。可从含锗的氧化铅锌矿、闪锌矿和煤灰中收回锗。锗的提取办法是首先将锗的富集物用浓氯化,制取,再用溶剂萃取法除掉首要的杂质砷,然后经石英塔两次精馏提纯,再经高纯洗刷,可得到高纯,用高纯水使水解,得到高纯二氧化锗。一些杂质会进入水解母液,所以水解进程也是提纯进程。纯二氧化锗经烘干煅烧,在复原炉的石英管内用于650-680℃复原得到金属锗。  锗在电子工业中的用处已逐步被硅替代。但因为锗的电子和空穴迁移率较硅高,在高速开关电路方面,锗比硅的功用好。锗首要用来出产低功率半导体二极管三极管,锗在红外器材、γ辐射探测器方面有着新的用处,金属锗能让2-15微米的红外线经过,又和玻璃相同易被抛光,能有效地抵抗大气的腐蚀,可用以制作红外窗口、三棱镜和红外光学透镜材料。锗还与铌构成化合物,用作超导材料。用氧化锗制作的玻璃有较高的折射率和色散功用,可用于广角照像镜头和显微镜。  镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。  稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。  稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。  我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。

锗的主要回收工艺

2019-02-26 16:24:38

归纳收回锗的办法许多,常用的是氯化蒸馏的经典办法。该法是使原猜中的锗转入硫酸溶液,参加单宁得单宁锗沉积物,经氧化焙烧脱砷及脱有害物后,在83~100℃下氯化蒸馏得GeCl4。在氯化蒸馏过程中发作如下反响:  GeCl4经水解得纯GeO2,过程中发作下列反响:  GeO2通复原得到约具有10~20Ω·cm电阻率的金属锗,其反响为:  除此之外,锗的收回办法还有以下几种:   (1)优先蒸发法收回锗 先把质料制团,经复原蒸发硫化锗,蒸发锗率达90%~98%;然后将尘按经典法提锗,锗的收回率听说高达90%。在我国,曾实验用此法从含0.006%~0.008%Ge的锌精矿中提锗,通过两次复原蒸发,所得硫化物尘再用经典法提锗,锗收回率达75%~80%。   (2)硫酸化-载体沉积法收回锗 此法处理含0.022%锗的扎伊尔锗矿,经浮选得含锗0.13%的铜精矿,经铜冶炼得含0.36%Ge的烟尘,经硫酸化使锗转入硫酸系统,净化后用MgO作载体沉积出溶液中的锗,然后按经典法提锗。比利时的巴伦厂选用此法出产,锗的收回率达75%。   (3)碱土金属氯化蒸馏法收回锗。   (4)烟化法收回锗。   (5)氧化复原焙烧收回锗。   (6)再次蒸发收回锗。   (7)萃取法收回锗 近年来,国内外溶剂萃取锗的研讨工作进展较大,在系统中可用火油、CCl4、MIBK、Lix63及二等萃取锗;在硫酸系统中可用TOA、P204+YWl00、Lix63及Kelexl00等萃取锗,此法可根据具体情况进行出产。     (8)鼓风炉蒸发法收回锗。

锗主要有哪些回收工艺

2019-02-26 09:00:22

归纳收回锗的办法许多,常用的是氯化蒸馏的经典办法。该法是使原猜中的锗转入硫酸溶液,参加单宁得单宁锗沉积物,经氧化焙烧脱砷及脱有害物后,在83~100℃下氯化蒸馏得GeCl4。在氯化蒸馏过程中发作如下反响:GeCl4经水解得纯GeO2,过程中发作下列反响:GeO2通复原得到约具有10~20Ω·cm电阻率的金属锗,其反响为:(1)优先蒸发法收回锗先把质料制团,经复原蒸发硫化锗,蒸发锗率达90%~98%;然后将尘按经典法提锗,锗的收回率听说高达90%。在我国,曾实验用此法从含0.006%~0.008%Ge的锌精矿中提锗,通过两次复原蒸发,所得硫化物尘再用经典法提锗,锗收回率达75%~80%。 (2)硫酸化-载体沉积法收回锗此法处理含0.022%锗的扎伊尔锗矿,经浮选得含锗0.13%的铜精矿,经铜冶炼得含0.36%Ge的烟尘,经硫酸化使锗转入硫酸系统,净化后用MgO作载体沉积出溶液中的锗,然后按经典法提锗。比利时的巴伦厂选用此法出产,锗的收回率达75%。 (3)碱土金属氯化蒸馏法收回锗。 (4)烟化法收回锗。 (5)氧化复原焙烧收回锗。 (6)再次蒸发收回锗。 (7)萃取法收回锗近年来,国内外溶剂萃取锗的研讨工作进展较大,在系统中可用火油、CCl4、MIBK、Lix63及二等萃取锗;在硫酸系统中可用TOA、P204+YWl00、Lix63及Kelexl00等萃取锗,此法可根据具体情况进行出产。 (8)鼓风炉蒸发法收回锗。

石煤提钒配煤焙烧试验研究

2019-02-21 12:00:34

石煤中的钒以三价为主,三价钒以类质同像办法存在于粘土矿藏的硅氧四面体结构中,结合巩固且不溶于酸碱,只要在高温文添加剂的作用下,才干转变为可溶性的五价钒,因而焙烧是从石煤中提钒不行短少的进程。     实验室中提钒进程的高温氧化焙烧多选用马弗炉电加热等办法,因为炉内温度散布不均匀,导致部分矿样温度偏低然后氧化不充沛;一起也存在焙烧温度较高、时刻较长、能耗较高级缺陷。针对以上问题,考虑在焙烧进程中添加适量的无烟煤,既不影响氧化气氛,又能使其焚烧时与石煤点对点触摸传热,进步部分矿样温度,加快氧化反响进程,然后下降焙烧温度、缩短反响时刻。因而,研讨石煤配煤氧化焙烧对进步转化率、改进焙烧条件、下降焙烧能耗及优化提钒出产有必定指导意义。     一、实验部分     (一)实验质料     本实验所用矿样取自江西某地钒矿,其首要化学成分见表1。 表1  石煤化学成分(质量分数)/%V2O5SiO2Al2O3Fe2O3CaOMgOK2ONa2OC挥发份灰分0.8266.146.463.492.961.431.650.699.384.5985.98     (二)实验试剂及仪器     实验质料为钠盐复合添加剂(MX)、无烟煤(山西晋城);实验仪器为SXZ-10-B马弗炉、101-3型干燥箱、XZM-100振动磨样机、SHB-Ⅲ循环水真空泵等。     (三)实验办法     在前期实验已断定的最佳脱碳、磨矿及复合添加剂用量条件卞,取必定量原矿破碎至0~5mm,700℃下脱碳30min,将原矿或脱碳样磨至0~0.125mm,配加12%复合添加剂,配煤实验时配加必定量的无烟煤,混合均匀后,置于马弗炉中于必定温度(焙烧温度指焙烧设备外表设定温度)进行焙烧。熟料在液固比为2.5︰1,90℃下水浸40min;水浸渣在40℃下用1%HCl酸浸60min。选用亚铁容量法测定浸出液中钒浓度,核算钒的浸出率。浸出率核算式为:     (四)实验原理     碳钒氧化物自由能一温度联系如图1所示。    由图1可知,碳焚烧比钒氧化的吉布斯自由能小,因而在焙烧进程中,第一个反响是碳的焚烧;当碳量较低时,三价钒的氧化进程才开端。石煤在氧化焙烧前,原矿一般要通过预先脱碳处理。石煤与复合钠盐添加剂高温氧化焙烧时,首要的化学反响有: C+1/202====CO CO+1/202====CO2 V203+O2====2V02 2V02+1/202====V205 2NaCl====2Na+Cl2 2Na+1/202====Na2O xNa20+yV2O5====xNa20·yV2O5     石煤钠化氧化焙烧首要分为碳的氧化、钒从贱价转化成高价、盐的分化和氧化、与五氧化二钒的结合4个进程。     二、实验成果与评论     (一)石煤原矿和脱碳样氧化焙烧比照实验     在复合添加剂为12%,焙烧时刻为1.5h时,不同焙烧温度对浸出率的影响如图2所示。脱碳样的焙烧温度为850℃及原矿的焙烧温度为790℃时,不同焙烧时刻对浸出率的影响如图3所示。    由图2、图3可知,原矿经脱碳后再氧化焙烧比原矿直接氧化焙烧作用好。这是因为原矿经脱碳后,部分有机质、碳及一些还原性矿藏发作氧化,使其不影响钒在高温氧化焙烧时的转价反响;另脱碳可进步钒的档次并使原矿结构松懈,脱碳样更易与氧化气体充沛触摸然后发作氧化反响。因而原矿需经脱碳后再氧化焙烧。     焙烧温度及时刻是氧化焙烧的首要影响要素。当焙烧温度小于760℃时,首要是其他还原性物质的氧化按捺了钒的氧化反响,导致钒转化率不高;温度升高,硅氧四面体结实的晶格结构被损坏,钒脱节捆绑,大部分Ⅴ(Ⅲ)和Ⅴ(Ⅳ)转化为Ⅴ(Ⅴ);温度大于850℃时,高价钒发作二次反响,生成不溶性钒酸盐,石煤组分之间亦发作反响,尤其是SiO2参加反响,构成杂乱难溶的硅酸盐,影响钒的浸出率。氧化焙烧时刻小于1.5h时,反响不充沛,浸出率低;焙烧时刻大于2.5h后,导致副反响发作,且影响出产周期。由实验成果可知:原矿通过脱碳,在850℃下焙烧1.5h,浸出率可达80.12%;原矿直接在790℃下焙烧1.5h,浸出率最高为68.41%。     (二)配煤焙烧实验     无烟煤具有煤化程度高、挥发份低、密度大、燃点高、无粘结性等特色,因而选用无烟煤作为配煤焙烧实验的煤种。本实验选用无烟煤的含碳量为92.61%,挥发份为3.28%,灰分为4.11%,热值为31500kJ/kg。     1、石煤原矿配煤焙烧实验     配加必定量无烟煤焙烧,可使石煤与无烟煤充沛触摸并点对点传热,有利于钒氧化,但焚烧需很多氧气,会按捺钒的氧化;因而调查石煤配煤焙烧是否可行。     将原矿与必定量的无烟煤及12%复合添加剂混合,790℃下焙烧1.5h,不同无烟煤添加量对浸出率的影响成果见图4。    由图4可知,原矿配加无烟煤氧化焙烧,浸出率较未配煤时下降起伏较大。因为焙烧进程先发作碳的氧化反响,然后是钒的氧化,虽然添加无烟煤可为焙烧供给必定的热量,但原矿及无烟煤中的碳焚烧需求很多氧气,影响钒转价的氧化气氛。此进程中无烟煤的还原性是主导要素。因而,原矿不宜配煤氧化焙烧。     2、脱碳样配煤焙烧实验     将脱碳样与必定量的无烟煤及12%复合添加剂混合,820℃下焙烧1h,不同无烟煤添加量对浸出率的影响成果见图5。    由图5可知,跟着无烟煤用量的添加,浸出率略有上升趋势,当无烟煤用量为5%时,总浸率最高为81.96%,阐明无烟煤与石煤点对点触摸传热有利于钒氧化,且不影响钒氧化所需的氧化气氛;持续添加煤量,浸出率下降,阐明无烟煤用量过多,焚烧放热所需氧量添加,损坏了焙烧的氧化气氛,且煤量过多,简单形成部分温度过高,使矿样部分烧结。因而,无烟煤的最佳参加量为5%。     将脱碳样与5%无烟煤及12%复合添加剂混合,在不同温度下焙烧1h,焙烧温度对浸出率的影响成果见图6。    由图6可知,脱碳样配加5%的无烟煤在820℃下焙烧1h浸出率可达81.96%,比照图2,脱碳样不配煤在850℃下焙烧1.5h浸出率为80.12%。配加必定量的无烟煤后,可为氧化焙烧供给热量,下降外部环境温度,且不影响钒转价作用。因而,配加5%的无烟煤后,焙烧温度可下降30℃,且总浸出率略有升高。     将脱碳样与5%无烟煤及12%复合添加剂混合,在820℃下焙烧,焙烧时刻对浸出率的影响成果见图7。    由图7可知,脱碳样配加5%无烟煤在820℃下焙烧1.5h,浸出率为82.08%;焙烧时刻为1h时,浸出率为81.96%。脱碳样配加无烟煤高温焙烧,这种点对点触摸传热有利于钒氧化,加快钒的转价进程。脱碳样配加无烟煤后不只能够下降焙烧温度30℃,亦可缩短焙烧时刻0.5h,且不影响浸出率,大起伏下降了焙烧能耗。     三、定论     (一)原矿经脱碳后氧化焙烧浸出率可达80.12%,较原矿直接氧化焙烧浸出率高11.71个百分比。因而石煤原矿需经脱碳再氧化焙烧。     (二)原矿以无烟煤作为添加煤种氧化焙烧时,浸出率低,因而石煤原矿不适宜配煤焙烧。     (三)脱碳样配加5%无烟煤氧化焙烧,焙烧温度由850℃下降为820℃,焙烧时刻由1.5h缩短为1h,浸出率为81.96%,浸出率较不配煤焙烧时略有添加,且大起伏下降了焙烧能耗。

锗的性质、应用范围及回收锗的八大工艺

2019-03-07 10:03:00

中文名称:锗 英文名称:germanium 界说:原子序数为32,属元素周期表中第ⅣA族元素,元素符号为Ge,是重要的半导体材料。 锗(旧译作鈤)是一种化学元素。锗的物质形状是一种灰白色的类金属。锗的性质与锡相似。锗最常用在半导体之中,用来制作晶体管。1886年,德国的文克勒在分析硫银锗矿时,发现了锗的存在;后由硫化锗与氢共热,制出了锗。 高纯度的锗是半导体材料。从高纯度的氧化锗复原,再经熔炼可提取而得。掺有微量特定杂质的锗单晶,可用于制各种晶体管、整流器及其他器材。锗的化合物用于制作荧光板及各种高折光率的玻璃。 锗单晶可作晶体管,是第一代晶体管材料。 锗材用于辐射探测器及热电材料。 高纯锗单晶具有高的折射系数,对红外线通明,不透过可见光和紫外线,可作专透红外光的锗窗、棱镜或透镜。 锗和铌的化合物是超导材料。二氧化锗是聚合反响的催化剂,含二氧化锗的玻璃有较高的折射率和色散功能,可作广角照相机和显微镜镜头,三仍是新式光纤材料添加剂。 锗,具有半导体性质。对固体物理学和固体电子学的开展起过重要效果。锗的熔密度5.32克/厘米3,为银灰色脆性金属。锗可能性划归稀散金属,锗化学性质安稳,常温下不与空气或水蒸汽效果,但在600~700℃时,很快生成二氧化锗。与、稀硫酸不起效果。浓硫酸在加热时,锗会缓慢溶解。在硝酸、中,锗易溶解。碱溶液与锗的效果很弱,但熔融的碱在空气中,能使锗敏捷溶解。锗与碳不起效果,所以在石墨坩埚中熔化,不会被碳所污染。 锗有着杰出的半导体性质,如电子迁移率、空穴迁移率等等。 锗的开展仍具有很大的潜力。          现代工业出产的锗,首要来自铜、铅、锌冶炼的副产品。 怎么收回锗? 归纳收回锗的办法许多,常用的是氯化蒸馏的经典办法。该法是使原猜中的锗转入硫酸溶液,参加单宁得单宁锗沉积物,经氧化焙烧脱砷及脱有害物后,在83~100℃下氯化蒸馏得GeCl4。在氯化蒸馏过程中发作如下反响: GeO3+4HCl=GeCl4+2H2O GeCl4经水解得纯GeO2,过程中发作下列反响: GeCl4+2H2O=GeO2+4HCl GeO2通复原得到约具有10~20Ω·cm电阻率的金属锗,其反响为: GeO2+2H2=Ge+2H2O (1)优先蒸发法收回锗 先把质料制团,经复原蒸发硫化锗,蒸发锗率达90%~98%;然后将尘按经典法提锗,锗的收回率听说高达90%。在我国,曾实验用此法从含 0.006%~0.008%Ge的锌精矿中提锗,通过两次复原蒸发,所得硫化物尘再用经典法提锗,锗收回率达75%~80%。 (2)硫酸化-载体沉积法收回锗 此法处理含0.022%锗的扎伊尔锗矿,经浮选得含锗0.13%的铜精矿,经铜冶炼得含0.36%Ge的烟尘,经硫酸化使锗转入硫酸系统,净化后用MgO 作载体沉积出溶液中的锗,然后按经典法提锗。比利时的巴伦厂选用此法出产,锗的收回率达75%。 (3)碱土金属氯化蒸馏法收回锗。 (4)烟化法收回锗。 (5)氧化复原焙烧收回锗。 (6)再次蒸发收回锗。 (7)萃取法收回锗 近年来,国内外溶剂萃取锗的研讨工作进展较大,在系统中可用火油、CCl4、MIBK、Lix63及二等萃取锗;在硫酸系统中可用TOA、P204+YW100、Lix63及Kelex100等萃取锗,此法可根据具体情况进行出产。 (8)鼓风炉蒸发法收回锗。

优先挥发法提锗

2019-01-30 10:26:27

以含锗硫化物或氧化物有色金属矿为原料,在回收主金属之前先使锗升华挥发入烟尘,进而获得纯GeO2的过程。原料中的主金属多为铅、锌、铜等。本法工艺流程简短,不需经过浸出、过滤、丹宁沉淀、煅烧等回收锗的处理步骤,直接获得含锗在l0%以上的锗精矿,锗的回收率高,但只能回收原料中的硫化锗和氧化锗,并受主金属生产流程的制约,因而未获推广。 原理锗的硫化物和低价氧化物在较低温度下具有高的蒸气压,如997K温度时GeS的蒸气压为1386Pa,956K时GeS2的蒸气压为380Pa,1196K时GeO蒸气压达1662.5Pa。此外,它们还有在中性或弱还原气氛中,于较低温度下容易升华挥发的特性。可以利用锗硫化物和低价氧化物的这些特性,通过控制炉内气氛和温度,使它们先升华挥发。而原料中的铅、锌、铜等主金属硫化物或氧化物在此条件下极少挥发。据此,可在回收原料的主金属铅、锌和铜等的前期,使原料中的锗优先挥发并在烟尘中富集而得到回收。 工艺比利时霍博肯奥维佩特冶金公司(MH0)于1952年采用一次挥发法从锗石中回收锗,中国也于20世纪60年代采用类似的两次挥发法从铅锌矿回收锗。 一次挥发法原料是锗石精矿,主要成分(质量分数w/%)为:Ge 0.25,Cu 27.8,Zn 7.92,Pb 25.0,As 7.5等。原料烘干后配入料质量4%的木炭或10%焦炭进行制团(见炉料制团)。团料定期加入到反应区断面积为0.23m×0.58m的竖炉内,并从炉上部向下送入含    C0 30%、H2 1%~2%和余为氮的还原气体,挥发温度控制在1143~1253K间。在此条件下,炉内的锗硫化物和低价氧化物,以及砷等杂质升华进入烟气。从竖炉排出的烟气温度在973K以上,需先经冷凝器回收80%的锗,再用布袋收尘。焙砂送回收主金属。过程中锗挥发率达92%~93%,而PbS仅挥发5%~10%。收得的含锗硫化物尘,在823K温度的电炉中鼓入空气进行氧气焙烧脱除砷和硫。焙烧产物(锗精矿)再经氯化蒸馏提纯、水解处理,最后得到含GeO2的锗精矿(见经典氯化法提锗)。 两次挥发法原料为铅锌精矿,主含成分(质量分数w/%)为Ge 0.005~0.008、Pb2.4、Zn 40~42.2等,两次挥发提锗流程 工艺流程如图。一次挥发是原料配入石油渣(或木炭,或焦炭),经制团后加入回转窑内,在还原气氛中、于1223~1273K温度下还原挥发1h。还原气氛的气体一般含CO3%、C02 17%、O2 1%,其余为N2。锗挥发率达98%,烟尘率为8%,尘含锗达0.05%~0.06%。挥发所得焙砂送回收主金属。由于一次挥发尘多为机械尘且锗品位低,需将其制粒后进行二次挥发。二次挥发在竖炉内,于1223K温度下挥发0.5h。为了抑制铅的挥发,采用高料柱和低料面温度(低于873K)的操作制度。锗挥发率达98%,二次挥发尘率为粒料的2%。收得的二次挥发尘经氧化脱砷后便得到含锗达10%以上的锗精矿。锗精矿经氯化蒸馏、复蒸馏、水解得含锗68%~69%的纯GeO2产品。锗的直接回收率大于70%,总回收率为85%。

煤-油聚团法选金简述

2019-02-15 14:21:10

与炭浆法比较,煤一油聚团法具有无环境污染,出资费用少和出产成本低的长处。煤-油聚团技能在20世纪70年代首要使用于煤泥的收回,后来使用于金的提取。该办法现已发展到可用于砂金、脉金、老尾矿、尾渣和碳质金矿的处理。处理低档次金矿时,载金聚会物富集金的才能可达1~5kg/t;处理高档次金矿时,载金聚会物富集金可达10~15kg/t,金收回率为62%~95%。    在工艺中起附聚金效果的是煤一油聚团。煤和油的挑选影响聚团性质,也影响金的收回率。一般来说,要求煤的灰粉小于7%,有较高的挥发性,且硬度较大。经实验以长焰煤和气煤较好。油以零号柴油、润滑油、变压器油等中性油较好。对油的要求是芳烃含量较高,一般在23%以上,密度约0.84g/cm3,沸点在200℃左右。    煤粉与油的适宜份额是聚团的要害,一起也影响金的收回率。煤和油份额不同,成团粒度不一样。用油量多则聚团粒度大,表面积小,附载金的才能弱。较小的,均匀的聚团能得到更高的聚金率。实验证明,一般聚团粒度以30~60目,最大粒度不超越2mm较好。    煤-油聚团的用量关系到金的收回率和工艺的经济指标,并且与矿石性质有关。煤-油聚团用量添加,金的收回率也随之增高,但终究趋于平衡。考虑到经济指标与产品载金量,一般挑选聚团用量为矿样的20%~25%。    在工艺过程中一般运用硅酸钠作为脉石按捺剂,以按捺聚团中搀杂的脉石灰粉,进步整体聚金功率。工艺吸附设备和煤金聚团枯燥焙烧设备是煤一油聚团选金新工艺完成工业使用的最中心设备。我国规划选用的是固、固一液系统抽吸式串级型拌和吸附设备和偏疼提高管凹型歪斜筛吸附床。    煤金聚团处理流程有枯燥焙烧法和溶剂洗脱法。枯燥焙烧法有接连操作办法和接连操作办法。接连枯燥焙烧设备由进料器、回转窑、焙灰收集器、驱动设备、温度操控设备等组成。焙灰金丢失小于1%。溶剂洗脱工艺可将煤金聚团中的明金和连生体金洗脱下来,然后可削减煤金聚团中微细粒金的焙烧丢失,但煤金聚团中的包体金仍需要用焙烧办法处理。终究取得的金灰进行非化浸出或直接熔炼。

从硬锌和锌渣中回收锗

2019-02-20 11:03:19

一、概述     韶关冶炼厂进厂质料含锗约0.0048%,选用I.S.P.工艺出产锌和铅金属时,质猜中约55%的锗进入粗锌中。粗锌中的锗在精馏过程中,约40%进入铅塔硬锌,40%入B吨塔硬锌,其他大多在鼓风炉的锌渣中。       硬锌选用蒸馏法得锌粉和锗渣。锌渣选用浸出-丹宁沉锗得锗精矿(中浸液经处理得七水硫酸锌)。       含锗产品用浸出-蒸馏法制取,最终将其水解成二氧化锗。二氧化锗经复原可得金属锗。       由铅锌精矿至金属锗总收回率达33%~55%。       硬锌处理工艺流程见图1,锌渣处理工艺流程见图2,二氧化锗和金属锗出产工艺流程见图3。    图1  硬锌处理工艺流程    图2  锌渣处理工艺流程    图3  二氧化锗出产流程       二、质料       (一)硬锌成分       硬锌是以锌、铅为主体的多元合金,含有少数Fe、As、Ge等元素。硬锌成分见表1。   表1  硬锌成分,%称号ZnPbAsFeCuGeCd铅塔硬锌80~908~100.4~1.00.7~1.00.140.17~0.46微B号塔硬锌74~8010~151.0~2.52.0~3.01.5~3.00.5~1.0微       (二)锌渣成分       锌渣用于出产硫酸锌并收回锗。其成分(%)为:Ge0.088,Zn76.70,Pb2.57,As0.299,Fe0.22。       三、技能操作条件       硬锌选用隔焰炉和工频感应电炉处理。这两种炉子、丹宁锗出产及二氧化锗出产的技能操作条件如下:           (一)隔焰炉  燃烧室温度1350~1450℃煤气预热温度>750℃蒸腾室温度890~920℃熔化炉780~840℃锌粉冷凝温度≤300℃废气(换热室出口)<450℃处理量800~1200kg/(炉·8h)       (二)工频感应电炉  炉温<1200℃炉顶温度950~1000℃电压380V电流<260A冷却器温度350~400℃冷却水出口温度<55℃冷却水进口压力>19.6×104Pa投料量700kg/炉电炉炉时15~20h       (三)丹宁沉锗       栲胶∶锗(35~40)∶1(浸出液含锗0.10~0.25g/L)       始酸pH值    2.5~3.0       温度         60℃       拌和时刻     5min       (四)丹宁锗焙烧       温度         约550℃       时刻         3~5h/盘       气氛         能充沛氧化       (五)二氧化锗出产       浸出-蒸馏       液固比           8∶1       始酸pH值        1       FeCl3参加量      物料量的0.1~0.3倍       拌和速度         80r/min       通氯量           50kg料通氯3kg       浸出温度         60~70℃       蒸馏最高温度     115℃       蒸馏残液         含CaCl2300g/L,HCl2~2.5g/L       残液中和       初温        60℃       终温         <90℃       终酸pH值    4.5~5.0       水解       投入量           1600ml/桶       ∶水           1∶6.5(体积)       参加速度      20~30ml/min       水解槽温度            <0℃       烘干温度                 140~160℃       烘干时刻                 6~8h       四、产品产率及成分       (一)隔焰炉       日处理量       2.4~3.6t/(炉·d)       日产锌粉量     1.4~2.2t/(炉·d)       含锗粗铅       Zn15%,Pb70%,Ge1.2%。约占硬锌量的20%       锌渣           Zn75%,Pb8%。用于出产硫酸锌       (二)工频电炉       锌粉产值         500kg/(台·d),产率约70%       产锗渣含锗     3.0~4.0kg/(台·d),产率约7.5%       粗铅           Pb>75%,Zn1.8%,Ge<1.1%,产率约12%       高砷锗渣成分   Zn4.62%,Pb21.8%,As12.4%,Fe10.93%       (三)粗二氧化锗出产       丹宁锗粗矿   Ge<5% As<1%(湿渣:Ge<2%  As<0.2% H2O<80%)       粗二氧化锗   白色粉末Ge≥65%  As<1.0%       五、首要技能经济指标       隔焰炉       (2.7m2,3.55m2)       锌收回率      95.5%       锌直收率      75.5%       煤气单耗      3800m3/t硬锌       水单耗        120t/t硬锌       工频电炉(190kW/380V)       锌收回率     95.0%       锌直收率     83%       锗收回率     95%       锗直收率     75%       硬锌单耗     1.181t/t锌粉       粗二氧化锗出产       锌渣中锌收回率       92%       锌渣中锗收回率       50.5%       高砷锗渣中锗收回率   90.25%(至GeO2)       六、首要设备实例       韶冶锗车间首要设备为两座隔焰炉,面积分别为2.7m2和3.55m2,1台190kW/380V的工频感应电炉;其他均为湿法车间的小型设备。

锗的物理和化学性质

2019-03-07 11:06:31

粉末状锗呈暗蓝色,结晶状锗为银白色脆金属。密度5.35克/厘米3。熔点937.4℃。沸点2830℃。化合价+2和+4。榜首电离能7.899电子伏特。是一种稀有金属,重要的半导体材料。不溶于水、、稀苛性碱溶液。溶于、浓硝酸或硫酸、熔融的碱、过氧化碱、硝酸盐或碳酸盐。在空气中不被氧化。其细粉可在氯或中焚烧。具有半导体性质。对固体物理和固体电子学的开展超越重要效果。锗可划归稀散金属,锗化学性质安稳,常温下不与空气或水蒸汽效果,但在600~700℃时,很快生成二氧化锗。与、稀硫酸不起效果。浓硫酸在加热时,锗会缓慢溶解。在硝酸、中,锗易溶解。碱溶液与锗的效果很弱,但熔融的碱在空气中,能使锗敏捷溶解。锗与碳不起效果,所以在石墨坩埚中熔化,不会被碳所污染。锗有着杰出的半导体性质,如电子迁移率、空穴迁移率等等。锗的开展仍具有很大的潜力。现代工业生产的锗,首要来自铜、铅、锌冶炼的副产品。

各煤类的主要特征和用途

2019-03-07 11:06:31

1. 褐煤 它是煤化程度最低的煤。其特点是水分高、比重小、蒸发分高、不粘结、化学反应性强、热稳定性差、发热量低,含有不同数量的腐殖酸。多被用作燃料、气化或低温干馏的质料,也可用来提取褐煤蜡、腐殖酸,制作磺化煤或活性炭。一号褐煤还能够作农田、果园的有机肥料。 2. 长焰煤 它的蒸发分含量很高,没有或只要很小的粘结性,胶质层厚度不超越5mm,易焚烧,焚烧时有很长的火焰,故得名长焰煤。可作为气化和低温干馏的质料,也可作民用和动力燃料。 3. 不粘煤 它水分大,没有粘结性,加热时基本上不发生胶质体,焚烧时发热量较小,含有必定的次生腐殖酸。首要用作制作煤气和民用或动力燃料。 4. 弱粘煤 水分大,粘结性较弱,蒸发分较高,加热时能发生较少的胶质体,能独自结焦,但结成的焦块小而易碎,粉焦率高。这种煤首要用作气化质料和动力燃料。 5. 1/2中粘煤 它具有中等粘结性和中高蒸发分。能够作为配煤炼焦的质料,也能够作为气化用煤和动力燃料。 6. 气煤 蒸发分高,胶质层较厚,热稳定性差。能独自结焦,但炼出的焦炭细长易碎,缩短率大,且纵裂纹多,抗碎和耐磨性较差。故只能用作配煤炼焦,还可用来炼油、制作煤气、出产氮肥或作动力燃料。 7. 气肥煤 它的蒸发分和粘结性都很高,结焦性介于气煤和肥煤之间,独自炼焦时能发生许多的气体和液体化学物质。最适合高温干馏制作煤气,更是配煤炼焦的好质料。 8. 肥煤 具有很好的粘结性和中等及中高级蒸发分,加热时能发生许多的胶质体,构成大于25mm的胶质层,结焦性最强。用这种煤来炼焦,能够炼出熔融性和耐磨性都很好的焦炭,但这种焦炭横裂纹多,且焦根部分常有蜂焦,易碎成小块。因为粘结性强,因而,它是配煤炼焦中的首要成分。 9. 1/3焦煤 它是介于焦煤、肥煤和气煤之间的过渡煤,具有很强的粘结性和中高级蒸发分,独自用来炼焦时,能够构成熔融性杰出、强度较大的焦炭。因而,它是杰出的配煤炼焦的根底煤。 10. 焦煤 具有中低一级蒸发分和中高级粘结性,加热时可构成稳定性很好的胶质体,独自用来炼焦,能构成结构细密、块度大、强度高、耐磨性好、裂纹少、不易破碎的焦炭。但因其胀大压力大,易形成推焦困难,损坏炉体,故一般都作为炼焦配煤运用。 11. 瘦煤 具有较低蒸发分和中等粘结性。独自炼焦时,能构成块度大、裂纹少、抗碎强度较好,但耐磨性较差的焦炭。因而,用它参加配煤炼焦,能够添加焦炭的块度和强度。 12. 贫瘦煤 蒸发分低,粘结性较弱,结焦性较差。独自炼焦时,生成的焦粉许多。但它能起到瘦化剂的效果。故可作炼焦配煤运用,一起,也是民用和动力的好燃料。 13. 贫煤 具有必定的蒸发分,加热时不发生胶质体,没有粘结性或只要弱小的粘结性,焚烧火焰短,炼焦时不结焦。首要用于动力和民用燃料。在缺少瘦料的区域,也可充任配煤炼焦的瘦化剂。 14. 无烟煤 它是煤化程度最高的煤。蒸发分低、比严重、硬度高、焚烧时烟少火苗短、火力强。一般作民用和动力燃料。质量好的无烟煤可作气化质料、高炉喷吹和烧结铁矿石的燃料,以及制作、电极和炭素材料等。(三) 工业用煤的质量要求 煤的工业用处十分广泛,归纳起来首要是冶金、化工和动力三个方面。一起,在炼油、医药、精细铸造和航空航天工业等范畴也有宽广的运用远景。各工业部分对所用的煤都有特定的质量要求和技能标准。扼要介绍如下: 1. 炼焦用煤 炼焦是将煤放在干馏炉中加热,跟着温度的升高(终究到达1000℃左右),煤中有机质逐步分化,其间,蒸发性物质呈气态或蒸汽状况逸出,成为煤气和,残留下的不蒸发性产品就是焦炭。焦炭在炼铁炉中起着复原、熔化矿石,供给热能和支撑炉料,坚持炉料透气功能杰出的效果。因而,炼焦用煤的质量要求,是以能得到机械强度高、块度均匀、灰分和硫分低的优质冶金焦为意图。国家对冶金焦用煤有专门的质量标准,见表2.2.2。2气化用煤 煤的气化是以氧、水、二氧化碳、氢等为气体介质,通过热化学处理进程,把煤转变为各种用处的煤气。煤气化所得的气体产品可作工业和民用燃料以及化工组成质料。常用的制气办法有两种:①固定床气化法。目前国内首要用无烟煤和焦炭作气化质料,制作组成质料气。要求作为质料煤的固定碳>80%,灰分(Ag) 65%,热稳定性S+13>60%,灰熔点(T2)>1250℃,蒸发分不高于9%,化学反应性愈强愈好。②欢腾层气化法。对质料煤的质量要求是:化学反应性要大于60%,不粘结或弱粘结,灰分(Ag) 1200℃,粒度 3. 炼油用煤 一般以褐煤、长焰煤为主,弱粘煤和气煤也能够运用,其要求取决于炼油办法。①低温干馏法,是将煤置于550℃左右的温度下进行干馏,以制取低温焦油,一起还能够得到半焦和低温焦炉煤气。煤种为褐煤、长焰煤、不粘煤或弱粘煤、气煤。对质料煤的质量要求是:焦油产率(Tf)>7%,胶质层厚度 40%,粒度6~13mm,最好为20~80mm。②加氢液化法,是将煤、催化剂和重油混合在一起,在高温高压下使煤中有机质损坏,与氢效果转化成低分子液态或气态产品,进一步加工可得到汽油、柴油等燃料。质料煤首要为褐煤、长焰煤及气煤。要求煤的碳氢化(C/H) 35%,灰分(Ag) 4. 燃料用煤 任何一种煤都能够作为工业和民用的燃料。不同工业部分对燃料用煤的质量要求不一样。蒸汽机车用煤要求较高,国家规定是:蒸发分(Vr)≥20%,灰分(Ag)≤24%,灰熔点(T2)≥1200℃,硫分(SgQ)长地道及地道群区段≤1%,低位发热量2.09312×107~2.51174×107J/kg以上。发电厂一般应尽量用灰分(Ag)>30%的残次煤,少量大型锅炉可用灰分(Ag)20%左右的煤。为了将优质煤用于展开冶金和化学工业,近年来,我国在展开低热值煤的运用方面取得了较快的开展,不少发热量仅有8372.5J/ kg左右的残次煤和煤矸石也能用于一般工厂,有的发电厂已掺烧煤矸石达30%。 煤的其他用处还许多。如,褐煤和氧化煤能够出产腐殖酸类肥料;从褐煤中能够提取褐煤蜡供电气、印刷、精细铸造、化工等部分运用;用优质无烟煤能够制作碳化硅、碳粒砂、人工刚玉、人工石墨、电极、和供高炉喷吹或作铸造燃料;用煤沥青制成的碳素纤维,其抗拉强度比钢材大千倍,且重量轻、耐高温,是展开太空技能的重要材料;用煤沥青还能够制成针状焦,出产新式的电炉电极,可进步电炉炼钢的出产功率等等。总归,跟着现代科学技能的不断进步,煤炭的综合运用技能也在迅速展开,煤炭的综合运用范畴必将持续扩展。

煤金聚团工艺CGA提金应用实例

2019-02-19 10:03:20

煤金聚团(Coal Gold Agglomeration)简称CGA提金工艺,它是在油相粘附法的基础上,由英国石油和矿业公司于1983年开端研讨的。它是用煤和油并添加助剂制成团粒用于吸附金的工艺,对天然金及其连生体都具有很强的选择性吸附,习惯规划广,对5μm以下或300μm以上的微细和粗金粒也能有效地收回。且工艺进程简略、流程短、无毒、选择性好、吸附率高、聚团荷载容量大、可屡次循环运用。它不但对矿石的适用规划广,还能在收回单体金及连生体的一同收回银及铂族金属。本工艺为无过滤作业,设备及厂房出资仅为化炭浆法的三分之一,作业费用也低,而成为近几年国内外提金工艺研讨的抢手课题。 CGA工艺好像浮选相同,先向矿浆中参加药剂使金等矿藏具有疏水性,再加火油聚团拌和吸附生成火油金聚团,并在浮游时别离。产出的载金聚团含金可达1000~15000g∕t;金的收回率达95%。将此载金聚团烧成灰渣选用火法熔炼成合质金,再用湿法处理以别离金银。 此工艺已进行过多种质料1~5t∕h的半工业实验。当选用五级循环吸附槽接连处理含金不大于1g∕t的重选尾矿时,可获得含金1000g∕t的聚团精矿,金的收回率达75%。当用于处理含于10g∕t的氧化矿时,可产出含金15000g∕t的聚团精矿,金的收回率达95%。运用CCA工艺,只需磨矿细度满足,金粒的解离露出充沛,不管质料含金凹凸,粒度粗细金的收回率都是极高的。因此,专家们估计:CGA工艺的呈现,将使细粒金的选冶发作一场技术。 中科院新疆化学研讨所对CGA工艺进行了研讨,1990年取得了发展,1991年进行了小规划实验。因为火油聚团与矿浆之间密度相差较大,在一般运用的溢流式拌和槽中,聚团易浮于矿浆上面不易均匀混合,而呈现“死区”,作用欠好。为此,卢立柱等规划了一种下流式拌和吸附槽并用于1992年进行的中试,此槽的特性是能凭借拌和叶轮的泵出功能来完结两相的均匀混合及混合相的进步和级间运送,不像溢流式吸附槽那样需另加级间进步设备,也不用添加各槽之间的级间位差。 中试作业由中科院化工冶金研讨所和新疆化学研讨所协作进行,实验规划为1t∕d的接连性提金研讨。实验前先用下流式拌和吸附槽与现行的溢流式直式叶轮高速(1400r∕min)拌和吸附槽和自吸充气推动式叶轮拌和吸附槽进行比照实验(如图1)。图1  煤金聚团实验用吸附槽暗示 Ⅰ-溢流式;Ⅱ-自吸充气式;Ⅲ-下流式; A-矿浆;B-火油聚团;C-空气;D-混合相;E-挡板(4块均布) 实验证明:下流式拌和吸附槽的运转杰出,具有显着的优胜功能,而选定下流式拌和吸附槽为1t/d规划的中试设备。 中试用质料为石英脉型氧化矿的化堆浸尾矿,天然金呈单质或被包裹于黄铁矿和毒砂中,含金4~6g∕t。将此尾矿磨碎至85%-0.074mm(200目),按固液比1∶3,参加捕收剂于调浆槽中调好浆,再用泵运送至拌和吸附槽与火油聚团一同拌和吸附。吸附作业别离选用2~4级,矿浆经过级间筛流入下一槽,煤金聚团回来原吸附槽持续吸附,每槽吸附时刻1~3h。金的收回率达80%左右。 依据中试成果,新疆化学研讨所制定的工艺流程如图2所示。按此工艺别离对山东招远等十一个矿样的实验标明,煤金聚团法对氧化矿、碳酸盐矿、含金蚀变岩矿等都非常适用,聚团的单次富集因子多在36~58倍之间,还可再进行循环吸附进步富集比,金的吸附收回率除个别质料外均大于94%,显着高于化浸出率(如下表)。经过中试和对多种矿石的实验研讨后,新疆化学研讨所已于1993年和1994年别离在哈密金矿和招远小巧镇树立50t∕d的工业实验和演示厂,以便更广泛研讨和推行煤金聚团工艺的工业使用。图2  煤金聚团提金工艺流程 赵兵等还研讨了细泥质氧化矿对CGA工艺的晦气影响。在一般情况下,细泥质氧化矿和铁帽型氧化矿相同,对选矿和化作业都有晦气影响,对CGA工艺也是如此。某金矿为含S0.22%、Fe22.1%的氧化矿,大部分金粒在5~40μm之间,并与褐铁矿关系密切。矿石经磨矿生成很多细粒矿泥,这些细矿泥具有很大的表面积,不但会从矿浆中吸附很多药剂,加大黄药、黑药等药剂耗费,还会污染单体金及连生体的表面,使火油聚团对金的吸附收回率低至60%左右。经实验后,选用浮选脱泥和稀浸出除氧化铁,再进行火油聚团吸附,金的收回率进步至80%,与全泥化和化浸出金的浸出目标适当,虽如此,但全泥化和氯化浸出本钱高,而选用CGA工艺则比它们更为经济合理。表  煤金聚团工艺提金实验成果矿石类型及产地原矿档次∕g·t-1金收回率∕%单次富集比∕倍化浸出率∕%招远石英脉型氧化矿3.0594.1038.792~93凤城石英脉型氧化矿18.5095.7041.590~92丹东石英脉型氧化矿7.1895.1045.292~94哈密化尾渣3.8883.2046.5塔城泥质氧化矿13.60>9958.090~95会同碳酸盐矿2.8096.4036.088青城子碳酸盐矿5.1097.0048.493~94招远泥质蚀变岩矿5.9396.0038.892~93凤城蚀变岩矿6.7495.8037.993岫岩高硫高砷矿78~8230~40招远高硫多金属矿92~95低

非金属矿物的提纯和煤的脱硫

2019-01-21 09:41:43

(一)工业矿物的提纯 工业矿物〔如石英、蓝晶石、粘土矿物等)中的铁和钛氧化物是有害杂质。 现代高梯度磁分离技术的发展能使40多种工业矿物用这种方法提纯。下面以高岭土为例加以说明。 高岭土也称瓷土,它的主要成分是高岭石矿物,一种含水铝硅酸盐 (Al2O3SiO2·2H2O),主要用于造纸工业的填料和涂料、陶瓷和耐火材料及油漆颜料等。 无论纸张或是陶瓷,白色的光洁面极为重要。因此,白度是评价高岭土质量的重要参数。影响白度的主要物质是原料中的少量含铁矿物,如氧化铁、锐钛矿、金红石、菱铁矿、黄铁矿、云母和电气石等,占总量的0.5%~3%,为了脱除影响白度的含铁成分,可采用化学和物理方法来实现。在最好的条件下,化学漂白通常只可排除高岭土中铁量的50%不到,而浮选法比化学法还差。常规物理、化学法不能排除的是一些磁性较弱、粒度很细的矿物,而这些矿物用高梯度磁选法能有效排除。 现代高岭土精制工艺已广泛采用高梯度磁分离技术。英国、美国、德国、 日本、罗马尼亚、澳大利亚等国家的高岭土工业已先后采用这一新技术。图4-5-62是应用高梯度磁选精选高岭土的一个流程。煤燃烧时二氧化硫和飞灰颗粒的产生是导致环境污染的重要因素。煤是一种复杂的不纯物质,除以C、H、0、N为主构成的有机成分外,还有一些粘土、页岩、砂岩和含硫的物质(如黄铁矿、白铁矿〕等无机成分。煤中一般含有1 % ~ 5%的硫,其中绝大部分是弱的顺磁性的黄铁矿或白铁矿(FeS2)中的无机硫,约三分之一是有机硫。   纯的FeS2是一弱的顺磁性物质,其比磁化率为(3.4 ~ 5)×10-9m3/kg,但是煤中黄铁矿的比磁化率比纯黄铁矿的高,这主要是含有杂质或部分向磁黄铁矿Fe7 S8转化所致。在硫化铁Fe Sx体系中〔其中,1≤ x ≤ 2〕,在1.08≤x ≤ 1.2的狭窄范围内,若x=1.143时,Fe Sx是强磁性的。即使极少部分黄铁矿颗粒向Fe7S8转化,也可导致比磁化率大幅度提高,这对于用磁选法脱硫是极为有利的。煤中主要矿物的比磁化率见表4-5-12。煤可以用高梯度磁选、开梯度磁选等方法脱硫降灰,但现在还没有大规模运用到实际生产中,下面对几个实验结果作简要说明。 1.煤的湿式高梯度磁选 用磁感应强度为2T、磁介质为直径100μm的钢毛、充填率10&的高梯度磁选机,对巴西煤脱硫,总硫量降到20% ~ 50%,矿物硫降到14% ~21%,即无机硫排除率达80%以上。 对微米级的弗里波特〔Freeport〕煤,当磁感应强度为2T时,灰分可以从16.3&降到6.5%,进一步降至4%时磁感应强度需高达15T。 2.煤的干式高梯度磁选 干式磁选无需脱水、干燥,可使流程简化,易在工业生产中推行。但由于细粒煤粒与含硫矿物间的无选择性粘附而使干式分选的效率降低,所以要用65℃热空气低速输送给矿来加以消除。部分煤的高梯度磁选结果列于表4-5-16,磁选机磁感应强度为21,磁介质为钢板网。结果表明,煤种对高梯度磁选结果有影响:Freeport煤的硫脱除率60 % 以 上,灰分降低55%~60%以上,发热量的回收率超过90%;干式分选结果也表明,对Kentucky煤,硫和灰分的降低不很明显,这可能与它们的存在状态有关。

煤-油聚团选金工艺特点与流程

2019-02-15 14:21:10

1)煤一油聚团法具有如下特色:    ①关于细粒金(≤5μm)和粗粒金(300-500μm)均具有较高的金收回率;用该法不仅能收回重选法不能收回的极细粒金,并且较粗粒的金也可收回。    ②该工艺可用于处理化法难以处理的渗透性差或含碳质高的低档次金矿。    ③该工艺操作时刻仅30min,比炭浆法的10~30h缩短许多。    ④流程简略,出资费用低。    ⑤药剂耗费少,出产本钱低。    ⑥最重要的是,该办法不运用或,可大大削减环境污染。.    下行式串级型拌和吸附设备能满意煤一油聚团法选金高剪切力和拌和均匀的要求,两级操作作用相当于国外文献所报道的四级全混型吸附槽的操作功能。偏疼提高管凹型歪斜筛环流式吸附床进一步简化了设备结构、下降出资和操作本钱。煤金聚团技能的开展,将从现在首要处理氧化型金矿过渡到处理难选冶的低档次、微细粒或杂乱硫化型金矿。为此,需求进一步开发优秀的表面活性剂、新的载体材料和抑制剂、液相氧化预处理等先进技能。    2)工艺流程    实践证明,该工艺特别习惯于收回单体解离金、连生金和微细粒金。工艺习惯规模广,特别对石英脉氧化矿、贫硫化物石英脉原生矿作用最佳,金收回率达95%以上。对金易解离的多金属低硫石英脉金矿习惯性杰出,并可替代混法收回明金。对一般低档次石英脉金矿和微细粒金的收回率达80%以上。    煤一油聚会法选金的工艺流程如下图所示。