您所在的位置: 上海有色 > 有色金属产品库 > 锗矿提纯 > 锗矿提纯百科

锗矿提纯百科

锗矿

2019-02-11 14:05:30

粉末状呈暗蓝色,结晶状,为银白色脆金属。密度5.35克/厘米3。熔点937.4℃。沸点2830℃。化合价+2和+4。榜首电离能7.899电子伏特。是一种稀有金属,重要的半导体材料。不溶于水、、稀苛性碱溶液。溶于、浓硝酸或硫酸、熔融的碱、过氧化碱、硝酸盐或碳酸盐。在空气中不被氧化。其细粉可在氯或中焚烧。   性质:  具有半导体性质。对固体物理和固体电子学的开展有重要效果。锗的熔密度5.32克/厘米3,锗可能性划归稀散金属,锗化学性质安稳,常温下不与空气或水蒸汽效果,但在600~700℃时,很快生成二氧化锗。与、稀硫酸不起效果。浓硫酸在加热时,锗会缓慢溶解。在硝酸、中,锗易溶解。碱溶液与锗的效果很弱,但熔融的碱在空气中,能使锗敏捷溶解。锗与碳不起效果,所以在石墨坩埚中熔化,不会被碳所污染。锗有着杰出的半导体性质,如电子迁移率、空穴迁移率等等。锗的开展仍具有很大的潜力。现代工业生产的锗,首要来自铜、铅、锌冶炼的副产品。

非金属矿分选提纯特点

2019-01-21 10:39:04

(1)非金属矿选矿的目的通常是为了获得具有某些物理化学特性的产品,而不是为获得矿物中某一种或几种有用元素。   (2)非金属矿选矿过程应尽可能保持有用矿物的晶体结构,以免影响它们的工业用途和使用价值。   (3)非金属矿选矿指标的计算一般以有用矿物的含量为依据,多以氧化物的形式表示其矿石的品位及有用矿物的回收率,而不是矿物中某种元素的含量。   (4)非金属矿选矿提纯不仅仅富集有用矿物,除去有害杂质,同时也粉磨分级出不同规格的系列产品。

铂族矿的分离和提纯

2019-02-25 14:01:58

铂族矿的别离和提纯 铂族金属的提取和精制流程因质料成分、含量的不同而异。将铂族金属精矿或含铂族金属的阳极泥用溶解,钯、铂、金均进入溶液。用处理以损坏亚硝酰化合物,然后加硫酸亚铁沉积出金。加氯化铵,铂呈铵沉积出,煅烧铵可得含铂99.5%以上的海绵铂。别离铂后的滤液,参加过量的氢氧化铵,再用酸化,沉积出二氯二配亚钯方式的钯,再在中加热煅烧可得纯度达99.7%以上的海绵钯。             铂族金属的别离和提纯,经上述处理后的不溶物与碳酸钠、硼砂、密陀僧和焦炭共熔,得贵铅。用灰吹法除掉大部分铅,再用硝酸溶解银,残留的铅、铑、铱、锇、钌富集于残渣中。将此残渣与熔融,铑转化为可溶性的硫酸盐,用水浸出,加沉出氢氧化铑,再用溶解,得氯铑酸。溶液提纯后,参加氯化铵,浓缩、结晶出氯铑酸铵。在中煅烧,可得海绵铑。铂族金属的别离和提纯,在熔融时,铱、锇、钌不反响,仍留于水浸残渣中。将残渣与和苛性钠一同熔融,用水浸出;向浸出液中通入并蒸馏,钌和锇以氧化物方式蒸出。用乙醇-溶液吸收,将吸收液再加热蒸馏,并用碱液吸收得锇酸钠。在吸收液中加氯化铵,则锇以铵盐方式沉积,在中煅烧,可得锇粉。在蒸出锇的残液中加氯化铵,可得钌的铵盐,再在中煅烧,可得钌粉。浸出钌和锇后的残渣主要为氧化铱,用溶解,加氯化铵沉出粗氯铱酸铵,经精制,在中煅烧,可得铱粉。将铂族金属粉末用粉末冶金法或经过高频感应电炉熔化可制得金属锭。

锗矿石中锗的提取工艺

2019-02-22 15:05:31

归纳收回锗的办法许多,常用的是氯化蒸馏的经典办法。该法是使原猜中的锗转入硫酸溶液,参加单宁得单宁锗沉积物,经氧化焙烧脱砷及脱有害物后,在83~100℃下氯化蒸馏得GeCl4。在氯化蒸馏过程中发作如下反响: GeO3+4HCl=GeCl4+2H2O GeCl4经水解得纯GeO2,过程中发作下列反响: GeCl4+2H2O=GeO2+4HCl GeO2通复原得到约具有10~20Ω·cm电阻率的金属锗,其反响为: GeO2+2H2=Ge+2H2O (1)优先蒸发法收回锗先把质料制团,经复原蒸发硫化锗,蒸发锗率达90%~98%;然后将尘按经典法提锗,锗的收回率听说高达90%。在我国,曾实验用此法从含0.006%~0.008%Ge的锌精矿中提锗,通过两次复原蒸发,所得硫化物尘再用经典法提锗,锗收回率达75%~80%。 (2)硫酸化-载体沉积法收回锗此法处理含0.022%锗的扎伊尔锗矿,经浮选得含锗0.13%的铜精矿,经铜冶炼得含0.36%Ge的烟尘,经硫酸化使锗转入硫酸系统,净化后用MgO作载体沉积出溶液中的锗,然后按经典法提锗。比利时的巴伦厂选用此法出产,锗的收回率达75%。 (3)碱土金属氯化蒸馏法收回锗。 (4)烟化法收回锗。 (5)氧化复原焙烧收回锗。 (6)再次蒸发收回锗。 (7)萃取法收回锗近年来,国内外溶剂萃取锗的研讨工作进展较大,在系统中可用火油、CCl4、MIBK、Lix63及二等萃取锗;在硫酸系统中可用TOA、P204+YW100、Lix63及Kelex100等萃取锗,此法可根据具体情况进行出产。 (8)鼓风炉蒸发法收回锗。

锗的性质和用途

2018-10-23 10:18:07

锗单质是一种灰白色类金属,有光泽,质硬,属于碳族,化学性质与同族的锡与硅相近,不溶于水、HCl、稀苛性碱溶液,溶于王 水、浓硝酸或硫酸,具有两 性,故溶于熔融的碱、过氧化碱、碱金属硝酸盐或碳酸盐,在空气中较稳定,在自然界中,锗共有五种同位素:70,72,73,74,76,在700℃以上与氧作用生成GeO2,在1000℃以上与氢作用,细粉锗能在氯或 Br 中燃烧,锗是优良半导体,可作高频率电流的检波和交流电的整流用,此外,可用于红外光材料、精密仪器、催化剂。锗的化合物可用以制造荧光板和各种折射率高的玻璃。锗化学性质稳定,常温下不与空气或水蒸汽作用,但在600~700℃时,很快生成二氧化锗。与HCl、稀硫酸不起作用。浓硫酸在加热时,锗会缓慢溶解。在硝酸、王 水中,锗易溶解。碱溶液与锗的作用很弱,但熔融的碱在空气中,能使锗迅速溶解。锗与碳不起作用,所以在石墨坩埚中熔化,不会被碳所污染。??锗在电子工业中的用途,已逐渐被硅代替。但由于锗的电子和空穴迁移率较硅高,在高速开关电路方面,锗比硅的性能好。锗在红外器件、γ辐射探测器方面,有新的用途。金属锗能通过?2~15微米的红外线,又和玻璃一样易被抛光,能有效地抵制大气的腐蚀,可用以制造红外窗口、三棱镜和红外光学透镜材料。锗酸铋用于闪烁体辐射探测器。锗还同铌形成化合物,用作超导材料。二氧化锗是聚合反应的催化剂。用二氧化锗制造的玻璃有较高的折射率和色散性能,可用于广角照相机和显微镜镜头;GeO2-TiO2-P2O5类型的玻璃有良好的红外性能,在空间技术上,可用来保护超灵敏的红外探测器。

锗常识

2019-03-14 09:02:01

锗为银灰色金属,密度5.35克,熔点937.4℃,沸点2830℃。室温下,晶态锗性脆,可塑性很小。锗的化学性质安稳,常温下锗在空气中不被氧化,但在加热时,锗能在氧气、和蒸气中焚烧。锗不与水效果,不溶于和稀硫酸,硝酸和热的浓硫酸能将金属锗氧化为二氧化锗,锗还溶于。锗易溶于熔融的或,生成锗酸钠或锗酸钾。在过氧化氢、次等氧化剂存鄙人,锗能溶解在碱性溶液中,生成锗酸盐。锗具有半导体性质,在高纯锗中掺入三价元素(如铟、镓、硼)、得到P型锗半导体;掺入五价元素(如锑、砷、磷),得到N型锗半导体。  锗一般以涣散状况存在于其他矿藏中,独立的矿藏很少。可从含锗的氧化铅锌矿、闪锌矿和煤灰中收回锗。锗的提取办法是首先将锗的富集物用浓氯化,制取,再用溶剂萃取法除掉首要的杂质砷,然后经石英塔两次精馏提纯,再经高纯洗刷,可得到高纯,用高纯水使水解,得到高纯二氧化锗。一些杂质会进入水解母液,所以水解进程也是提纯进程。纯二氧化锗经烘干煅烧,在复原炉的石英管内用于650-680℃复原得到金属锗。  锗在电子工业中的用处已逐步被硅替代。但因为锗的电子和空穴迁移率较硅高,在高速开关电路方面,锗比硅的功用好。锗首要用来出产低功率半导体二极管三极管,锗在红外器材、γ辐射探测器方面有着新的用处,金属锗能让2-15微米的红外线经过,又和玻璃相同易被抛光,能有效地抵抗大气的腐蚀,可用以制作红外窗口、三棱镜和红外光学透镜材料。锗还与铌构成化合物,用作超导材料。用氧化锗制作的玻璃有较高的折射率和色散功用,可用于广角照像镜头和显微镜。  镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。  稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。  稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。  我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。

锗知识

2019-03-08 11:19:22

锗为银灰色金属,密度5.35克,熔点937.4℃,沸点2830℃。室温下,晶态锗性脆,可塑性很小。锗的化学性质安稳,常温下锗在空气中不被氧化,但在加热时,锗能在氧气、和蒸气中焚烧。锗不与水效果,不溶于和稀硫酸,硝酸和热的浓硫酸能将金属锗氧化为二氧化锗,锗还溶于。锗易溶于熔融的或,生成锗酸钠或锗酸钾。在过氧化氢、次等氧化剂存鄙人,锗能溶解在碱性溶液中,生成锗酸盐。锗具有半导体性质,在高纯锗中掺入三价元素(如铟、镓、硼)、得到P型锗半导体;掺入五价元素(如锑、砷、磷),得到N型锗半导体。 锗一般以涣散状况存在于其他矿藏中,独立的矿藏很少。可从含锗的氧化铅锌矿、闪锌矿和煤灰中收回锗。锗的提取办法是首先将锗的富集物用浓氯化,制取,再用溶剂萃取法除掉首要的杂质砷,然后经石英塔两次精馏提纯,再经高纯洗刷,可得到高纯,用高纯水使水解,得到高纯二氧化锗。一些杂质会进入水解母液,所以水解进程也是提纯进程。纯二氧化锗经烘干煅烧,在复原炉的石英管内用于650-680℃复原得到金属锗。 锗在电子工业中的用处已逐步被硅替代。但因为锗的电子和空穴迁移率较硅高,在高速开关电路方面,锗比硅的功用好。锗首要用来出产低功率半导体二极管三极管,锗在红外器材、γ辐射探测器方面有着新的用处,金属锗能让2-15微米的红外线经过,又和玻璃相同易被抛光,能有效地抵抗大气的腐蚀,可用以制作红外窗口、三棱镜和红外光学透镜材料。锗还与铌构成化合物,用作超导材料。用氧化锗制作的玻璃有较高的折射率和色散功用,可用于广角照像镜头和显微镜。 镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。 稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。 稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。 我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。

最全的非金属矿选矿提纯技术介绍

2019-02-22 14:08:07

选矿就是使用矿藏的物理或物理化学性质的差异,凭借各种选矿设备将矿石中的有用矿藏和脉石矿藏别离,并抵达使有用矿藏相对富集的进程。选矿学是研讨矿藏分选的学识,是别离、富集、综合使用矿产资源的一门技能科学。 选矿就是使用矿藏的物理或物理化学性质的差异,凭借各种选矿设备将矿石中的有用矿藏和脉石矿藏别离,并抵达使有用矿藏相对富集的进程。选矿学是研讨矿藏分选的学识,是别离、富集、综合使用矿产资源的一门技能科学。 非金属矿最杰出的特色是矿种多。现在,世界上开发使用的非金属矿产200余种(包含宝玉石),我国已发现有经济价值的非金属矿产有100多种。非金属矿产的又一个杰出特色是各矿种的性质差异很大,共性很少。例如,在这个我们族里,既有自然界中硬度最大的金刚石,又有最软的滑石;既有无价之宝的珍稀宝石,又有量大价廉的土、砂、石。物性和价值的大相径庭,决议其采矿、选矿、加工办法千差万别。再加上大都非金属矿是以有用矿藏集合体或岩石为使用目标,在选矿作业中,维护有用矿藏晶体,坚持矿藏的使用价值不下降,成为断定选矿工艺和设备选型的首要准则,因而,非金属矿选矿比其他固体矿产杂乱得多。选矿进程一般是由选前的矿石预备作业、选别作业和选后的脱水作业所组成的接连生产进程。 为了从矿石中选出有用矿藏,有必要先将矿石破坏,使其间的有用矿藏和脉石抵达单体解离。有时为了满意后继作业对物料粒度的特殊要求,也需在中间参加必定的破坏作业。选前的预备作业一般分为破碎筛分作业和磨矿分级作业两个阶段进行。破碎机和筛分机多为联合作业,矿机与分级机常组成闭路循环。它们分别是组成破碎车间和磨选车间的首要机械设备。 选别作业是将现已单体解离的矿石,选用恰当的手法,使有用矿藏和脉石别离的工序。最常用的办法有: (1)浮游选矿法(简称浮选法)。浮选是依据矿藏表面的潮湿性的不同,增加恰当药剂,在浮选机平分选矿藏的办法。它使用广泛,可用来处理绝大大都矿石。 (2)磁选法。磁选是依据矿藏磁性的不同,在磁选机中进行分选的办法。首要用来处理黑色金属矿石和稀有金属矿石。 (3)重力选矿法(简称重选法)。重选是使用密度不同的矿藏在介质(水、空气或重介质)中运动速度和运动轨道的不同,而抵达分选的办法。它广泛用来选别钨、锡、金和铁、锰等矿石,其他有色金属、稀有金属和非金属矿石也常用重选法分选。重选是在各种类型的重选设备中进行的。 别的,还有依据矿藏的导电性、冲突系数、色彩和光泽等不同而进行选矿的办法,如电选法、冲突选矿法、光电选矿法和手选法等。 绝大大都的选后产品都含有很多的水分,这关于运送和冶炼加工都很晦气。因而,在冶炼曾经,需求脱除选矿产品中的水分。脱水作业常常按下面几个阶段进行: (1)浓缩。浓缩是在重力或离心力效果下,使选矿产品中的固体颗粒发作沉积,然后脱去部分水分的作业。浓缩一般在浓缩机中进行。 (2)过滤。过滤是使矿浆通过一透水而不透固体颗粒的间隔层,抵达固液别离的作业。过滤是浓缩今后的进一步脱水作业,一般在过滤机上进行。 (3)枯燥。枯燥是脱水进程的终究阶段。它是依据加热蒸腾的原理削减产品中水分的作业。但只要在脱水后的精矿还需求进行枯燥时才用。枯燥作业一般在枯燥机中进行,也有选用其他枯燥设备的。由浓缩、过滤、枯燥等工序构成的辅佐车间称为脱水车间。 非金属矿藏的选矿与提纯意图有以下几点: (1)将矿石中有用矿藏和脉石矿藏相别离,富集有用矿藏; (2)除掉矿石中有害杂质; (3)尽或许地收回伴生有用矿藏,充沛而经济合理地综合使用矿产资源。 现在非金属矿提纯常用的办法:浮选法、重选法、磁选法、电选法、化学选矿法、光电拣选法、冲突洗矿以及近些年呈现的超细颗粒的选矿办法等。 非金属矿分选提纯特色: (1)非金属矿选矿的意图一般是为了取得具有某些物理化学特性的产品,而不是为取得矿藏中某一种或几种有用元素。 (2)非金属矿选矿进程应尽或许坚持有用矿藏的晶体结构,避免影响它们的工业用处和使用价值。 (3)非金属矿选矿目标的核算一般以有用矿藏的含量为依据,多以氧化物的办法表明其矿石的档次及有用矿藏的收回率,而不是矿藏中某种元素的含量。 (4)非金属矿选矿提纯不仅仅富集有用矿藏,除掉有害杂质,一起也粉磨分级出不同规格的系列产品。 1.拣选和冲突洗矿 (1)拣选:拣选是使用矿石的表面特征、光性、电性、磁性、放射性及矿石对射线的吸收和反射才能等物理特性,使有用矿藏和脉石矿藏别离的一种选矿办法。拣选首要用于块状和粒状物料的分选,如除掉大块废石或拣出大块富矿。其分选粒度上限可达250~300mm,下限为10mm,关于单个宝贵矿藏(如金刚石),下限可至0.5~1mm。 非金属矿藏的分选来说,拣选具有特殊效果,可用于预先富集或取得终究产品,如对原生金刚石矿石,选用拣选可预先使金刚石和废石别离,对金刚石粗选和精选,选用拣选可取得金刚石制品。相同,关于大理右、石灰石、石膏、滑石、高岭土、石棉等非金属矿藏,均可选用拣选取得纯度较高的终究制品。拣选又可分为以下两种办法: A:人工拣选:依据矿石和废石之间的外观特征(色彩、光泽、形状等)用手拣出矿石和废石。分正手选(从物猜中拣出有用矿藏)和反手选(从物猜中拣出废石)两种。首要用于机械办法欠好拣选或确保不了质量的矿石,如拣选长纤维的石棉、片状云母,从煤系高岭石中拣出大块废石(石英、长石)等。手选是最简略的拣选办法,但劳动强度大、功率低。人工拣选一般在手选场、固定格条筛、手选皮带机和手选台上进行。常用手选设备有手选皮带和手选台两种。手选皮带要求平皮带,宽度不大于1.2m,速度为0.2~0.4m/s,倾角不大于15度,距地上高0.7~0.8m,照明距地上高2m。手选台一般按4人面积3.2m2计。 B:机械拣选:依据矿石外观特征及矿石受可见光、X射线、γ射线照耀后反映的差异或矿石天然辐射才能的不同,凭借仪器完结矿石和脉石别离的选矿办法。如放射性拣选γ射线;射线吸收拣选(γ吸收法、x射线吸收法,中子吸收法);发光性拣选(γ荧光法、x荧光法、紫外荧光法、红外线法);光电拣选(表面光性拣选) ;电磁性拣选。 选用哪种拣选办法较为合理,首要由矿石特性所决议,矿石性质不同,拣选办法也不同。(2)冲突洗矿:冲突洗矿是处理与粘土胶粘在一起或含泥多的矿石的一种工艺,包含碎散和别离两项作业。 一般矿藏以水介质浸泡,冲刷并辅以机械搅动(必要时须配加分散剂),凭借于矿藏自身相互之间的冲突效果,将被矿泥粘附的矿藏颗粒解离出来并与粘土杂质相别离,称之为冲突洗矿。擦拭(冲突洗矿)既可作为其他提纯作业的前期预备,也可独自完结矿藏的提纯。 2.重力选矿 重力选矿简称重选。它是依据矿藏间密度的差异,在必定的介质流中(一般为水、重液或重悬浮液),凭借流体浮力、动力或其他机械力的推进而松懈,在重力(或离心力)及粘滞阻力效果下,使不同密度(粒度)的矿藏颗粒发作分层搬运,然后抵达有用矿藏和脉石别离的提纯办法。选用重选,有用矿藏和脉石间密度差值越大,越有利分选,越小分选则越困难。重选一般是在笔直重力场、斜面重力场和离心力场中进行。 在重选提纯进程中,影响重选目标的要素首要有:矿藏密度、矿粒巨细及形状、介质性质、设备类型及操作条件等。 3.浮选 浮选是使用矿藏表面性质(疏水性或亲水性)的差异,在气—液—固三相界面体系中使矿藏得以别离的选矿办法。矿藏颗粒表面的潮湿是由水分子结构的偶极性及矿藏晶体结构不同引起的,潮湿性即矿藏被水潮湿的程度。易被水潮湿的矿藏称为亲水性矿藏,不易被水潮湿的矿藏称为疏水性矿藏。矿藏的潮湿性决议着矿粒与气泡发作磕碰触摸时,是否能附着于气泡,也即潮湿性决议了矿粒的天然可浮性。表面潮湿性强的矿藏(亲水性矿藏),天然可浮性差;反之天然可浮性好;矿藏表面的潮湿性—即亲水或疏水程度一般用触摸角来衡量。 单纯使用矿藏表面天然可浮性进行矿石各矿藏的浮选别离是有限的,一般要凭借必定的浮选药剂,使矿藏易于同气泡触摸,即进步矿藏的可浮性,浮选剂在固一液界面的吸附影响着矿藏的可浮性,而这种吸附又受矿藏表面电性的影响;因而,矿藏表面电性同其可浮性有着必定的联络。 浮选工艺中常见以下药剂: (1)起泡剂。散布在水气界面上的有机表面活性物质,如常用的、油、醇类等。 (2)捕收剂。它的效果是改动矿藏表面的疏水性,使浮游的矿粒粘附在气泡上。依据它们的效果性质又分为非极性捕收剂(烃),阴离子捕收剂(如脂肪酸等),阳离子捕收剂(如脂肪胺)等。 (3)调整剂。包含活化剂与抑制剂,改动矿粒表面的性质,影响矿藏与捕收剂的效果,调整剂也用于改动水介质的化学或电化学性质的,如改动矿浆PH值和其间捕收剂的状况。调整剂一般为无机化合物。 但在实践使用进程中,许多有机浮选药剂,常常具有起泡与捕收两种性质,一个药剂在一个进程中用作起泡剂,而在另一个进程中或许又以捕收剂的办法呈现,假如按用处分类必定会形成紊乱。因而,在评论或介绍浮选药剂问题时分,按有机化学的根本分类,或许按有机化合物的官能团分类,并恰当考虑在浮选实践上的用处是比较合理的。 4. 磁选与电选 磁选是在不均匀磁场中,使用各矿藏间磁性差异而使不同矿藏完结别离的提纯办法。多用于黑色金属矿石的选别和有色、稀有金属矿石的精选。非金属矿的磁选,便是从非金属矿藏原猜中除掉含铁等磁性杂质,而抵达非金属矿藏提纯的意图。 电选是使用各种矿藏的电性不同,在高压电场中完结矿藏分选的一种选矿办法。它广泛地使用于有色、黑色金属和非金属矿藏的分选。 (1)矿藏磁选进程:磁选是在磁选设备中进行。被选矿石给入磁选设备的分选区后;矿藏颗粒遭到磁力和机械力(包含重力、离心力、水流动力等)的联合效果,磁性不同的矿粒遭到不同的磁力效果。因为效果在各矿藏颗粒上的磁力和机械力的合力不同,然后完结了磁性强的矿藏和磁性弱的矿藏(无磁性矿藏)的磁选别离。 A:高梯度磁选和超导磁选 a:高梯度磁选:高梯度磁选机也是湿式强磁选机,它通过两个途径来取得大的磁场力,–是磁场强度H,二是磁场梯度。梯度定是因为选用了特殊的聚磁介质—钢毛,而大大进步其磁场效果力。 b:超导磁选:超导磁选机是把其磁性材料由铁磁体改为超导体。结构可分为三个体系:超导磁系、制冷体系和分选体系。 B:卧式串罐往复式高梯度超导磁选机由螺线管式超导磁系、分选罐列、铁磁屏、液压往复运动设备和机座组成。卧式串罐往复式高梯度超导磁选机分选进程:作业时,超导磁体激磁,一个分选罐坐落磁场空腔内,给人矿浆,捕获磁性粒子,洗刷磁介质。另一个分选罐坐落相应的磁屏腔内等候作业。当往复罐借往复传动设备退出磁场时,抵达相应的磁屏腔内,冲出介质上的磁性粒子。原停在磁屏腔内的另一分选罐进人磁场,顺次往复重复前一个分选罐进行的程序。这种办法答应超导磁体像永磁体相同作业而不用耗能量,可使制冷体系的能耗降到最低极限。 (2)电选:电选是在电选机的电场中进行。矿藏颗粒给入电场后,因为导电性质的不同,使得矿粒在电场中以某办法带不同性质的电荷或带不同数量的电荷。然后遭到不同的电场力的效果,以完结别离。矿藏颗粒在电场中除电场力的效果外,还受离心力、重力的联合效果。 以上是对非金属矿藏选矿办法及特色的总述,下面就现在我国非金属选矿的开展趋势作进一步论说。 矿产品加工和制品的开发,是一个远景十分宽广的范畴,也是非金属矿工业的开展方向。一种矿产品通过加工,做成制品,往往会身价百倍。其时,我国非金属矿产出口局势很好,近10年来,出口创汇额年年增加,但出口产品结构不合理,三分之二为原矿和初加工产品,贱价出口原矿,高价进口制制品的案例层出不穷,因而,开展加工制品,调整产品结构,刻不容缓。非金属矿是一类不断在开展,不断在改变的矿产资源,就某种矿藏或岩石而言,是矿或不是矿,同其时的科学技能和经济水平密切相关,也同本地资源条件、选矿和加工技能水平密切相关。 非金属矿藏选矿总的开展趋势是: (1)合适非金属矿藏选矿特色的惯例选矿办法、工艺流程和设备,将会逐渐得到推行、使用和开展; (2)为满意特种陶瓷、工程塑料、光导纤维等新型材料对非金属矿藏质料更严厉的质量要求,非金属矿选矿将向高纯、超细技能范畴跨进; (3)高效选矿设备的进一步研发和推行;各种选矿办法联合流程在处理非金属矿难选矿石方面的使用和开展;各种新技能(如超导、超声波、激光等等)在非金属矿选矿中的使用及现代检测技能的使用等。

非金属矿的选矿、提纯怎么做?

2019-02-25 09:35:32

非金属矿最杰出的特色是矿种多。现在,世界上开发使用的非金属矿产200余种(包含宝玉石),我国已发现有经济价值的非金属矿产有100多种。 非金属矿产的又一个杰出特色是各矿种的性质差异很大,共性很少。例如,在这个我们族里,既有自然界中硬度最大的金刚石,又有最软的滑石;既有无价之宝的珍稀宝石,又有量大价廉的土、砂、石。 物性和价值的大相径庭,决议其采矿、选矿、加工办法千差万别。再加上大都非金属矿是以有用矿藏集合体或岩石为使用目标,在选矿作业中,维护有用矿藏晶体,坚持矿藏的使用价值不下降,成为断定选矿工艺和设备选型的首要准则,因而,非金属矿选矿比其他固体矿产杂乱得多。 选矿进程一般是由选前的矿石预备作业、选别作业和选后的脱水作业所组成的接连生产进程。 为了从矿石中选出有用矿藏,有必要先将矿石破坏,使其间的有用矿藏和脉石抵达单体解离。有时为了满意后继作业对物料粒度的特殊要求,也需在中间参加必定的破坏作业。选前的预备作业一般分为破碎筛分作业和磨矿分级作业两个阶段进行。破碎机和筛分机多为联合作业,矿机与分级机常组成闭路循环。它们分别是组成破碎车间和磨选车间的首要机械设备。 选别作业是将现已单体解离的矿石,选用恰当的手法,使有用矿藏和脉石别离的工序。最常用的办法有: (1)浮游选矿法(简称浮选法)。浮选是依据矿藏表面的潮湿性的不同,增加恰当药剂,在浮选机平分选矿藏的办法。它使用广泛,可用来处理绝大大都矿石。 (2)磁选法。磁选是依据矿藏磁性的不同,在磁选机中进行分选的办法。首要用来处理黑色金属矿石和稀有金属矿石。 (3)重力选矿法(简称重选法)。重选是使用密度不同的矿藏在介质(水、空气或重介质)中运动速度和运动轨道的不同,而抵达分选的办法。它广泛用来选别钨、锡、金和铁、锰等矿石,其他有色金属、稀有金属和非金属矿石也常用重选法分选。重选是在各种类型的重选设备中进行的。 别的,还有依据矿藏的导电性、冲突系数、色彩和光泽等不同而进行选矿的办法,如电选法、冲突选矿法、光电选矿法和手选法等。 绝大大都的选后产品都含有很多的水分,这关于运送和冶炼加工都很晦气。因而,在冶炼曾经,需求脱除选矿产品中的水分。脱水作业常常按下面几个阶段进行: (1)浓缩。浓缩是在重力或离心力效果下,使选矿产品中的固体颗粒发作沉积,然后脱去部分水分的作业。浓缩一般在浓缩机中进行。 (2)过滤。过滤是使矿浆通过一透水而不透固体颗粒的间隔层,抵达固液别离的作业。过滤是浓缩今后的进一步脱水作业,一般在过滤机上进行。 (3)枯燥。枯燥是脱水进程的终究阶段。它是依据加热蒸腾的原理削减产品中水分的作业。但只要在脱水后的精矿还需求进行枯燥时才用。枯燥作业一般在枯燥机中进行,也有选用其他枯燥设备的。由浓缩、过滤、枯燥等工序构成的辅佐车间称为脱水车间。 非金属矿藏的选矿与提纯意图有以下几点: (1)将矿石中有用矿藏和脉石矿藏相别离,富集有用矿藏; (2)除掉矿石中有害杂质; (3)尽或许地收回伴生有用矿藏,充沛而经济合理地综合使用矿产资源。 现在非金属矿提纯常用的办法:浮选法、重选法、磁选法、电选法、化学选矿法、光电拣选法、冲突洗矿以及近些年呈现的超细颗粒的选矿办法等。 非金属矿分选提纯特色: (1)非金属矿选矿的意图一般是为了取得具有某些物理化学特性的产品,而不是为取得矿藏中某一种或几种有用元素。 (2)非金属矿选矿进程应尽或许坚持有用矿藏的晶体结构,避免影响它们的工业用处和使用价值。 (3)非金属矿选矿目标的核算一般以有用矿藏的含量为依据,多以氧化物的办法表明其矿石的档次及有用矿藏的收回率,而不是矿藏中某种元素的含量。 (4)非金属矿选矿提纯不仅仅富集有用矿藏,除掉有害杂质,一起也粉磨分级出不同规格的系列产品。 1.拣选和冲突洗矿 (1)拣选:拣选是使用矿石的表面特征、光性、电性、磁性、放射性及矿石对射线的吸收和反射才能等物理特性,使有用矿藏和脉石矿藏别离的一种选矿办法。拣选首要用于块状和粒状物料的分选,如除掉大块废石或拣出大块富矿。其分选粒度上限可达250~300mm,下限为10mm,关于单个宝贵矿藏(如金刚石),下限可至0.5~1mm。 非金属矿藏的分选来说,拣选具有特殊效果,可用于预先富集或取得终究产品,如对原生金刚石矿石,选用拣选可预先使金刚石和废石别离,对金刚石粗选和精选,选用拣选可取得金刚石制品。相同,关于大理右、石灰石、石膏、滑石、高岭土、石棉等非金属矿藏,均可选用拣选取得纯度较高的终究制品。拣选又可分为以下两种办法: A:人工拣选:依据矿石和废石之间的外观特征(色彩、光泽、形状等)用手拣出矿石和废石。分正手选(从物猜中拣出有用矿藏)和反手选(从物猜中拣出废石)两种。首要用于机械办法欠好拣选或确保不了质量的矿石,如拣选长纤维的石棉、片状云母,从煤系高岭石中拣出大块废石(石英、长石)等。手选是最简略的拣选办法,但劳动强度大、功率低。人工拣选一般在手选场、固定格条筛、手选皮带机和手选台上进行。常用手选设备有手选皮带和手选台两种。手选皮带要求平皮带,宽度不大于1.2m,速度为0.2~0.4m/s,倾角不大于15度,距地上高0.7~0.8m,照明距地上高2m。手选台一般按4人面积3.2m2计。 B:机械拣选:依据矿石外观特征及矿石受可见光、X射线、γ射线照耀后反映的差异或矿石天然辐射才能的不同,凭借仪器完结矿石和脉石别离的选矿办法。如放射性拣选γ射线;射线吸收拣选(γ吸收法、x射线吸收法,中子吸收法);发光性拣选(γ荧光法、x荧光法、紫外荧光法、红外线法);光电拣选(表面光性拣选) ;电磁性拣选。 选用哪种拣选办法较为合理,首要由矿石特性所决议,矿石性质不同,拣选办法也不同。 (2)冲突洗矿:冲突洗矿是处理与粘土胶粘在一起或含泥多的矿石的一种工艺,包含碎散和别离两项作业。 一般矿藏以水介质浸泡,冲刷并辅以机械搅动(必要时须配加分散剂),凭借于矿藏自身相互之间的冲突效果,将被矿泥粘附的矿藏颗粒解离出来并与粘土杂质相别离,称之为冲突洗矿。擦拭(冲突洗矿)既可作为其他提纯作业的前期预备,也可独自完结矿藏的提纯。 2.重力选矿 重力选矿简称重选。它是依据矿藏间密度的差异,在必定的介质流中(一般为水、重液或重悬浮液),凭借流体浮力、动力或其他机械力的推进而松懈,在重力(或离心力)及粘滞阻力效果下,使不同密度(粒度)的矿藏颗粒发作分层搬运,然后抵达有用矿藏和脉石别离的提纯办法。选用重选,有用矿藏和脉石间密度差值越大,越有利分选,越小分选则越困难。重选一般是在笔直重力场、斜面重力场和离心力场中进行。 在重选提纯进程中,影响重选目标的要素首要有:矿藏密度、矿粒巨细及形状、介质性质、设备类型及操作条件等。 3.浮选 浮选是使用矿藏表面性质(疏水性或亲水性)的差异,在气—液—固三相界面体系中使矿藏得以别离的选矿办法。矿藏颗粒表面的潮湿是由水分子结构的偶极性及矿藏晶体结构不同引起的,潮湿性即矿藏被水潮湿的程度。易被水潮湿的矿藏称为亲水性矿藏,不易被水潮湿的矿藏称为疏水性矿藏。矿藏的潮湿性决议着矿粒与气泡发作磕碰触摸时,是否能附着于气泡,也即潮湿性决议了矿粒的天然可浮性。表面潮湿性强的矿藏(亲水性矿藏),天然可浮性差;反之天然可浮性好;矿藏表面的潮湿性—即亲水或疏水程度一般用触摸角来衡量。 单纯使用矿藏表面天然可浮性进行矿石各矿藏的浮选别离是有限的,一般要凭借必定的浮选药剂,使矿藏易于同气泡触摸,即进步矿藏的可浮性,浮选剂在固一液界面的吸附影响着矿藏的可浮性,而这种吸附又受矿藏表面电性的影响;因而,矿藏表面电性同其可浮性有着必定的联络。 浮选工艺中常见以下药剂: (1)起泡剂。散布在水气界面上的有机表面活性物质,如常用的、油、醇类等。 (2)捕收剂。它的效果是改动矿藏表面的疏水性,使浮游的矿粒粘附在气泡上。依据它们的效果性质又分为非极性捕收剂(烃),阴离子捕收剂(如脂肪酸等),阳离子捕收剂(如脂肪胺)等。 (3)调整剂。包含活化剂与抑制剂,改动矿粒表面的性质,影响矿藏与捕收剂的效果,调整剂也用于改动水介质的化学或电化学性质的,如改动矿浆PH值和其间捕收剂的状况。调整剂一般为无机化合物。 但在实践使用进程中,许多有机浮选药剂,常常具有起泡与捕收两种性质,一个药剂在一个进程中用作起泡剂,而在另一个进程中或许又以捕收剂的办法呈现,假如按用处分类必定会形成紊乱。因而,在评论或介绍浮选药剂问题时分,按有机化学的根本分类,或许按有机化合物的官能团分类,并恰当考虑在浮选实践上的用处是比较合理的。 4. 磁选与电选 磁选是在不均匀磁场中,使用各矿藏间磁性差异而使不同矿藏完结别离的提纯办法。多用于黑色金属矿石的选别和有色、稀有金属矿石的精选。非金属矿的磁选,便是从非金属矿藏原猜中除掉含铁等磁性杂质,而抵达非金属矿藏提纯的意图。 电选是使用各种矿藏的电性不同,在高压电场中完结矿藏分选的一种选矿办法。它广泛地使用于有色、黑色金属和非金属矿藏的分选。 (1)矿藏磁选进程:磁选是在磁选设备中进行。被选矿石给入磁选设备的分选区后;矿藏颗粒遭到磁力和机械力(包含重力、离心力、水流动力等)的联合效果,磁性不同的矿粒遭到不同的磁力效果。因为效果在各矿藏颗粒上的磁力和机械力的合力不同,然后完结了磁性强的矿藏和磁性弱的矿藏(无磁性矿藏)的磁选别离。 A:高梯度磁选和超导磁选 a:高梯度磁选:高梯度磁选机也是湿式强磁选机,它通过两个途径来取得大的磁场力,–是磁场强度H,二是磁场梯度。梯度定是因为选用了特殊的聚磁介质—钢毛,而大大进步其磁场效果力。 b:超导磁选:超导磁选机是把其磁性材料由铁磁体改为超导体。结构可分为三个体系:超导磁系、制冷体系和分选体系。 B:卧式串罐往复式高梯度超导磁选机由螺线管式超导磁系、分选罐列、铁磁屏、液压往复运动设备和机座组成。卧式串罐往复式高梯度超导磁选机分选进程:作业时,超导磁体激磁,一个分选罐坐落磁场空腔内,给人矿浆,捕获磁性粒子,洗刷磁介质。另一个分选罐坐落相应的磁屏腔内等候作业。当往复罐借往复传动设备退出磁场时,抵达相应的磁屏腔内,冲出介质上的磁性粒子。原停在磁屏腔内的另一分选罐进人磁场,顺次往复重复前一个分选罐进行的程序。这种办法答应超导磁体像永磁体相同作业而不用耗能量,可使制冷体系的能耗降到最低极限。 (2)电选:电选是在电选机的电场中进行。矿藏颗粒给入电场后,因为导电性质的不同,使得矿粒在电场中以某办法带不同性质的电荷或带不同数量的电荷。然后遭到不同的电场力的效果,以完结别离。矿藏颗粒在电场中除电场力的效果外,还受离心力、重力的联合效果。 以上是对非金属矿藏选矿办法及特色的总述,下面就现在我国非金属选矿的开展趋势作进一步论说。 矿产品加工和制品的开发,是一个远景十分宽广的范畴,也是非金属矿工业的开展方向。一种矿产品通过加工,做成制品,往往会身价百倍。其时,我国非金属矿产出口局势很好,近10年来,出口创汇额年年增加,但出口产品结构不合理,三分之二为原矿和初加工产品,贱价出口原矿,高价进口制制品的案例层出不穷,因而,开展加工制品,调整产品结构,刻不容缓。非金属矿是一类不断在开展,不断在改变的矿产资源,就某种矿藏或岩石而言,是矿或不是矿,同其时的科学技能和经济水平密切相关,也同本地资源条件、选矿和加工技能水平密切相关。 非金属矿藏选矿总的开展趋势是: (1)合适非金属矿藏选矿特色的惯例选矿办法、工艺流程和设备,将会逐渐得到推行、使用和开展; (2)为满意特种陶瓷、工程塑料、光导纤维等新型材料对非金属矿藏质料更严厉的质量要求,非金属矿选矿将向高纯、超细技能范畴跨进; (3)高效选矿设备的进一步研发和推行;各种选矿办法联合流程在处理非金属矿难选矿石方面的使用和开展;各种新技能(如超导、超声波、激光等等)在非金属矿选矿中的使用及现代检测技能的使用等。

难处理富锗铅锌硫化氧化矿新技术

2019-01-21 18:04:55

为开发利用云南驰宏锌锗股份有限公司深部铅锌矿资源,北京矿冶研究总院和云南驰宏锌锗股份有限公司创造性地开发出“等可浮-异步选铅-锌硫异步混选-铅锌硫分离-氧化铅锌矿不脱泥硫化电位控制浮选”新技术,并成功应用于复杂难选铅锌硫化氧化混合矿的选矿过程,技术上取得了突破性进展。 1、依据铅硫、锌硫关系密切的特点,根据等可浮的原理把铅锌硫分成两部分:“铅硫”部分和“锌硫”部分,首次将异步和等可浮两个流程的核心技术有机结合起来,形成等可浮异步浮选和混选流程结构,成为硫化矿浮选的骨干流程;采用有效的针对性捕收剂,保证了铅、锌、硫、银、锗等金属得到最大限度的回收,确保了铅硫在低pH下分离,为后续氧化矿有效浮选创造了必要条件。 2、氧化铅锌矿不脱泥硫化浮选新技术,解决了矿石中铅锌氧化矿物和脉石矿物同为碳酸盐矿物、泥化程度高的难题,是获得混合矿浮选技术指标突破性进展的关键技术。 最终的选矿产品结构简单,便于操作管理,该技术整体上达到国际领先水平。

锗有哪些性质

2019-03-07 11:06:31

锗具有半导体性质。对固体物理和固体电子学的开展有重要效果。锗的熔密度5.32克/厘米3,锗可能性划归稀散金属,锗化学性质安稳,常温下不与空气或水蒸汽效果,但在600~700℃时,很快生成二氧化锗。与、稀硫酸不起效果。浓硫酸在加热时,锗会缓慢溶解。在硝酸、中,锗易溶解。碱溶液与锗的效果很弱,但熔融的碱在空气中,能使锗敏捷溶解。锗与碳不起效果,所以在石墨坩埚中熔化,不会被碳所污染。锗有着杰出的半导体性质,如电子迁移率、空穴迁移率等等。锗的开展仍具有很大的潜力。现代工业生产的锗,首要来自铜、铅、锌冶炼的副产品。

锗的工业用途

2018-08-29 09:58:12

锗具备多方面的特殊性质,在半导体、航空航天测控、核物理探测、光纤通讯、红外光学、太阳能电池、化学催化剂、生物医学等领域都有广泛而重要的应用,是一种重要的战略资源。在电子工业中,在合金预处理中,在光学工业上,还可以作为催化剂。高纯度的锗是半导体材料。从高纯度的氧化锗还原,再经熔炼可提取而得。掺有微量特定杂质的锗单晶,可用于制各种晶体管、整流器及其他器件。锗的化合物用于制造荧光板及各种高折光率的玻璃。锗单晶可作晶体管,是第一代晶体管材料。锗材用于辐射探测器及热电材料。高纯锗单晶具有高的折射系数,对红外线透明,不透过可见光和紫外线,可作专透红外光的锗窗、棱镜或透镜。20世纪初,锗单质曾用于治疗贫血,之后成为最早应用的半导体元素。单质锗的折射系数很高,只对红外光透明,而对可见光和紫外光不透明,所以红外夜视仪等军用观察仪采用纯锗制作透镜。锗和铌的化合物是超导材料。二氧化锗是聚合反应的催化剂,含 二氧化锗的玻璃有较高的折射率和色散性能,可作广角照相机和显微镜镜头,三GeCl4还是新型光纤材料添加剂。据数据显示,2013年来光纤通信行业的发展、红外光学在军用、民用领域的应用不断扩大,太阳能电池在空间的使用,地面聚光高效率太阳能电站推广,全球对锗的需求量在持续稳定增长。全球光纤网络市场尤其是北美和日本光纤市场的复苏拉动了光纤市场的快速增长。21世纪全球光纤需求年增长率已经达到了20%。未来中国光纤到户、3G建设及村通工程将拉动中国光纤用锗需求快速增长。锗在红外光学领域的年需求量占锗消费量的20-30%,锗红外光学器件主要作为红外光学系统中的透镜、棱镜、窗口、滤光片等的光学材料。红外市场对锗产品的未来需求增长主要体现在两个方面:军事装备的日益现代化带动了对红外产品的需求和民用市场对红外产品的需求。太阳能电池用锗占据锗总消耗量的15%,太阳能电池领域对锗系列产品的未来需求增长主要体现在两个方面:航空航天领域及卫星市场快速发展和地面光伏产业快速增长。从全球产量分布来看,中国供给了世界71%的锗产品,是全球最大的锗生产国和出口国,这主要是由于中国高附加值深加工产品技术环节薄弱,导致内需相对有限,产品多以初加工产品出口为主。但是在需求旺盛刺激下,中国锗生产技术能力提升迅速,目前中国企业已经能够生产光纤级、红外级、太阳能级锗系列产品。加之来政策推动力度大,中国光纤领域锗需求明显增长。2013年PET催化剂用锗约占25%,电子太阳能用锗约占15%,红外光学用锗比重从42%降至25%,而光纤通讯约占锗消费30%左右的市场份额。2011年中国锗消费量为45金属吨,2012年锗消费量为50金属吨,同比增长11.11%;2013年锗消费量为59金属吨,同比增长18.00%。

锗的提取方法

2019-02-25 13:30:49

锗的提取办法是首先将锗的富集物用浓氯化,制取,再用溶剂萃取法除掉首要的杂质砷,然后经石英塔两次精馏提纯,再经高纯洗刷,可得到高纯,用高纯水使水解,得到高纯二氧化锗。一些杂质会进入水解母液,所以水解进程也是提纯进程。纯二氧化锗经烘干煅烧,在复原炉的石英管内用于650-680℃复原得到金属锗。 锗具有多方面的特殊性质,在半导体、航空航天测控、核物理勘探、光纤通讯、红外光学、太阳能电池、化学催化剂、生物医学等范畴都有广泛而重要的使用,是一种重要的战略资源。

从四氯化锗水解母液中回收锗

2019-02-11 14:05:44

高纯二氧化锗(GeO2)是将高纯(GeCl4)参加去离子水分化而成的。经过过滤使固体GeO2与水解液别离,水解液中的锗含量一般为2~4g/L。现在,一般选用直接往水解液中加氯盐法或参加等质量的进行蒸馏的办法收回其间的锗,锗以GeCl4的方式得到收回。驰宏公司选用第二种办法收回水解液中的锗,需耗费30%的工业约110t/a,发生H+浓度为6.5mol/L的蒸馏残液约200m3/a,环保处理时困难比较大。本研讨就是为了寻觅一个成本低和残液发生量较少的环境友好型锗收回新工艺。       一、试验部分       (一)质料       试验所用水解液是从高纯GeCl4水解生成GeO2后的水解上清液,为淡黄色的酸性溶液,悬浮有少数白色漂浮物,其化学组成见表1。此外,试验所用试剂MgCl2·6H2O,MgSO4·7H2O,MgO均为分析纯(广东省汕头市达濠精密化学品有限公司出产);NaOH,NH3·H2O为分析纯(上海化学试剂有限公司出产)。   表1  水解液首要化学组成水解母液c(H+)/(mol·L-1)ρ(Ge)/(g·L-1)1#4.513.402#4.822.753#5.032.12       (二)试验原理       高纯GeCl4水解成高纯GeO2的化学反应式为: GeCl4+2H2O=GeO2+4HCl   或:GeCl4+(x+2)H2O=GeO2·xH2O+4HCl       水解生成的GeO2具有必定的溶解度(0.004mol/L),是一种可溶性的结晶氧化物。       向水解液中参加与氯化镁,首要生成溶于水的锗酸钠,后生成不溶性的锗酸镁,此进程的化学反应式为:   GeO2+2NaOH=Na2GeO3+H2O   Na2GeO3+MgCl2=MgGeO3↓+2NaCl       过滤枯燥后将锗酸镁与按1∶6(质量比)参加到蒸馏釜中一起蒸馏,运用GeCl4沸点低(83.1℃)的性质,锗便以GeCl4的方式得到收回,此进程的化学反应式为:   MgGeO3+6HCl=MgCl2+GeCl4+3H2O       (三)试验办法       试验在室温下(25℃)进行,锗收回首要包含以下几步(图1):图1  从水解母液中收回锗的工艺流程   (因故图件不清,需求者可来电免费讨取)       过程1:选用NaOH与NH3·H2O调理水解液的pH值为7.0~8.0,参加MgCl2、MgSO4和MgO作为沉积剂,使锗生成不溶于水的锗酸镁(MgGeO3)。       过程2:将过程1所得溶液过滤,得到含锗滤饼。       过程3:将含锗滤饼进行枯燥,能够削减滤饼40%~60%的含水量,以便蒸馏。       过程4:将枯燥脱水后的滤饼与一起蒸馏,在大约70~100℃使锗以GeCl4的方式蒸发,用分析纯吸收蒸馏出来的GeCl4。       二、成果与评论       试验发现,选用NaOH或NH3·H2O来调理水解液的pH值,对锗收回率几乎没有影响。运用NH3·H2O调理水解液的pH值时,会有必定量的NH3冒出,因而从往后的工业使用考虑,试验选用NaOH来调理水解液的pH值。       (一)Mg/Ge摩尔比对锗收回率的影响       试验中选用MgCl2作为沉积剂,沉积时刻为24h,Mg/Ge摩尔比对锗收回率的影响见表2。由表2能够看到随Mg/Ge摩尔比的添加,锗的收回率也是不断添加的。含锗量高的水解液,锗的收回率也比较高,但锗沉积后的上清液中含锗量根本一起。当Mg/Ge摩尔比到达1.5时,锗的收回率比较抱负,持续添加Mg/Ge摩尔比对锗收回率的影响不是十分显着。因而,将Mg/Ge摩尔比确定为1.5。   表2  不同Mg/Ge摩尔比条件下的锗收回率/%水解母液n(Mg)/n(Ge)00.511.522.51#65.392.495.998.599.199.12#57.190.594.998.298.898.93#41.687.193.197.598.598.5       (二)不同镁化合物对锗收回率的影响       试验中选用MgCl2、MgSO4或MgO作为沉积剂,Mg/Ge摩尔比为1.5,沉积时刻24h,锗收回率见表3。由表3可知,MgCl2与MgSO4作为沉积剂,锗的收回率都比较抱负,而MgO的沉积作用不抱负,这可能是因为MgCl2与MgSO4在水溶液中都能够电离出Mg2+,而MgO则不能。   表3  不同镁化合物对锗收回率的影响镁化合物收回率/%MgCl298.3MgSO498.2MgO85.3       (三)氯化铵对锗收回率的影响       据有的材料介绍,溶液中若有NH4+存在时,水解液中的锗更简单沉积分出。试验中选用MgCl2作为沉积剂,沉积时刻为24h,参加不同量的NH4Cl,锗收回率见表4。由表4成果能够看到,NH4Cl的参加量对锗收回率几乎没有影响。   表4  氯化铵对锗收回率的影响n(NH4Cl)/n(Ge)收回率/%098.20.598.5197.81.597.1296.82.595.6       (四)沉积时刻对锗收回率的影响       试验中选用MgCl2作为沉积剂,Mg/Ge摩尔比为1.5,沉积时刻对锗收回率的影响见表5。试验发现,参加MgCl2后,能够在4h内根本完成沉积。   表5  沉积时刻对锗收回率的影响沉积时刻/h收回率/%292.5498.11298.0       (五)蒸馏法收回锗沉积中的锗       将枯燥后的锗沉积滤饼均匀混合后,锗的档次测定为31.55%。试验时每次称取1000g锗沉积滤饼,参加6000g工业一起蒸馏,锗以GeCl4的方式得到收回。依据公司多年的出产经历,1kg的锗能够出产GeCl4为1576mL,蒸馏工艺锗的收回率见表6。   表6  蒸馏工艺锗的收回率水解母液GeCl4理论产值/mLGeCl4实践产值/mL收回率/%1#497.2491.598.852#497.2489.598.453#497.2488.598.25均匀497.2489.598.52       三、结语       本研讨获得了一种新的从水解母液中收回锗的工艺,此工艺首要包含用NaOH或调理水解液的pH值,参加镁化合物生成锗酸镁沉积,过滤得到锗沉积并烘干,再用传统的蒸馏工艺收回锗。选用此工艺能够使锗的收回率到达98%以上,最佳试验条件为:选用NaOH来调理水解液的pH值至7~8,MgCl2或MgSO4作为沉积剂,Mg/Ge(摩尔比)为1.5∶1,沉积时刻为4h。       驰宏公司水解母液的发生量为110m3/a,含锗均匀为3g/L,选用此工艺发生档次为31.55%的锗沉积约为1046kg,需求30%的工业约6.5t/a,选用新工艺比选用旧收回工艺每年可节省工业100t左右,而锗总的收回率根本一起。

银子怎么提纯

2019-02-27 12:01:46

银块(银元)的话,先泼珠(把银块放在高温杯里熔化,用硼砂裹去熔化状态下银表面的杂质,然后把液态银倒入盛有三分之二桶的水桶里,银块变成银珠)。再用浓硝酸把银珠溶掉(恰当加热,加快反响),反响后往溶液里加5——10倍的水,过滤溶液,滤渣极有可能是金,另处理。把过滤后的溶液加温到60度左右,倒入玻璃缸或塑料盆中,丢几块紫铜片进去,置换出银。(必定要等反响充沛,大约1个小时)把铜片上的银泥弄下来,清水洗几回,烘干成银粉,再1000度高温铸成银锭。此法得出的银纯度可达99%以上。也有用锌粉复原的,不再讲了。

锗的用途

2019-02-11 14:05:44

美国与日本的锗使用举例及结构示于表1。   表1  锗的使用举例及结构        (%)年份国别使用光纤红外探测器+半导体催化剂其他1985美国651510-10日本17.2-9.135.538.21996美国401515255日本10.7-10.771.47.21997美国4010202010日本13.3-13.466.76.61998美国441117226日本   (72.4) 1999美国501510205日本   (91.1) 2000美国501510205日本   (84.0) 2001美国501510205日本            一、锗作为红外光学材料,具有红外折射率高,红外透过波段规模宽,吸收系数小、色散率低、易加工、亮光及腐蚀等影响,特别适用军工及严重民用中的热成像仪与红外雷达及其他红外光学设备的窗口、透镜、棱镜与滤光片的材料;高纯锗或锗锂用于天文学的γ-谱仪,核反应能谱仪及等离子物理X-射线仪;Si-Ge10与掺、镉、铜与镓的锗单晶用于红外探测器。       二、锗半导体器材用作二极管、晶体三极管及复合晶体管、锗半导体光电器材作光电、霍耳及压阻效应的传感器,作光电导效应的放射线检测器等,广泛用于间响、彩电、电脑、电话及高频设备中,锗管特别适用于高频大功率器材中,且在强辐射与-40℃下工作正常;Ge-Si与Ge-Te作温差发电用于宇航、卫星与空间站的发动电源等。       三、掺锗光纤具有容量大、光损小、色散低、传输间隔长及不受环境等的搅扰,是现在仅有能够工程化使用的光纤,是光通讯网络的主体,近年取得大发展(表2)。   表2  全球耗费光纤量年份199019911992199319941995199619971998199920002001耗光纤量/(万km·a-1)51078011001200144018692252~30502677~37703260~45903882~63304702~ 788010190       1万km光纤需GeCl4量:单模为6.8-25kg,多模为34-100kg左右,而且15年就需要替换。此外,GeCl4还用于高速光纤网,链路,光纤传感器,光纤制导及光纤系留设备等。       GeO2是出产聚对笨二乙二醇酯(PET)的催化剂,具有长纤维,由其制备的饮料与食用液体的各式容器,无毒、通明且气密性好。锗用于医药,如Ge-132[β-羧乙基锗倍半氧化物-(GeCH2CH2COOH)2O3]临床使用于防治癌症。BGO作X-射线、CT-仪、PCT-仪,用于确诊肿瘤及骨骼结构与安排坏死等。锗化合物及其有机化合物可作牙膏与高效止痛膏等。

锗主要的回收工艺

2019-02-12 10:08:00

归纳收回锗的办法许多,常用的是氯化蒸馏的经典办法。该法是使原猜中的锗转入硫酸溶液,参加单宁得单宁锗沉积物,经氧化焙烧脱砷及脱有害物后,在83~100℃下氯化蒸馏得GeCl4。在氯化蒸馏过程中发作如下反响:   GeO3+4HCl=GeCl4+2H2O   GeCl4经水解得纯GeO2,过程中发作下列反响:   GeCl4+2H2O=GeO2+4HCl   GeO2通复原得到约具有10~20Ω·cm电阻率的金属锗,其反响为:   GeO2+2H2=Ge+2H2O       (1)优先蒸发法收回锗  先把质料制团,经复原蒸发硫化锗,蒸发锗率达90%~98%;然后将尘按经典法提锗,锗的收回率听说高达90%。在我国,曾实验用此法从含0.006%~0.008%Ge的锌精矿中提锗,通过两次复原蒸发,所得硫化物尘再用经典法提锗,锗收回率达75%~80%。     (2)硫酸化-载体沉积法收回锗  此法处理含0.022%锗的扎伊尔锗矿,经浮选得含锗0.13%的铜精矿,经铜冶炼得含0.36%Ge的烟尘,经硫酸化使锗转入硫酸系统,净化后用MgO作载体沉积出溶液中的锗,然后按经典法提锗。比利时的巴伦厂选用此法出产,锗的收回率达75%。     (3)碱土金属氯化蒸馏法收回锗。     (4)烟化法收回锗。     (5)氧化复原焙烧收回锗。     (6)再次蒸发收回锗。     (7)萃取法收回锗  近年来,国内外溶剂萃取锗的研讨工作进展较大,在系统中可用火油、CCl4、MIBK、Lix63及二等萃取锗;在硫酸系统中可用TOA、P204+YW100、Lix63及Kelex100等萃取锗,此法可根据具体情况进行出产。     (8)鼓风炉蒸发法收回锗。

多晶硅提纯

2017-06-06 17:50:11

        多晶硅提纯炉是冶金硅提纯设备,提纯炉主要用于太阳能级多晶硅提纯,适用于(物理法-冶金法)。       多晶硅提纯是我国乃至世界上近几年新兴的 行业 ,目前 行业 前景极为乐观,我公司专门生产物理法多晶硅提纯用中频炉。和国内几家大型多晶硅生产厂商有着良好的合作。经验丰富,欢迎有需要的客户来电咨询,或者来公司实地考察。公司具有多年的设计和制造经验,竭诚为广大客户提供各种规格KGPS中频电源、中频感应熔炼(钢、铁、铜、铝)、保温(GWB)、透热(煅前加热、在线提温、低温喷涂、退火)、钎焊(电机、 金属 合金)、淬火(钢轨、轴承、机床导轨、汽车配件、齿轮)、弯管及烧结(钨、钼、合金刀具)等成套设备。我公司产品齐全,工艺精湛,产品容量从20KG—20吨,功率50—10000KW ,频率50—8000HZ 。开发研制的优良中频感应设备已广泛应用于铸造、锻造、机械制造、航天航空、兵器工业、汽车制造、石油钢管(石油钻杆、钻铤热处理、钢管管端加厚、加热、耐磨带焊接预热、弯管加热、输油(气)管道防腐喷涂加热)、铁路、化工等 行业 。                  另外,多晶硅提纯炉可以水冷电缆。多晶硅定向结晶真空提纯炉水冷电缆:水冷电缆电极与多晶硅定向结晶真空提纯炉感应圈的同轴电极相连接,水冷电缆电极的结构形式为90°弯头喇叭口锥度锁紧式,保证与多晶硅定向结晶真空提纯炉连接自然弯曲,不扭劲,无应力,能够提高水冷电缆的使用寿命。 

非金属矿酸、碱、盐提纯方法、设备及影响因素

2019-02-25 14:01:58

矿藏的化学提纯,是运用不同矿藏在化学性质上的差异,选用化学办法或化学办法与物理方相结合来完结矿藏的别离或提纯,首要运用于一些纯度要求很高,且机械物理选矿办法又难以达到纯度要求的高附加值矿藏的提纯,如高纯石英、高岭土、膨润土、硅藻土等。非金属矿藏的酸、碱、盐处理,首要是在相应酸、碱药剂效果下,把可溶性矿藏组分(杂质矿藏或有用矿藏)浸出,使之与不溶性矿藏组分(有用矿藏或杂质矿藏)别离的进程。浸出进程是经过化学反响来完结的。对不同的有用矿藏和杂质矿藏要采纳相应的酸、碱、盐及药剂。 表1 常见酸、碱、盐处理办法的运用规模1、非金属矿酸法浸出 酸法浸出常用硫酸、、硝酸、草酸、作浸出剂,其间以硫酸运用最多。 (1)硫酸浸出 浓硫酸(H2SO4)为强氧化剂,在加热时简直能氧化全部金属。且不开释氢,因氧化的发作是借助于未离解的硫酸分子,可将大多数硫化物氧化为硫酸盐。 浓硫酸具有激烈的吸水效果,用其处理的黏土矿藏可作吸水干燥剂。许多有机物,尤其是碳水化合物,一旦与浓硫酸触摸,会因其吸水性而发作碳化效果。浓硫酸处理黏土矿藏一般是在常压,100-105℃加热条件下进行。 选用硫酸浸出处理硅藻土制备高纯活性二氧化硅。 (2)处理 为无色液体,19.4℃欢腾。蒸气有影响臭味、极毒、报价较贵。在水中可离解成离子。 的特点是能溶解SiO2和硅酸盐,生成气态SiF4,故常用于制备高纯SiO2或除掉矿藏的SiO2杂质等。 在浸出硅石(SiO2)中的金属杂质时,对某些包裹细密的杂质矿藏,运用少数HF(低浓度)有助于SiO2部分溶解,以使杂质金属离子较易被其他药剂浸出,如选用0.02%-0.1%的稀和(0.02%-0.2%),在常温下拌和处理石英可将其Fe2O3含量从0.15%降至0.028%。 选用HF处理硅石(石英)制备超纯SiO2,其进程如下:用浓HF处理浸出高档次石英砂(SiO2大于99.9%),使SiO2溶解并发作气体,气体经搜集并与水(去离子水)发作反响,堆积发作纯洁的SiO2,其档次可达99.999%,原有的杂质则留溶液中。 (3)处理 可与多种金属化合物反响,生成可溶性金属氯化物,其反响才干强于稀硫酸,可浸出某些硫酸无法浸出的含氧酸盐类矿藏。同硫酸相同在矿藏加工工业中很多运用。其缺陷是设备防腐蚀要求较高。 石英砂的除铁提纯常选用法或与其他酸联合运用,用含18%的溶液,用量5%,处理石英砂,加热至50-80℃,效果时刻2-3h,可将其铁(Fe2O3)含量降至0.015%。 将(浓度为1%-10%)溶液和(浓度为1%-10%)一同参加到含石英砂固体20%-80%的料浆中(或用处理经水洗刷后,再用处理),在75℃至溶液沸点之间的温度下处理2-3h,滤出溶液清洗去酸,可将石英砂中Fe2O3含量从0.059%降至0.0005%-0.0002%。 2、矿藏的碱处理及盐处理 (1) 这是目前国内运用最多,也较老练的办法,首要运用于硅酸盐、碳酸盐等碱金属与碱土金属矿藏的浸出,如石墨、细粒金刚石精矿的提纯等。 (2)碳酸钠及处理 碳酸钠溶液对矿藏质料的分化才干较弱,但具有较高的选择性,且对设备的腐蚀性小,所以对碳酸盐含量高的矿藏质料仍不失为一有用的金属离子浸出剂。常用于黏土矿藏的阳离子交流。 碳酸钠也可同来合作运用,去除金属氧化物效果更好。如硅砂除铁中,在碳酸钠中参加40%-50%浓度的NaOH,加热100-110℃拌和处理4-5h,经清洗、脱水后Fe2O3含量从o.7%降至0.015%-0.025%。 (3)氯化钠、氯化铵 氯化钠、氯化铵可作为浸出剂脱除矿藏中的金属杂质。如硅砂除铁时硅砂中参加0.1%-5%的氯化铵混合后,加热致使氯化铵分化的温度。参加NaCl时,将石英砂放入其溶液中浸泡,然后将砂在高温炉中缎烧,使砂中的铁以FeCl3方法逸出,温度为650℃,可将Fe2O3含量从0.04%降至0.02%。 3、影响酸碱提纯效果的首要要素整个浸出进程首要包含分散和吸附-化学反响两大步,因而影响矿藏酸碱浸出的影响要素是: (1)原矿性质(矿藏组成、渗透性.、孔隙度); (2)操作要素(矿藏粒度、浸出试剂浓度、浸出时刻及浸出时的拌和)。 矿藏质料的粒度对固-液相界面及矿浆黏度有较大影响。在必定的粒度规模内,添加细度可进步浸出速度。但过细会添加矿浆黏度,分散阻力增大而下降浸出速度。 浸出试剂浓度是影响浸出速度的首要要素之一。浸出试剂浓度愈高,浸出速度愈大。 浸出时进行拌和会加快整个浸出反响的完结,其浸出速度和浸出率高。通常情况下,拌和速度恰当添加,浸出效果亦好,拌和速度过高,会导致矿粒随溶液的“同步”运动,此刻拌和会失掉其下降分散层厚度的效果,且添加能耗。 4、矿藏浸出工艺设备(1)渗滤浸出槽依处理量的巨细,槽的外壳可用不同的原料制成。如处理量小,可用碳钢槽或桶;处理量大时,用砖、石、水泥砌成,内衬以必定厚度的防腐层,而且不能漏液。 为便于浸出液活动,底部略向浸出液出口方向歪斜。将出口塞住后,用人工或机械将矿石(小于10mm)均匀地装入槽内,参加配好的浸出剂,浸泡数小时或更长时刻后再放液。 生产中可选用多个渗滤槽一起操作。 (2)常压拌和浸出设备(机械拌和浸出槽)机械拌和浸出槽可分为单桨和多桨拌和两种,机械拌和器可选用不同的形状,有桨叶式、旋桨式、锚式和涡轮式。 拌和器的原料要依浸出介质而定,酸浸时槽体可用碳钢,内衬橡胶、耐酸砖或聚四氟乙烯塑料;或不锈钢槽、珐琅槽等。碱浸时,可选用普通碳钢槽。 拌和桨一般为碳钢衬胶、衬玻璃钢或由不锈钢制成。槽体为圆柱形,槽为圆环形或平底,中心有循环筒。拌和桨装在循环筒下部。 可选用电加热,夹套加热或蒸气直接加热办法,以操控浸出进程的温度,蒸汽直接加热时,蒸汽的冷凝会使矿浆浓度和试剂浓度发作变化。拌和槽的容积依生产规模而定,机械拌和槽一般用于生产规模较小的厂矿。 (3)有压拌和浸出设备(哨式空气拌和加压釜) 矿浆自釜下端进入,与压缩空气混合后经过漩涡哨从喷嘴进入釜内,呈紊流状况在釜内上升,然后经出料管排出。釜内矿浆的加热或冷却,一般选用夹套直接传热办法。釜内装有事端排料管。经高压釜浸出后的矿浆,须将压力降至常压后才干送下一作业处理。

贵金属提纯

2017-06-06 17:50:13

贵 金属 提纯:指的是按照贵 金属 标准和选贵 金属 要求,提高贵 金属 纯度和保持贵 金属 优良性状的措施。近年国内也陆续开发出了相关产品,目前了解到有两种环保型贵 金属 提纯机。   一种采用传统湿法冶金提纯工艺的环保型贵 金属 精炼机,属中小型设备,其结构包括反应器、加热装置及设有冷凝装置的尾气处理系统,该精炼机的尾气处理是将反应产生的尾气经冷凝装置通过制冷箱冷却成液态酸,残余的未被冷却的尾气经喷淋吸收,虽然该精炼机在一定程度上解决了废气污染的问题,但是其尾气处理系统结构过于复杂庞大,体积大成本高,同时该精炼机的功能设置过于简单,其提纯过程并没有对反应后剩下的液体进行过滤,也没有对贵 金属 进行还原沉淀及废水处理,该精炼机贵 金属 回收率95%左右,仍然存在废水污染环境的问题。适合于处理较多粗料的场合使用。另一种是微型设备更适合珠宝厂、小批量提纯的场合,日可处理5-10公斤粗料。其结构包括计量仪器、反应器 、加热器、冷凝器、过滤器、沉淀器、吸收器、储存器、电极等。针对现有的贵 金属 提纯方法造成的废气、废水的环境污染和操作安全的问题,提供一种操作安全、简便的环保型金银精炼机,在提高金银回收率和纯度的同时,实现废气零排放和废水按国家标准达标排放。该机有以下优点:1)精炼的纯度高,可达到99.9%以上;损耗低,损耗率约4~6‰。2)精炼成本低,低功耗。3)体积小,占地面积小,2-3平方米,适合首饰生产厂家使用。4)操作十分简便,全流程电气化控制,实现自动化控制。5)废气、废水的处理、排放采用化学电极全程监控,全部参数实现数字显示,方便操作者控制。6)废气可实现零排放,废水的酸碱性、 金属 离子浓度按国家标准全部达标排放,保护环境。想要了解更多关于贵 金属 提纯的资讯,请继续浏览上海 有色 网( www.smm.cn ) 有色金属 频道。

铂铑合金分离提纯

2019-03-07 09:03:45

铂铑合金用铝合金“碎化,稀浸出铝,得到细铂铑粉,加氧化剂溶解,溶液用三烷基氧化膦萃取别离铂铑,离子交换提纯铑。铑纯度99.99%,铑回收率92~94%。已请求中国专利。其二,成都208厂从日本引入一套铂铑别离设备,铂收率98.5%,铑收率95%,铂铑产品纯度均>99.95。

低品级菱镁矿提纯研究

2019-01-21 18:04:31

菱镁矿为结晶或潜结晶构造的碳酸盐类矿物(MgOCO3),其MgO理论含量为47.82%。它被广泛用于耐材工业,如冶金粉末和镁质碱性耐火制品等;对呈苛性状态的菱镁矿也可用于以电解法和碳热法的炼镁工业及建筑工业。 我国天然菱镁矿资源极为丰富,列居世界首位。尤以辽南地区菱镁矿矿石储量大而集中,且质量较好,是我国冶金工业碱性耐火原料生产的重要基地。辽宁镁矿公司桦子峪镁矿,已探明矿石储量达8亿吨之多。其中低品位三级矿约占该矿储量的20%。长期以来该矿主要开采一级矿和部分二级矿,低品位三级矿由于质量问题,至今未被纳入开采计划。这一状况无疑会造成该地区菱镁矿资源的极大浪费。因此,寻找这类矿石的合理利用途径,充分发挥本地区的资源优势,是一项亟待解决的战略问题。 本文仅就我们对桦子峪低品级三级菱镁矿所开展的选矿提纯研究以及对其分选过程中几个主要影响因素进行论述。 一、矿石性质概述 桦子峪三级菱镁矿矿石组成较为简单,主要为菱镁矿和滑石、绿泥石(叶绿泥石、斜绿泥石)、白云石以及黄铁矿等。其中少量叶绿泥石以类质同像混入物形式存在于菱镁矿,白云石中。在菱镁矿的晶体中也含有一定量的白云石细微机槭包体。菱镁矿以及脉石矿物白云石分别呈粗中粒和中细粒均匀和不均匀嵌布;滑石、绿泥石及铁质呈中细粒和细粒较均匀嵌布。连生矿物之间的嵌镶关系密切,多以交代残留体不规则毗连嵌镶存在。其原矿化学多元素分析为:IL 47.94%、SO2 4.00%、AL2O3 0.97%、Fe2O3 0.48%、CaO 0.93%、MgO 46.05%。 二、试验及结果 根据桦子峪低品级三级菱镁矿的矿石性质以及对它的使用要求,在选择方案时采取了一段磨矿,-200目占70%,二段反浮硅酸盐脉石矿物和一段浮选菱镁矿的开路分选流程。并在菱镁矿的选别中,对有关新型药剂进行了探索。选别工艺流程见图1,其结果列于表1。图1  低品级三级菱镁矿选别工艺流程 表1  低品级三级菱镁矿试验结果产品 名称产率(%)IL (%)品位(%)回收率(%)熟料MgO 含量(%)高纯镁精矿58.1351.520.040.3247.430.310.0120.5721.3861.3733.770.8498.58次精矿11.9948.842.072.3944.350.630.545.9931.5611.8114.157.7688.91尾矿39.8839.8012.951.3740.590.932.5593.4447.0626.9252.0891.4069.53原矿100.00-4.140.8745.050.530.83100.00100.00100.00100.00100.00- 从试验结果可以看出,其选别条件是合理的,三级菱镁矿采用所述工艺流程,可获得高纯镁精矿及次精矿两个产品。其中,高纯精矿熟料MgO含量可选98.58%,SiO2+CaO+Fe2O3+Al2O3总杂质含量为1.42%。完全达到了预期的质量指标。 三、影响分选的主要因素 (一)磨矿细度 为考查磨矿细度对分选过程的影响,采用两段反浮硅酸盐矿物的流程进行了试验。试验结果表明,-200目含量由60%增至90%时,精矿中SiO2含量在一定范围内是随磨矿细度的增大而下降;当细度达70%-200目后,SiO2含量保持不变;所有磨矿细度范围的精矿中,MgO含量基本在同一水平上。产率则随细度增大而明显降低。据此,并根据磨矿产品的单体解离检查结果,当磨矿细度为70%-200目时,其菱镁矿的单体解高度已达95%以上。所以,将磨矿绑度控制在-200目占70%是适当的。 (二)自然pH值下的十二胺解离状况 从对十二胺解离状况的研究可知,十二胺在溶液中的解离取决于介质的pH值。以十二胺浓度为1×10-4mol,计算对应不同pH值的RNH3+、RNH3(水溶)、RNH2(不溶)时得出;在酸性介质中以RNH3+为主;在pH值7~10之间,RNH3+逐渐减少;当pH=10.65时,溶液中有相同数量的RNH3+及RNH2(水溶);当pH>10时,开始从溶液中析出不溶性的RNH3,此时RNH3+急剧减少。从所做试验结果也可得到证实。在固定十二胺用量200g/t时,pH值由0依次到7,脉石矿物收率随之增加;pH值超过7以后,脉石矿物的收率则迅速下降。其最佳反浮pH值在6~7之间。因此,反浮阶段采用自然pH值显然是适宜的。 图2为矿浆在自然pH值时,十二胺用量对反浮过程的影响曲线。从图中可以看出:随着十二胺用量的增大,精矿中SiO2含量下降,其降低率明显增大;当十二胺用量超过250g/t时,由于矿浆中胺离子浓度的提高,其在脉石矿物表面的吸附逐渐由静电吸附向“半胶束吸附”转移,电动电位符号改变,吸附与解吸平衡。结果精矿中SiO2含量及精矿中SiO2降低率分别逐渐趋于同一水平。此时再继续增加胺用量已失去实际意义。因此,在考虑确保高纯镁精矿的数质量前提下,将反浮中十二胺用量选定在250~300g/t范围内,对整个分选过程无疑是有益的。图2  自然pH值时,十二胺用量对分选指标的影响 曲线1-精矿SiO2降低率   曲线2-精矿中SiO2含量 (三)正浮菱镁矿过程中pH值的调节 研究表明,菱镁矿的电动电位在pH值为3.8~11.0范围内为正,其电动电位值在11.9~53.7mV之间波动(图3曲线1)。因菱镁矿为可溶性矿物,故大多数Mg2+离子可从表面转移到溶液中;有极少量CO32-离子在提高溶液的pH值后同溶液中的H+离子形成H2CO3;一部分H+离子作为双电层中相反的荷电离子被吸附在菱镁矿表面。当增大溶液的pH值时,菱镁矿表面晶格离子的溶解度减小,电动电位值下降。在碱性范围内菱镁矿的电动电位号仍为正,此条件下矿物表面形成MgOH+化合物。其吸附活性点数量发生明显变化。图3曲线2是以氧化石蜡皂(用量400g/t)作捕收剂考查pH值对菱镁矿可浮性影响所得到的结果。试验发现,pH值在6~8之间浮选效果极差,这可能关系到聚合层中捕收剂的吸附作用问题。而当pH值在8.5~11.0之间时,浮选效果最佳。因此,可以肯定pH值的调整对整个正浮菱镁矿过程具有十分重要的意义。图3  菱镁矿的电动电位及可浮性 曲线1-菱镁矿的电动电位 曲线2-pH值与菱镁矿的可浮性关系 (四)水玻璃用量 水玻璃是一种常用的脉石矿物抑制剂。其抑制作用随胶态硅酸成分{(SiO2)m·yH2SiO3·xSiO32-}2xH+的增加而提高。本扶研究中,水玻璃用量为750~1250g/t,从试验结果得到,当用量增至1000g/t时,其高纯精矿中SiO2的含量可下降到0.04%,SiO2降低率可达到99.43%。显然,这一指标是令人满意的。 研究表明,水玻璃在水溶液中,其水解-复合平衡如下:在中、碱性矿浆内,水玻璃主要以[SiO(OH)3-]及[SiO2(OH)32-]的形式在矿物表面吸附。尽管矿物表面有时呈负电性,但这些组份仍可在其表面吸附而使表面负电性增强。水玻璃的这一特性,决定了它在菱镁矿分选过程中的重要地位。试验研究还得出,在菱镁矿浮选时,水玻璃与六偏磷酸钠混合使用,则更能发挥水玻璃的抑制作用。 (五)捕收剂氧化石蜡皂 从菱镁矿浮选的大量研究得出,未饱和和饱和的脂肪酸及其皂类可作为它们的捕收剂。 脂肪酸及其皂类是弱电解质,在水中解离为RCOOHROOO-+H+,其解离常数随烃链加长而减少。烃链长短对其捕收性能产生影响。研究还表明,在一定范围内,烃链中碳原子数目的增加,将使其捕收能力提高。但烃链过长,由于药剂溶解度降低,又将导致在矿浆中的分散不良,而降低捕收性能。氧化石蜡皂的烃链O15~O40,它在浮选过程中起捕收作用的主要成份为羧酸,因此,它表现出化学活性大,凝固点低以及较强的捕收能力和选择性等优点。 在试验研究中,矿浆pH值调整至9,在温度22℃下进行浮选。从试验结果得知,氧化石蜡皂在320~560g/t之间变化时,所得到的高纯精矿MgO的品位基本保持在相同水平,均可这47%以上(熟料MgO>98%)。加大氧化石蜡皂的用量,仅对高纯镁精矿的产率发生影响。显示出氧化石蜡皂的上述优点及特性。因此,在正浮菱镁矿过程中采用氧化石蜡皂作为捕收剂是可行的。 (六)低温浮选捕收剂 众所周知,氧化石蜡皂作为捕收剂,其缺点是对矿浆温度有较大的敏感性,低温浮选时效果不佳。一般,矿浆温度要求控制在25℃左右,这样给常年平均气温偏低的东北地区使用氧化石蜡皂带来一定困难,且会增加能耗。因此,寻抟一种利于低温浮选的新型捕收剂:以降低能耗和选矿成本,是十分必要的。 在对几种新药剂的初步研究后发现,W捕收剂具有较好的低温浮选性能。在其用量550g/t,矿浆温度为13℃时进行的试验结果表明,在工艺流程相同的情况下,使用W捕收剂比氧化石蜡皂所取得的指标十分接近。W捕收剂用量为550g/t,浮选温度13℃的浮选结果列于表2。 表2  W捕收荆(13℃)浮选试验结果上述对W捕收剂的探索试验,无疑为开辟菱镁矿浮选新药剂打下了一个良好基础。还有特于今后进一步深入研究。 四、结语 (一)桦子峪低品级菱镁矿矿物组成较为简单。菱镁矿与主要脉石矿物的物性差较大,有利于获得高纯产品。研究确定的一粗一扫反浮硅酸盐矿物和一次正浮菱镁矿的造别流程,流程简单,选矿成本较低、分造指标良好。其中高纯镁精矿MgO含量47.48%(熟料MgO>98%),次精矿MgO含量44.35%(熟料MgO>88%)。两产品中的高纯镁精矿可用来生产高纯镁砂,次精矿也可加以利用。从而为该地区低品级菱镁矿的合理开发利用找到了一条新途径。 (二)在反浮选过程中,矿浆在自然pH值时使用十二胺可有效地排除硅酸盐类脉石矿物。调整pH值至碱性范围(8.5~11.0),加入水玻璃能选择性地改变菱镁矿和脉石矿物表面的负载状态,是造成菱镁矿良好可浮性的先决条件,进而在使用氧化石蜡皂作为捕收剂时,获得理想的高纯产品。 (三)对新型W捕收剂的探索试验,可望在进一步的研究中,在低温浮选时获得更好的结果。

锗的基本知识

2019-03-12 11:03:26

锗为银灰色金属,密度5.35克,熔点937.4℃,沸点2830℃。室温下,晶态锗性脆,可塑性很小。锗的化学性质安稳,常温下锗在空气中不被氧化,但在加热时,锗能在氧气、和蒸气中焚烧。锗不与水效果,不溶于和稀硫酸,硝酸和热的浓硫酸能将金属锗氧化为二氧化锗,锗还溶于。锗易溶于熔融的或,生成锗酸钠或锗酸钾。在过氧化氢、次等氧化剂存鄙人,锗能溶解在碱性溶液中,生成锗酸盐。锗具有半导体性质,在高纯锗中掺入三价元素(如铟、镓、硼)、得到P型锗半导体;掺入五价元素(如锑、砷、磷),得到N型锗半导体。  锗一般以涣散状况存在于其他矿藏中,独立的矿藏很少。可从含锗的氧化铅锌矿、闪锌矿和煤灰中收回锗。锗的提取办法是首先将锗的富集物用浓氯化,制取,再用溶剂萃取法除掉首要的杂质砷,然后经石英塔两次精馏提纯,再经高纯洗刷,可得到高纯,用高纯水使水解,得到高纯二氧化锗。一些杂质会进入水解母液,所以水解进程也是提纯进程。纯二氧化锗经烘干煅烧,在复原炉的石英管内用于650-680℃复原得到金属锗。  锗在电子工业中的用处已逐步被硅替代。但因为锗的电子和空穴迁移率较硅高,在高速开关电路方面,锗比硅的功用好。锗首要用来出产低功率半导体二极管三极管,锗在红外器材、γ辐射探测器方面有着新的用处,金属锗能让2-15微米的红外线经过,又和玻璃相同易被抛光,能有效地抵抗大气的腐蚀,可用以制作红外窗口、三棱镜和红外光学透镜材料。锗还与铌构成化合物,用作超导材料。用氧化锗制作的玻璃有较高的折射率和色散功用,可用于广角照像镜头和显微镜。  镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。  稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。  稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。  我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。

仲辛醇萃取提纯金

2019-03-06 09:01:40

水溶化法从铜阳极泥中别离金银取得的氯化液,含有金、铂、钯等贵金属及铜、铅等贱金属。因为氯化液中金以HAuCl4的方式存在,选用仲辛醇可从中选择性地萃取AuCl4-,然后用草酸复原。 一、仲辛醇萃取 仲辛醇在强液中,能构成羊盐离子缔合体: C5H17OH+HCl=(C8H18OH)+Cl- 以R代表C8H18 上式可简化为(ROH)+Cl- 当上式的有机相和氯化液发作反应时,Au3+即呈阴离子进入有机相: (ROH)Cl+HAuCl4=(ROH)AuCl4+HCl 工业纯仲辛醇从氯化液中选择性萃取金的条件,是先用等体积1.5mol∕L液饱满后的工业仲辛醇直接萃取氯化液中的金。因为仲辛醇萃取金的饱满容量在50g∕L以上,故比较可按氯化液的含金浓度核算断定,使有机相萃取金量挨近饱满容量,以利于反萃时金的沉积。实验选用1.5mol∕LHCl的氯化液,比较为有∶水=1∶5,在室温(25~35℃)和拌和(500~600r/min)下萃取30~40min,然后静置30min以别离有机相。因为仲辛醇和水不互溶,静置后两相分层杰出,取得富含金的有机相而到达与杂质别离的意图。 某厂运用与上述相同的条件用仲辛醇从含金氯化液中进行二级错流萃取,金的萃取率可达99%以上。 萃余液中的铂族金属及硒、铜、铅(尚含少数金),先用铜置换10h以上收回贵金属和硒,余液再用铁屑置换或加碱中和收回铜、铅。 二、草酸反萃复原金 萃入有机相中的(ROH)AuCl4也是一种羊盐,它是由两种不同电荷的离子团借静电的引力结合在一起,所以(ROH)AuCl4不是安稳的物质,其间的AuCl4-是易被复原的。 运用草酸复原金,是鉴于草酸是一种具有复原性的弱有机酸,当加热后,易将金复原,其他杂质则不被复原而留于溶液中,而得以别离。草酸复原金的反应为: 2(ROH)AuCl4+3H2C2O4=2Au↓+2ROH+8HCl+6CO2↑ 运用草酸反萃的有机相,最好含金40~50g∕L。反萃液运用7%的草酸溶液,比较1∶1,液温90℃以上。在激烈拌和(最佳500~600r/min)下,约反萃30~40min,待金较充沛凝集沉积后用布氏滤斗抽滤,并于滤斗中先用稀后用热蒸馏水洗净,再置于电烘箱(170℃左右)中烘干送铸锭。金锭含金可达99.98%。 经反萃后的有机相,用等体积1~2mol/L洗刷后,回来萃取用。过程中有机相的丢失小于4%。 实验成果还标明:仲辛醇从氯化液中萃取金以别离铂、钯和贱金属杂质,作用比甲基己基酮和辛醇-2为优,萃取容量也大。且仲辛醇在萃取前是否用酸平衡,对金的萃取作用影响不大。萃取后的有机相是否洗刷对金锭质量无明显影响。经屡次循环运用后,仲辛醇对金的萃取功率虽有所下降,但功能仍较安稳。必要时可考虑用蒸馏法使其再生后运用。 从实验成果看出:当氯化液中金的浓度比铂、钯大50倍以上时,仲辛醇能选择性萃取金。但氯化液中金的浓度与铂、钯浓度挨近时,怎么进步选择性萃取金,需要进一步研讨。

铌的熔化与提纯

2019-02-11 14:05:44

一、导言      从Nb 被初次提纯以来,它的性质一向遭到科学家和工程师的重视,一向在现代科技与工业中推行运用。事实上,相关于其它难熔金属而言,Nb的高熔点(2468℃)、低密度、耐蚀性、超导电性质和构成介电氧化物才能已使它在不同范畴得到了运用。      当然,绝大部分运用都依靠于铌的纯度,其潜在有用性也依靠于纯度,特别是在超导方面的运用。为了取得更高纯铌,科技人员作了许多的尽力,取得了许多有用的常识,而且大大进步了出产铌的工艺水平。      电子束熔炼技能(EBM )的呈现对出产铌金属起到了很大的促进作用,该工艺出产的铌与曩昔传统的经过凝结办法取得铌比较,残留杂质更低。在20 世纪50 时代后期,HungR.Smith 和Charles Hunt 在Temescal 设备上经过EBM 初次出产出钽和铌锭。之后,1959 年,Wah Chang 公司开端在电子束熔炉中出产铌及钽锭。       Nb-10%Hf-1%Ti 合金是首要开展的重要高温铌基合金。Nb-10%Hf-1%Ti 合金现在已被用在涡轮发动机的高温部件上。后来,高纯Nb及一些Nb合金在超导方面得到了运用。Nb-47%Ti 合金一向是含铌合金的最大需求目标,它被用在超导磁极上,这种磁极运用在磁共振成像(MRI)单元上。当时,高纯铌粉末则作为钽的潜在竞赛目标而被用在固体电解质工业方面已引起广泛重视。      现在有许多的技能文献涉及到铌的出产,包含从提炼冶金到铸成铌锭的整个铌的出产进程。因而,本文旨在总结铌公司12 年来出产商业及反响堆档次级的铌锭的实践经验,内容包含从原矿到终究产品。      二、与提纯有关的问题      纯铌具有很好的耐性及延伸性、很好的低温加工功能,可是仅百万分之几百的氧、氢或碳杂质或许使铌变的又硬又脆,关于一些特殊的用处,比方超导电性,只答应几个ppm 杂质。      为了出产高纯铌锭,电子束熔炼技能被认为是现在最有用的工艺,其功率密度以及高或超高真空的维护是提纯的重要要素,别的还能灵敏操控熔融态金属的驻留时刻。这些要素对其他真空冶金进程简直是不能实现的。      在EB 操作条件下,铌经过蒸馏和脱气提纯。比铌蒸气压高的元素经过蒸腾除掉。运用朗格茂(Langmuir)公式能描绘详细蒸腾率,公式表现了蒸腾率与各元素的分压、分子量和温度之间的联系,公式表述为 :        其间:av1(gcm-2s-1)是详细蒸腾率;         α是蒸腾系数—抱负状况下α=1;         PS(Pa)是在 TV温度下的饱满蒸气压;         TV是绝对温度;         MD是分子量;      按 Thumb 准则,要使提纯可以有用地进行,有必要具有的条件是杂质元素的蒸气压至少应是首要元素在熔化温度下蒸气压的 100 倍以上。      铌原材料中大大都的杂质首要是由 Ara×a 烧绿石(注:Ara×a烧绿石不清楚)加工进程所造成的,象 Al、Fe、Ti、Mn、Ba、Ka、Si 及许多其它金属,它们的蒸气压都远远高于铌的蒸气压。从图 1 和图2 中可以看出,在铌的熔化温度,这些残留元素从熔化的铌中适当易于蒸腾出来,并被熔室内的水冷壁和冷凝器所搜集。   图1  不同元素的蒸气压曲线    图2  纯元素的蒸腾率       例如,在出产 Nb-1%Zr 合金时,一般需经两步 EB 熔炼,添加到铌中的锆约有 30%的经过蒸腾损失掉,与此一起铌的回收率高达 96%-98%。      另一方面,低蒸气压元素比方钽、钨和钼,在 EBM工艺中不能或简直不能从铌中去除,所以一旦存在于原始矿中,则不得不经过其它的工艺除掉。       CBMM 公司的矿中所含的低蒸气压金属元素仅仅是钽,而且钽含量水平与现在许多铌金属商业运用中含的钽是共同的。钨和钼的存在简直是可以忽略不计的。因而,当 CBMM公司挑选原材料来出产铌时,除了碳、氧和氮,钽是仅有的金属元素而需求特别注意的。 应该提及,首要组元也或许会被蒸腾掉。在铌的加工中,由于铌的蒸腾,引起铌的收得率损践约 1%~3%。因而,低蒸气压元素,如钽的浓度会有少数的添加是正常的。       图2给出了一些元素的近似蒸腾率曲线,这些曲线是运用朗格茂公式在抱负蒸腾条件下得到的,是对其它不同元素蒸腾率的一个定性的描绘。       氮、氢和以气体的方式从熔化材料中释放出来,有必要用真空泵抽出。因而,除能得到十分低的终压外, 炉子的真空体系有必要有满足的抽吸才能来处理这些气体。 另一方面,氧可以以蒸腾性的贱价金属氧化物(首要是 NbO和 NbO2)方式从熔融的铌重释放出来,或许与碳(CO)结合。关于氧的浓度低于 1%,运用 NbO 脱氧是首要的办法。贱价金属氧化物从熔池中蒸腾出来也会凝结在熔化室水冷壁和冷凝器中。       铌中除脱碳首要依靠于样品中的过量氧。因而,假如在提纯的第一步碳含量没有削减到抱负的水平将不利于进一步的高真空重熔提纯。在这种状况下,另一办法是在真空且具有更高的氧分压条件下从头熔化。该进程或许会使氧含量添加。       尽管这一进程是在高真空下进行,但铌仍有与残留气体反响的才能,比方氧、氮、、二氧化碳和水汽。依托熔室中这些气体的分压,反响或许适当剧烈。因而,熔室中的终压对提纯而言是关键要素。       铌与气体反响的热力学、动力学和空隙方位浓度已在文献6中评论。      三、EB 炉的铌炉料       现代 EB 炉的灵敏性及电子束可操控性答应运用多种方式的原材料: 海棉状、 紧缩粉末、块状和棒状。       对出产铌而言,最重要的质料是棒状类型,它是由 Al 和 C复原铌的氧化物得到的。铝热复原技能是用来出产 EB 炉质料最首要的技能,这归因于铝有高的活性、价低廉价,而且易于制备无碳铌炉料。碳热复原铌的氧化物法也是出产炉料的重要办法。一般,与铝热法比较,这种办法出产出的质料在 EB 熔炼后,的残留氧会更低,收得率更高。但是,碳或许与铌和钽反响构成十分安稳的化合物—Nb2C、NbC、TaC  --它们的熔点远高于纯铌的熔点。一旦这些化合物存在于原猜中,正如前面所说到的相同,在 EB 工艺中,使其分化、除碳将依靠氧化才能。因而,有必要严格操控碳热复原法的进程参量,特别是相关的化学计量,不然会得到高含碳量的铌锭;相反,由铝热法发生的杂质更易于在 EB 熔化进程中去除。       铝热法所需的炉料是铌氧化物和铝粉的混合物,也可以含有激起剂和助熔剂。为了确保铝热复原铌棒中能残留 3%~5%的铝,要化验其含量。实践标明,在铝热复原铌棒中过高的铝会使棒变脆,并或许会在加热时决裂,这使得 EB 熔化进程操控十分困难。相反,铝含量越低,残留氧越多,成果使得收得率削减。铝热复原铌棒中的氧含量正常范围在4000~8000wppm。       在 EB 熔化进程中若想得到最好的作用,预选进程中考虑铌氧化物的化学成分和颗粒尺度是很重要的。低蒸气压杂质-W、Ta 和 Mo-要特别注意,这些元素不能(或简直不或许)经过 EBM 工艺从铌中去除。       铝热法中铸造模子的耐火衬或许还会引进不必要的杂质。 当运用含碳的耐火材料时要特别注意,由于它或许会使铸坯铌棒中的碳含量升高。另一方面,耐火材料中的 CaO或 MnO或许会污染铌金属,尽管它们在 EBM 工艺不难去除(因其蒸气压高) ,但也或许使收得率下降。       图 3 给出了在 Brazil CBMM 公司设备上出产铌锭的全进程:    图3  CBMM公司出产流程图       EB 熔化的第一步是铝热复原铌棒水平滴熔。熔化率有必要依照原材料中的气体量、熔室内的真空要求、熔炉的直径和有用功率来调整。举个比如,关于CBMM 公司中一座 500kW的炉子,该炉配备有每秒能抽 50000升的泵,其熔化率在 40~50kg/hr之间,一起熔室内的压力在 5×10-4-3×10-3mbar之间改变。 在水平喂料进程中, 熔池的区域应处于喂料杆顶端的下面,除非损坏铜熔炉,不然电子束不能到达。由于继续低的暖流,铌锭的相应区域质量会有所下降,特别是氧和铝的残留及表面的滑润度。图4是 EB 熔化第一步的简图。      图4  CBMM 公司第一步熔炼操作图  1-电子;2-电极;3-真空室;4-水冷模子;5-可弹性铸模      为削减上面的负面影响,处理的计划是铸造大的圆柱状铝热复原铌棒(直径为 200mm,长 1250mm,每根重约 300kg)来习惯笔直进料。在进步锭的质量和添加锭的横纵方向上的氧含量的高均匀性(总是低于 300wppm)方面,笔直滴熔所出产的锭的作用很好。但是,由于铝热复原铌棒存在热裂的倾向,重的碎片会掉进熔池中,导致铌的收得率下降及损坏熔炉,该工艺在往常出产中一般不选用。       一般,为了使出产的铌契合 ASTM-B391-96反响堆级规格,有必要重复 2~3 次 EB 熔炼过程。因而,在随后的重熔中,前一步出产的锭被用作电极进行笔直滴熔。由于这些电极的含量比铝热复原铌棒低,则在第二步和第三步的熔化率可以更高些。    图5  是笔直熔炼配备图       在 500kW EB 熔炉上出产直径为 250mm(10英寸)的铌锭,其工艺数据列于表 1   表1  500kW电子束熔炉-操作数据熔次质料尺度/mm熔速/kg·h-1电子功率 /kW熔炼室压力/m·bar均匀收得率(w/w)/%1st铝热复原铌棒110×110 × 80040-50320-350<3 ×10-3842nd经一次熔炼的铌棒φ250 dia.× 1,60060-65390-420<3 ×10-4973rd经二次熔炼的φ250 dia.× 1,60065-70420-440<5 ×10-598       从1989年以来,CBMM 公司已连续出产纯铌和 Nb-1%Zr 锭,产品契合表2所示的ASTMB391标准。   表2  Nb 和 Nb 合金的 ASTM B-391-96 规则标准 成分要求元素Type I (反响器级未合 金化铌) R04200Type II (商用级未合金 化铌) R04210Type 3 (反响器级 Nb – 1% Zr) R04251Type 4 (商用级 Nb – 1% Zr) R04251除非特别阐明,一般是  指最大质量百分数%每个锭C0.010.010.010.01N0.010.010.010.01O0.0150.0250.0150.025H0.00150.00150.00150.0015Zr0.020.020.8~1.20.8~1.2Ta0.10.20.10.5Fe0.0050.0050.0050.005Si0.0050.0050.0050.005W0.030.050.030.05Ni0.0050.0050.0050.005Mo0.0100.020.020.02Hf0.020.020.020.02有要求时B2 ppm-----2 ppm-----Al0.0020.0050.0020.005Be0.005-----0.005-----Cr0.002-----0.002-----Co0.002-----0.002-----        图 6-图11给出的统计数据是 CBMM实验室 1994-2000 年来成分分析陈述及硬度成果。在这期间,该公司已出产 400 多吨的铌锭用于各个方面。这一系列图给出了元素的常常改变的状况。其他未报元素绝大部分都低于分析设备能检测到的下限。   图6  1998年首熔Nb锭碳分析    图7  1998 年首熔 Nb 锭氧分析    图8  1994-2000年3次熔炼后的Nb锭氧分析    图9  1994-2000年3次熔炼后的Nb锭氮分析    图10  1994-2000年反响堆级 Nb 锭钽分析    图11  1994-2000年3次熔炼后的Nb锭硬度(HV10)        世界各地的顾客和实验室研讨证明,CBMM 公司的铌锭中存在的空隙元素绝大部分都远低于 ASTMB391 标准。表 3 和表 4 列出的是 GDMS(Glow Discharge Mass Spectrometry) 分析陈述。表 3 中选用的样品是来自经过第一次、第2次和第三次 EB熔炼后同一块锭;表4 列出的是两个不同的锭经过三次 EB 熔炼后的成分分析成果。可以看出,除了未分析的气体和第一次熔化锭中的铝之外,经第一次 EB 熔炼之后,一切其它的残留杂质均已契合或低于ASTMB391-36 标准。CBMM 公司出产的铌已广泛一切的铌终究用户,包含超导腔、MRI和 NMR 磁极。   表3  同一铌锭经3次 EBM后GDMS分析成果(ppm wt)  表4  10563/01和#10573/01号别离经3次EBM后GDMS化学成分分析成果(ppm wt)      四、总结       经过 EB 熔炼提纯铌可取得最高的纯度,其纯度已超越现在大部分商业的要求。铌矿中的绝大大都金属元素很简单在 EB 熔炼环境下蒸腾。极少数饱满蒸气压低于铌的杂质元素例如钽、钨和钼等,则不能经过蒸腾除掉。因而,假如原矿挑选正确,EB 工艺出产的铌锭中,大部分残留杂质浓度会低于百万分之几或乃至十亿分之几。       已知的铌金属提纯的办法中,还没有哪一种可以超越 EB 熔炼。

锗的主要回收工艺

2019-02-26 16:24:38

归纳收回锗的办法许多,常用的是氯化蒸馏的经典办法。该法是使原猜中的锗转入硫酸溶液,参加单宁得单宁锗沉积物,经氧化焙烧脱砷及脱有害物后,在83~100℃下氯化蒸馏得GeCl4。在氯化蒸馏过程中发作如下反响:  GeCl4经水解得纯GeO2,过程中发作下列反响:  GeO2通复原得到约具有10~20Ω·cm电阻率的金属锗,其反响为:  除此之外,锗的收回办法还有以下几种:   (1)优先蒸发法收回锗 先把质料制团,经复原蒸发硫化锗,蒸发锗率达90%~98%;然后将尘按经典法提锗,锗的收回率听说高达90%。在我国,曾实验用此法从含0.006%~0.008%Ge的锌精矿中提锗,通过两次复原蒸发,所得硫化物尘再用经典法提锗,锗收回率达75%~80%。   (2)硫酸化-载体沉积法收回锗 此法处理含0.022%锗的扎伊尔锗矿,经浮选得含锗0.13%的铜精矿,经铜冶炼得含0.36%Ge的烟尘,经硫酸化使锗转入硫酸系统,净化后用MgO作载体沉积出溶液中的锗,然后按经典法提锗。比利时的巴伦厂选用此法出产,锗的收回率达75%。   (3)碱土金属氯化蒸馏法收回锗。   (4)烟化法收回锗。   (5)氧化复原焙烧收回锗。   (6)再次蒸发收回锗。   (7)萃取法收回锗 近年来,国内外溶剂萃取锗的研讨工作进展较大,在系统中可用火油、CCl4、MIBK、Lix63及二等萃取锗;在硫酸系统中可用TOA、P204+YWl00、Lix63及Kelexl00等萃取锗,此法可根据具体情况进行出产。     (8)鼓风炉蒸发法收回锗。

多晶硅提纯

2017-06-06 17:50:03

目前的多晶硅提纯技术主要包括以下几种:  西门子法(包括改良西门子法)、流化床法和冶金法(包括物理法)。国际上生产高纯多晶硅的生产工艺仍以“改良西门子法一三氯氢硅氢还原法”为主(约占全球总 产量 的80%)。  多晶硅生产的西门子工艺,其原理就是在1100℃左右的高纯硅芯上用高纯氢还原高纯三氯氢硅,生成多晶硅沉积在硅芯上。改良西门子法是在西门子法工艺基础上,增加还原尾气干法回收系统、SiCl4 氢化工艺,实现闭路循环,通过采用大型还原炉,降低了单位产品的能耗;采用SiCl4 氢化和尾气干法回收工艺,明显降低原辅材料的消耗,所生产的多晶硅占当今世界生产总量的80%。  改良西门子法生产包括5 个主要环节,即SiHCl3 合成、SiHCl3 精馏提成、SiHCl3的氢还原、尾气的回收以及SiCl4 的氢化等。  改良西门子法相对于传统西门子法的优点主要在于:  1)节能:由于改良西门子法采用多对棒、大直径还原炉,可有效降低还原炉消耗的电能;  2)降低物耗:改良西门子法对还原尾气进行了有效的回收。所谓还原尾气:是指从还原炉中排放出来的,经反应后的混合气体。改良西门子法将尾气中的各种组分全部进行回收利用,这样就可以大大低降低原料的消耗。  3)减少污染:由于改良西门子法是一个闭路循环系统,多晶硅生产中的各种物料得到充分的利用,排出的废料极少,相对传统西门子法而言,污染得到了控制,保护了环境。  制造太阳能电池须采用纯度99.9999%以上的多晶硅材料,通常以“N”表示小数点之后的“9”,N越大纯度越高。长期以来,4N至10N的多晶硅生产技术在我国仍属空白,这一关键原材料几乎全部依赖进口。若多晶硅提纯技术实现突破,太阳能电池成本有望下降。    

锗主要有哪些回收工艺

2019-02-26 09:00:22

归纳收回锗的办法许多,常用的是氯化蒸馏的经典办法。该法是使原猜中的锗转入硫酸溶液,参加单宁得单宁锗沉积物,经氧化焙烧脱砷及脱有害物后,在83~100℃下氯化蒸馏得GeCl4。在氯化蒸馏过程中发作如下反响:GeCl4经水解得纯GeO2,过程中发作下列反响:GeO2通复原得到约具有10~20Ω·cm电阻率的金属锗,其反响为:(1)优先蒸发法收回锗先把质料制团,经复原蒸发硫化锗,蒸发锗率达90%~98%;然后将尘按经典法提锗,锗的收回率听说高达90%。在我国,曾实验用此法从含0.006%~0.008%Ge的锌精矿中提锗,通过两次复原蒸发,所得硫化物尘再用经典法提锗,锗收回率达75%~80%。 (2)硫酸化-载体沉积法收回锗此法处理含0.022%锗的扎伊尔锗矿,经浮选得含锗0.13%的铜精矿,经铜冶炼得含0.36%Ge的烟尘,经硫酸化使锗转入硫酸系统,净化后用MgO作载体沉积出溶液中的锗,然后按经典法提锗。比利时的巴伦厂选用此法出产,锗的收回率达75%。 (3)碱土金属氯化蒸馏法收回锗。 (4)烟化法收回锗。 (5)氧化复原焙烧收回锗。 (6)再次蒸发收回锗。 (7)萃取法收回锗近年来,国内外溶剂萃取锗的研讨工作进展较大,在系统中可用火油、CCl4、MIBK、Lix63及二等萃取锗;在硫酸系统中可用TOA、P204+YWl00、Lix63及Kelexl00等萃取锗,此法可根据具体情况进行出产。 (8)鼓风炉蒸发法收回锗。

锗的性质、应用范围及回收锗的八大工艺

2019-03-07 10:03:00

中文名称:锗 英文名称:germanium 界说:原子序数为32,属元素周期表中第ⅣA族元素,元素符号为Ge,是重要的半导体材料。 锗(旧译作鈤)是一种化学元素。锗的物质形状是一种灰白色的类金属。锗的性质与锡相似。锗最常用在半导体之中,用来制作晶体管。1886年,德国的文克勒在分析硫银锗矿时,发现了锗的存在;后由硫化锗与氢共热,制出了锗。 高纯度的锗是半导体材料。从高纯度的氧化锗复原,再经熔炼可提取而得。掺有微量特定杂质的锗单晶,可用于制各种晶体管、整流器及其他器材。锗的化合物用于制作荧光板及各种高折光率的玻璃。 锗单晶可作晶体管,是第一代晶体管材料。 锗材用于辐射探测器及热电材料。 高纯锗单晶具有高的折射系数,对红外线通明,不透过可见光和紫外线,可作专透红外光的锗窗、棱镜或透镜。 锗和铌的化合物是超导材料。二氧化锗是聚合反响的催化剂,含二氧化锗的玻璃有较高的折射率和色散功能,可作广角照相机和显微镜镜头,三仍是新式光纤材料添加剂。 锗,具有半导体性质。对固体物理学和固体电子学的开展起过重要效果。锗的熔密度5.32克/厘米3,为银灰色脆性金属。锗可能性划归稀散金属,锗化学性质安稳,常温下不与空气或水蒸汽效果,但在600~700℃时,很快生成二氧化锗。与、稀硫酸不起效果。浓硫酸在加热时,锗会缓慢溶解。在硝酸、中,锗易溶解。碱溶液与锗的效果很弱,但熔融的碱在空气中,能使锗敏捷溶解。锗与碳不起效果,所以在石墨坩埚中熔化,不会被碳所污染。 锗有着杰出的半导体性质,如电子迁移率、空穴迁移率等等。 锗的开展仍具有很大的潜力。          现代工业出产的锗,首要来自铜、铅、锌冶炼的副产品。 怎么收回锗? 归纳收回锗的办法许多,常用的是氯化蒸馏的经典办法。该法是使原猜中的锗转入硫酸溶液,参加单宁得单宁锗沉积物,经氧化焙烧脱砷及脱有害物后,在83~100℃下氯化蒸馏得GeCl4。在氯化蒸馏过程中发作如下反响: GeO3+4HCl=GeCl4+2H2O GeCl4经水解得纯GeO2,过程中发作下列反响: GeCl4+2H2O=GeO2+4HCl GeO2通复原得到约具有10~20Ω·cm电阻率的金属锗,其反响为: GeO2+2H2=Ge+2H2O (1)优先蒸发法收回锗 先把质料制团,经复原蒸发硫化锗,蒸发锗率达90%~98%;然后将尘按经典法提锗,锗的收回率听说高达90%。在我国,曾实验用此法从含 0.006%~0.008%Ge的锌精矿中提锗,通过两次复原蒸发,所得硫化物尘再用经典法提锗,锗收回率达75%~80%。 (2)硫酸化-载体沉积法收回锗 此法处理含0.022%锗的扎伊尔锗矿,经浮选得含锗0.13%的铜精矿,经铜冶炼得含0.36%Ge的烟尘,经硫酸化使锗转入硫酸系统,净化后用MgO 作载体沉积出溶液中的锗,然后按经典法提锗。比利时的巴伦厂选用此法出产,锗的收回率达75%。 (3)碱土金属氯化蒸馏法收回锗。 (4)烟化法收回锗。 (5)氧化复原焙烧收回锗。 (6)再次蒸发收回锗。 (7)萃取法收回锗 近年来,国内外溶剂萃取锗的研讨工作进展较大,在系统中可用火油、CCl4、MIBK、Lix63及二等萃取锗;在硫酸系统中可用TOA、P204+YW100、Lix63及Kelex100等萃取锗,此法可根据具体情况进行出产。 (8)鼓风炉蒸发法收回锗。

优先挥发法提锗

2019-01-30 10:26:27

以含锗硫化物或氧化物有色金属矿为原料,在回收主金属之前先使锗升华挥发入烟尘,进而获得纯GeO2的过程。原料中的主金属多为铅、锌、铜等。本法工艺流程简短,不需经过浸出、过滤、丹宁沉淀、煅烧等回收锗的处理步骤,直接获得含锗在l0%以上的锗精矿,锗的回收率高,但只能回收原料中的硫化锗和氧化锗,并受主金属生产流程的制约,因而未获推广。 原理锗的硫化物和低价氧化物在较低温度下具有高的蒸气压,如997K温度时GeS的蒸气压为1386Pa,956K时GeS2的蒸气压为380Pa,1196K时GeO蒸气压达1662.5Pa。此外,它们还有在中性或弱还原气氛中,于较低温度下容易升华挥发的特性。可以利用锗硫化物和低价氧化物的这些特性,通过控制炉内气氛和温度,使它们先升华挥发。而原料中的铅、锌、铜等主金属硫化物或氧化物在此条件下极少挥发。据此,可在回收原料的主金属铅、锌和铜等的前期,使原料中的锗优先挥发并在烟尘中富集而得到回收。 工艺比利时霍博肯奥维佩特冶金公司(MH0)于1952年采用一次挥发法从锗石中回收锗,中国也于20世纪60年代采用类似的两次挥发法从铅锌矿回收锗。 一次挥发法原料是锗石精矿,主要成分(质量分数w/%)为:Ge 0.25,Cu 27.8,Zn 7.92,Pb 25.0,As 7.5等。原料烘干后配入料质量4%的木炭或10%焦炭进行制团(见炉料制团)。团料定期加入到反应区断面积为0.23m×0.58m的竖炉内,并从炉上部向下送入含    C0 30%、H2 1%~2%和余为氮的还原气体,挥发温度控制在1143~1253K间。在此条件下,炉内的锗硫化物和低价氧化物,以及砷等杂质升华进入烟气。从竖炉排出的烟气温度在973K以上,需先经冷凝器回收80%的锗,再用布袋收尘。焙砂送回收主金属。过程中锗挥发率达92%~93%,而PbS仅挥发5%~10%。收得的含锗硫化物尘,在823K温度的电炉中鼓入空气进行氧气焙烧脱除砷和硫。焙烧产物(锗精矿)再经氯化蒸馏提纯、水解处理,最后得到含GeO2的锗精矿(见经典氯化法提锗)。 两次挥发法原料为铅锌精矿,主含成分(质量分数w/%)为Ge 0.005~0.008、Pb2.4、Zn 40~42.2等,两次挥发提锗流程 工艺流程如图。一次挥发是原料配入石油渣(或木炭,或焦炭),经制团后加入回转窑内,在还原气氛中、于1223~1273K温度下还原挥发1h。还原气氛的气体一般含CO3%、C02 17%、O2 1%,其余为N2。锗挥发率达98%,烟尘率为8%,尘含锗达0.05%~0.06%。挥发所得焙砂送回收主金属。由于一次挥发尘多为机械尘且锗品位低,需将其制粒后进行二次挥发。二次挥发在竖炉内,于1223K温度下挥发0.5h。为了抑制铅的挥发,采用高料柱和低料面温度(低于873K)的操作制度。锗挥发率达98%,二次挥发尘率为粒料的2%。收得的二次挥发尘经氧化脱砷后便得到含锗达10%以上的锗精矿。锗精矿经氯化蒸馏、复蒸馏、水解得含锗68%~69%的纯GeO2产品。锗的直接回收率大于70%,总回收率为85%。