锗矿
2019-02-11 14:05:30
粉末状呈暗蓝色,结晶状,为银白色脆金属。密度5.35克/厘米3。熔点937.4℃。沸点2830℃。化合价+2和+4。榜首电离能7.899电子伏特。是一种稀有金属,重要的半导体材料。不溶于水、、稀苛性碱溶液。溶于、浓硝酸或硫酸、熔融的碱、过氧化碱、硝酸盐或碳酸盐。在空气中不被氧化。其细粉可在氯或中焚烧。
性质: 具有半导体性质。对固体物理和固体电子学的开展有重要效果。锗的熔密度5.32克/厘米3,锗可能性划归稀散金属,锗化学性质安稳,常温下不与空气或水蒸汽效果,但在600~700℃时,很快生成二氧化锗。与、稀硫酸不起效果。浓硫酸在加热时,锗会缓慢溶解。在硝酸、中,锗易溶解。碱溶液与锗的效果很弱,但熔融的碱在空气中,能使锗敏捷溶解。锗与碳不起效果,所以在石墨坩埚中熔化,不会被碳所污染。锗有着杰出的半导体性质,如电子迁移率、空穴迁移率等等。锗的开展仍具有很大的潜力。现代工业生产的锗,首要来自铜、铅、锌冶炼的副产品。
锗矿石中锗的提取工艺
2019-02-22 15:05:31
归纳收回锗的办法许多,常用的是氯化蒸馏的经典办法。该法是使原猜中的锗转入硫酸溶液,参加单宁得单宁锗沉积物,经氧化焙烧脱砷及脱有害物后,在83~100℃下氯化蒸馏得GeCl4。在氯化蒸馏过程中发作如下反响:
GeO3+4HCl=GeCl4+2H2O
GeCl4经水解得纯GeO2,过程中发作下列反响:
GeCl4+2H2O=GeO2+4HCl
GeO2通复原得到约具有10~20Ω·cm电阻率的金属锗,其反响为:
GeO2+2H2=Ge+2H2O
(1)优先蒸发法收回锗先把质料制团,经复原蒸发硫化锗,蒸发锗率达90%~98%;然后将尘按经典法提锗,锗的收回率听说高达90%。在我国,曾实验用此法从含0.006%~0.008%Ge的锌精矿中提锗,通过两次复原蒸发,所得硫化物尘再用经典法提锗,锗收回率达75%~80%。
(2)硫酸化-载体沉积法收回锗此法处理含0.022%锗的扎伊尔锗矿,经浮选得含锗0.13%的铜精矿,经铜冶炼得含0.36%Ge的烟尘,经硫酸化使锗转入硫酸系统,净化后用MgO作载体沉积出溶液中的锗,然后按经典法提锗。比利时的巴伦厂选用此法出产,锗的收回率达75%。
(3)碱土金属氯化蒸馏法收回锗。
(4)烟化法收回锗。
(5)氧化复原焙烧收回锗。
(6)再次蒸发收回锗。
(7)萃取法收回锗近年来,国内外溶剂萃取锗的研讨工作进展较大,在系统中可用火油、CCl4、MIBK、Lix63及二等萃取锗;在硫酸系统中可用TOA、P204+YW100、Lix63及Kelex100等萃取锗,此法可根据具体情况进行出产。
(8)鼓风炉蒸发法收回锗。
锗的性质和用途
2018-10-23 10:18:07
锗单质是一种灰白色类金属,有光泽,质硬,属于碳族,化学性质与同族的锡与硅相近,不溶于水、HCl、稀苛性碱溶液,溶于王 水、浓硝酸或硫酸,具有两 性,故溶于熔融的碱、过氧化碱、碱金属硝酸盐或碳酸盐,在空气中较稳定,在自然界中,锗共有五种同位素:70,72,73,74,76,在700℃以上与氧作用生成GeO2,在1000℃以上与氢作用,细粉锗能在氯或 Br 中燃烧,锗是优良半导体,可作高频率电流的检波和交流电的整流用,此外,可用于红外光材料、精密仪器、催化剂。锗的化合物可用以制造荧光板和各种折射率高的玻璃。锗化学性质稳定,常温下不与空气或水蒸汽作用,但在600~700℃时,很快生成二氧化锗。与HCl、稀硫酸不起作用。浓硫酸在加热时,锗会缓慢溶解。在硝酸、王 水中,锗易溶解。碱溶液与锗的作用很弱,但熔融的碱在空气中,能使锗迅速溶解。锗与碳不起作用,所以在石墨坩埚中熔化,不会被碳所污染。??锗在电子工业中的用途,已逐渐被硅代替。但由于锗的电子和空穴迁移率较硅高,在高速开关电路方面,锗比硅的性能好。锗在红外器件、γ辐射探测器方面,有新的用途。金属锗能通过?2~15微米的红外线,又和玻璃一样易被抛光,能有效地抵制大气的腐蚀,可用以制造红外窗口、三棱镜和红外光学透镜材料。锗酸铋用于闪烁体辐射探测器。锗还同铌形成化合物,用作超导材料。二氧化锗是聚合反应的催化剂。用二氧化锗制造的玻璃有较高的折射率和色散性能,可用于广角照相机和显微镜镜头;GeO2-TiO2-P2O5类型的玻璃有良好的红外性能,在空间技术上,可用来保护超灵敏的红外探测器。
锗的工业用途
2018-08-29 09:58:12
锗具备多方面的特殊性质,在半导体、航空航天测控、核物理探测、光纤通讯、红外光学、太阳能电池、化学催化剂、生物医学等领域都有广泛而重要的应用,是一种重要的战略资源。在电子工业中,在合金预处理中,在光学工业上,还可以作为催化剂。高纯度的锗是半导体材料。从高纯度的氧化锗还原,再经熔炼可提取而得。掺有微量特定杂质的锗单晶,可用于制各种晶体管、整流器及其他器件。锗的化合物用于制造荧光板及各种高折光率的玻璃。锗单晶可作晶体管,是第一代晶体管材料。锗材用于辐射探测器及热电材料。高纯锗单晶具有高的折射系数,对红外线透明,不透过可见光和紫外线,可作专透红外光的锗窗、棱镜或透镜。20世纪初,锗单质曾用于治疗贫血,之后成为最早应用的半导体元素。单质锗的折射系数很高,只对红外光透明,而对可见光和紫外光不透明,所以红外夜视仪等军用观察仪采用纯锗制作透镜。锗和铌的化合物是超导材料。二氧化锗是聚合反应的催化剂,含 二氧化锗的玻璃有较高的折射率和色散性能,可作广角照相机和显微镜镜头,三GeCl4还是新型光纤材料添加剂。据数据显示,2013年来光纤通信行业的发展、红外光学在军用、民用领域的应用不断扩大,太阳能电池在空间的使用,地面聚光高效率太阳能电站推广,全球对锗的需求量在持续稳定增长。全球光纤网络市场尤其是北美和日本光纤市场的复苏拉动了光纤市场的快速增长。21世纪全球光纤需求年增长率已经达到了20%。未来中国光纤到户、3G建设及村通工程将拉动中国光纤用锗需求快速增长。锗在红外光学领域的年需求量占锗消费量的20-30%,锗红外光学器件主要作为红外光学系统中的透镜、棱镜、窗口、滤光片等的光学材料。红外市场对锗产品的未来需求增长主要体现在两个方面:军事装备的日益现代化带动了对红外产品的需求和民用市场对红外产品的需求。太阳能电池用锗占据锗总消耗量的15%,太阳能电池领域对锗系列产品的未来需求增长主要体现在两个方面:航空航天领域及卫星市场快速发展和地面光伏产业快速增长。从全球产量分布来看,中国供给了世界71%的锗产品,是全球最大的锗生产国和出口国,这主要是由于中国高附加值深加工产品技术环节薄弱,导致内需相对有限,产品多以初加工产品出口为主。但是在需求旺盛刺激下,中国锗生产技术能力提升迅速,目前中国企业已经能够生产光纤级、红外级、太阳能级锗系列产品。加之来政策推动力度大,中国光纤领域锗需求明显增长。2013年PET催化剂用锗约占25%,电子太阳能用锗约占15%,红外光学用锗比重从42%降至25%,而光纤通讯约占锗消费30%左右的市场份额。2011年中国锗消费量为45金属吨,2012年锗消费量为50金属吨,同比增长11.11%;2013年锗消费量为59金属吨,同比增长18.00%。
锗的提取方法
2019-02-25 13:30:49
锗的提取办法是首先将锗的富集物用浓氯化,制取,再用溶剂萃取法除掉首要的杂质砷,然后经石英塔两次精馏提纯,再经高纯洗刷,可得到高纯,用高纯水使水解,得到高纯二氧化锗。一些杂质会进入水解母液,所以水解进程也是提纯进程。纯二氧化锗经烘干煅烧,在复原炉的石英管内用于650-680℃复原得到金属锗。 锗具有多方面的特殊性质,在半导体、航空航天测控、核物理勘探、光纤通讯、红外光学、太阳能电池、化学催化剂、生物医学等范畴都有广泛而重要的使用,是一种重要的战略资源。
锗的用途
2019-02-11 14:05:44
美国与日本的锗使用举例及结构示于表1。
表1 锗的使用举例及结构 (%)年份国别使用光纤红外探测器+半导体催化剂其他1985美国651510-10日本17.2-9.135.538.21996美国401515255日本10.7-10.771.47.21997美国4010202010日本13.3-13.466.76.61998美国441117226日本 (72.4) 1999美国501510205日本 (91.1) 2000美国501510205日本 (84.0) 2001美国501510205日本
一、锗作为红外光学材料,具有红外折射率高,红外透过波段规模宽,吸收系数小、色散率低、易加工、亮光及腐蚀等影响,特别适用军工及严重民用中的热成像仪与红外雷达及其他红外光学设备的窗口、透镜、棱镜与滤光片的材料;高纯锗或锗锂用于天文学的γ-谱仪,核反应能谱仪及等离子物理X-射线仪;Si-Ge10与掺、镉、铜与镓的锗单晶用于红外探测器。
二、锗半导体器材用作二极管、晶体三极管及复合晶体管、锗半导体光电器材作光电、霍耳及压阻效应的传感器,作光电导效应的放射线检测器等,广泛用于间响、彩电、电脑、电话及高频设备中,锗管特别适用于高频大功率器材中,且在强辐射与-40℃下工作正常;Ge-Si与Ge-Te作温差发电用于宇航、卫星与空间站的发动电源等。
三、掺锗光纤具有容量大、光损小、色散低、传输间隔长及不受环境等的搅扰,是现在仅有能够工程化使用的光纤,是光通讯网络的主体,近年取得大发展(表2)。
表2 全球耗费光纤量年份199019911992199319941995199619971998199920002001耗光纤量/(万km·a-1)51078011001200144018692252~30502677~37703260~45903882~63304702~
788010190
1万km光纤需GeCl4量:单模为6.8-25kg,多模为34-100kg左右,而且15年就需要替换。此外,GeCl4还用于高速光纤网,链路,光纤传感器,光纤制导及光纤系留设备等。
GeO2是出产聚对笨二乙二醇酯(PET)的催化剂,具有长纤维,由其制备的饮料与食用液体的各式容器,无毒、通明且气密性好。锗用于医药,如Ge-132[β-羧乙基锗倍半氧化物-(GeCH2CH2COOH)2O3]临床使用于防治癌症。BGO作X-射线、CT-仪、PCT-仪,用于确诊肿瘤及骨骼结构与安排坏死等。锗化合物及其有机化合物可作牙膏与高效止痛膏等。
新疆某铍矿选矿工艺试验
2019-01-21 09:41:35
随着全球经济一体化的高速发展,各个国家对矿产资源的需求与日俱增,尤其是含量极低的稀有金属的开发和利用更是得到高度的重视,大幅度提升了稀有金属选矿技术。对新疆某铍矿开展选矿工艺研究主要试样工艺矿物学研究主要从试样的工艺矿物学研究出发,在查明试样化学成分、矿物组成、结构构造、赋存状态和嵌布关系的基础上,依据试样性质确定浮选试验方案与工艺流程,并进行了大量的条件试验,以确定最佳的工艺参数,取得了良好的选别指标,铍精矿品位3.07%,回收率81.60%。为合理利用国家矿产资源提供了详实的设计依据。
锗主要的回收工艺
2019-02-12 10:08:00
归纳收回锗的办法许多,常用的是氯化蒸馏的经典办法。该法是使原猜中的锗转入硫酸溶液,参加单宁得单宁锗沉积物,经氧化焙烧脱砷及脱有害物后,在83~100℃下氯化蒸馏得GeCl4。在氯化蒸馏过程中发作如下反响:
GeO3+4HCl=GeCl4+2H2O
GeCl4经水解得纯GeO2,过程中发作下列反响:
GeCl4+2H2O=GeO2+4HCl
GeO2通复原得到约具有10~20Ω·cm电阻率的金属锗,其反响为:
GeO2+2H2=Ge+2H2O
(1)优先蒸发法收回锗 先把质料制团,经复原蒸发硫化锗,蒸发锗率达90%~98%;然后将尘按经典法提锗,锗的收回率听说高达90%。在我国,曾实验用此法从含0.006%~0.008%Ge的锌精矿中提锗,通过两次复原蒸发,所得硫化物尘再用经典法提锗,锗收回率达75%~80%。
(2)硫酸化-载体沉积法收回锗 此法处理含0.022%锗的扎伊尔锗矿,经浮选得含锗0.13%的铜精矿,经铜冶炼得含0.36%Ge的烟尘,经硫酸化使锗转入硫酸系统,净化后用MgO作载体沉积出溶液中的锗,然后按经典法提锗。比利时的巴伦厂选用此法出产,锗的收回率达75%。
(3)碱土金属氯化蒸馏法收回锗。
(4)烟化法收回锗。
(5)氧化复原焙烧收回锗。
(6)再次蒸发收回锗。
(7)萃取法收回锗 近年来,国内外溶剂萃取锗的研讨工作进展较大,在系统中可用火油、CCl4、MIBK、Lix63及二等萃取锗;在硫酸系统中可用TOA、P204+YW100、Lix63及Kelex100等萃取锗,此法可根据具体情况进行出产。
(8)鼓风炉蒸发法收回锗。
锗常识
2019-03-14 09:02:01
锗为银灰色金属,密度5.35克,熔点937.4℃,沸点2830℃。室温下,晶态锗性脆,可塑性很小。锗的化学性质安稳,常温下锗在空气中不被氧化,但在加热时,锗能在氧气、和蒸气中焚烧。锗不与水效果,不溶于和稀硫酸,硝酸和热的浓硫酸能将金属锗氧化为二氧化锗,锗还溶于。锗易溶于熔融的或,生成锗酸钠或锗酸钾。在过氧化氢、次等氧化剂存鄙人,锗能溶解在碱性溶液中,生成锗酸盐。锗具有半导体性质,在高纯锗中掺入三价元素(如铟、镓、硼)、得到P型锗半导体;掺入五价元素(如锑、砷、磷),得到N型锗半导体。 锗一般以涣散状况存在于其他矿藏中,独立的矿藏很少。可从含锗的氧化铅锌矿、闪锌矿和煤灰中收回锗。锗的提取办法是首先将锗的富集物用浓氯化,制取,再用溶剂萃取法除掉首要的杂质砷,然后经石英塔两次精馏提纯,再经高纯洗刷,可得到高纯,用高纯水使水解,得到高纯二氧化锗。一些杂质会进入水解母液,所以水解进程也是提纯进程。纯二氧化锗经烘干煅烧,在复原炉的石英管内用于650-680℃复原得到金属锗。 锗在电子工业中的用处已逐步被硅替代。但因为锗的电子和空穴迁移率较硅高,在高速开关电路方面,锗比硅的功用好。锗首要用来出产低功率半导体二极管三极管,锗在红外器材、γ辐射探测器方面有着新的用处,金属锗能让2-15微米的红外线经过,又和玻璃相同易被抛光,能有效地抵抗大气的腐蚀,可用以制作红外窗口、三棱镜和红外光学透镜材料。锗还与铌构成化合物,用作超导材料。用氧化锗制作的玻璃有较高的折射率和色散功用,可用于广角照像镜头和显微镜。 镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。 稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。 稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。 我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。
锗知识
2019-03-08 11:19:22
锗为银灰色金属,密度5.35克,熔点937.4℃,沸点2830℃。室温下,晶态锗性脆,可塑性很小。锗的化学性质安稳,常温下锗在空气中不被氧化,但在加热时,锗能在氧气、和蒸气中焚烧。锗不与水效果,不溶于和稀硫酸,硝酸和热的浓硫酸能将金属锗氧化为二氧化锗,锗还溶于。锗易溶于熔融的或,生成锗酸钠或锗酸钾。在过氧化氢、次等氧化剂存鄙人,锗能溶解在碱性溶液中,生成锗酸盐。锗具有半导体性质,在高纯锗中掺入三价元素(如铟、镓、硼)、得到P型锗半导体;掺入五价元素(如锑、砷、磷),得到N型锗半导体。
锗一般以涣散状况存在于其他矿藏中,独立的矿藏很少。可从含锗的氧化铅锌矿、闪锌矿和煤灰中收回锗。锗的提取办法是首先将锗的富集物用浓氯化,制取,再用溶剂萃取法除掉首要的杂质砷,然后经石英塔两次精馏提纯,再经高纯洗刷,可得到高纯,用高纯水使水解,得到高纯二氧化锗。一些杂质会进入水解母液,所以水解进程也是提纯进程。纯二氧化锗经烘干煅烧,在复原炉的石英管内用于650-680℃复原得到金属锗。
锗在电子工业中的用处已逐步被硅替代。但因为锗的电子和空穴迁移率较硅高,在高速开关电路方面,锗比硅的功用好。锗首要用来出产低功率半导体二极管三极管,锗在红外器材、γ辐射探测器方面有着新的用处,金属锗能让2-15微米的红外线经过,又和玻璃相同易被抛光,能有效地抵抗大气的腐蚀,可用以制作红外窗口、三棱镜和红外光学透镜材料。锗还与铌构成化合物,用作超导材料。用氧化锗制作的玻璃有较高的折射率和色散功用,可用于广角照像镜头和显微镜。
镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。
稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。
稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。
我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。
难处理富锗铅锌硫化氧化矿新技术
2019-01-21 18:04:55
为开发利用云南驰宏锌锗股份有限公司深部铅锌矿资源,北京矿冶研究总院和云南驰宏锌锗股份有限公司创造性地开发出“等可浮-异步选铅-锌硫异步混选-铅锌硫分离-氧化铅锌矿不脱泥硫化电位控制浮选”新技术,并成功应用于复杂难选铅锌硫化氧化混合矿的选矿过程,技术上取得了突破性进展。
1、依据铅硫、锌硫关系密切的特点,根据等可浮的原理把铅锌硫分成两部分:“铅硫”部分和“锌硫”部分,首次将异步和等可浮两个流程的核心技术有机结合起来,形成等可浮异步浮选和混选流程结构,成为硫化矿浮选的骨干流程;采用有效的针对性捕收剂,保证了铅、锌、硫、银、锗等金属得到最大限度的回收,确保了铅硫在低pH下分离,为后续氧化矿有效浮选创造了必要条件。
2、氧化铅锌矿不脱泥硫化浮选新技术,解决了矿石中铅锌氧化矿物和脉石矿物同为碳酸盐矿物、泥化程度高的难题,是获得混合矿浮选技术指标突破性进展的关键技术。
最终的选矿产品结构简单,便于操作管理,该技术整体上达到国际领先水平。
新疆某铍矿可选性试验研究报告
2019-01-18 09:30:34
于二〇〇八年十一月至十二月,对新疆某地铍矿进行矿石可选性试验,其目的是通过矿石可选性试验研究,为该铍矿提供一套经济合理、技术可行的工艺流程,为该铍矿的开发利用提供科学依据。在试验之前,委托单位提供了一部分工艺矿物学资料,包括原矿X衍射分析、铍物相分析以及岩矿鉴定,通过上述资料和后期进行的光谱半定量分析、化学多元素分析,查明了该铍矿物粒度分布及嵌布特性,查明了矿石结构构造,矿岩的结构构造及岩石类型,使研究人员对该铍矿的研究有了明确认识,为工艺流程的拟定起到了指导作用。该铍矿矿物组成较多,大体一致,岩石蚀变现象较为明显,主要为钠长石化、绿泥石化、绢云母化和褐铁矿化等蚀变现象。矿石中有用元素铍的赋存状态主要以羟硅铍石为主,其次少量以吸附等形式存在于磁铁矿和褐铁矿中,再之极少量以吸附形式存在于高岭土、伊利云母、绿泥石等粘土矿物之中,以及极微量的以类质同相形式存在于镧、铈矿物之中。脉石矿物主要为石英、钠长石、钾长石、绢云母、绿泥石、少量的萤石和褐铁矿等矿物。铍矿矿石主要为中细粒占优势的不等粒嵌布矿石,羟硅铍石的粒度为20微米至300微米;羟硅铍石主要以几种形式存在:一是以自形晶半自形晶的形式存在,主要分布于萤石脉之中;二是羟硅铍石被包裹于萤石脉之中,与萤石颗粒常呈线状接触关系。萤石脉呈脉状充填在花岗斑岩、流纹质凝灰岩之中。该矿选别难点在于矿石蚀变较为强烈,在磨矿过程中产生的大量细泥可能对浮选工艺的影响。 试验原矿样品位Be 0.171%,由于铍矿物主要以羟硅铍石的形式存在,而羟硅铍石又主要分布于萤石中,根据矿石性质,试验主要采用浮选萤石、同时配以浮选羟硅铍石的工艺方案,试验指标为:铍精矿品位为3.07%,回收率81.60%,铍精矿产率为4.55%。
二、选矿试验试验样粒度筛析:目的是通过该试验分析出原矿样中不同细度金属铍的分布状况,从而为试验提供细度依据。
试验结果见表1。表1 粒度筛析试验结果粒度(mm)产率(%)Be品位(%)金属量占比(%)2~123.090.1650.03823.601~0.536.520.1340.04930.430.5~0.12525.200.1620.04125.470.125~0.0744.080.2150.0095.590.074~0.0488.810.2000.01811.18-0.0482.300.2470.0063.73合计100.00 0.161100.00从试验结果可以看出,金属铍主要分布在0.074mm(即200目)以上,但0.074mm以下也有近15%的占比,后期试验要对此部分做相应的处理。 三、试验样磨矿细度与曲线试验试验的目的是:通过细度曲线可以查出该铍矿磨到-200目某一百分含量所需要的磨矿时间,磨矿细度曲线是为磨矿细度试验提供依据的。 磨矿细度测定工艺流程见图,磨矿细度试验结果见表2。磨矿细度测定工艺流程图表2 磨矿细度结果磨矿时间(min)10152025—200目占比(%)5077.59197.7 四、结语(一)工艺矿物学研究小结该铍矿矿物组成较多,大体一致,岩石蚀变现象较为明显,主要为钠长石化、绿泥石化、绢云母化和褐铁矿化等蚀变现象,含铍矿物主要是羟硅铍石,其次少量以吸附等形式存在于磁铁矿和褐铁矿中,再之极少量以吸附形式存在于高岭土、伊利云母、绿泥石等粘土矿物之中,以及极微量的以类质同相形式存在于镧、铈矿物之中。羟硅铍石一是以自形晶半自形晶的形式存在,主要分布于萤石脉之中;二是羟硅铍石被包裹于萤石脉之中,与萤石颗粒常呈线状接触关系。(二)试验结果试验最终采用一粗、四精、三扫,粗精矿再磨(-300目占94%)后精选的工艺流程。其指标为:铍精矿品位3.07%,铍回收率81.60%,铍精矿产率4.55%。(三)铍精矿质量通过对铍精矿的质量分析可知,铍精矿已达到国家标准二级品要求,且铍精矿中所含杂质(F除外),也均附合国家产品质量要求。(四)本次试验样品由XXXX公司负责提供。通过选矿试验,为该铍矿提供了一套经济合理、技术可行的工艺流程。本次试验可以作为选矿厂设计依据。
锗有哪些性质
2019-03-07 11:06:31
锗具有半导体性质。对固体物理和固体电子学的开展有重要效果。锗的熔密度5.32克/厘米3,锗可能性划归稀散金属,锗化学性质安稳,常温下不与空气或水蒸汽效果,但在600~700℃时,很快生成二氧化锗。与、稀硫酸不起效果。浓硫酸在加热时,锗会缓慢溶解。在硝酸、中,锗易溶解。碱溶液与锗的效果很弱,但熔融的碱在空气中,能使锗敏捷溶解。锗与碳不起效果,所以在石墨坩埚中熔化,不会被碳所污染。锗有着杰出的半导体性质,如电子迁移率、空穴迁移率等等。锗的开展仍具有很大的潜力。现代工业生产的锗,首要来自铜、铅、锌冶炼的副产品。
新疆哈密某矿难选金矿石选矿方法试验
2019-02-20 10:04:42
新疆哈密某金矿为热液告知蚀变岩型金矿床。该矿石呈氧化-半氧化,磁铁矿伴生金、铜矿石。工业类型首要为金-铜-磁铁矿型和金-铜-黄铁矿两种。因为矿石中金为超微粒、微粒显微粒金,且首要以包裹状存在于黄铁矿中,其次赋存在石英、碳酸盐、褐铁矿中。前人定论为“难选金矿石”。
一、矿石性质研讨
(一)矿石的物质组成
首要有用成分为金、铜、铁。金档次2.54~4.33g/t;伴生铜最高档次1.39%,一般在0.1%~0.2%。金属矿藏首要有磁铁矿、褐铁矿、赤铁矿,少数及微量的黄铁矿、黄铜矿、铜兰、孔雀石、天然金等。脉石矿藏首要有碳酸盐、绿泥石、绿帘石、石英、高岭石、绢云母、透闪石、钠长石、黄钾铁钒等,微量的有机质、碳等。磁铁矿最高达70%,一般大于10%。其化学成分见表1,其间金、银含量单位为g/t。
表1 原矿化学分析成果(%)(二)金的赋存状况
矿石中天然金以超显微(
0.002mm)状况首要赋存于黄铁矿中,其次赋存在石英、碳酸盐和褐铁矿中。其在黄铁矿中嵌布状况首要有裂隙金、包体金、空穴金等。金的物相分析成果见表2。
表2 金物相分析成果二、选矿办法及流程的挑选
该矿规划较小,地表首要为(半)氧化矿石,有用矿藏首要为磁铁矿、硫化(铁)铜及其氧化物和金。而铁矿石因为量少而利用价值不大,铜的档次偏低又遭到次生氧化不易收回,所以金就成为采选的首要方针元素。依据矿床规划及矿石特征,选用出资少见效快的堆浸化法是较好的挑选。
矿石中的铜、铁硫化矿藏和脉石中很多的酸性物质的存在,对化选金是有害的。选用惯例的化法不只金的浸出率过低,还会耗费很多的药品而不经济。因而,先进行碱、、充氧预处理,消除或削弱有害物质的影响,然后再化浸出金,估计可收到杰出效果。由此选定“碱浸-浸-化”的工艺流程进行实验与研讨。
三、全泥化实验
以全泥化实验为基准线实验,旨在为柱浸供给依据。其流程为﹕碱浸-浸-过滤-(浸渣)化。实验成果见表3。
表3 选金实验成果比照通过比照能够看出﹕
1、在全泥化实验中,只要添加了碱、预浸环节,金的浸出率最高。
2、的耗量与碱、铵盐用量关系密切,因而力求浸液药剂配方最佳至关重要。
3、两次全泥化金浸出率都较高,分别为88.89%、90.11%,能够进行柱浸实验。
(一)柱浸
柱浸实验的成果是进行半工业实验乃至开发的重要依据,本实验分为预浸和化两部分。工艺流程见图1。柱浸实验条件为﹕矿石粒度30~0mm,浓度初始10/万、中期7/万、后期3/万;药剂准则(kg/t)﹕1号柱铵盐6.10、石灰3.70、9.32、2.00,2号柱铵盐8.11、石灰5.2、7.6、1.84,3号柱石灰6.00、10.6、1.40。浸出时刻不含预浸,温度16~20℃。浸出成果见表4。图1 柱浸工艺流程
表4 金浸出率实验比照成果(二)预浸
由反响式4Au+8NaCN+O2+2H2O→4NaAu(CN)2+4NaOH看出,化浸金有必要具有3个基本条件﹕CN-、O2、OH-。即在碱性介质中,从矿石中浸取金并把溶液中的金分离出来,包含氧的吸收溶解、其组分分散到金表面、吸附、电化反响等。其间O2+CN-的分散对金的浸取速率至关重要,而碱则是化进程的保护神,三者缺一不可。该矿石中很多的酸及铜、铁、硫等物质能耗费很多的氧和,大大减缓化速度乃至中止化进程。因而,对其进行碱浸、浸预处理,并供给满足的氧,以消除其影响,为金的化浸出创造条件。
1、碱浸。矿石中很多的酸性物质及硫、硫铁矿藏(如黄铁矿、磁黄铁矿等)在湿润空气中极易激烈氧化生成亚铁盐和酸(如FeSO4、H2SO3、H2SO4等),有必要在矿石化浸出前消除酸性和可溶性金属离子等物质。如亚铁盐FeSO4在碱和氧的效果下可迅速地变为高铁盐Fe2[SO4]3,终究生成氢氧化物Fe[OH]3沉积。用弄清的石灰水和NaOH溶液重复淋浸,直到pH=8~9。
2、浸。首要用于消除铜。化前用溶液与铜离子构成安稳的铜络合物([Cu(NH3)4]2+n),而该络合物易溶解于性溶液,且溶解度很大。如孔雀石和蓝铜矿等碱式碳酸铜矿藏中的铜通过生成络合物溶解于性溶液﹕CuCO3·Cu(OH)2+6NH4OH+(NH4)2CO3=2Cu(NH3)4CO3+8H2O,浸液中要确保满足的浓度以生成安稳的铜合作物、中和浸硫化铜生成的酸等。
1、2号柱用浓度为7/万~8/万的碳铵溶液淋浸,浸液pH=8~9;浸完毕后,矿石用清水洗刷(含铜溶液和洗液积存)后再化。3号柱没有通过预处理。浸阶段,1、2号柱铜浸出率(以液计)分别为20.2%、19.2%,改变不大。由表4看出﹕在相同的条件下,当碳铵用量每吨矿石从6kg增加到8kg时,金的浸出率由79.9%增至80.75%,耗量略有下降。由此可见每吨矿石碳铵用量7kg左右为宜。
3、通风。碱浸和浸都以耗费很多的氧为根底,特别是硫化铜、硫化铁都需氧化硫根才干成为可溶性的铜、铁盐,常用的氧化剂就是空气和氧气。硫(S2-2→S6+)的氧化耗费的氧是铁(Fe2+→Fe3+)的16倍。如黄铜矿与的反响﹕CuFeS2+41/4O2+6NH3+(n+1)H2O→Cu(NH3)2+4+1/2Fe2O3·2nH2O+2NH+4+2SO2-4,其间氧的效果非常显着。通风即充氧作业,贯穿于实验的全进程。停浸时,1、3号柱守时机械通风,2号柱天然通风。成果是2号柱浸出率最高。
(三)化
1、化阶段为惯例办法。
2、浸出速度与浸出率。由表4看出,通过碱、预处理的1、2号柱浸出速度与浸出率均较好,特别是2号柱浸出速度最快,浸出率最高,即10d过高峰期时,浸出率已达61.70%,其浸出周期为35d,终究金浸出率80.75%;而通过碱浸未经预处理的3号柱,浸出10d时,浸出率仅48.13%,其周期为50d,终究金浸出率70.57%,并耗费很多的碱和而不经济。
金浸出率﹕以渣计80.91%;以液计80.75%,银58.54%,铜25%。
(四)工艺条件的断定
依据实验成果,断定其工艺条件﹕
1、矿石粒度为30~0mm。
2、浸出周期为56d(包含预浸21d)。经总结经历,预浸时刻5~7d即可,其间浸2~3d,耗量可大起伏下降。
3、布液方法﹕滴淋,滴淋强度为29.4L/m2h,滴停比﹕1﹕1~1﹕3(滴淋时刻每日控制在6~12h)。
4、药剂准则﹕每吨矿石运用碳铵7kg、1.8~2.0kg。
5、依据实验工艺流程及药剂准则,吨矿石选矿本钱约113.09元。
四、结语
1、针对矿石特征,学习以往的选矿经历,采纳“原矿破碎-预浸(碱浸、浸)-洗刷(铜液和洗液独自存待放收回铜)-化-活性碳吸附”工艺流程,消除或削弱了有害物质的影响,取得了较好的选矿目标。
2、预浸要“短、平、快”,pH值及浓度不宜过高,以防止已浸出的[Cu(NH3)4]2+发生改变的可能及碳铵、碱的过多耗费或糟蹋。
3、若进行半工业实验,筑堆时可增加天然通风设备。一起,应展开进一步的实验与研讨,以求提前应用于出产。
新疆铜镍矿概述
2019-03-14 11:25:47
5月17日音讯:
我国铜矿资源虽居全球10位之内,但不少产地固交通阻塞,矿石档次偏低,近期难以使用,铜矿资源仍然是国内缺少矿种之一。
铜矿是新疆开发使用较早的一个矿种,据考证其前史可追溯到战国时期,如尼勒克县境内的奴拉赛铜矿,在公元前400~600年前已挖掘,其古矿坑深达80余米。从清代到新我国建立前被间歇性挖掘使用的铜矿,有库车县境内的恰克玛克铜矿、乌鲁木齐的达坂城铜矿、木垒的波斯唐铜矿,以及阿克陶县境内的卡拉玛铜矿等。但真实有突破性开展,并获得丰盛找矿效果,仍是80年代中期之后。继80年代初期,新疆地矿局第四地质大队发现了大型规划的喀拉通克铜镍矿床后,80年代巾期,新疆地矿局第六地质大队在哈密区域又发现了大型规划的黄山、黄山东等酮镍矿床,90年代中期,新疆地矿局第四地质大队对阿舍勒大型富铜矿床的发现和查明,以及90年代后期,新疆地矿局榜首地质大队在哈密区域发现的土屋、土屋东和延东大型斑岩铜矿,不只完全完毕了新疆缺铜少镍的前史华章,一起也在必定程度上缓解了国内铜镍资源的严重局势。
很多铜镍矿的发现,推动了新疆矿业开发作业的鼓起.到2000年新疆挖掘铜矿山达21处,镍矿山13处,年产铜矿石量8.10万吨,总产值2 692余万元,镍矿石量约17.3万吨,总产值10402余万元。跟着国家要点矿山阿舍勒铜矿的建成投产,估计全区挖掘量可达130万吨,铜镍矿开发工业定会有更大的开展。
一、散布与规划
新疆境内已知铜镍矿床(点)合计67个,其间储量规划>50万吨的大型铜矿床4处,50一10万吨之间的中型铜矿床7处。10~1万吨的小型铜矿床14处。到2000年止,全区已探明铜储量l 012.65万吨,其间现在正在作业的哈密区域土屋、土屋东和延东铜矿,前景储量为702万吨。其散布以东西天山居首,约占全区铜总储量的81,85%,其次为阿尔泰山区域,约占全区铜总睹量的17.30%,昆仑一阿尔金山区域,由于作业程度偏低,已知铜储量仅占全区总量的0.85%。到2000年末已上储量表的矿产地31处,保有诸量221.9万吨,其间C级以上储量约占38.8%。按行政区排位,占有铜储量前三位者,分别是哈密、阿勒泰和伊梨—博州区域。
镍矿是自治区又一优势矿产资源,现在已知矿床(点)9个.其间镍金属储量>10万吨的大型矿床4处,2~10万吨的中型矿床2处,2~0.2万吨的小型矿床3处。到2000年末,全区已探明镍金属储量114.90万吨,到2000年末已上储量表镍矿产地6处,保育镍金属储量89.4万吨,其间C级以上储量约占16%,此外,在区内几个铬铁矿床中的干余吨伴生镍未核算在内。
新疆的镍矿资源首要会集散布在天山和阿尔泰山区域,其间天山区域镍矿储量约占全区总储量的80%。各行政区占有镍矿资源,以哈密区域居首位,约占78%,阿勒泰区域居次.约占20%,其它区域甚微。
二、矿床成因类型
新疆地处亚欧大陆内地,结构上坐落东半球古生代几大板块的接合部位,各种类型的地质效果极端活泼。结构环境的变迁、替换五光十色,构成许多重要的洲际结构带及成矿带在此集合、扭结,为构成各类成因矿产供给了绝好场所。因而,新疆的铜镍矿成因类型包罗万象,仅仅由于不一起期、地址的某种地质结构效果强弱不同或地质找矿作业程度深浅有别,而表现出区带内不同成矿效果构成的矿产资源多寡各异,有的矿床成固类型是构成新疆境内铜镍矿的重要类型,而有的类型则在新疆铜镍矿的成矿方位中处于极非必须方位,乃至还有的类型到现在没有发现成型矿床。到现在止,新疆境内铜镍矿重要成矿类型,首要是火山岩类型、岩浆熔离类型及近两年有重大突破的斑岩类型。上述三种成因类型的铜矿储量约占新疆铜矿总储量的83%,而堆积类型铜矿储量占新疆铜矿总储量还缺乏1%。后者尽管历年来做了不少作业,但迄今仍未找到一处中型以上矿床。新疆铜镍矿成因类型的详细区分,选用1994年新疆地矿局《新疆维吾尔自治区第二轮成矿前景区划研讨汇总陈述》中的划法,将新疆铜镍矿床成因类型共区分为六个大类和五个亚类。
三、重要矿床
㈠哈巴河县阿舍勒铜矿床
铜矿床从属哈巴河县统辖,坐落县城北偏西约31千米处。地形属低山丘陵区,可通轿车。该矿于1983年发现,1998年提交正式矿床勘探陈述,累计探明B+C+D级铜金属储量91.95万吨,共生锌金属储量40.83万吨,伴生组分金D级金属量21.94吨,银0.129万吨、铅5.56万吨,锌1.15万吨;还有镓376吨,硒1807吨。
矿区的大地结构环境,归于阿尔泰古生代陆缘活动带南部克兰晚古生代弧后盆地,南邻玛尔卡库里深开裂。矿床坐落阔勒德能复向斜的南西翼,区内结构杂乱,褶皱,开裂发育。赋矿地层为中泥盆一致套基性一中酸性海相火山岩缔造。其间英安质含角砾凝灰岩、凝灰岩为首要容矿岩石。与成矿有关的侵入岩首要为华力西中期辉绿玢岩、流纹斑岩、英安斑岩等。
矿区内共圈定出矿化蚀变带15个,多呈不规矩的带状或条带状,其产状多与地层产状相一致。矿化带一般长400—1 000米,最大长度达2 400米.宽度20~400米。围岩蚀变首要以硅化,绢云母化、黄铁矿化为主,其次有绿泥石化、碳酸盐化,部分有高岭土化、绿帘石化、阳起石化等.地表一般有激烈的褐铁矿化、钾矾化及孔雀石化;化探的反常元素为Cu、Pb、Zn、A。、As、Sb、Bi、Hg,Ba、Sn、w、Mo、Mn等。矿体层控性强。I号矿床首要由2个大矿体组成,其间1号矿体长在千米以上,最大垂深900米,一般厚度为1.2~40米,最大厚度达日。米。矿体的初始状况为透镜状,受后期结构效果变形后,在水平断面成为“镰刀状”,横断面呈“吊钩状"。
矿石矿藏成分,共发现金属矿藏30种,脉石矿藏9种。其间首要金属矿藏有黄铁矿、黄铜矿、闪锌矿其次有黝铜矿、方铅矿等。脉石矿藏首要有石英、绢云母;其次为绿泥石、重晶石、方解石、白云石,金红石、棚石等。矿石中硫化矿藏含量首要与矿石结构类型有关,有由块状矿石—条带状、浸染状矿石递减规矩改变特征。矿石结构为他形一半自形微细粒状为主,次为告知状,矿石结构首要为块状、条带状,其次为条带一浸染状、角砾状等。含矿层可分为两个韵律层,下亚层厚度大,自下而上为条带状黄铁矿、中细粒块状黄铁矿、细密块状黄铜黄铁矿、细密块状闪锌黄铜黄铁矿、细密块状多金属矿石。上亚层与之类似,厚度较小,并部分缺失。成矿元素与矿藏成分相应,也作韵律性改变。下亚层自下而上为贫硫夹贫铜一富硫夹贫铜—富铜一富铜富硫—贫锌富铜富硫一贫铅贫银富铜富锌富硫(部分)。伴生有利元素自下而上为金、硒、银—金、银、硒、镉一金、镉、铋、碲、镓,硒。成矿元素散布特色:中段一北段组分多而富,南北两头的矿化贫而简略,横向上倒转翼组分多而富,正常翼则相反。
矿石工业类型以铜锌硫矿石、铅硫矿石和硫铁矿石三个类型为主。矿石中Cu含量0.5~10%,均匀含Cu档次2.43%,Au档次0.14~2.17g八,均匀0.36g八,Ag均匀档次18.38g/tZn均匀晶位2.78%,S均匀32.38%。矿石经铜锌混合浮选后,原矿2.34%铜矿石,其精矿档次可到达22.76%,回收率为92.75%;1.124%的锌矿石,其锌精矿档次可到达50.28%,回收率为76.09%;O.343%z/t的金矿石,其精矿档次可到达L 58g/t,回收率为44.04%;26.4的银矿石,其精矿档次可到达152g/t,回收率为54.97%。证明该矿为可选功能较好矿石,矿床成因类型属火山岩一块状硫化物型矿床。矿床规划主元素铜和伴生金、银均到达大型规划,共
生锌到达中型矿床规划,是现在全疆规划最大的铜一多金属矿床,并已被列为国家要点矿山建井挖掘。
(二)哈密市黄山铜镍矿床
矿区坐落哈密市东南约140千米,地形平整,可通轿车,兰新铁路和312国道从矿区南30~60千米处经过,交通便利。
该矿床于1982年发现,1992年经新疆地矿局检查,同意铜镍矿石C+D级储量为7190.4万吨,镍金属储量32.4万吨,铜金属储量20.83万吨,钴金属储量1.95万吨,伴生银储量220吨,晒410.88吨。
黄山铜镍矿处于觉罗塔格晚古生代岛弧带与哈尔里克岛弧带的接合部,土墩—镜儿泉铜镍成矿带中段。矿区邻近出露地层.首要为中石炭统干墩组一套沿海一浅海相的碎屑岩堆积及海底喷溢相富钠质火山岩缔造。黄山含矿基性一超基性岩体属华力西中期产品,其成岩成矿均受干墩大开裂操控。硫化铜镍矿体多赋存于偏基性的角闪方辉辉橄岩、角闪方辉橄榄岩,角闪方辉辉石岩及纯橄榄岩中。矿区内共有三个基性一超基性岩体出露,其间I号岩体出露规划最大,分异最好,也是黄山铜镍矿的成矿岩体。J号岩体地表形状呈一近东西向的“蝌蚪”状,东西长3.95千米,西部最宽840米。向东逐突变窄,东端仅有55米,岩体出露面积1.39平方千米。
岩体西部最深l 500米没有见基底,向东逐突变浅。岩体倾向较陡,整体呈岩墙或漏斗状产出, 其纵向与横向形状改变。
矿区共圈出巨细矿体73个,均呈隐伏状产出,矿体的产出形状,可分为四种.其间深熔—贯入型矿体是本区的首要成矿类型,构成的矿体埋深较大,一般均在500米以下,矿体以贫矿为主,部分地段构成富矿。区内最大的30号矿体和31号矿体均属此类型。30号旷体储量约占全矿总储量的76%,形状为较规矩的似层状、透镜状,矿体东西长700米,均匀厚度51.57米、最大埋深1 253米。矿体均匀档次:Cu 0.31%,Ni 0.48%,Co 0.029%。31号矿体坐落30号矿体上盘,是区内仅次于30号矿体的另一大矿体,其睹量约占全区总储量的12.5%,矿体呈向北歪斜的单斜似层状,延深466~513米,最大延深达996米均匀厚度18.29米,矿体均匀档次:Ni 0.48%,Cu 0.29%,Co 0.034%。第二种类型为就地熔离型矿体,一般单个较小,档次也不高.共由27个矿体构成,其间最大的44号矿体长150米,均匀厚6,98米,由贫矿组成,均匀档次:Nl 0.35%,Cu 0.24%,CO 0.026%。第三种类型为熔离改造型矿体和后期热液效果叠加一向入型矿体,一般单个都不大,其形状多受结构操控。单个地段受后期改造效果,有档次变富或黄铜矿增多趋势的矿体,归于第四种类型。
矿石结构多为半自形一他形结构、包括结构、海绵陨铁结构、斑状结构、告知结构及碎裂、糜棱结构等。矿石结构有星散一稠密浸染状结构、珠滴状结构和条带浸染状、块状结构等。矿石矿藏组成:金属矿藏以磁铁矿、镍黄铁矿和黄铜矿为主,非必须矿藏有紫硫镍矿、四方硫铁矿黄铁矿、白铁矿,闪锌矿、针·镍矿、黑铜矿、方硫镍矿和方黄铜矿等,表生矿藏有孔雀石、镍华、黄钾铁钒、褐铁矿、石膏等。矿石化学组分:均匀值Ni o48%,Cu O.31%.Co 0.029%,Ag0.87%一20.59g八,Se 0.3z/t一26g八,Au、Te、h族元素含量均较低。有害组分F 43g/t~313g/t,0.36%~14.68%,As
矿石经选矿实验处理后,精矿回收率铜为72.2%,镍为71.05%,属可选性矿石。矿床为岩浆熔离型成因的大型镍中型铜矿床。曾对浅部富矿有过小规划挖掘。
(三)哈密黄山东铜镍矿床
矿区坐落哈密市东南约140千米,地形屑低山区,可通行轿车。该矿于1979年发现,经地矿部检查同意C+D级铜金属储量17.54万吨,镍金属储量36.417吨。
黄山东铜镍矿床处于觉罗塔格晚古生代岛弧带与哈尔里克岛弧带的接合部位。在干洞大开裂的派生黄山开裂东部北侧,近东西向的黄山开裂是操控黄山东成矿岩体的首要开裂结构。出露地层首要为下石炭统干墩组一套粉砂岩、砂岩、石灰岩、板岩、沉凝灰岩等。侵入岩为华力西晚期的橄榄岩、角闪辉长橄榄岩、苏长岩、辉石岩、闪长岩等。含矿黄山东基性一超基性杂岩体.在地表呈一近东西向的菱形体产出.与地层为不整合触摸。岩体最大延伸长5250米,中部最宽为l 190米,总面积2.8平方千米。
铜镍共生矿体呈似层状或透镜状赋存于杂岩体的底部,工业矿体首要产出在超基性岩及辉长苏长岩中,其间产于超基性岩中下部者有15号、16号矿体,其规划大,厚度安稳,矿体与围岩界限不甚清楚,由浸染状,星点状矿石组成,产于超基性岩底部与基性岩触摸带的矿体有1、17、20号矿体等,矿体规划大,但在产状改变部位厚度亦大,底部往往有熔离准细密块状矿体,一般多为浸染状贫矿;产于Ⅳ号超基性岩体的有11一“号矿体,其形状产出受岩体形状限制,常见分枝复合现象,规划较小,多为浸染状贫矿,部分可见到贯入的角砾状富矿,
含矿母岩蚀变激烈;产于辉长苏长岩中的矿体有3—10号矿体,从浅到深顺次斜列产出,矿体与围岩界限不清,以浸染状贫矿为主,有自上而下变富趋势,部分因热液叠加效果而成富矿。矿体围岩蚀变有蛇纹石化、钠黝帘石化、绿泥石化、滑石化、碳酸盐化等。全区已知巨细矿体50个,其间大型矿体3个,中型矿体6个。首要矿体长200~2 500米,原多为8—9米,矿体埋深15—903米,大都在300—500米间。
矿石结构有自形一半自形晶结构,他形晶结构、海绵陨铁结构、乳滴状、压碎状等结构。矿石结构有浸染状、条带状、团块状,斑杂状、脉状等。矿石矿藏成分:金属硫化物首要有磁黄铁
矿床为岩浆熔离成因的大型镍矿、中型铜矿床。该矿床除铜镍矿外,还核算有D级伴生元素钴金属储量l77万吨,金金属储量1.91吨,银金属储量189.71吨。浅部富矿曾有过小规划挖掘。
(四)富蕴县索尔库都克铜矿床
矿区坐落富蕴县城南约85千米的沙垄中,可通轿车。
该矿于1984年发现,1990年提交地质陈述,经新疆地矿局检查,同意陈述中所核算的D+E级金属储量31.58万吨。
索尔库都克所在大地结构环境为萨吾尔一二台一淖毛湖晚古生代弧后盆地,乌伦古大开裂北侧,索尔库都克背斜南翼。区内开裂结构发育。出露地层为中泥盆统北塔山组一套中基性火山岩夹火山碎屑岩缔造,榜首亚组首要为凝灰岩、角砾凝灰岩、凝灰质岩屑砂岩、英安岩、石泡流纹岩、角砾凝灰岩、火山角砾岩等;第二亚组由玄武岩、辉石安山岩、玄武玢岩、英安斑岩、流纹岩、凝灰岩、火山角砾岩、熔结凝灰岩、凝灰砂岩等组成;第三亚组以生物碎屑灰岩、凝灰岩为主,有少量细砂岩、巾砂岩、泥质硅质岩、粉砂硅质岩等,矿层赋有于第二亚组中。区内侵入岩较发育,以肉赤色碱长花岗岩过渡相的花岗斑岩为主,其次有英安岩、霏细岩。矿体的直接围岩是石榴石矽卡岩和柘榴石绿帘石矽卡岩。
该矿床共圈定出铜矿体40个,钼矿体21个。矿体形状多为似层状,扁豆状或脉状。整个矿化带长约2 550米.宽约900米,其展布方向与地层产状大体一致,歪斜较缓。单个矿体,大着长约干余米,厚几十米;小矿体长几十米,厚1~2米,铜钼共生。大部分矿体均隐伏于地下。矿床中首要大矿体有2个,最大的5号矿体坐落矿区中部,呈似层状产出,全长1000米,最大厚度64.43米,子均厚度17.46米.操控斜深873米。矿体的氧化深度为15米,氧化矿石均匀含铜档次0.84%;原生硫化矿石含铜均匀为0.7%,钼均匀为0.043%(最高为0.289%)。4号矿体长880米,最大厚度23.69米,干均厚度为11.05米,最大斜深525米,地表氧化深度约15米,氧化矿石铜晶位0.85%,原生硫化矿石含铜均匀晶位0.69%。索尔库都克铜矿床矿体首要由原生硫化物石和少量氧化矿石组成。硫化物矿石大致可分为黄铜矿石,辉钼矿一黄铜矿矿石和辉钼矿矿石组成。矿石以他形微粒结构和稀少浸染状结构为主。矿石天然类型可分为三类:稀少浸染状黄铜矿石;稀少浸染状辉钼矿一黄铜矿石;稀少浸染状辉钼矿石。矿石的工业类型分为硫化物矿石和氧化物矿·石两大类。硫化物矿石又可分为以下三种不同矿石:
①浸染状铜矿石,均匀含铜档次为0.64%,单个高者到3%以上,此类型遍及含有少量钼和银,以及微量金,一般含钼档次为0.01%上下;银9.82八,最高13g/I;金0.1gg八,均可综合使用。
②浸染状铜钼矿石,铜均匀含量0.7%,最高1%;钼均匀O.043%,最高O.289%;银均匀7.1S/t,最高档次为8.52八。
③浸染状钼矿石,钼均匀档次为0.078%,最高为0.22%;铜多在0.2%以下。氧化矿石类又可分为氧化铜矿石和氧化铜钼矿石2种,氧化铜矿石含铜档次为0.85%;氧化铜钼矿石的铜、钼档次分别是0.7%和0.05%。
矿石矿藏组成,首要有黄铜矿、黄铁矿;其次有磁黄铁矿、闪锌矿、方铅矿、辉钼矿、磁铁矿、白铁矿、褐铁矿;此外还有少量碲银矿、天然金、银金矿、孔雀石、蓝铜矿等。脉石矿藏有拓榴子石、绿帘石、高岭土、次闪石、斜长石、黑云母、石英、透辉石、阳起石等。
矿石经开始可选性实验证明,原矿含铜档次0.56%,钼档次0.038%的矿石,采纳铜钼混合浮选处理后,可获得铜档次20.49%,钼档次44.44%的精矿粉,回收率分别是日6.03%和33.87%。
矿床成因属火山岩一热液型矿床。该矿除铜矿规划到达中型矿床外,还核算了共生元素钼金属储量2.01万吨,也已到达小型矿床规划。
(五)尼勒克县群吉铜矿床
矿区坐落尼勒克县城南约lo千米,可通行轿车。该矿从50年代到80年代,由新疆有色地勘局704队作业并提交了C-kD级铜金属储量17.54万吨。
矿床所在大地结构方位为阿吾拉勒晚古生代弧后盆地的西段。出露地层下二叠统塔尔得套组,为陆相双模式火山岩系,由钾质流纹斑岩、玄武玢岩及凝灰质砂岩夹层组成。矿区内侵入岩为华力西晚期浅成、次火山岩成因的次石英钠长斑岩、辉绿玢岩、闪长岩、钠质花岗岩等小停入休-次石革钠长研岩及辉绿Z>岩与成矿关系亲近,全岩遍及铜矿化,但档次不均匀,仅部分能够构成工业矿体。围岩蚀变较弱,有硅化,钠化、绢云母绿泥石化及碳酸盐化,分带不明显。矿床由四个邻近的含矿岩体组成。
新群吉矿体为次石英钠长斑岩全岩化矿体。散布面积0.02平方千米,均匀含铜档次为0.98%,含银l一500g八,均匀176.2s八。合核算铜金属储量8.82万吨。
托斯巴萨依1号矿体产于石英钠长斑岩中,岩体长260米,宽90米。矿体长230米,宽80米,矿化较均匀,铜含量o.2%一1.79%,均匀档次0.86%,核算铜金属储量7.12万吨。群吉南矿体坐落辉绿玢岩体内,岩体长400米,宽5~20米。矿化均匀.全岩矿化,铜含量0.06%~1%,均匀晶位0.3%,银1s八一10g八,此外还含有Pb、Zn、Co、Ga。合核算铜金属储量1.04万吨。
北群吉矿体坐落全岩矿化的石英钠长斑岩体中,岩体中铜矿化呈发丝状,共圈出5个矿体。I号矿体长70米,宽5米,均匀含铜档次0.87%;Ⅱ号矿体长130米,宽5米,均匀含铜档次2.24%;n号矿体长90米,宽10米,均匀含铜档次1.47%,N号矿体长35米,宽10米,均匀含铜晶位1.3%IV号矿体长35米,宽15米,均匀含铜档次0.74%。合核算铜金属储量0.5万吨。
托斯巴萨依2号矿体群散布于凝灰质砂岩、碳质页岩中。矿石矿藏以孔雀石为主。Ⅰ号矿体长70米,宽0.4~20米sn号矿体长30米,宽0.5—1.5米;n号矿体长10米.宽1.5米该矿体群含铜晶位一般为2%~3%,最高达6.71%,此外遍及含有Pb、Zn、Mo、Ag等。矿石结构为细脉浸脉状,星点漫染状及薄膜状。矿石矿藏成分,首要有辉铜矿、铜蓝、蓝铜矿、天然铜和孔雀石,伴生矿藏有磁铁矿、赤铁矿、褐铁矿、方铅矿、白铅矿、天然铅及闪锌矿等。群吉矿床成因类型属斑岩型铜矿,矿床规划为中型。该矿床除核算有铜储量外,还在新群吉岩体核算有银金属储量1586吨。
(六)博乐县喇嘛苏铜矿床
铜矿坐落赛里木湖西北端,博乐县城西南约90千米处。矿区海提高2 200~2 900米,地形陡峻,矿区距312国道仅40千米,有简易公路相连。
该矿床于1985年发现,1996年开始核算D+E级铜储量11.5万吨。
喇嘛苏铜矿处于一东西向向斜结构南翼,喇嘛苏南推覆开裂带上盘。区内开裂结构为发育,北西向右旋平移开裂带及矿区南北向开裂与东西向耐性剪切带交汇的格架,操控了首要侵入体、矽卡岩以及角岩化的岩体展布。矿区内出露地层首要有蓟县系库西木契克群下亚群的一套碎屑一碳酸岩缔造。区内里酸性浅成岩体极为发育,计70余个,其岩石类型有斜长花岗斑岩、花岗闪长斑岩、花岗斑岩、闪长玢岩、辉绿岩等,并曾经两类为主。与成矿关系亲近的斑岩体的锆石铀一铅法同位素地质年纪值为360Ma,属华力西前期产品。
区内铜矿体.首要产于库西木契克群下亚群的碳酸盐岩与华力西期花岗斑岩触摸带的矽岩中。少量矿体产于斑岩体或碳酸盐岩中。区内围岩蚀变除遍及发育的角岩化、矽卡岩化外,还有与成矿较为亲近的类斑岩型蚀变,其蚀变矿藏类型组合表现为钾长石化、黑云母化一钾忙石化、石英化一方线石一钾长石化。
矿床共由90余个矿体组成。单个矿体长度一般小于200米,宽度大都小于10米.各矿体均由数条小矿条构成,小矿体长度大都小于100米,并以56~88米者居多,宽度1—16米,其间宽度的4.8~6.6米者居多。矿体呈脉状、透镜体或巢状产出。矿体产状受触摸带或开裂、片理操控较严厉。以中贫矿石为主.含铜档次大都均匀在0.3%~0.7%之间,仅部分地段含铜档次〉1%,最高档次为3.68%。此外,部分地段含锌高达12.2%,一般均匀为1.02%。矿体中MO含量偏低,大都在0.009%以下。
矿石矿藏组成,金属矿藏有20余种,首要有磁黄铁矿、黄铜矿、黄铁矿、闪锌矿、辉钼矿、方铅矿等,次生矿藏有孔雀石、褐铁矿等。首要脉石矿藏有透辉石、钙铁柘榴石、符山石、石英、方解石、绿泥石、透闪石、斜长石等。矿石多呈半自形晶或他形粒状结合体,并以浸染状、细脉状、团块状结构为主。
矿床成因类型,历年有斑岩型、矽卡岩型、斑岩一矽卡岩一热液三位一体型,堆积一热液改造型、斑岩一矽卡岩型以及触摸告知型等不胜枚举。咱们暂将其归入后者之列。矿床属中型规划。
(七)吐鲁番市小热泉于铜矿床
矿区坐落吐鲁番市东南约80千米,地处低山丘陵区,可通行轿车。
小热泉子铜矿是1993年发现,1997年提交铜金属储量C+D+E级14.15万吨。
铜矿地处两板块对接带邻近的古生代岛弧带中。区内褶皱结构整体表现为一北西一南东向展布的倒转短轴背斜。出露地层首要为下石炭统小热泉子组和洛布厄组;中石炭统底格尔组和下二叠统恰特卡尔组。铜矿床赋存于小热泉子组榜首岩性段堆积火山碎屑岩系中.首要岩性有凝灰岩、绿泥石岩、凝灰质细砂岩、凝灰质粉砂岩、沉凝灰岩等。矿区内岩浆活动激烈,并以石炭纪早一中期各种斑岩、花岗岩和辉长岩为主。矿床围岩蚀变有褐铁矿化、赭石化、黄钾铁矾化、孔雀石化、硅化、钠民石化,碳酸盐化、绿泥石化、萤石化等。小热泉子铜矿区内共由5个矿段组成,其间只要I、Ⅱ号矿段可构成独立工业矿床。 I号矿床坐落矿区中部,规划最大,储量占全矿总储量的75%,矿化规划东西长800米,南北宽350米,共圈定出巨细铜矿体44个,锌矿体10个,金矿体7个。矿体多呈似层状、不规矩状、脉状、透镜状、团块状等。规划最大的3号矿体地表长75米.最大厚度41.93米,最小厚度1米。均匀厚13.99米,操控最大斜深450米,氧化带深42.27米,氧化矿含铜最高晶位24.4%,均匀2.38%;硫化矿铜档次最高为13.04%.均匀晶位1.22%,整体均匀铜档次1.51%。锌矿均为产出在铜矿体之上的盲矿体,储量大干1万吨的矿体有2个,最大的2号矿体长320米,最大延深210米,最大厚度15.10米,最小厚度L 2米;均匀厚度为8.44米,锌均匀档次为3.52%,最高含锌档次21.36%,其储量约占全矿锌总储量的32%。
已知的7个金矿体中,有3个为地表氧化矿体,呈脉状产出,其他4个为深部原生矿,呈层状或似层状产出。最大的4号金矿体为原生矿,形状呈不规矩的多边形产出,矿体长130米,延深大于160米,千均厚度4.42米,均匀含金档次2.12g八,单样最高档次为4.84g八。
矿石结构以他形粒晶结构为主,其次有碎屑结构,乳滴状结构等。矿石结构为浸染状、块状、脉状、条带状和斑杂状等。矿石工业类型可分为铜矿石、铜锌矿石、锌矿石、金铜矿石、金矿石五类。天然类型为氧化矿石、混合矿石和原生矿石三类。按矿石矿藏组合结构又可分为浸染状黄铁矿一黄铜矿石;块状黄铁矿一黄铜矿石;细脉一网脉;伏黄铁矿一黄铜矿石;稠密浸染状黄铜矿一闪锌矿石;块状胆矾石矿;脉状孔雀石、氯铜矿六种矿石类型。矿石矿藏组成,首要有黄铜矿、黄铁矿、铜蓝、褐铁矿,闪锌矿、氯铜矿、孔雀石、胆矾,黄钾铁钒、辉铜矿等10余种矿藏。脉石矿藏有石英、绿泥石、方解石、绢云母等。矿石化学组分,I号矿床.Cu均匀档次为1.51%,铜矿石的首要伴生组分均匀含量为:Zn 0.38%,Au 0.109g八,Ag 5.52g/t,Pb0.009%,Se 0.004%,Ga 0.002%,S 1.56%;有害组分F为0.17%。
矿床成因类型为火山岩堆积一热液改造型矿床,矿床规划为中型,现已建成年电解1000吨的铜冶炼厂进行挖掘冶炼,年采矿石2.5万吨。该矿除铜矿外,还核算了D+E级锌金属储量14.24万吨,E级金金属267千克,银金属24.6吨,镓194吨,硒467吨。
2001年4月,新疆地质查询院对该矿床储量进行了从头核算,合核算C+D+E级铜金属量19.46万吨,伴生锌含量D+E级储量8.86万吨,E级金金属储量476.55千克,银金属储量18.57吨,以及镓440.5吨,硒146.9吨。其储量均比1997年原陈述有较大起伏添加,但因本志完稿时,上述储量没有审阅同意,故暂未引证。
四、成矿带的散布及其基本特征
成矿带的区分,是依据地质结构布景和成矿环境发育有不同成矿效果这一客观规矩而区分。一个成矿带不只反映了必定成矿规划,也反映出一个以某种矿床成由于主,兼容有另一种或几种非必须成因类型所特有的成矿区带。新疆幅员广大,成矿环境各异,1994年新疆地矿局在《新疆维吾尔自治区第二轮成矿区划研讨汇总陈述》中,将全区共区分出40个铜镍成矿带,现仅对其间19个要点矿带列表记叙。
对40个成矿特征各异的矿带进行分析概括后,能够将铜镍矿的成矿结构环境简化为以下三条规矩,也可视为新疆不同成因类型铜镍矿的找矿方向:
1.新疆境内的三大山系,是区内地质结构最活泼的地带,尤其是晚古生代时期,岩浆岩火山岩极为发育。在三大山系的地质揉捏结构带上,广布着与岩浆活动有关的14个斑岩型、触摸告知型和岩浆热液型为特征的成矿带;而在拉张结构环境区,则散布着与火山活动有关的18个火山岩型铜矿成由于主的成矿带。以上两大系列成矿效果的成矿带内;已操控铜储量908.66万吨,占全疆铜总储量的日9.7%,在新疆铜镍成矿方位十分重要。
2.在山系与盆地(地块)接合部的碰合带或超岩石圈深大开裂带邻近,往往散布着深成的基性一超基性岩体,正是区内铜镍矿重要成矿类型散布区,现在已知的4个岩浆熔离型铜镍成矿带均散布于上述环境中,已发现的9个成型铜镍矿床(点)镍储量占全区镍总量的100%,铜储量也占全疆铜总储量的9.8%,是全国罕见的铜镍成矿前景区。
3.堆积型铜矿成矿带,在塔里木盆地边际的拗陷小盆地中划出三个带,探明稀有万吨储量。根据新疆中新生代河湖替换相不发育,结构活动激烈,难以构成大型堆积型铜矿床,此类型不是往后的找矿方向。(Jue)修改
锗的基本知识
2019-03-12 11:03:26
锗为银灰色金属,密度5.35克,熔点937.4℃,沸点2830℃。室温下,晶态锗性脆,可塑性很小。锗的化学性质安稳,常温下锗在空气中不被氧化,但在加热时,锗能在氧气、和蒸气中焚烧。锗不与水效果,不溶于和稀硫酸,硝酸和热的浓硫酸能将金属锗氧化为二氧化锗,锗还溶于。锗易溶于熔融的或,生成锗酸钠或锗酸钾。在过氧化氢、次等氧化剂存鄙人,锗能溶解在碱性溶液中,生成锗酸盐。锗具有半导体性质,在高纯锗中掺入三价元素(如铟、镓、硼)、得到P型锗半导体;掺入五价元素(如锑、砷、磷),得到N型锗半导体。 锗一般以涣散状况存在于其他矿藏中,独立的矿藏很少。可从含锗的氧化铅锌矿、闪锌矿和煤灰中收回锗。锗的提取办法是首先将锗的富集物用浓氯化,制取,再用溶剂萃取法除掉首要的杂质砷,然后经石英塔两次精馏提纯,再经高纯洗刷,可得到高纯,用高纯水使水解,得到高纯二氧化锗。一些杂质会进入水解母液,所以水解进程也是提纯进程。纯二氧化锗经烘干煅烧,在复原炉的石英管内用于650-680℃复原得到金属锗。 锗在电子工业中的用处已逐步被硅替代。但因为锗的电子和空穴迁移率较硅高,在高速开关电路方面,锗比硅的功用好。锗首要用来出产低功率半导体二极管三极管,锗在红外器材、γ辐射探测器方面有着新的用处,金属锗能让2-15微米的红外线经过,又和玻璃相同易被抛光,能有效地抵抗大气的腐蚀,可用以制作红外窗口、三棱镜和红外光学透镜材料。锗还与铌构成化合物,用作超导材料。用氧化锗制作的玻璃有较高的折射率和色散功用,可用于广角照像镜头和显微镜。 镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。 稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。 稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。 我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。
从四氯化锗水解母液中回收锗
2019-02-11 14:05:44
高纯二氧化锗(GeO2)是将高纯(GeCl4)参加去离子水分化而成的。经过过滤使固体GeO2与水解液别离,水解液中的锗含量一般为2~4g/L。现在,一般选用直接往水解液中加氯盐法或参加等质量的进行蒸馏的办法收回其间的锗,锗以GeCl4的方式得到收回。驰宏公司选用第二种办法收回水解液中的锗,需耗费30%的工业约110t/a,发生H+浓度为6.5mol/L的蒸馏残液约200m3/a,环保处理时困难比较大。本研讨就是为了寻觅一个成本低和残液发生量较少的环境友好型锗收回新工艺。
一、试验部分
(一)质料
试验所用水解液是从高纯GeCl4水解生成GeO2后的水解上清液,为淡黄色的酸性溶液,悬浮有少数白色漂浮物,其化学组成见表1。此外,试验所用试剂MgCl2·6H2O,MgSO4·7H2O,MgO均为分析纯(广东省汕头市达濠精密化学品有限公司出产);NaOH,NH3·H2O为分析纯(上海化学试剂有限公司出产)。
表1 水解液首要化学组成水解母液c(H+)/(mol·L-1)ρ(Ge)/(g·L-1)1#4.513.402#4.822.753#5.032.12
(二)试验原理
高纯GeCl4水解成高纯GeO2的化学反应式为:
GeCl4+2H2O=GeO2+4HCl
或:GeCl4+(x+2)H2O=GeO2·xH2O+4HCl
水解生成的GeO2具有必定的溶解度(0.004mol/L),是一种可溶性的结晶氧化物。
向水解液中参加与氯化镁,首要生成溶于水的锗酸钠,后生成不溶性的锗酸镁,此进程的化学反应式为:
GeO2+2NaOH=Na2GeO3+H2O
Na2GeO3+MgCl2=MgGeO3↓+2NaCl
过滤枯燥后将锗酸镁与按1∶6(质量比)参加到蒸馏釜中一起蒸馏,运用GeCl4沸点低(83.1℃)的性质,锗便以GeCl4的方式得到收回,此进程的化学反应式为:
MgGeO3+6HCl=MgCl2+GeCl4+3H2O
(三)试验办法
试验在室温下(25℃)进行,锗收回首要包含以下几步(图1):图1 从水解母液中收回锗的工艺流程
(因故图件不清,需求者可来电免费讨取)
过程1:选用NaOH与NH3·H2O调理水解液的pH值为7.0~8.0,参加MgCl2、MgSO4和MgO作为沉积剂,使锗生成不溶于水的锗酸镁(MgGeO3)。
过程2:将过程1所得溶液过滤,得到含锗滤饼。
过程3:将含锗滤饼进行枯燥,能够削减滤饼40%~60%的含水量,以便蒸馏。
过程4:将枯燥脱水后的滤饼与一起蒸馏,在大约70~100℃使锗以GeCl4的方式蒸发,用分析纯吸收蒸馏出来的GeCl4。
二、成果与评论
试验发现,选用NaOH或NH3·H2O来调理水解液的pH值,对锗收回率几乎没有影响。运用NH3·H2O调理水解液的pH值时,会有必定量的NH3冒出,因而从往后的工业使用考虑,试验选用NaOH来调理水解液的pH值。
(一)Mg/Ge摩尔比对锗收回率的影响
试验中选用MgCl2作为沉积剂,沉积时刻为24h,Mg/Ge摩尔比对锗收回率的影响见表2。由表2能够看到随Mg/Ge摩尔比的添加,锗的收回率也是不断添加的。含锗量高的水解液,锗的收回率也比较高,但锗沉积后的上清液中含锗量根本一起。当Mg/Ge摩尔比到达1.5时,锗的收回率比较抱负,持续添加Mg/Ge摩尔比对锗收回率的影响不是十分显着。因而,将Mg/Ge摩尔比确定为1.5。
表2 不同Mg/Ge摩尔比条件下的锗收回率/%水解母液n(Mg)/n(Ge)00.511.522.51#65.392.495.998.599.199.12#57.190.594.998.298.898.93#41.687.193.197.598.598.5
(二)不同镁化合物对锗收回率的影响
试验中选用MgCl2、MgSO4或MgO作为沉积剂,Mg/Ge摩尔比为1.5,沉积时刻24h,锗收回率见表3。由表3可知,MgCl2与MgSO4作为沉积剂,锗的收回率都比较抱负,而MgO的沉积作用不抱负,这可能是因为MgCl2与MgSO4在水溶液中都能够电离出Mg2+,而MgO则不能。
表3 不同镁化合物对锗收回率的影响镁化合物收回率/%MgCl298.3MgSO498.2MgO85.3
(三)氯化铵对锗收回率的影响
据有的材料介绍,溶液中若有NH4+存在时,水解液中的锗更简单沉积分出。试验中选用MgCl2作为沉积剂,沉积时刻为24h,参加不同量的NH4Cl,锗收回率见表4。由表4成果能够看到,NH4Cl的参加量对锗收回率几乎没有影响。
表4 氯化铵对锗收回率的影响n(NH4Cl)/n(Ge)收回率/%098.20.598.5197.81.597.1296.82.595.6
(四)沉积时刻对锗收回率的影响
试验中选用MgCl2作为沉积剂,Mg/Ge摩尔比为1.5,沉积时刻对锗收回率的影响见表5。试验发现,参加MgCl2后,能够在4h内根本完成沉积。
表5 沉积时刻对锗收回率的影响沉积时刻/h收回率/%292.5498.11298.0
(五)蒸馏法收回锗沉积中的锗
将枯燥后的锗沉积滤饼均匀混合后,锗的档次测定为31.55%。试验时每次称取1000g锗沉积滤饼,参加6000g工业一起蒸馏,锗以GeCl4的方式得到收回。依据公司多年的出产经历,1kg的锗能够出产GeCl4为1576mL,蒸馏工艺锗的收回率见表6。
表6 蒸馏工艺锗的收回率水解母液GeCl4理论产值/mLGeCl4实践产值/mL收回率/%1#497.2491.598.852#497.2489.598.453#497.2488.598.25均匀497.2489.598.52
三、结语
本研讨获得了一种新的从水解母液中收回锗的工艺,此工艺首要包含用NaOH或调理水解液的pH值,参加镁化合物生成锗酸镁沉积,过滤得到锗沉积并烘干,再用传统的蒸馏工艺收回锗。选用此工艺能够使锗的收回率到达98%以上,最佳试验条件为:选用NaOH来调理水解液的pH值至7~8,MgCl2或MgSO4作为沉积剂,Mg/Ge(摩尔比)为1.5∶1,沉积时刻为4h。
驰宏公司水解母液的发生量为110m3/a,含锗均匀为3g/L,选用此工艺发生档次为31.55%的锗沉积约为1046kg,需求30%的工业约6.5t/a,选用新工艺比选用旧收回工艺每年可节省工业100t左右,而锗总的收回率根本一起。
锗的主要回收工艺
2019-02-26 16:24:38
归纳收回锗的办法许多,常用的是氯化蒸馏的经典办法。该法是使原猜中的锗转入硫酸溶液,参加单宁得单宁锗沉积物,经氧化焙烧脱砷及脱有害物后,在83~100℃下氯化蒸馏得GeCl4。在氯化蒸馏过程中发作如下反响: GeCl4经水解得纯GeO2,过程中发作下列反响: GeO2通复原得到约具有10~20Ω·cm电阻率的金属锗,其反响为: 除此之外,锗的收回办法还有以下几种:
(1)优先蒸发法收回锗 先把质料制团,经复原蒸发硫化锗,蒸发锗率达90%~98%;然后将尘按经典法提锗,锗的收回率听说高达90%。在我国,曾实验用此法从含0.006%~0.008%Ge的锌精矿中提锗,通过两次复原蒸发,所得硫化物尘再用经典法提锗,锗收回率达75%~80%。
(2)硫酸化-载体沉积法收回锗 此法处理含0.022%锗的扎伊尔锗矿,经浮选得含锗0.13%的铜精矿,经铜冶炼得含0.36%Ge的烟尘,经硫酸化使锗转入硫酸系统,净化后用MgO作载体沉积出溶液中的锗,然后按经典法提锗。比利时的巴伦厂选用此法出产,锗的收回率达75%。
(3)碱土金属氯化蒸馏法收回锗。
(4)烟化法收回锗。
(5)氧化复原焙烧收回锗。
(6)再次蒸发收回锗。
(7)萃取法收回锗 近年来,国内外溶剂萃取锗的研讨工作进展较大,在系统中可用火油、CCl4、MIBK、Lix63及二等萃取锗;在硫酸系统中可用TOA、P204+YWl00、Lix63及Kelexl00等萃取锗,此法可根据具体情况进行出产。
(8)鼓风炉蒸发法收回锗。
锗的性质、应用范围及回收锗的八大工艺
2019-03-07 10:03:00
中文名称:锗 英文名称:germanium 界说:原子序数为32,属元素周期表中第ⅣA族元素,元素符号为Ge,是重要的半导体材料。 锗(旧译作鈤)是一种化学元素。锗的物质形状是一种灰白色的类金属。锗的性质与锡相似。锗最常用在半导体之中,用来制作晶体管。1886年,德国的文克勒在分析硫银锗矿时,发现了锗的存在;后由硫化锗与氢共热,制出了锗。 高纯度的锗是半导体材料。从高纯度的氧化锗复原,再经熔炼可提取而得。掺有微量特定杂质的锗单晶,可用于制各种晶体管、整流器及其他器材。锗的化合物用于制作荧光板及各种高折光率的玻璃。 锗单晶可作晶体管,是第一代晶体管材料。 锗材用于辐射探测器及热电材料。 高纯锗单晶具有高的折射系数,对红外线通明,不透过可见光和紫外线,可作专透红外光的锗窗、棱镜或透镜。 锗和铌的化合物是超导材料。二氧化锗是聚合反响的催化剂,含二氧化锗的玻璃有较高的折射率和色散功能,可作广角照相机和显微镜镜头,三仍是新式光纤材料添加剂。 锗,具有半导体性质。对固体物理学和固体电子学的开展起过重要效果。锗的熔密度5.32克/厘米3,为银灰色脆性金属。锗可能性划归稀散金属,锗化学性质安稳,常温下不与空气或水蒸汽效果,但在600~700℃时,很快生成二氧化锗。与、稀硫酸不起效果。浓硫酸在加热时,锗会缓慢溶解。在硝酸、中,锗易溶解。碱溶液与锗的效果很弱,但熔融的碱在空气中,能使锗敏捷溶解。锗与碳不起效果,所以在石墨坩埚中熔化,不会被碳所污染。 锗有着杰出的半导体性质,如电子迁移率、空穴迁移率等等。 锗的开展仍具有很大的潜力。
现代工业出产的锗,首要来自铜、铅、锌冶炼的副产品。 怎么收回锗? 归纳收回锗的办法许多,常用的是氯化蒸馏的经典办法。该法是使原猜中的锗转入硫酸溶液,参加单宁得单宁锗沉积物,经氧化焙烧脱砷及脱有害物后,在83~100℃下氯化蒸馏得GeCl4。在氯化蒸馏过程中发作如下反响: GeO3+4HCl=GeCl4+2H2O GeCl4经水解得纯GeO2,过程中发作下列反响: GeCl4+2H2O=GeO2+4HCl GeO2通复原得到约具有10~20Ω·cm电阻率的金属锗,其反响为: GeO2+2H2=Ge+2H2O (1)优先蒸发法收回锗 先把质料制团,经复原蒸发硫化锗,蒸发锗率达90%~98%;然后将尘按经典法提锗,锗的收回率听说高达90%。在我国,曾实验用此法从含 0.006%~0.008%Ge的锌精矿中提锗,通过两次复原蒸发,所得硫化物尘再用经典法提锗,锗收回率达75%~80%。 (2)硫酸化-载体沉积法收回锗 此法处理含0.022%锗的扎伊尔锗矿,经浮选得含锗0.13%的铜精矿,经铜冶炼得含0.36%Ge的烟尘,经硫酸化使锗转入硫酸系统,净化后用MgO 作载体沉积出溶液中的锗,然后按经典法提锗。比利时的巴伦厂选用此法出产,锗的收回率达75%。 (3)碱土金属氯化蒸馏法收回锗。 (4)烟化法收回锗。 (5)氧化复原焙烧收回锗。 (6)再次蒸发收回锗。 (7)萃取法收回锗 近年来,国内外溶剂萃取锗的研讨工作进展较大,在系统中可用火油、CCl4、MIBK、Lix63及二等萃取锗;在硫酸系统中可用TOA、P204+YW100、Lix63及Kelex100等萃取锗,此法可根据具体情况进行出产。 (8)鼓风炉蒸发法收回锗。
新疆哈密白山泉铁矿
2019-01-25 10:18:59
白山泉铁矿位于哈密市双井子乡境内, 矿区中心地理坐标为:N42°10′38″、E96°04′55″,距哈密市金矿选矿厂50公里,距哈密市区210公里,距敦煌火车站130公里,交通运输便利。
白山泉铁矿属火山沉积变质岩性贫磁铁矿,主要由10条矿体组成,均出露地表。铁矿带长9610米,宽50—565米,东西走向。矿体倾向南,倾角60°-82°。经国家储委审批的详查地址报告提交D级储量4406.3万吨,矿石品位32.25-40.95%,开发前景可观。
白山泉铁矿位于甘新交界、星星峡以北120公里处,铁矿采选工程由“西宁特钢”与“哈密长城实业”共同出资4000万元注册组建的哈密博伦矿业公司投资建设,项目总投资1.5亿元。工程分为两期建设,一期于2004年10月动工,2006年4月上旬争取投产;二期工程将于2007年6月建成投产,两期工程年总产铁精粉50万吨。
新疆可可托海锂、铍、钽铌矿选矿厂
2019-02-11 14:05:44
可可托海矿坐落新疆维吾尔族自治区境内。系一花岗伟晶岩锂、铍、钽铌、多金属矿床。共有四条矿脉,其间以3号脉(现在挖掘矿脉)为最大。矿石含(TaNb)2O50.015% (Ta∶Nb=1∶1)、BeO0.093%、Li2O1.29%。钽铌矿藏主要是锰钽矿、钽铌锰矿、细晶石。铍矿藏主要是绿基石。锂矿藏主要是锂辉石。脉石主要是石英、长石。矿藏粒晶:钽铌矿藏最大为1~2毫米,一般为0.3~0.08毫米。绿基石一般在0.2毫米以上。锂辉石一般是0.2毫米。
选矿厂规划规划750吨/日。分三个体系:1号体系处理铍矿石,日处理矿石400吨。2吨体系处理锂矿石,日处理矿石250吨。3号体系处理钽铌矿石,日处理矿石100吨。3号体系选矿流程如图1所示,选用两段磨矿的重-磁-浮流程。榜首段棒磨,磨矿粒度-1毫米。第二段球磨,磨矿粒度-0.2毫米。磨矿产品用φ940毫米旋转螺旋溜槽(螺距500毫米,转速12~16转/分)粗选;旋转螺旋溜槽尾矿通过φ250毫米旋流器分级,旋流器溢流送2号体系浮锂。旋转螺旋溜槽精矿先经弱磁场磁选机除铁,然后分级摇床,摇床尾矿回来球磨机。摇床精矿给入双盘磁选机选出铁屑、钽铌精矿、钽铌中矿和非磁性物料(尾矿)四种产品。磁选钽铌中矿(钽铌-石榴石),选用浮游重选,分选出钽铌和石榴石,铁屑则需通过酸浸、过滤,滤渣即为钽铌精矿。选矿总目标:钽铌精矿档次(TaNb)2O550%~60%,回收率62%。
锗的物理和化学性质
2019-03-07 11:06:31
粉末状锗呈暗蓝色,结晶状锗为银白色脆金属。密度5.35克/厘米3。熔点937.4℃。沸点2830℃。化合价+2和+4。榜首电离能7.899电子伏特。是一种稀有金属,重要的半导体材料。不溶于水、、稀苛性碱溶液。溶于、浓硝酸或硫酸、熔融的碱、过氧化碱、硝酸盐或碳酸盐。在空气中不被氧化。其细粉可在氯或中焚烧。具有半导体性质。对固体物理和固体电子学的开展超越重要效果。锗可划归稀散金属,锗化学性质安稳,常温下不与空气或水蒸汽效果,但在600~700℃时,很快生成二氧化锗。与、稀硫酸不起效果。浓硫酸在加热时,锗会缓慢溶解。在硝酸、中,锗易溶解。碱溶液与锗的效果很弱,但熔融的碱在空气中,能使锗敏捷溶解。锗与碳不起效果,所以在石墨坩埚中熔化,不会被碳所污染。锗有着杰出的半导体性质,如电子迁移率、空穴迁移率等等。锗的开展仍具有很大的潜力。现代工业生产的锗,首要来自铜、铅、锌冶炼的副产品。
锗主要有哪些回收工艺
2019-02-26 09:00:22
归纳收回锗的办法许多,常用的是氯化蒸馏的经典办法。该法是使原猜中的锗转入硫酸溶液,参加单宁得单宁锗沉积物,经氧化焙烧脱砷及脱有害物后,在83~100℃下氯化蒸馏得GeCl4。在氯化蒸馏过程中发作如下反响:GeCl4经水解得纯GeO2,过程中发作下列反响:GeO2通复原得到约具有10~20Ω·cm电阻率的金属锗,其反响为:(1)优先蒸发法收回锗先把质料制团,经复原蒸发硫化锗,蒸发锗率达90%~98%;然后将尘按经典法提锗,锗的收回率听说高达90%。在我国,曾实验用此法从含0.006%~0.008%Ge的锌精矿中提锗,通过两次复原蒸发,所得硫化物尘再用经典法提锗,锗收回率达75%~80%。
(2)硫酸化-载体沉积法收回锗此法处理含0.022%锗的扎伊尔锗矿,经浮选得含锗0.13%的铜精矿,经铜冶炼得含0.36%Ge的烟尘,经硫酸化使锗转入硫酸系统,净化后用MgO作载体沉积出溶液中的锗,然后按经典法提锗。比利时的巴伦厂选用此法出产,锗的收回率达75%。
(3)碱土金属氯化蒸馏法收回锗。
(4)烟化法收回锗。
(5)氧化复原焙烧收回锗。
(6)再次蒸发收回锗。
(7)萃取法收回锗近年来,国内外溶剂萃取锗的研讨工作进展较大,在系统中可用火油、CCl4、MIBK、Lix63及二等萃取锗;在硫酸系统中可用TOA、P204+YWl00、Lix63及Kelexl00等萃取锗,此法可根据具体情况进行出产。
(8)鼓风炉蒸发法收回锗。
优先挥发法提锗
2019-01-30 10:26:27
以含锗硫化物或氧化物有色金属矿为原料,在回收主金属之前先使锗升华挥发入烟尘,进而获得纯GeO2的过程。原料中的主金属多为铅、锌、铜等。本法工艺流程简短,不需经过浸出、过滤、丹宁沉淀、煅烧等回收锗的处理步骤,直接获得含锗在l0%以上的锗精矿,锗的回收率高,但只能回收原料中的硫化锗和氧化锗,并受主金属生产流程的制约,因而未获推广。
原理锗的硫化物和低价氧化物在较低温度下具有高的蒸气压,如997K温度时GeS的蒸气压为1386Pa,956K时GeS2的蒸气压为380Pa,1196K时GeO蒸气压达1662.5Pa。此外,它们还有在中性或弱还原气氛中,于较低温度下容易升华挥发的特性。可以利用锗硫化物和低价氧化物的这些特性,通过控制炉内气氛和温度,使它们先升华挥发。而原料中的铅、锌、铜等主金属硫化物或氧化物在此条件下极少挥发。据此,可在回收原料的主金属铅、锌和铜等的前期,使原料中的锗优先挥发并在烟尘中富集而得到回收。
工艺比利时霍博肯奥维佩特冶金公司(MH0)于1952年采用一次挥发法从锗石中回收锗,中国也于20世纪60年代采用类似的两次挥发法从铅锌矿回收锗。
一次挥发法原料是锗石精矿,主要成分(质量分数w/%)为:Ge 0.25,Cu 27.8,Zn 7.92,Pb 25.0,As 7.5等。原料烘干后配入料质量4%的木炭或10%焦炭进行制团(见炉料制团)。团料定期加入到反应区断面积为0.23m×0.58m的竖炉内,并从炉上部向下送入含 C0 30%、H2 1%~2%和余为氮的还原气体,挥发温度控制在1143~1253K间。在此条件下,炉内的锗硫化物和低价氧化物,以及砷等杂质升华进入烟气。从竖炉排出的烟气温度在973K以上,需先经冷凝器回收80%的锗,再用布袋收尘。焙砂送回收主金属。过程中锗挥发率达92%~93%,而PbS仅挥发5%~10%。收得的含锗硫化物尘,在823K温度的电炉中鼓入空气进行氧气焙烧脱除砷和硫。焙烧产物(锗精矿)再经氯化蒸馏提纯、水解处理,最后得到含GeO2的锗精矿(见经典氯化法提锗)。
两次挥发法原料为铅锌精矿,主含成分(质量分数w/%)为Ge 0.005~0.008、Pb2.4、Zn 40~42.2等,两次挥发提锗流程
工艺流程如图。一次挥发是原料配入石油渣(或木炭,或焦炭),经制团后加入回转窑内,在还原气氛中、于1223~1273K温度下还原挥发1h。还原气氛的气体一般含CO3%、C02 17%、O2 1%,其余为N2。锗挥发率达98%,烟尘率为8%,尘含锗达0.05%~0.06%。挥发所得焙砂送回收主金属。由于一次挥发尘多为机械尘且锗品位低,需将其制粒后进行二次挥发。二次挥发在竖炉内,于1223K温度下挥发0.5h。为了抑制铅的挥发,采用高料柱和低料面温度(低于873K)的操作制度。锗挥发率达98%,二次挥发尘率为粒料的2%。收得的二次挥发尘经氧化脱砷后便得到含锗达10%以上的锗精矿。锗精矿经氯化蒸馏、复蒸馏、水解得含锗68%~69%的纯GeO2产品。锗的直接回收率大于70%,总回收率为85%。
从硬锌和锌渣中回收锗
2019-02-20 11:03:19
一、概述
韶关冶炼厂进厂质料含锗约0.0048%,选用I.S.P.工艺出产锌和铅金属时,质猜中约55%的锗进入粗锌中。粗锌中的锗在精馏过程中,约40%进入铅塔硬锌,40%入B吨塔硬锌,其他大多在鼓风炉的锌渣中。
硬锌选用蒸馏法得锌粉和锗渣。锌渣选用浸出-丹宁沉锗得锗精矿(中浸液经处理得七水硫酸锌)。
含锗产品用浸出-蒸馏法制取,最终将其水解成二氧化锗。二氧化锗经复原可得金属锗。
由铅锌精矿至金属锗总收回率达33%~55%。
硬锌处理工艺流程见图1,锌渣处理工艺流程见图2,二氧化锗和金属锗出产工艺流程见图3。
图1 硬锌处理工艺流程
图2 锌渣处理工艺流程
图3 二氧化锗出产流程
二、质料
(一)硬锌成分
硬锌是以锌、铅为主体的多元合金,含有少数Fe、As、Ge等元素。硬锌成分见表1。
表1 硬锌成分,%称号ZnPbAsFeCuGeCd铅塔硬锌80~908~100.4~1.00.7~1.00.140.17~0.46微B号塔硬锌74~8010~151.0~2.52.0~3.01.5~3.00.5~1.0微
(二)锌渣成分
锌渣用于出产硫酸锌并收回锗。其成分(%)为:Ge0.088,Zn76.70,Pb2.57,As0.299,Fe0.22。
三、技能操作条件
硬锌选用隔焰炉和工频感应电炉处理。这两种炉子、丹宁锗出产及二氧化锗出产的技能操作条件如下:
(一)隔焰炉
燃烧室温度1350~1450℃煤气预热温度>750℃蒸腾室温度890~920℃熔化炉780~840℃锌粉冷凝温度≤300℃废气(换热室出口)<450℃处理量800~1200kg/(炉·8h)
(二)工频感应电炉
炉温<1200℃炉顶温度950~1000℃电压380V电流<260A冷却器温度350~400℃冷却水出口温度<55℃冷却水进口压力>19.6×104Pa投料量700kg/炉电炉炉时15~20h
(三)丹宁沉锗
栲胶∶锗(35~40)∶1(浸出液含锗0.10~0.25g/L)
始酸pH值 2.5~3.0
温度 60℃
拌和时刻 5min
(四)丹宁锗焙烧
温度 约550℃
时刻 3~5h/盘
气氛 能充沛氧化
(五)二氧化锗出产
浸出-蒸馏
液固比 8∶1
始酸pH值 1
FeCl3参加量 物料量的0.1~0.3倍
拌和速度 80r/min
通氯量 50kg料通氯3kg
浸出温度 60~70℃
蒸馏最高温度 115℃
蒸馏残液 含CaCl2300g/L,HCl2~2.5g/L
残液中和
初温 60℃
终温 <90℃
终酸pH值 4.5~5.0
水解
投入量 1600ml/桶
∶水 1∶6.5(体积)
参加速度 20~30ml/min
水解槽温度 <0℃
烘干温度 140~160℃
烘干时刻 6~8h
四、产品产率及成分
(一)隔焰炉
日处理量 2.4~3.6t/(炉·d)
日产锌粉量 1.4~2.2t/(炉·d)
含锗粗铅 Zn15%,Pb70%,Ge1.2%。约占硬锌量的20%
锌渣 Zn75%,Pb8%。用于出产硫酸锌
(二)工频电炉
锌粉产值 500kg/(台·d),产率约70%
产锗渣含锗 3.0~4.0kg/(台·d),产率约7.5%
粗铅 Pb>75%,Zn1.8%,Ge<1.1%,产率约12%
高砷锗渣成分 Zn4.62%,Pb21.8%,As12.4%,Fe10.93%
(三)粗二氧化锗出产
丹宁锗粗矿 Ge<5% As<1%(湿渣:Ge<2% As<0.2% H2O<80%)
粗二氧化锗 白色粉末Ge≥65% As<1.0%
五、首要技能经济指标
隔焰炉 (2.7m2,3.55m2)
锌收回率 95.5%
锌直收率 75.5%
煤气单耗 3800m3/t硬锌
水单耗 120t/t硬锌
工频电炉(190kW/380V)
锌收回率 95.0%
锌直收率 83%
锗收回率 95%
锗直收率 75%
硬锌单耗 1.181t/t锌粉
粗二氧化锗出产
锌渣中锌收回率 92%
锌渣中锗收回率 50.5%
高砷锗渣中锗收回率 90.25%(至GeO2)
六、首要设备实例
韶冶锗车间首要设备为两座隔焰炉,面积分别为2.7m2和3.55m2,1台190kW/380V的工频感应电炉;其他均为湿法车间的小型设备。
新疆哈密某铜镍选冶项目投产
2019-01-25 13:37:03
据新疆哈密行署透露,2005年08月,当地一日处理4000吨铜镍精粉选矿项目已竣工投产。
该项目由新疆哈密市佳泰矿产资源开发有限责任公司投资实施。项目投产后,预计将年产镍精粉3万多吨,铜精粉4000多吨,日处理铜镍精粉1500吨,年产值可达2.5亿元左右,可新增工业产值1.5亿元左右。
依托资源优势,新疆哈密近年来通过招商引资,加大了以铁、铜、镍、煤、芒硝、黄金、钾盐等为重点的矿产资源勘探开发力度,随着土屋——延东铜矿的勘探开发,哈密确立了建设全国最大铜资源开发基地的发展目标。
“电子垃圾”大量侵入新疆口岸 成为污染新杀手
2019-03-13 10:03:59
跟着新疆口岸进出口业务量的不断加大,各种“电子废物”也开端很多侵略,成为污染环境的新式手。 近来,乌鲁木齐海关所属霍尔果斯海关抄获旅客带着入境的很多废旧电子手表325公斤,废旧手机及零配件42件。此前,乌鲁木齐海关曾先后在乌鲁木齐国际机场口岸抄获品牌为“松下”、“LG”、“索尼”的废旧电视机30台;在伊尔克什坦口岸抄获入境废旧放像机41台。“电子洋废物”事情以往多发生在我国东部沿海地区海关,现在屡次发生在西部口岸,这一气势引人重视。 据了解,这些废旧电子产品别离来自哈萨克斯坦、塔吉克斯坦杜和吉尔吉斯斯坦等中亚国家,带着此物品入境的旅客预备把旧电子产品贱价卖给国内一些个别供应商进行再加工。 我国法令明文规定禁止“电子废物”入境,依据《中华人民共和国海关进出境旅客行李物品监管方法》的相关规定,乌鲁木齐海关现已对这些“电子废物”作出退运处理,海关现场工作人员开端高度警觉废旧电子产品进入我国境内创新出售的现象,加强口岸监管,谨防“电子废物”的大举入境。.
新疆某原生金矿选矿试验研究
2019-02-20 10:04:42
Abstract: The flotability test of a gold ore of xinjiangwas performed. The op timal roughing conditionswere achievedby op timizing the influence factors of flotation index, they are grinding size of 85% - 74μm, pH is 9. 30, and dis2persant dosage of Na2SiO3 is 200 g/ t, and reagents dosage of CuSO4 is 100 g/ t, collector dosage of amyl xanthateand BK901C is 50 g/ t and 10 g/ t and iol is 40 g/ t. Laboratory test through a flotation flowsheet of "one - stageroughing, two - stage cleaning and two - stage scaveng ing" at the op timal operating conditiona was performed. Thegold with the grade of 62. 41 g/ t and the recovery of 96. 83% can be obtained. It showed that this p rimary gold orecan be enriched by flotation.
新疆某原生金矿原矿档次为4.5g/t,矿石工业类型为含金石英脉和含金蚀变岩两品种型的复合岩。可回收的首要有价金属为金和银。经体系的岩矿判定、重砂判定、化学物象分析、X射线分析、光谱分析、电子探针、扫描电镜和图画分析等手法,发现矿石中金属硫化物首要为黄铁矿,毒砂,其次有少数黄铜矿、黝铜矿、方铅矿、辉铜矿、蓝辉铜矿、铜蓝、辉砷镍矿、闪锌矿等;金属氧化矿藏首要有金红石、赤铁矿等;脉石矿藏首要有石英、长石、方解石、云母、角闪石等。矿石中天然多独自或偶然与黄铜矿、方铅矿连生,呈细粒或细脉状嵌布在毒砂、黄铁矿的裂隙与粒间空隙中,或许毒砂、黄铁矿与脉石的界面处;少部分浸染于脉石矿藏(首要是石英、方解石、白云石)中;还有适当一部分呈粒状或不规则状包裹于毒砂、黄铁矿中。这种原生金矿不宜选用直接浸出工艺流程,需求先浮选,以取得高档次的金精矿和最佳回收率[1,2]。
二、矿石性质
原矿多元素化学分析成果如表1所示。
表1 原矿多元素化学分析成果元素Au*Ag*SAsCuPbZnFe质量分数3.873.491.720.540.020.008<0.0055.70元素K2ONa2OSiO2Al2O3CaOMgOTiO2C质量分数1.092.705.7010.199.514.830.753.49
*Au、Ag的单位是g/t。
XRD测验成果显现,该原生金矿石中首要以石英、长石、方解石和白云石为主,其次含有云母、少数绿泥石、角闪石和透闪石,极少数的绿帘石、炭质、磷灰石以及含铁矿藏。金首要以天然金方式产出,金的首要载体矿藏为毒砂,其次为黄铁矿。矿石中天然金首要以裂隙金和粒间金产出,其次以硫化物包裹金产出。
三、实验计划
依据工艺矿藏学的研讨分析,矿石中天然金粒度以细粒嵌布为主,其次以中、细、微的方式不均匀嵌布在毒砂、黄铁矿、闪锌矿、黄铜矿和方铅矿等矿藏裂隙中。关于这类矿石,适合选用浮选工艺,将金富集在金精矿中,然后再做进一步处理。本文研讨了影响金精矿浮选的首要因素:磨矿细度、矿浆pH值、活化剂用量、涣散剂用量、捕收剂品种及用量,并调查了回水对浮选目标的影响。实验中每个试样的分量均为1kg。
四、选矿实验
(一)磨矿细度实验
原矿性质判定标明,载金矿藏与脉石矿藏的共生联系较为亲近,所以磨矿要到达必定的程度才能使有用矿藏单体解理。磨矿细度实验及条件见图1,实验成果见图2。从磨矿细度实验分析,关于该矿石磨矿细度太粗和过细其浮选目标都不抱负。据浮选现象调查和粗精矿档次及回收率改变状况分析,该矿石磨矿细度粗时部分金矿藏未到达单体解理,难以上浮。当磨矿细度为-74μm含量到达85%时,精矿档次及回收率都较高,故选用此磨矿细度较为合理。
(二)pH值实验
矿浆pH值是影响浮选作用好坏的重要因素之一。实验用碳酸钠调整矿浆pH值,调查不同的矿浆pH值对浮选作用的影响。实验流程见图1(碳酸钠用量为变量),实验成果见图3。图3成果标明,在矿浆pH值9.30(此刻碳酸钠的添加量是1500g/t)下,粗精矿的档次为33.75g/t,回收率到达93.32%。pH值的巨细从表面上是影响捕收剂对有用矿藏的捕收作用,实质上是影响矿藏表面的电极电位,然后调控捕收剂的有用作用[3]。归纳考虑,添加1500g/t的碳酸钠,调整pH值9.30下进行浮选。
(三)活化剂用量实验
硫化矿藏中参加硫酸铜能够到达进步有用矿藏回收率的意图,特别是黄铁矿、闪锌矿、褐铁矿等较难浮的矿藏,经活化后显着添加矿藏可浮性[4]。本实验选用硫酸铜作为活化剂,调查了其用量对浮选作用的影响。实验流程见图1(硫酸铜用量为变量),实验成果见图4。由图4能够看出,与不加硫酸铜比较,参加活化剂后显着进步了金的回收率,标明硫酸铜能与这些载金矿藏作用,在其标明,特别是沿其裂隙处构成硫酸铜薄膜,掩盖有硫酸铜薄膜的硫化矿藏可浮性大大进步,但当用量过大时,会导致回收率下降,因而断定硫酸铜用量为100g/t。
(四)涣散剂品种用量实验
涣散剂能将矿泥涣散,能够消除细泥罩盖于其它矿粒表面上的有害作用。常用的涣散剂是水玻璃、碳酸钠、六偏磷酸钠等。在六偏磷酸钠和水玻璃用量均为200g/t条件下进行了涣散剂品种实验,成果见表2。
表2 涣散剂品种实验成果涣散剂品种产品名称产率(%)金档次(g/t)金回收率(%)六偏磷酸钠
水玻璃粗精矿
粗精矿8.85
10.0262.25
48.7593.65
95.53
由表2能够看出,水玻璃的涣散作用优于六偏磷酸钠,金的档次尽管有所下降,但金的回收率得到了进步,所以选用水玻璃做为涣散剂。
依照图1所示的流程及条件(水玻璃用量为变量)进行水玻璃用量实验,成果见图5。由图5可知,水玻璃用量为200g/t时,实验所得回收率最高。(五)捕收剂品种及用量实验
实验坚持捕收剂用量均为50g/t的条件下,别离调查了丁黄药、Y89和戊黄药三种捕收剂的浮选作用,实验成果见表3。
表3 捕收剂品种实验成果捕收剂品种产品名称产率(%)金档次(g/t)金属收率(%)丁黄药
Y89
戊黄药粗精矿
粗精矿
粗精矿7.81
8.54
8.1047.25
38.92
64.6088.51
88.55
92.20
由表3能够看出,作用最好的为戊黄药捕收剂,粗选后金档次即可到达64.60g/t,回收率到达92120%,比其它捕收剂的浮选目标要高,因而挑选戊黄药作为捕收剂,别离在不同的用量下依照图1所示的流程及条件(捕收剂用量为变量,并添加10g/t的捕收剂BK901C)进行实验,成果见图6。实验成果标明,跟着戊黄药用量的逐步添加,粗精矿的金档次逐步添加,回收率逐步减小。当用量为(50+10)g/t时,粗精矿中金档次为62.50g/t,回收率到达96.53%,目标最好,故挑选捕收剂戊黄药+BK901C用量为(50+10)g/t。
表4 闭路实验成果产品名称产率(%)金档次(g/t)金回收率(%)精矿
尾矿
原矿7.26
92.74
100.0062.41
0.16
4.8996.83
3.16
100.00
(六)浮选闭路实验
经过上述工艺条件优化实验后,在所断定的最佳药剂准则条件下,进行一次粗选、两次精选、两次扫选闭路实验,实验成果见表4,流程如图7所示。成果标明,在实验所断定的最佳工艺条件下,可取得金精矿档次为64.50g/t、回收率为94.51%的较好目标。依照图7所示的中矿回来次序,中矿回来到各浮选作业后得到了很好的分选,金精矿回收率大幅度增高,阐明中矿中的大部分金矿藏均富集到金精矿中。
四、定论
原矿性质研讨成果标明,首要载金矿藏为毒砂和黄铁矿,并还有部分天然金,适合选用浮选办法以取得高档次、高回收率的金精矿,然后再做进一步提金处理。
经过粗选条件实验,得出了最佳操作条件:磨矿细度-74μm85%;活化剂硫酸铜100g/t;组合捕收剂:戊黄药50g/t+BK901C10g/t;起泡剂2#油40g/t。
运用组合捕收剂戊黄药+BK901C标明对金和硫化物起到了有用的捕收,进步了金精矿档次和回收率。实验室闭路实验终究取得金精矿档次64.50g/t,回收率94.51%,实验取得了较高的目标。
参考文献:
[1] 程耀先,曾茂青.某地原生金矿提金工艺研讨[J].我国矿山工程,2004,33(5):20-22.
[2] 董颖博,林 海,石 磊,连 芳,等.山东某原生金矿石可选性实验研讨[J].有色金属:选矿部分,2008(5):30-33.
[3] 田松鹤,罗新民,刘忠荣.高效捕收剂Y-89对某金矿浮选工艺研讨[J].有色金属:选矿部分,2003,(6):24-26.
[4] 王彩霞,张立征,姚 凯.活化调整剂进步选金回收率的研讨及使用[J].有色金属:选矿部分,2003,(4):32-34.
作者单位:
北京矿冶研讨总院矿藏加工科学与技能国家重点实验室 周东琴
河北理工大学资源与环境学院 代淑娟
承德承钢天宝矿业有限公司 李宏伟
辽宁省黑山县公民查看院 杨玉秋
新疆某氧化铜可选性试验研究报告
2019-01-24 09:38:19
指导专家:黄开国、龚美菱、郑广岱、胡继友、谷忠祥;项目负责人:马永计
一、前言
受新疆XXXX公司委托,西安天宙矿业科技开发有限责任公司于二〇〇八年六月至八月,对新疆某地氧化铜矿进行了详细的可选性试验研究。其目的是为该矿提供一套经济合理、技术可行的工艺流程,为矿山开发利用提供科学依据。
试验人员首先对试验样进行了详细的工艺矿物学研究及化学多元素分析、X衍射分析、铜物相分析。查明了矿石矿物的种类和赋存特征,以及矿石的结构特征,查明了脉石矿物的结构特征,查明了矿床岩石类型以及相应岩石名称,通过工艺矿物学研究及铜物相分析,该矿是一氧化铜矿。由于矿石结构及矿物组合比较复杂,属于低品位、难选难解离氧化铜矿。
该氧化铜矿,矿物组成比较复杂,矿石矿物有:斑铜矿、铜蓝、孔雀石、蓝铜矿、黄铁矿、赤铁矿以及褐铁矿等。矿石结构构造比较复杂,其中矿石矿物中可以见到胶状结构,隐晶质结构以及微细粒晶质结构和它形粒状结构。
矿石矿物中的原生矿物为斑铜矿和黄铁矿,次生矿物为赤铁矿、褐铁矿、孔雀石、蓝铜矿和铜蓝。绝大部分为次生氧化形成。
新疆氧化铜矿原矿铜品位2.15%,原矿银品位216g/t。根据该矿石性质,试验采用了两粗、三扫、三精浮选工艺流程,闭路试验指标为:铜精矿品位21.32%,铜精矿含银2823.82g/t,铜回收率74.74%,银回收率90.03%。
二、选矿试验
工艺探讨试验 铜矿石的选别方法一般有以下几种方法:1、硫化法浮选;2、脂肪酸法浮选;3、硫氧混合法浮选;4、先硫后氧法浮选。鉴于送样矿石的氧化程度较高(氧化相占86.67%,硫化相占12.86%),根据以往的选矿经验得知,单一的硫化法浮选及脂肪酸法浮选效果不会太好,因此对后两种选别方案进行了对比试验。
硫氧混选与先硫后氧法工艺流程对比试验 对比试验均固定磨矿细度-200目70%,试验条件及工艺流程见图1、图2,试验结果见表1。
表1 工艺探讨试验结果选别方法产品名称产率(%)品位回收率(%)Cu(%)Ag(g/t)CuAg硫氧混合法铜精矿6.014.412039.043.372.16中 矿5.79.64458.027.5215.4尾 矿88.30.6623.929.1812.44原 矿100.02.00169.55100.0100.0先硫后氧法铜精矿16.86.211247.020.5653.42铜精矿29.211.07549.049.5831.82尾 矿84.00.7327.929.8614.76原 矿100.02.05158.74100.0100.0
表1试验结果标明,硫氧混合法浮选铜和银,其品位及回收率均优于先硫后氧法浮选,故拟定采用硫氧混合法浮选工艺流程方案。
三、结语
(一)工艺矿物学研究小结新疆氧化铜矿、矿物组成比较复杂,有用矿物有斑铜矿,铜蓝、孔雀石、蓝铜矿。其它矿石矿物有褐铁矿,黄铁矿,赤铁矿。查明脉石矿物有斜长石、石英、伊利石、重晶石、玻璃质和凝灰质等,矿石结构构造比较复杂,其中矿石矿物中可见到胶状结构,隐晶质结构及微细晶质结构和它形粒状,矿石矿物中的原生矿物为斑铜矿和黄铁矿,次生矿物为赤铁矿、褐铁矿、孔雀石、蓝铜矿和铜蓝,大部分为次生氧化所形成,该矿属低品位难解离难选的矿石类型。
(二)试验结果据该矿矿石性质,开路试验采用了三种工艺流程进行对比,通过对比,闭路试验采用两次粗选、三次扫选、三次精选,第一段精选中矿和第一段扫选中矿合并,进行两次精扫、抛一个小尾矿,防止了矿泥对后续的影响,闭路试验指示为:铜精矿品位21.32%,铜精矿含银2823.82g/t,铜回收率74.74%,银回收率90.03%。
(三)尾矿沉降存在问题由于该矿是氧化矿,含泥多,再加上有一定的凝灰质存在,尾矿自然无法沉降,将来现场可采取加石灰絮凝办法沉降,石灰用量0.2%~0.5%,石灰加在尾矿排矿端。
新疆某铁矿选矿试验研究报告
2019-01-25 15:50:21
试验目的是对新疆某赤铁矿进行了选矿试验研究,为该矿床开发,利用的可能性提供初步依据。 该铁矿石为角砾岩赤铁碧玉岩。铁质大部份为隐晶氧化铁,少部分赤铁矿,偶见磁铁矿。主要金属矿物为赤铁矿,含量约9%,氧化铁质,含量约41.5%,微量磁铁矿。脉石矿物主要为石英,含量约23%;重晶石,含量约24%;铁白云石,含量约2.5%。 原矿分为块状和粉状两种矿石,块状矿石含TFe 23.86%,SiO2 41.75%,粉状矿石TFe 41.76%,SiO2 26.39%。试验用的混合矿样TFe 38.58%,SiO2 29.03%,原矿含硫,磷均较低。 试验采用两种工艺流程方案,(1)焙烧-磁选,获得的铁精矿品位TFe 58.08%,回收率 64.18%,铁精矿含 SiO2 14.81%。(2)反浮选工艺方案,获得的铁精矿品位TFe 58.93%,回收率 60.46%,铁精矿含SiO2 8.29%。 矿石性质研究结果表明,该矿石中的铁,40%以上呈隐晶质氧化铁,且为粉状聚合体,在选矿过程中,大部分损失于尾矿或被水冲失。这是造成铁回收率不高的重要原因之一,另外赤铁碧玉岩,硅化石英,重晶石化及铁白云石化等等都将造成大量铁的损失。 矿石中赤铁矿仅含9%左右,多为极微细(0.001~0.05mm)呈针状或呈粉尘状微粒散布于碧岩中,赤铁矿和碧玉岩这种嵌布关系是造成铁精矿品位不高的重要原因。 对该矿采用强磁(13660奥斯特)及重选(摇床)选别结果,虽能获得品位 56%以上的铁精矿,但回收率均很低。反浮选工艺流程因中矿量大,闭路结果有待生产实践中进一步实现。 该矿石为角砾岩化赤铁碧玉岩,嵌布粒度极微细,属难选矿石。试验采用焙烧磁选及反浮选两种工艺流程,获得的指标为该矿床的开发利用的可能性提供了初步依据。与国内外同类型矿石相比,选别指标较好。但由于矿石粒度微细,磨矿费用较高,焙烧磁选成本高,反浮选工艺采用的抑制剂淀粉及捕收剂KS-1#价格较贵,用量大矿浆需要加温等等。建议在开发利用该矿石时采用哪种方案,应进行详细的经济技术比较及成本核算。