您所在的位置: 上海有色 > 有色金属产品库 > 云南曲靖锗矿 > 云南曲靖锗矿百科

云南曲靖锗矿百科

锗矿

2019-02-11 14:05:30

粉末状呈暗蓝色,结晶状,为银白色脆金属。密度5.35克/厘米3。熔点937.4℃。沸点2830℃。化合价+2和+4。榜首电离能7.899电子伏特。是一种稀有金属,重要的半导体材料。不溶于水、、稀苛性碱溶液。溶于、浓硝酸或硫酸、熔融的碱、过氧化碱、硝酸盐或碳酸盐。在空气中不被氧化。其细粉可在氯或中焚烧。   性质:  具有半导体性质。对固体物理和固体电子学的开展有重要效果。锗的熔密度5.32克/厘米3,锗可能性划归稀散金属,锗化学性质安稳,常温下不与空气或水蒸汽效果,但在600~700℃时,很快生成二氧化锗。与、稀硫酸不起效果。浓硫酸在加热时,锗会缓慢溶解。在硝酸、中,锗易溶解。碱溶液与锗的效果很弱,但熔融的碱在空气中,能使锗敏捷溶解。锗与碳不起效果,所以在石墨坩埚中熔化,不会被碳所污染。锗有着杰出的半导体性质,如电子迁移率、空穴迁移率等等。锗的开展仍具有很大的潜力。现代工业生产的锗,首要来自铜、铅、锌冶炼的副产品。

锗矿石中锗的提取工艺

2019-02-22 15:05:31

归纳收回锗的办法许多,常用的是氯化蒸馏的经典办法。该法是使原猜中的锗转入硫酸溶液,参加单宁得单宁锗沉积物,经氧化焙烧脱砷及脱有害物后,在83~100℃下氯化蒸馏得GeCl4。在氯化蒸馏过程中发作如下反响: GeO3+4HCl=GeCl4+2H2O GeCl4经水解得纯GeO2,过程中发作下列反响: GeCl4+2H2O=GeO2+4HCl GeO2通复原得到约具有10~20Ω·cm电阻率的金属锗,其反响为: GeO2+2H2=Ge+2H2O (1)优先蒸发法收回锗先把质料制团,经复原蒸发硫化锗,蒸发锗率达90%~98%;然后将尘按经典法提锗,锗的收回率听说高达90%。在我国,曾实验用此法从含0.006%~0.008%Ge的锌精矿中提锗,通过两次复原蒸发,所得硫化物尘再用经典法提锗,锗收回率达75%~80%。 (2)硫酸化-载体沉积法收回锗此法处理含0.022%锗的扎伊尔锗矿,经浮选得含锗0.13%的铜精矿,经铜冶炼得含0.36%Ge的烟尘,经硫酸化使锗转入硫酸系统,净化后用MgO作载体沉积出溶液中的锗,然后按经典法提锗。比利时的巴伦厂选用此法出产,锗的收回率达75%。 (3)碱土金属氯化蒸馏法收回锗。 (4)烟化法收回锗。 (5)氧化复原焙烧收回锗。 (6)再次蒸发收回锗。 (7)萃取法收回锗近年来,国内外溶剂萃取锗的研讨工作进展较大,在系统中可用火油、CCl4、MIBK、Lix63及二等萃取锗;在硫酸系统中可用TOA、P204+YW100、Lix63及Kelex100等萃取锗,此法可根据具体情况进行出产。 (8)鼓风炉蒸发法收回锗。

锗的性质和用途

2018-10-23 10:18:07

锗单质是一种灰白色类金属,有光泽,质硬,属于碳族,化学性质与同族的锡与硅相近,不溶于水、HCl、稀苛性碱溶液,溶于王 水、浓硝酸或硫酸,具有两 性,故溶于熔融的碱、过氧化碱、碱金属硝酸盐或碳酸盐,在空气中较稳定,在自然界中,锗共有五种同位素:70,72,73,74,76,在700℃以上与氧作用生成GeO2,在1000℃以上与氢作用,细粉锗能在氯或 Br 中燃烧,锗是优良半导体,可作高频率电流的检波和交流电的整流用,此外,可用于红外光材料、精密仪器、催化剂。锗的化合物可用以制造荧光板和各种折射率高的玻璃。锗化学性质稳定,常温下不与空气或水蒸汽作用,但在600~700℃时,很快生成二氧化锗。与HCl、稀硫酸不起作用。浓硫酸在加热时,锗会缓慢溶解。在硝酸、王 水中,锗易溶解。碱溶液与锗的作用很弱,但熔融的碱在空气中,能使锗迅速溶解。锗与碳不起作用,所以在石墨坩埚中熔化,不会被碳所污染。??锗在电子工业中的用途,已逐渐被硅代替。但由于锗的电子和空穴迁移率较硅高,在高速开关电路方面,锗比硅的性能好。锗在红外器件、γ辐射探测器方面,有新的用途。金属锗能通过?2~15微米的红外线,又和玻璃一样易被抛光,能有效地抵制大气的腐蚀,可用以制造红外窗口、三棱镜和红外光学透镜材料。锗酸铋用于闪烁体辐射探测器。锗还同铌形成化合物,用作超导材料。二氧化锗是聚合反应的催化剂。用二氧化锗制造的玻璃有较高的折射率和色散性能,可用于广角照相机和显微镜镜头;GeO2-TiO2-P2O5类型的玻璃有良好的红外性能,在空间技术上,可用来保护超灵敏的红外探测器。

锗常识

2019-03-14 09:02:01

锗为银灰色金属,密度5.35克,熔点937.4℃,沸点2830℃。室温下,晶态锗性脆,可塑性很小。锗的化学性质安稳,常温下锗在空气中不被氧化,但在加热时,锗能在氧气、和蒸气中焚烧。锗不与水效果,不溶于和稀硫酸,硝酸和热的浓硫酸能将金属锗氧化为二氧化锗,锗还溶于。锗易溶于熔融的或,生成锗酸钠或锗酸钾。在过氧化氢、次等氧化剂存鄙人,锗能溶解在碱性溶液中,生成锗酸盐。锗具有半导体性质,在高纯锗中掺入三价元素(如铟、镓、硼)、得到P型锗半导体;掺入五价元素(如锑、砷、磷),得到N型锗半导体。  锗一般以涣散状况存在于其他矿藏中,独立的矿藏很少。可从含锗的氧化铅锌矿、闪锌矿和煤灰中收回锗。锗的提取办法是首先将锗的富集物用浓氯化,制取,再用溶剂萃取法除掉首要的杂质砷,然后经石英塔两次精馏提纯,再经高纯洗刷,可得到高纯,用高纯水使水解,得到高纯二氧化锗。一些杂质会进入水解母液,所以水解进程也是提纯进程。纯二氧化锗经烘干煅烧,在复原炉的石英管内用于650-680℃复原得到金属锗。  锗在电子工业中的用处已逐步被硅替代。但因为锗的电子和空穴迁移率较硅高,在高速开关电路方面,锗比硅的功用好。锗首要用来出产低功率半导体二极管三极管,锗在红外器材、γ辐射探测器方面有着新的用处,金属锗能让2-15微米的红外线经过,又和玻璃相同易被抛光,能有效地抵抗大气的腐蚀,可用以制作红外窗口、三棱镜和红外光学透镜材料。锗还与铌构成化合物,用作超导材料。用氧化锗制作的玻璃有较高的折射率和色散功用,可用于广角照像镜头和显微镜。  镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。  稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。  稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。  我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。

锗知识

2019-03-08 11:19:22

锗为银灰色金属,密度5.35克,熔点937.4℃,沸点2830℃。室温下,晶态锗性脆,可塑性很小。锗的化学性质安稳,常温下锗在空气中不被氧化,但在加热时,锗能在氧气、和蒸气中焚烧。锗不与水效果,不溶于和稀硫酸,硝酸和热的浓硫酸能将金属锗氧化为二氧化锗,锗还溶于。锗易溶于熔融的或,生成锗酸钠或锗酸钾。在过氧化氢、次等氧化剂存鄙人,锗能溶解在碱性溶液中,生成锗酸盐。锗具有半导体性质,在高纯锗中掺入三价元素(如铟、镓、硼)、得到P型锗半导体;掺入五价元素(如锑、砷、磷),得到N型锗半导体。 锗一般以涣散状况存在于其他矿藏中,独立的矿藏很少。可从含锗的氧化铅锌矿、闪锌矿和煤灰中收回锗。锗的提取办法是首先将锗的富集物用浓氯化,制取,再用溶剂萃取法除掉首要的杂质砷,然后经石英塔两次精馏提纯,再经高纯洗刷,可得到高纯,用高纯水使水解,得到高纯二氧化锗。一些杂质会进入水解母液,所以水解进程也是提纯进程。纯二氧化锗经烘干煅烧,在复原炉的石英管内用于650-680℃复原得到金属锗。 锗在电子工业中的用处已逐步被硅替代。但因为锗的电子和空穴迁移率较硅高,在高速开关电路方面,锗比硅的功用好。锗首要用来出产低功率半导体二极管三极管,锗在红外器材、γ辐射探测器方面有着新的用处,金属锗能让2-15微米的红外线经过,又和玻璃相同易被抛光,能有效地抵抗大气的腐蚀,可用以制作红外窗口、三棱镜和红外光学透镜材料。锗还与铌构成化合物,用作超导材料。用氧化锗制作的玻璃有较高的折射率和色散功用,可用于广角照像镜头和显微镜。 镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。 稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。 稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。 我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。

难处理富锗铅锌硫化氧化矿新技术

2019-01-21 18:04:55

为开发利用云南驰宏锌锗股份有限公司深部铅锌矿资源,北京矿冶研究总院和云南驰宏锌锗股份有限公司创造性地开发出“等可浮-异步选铅-锌硫异步混选-铅锌硫分离-氧化铅锌矿不脱泥硫化电位控制浮选”新技术,并成功应用于复杂难选铅锌硫化氧化混合矿的选矿过程,技术上取得了突破性进展。 1、依据铅硫、锌硫关系密切的特点,根据等可浮的原理把铅锌硫分成两部分:“铅硫”部分和“锌硫”部分,首次将异步和等可浮两个流程的核心技术有机结合起来,形成等可浮异步浮选和混选流程结构,成为硫化矿浮选的骨干流程;采用有效的针对性捕收剂,保证了铅、锌、硫、银、锗等金属得到最大限度的回收,确保了铅硫在低pH下分离,为后续氧化矿有效浮选创造了必要条件。 2、氧化铅锌矿不脱泥硫化浮选新技术,解决了矿石中铅锌氧化矿物和脉石矿物同为碳酸盐矿物、泥化程度高的难题,是获得混合矿浮选技术指标突破性进展的关键技术。 最终的选矿产品结构简单,便于操作管理,该技术整体上达到国际领先水平。

锗有哪些性质

2019-03-07 11:06:31

锗具有半导体性质。对固体物理和固体电子学的开展有重要效果。锗的熔密度5.32克/厘米3,锗可能性划归稀散金属,锗化学性质安稳,常温下不与空气或水蒸汽效果,但在600~700℃时,很快生成二氧化锗。与、稀硫酸不起效果。浓硫酸在加热时,锗会缓慢溶解。在硝酸、中,锗易溶解。碱溶液与锗的效果很弱,但熔融的碱在空气中,能使锗敏捷溶解。锗与碳不起效果,所以在石墨坩埚中熔化,不会被碳所污染。锗有着杰出的半导体性质,如电子迁移率、空穴迁移率等等。锗的开展仍具有很大的潜力。现代工业生产的锗,首要来自铜、铅、锌冶炼的副产品。

锗的工业用途

2018-08-29 09:58:12

锗具备多方面的特殊性质,在半导体、航空航天测控、核物理探测、光纤通讯、红外光学、太阳能电池、化学催化剂、生物医学等领域都有广泛而重要的应用,是一种重要的战略资源。在电子工业中,在合金预处理中,在光学工业上,还可以作为催化剂。高纯度的锗是半导体材料。从高纯度的氧化锗还原,再经熔炼可提取而得。掺有微量特定杂质的锗单晶,可用于制各种晶体管、整流器及其他器件。锗的化合物用于制造荧光板及各种高折光率的玻璃。锗单晶可作晶体管,是第一代晶体管材料。锗材用于辐射探测器及热电材料。高纯锗单晶具有高的折射系数,对红外线透明,不透过可见光和紫外线,可作专透红外光的锗窗、棱镜或透镜。20世纪初,锗单质曾用于治疗贫血,之后成为最早应用的半导体元素。单质锗的折射系数很高,只对红外光透明,而对可见光和紫外光不透明,所以红外夜视仪等军用观察仪采用纯锗制作透镜。锗和铌的化合物是超导材料。二氧化锗是聚合反应的催化剂,含 二氧化锗的玻璃有较高的折射率和色散性能,可作广角照相机和显微镜镜头,三GeCl4还是新型光纤材料添加剂。据数据显示,2013年来光纤通信行业的发展、红外光学在军用、民用领域的应用不断扩大,太阳能电池在空间的使用,地面聚光高效率太阳能电站推广,全球对锗的需求量在持续稳定增长。全球光纤网络市场尤其是北美和日本光纤市场的复苏拉动了光纤市场的快速增长。21世纪全球光纤需求年增长率已经达到了20%。未来中国光纤到户、3G建设及村通工程将拉动中国光纤用锗需求快速增长。锗在红外光学领域的年需求量占锗消费量的20-30%,锗红外光学器件主要作为红外光学系统中的透镜、棱镜、窗口、滤光片等的光学材料。红外市场对锗产品的未来需求增长主要体现在两个方面:军事装备的日益现代化带动了对红外产品的需求和民用市场对红外产品的需求。太阳能电池用锗占据锗总消耗量的15%,太阳能电池领域对锗系列产品的未来需求增长主要体现在两个方面:航空航天领域及卫星市场快速发展和地面光伏产业快速增长。从全球产量分布来看,中国供给了世界71%的锗产品,是全球最大的锗生产国和出口国,这主要是由于中国高附加值深加工产品技术环节薄弱,导致内需相对有限,产品多以初加工产品出口为主。但是在需求旺盛刺激下,中国锗生产技术能力提升迅速,目前中国企业已经能够生产光纤级、红外级、太阳能级锗系列产品。加之来政策推动力度大,中国光纤领域锗需求明显增长。2013年PET催化剂用锗约占25%,电子太阳能用锗约占15%,红外光学用锗比重从42%降至25%,而光纤通讯约占锗消费30%左右的市场份额。2011年中国锗消费量为45金属吨,2012年锗消费量为50金属吨,同比增长11.11%;2013年锗消费量为59金属吨,同比增长18.00%。

锗的提取方法

2019-02-25 13:30:49

锗的提取办法是首先将锗的富集物用浓氯化,制取,再用溶剂萃取法除掉首要的杂质砷,然后经石英塔两次精馏提纯,再经高纯洗刷,可得到高纯,用高纯水使水解,得到高纯二氧化锗。一些杂质会进入水解母液,所以水解进程也是提纯进程。纯二氧化锗经烘干煅烧,在复原炉的石英管内用于650-680℃复原得到金属锗。 锗具有多方面的特殊性质,在半导体、航空航天测控、核物理勘探、光纤通讯、红外光学、太阳能电池、化学催化剂、生物医学等范畴都有广泛而重要的使用,是一种重要的战略资源。

从四氯化锗水解母液中回收锗

2019-02-11 14:05:44

高纯二氧化锗(GeO2)是将高纯(GeCl4)参加去离子水分化而成的。经过过滤使固体GeO2与水解液别离,水解液中的锗含量一般为2~4g/L。现在,一般选用直接往水解液中加氯盐法或参加等质量的进行蒸馏的办法收回其间的锗,锗以GeCl4的方式得到收回。驰宏公司选用第二种办法收回水解液中的锗,需耗费30%的工业约110t/a,发生H+浓度为6.5mol/L的蒸馏残液约200m3/a,环保处理时困难比较大。本研讨就是为了寻觅一个成本低和残液发生量较少的环境友好型锗收回新工艺。       一、试验部分       (一)质料       试验所用水解液是从高纯GeCl4水解生成GeO2后的水解上清液,为淡黄色的酸性溶液,悬浮有少数白色漂浮物,其化学组成见表1。此外,试验所用试剂MgCl2·6H2O,MgSO4·7H2O,MgO均为分析纯(广东省汕头市达濠精密化学品有限公司出产);NaOH,NH3·H2O为分析纯(上海化学试剂有限公司出产)。   表1  水解液首要化学组成水解母液c(H+)/(mol·L-1)ρ(Ge)/(g·L-1)1#4.513.402#4.822.753#5.032.12       (二)试验原理       高纯GeCl4水解成高纯GeO2的化学反应式为: GeCl4+2H2O=GeO2+4HCl   或:GeCl4+(x+2)H2O=GeO2·xH2O+4HCl       水解生成的GeO2具有必定的溶解度(0.004mol/L),是一种可溶性的结晶氧化物。       向水解液中参加与氯化镁,首要生成溶于水的锗酸钠,后生成不溶性的锗酸镁,此进程的化学反应式为:   GeO2+2NaOH=Na2GeO3+H2O   Na2GeO3+MgCl2=MgGeO3↓+2NaCl       过滤枯燥后将锗酸镁与按1∶6(质量比)参加到蒸馏釜中一起蒸馏,运用GeCl4沸点低(83.1℃)的性质,锗便以GeCl4的方式得到收回,此进程的化学反应式为:   MgGeO3+6HCl=MgCl2+GeCl4+3H2O       (三)试验办法       试验在室温下(25℃)进行,锗收回首要包含以下几步(图1):图1  从水解母液中收回锗的工艺流程   (因故图件不清,需求者可来电免费讨取)       过程1:选用NaOH与NH3·H2O调理水解液的pH值为7.0~8.0,参加MgCl2、MgSO4和MgO作为沉积剂,使锗生成不溶于水的锗酸镁(MgGeO3)。       过程2:将过程1所得溶液过滤,得到含锗滤饼。       过程3:将含锗滤饼进行枯燥,能够削减滤饼40%~60%的含水量,以便蒸馏。       过程4:将枯燥脱水后的滤饼与一起蒸馏,在大约70~100℃使锗以GeCl4的方式蒸发,用分析纯吸收蒸馏出来的GeCl4。       二、成果与评论       试验发现,选用NaOH或NH3·H2O来调理水解液的pH值,对锗收回率几乎没有影响。运用NH3·H2O调理水解液的pH值时,会有必定量的NH3冒出,因而从往后的工业使用考虑,试验选用NaOH来调理水解液的pH值。       (一)Mg/Ge摩尔比对锗收回率的影响       试验中选用MgCl2作为沉积剂,沉积时刻为24h,Mg/Ge摩尔比对锗收回率的影响见表2。由表2能够看到随Mg/Ge摩尔比的添加,锗的收回率也是不断添加的。含锗量高的水解液,锗的收回率也比较高,但锗沉积后的上清液中含锗量根本一起。当Mg/Ge摩尔比到达1.5时,锗的收回率比较抱负,持续添加Mg/Ge摩尔比对锗收回率的影响不是十分显着。因而,将Mg/Ge摩尔比确定为1.5。   表2  不同Mg/Ge摩尔比条件下的锗收回率/%水解母液n(Mg)/n(Ge)00.511.522.51#65.392.495.998.599.199.12#57.190.594.998.298.898.93#41.687.193.197.598.598.5       (二)不同镁化合物对锗收回率的影响       试验中选用MgCl2、MgSO4或MgO作为沉积剂,Mg/Ge摩尔比为1.5,沉积时刻24h,锗收回率见表3。由表3可知,MgCl2与MgSO4作为沉积剂,锗的收回率都比较抱负,而MgO的沉积作用不抱负,这可能是因为MgCl2与MgSO4在水溶液中都能够电离出Mg2+,而MgO则不能。   表3  不同镁化合物对锗收回率的影响镁化合物收回率/%MgCl298.3MgSO498.2MgO85.3       (三)氯化铵对锗收回率的影响       据有的材料介绍,溶液中若有NH4+存在时,水解液中的锗更简单沉积分出。试验中选用MgCl2作为沉积剂,沉积时刻为24h,参加不同量的NH4Cl,锗收回率见表4。由表4成果能够看到,NH4Cl的参加量对锗收回率几乎没有影响。   表4  氯化铵对锗收回率的影响n(NH4Cl)/n(Ge)收回率/%098.20.598.5197.81.597.1296.82.595.6       (四)沉积时刻对锗收回率的影响       试验中选用MgCl2作为沉积剂,Mg/Ge摩尔比为1.5,沉积时刻对锗收回率的影响见表5。试验发现,参加MgCl2后,能够在4h内根本完成沉积。   表5  沉积时刻对锗收回率的影响沉积时刻/h收回率/%292.5498.11298.0       (五)蒸馏法收回锗沉积中的锗       将枯燥后的锗沉积滤饼均匀混合后,锗的档次测定为31.55%。试验时每次称取1000g锗沉积滤饼,参加6000g工业一起蒸馏,锗以GeCl4的方式得到收回。依据公司多年的出产经历,1kg的锗能够出产GeCl4为1576mL,蒸馏工艺锗的收回率见表6。   表6  蒸馏工艺锗的收回率水解母液GeCl4理论产值/mLGeCl4实践产值/mL收回率/%1#497.2491.598.852#497.2489.598.453#497.2488.598.25均匀497.2489.598.52       三、结语       本研讨获得了一种新的从水解母液中收回锗的工艺,此工艺首要包含用NaOH或调理水解液的pH值,参加镁化合物生成锗酸镁沉积,过滤得到锗沉积并烘干,再用传统的蒸馏工艺收回锗。选用此工艺能够使锗的收回率到达98%以上,最佳试验条件为:选用NaOH来调理水解液的pH值至7~8,MgCl2或MgSO4作为沉积剂,Mg/Ge(摩尔比)为1.5∶1,沉积时刻为4h。       驰宏公司水解母液的发生量为110m3/a,含锗均匀为3g/L,选用此工艺发生档次为31.55%的锗沉积约为1046kg,需求30%的工业约6.5t/a,选用新工艺比选用旧收回工艺每年可节省工业100t左右,而锗总的收回率根本一起。

锗的用途

2019-02-11 14:05:44

美国与日本的锗使用举例及结构示于表1。   表1  锗的使用举例及结构        (%)年份国别使用光纤红外探测器+半导体催化剂其他1985美国651510-10日本17.2-9.135.538.21996美国401515255日本10.7-10.771.47.21997美国4010202010日本13.3-13.466.76.61998美国441117226日本   (72.4) 1999美国501510205日本   (91.1) 2000美国501510205日本   (84.0) 2001美国501510205日本            一、锗作为红外光学材料,具有红外折射率高,红外透过波段规模宽,吸收系数小、色散率低、易加工、亮光及腐蚀等影响,特别适用军工及严重民用中的热成像仪与红外雷达及其他红外光学设备的窗口、透镜、棱镜与滤光片的材料;高纯锗或锗锂用于天文学的γ-谱仪,核反应能谱仪及等离子物理X-射线仪;Si-Ge10与掺、镉、铜与镓的锗单晶用于红外探测器。       二、锗半导体器材用作二极管、晶体三极管及复合晶体管、锗半导体光电器材作光电、霍耳及压阻效应的传感器,作光电导效应的放射线检测器等,广泛用于间响、彩电、电脑、电话及高频设备中,锗管特别适用于高频大功率器材中,且在强辐射与-40℃下工作正常;Ge-Si与Ge-Te作温差发电用于宇航、卫星与空间站的发动电源等。       三、掺锗光纤具有容量大、光损小、色散低、传输间隔长及不受环境等的搅扰,是现在仅有能够工程化使用的光纤,是光通讯网络的主体,近年取得大发展(表2)。   表2  全球耗费光纤量年份199019911992199319941995199619971998199920002001耗光纤量/(万km·a-1)51078011001200144018692252~30502677~37703260~45903882~63304702~ 788010190       1万km光纤需GeCl4量:单模为6.8-25kg,多模为34-100kg左右,而且15年就需要替换。此外,GeCl4还用于高速光纤网,链路,光纤传感器,光纤制导及光纤系留设备等。       GeO2是出产聚对笨二乙二醇酯(PET)的催化剂,具有长纤维,由其制备的饮料与食用液体的各式容器,无毒、通明且气密性好。锗用于医药,如Ge-132[β-羧乙基锗倍半氧化物-(GeCH2CH2COOH)2O3]临床使用于防治癌症。BGO作X-射线、CT-仪、PCT-仪,用于确诊肿瘤及骨骼结构与安排坏死等。锗化合物及其有机化合物可作牙膏与高效止痛膏等。

锗主要的回收工艺

2019-02-12 10:08:00

归纳收回锗的办法许多,常用的是氯化蒸馏的经典办法。该法是使原猜中的锗转入硫酸溶液,参加单宁得单宁锗沉积物,经氧化焙烧脱砷及脱有害物后,在83~100℃下氯化蒸馏得GeCl4。在氯化蒸馏过程中发作如下反响:   GeO3+4HCl=GeCl4+2H2O   GeCl4经水解得纯GeO2,过程中发作下列反响:   GeCl4+2H2O=GeO2+4HCl   GeO2通复原得到约具有10~20Ω·cm电阻率的金属锗,其反响为:   GeO2+2H2=Ge+2H2O       (1)优先蒸发法收回锗  先把质料制团,经复原蒸发硫化锗,蒸发锗率达90%~98%;然后将尘按经典法提锗,锗的收回率听说高达90%。在我国,曾实验用此法从含0.006%~0.008%Ge的锌精矿中提锗,通过两次复原蒸发,所得硫化物尘再用经典法提锗,锗收回率达75%~80%。     (2)硫酸化-载体沉积法收回锗  此法处理含0.022%锗的扎伊尔锗矿,经浮选得含锗0.13%的铜精矿,经铜冶炼得含0.36%Ge的烟尘,经硫酸化使锗转入硫酸系统,净化后用MgO作载体沉积出溶液中的锗,然后按经典法提锗。比利时的巴伦厂选用此法出产,锗的收回率达75%。     (3)碱土金属氯化蒸馏法收回锗。     (4)烟化法收回锗。     (5)氧化复原焙烧收回锗。     (6)再次蒸发收回锗。     (7)萃取法收回锗  近年来,国内外溶剂萃取锗的研讨工作进展较大,在系统中可用火油、CCl4、MIBK、Lix63及二等萃取锗;在硫酸系统中可用TOA、P204+YW100、Lix63及Kelex100等萃取锗,此法可根据具体情况进行出产。     (8)鼓风炉蒸发法收回锗。

典型矿区——云南惠民铁矿

2018-12-11 16:09:25

矿区位于思茅专区澜沧县。矿床属于海相火山-沉积型铁矿床。    矿床产于新元古界澜沧群惠民组。惠民组以中-基性火山岩和铁矿层为主,其次有少量石英片岩、方解石片岩、大理岩等,地层厚600~800m。上覆西定组碎屑岩,下伏地层为勐满组。矿区总体为一北西—南东向长条状复式向斜构造。区内共有铁矿体34个,其中Ⅳ、Ⅱ2、Ⅱ1为主要矿体,占总储量73.3%。Ⅳ号矿体长7000m,宽1100m,厚30.3m;Ⅱ2矿体长4000m,宽1900m,厚31.5m;Ⅱ1矿体长6000m,宽2000m,厚36m。矿体呈似层状、层状。    矿石物质成分复杂,含铁矿物有菱铁矿、褐铁矿、磁铁矿、鳞绿泥石、黑硬绿泥石、铁蛇纹石和黄铁矿等。还有少量锰铝榴石、钛铁矿、赤铁矿和白铁矿,共生矿物有石英(玉髓)、胶磷矿、磷灰石、方解石和长石等。    矿石主要构造有条纹条带状、块状、角砾状、浸染状和流纹状等。    矿石自然类型可分为:褐铁矿矿石、菱铁矿矿石、菱铁矿磁铁矿混合矿矿石、绿泥菱铁矿矿石、硅质菱铁矿矿石和铁蛇纹菱铁矿矿石。    该矿床累计探明铁矿石储量(D级)112681万t,其中,褐铁矿石22671万t,菱铁矿石49297万t,混合矿石40713万t。    矿石品位:褐铁矿石TFe 40%,P 0.17%~1.43%,S 0.01%~0.61%。菱铁矿石TFe 25%~35%,P 2.8%~0.2%,S 0.4%~20%。磁铁矿石TFe 45%~50%,P 1.3%~0.4%,均属含硫磷较高的自溶性矿石。    该矿尚未开发利用。

锗的基本知识

2019-03-12 11:03:26

锗为银灰色金属,密度5.35克,熔点937.4℃,沸点2830℃。室温下,晶态锗性脆,可塑性很小。锗的化学性质安稳,常温下锗在空气中不被氧化,但在加热时,锗能在氧气、和蒸气中焚烧。锗不与水效果,不溶于和稀硫酸,硝酸和热的浓硫酸能将金属锗氧化为二氧化锗,锗还溶于。锗易溶于熔融的或,生成锗酸钠或锗酸钾。在过氧化氢、次等氧化剂存鄙人,锗能溶解在碱性溶液中,生成锗酸盐。锗具有半导体性质,在高纯锗中掺入三价元素(如铟、镓、硼)、得到P型锗半导体;掺入五价元素(如锑、砷、磷),得到N型锗半导体。  锗一般以涣散状况存在于其他矿藏中,独立的矿藏很少。可从含锗的氧化铅锌矿、闪锌矿和煤灰中收回锗。锗的提取办法是首先将锗的富集物用浓氯化,制取,再用溶剂萃取法除掉首要的杂质砷,然后经石英塔两次精馏提纯,再经高纯洗刷,可得到高纯,用高纯水使水解,得到高纯二氧化锗。一些杂质会进入水解母液,所以水解进程也是提纯进程。纯二氧化锗经烘干煅烧,在复原炉的石英管内用于650-680℃复原得到金属锗。  锗在电子工业中的用处已逐步被硅替代。但因为锗的电子和空穴迁移率较硅高,在高速开关电路方面,锗比硅的功用好。锗首要用来出产低功率半导体二极管三极管,锗在红外器材、γ辐射探测器方面有着新的用处,金属锗能让2-15微米的红外线经过,又和玻璃相同易被抛光,能有效地抵抗大气的腐蚀,可用以制作红外窗口、三棱镜和红外光学透镜材料。锗还与铌构成化合物,用作超导材料。用氧化锗制作的玻璃有较高的折射率和色散功用,可用于广角照像镜头和显微镜。  镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。  稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。  稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。  我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。

锗的主要回收工艺

2019-02-26 16:24:38

归纳收回锗的办法许多,常用的是氯化蒸馏的经典办法。该法是使原猜中的锗转入硫酸溶液,参加单宁得单宁锗沉积物,经氧化焙烧脱砷及脱有害物后,在83~100℃下氯化蒸馏得GeCl4。在氯化蒸馏过程中发作如下反响:  GeCl4经水解得纯GeO2,过程中发作下列反响:  GeO2通复原得到约具有10~20Ω·cm电阻率的金属锗,其反响为:  除此之外,锗的收回办法还有以下几种:   (1)优先蒸发法收回锗 先把质料制团,经复原蒸发硫化锗,蒸发锗率达90%~98%;然后将尘按经典法提锗,锗的收回率听说高达90%。在我国,曾实验用此法从含0.006%~0.008%Ge的锌精矿中提锗,通过两次复原蒸发,所得硫化物尘再用经典法提锗,锗收回率达75%~80%。   (2)硫酸化-载体沉积法收回锗 此法处理含0.022%锗的扎伊尔锗矿,经浮选得含锗0.13%的铜精矿,经铜冶炼得含0.36%Ge的烟尘,经硫酸化使锗转入硫酸系统,净化后用MgO作载体沉积出溶液中的锗,然后按经典法提锗。比利时的巴伦厂选用此法出产,锗的收回率达75%。   (3)碱土金属氯化蒸馏法收回锗。   (4)烟化法收回锗。   (5)氧化复原焙烧收回锗。   (6)再次蒸发收回锗。   (7)萃取法收回锗 近年来,国内外溶剂萃取锗的研讨工作进展较大,在系统中可用火油、CCl4、MIBK、Lix63及二等萃取锗;在硫酸系统中可用TOA、P204+YWl00、Lix63及Kelexl00等萃取锗,此法可根据具体情况进行出产。     (8)鼓风炉蒸发法收回锗。

云南某金矿矿石浸出试验研究

2019-02-20 10:04:42

一、导言 滇东南是我国微细粒浸染型金矿床的会集散布区之一。微细浸染型金矿矿石性质杂乱, 工艺类型特殊, 历年来先后有多家科研规划单位进行过选冶实验研讨工作, 取得了一些研讨成果, 但仍有一些技能问题需求研讨处理。 本次实验以云南省者桑金矿为研讨目标, 进行浸出实验研讨, 为公司出产供给参阅。 二、矿石特征 该矿石类型为氧化型矿石, 其赋存矿藏岩石为蚀变的粉砂泥岩或粉砂岩及少数的基性脉岩类。矿石结构为胶状结构和告知假象结构。首要金属矿藏为褐铁矿、黄铁矿、黄铜矿、毒砂、磁黄铁矿、磁赤铁矿、黝铜矿。矿石化学组成分析标明金是首要收回有用成分, 金档次为0.70g/t。矿石中砷含量0.28%, 绢云母等粘土矿藏约占47%。金首要包裹在褐铁矿等氧化矿藏中, 又因为该矿石中存在很多的铁染粘土矿藏(绢云母为主, 其晶体呈层状格架), 其内也会吸附必定量的超显微金。 对破碎至小于40mm的矿样进行筛分分析, 首要调查了七个粒级的产率和金散布状况。较粗粒级的金档次较高, 可见金的嵌布粒度不细, 矿石浸出时无需细磨见表1。 表1  -40mm矿石筛分分析成果粒度/mm产率/%金档次/g·t-1金散布率/%单个累计单个累计+10.033.2533.250.5628.1828.18-10.0+5.016.2949.550.8420.5948.72-5.0+1.014.0163.560.9419.9468.71-1.0+0.2810.4574.010.8012.6881.38-0.28+0.1542.5376.540.552.1083.48-0.154+0.0762.8179.350.361.5285.00-0.07620.65100.000.4815.00100.00算计--0.66-- 三、化浸出实验研讨 (一)归纳样制备。将32袋单样烘干, 破碎至-40mm, 缩分出1/8制成化验样, 分析各袋样品金档次。根据金档次和实验要求, 配限制240kg归纳样。要求配矿核算档次与归纳试样屡次化验均匀档次0.70g/t相吻合。 (二)可浸性实验。为了解矿石中金的可浸性, 并为柱浸实验供给工艺参数, 对矿石进行了化浸出实验研讨。首要调查了NaCN和碱耗量及金浸出率等目标。 化浸出固定条件:给矿100g/次, 粒度-1mm, 矿浆浓度40%, NaCN初始浓度为0.4%。, 工业石灰调理pH值10~11, 摇瓶化18h。实验成果可知, 矿石中金渣计浸出率为87.14%,NaCN耗量261.2g/t, 工业石灰用量5kg/t。该矿石较简单浸出。(三)柱浸实验。将破碎至必定粒度的矿石装入柱中, 用NaOH制造的溶液调理矿石的pH, 待渗出液pH值调至10~11时, 制造pH值≥2、浓度约为0.4‰的NaCN溶液, 调理溶液喷淋速度, 实验操控喷淋强度约8~12L/m2·h1, 喷淋一段时刻对浸出液计量, 取样测NaCN浓度并分析金档次。浸出完毕后, 用必定量水洗刷各柱浸渣, 洗水计量, 取样测NaCN浓度并分析金档次。最终取出浸渣, 烘干、缩分、取样, 分析浸渣中金档次。柱浸实验条件和成果别离见表2。 表2  柱浸实验条件矿石粒度/mm矿石分量/kg制粒水泥用量/kg·-1柱高/cm-4081.7-~175堆比重/g·cm-3饱满含水率/L·t-1喷淋强度/L·m-2·h-1初始喷淋液NaCN浓度/‰1.65202.388.5~10.5~0.4 从实验成果可知,通过25天浸出,渣计浸出率达80.0%,尾渣金档次降至0.14g/t。 (四)其它浸出办法探究实验。为了能进一步进步浸出率,进行了加助浸剂浸出、酸性浸出和尾渣再次浸出实验。 1、增加助浸剂的氛化浸出实验。浸出固定条件:给矿100g/次, 粒度-1mm, 矿浆浓度40%, NaCN初始浓度为1.0‰, 石灰调理值pH值10~11, 摇瓶化18h。化浸出实验成果标明参加H2O2、CaO2、NH4Cl等助浸剂, 金的渣计浸出率没有显着进步。 2、浸出。浸出条件:给矿100g/次, 矿石粒度-1mm,矿浆浓度40%, 用量10kg/t,Fe2(SO4)39kg/t, 硫酸调理pH值1~2。实验成果标明选用酸性浸出, 金浸出率不如直接化浸出率高。 3、尾渣再浸。因为柱浸浸出液金浓度和尾渣金档次还比较高, 通过对柱浸的尾渣再次浸出, 以调查若延伸柱浸时刻,浸出率进步的可能性。 将柱浸尾渣缩分一部分破碎至-5mm, 取必定量的未破碎和破碎至-5mm的柱浸尾渣, 置于有机槽内, 用0.4‰的NaCN溶液静置浸出两天, 浸出实验成果标明柱浸尾渣通过两天的槽浸浸出, -40mm和-50mm尾渣相对原矿的液计浸出率别离达6.57%和5.03%。可见若延伸柱浸时刻, 对金浸出率的进步有必定的协助, 可是浸出周期延伸, 会加大浸出液量, 下降溶液金浓度。 四、定论 1、对破碎至-1mm归纳样进行可浸性实验, 矿浆浓度40%,NaCN初始浓度0.4‰, NaCN耗量261.2g/t, 石灰调理p   H值10~11, 工业石灰用量5kg/t, 摇瓶化18h, 渣计金浸出率为87.17%, 金档次降至0.09g/t。 2、破碎至-40mm归纳试样通过25天柱浸浸出, NaCN耗量171.7g/t, 金渣计浸出率为80.0%, 尾渣金档次降至0.14g/t。 3、其它助浸剂浸出、硫脉浸出以及延伸柱浸时刻等浸出办法, 对金浸出未有显着作用。 4、上述实验成果标明, 在惯例的化浸出条件下, 该归纳样较简单浸出。本次实验为者桑金矿的浸出供给技能根据。 参阅文献: 1、马晶,马继武,2001.煎茶岭金矿及其选冶实验研讨[J].黄金科学技能.10(2):35-39. 2、蔡世军,赵志新, 赵安龙.2003.老柞山金矿富砷、铜金矿石的氛化浸出研讨与实践[J].黄金.24(5):38-40. 3、周中定.2003.微细拉浸染型金矿石选金实验研讨[J].黄金.24(6):43-45. 4、谭海明.2005我国南边某金矿体矿石浸出实验研讨[J].中国矿业.14(2):38-42. (作者简介李桦, 紫金矿业集团股份有限公司, 高级工程师)

锗主要有哪些回收工艺

2019-02-26 09:00:22

归纳收回锗的办法许多,常用的是氯化蒸馏的经典办法。该法是使原猜中的锗转入硫酸溶液,参加单宁得单宁锗沉积物,经氧化焙烧脱砷及脱有害物后,在83~100℃下氯化蒸馏得GeCl4。在氯化蒸馏过程中发作如下反响:GeCl4经水解得纯GeO2,过程中发作下列反响:GeO2通复原得到约具有10~20Ω·cm电阻率的金属锗,其反响为:(1)优先蒸发法收回锗先把质料制团,经复原蒸发硫化锗,蒸发锗率达90%~98%;然后将尘按经典法提锗,锗的收回率听说高达90%。在我国,曾实验用此法从含0.006%~0.008%Ge的锌精矿中提锗,通过两次复原蒸发,所得硫化物尘再用经典法提锗,锗收回率达75%~80%。 (2)硫酸化-载体沉积法收回锗此法处理含0.022%锗的扎伊尔锗矿,经浮选得含锗0.13%的铜精矿,经铜冶炼得含0.36%Ge的烟尘,经硫酸化使锗转入硫酸系统,净化后用MgO作载体沉积出溶液中的锗,然后按经典法提锗。比利时的巴伦厂选用此法出产,锗的收回率达75%。 (3)碱土金属氯化蒸馏法收回锗。 (4)烟化法收回锗。 (5)氧化复原焙烧收回锗。 (6)再次蒸发收回锗。 (7)萃取法收回锗近年来,国内外溶剂萃取锗的研讨工作进展较大,在系统中可用火油、CCl4、MIBK、Lix63及二等萃取锗;在硫酸系统中可用TOA、P204+YWl00、Lix63及Kelexl00等萃取锗,此法可根据具体情况进行出产。 (8)鼓风炉蒸发法收回锗。

云南某地金矿选矿工艺试验研究

2019-02-20 10:04:42

一、前语 滇西北金矿原选用的是全泥化法及堆浸法提取金,因为该矿含有铁、铅、锌、砷和硫等元素,及其他纤细杂乱难浸金矿藏[1],导致浸出作用较差。并且为剧毒化学品,浸出进程对当地环境形成恶劣的影响。为了处理该区域提金法形成的环境污染问题,针对该区域金矿石和特色,选用加拿大Falcon离心选矿机对金进行富集,原矿含金7.7g/t,金精矿含金高达514.03g/t,尾矿含金0.36g/t,金收回率为95.4%,获得了满足的实验目标,为下一步工业上使用无选别工艺处理该区域金矿供给了根据。 二、矿石性质 实验矿样取至矿山范围内多处挖掘点,然后混组成实验用矿样,归纳样金档次为7.7g/t。 (一)首要矿藏特征 矿石中金属矿藏有褐(赤)铁矿、磁铁矿、菱铁矿、铅铁矾、菱锌矿、水锌矿、硅锌矿、异极矿,少数白铅矿、方铅矿、黄铁矿、天然金、银金矿和天然银等。脉石矿藏首要为方解石、白云石、石英和黏土矿藏等。 (二)原矿多元素分析 原矿多元素分析成果见表1所示。 表1  原矿多元素分析成果(三)金的矿藏特征及赋存状况 1、金的形状及嵌布特征 矿石中的金物相分析成果见表2。矿石中的金首要以天然金方式存在。 表2  原矿金的物相分析成果天然金为金黄色或带白彩的黄色,反射色为亮黄色,表面有麻点(氧化铁表膜),具均质性,有延展性,形状多样,以不规则粒状或核晶为主,次有丝状、棒状、树枝状等[2]。矿石中金的粒度分析成果表明,该矿天然金粒度较细,粒径最大0.15mm,一般0.01~0.06mm,首要为中细粒金,尚有<0.01mm的微粒金。 2、天然金的嵌布特征 经重砂别离和显微镜下调查得到金的嵌布特征(见表3)。从该表能够看出,天然金首要为中细粒可见金,嵌布在褐铁矿、磁赤铁矿、铅铁矾、黄铁矿(假象)、石英等矿藏颗粒间及裂隙中,为粒间金和裂隙金,次为微粒金,首要呈微粒嵌布或包裹于褐铁矿及磁铁矿集合体中,粒径<0.01mm。 表3  原矿金的嵌布特性3、金的赋存状况 金的赋存状况见表4。金首要产于褐铁矿、磁铁矿、黄铁矿中,占总量的79169%,这说明金与上述矿藏关系密切,这些矿藏是金的首要载体矿藏。在铅、锌矿藏中金含量占20.32%,是金的非必须载体,脉石矿藏中Au的含量较少。 表4  原矿中各种矿藏含金量和金的散布率三、选矿实验 (一)重选实验 该矿石中的金首要以天然金方式存在,天然金密度大,能够用重选办法收回。可是矿石判定成果表明,天然金以细粒状况存在,惯例重选作用欠好,凭借离心力场能够强化细粒矿藏的重选进程。咱们选用加拿大Falcon离心选矿机对矿石进行重选实验。Falcon离心选矿机规划简略,可发生重力加速度150~300倍的离心加速度,报价低,操作简略,修理和保养费用低,无环境污染,出产成本低,适用面广,能够处理Au、Ag、Sn、W、Ta、Pt、Pd、Nb等宝贵金属。该设备分选质料的细度由高至150~300G的重力所决议,它可有效地收回-011mm等级有用矿藏。矿样磨至80%-0.074mm后,用Falcon离心选矿机进行一次粗选和一次精选,其实验流程见图1,实验成果如表5所示。从表中数据能够看出,Falcon离心选矿机选别该金矿富集比大,金的收回率高。图1  重选实验流程 表5  重选实验成果第二个重选实验原矿磨矿细度仍为80%第二个重选实验原矿磨矿细度仍为80%-0.074mm,选矿流程为两次粗选,一次精选,精选尾矿回来粗选1。流程图见图2,实验成果见表6。图2  重选闭路实验流程图 表6  重选闭路实验成果(二)化拌和浸出实验 在实验室中,原矿磨矿至75%~90%-0.074mm,然后选用拌和浸出办法进行化浸出。浸出时刻为48h,浸出成果见表7。 表7  拌和化浸出实验成果从表7能够看出,化浸出作用较差,在磨矿细度为80%~90%-0.074mm时,金的浸出率根本相同,首要原因归属矿石本身要素,一方面是天然金难以化浸出,另一方面大部分金被其他矿藏所包裹[3],不利于浸出。 四、结语 归纳比照Falcon离心选矿机重选实验及化拌和浸出实验成果,不管从金的收回率仍是出产对环境形成的影响,重选流程显示出较大的优势。其选别工艺流程较为简略,并且出产上操控便利,加拿大出产的离心选矿机报价较贵,出资大,但出产成本低。最重要的是为完成该区域无选别供给了出产条件,对减轻环境污染有利。 参考文献 [1] 张卯均.选矿手册第八卷第三分册[M].北京:冶金工业出版社,1990,204. [2] 张守范.矿藏学[M].北京:商务印书馆,1956年3月第一版,徐天允,徐正春.金的化与冶炼[M].沈阳:沈阳黄金专科学校,1985 年11月. 作者单位 中国地质大学 (张爱萍) 云南国土资源职业学院(方泽明)

锗的性质、应用范围及回收锗的八大工艺

2019-03-07 10:03:00

中文名称:锗 英文名称:germanium 界说:原子序数为32,属元素周期表中第ⅣA族元素,元素符号为Ge,是重要的半导体材料。 锗(旧译作鈤)是一种化学元素。锗的物质形状是一种灰白色的类金属。锗的性质与锡相似。锗最常用在半导体之中,用来制作晶体管。1886年,德国的文克勒在分析硫银锗矿时,发现了锗的存在;后由硫化锗与氢共热,制出了锗。 高纯度的锗是半导体材料。从高纯度的氧化锗复原,再经熔炼可提取而得。掺有微量特定杂质的锗单晶,可用于制各种晶体管、整流器及其他器材。锗的化合物用于制作荧光板及各种高折光率的玻璃。 锗单晶可作晶体管,是第一代晶体管材料。 锗材用于辐射探测器及热电材料。 高纯锗单晶具有高的折射系数,对红外线通明,不透过可见光和紫外线,可作专透红外光的锗窗、棱镜或透镜。 锗和铌的化合物是超导材料。二氧化锗是聚合反响的催化剂,含二氧化锗的玻璃有较高的折射率和色散功能,可作广角照相机和显微镜镜头,三仍是新式光纤材料添加剂。 锗,具有半导体性质。对固体物理学和固体电子学的开展起过重要效果。锗的熔密度5.32克/厘米3,为银灰色脆性金属。锗可能性划归稀散金属,锗化学性质安稳,常温下不与空气或水蒸汽效果,但在600~700℃时,很快生成二氧化锗。与、稀硫酸不起效果。浓硫酸在加热时,锗会缓慢溶解。在硝酸、中,锗易溶解。碱溶液与锗的效果很弱,但熔融的碱在空气中,能使锗敏捷溶解。锗与碳不起效果,所以在石墨坩埚中熔化,不会被碳所污染。 锗有着杰出的半导体性质,如电子迁移率、空穴迁移率等等。 锗的开展仍具有很大的潜力。          现代工业出产的锗,首要来自铜、铅、锌冶炼的副产品。 怎么收回锗? 归纳收回锗的办法许多,常用的是氯化蒸馏的经典办法。该法是使原猜中的锗转入硫酸溶液,参加单宁得单宁锗沉积物,经氧化焙烧脱砷及脱有害物后,在83~100℃下氯化蒸馏得GeCl4。在氯化蒸馏过程中发作如下反响: GeO3+4HCl=GeCl4+2H2O GeCl4经水解得纯GeO2,过程中发作下列反响: GeCl4+2H2O=GeO2+4HCl GeO2通复原得到约具有10~20Ω·cm电阻率的金属锗,其反响为: GeO2+2H2=Ge+2H2O (1)优先蒸发法收回锗 先把质料制团,经复原蒸发硫化锗,蒸发锗率达90%~98%;然后将尘按经典法提锗,锗的收回率听说高达90%。在我国,曾实验用此法从含 0.006%~0.008%Ge的锌精矿中提锗,通过两次复原蒸发,所得硫化物尘再用经典法提锗,锗收回率达75%~80%。 (2)硫酸化-载体沉积法收回锗 此法处理含0.022%锗的扎伊尔锗矿,经浮选得含锗0.13%的铜精矿,经铜冶炼得含0.36%Ge的烟尘,经硫酸化使锗转入硫酸系统,净化后用MgO 作载体沉积出溶液中的锗,然后按经典法提锗。比利时的巴伦厂选用此法出产,锗的收回率达75%。 (3)碱土金属氯化蒸馏法收回锗。 (4)烟化法收回锗。 (5)氧化复原焙烧收回锗。 (6)再次蒸发收回锗。 (7)萃取法收回锗 近年来,国内外溶剂萃取锗的研讨工作进展较大,在系统中可用火油、CCl4、MIBK、Lix63及二等萃取锗;在硫酸系统中可用TOA、P204+YW100、Lix63及Kelex100等萃取锗,此法可根据具体情况进行出产。 (8)鼓风炉蒸发法收回锗。

锡尾矿中回收锡实例(云南云龙锡矿)

2019-02-27 08:59:29

云南云龙锡矿所处理的矿石为锡石-石英脉硫化矿,尾矿矿藏组分较简略,以石英为主。其次为褐铁矿、黄铁矿、电气石、少数的锡石、毒砂、黄铜矿等。尾矿含锡档次0.45%,全锡中氧化锡中锡占96.26%,硫化锡中锡占3.74%,铁3.71%,其他含量较低,锌0.051%、铜0.08%、锰0.068%,影响精矿质量的硫、砷含量较高,硫1.88%、砷0.1%。 1992年云龙锡矿在原生矿资源已目趋干涸的情况下,开端在100t/d老选厂处理老尾矿,为了在短期内取得更好的社会效益和经济效益,又提出在选厂基础上改扩建为200t/d,选用重选-浮选流程,于1994年4月正式出产,在出产过程中为断地改善工艺流程,终究断定的出产工艺见图1。图1 云龙锡矿尾矿选矿出产流程 为习惯出产,其间筛分所用筛面前半部分为0.8mm,后半部分为1mm。分泥斗为φ2500mm分泥斗,使用该工艺可取得含锡56.266%、含硫0.742%、含砷0.223%、锡收回率68.3%的锡精矿和含硫47.48%、含锡0.233%、含砷4.63%的硫精矿。 云锡公司有28个尾矿库、35座尾矿坝,现有累计尾矿1亿多吨,含锡达20多万吨,还有伴生的铅、锌、铟、铋、铜、铁、砷等。公司有一个50t/d实验车间和两个选矿工段专门处理老尾矿。1971年到1985年间再选处理尾矿112万t,收回了锡1286t,选出铜精矿含铜443t。 栗木锡矿用重-浮硫程从老尾矿中收回锡。该矿积存尾矿650多万t,尾矿中首要含锡、钨、铌、钽及硅质和长石等矿藏。再选流程包含重选、硫化矿浮选和锡石浮选。经重选后得到的精矿含SnO226.84%、WO39.6%、Ta2O52.7%、Nb2O52.04%,重选收回率SnO32.99%、WO324.05%、Ta2O542.47%、Nb2O524.77%。硫化矿藏浮选流程为一次粗选、二次扫选,精矿档次Cu10.8%、SnS26.57%,收回率Cu78%、硫化物52.66%。硫化矿藏经按捺砷浮铜产出含Cu>20%、Sn>18%、As 东坡矿野鸡尾选厂建有300t/d规划的重选车间,从尾矿中收回锡石。尾砂含Sn0。2%~0.25%,精矿档次Sn42.93、收回率18.66%,每年收回精矿锡量40~50t。 大义山矿1982年建成日处理70~100t选矿厂,从可使用的3.3万t老尾矿(含Sn0.297%)中1年收回锡精矿31t,档次为55%~61%,收回率34%~35%。 国外,英国、加拿大和玻利维亚展开从含锡老尾矿中再选锡的作业。英国巴特莱公司用摇床和横流皮带溜槽再选锡尾矿,从含锡0.75%的尾矿取得含锡分别为30.22%、5.53%和4.49%的精矿、中矿和尾矿。英国罗斯克选厂选别含锡0.3%~0.4%的老尾矿取得含锡30%的锡精矿。加拿大苏里望选厂从浮选锡的尾矿,用重-磁联合流程选出含锡60%、收回率38%~43%的锡精矿。玻利维亚一个选厂再选含锡0.3%的老尾矿和新尾矿,产出含锡20、收回率50%~55%的锡精矿。

优先挥发法提锗

2019-01-30 10:26:27

以含锗硫化物或氧化物有色金属矿为原料,在回收主金属之前先使锗升华挥发入烟尘,进而获得纯GeO2的过程。原料中的主金属多为铅、锌、铜等。本法工艺流程简短,不需经过浸出、过滤、丹宁沉淀、煅烧等回收锗的处理步骤,直接获得含锗在l0%以上的锗精矿,锗的回收率高,但只能回收原料中的硫化锗和氧化锗,并受主金属生产流程的制约,因而未获推广。 原理锗的硫化物和低价氧化物在较低温度下具有高的蒸气压,如997K温度时GeS的蒸气压为1386Pa,956K时GeS2的蒸气压为380Pa,1196K时GeO蒸气压达1662.5Pa。此外,它们还有在中性或弱还原气氛中,于较低温度下容易升华挥发的特性。可以利用锗硫化物和低价氧化物的这些特性,通过控制炉内气氛和温度,使它们先升华挥发。而原料中的铅、锌、铜等主金属硫化物或氧化物在此条件下极少挥发。据此,可在回收原料的主金属铅、锌和铜等的前期,使原料中的锗优先挥发并在烟尘中富集而得到回收。 工艺比利时霍博肯奥维佩特冶金公司(MH0)于1952年采用一次挥发法从锗石中回收锗,中国也于20世纪60年代采用类似的两次挥发法从铅锌矿回收锗。 一次挥发法原料是锗石精矿,主要成分(质量分数w/%)为:Ge 0.25,Cu 27.8,Zn 7.92,Pb 25.0,As 7.5等。原料烘干后配入料质量4%的木炭或10%焦炭进行制团(见炉料制团)。团料定期加入到反应区断面积为0.23m×0.58m的竖炉内,并从炉上部向下送入含    C0 30%、H2 1%~2%和余为氮的还原气体,挥发温度控制在1143~1253K间。在此条件下,炉内的锗硫化物和低价氧化物,以及砷等杂质升华进入烟气。从竖炉排出的烟气温度在973K以上,需先经冷凝器回收80%的锗,再用布袋收尘。焙砂送回收主金属。过程中锗挥发率达92%~93%,而PbS仅挥发5%~10%。收得的含锗硫化物尘,在823K温度的电炉中鼓入空气进行氧气焙烧脱除砷和硫。焙烧产物(锗精矿)再经氯化蒸馏提纯、水解处理,最后得到含GeO2的锗精矿(见经典氯化法提锗)。 两次挥发法原料为铅锌精矿,主含成分(质量分数w/%)为Ge 0.005~0.008、Pb2.4、Zn 40~42.2等,两次挥发提锗流程 工艺流程如图。一次挥发是原料配入石油渣(或木炭,或焦炭),经制团后加入回转窑内,在还原气氛中、于1223~1273K温度下还原挥发1h。还原气氛的气体一般含CO3%、C02 17%、O2 1%,其余为N2。锗挥发率达98%,烟尘率为8%,尘含锗达0.05%~0.06%。挥发所得焙砂送回收主金属。由于一次挥发尘多为机械尘且锗品位低,需将其制粒后进行二次挥发。二次挥发在竖炉内,于1223K温度下挥发0.5h。为了抑制铅的挥发,采用高料柱和低料面温度(低于873K)的操作制度。锗挥发率达98%,二次挥发尘率为粒料的2%。收得的二次挥发尘经氧化脱砷后便得到含锗达10%以上的锗精矿。锗精矿经氯化蒸馏、复蒸馏、水解得含锗68%~69%的纯GeO2产品。锗的直接回收率大于70%,总回收率为85%。

从硬锌和锌渣中回收锗

2019-02-20 11:03:19

一、概述     韶关冶炼厂进厂质料含锗约0.0048%,选用I.S.P.工艺出产锌和铅金属时,质猜中约55%的锗进入粗锌中。粗锌中的锗在精馏过程中,约40%进入铅塔硬锌,40%入B吨塔硬锌,其他大多在鼓风炉的锌渣中。       硬锌选用蒸馏法得锌粉和锗渣。锌渣选用浸出-丹宁沉锗得锗精矿(中浸液经处理得七水硫酸锌)。       含锗产品用浸出-蒸馏法制取,最终将其水解成二氧化锗。二氧化锗经复原可得金属锗。       由铅锌精矿至金属锗总收回率达33%~55%。       硬锌处理工艺流程见图1,锌渣处理工艺流程见图2,二氧化锗和金属锗出产工艺流程见图3。    图1  硬锌处理工艺流程    图2  锌渣处理工艺流程    图3  二氧化锗出产流程       二、质料       (一)硬锌成分       硬锌是以锌、铅为主体的多元合金,含有少数Fe、As、Ge等元素。硬锌成分见表1。   表1  硬锌成分,%称号ZnPbAsFeCuGeCd铅塔硬锌80~908~100.4~1.00.7~1.00.140.17~0.46微B号塔硬锌74~8010~151.0~2.52.0~3.01.5~3.00.5~1.0微       (二)锌渣成分       锌渣用于出产硫酸锌并收回锗。其成分(%)为:Ge0.088,Zn76.70,Pb2.57,As0.299,Fe0.22。       三、技能操作条件       硬锌选用隔焰炉和工频感应电炉处理。这两种炉子、丹宁锗出产及二氧化锗出产的技能操作条件如下:           (一)隔焰炉  燃烧室温度1350~1450℃煤气预热温度>750℃蒸腾室温度890~920℃熔化炉780~840℃锌粉冷凝温度≤300℃废气(换热室出口)<450℃处理量800~1200kg/(炉·8h)       (二)工频感应电炉  炉温<1200℃炉顶温度950~1000℃电压380V电流<260A冷却器温度350~400℃冷却水出口温度<55℃冷却水进口压力>19.6×104Pa投料量700kg/炉电炉炉时15~20h       (三)丹宁沉锗       栲胶∶锗(35~40)∶1(浸出液含锗0.10~0.25g/L)       始酸pH值    2.5~3.0       温度         60℃       拌和时刻     5min       (四)丹宁锗焙烧       温度         约550℃       时刻         3~5h/盘       气氛         能充沛氧化       (五)二氧化锗出产       浸出-蒸馏       液固比           8∶1       始酸pH值        1       FeCl3参加量      物料量的0.1~0.3倍       拌和速度         80r/min       通氯量           50kg料通氯3kg       浸出温度         60~70℃       蒸馏最高温度     115℃       蒸馏残液         含CaCl2300g/L,HCl2~2.5g/L       残液中和       初温        60℃       终温         <90℃       终酸pH值    4.5~5.0       水解       投入量           1600ml/桶       ∶水           1∶6.5(体积)       参加速度      20~30ml/min       水解槽温度            <0℃       烘干温度                 140~160℃       烘干时刻                 6~8h       四、产品产率及成分       (一)隔焰炉       日处理量       2.4~3.6t/(炉·d)       日产锌粉量     1.4~2.2t/(炉·d)       含锗粗铅       Zn15%,Pb70%,Ge1.2%。约占硬锌量的20%       锌渣           Zn75%,Pb8%。用于出产硫酸锌       (二)工频电炉       锌粉产值         500kg/(台·d),产率约70%       产锗渣含锗     3.0~4.0kg/(台·d),产率约7.5%       粗铅           Pb>75%,Zn1.8%,Ge<1.1%,产率约12%       高砷锗渣成分   Zn4.62%,Pb21.8%,As12.4%,Fe10.93%       (三)粗二氧化锗出产       丹宁锗粗矿   Ge<5% As<1%(湿渣:Ge<2%  As<0.2% H2O<80%)       粗二氧化锗   白色粉末Ge≥65%  As<1.0%       五、首要技能经济指标       隔焰炉       (2.7m2,3.55m2)       锌收回率      95.5%       锌直收率      75.5%       煤气单耗      3800m3/t硬锌       水单耗        120t/t硬锌       工频电炉(190kW/380V)       锌收回率     95.0%       锌直收率     83%       锗收回率     95%       锗直收率     75%       硬锌单耗     1.181t/t锌粉       粗二氧化锗出产       锌渣中锌收回率       92%       锌渣中锗收回率       50.5%       高砷锗渣中锗收回率   90.25%(至GeO2)       六、首要设备实例       韶冶锗车间首要设备为两座隔焰炉,面积分别为2.7m2和3.55m2,1台190kW/380V的工频感应电炉;其他均为湿法车间的小型设备。

锗的物理和化学性质

2019-03-07 11:06:31

粉末状锗呈暗蓝色,结晶状锗为银白色脆金属。密度5.35克/厘米3。熔点937.4℃。沸点2830℃。化合价+2和+4。榜首电离能7.899电子伏特。是一种稀有金属,重要的半导体材料。不溶于水、、稀苛性碱溶液。溶于、浓硝酸或硫酸、熔融的碱、过氧化碱、硝酸盐或碳酸盐。在空气中不被氧化。其细粉可在氯或中焚烧。具有半导体性质。对固体物理和固体电子学的开展超越重要效果。锗可划归稀散金属,锗化学性质安稳,常温下不与空气或水蒸汽效果,但在600~700℃时,很快生成二氧化锗。与、稀硫酸不起效果。浓硫酸在加热时,锗会缓慢溶解。在硝酸、中,锗易溶解。碱溶液与锗的效果很弱,但熔融的碱在空气中,能使锗敏捷溶解。锗与碳不起效果,所以在石墨坩埚中熔化,不会被碳所污染。锗有着杰出的半导体性质,如电子迁移率、空穴迁移率等等。锗的开展仍具有很大的潜力。现代工业生产的锗,首要来自铜、铅、锌冶炼的副产品。

云南镇沅金矿石浮选试验报告

2019-02-21 12:00:34

1 前语 受云南黄金矿业有限责任公司托付,某黄金研讨院对云南镇沅分公司含金矿石进行选矿实验研讨。意图是经过对该金矿石的工艺矿藏学研讨和选矿流程实验,断定原矿选矿技能条件和工艺参数,为选矿工艺流程的挑选和规划供给科学牢靠的根据。 本研讨报告的内容首要是原矿工艺矿藏学研讨、原矿浮选流程实验研讨。 对镇沅含金矿石的工艺矿藏学研讨标明:该矿石工艺类型为贫硫化物碳质微细粒浸染型难处理金矿石。矿石中有价元素为金,档次为5.38g/t。该矿石中金矿藏粒度微细,镜下可见最大金粒为8.5微米,93.84%的金矿藏小于5微米,其间大都呈次显微金。该矿石中金矿藏与金属硫化物联系十分亲近,硫化物中金占86.26%,脉石中金占7.58%,游离金仅占6.16%,硫化物粒度也较细,有73.1%的硫化物粒度小于0.037mm,晦气于金的露出与解离,在原矿磨至-0.074mm占95%时,仍有10.5%的硫化物与脉石连生,5.1%的硫化物被脉石包裹。矿石中有机碳含量为0.70%,有机碳有很强的劫金才能,惯例化,磨矿粒度为-0.074mm占90%时,金浸出率仅为0.74%。 浮选实验研讨成果标明:原矿选用阶段磨浮流程,一段磨矿粒度为-0.074mm占60%,二段磨矿粒度为-0.074mm占90%,金浮选回收率为90.52%,精矿金档次为47.87g/t,浮选尾矿档次为0.57g/t,浮选闭路实验成果见表1。 表1  浮选闭路实验成果产品 称号产率 (%)档次(%)回收率(%)Au(g/t)AsSAuAsS金精矿10.2147.870.7518.7490.5289.5090.26尾  矿89.790.570.010.239.4810.509.74原  矿100.005.400.0862.12100.00100.00100.002 试样的采纳与制备 2.1 试样的采纳 本次实验样品的采纳及代表性由托付方担任。矿样于2005年3月7日抵达我院。 托付方供给的各点矿样状况如表2。 表2  托付方供给的各矿点档次及分量矿点取样档次(g/t)分析档次(g/t)矿样分量(kg)101E-113.053.04500102W-14.432.99512102NM-10.000.701200103E-117.1011.07290104E-14.505.091023104E-28.8011.083301753上盘-0.902431713-18线-2.34500老王寨-3.687002.2 试样的制备 将矿样分点按图1流程破碎后,将各点矿样充沛混匀、缩分,取样进行化学分析,按托付方要求,原矿档次要求在5.0—5.5g/t范围内,各点矿样分析档次及配矿成果见表3。 表3  各点矿样分析档次及配矿成果矿点配矿份额(%)分析档次(g/t)配矿分量(kg)102W-1202.99500103E-11011.07250104E-1405.091000104E-21011.082501753上盘100.90250老王寨103.68250算计100—2500核算档次(g/t)5.31化验档次(g/t)5.38图1  试样制备流程     3 矿石工艺矿藏学研讨      3.1  原矿多元素分析 表4  多元素分析成果元素Au(g/t)Ag(g/t)CuPbZnFeS含量(%)5.382.550.020.010.013.852.03元素CAsSbCaOMgOAl2O3SiO2含量(%)4.140.080.196.523.969.8568.05    3.2 原矿碳物相分析 表5  原矿碳物相分析成果相别C/碳酸盐C/有机碳C/石墨碳全碳含量(%)2.880.700.564.14相对含量(%)69.5616.9113.53100.00    3.3 原矿硫物相分析 表6  原矿硫物相分析成果硫物相S/硫酸盐S/硫化物S/元素硫全硫含量(%)0.191.780.062.03相对含量(%)9.3687.682.96100.00    3.4 原矿筛分分析表7  原矿(-0.074mm占94.11%)筛分分析成果产品粒级 (mm)产率(%)金档次(g/t)金散布率(%)+0.152.926.833.83-0.15+0.0742.973.672.09-0.074+0.04517.792.669.09-0.04576.325.8084.99算计100.005.21100.00    从原矿筛分分析成果看,大大都金矿藏散布在-0.045mm粒级以下,占金总含量的84.99%,阐明金载体矿藏及金矿藏颗粒比较细微。     3.5矿石矿藏组成及含量     镜下所见金属矿藏较少,占3.84%,首要为黄铁矿、白铁矿,少数的辉锑矿、毒砂、褐铁矿,偶见有黄铜矿、闪锌矿、方铅矿、赤铁矿、磁铁矿等。非金属矿藏有石英、绢云母、方解石、白云石等,少数的长石、泥质、石墨碳质、粘土矿藏、绿泥石等,其相对含量检测成果见表8。 表8  矿石矿藏相对含量丈量成果金属矿藏相对含量 (%)非金属矿藏相对含量 (%)黄铁矿、白铁矿3.35石英、绢云母、长石等72.26辉锑矿0.19泥质、石墨碳质、粘土矿藏3.80毒  砂0.09方解石、白云石20.1黄铜矿、方铅矿、闪锌矿0.09褐铁矿0.12合  计3.84合  计96.16总  计100.00    3.6 首要金属矿藏嵌布粒度     该矿石中的金属矿藏首要为黄铁矿(含白铁矿),少数的辉锑矿、褐铁矿,很少的毒砂,金属硫化物与金联系亲近,因而对硫化物粒度进行检测,金属硫化物粒度丈量成果见表9。 表9  硫化物粒度检测成果粒径区间(mm)>0.0740.074—0.0530.053—0.0370.037—0.01算计相对含量(%)12.34.210.449.323.8100.0经过表9能够看到金属硫化物粒度细微,粒度小于0.037mm占73.1%,镜下所见到辉锑矿粒度相对较粗,多在0.037—0.074mm区间,而毒砂粒度细微,一般多在0.01mm左右,晦气于硫化物在磨矿过程中的单体解离。 3.7 首要矿藏的嵌布特征 黄铁矿(含白铁矿):是该矿石中最首要的金属硫化物,占矿石含量的3.35%,首要呈它形粒状与胶状集合体,黄铁矿周边集合微粒毒砂,呈草莓状,黄铁矿粒度较细,多在0.01—0.053mm区间,呈浸染状,星散散布在脉石粒间,结晶程度低,多为胶状黄铁矿(因而光片磨光度欠好),还有的黄铁矿具有再生增大特征,与其它金属矿藏连晶不亲近,该矿石中的黄铁矿在镜下检测过程中没有发现金矿藏,对原矿选用挑选性溶金实验标明,硫化物含金占86.26%,阐明金矿藏与硫化物联系十分亲近,硫化物中金是镜下难以分辩的微粒金和次显微金。 辉锑矿:在该矿石中含量少,仅占矿石含量的0.19%,首要呈它形粒状、长条状、放射状集合体,嵌布在脉石粒间,与其它矿藏联系不亲近,粒度相对较粗,多在0.037—0.074mm区间,镜下没有发现金与辉锑矿有联系。 毒砂:在矿石中含量很少,仅占矿石含量的0.09%,所见毒砂多呈自形—半自形粒状、毒砂粒度微细,大大都在0.01mm左右,星散嵌布在脉石粒间或微裂隙中,少数在黄铁矿周边构成连晶呈草莓状。 褐铁矿:在矿石中含量很少,占矿石含量的0.12%,是在上盘样品中见到,有的光片中呈氧化铁染色,可见部分黄铁矿已被子褐铁矿告知,呈告知残留结构。褐铁矿粒度多在0.037mm左右。 石墨:在该矿石中含量很少,仅占矿石含量的0.56%,绝大大都是在上盘样品中见到,首要散布在结构发育部位,有的光片呈乌煤色,石墨为片状、长条状,嵌布在矿藏粒间,其粒度多在0.01—0.037mm区间。 3.8 矿石的结构结构 3.8.1 矿石结构 自形—半自形—它形粒状结构:毒砂呈自形—半自形,其它金属矿藏基本上为它形粒状结构。 胶状结构:有部分黄铁矿呈细的浑圆的胶状结构,有的集合成集合体。 告知结构:首要在上盘光片中见有褐铁矿告知黄铁矿。 包括结构:微细粒硫化物、金矿藏在脉石中呈包括结构。 3.8.2 矿石结构 浸染状结构:首要金属矿藏在矿石中呈此结构。 脉状结构:有的石英或方解石呈脉状产出。 角砾状结构:矿石呈碎裂或角砾而被硅质或碳质胶结。 3.9 金矿藏工艺特征 3.9.1 金矿藏品种 经过镜下对光片及团矿片的检测,该矿石中的金矿藏首要为天然金,少数为银金矿。 3.9.2 金矿藏形状 金矿藏因为其粒度细微,形状简略,多呈角粒状、浑圆状、麦粒状等。其成果见表10。表10  金矿藏形状特征丈量成果形状特征角粒状浑圆状麦粒状长角粒状算计相对含量(%)39.832.119.58.6100.0 3.9.3 金矿藏粒度特征 该矿石中金的粒度微细,在光片及团矿片中镜下所见最大金粒为8.5微米,其它多在2—5微米,在很多的镜检过程中没有发现硫化物中金,而挑选性溶金分析硫化物含金占金总量的86.26%,因而这部分金为惯例镜下难以分辩的金,为微粒金和次显微金。具体成果见表11。 表11  金矿藏粒度丈量分析成果粒径区间 (mm)>0.010.01—0.005算计相对含量 (%)微6.1693.84 (其间绝大大都为次显微金)100.0     从表11中能够看到金绝大大都都小于5微米,特别是硫化物中大都为次显微金,用机械磨矿很难使金矿藏单体解离。     3.9.4 金矿藏赋存状况     该矿石中在镜下所见金多赋存在脉石粒间,少数在脉石中,所见最大金粒为8.5微米,金矿藏粒度多在2—5微米,所见金粒数量少,因而难以供给金赋存状况数据。对-0.074mm占90%粒度原矿选用挑选性溶金办法,来检测该矿石中金的赋存状况,其成果见表12。 表12  金的赋存状况赋存状况单体露出金硫化物中金碳酸盐中金硅酸盐中金算计相对含量 (%)6.1686.261.366.22100.03.10 矿石工艺类型 该矿石硫化物含量为3.72%,含锑0.19%,含有机碳0.70%、石墨碳0.56%。金矿藏粒度多为微细粒与不行见金,矿石工艺类型属贫硫化物碳质微细粒浸染型难处理金矿石。3.11 矿石可磨度测定 将-2mm原矿筛去-0.15mm粒级后,每份500克,用标准球磨机进行磨矿,时刻别离为5′、10′、15′、20′,磨矿后筛分成果见表13。 表13  可磨度测定成果可磨度测定曲线见图2。 可磨度系数K=T0/T=354/330=1.07 式中:T0——标准矿石磨至-0.074mm占65%所需时刻(秒);       T——镇沅金矿石磨至-0.074mm占65%所需时刻(秒)。       K=1.07,镇沅金矿石磨至-0.074mm占65%时,比标准矿石易磨。 可磨度系数K′=T0′/T′=810/762=1.06 式中:T0′——标准矿石磨至-0.074mm占90%所需时刻(秒);       T′——镇沅金矿石磨至-0.074mm占90%所需时刻(秒)。       K′=1.06,镇沅金矿石磨至-0.074mm占90%时,比标准矿石易磨。图2  可磨度曲线      3.12 矿石工艺矿藏学研讨小结     (1)该矿石中金属硫化物含量为3.72%,金的粒度为微细粒及次显微金,含有0.70%的有机碳,矿石的工艺类型为贫硫化物碳质微细粒浸染型难处理金矿石。 (2)该矿石中金粒微细,镜下可见最大金粒为8.5微米,占93.84%的金小于5微米,其间大都呈次显微金。 (3)该矿石中金与金属硫化物联系十分亲近,硫化物中金占86.26%,脉石中金占7.58%,游离金仅占6.16%,硫化物粒度也比较细微,小于0.037mm的硫化物占73.1%,晦气于硫化物在磨矿过程中的单体解离。 (4)矿石中有机碳含量为0.70%,含量较高,具有极强的劫金才能,对湿法就地产金工艺会发生晦气影响。 4 浮选实验 4.1 流程探究实验 4.1.1 一段磨浮流程实验 4.1.1.1 –0.074mm占85%粒度的一段磨浮流程实验 实验流程及条件如图3,实验成果见表14。图3 一段磨浮实验流程(1) 表14  一段磨浮实验(1)成果-0.074mm含量(%)产品称号产率(%)金档次(g/t)金回收率(%)85金精矿17.2518.7763.87中  矿17.054.1914.10尾  矿65.701.722.03原  矿100.005.07100.00    4.1.1.2 –0.074mm占90%粒度的一段磨浮流程实验     实验流程及条件如图4,实验成果见表15。图4 一段磨浮实验流程(2) 表15  一段磨浮实验(2)成果-0.074mm含量(%)产品称号产率(%)金档次(g/t)金回收率(%)90金精矿10.7732.5769.58中  矿123.954.0619.29中  矿29.081.232.21尾  矿56.200.808.92原  矿100.005.04100.00    4.1.2 泥砂分选流程实验     实验流程及条件如图5,实验成果见表16。图5  泥砂分选流程 表16  泥砂分选实验成果-0.074mm含量(%)产品称号产率(%)金档次(g/t)金回收率(%)一段65% 二段95%精矿18.4243.9271.58精矿20.8852.138.88中矿10.483.166.42泥23.741.56.89尾矿56.480.576.23原矿100.005.17100.00    4.1.3 阶段磨浮流程Ⅰ实验     实验流程及条件如图6,实验成果见表17。图6  阶段磨浮流程Ⅰ 表17  阶段磨浮Ⅰ实验成果-0.074mm含量(%)产品称号产率(%)金档次(g/t)金回收率(%)一段65% 二段90%精矿17.7020.5173.11中矿118.812.7310.34中矿210.784.6910.18尾矿52.710.606.37原矿100.004.97100.00     4.1.4 阶段磨浮流程Ⅱ实验     实验流程及条件如图7,实验成果见表18。图7 阶段磨浮流程Ⅱ 表18  阶段磨浮Ⅱ实验成果-0.074mm含量(%)产品称号产率(%)金档次(g/t)金回收率(%)一段65% 二段95%精矿17.7446.4367.00精矿27.013.016.97精尾13.742.05.12中矿16.962.066.51尾矿54.860.434.40原矿100.005.36100.00由以上探究流程实验成果得知,阶段磨浮流程的回收率优于一段磨浮流程。一起探究了泥砂分选流程,因为矿泥含金档次为1.5g/t 且仍占有6.89%的回收率,不能直接抛尾,所以终究断定选用阶段磨矿浮选流程。 4.2 磨矿粒度实验 4.2.1 一段磨矿粒度实验 实验流程及条件如图8,实验成果见表19。图8  一段磨矿粒度实验流程 表19  一段磨矿粒度实验成果-0.074mm含量(%)产品称号产率(%)金档次(g/t)金回收率(%)60精矿17.0723.2975.81尾  矿82.931.5324.19原  矿100.005.24100.0065精矿16.1923.1772.47尾  矿83.811.7027.53原  矿100.005.18100.0070精矿17.0523.8976.24尾  矿82.951.5323.76原  矿100.005.34100.00    一段磨矿粒度为-0.074mm占60%时,目标比较抱负。    4.2.2 二段磨矿粒度实验     实验流程及条件如图9,实验成果见表20。 图9  二段磨矿粒度实验流程 表20  二段磨矿粒度实验成果-0.074mm含量(%)产品称号产率(%)金档次(g/t)金回收率(%)85精矿122.5518.5680.49精矿27.968.6413.22尾  矿69.490.476.29原  矿100.005.20100.0090精矿122.8918.4979.11精矿28.819.8216.17尾  矿68.300.374.72原  矿100.005.35100.0095精矿122.3418.7479.44精矿29.868.7216.31尾  矿67.800.334.25原  矿100.005.21100.00二段磨矿粒度为-0.074mm占90%时,目标比较抱负。 4.3 调整剂品种实验 实验流程及条件如图10,实验成果见表21。 图10  调整剂品种实验流程 表21  调整剂品种实验成果调整剂 品种调整剂 用量(g/t)产品称号产率(%)金档次(g/t)金回收率(%)Na2CO3800精矿1.95101.036.29精尾6.0717.6919.79中矿20.829.1635.14尾  矿71.160.678.78原  矿100.005.43100.00Na2SiO3800精矿2.2585.8035.82精尾3.4814.419.30中矿19.547.3826.76尾  矿74.732.0328.12原  矿100.005.39100.00CaO500精矿3.5151.634.04精尾7.2616.4622.46中矿19.179.5134.27尾  矿70.060.709.23原  矿100.005.32100.00CuSO4200精矿3.1872.3242.43精尾4.5415.0612.61中矿23.498.0334.80尾  矿68.790.8010.16原  矿100.005.42100.00 由实验成果可知,选用Na2CO3作为介质PH调整剂其目标较好。别的,选用CuSO4作为活化剂,浮选回收率未改进。 4.4 调整剂用量实验 实验流程及条件如图11,实验成果见表22。图11  调整剂用量实验流程 表22  调整剂用量实验成果Na2CO3 用量(g/t)产品称号产率(%)金档次(g/t)金回收率(%)400精矿8.4636.1055.58中矿19.649.5040.27尾  矿71.900.8010.47原  矿100.005.49100.00600精矿10.6233.8065.54中矿17.648.2626.60尾  矿71.740.607.86原  矿100.005.48100.00800精矿8.0237.9556.06中矿20.829.1635.15尾  矿71.160.678.79原  矿100.005.43100.001000精矿9.5932.0759.46中矿17.948.8630.73尾  矿72.470.709.81原  矿100.005.17100.00 由以上成果断定Na2CO3用量为600 g/t。 4.5 捕收剂品种实验 实验流程及条件如图12,实验成果见表23。图12  捕收剂品种实验流程 表23  捕收剂品种实验成果捕收剂品种及 用量(g/t)产品称号产率(%)金档次(g/t)金回收率(%)丁铵黑药 100精  矿15.907.7523.18中  矿25.0214.4367.92尾  矿59.080.808.90原  矿100.005.32100.00丁铵黑药50 丁黄药 100精  矿10.6233.8065.54中  矿17.648.2626.60尾  矿71.740.607.86原  矿100.005.39100.00BK301 100精  矿11.136.6513.79中  矿25.6615.9176.08尾  矿63.210.8610.13原  矿100.005.37100.00烷-1 60 丁铵黑药 50 丁黄药 100 P-1 60精  矿9.2538.9468.60中  矿20.726.0323.80尾  矿70.030.577.60原  矿100.005.25100.00 选用新式药剂烷-1及P-1实验成果与选用丁铵黑药与丁黄药组合没有太大差异,因而仍选用丁铵黑药与丁黄药组合作为捕收剂。 4.6 捕收剂用量实验 实验流程及条件如图13,实验成果见表24。图13  捕收剂用量实验流程 表24  捕收剂用量实验成果粗选捕收剂 用量(g/t)产品称号产率(%)金档次(g/t)金回收率(%)丁铵黑药40 丁黄药80精矿5.9538.5043.45中矿21.1312.4048.25尾  矿72.920.608.30原  矿100.005.27100.00丁铵黑药50 丁黄药100精矿10.6233.8065.54中矿17.648.2626.60尾  矿71.740.607.86原  矿100.005.39100.00丁铵黑药70 丁黄药140精矿12.7230.6271.01中矿19.076.5522.77尾  矿68.210.506.22原  矿100.005.49100.00丁铵黑药80 丁黄药160精矿14.9226.3673.03中矿19.905.7621.28尾  矿65.180.475.69原  矿100.005.39100.00 丁铵黑药总量为180g/t,丁黄药总量为360g/t时浮选目标较好。粗选作业用量为丁铵黑药70g/t及丁黄药140g/t,各次扫选作业折半。 4.7 浮选时刻实验   实验流程及条件如图14,实验成果见表25。图14  浮选时刻实验流程 表25  浮选时刻实验成果时刻(分)产品称号产率(%)金档次(g/t)金回收率(%)单个累计单个正累计负累计单个正累计负累计单个正累计44精矿16.156.15100.0036.3036.305.2542.5042.5026精矿21.747.8993.8526.5034.143.228.7851.2828精矿31.179.0692.1123.2032.732.785.1756.45210精矿40.9710.0390.9420.4031.532.523.7760.22212精矿50.9210.9589.9721.4030.682.323.7563.97214中矿13.5914.5489.0516.1027.082.1311.0074.97216中矿22.016.5485.4610.3025.051.543.9278.89218中矿31.4918.0383.468.1023.651.332.3081.19220中矿42.7520.7881.975.9221.311.213.1084.29222中矿52.0522.8379.224.9219.831.041.9286.21224中矿61.5424.3777.174.4918.860.941.3287.53226中矿71.6626.0375.634.2017.930.871.3388.86228中矿81.6627.6973.973.2417.050.791.0289.88230中矿91.3829.0772.312.8716.380.730.7590.63232中矿101.2330.3070.932.7915.820.690.6591.28234中矿111.1331.4369.702.5415.350.660.5591.83236中矿121.0332.4668.572.3414.930.650.4692.29尾矿67.54100.067.540.605.250.607.71100.0原矿100.05.25100.0从浮选时刻实验成果可知,该矿石浮游速度缓慢,前12分钟浮选回收率仅为63.97%,从负累计档次可看出,浮选尾矿下降速度较缓慢,浮选30分钟后回收率上升也很缓慢,故断定浮选时刻为30分钟即可。 4.8 归纳条件实验 归纳条件实验选用条件实验所断定的最佳参数,进行了一段磨浮与阶段磨浮流程的实验。 4.8.1 阶段磨浮流程归纳条件实验 实验流程及条件如图15,实验成果见表26。图15  阶段磨浮归纳条件实验流程 表26  阶段磨浮归纳条件实验成果产品称号产率(%)金档次(g/t)金回收率(%)单个累计单个累计单个累计精矿10.78—114.57—17.05—1精尾40.651.4381.0399.3210.0527.101精尾30.922.3557.0382.7710.0137.111精尾21.563.9132.4362.689.6546.761精尾14.077.989.9035.767.6954.45精矿20.45—116.70—10.0264.472精尾40.300.7566.4996.623.8168.282精尾30.471.2230.1070.992.7070.982精尾31.502.727.0435.722.0273.002精尾14.387.102.2515.071.8874.88中矿17.08—12.10—16.3591.23中矿24.89—2.35—2.1993.42中矿34.80—1.50—1.3794.79尾矿68.15—0.40—5.21100.00原矿100.005.24100.00    从实验成果可知,一段浮选二次精选、二段浮选二次精选即可。     4.8.2 一段磨浮流程归纳条件实验     实验流程及条件如图16,实验成果见表27。图16  一段磨浮归纳条件实验流程表27  一段磨浮归纳条件实验成果产品称号产率(%)金档次(g/t)金回收率(%)精矿2.9796.0854.35精尾Ⅰ7.283.334.62精尾Ⅱ1.954.171.55精尾Ⅲ1.2111.842.73精尾Ⅳ1.7937.0812.64中矿18.626.1910.16中矿24.723.993.59中矿33.692.631.85尾矿67.770.668.51原矿100.005.25100.00从实验成果能够看出阶段磨浮流程的目标略好于一段磨浮流程。为了进一步比照两种流程,又别离进行了阶段磨浮及一段磨浮的闭路实验。 4.9  一段磨浮流程闭路实验 4.9.1 两次精选作业的一段磨浮流程闭路实验 实验流程及条件如图17,数质量流程如图18,实验成果见表28。图17  两次精选的一段磨浮闭路流程图18  两次精选的一段磨浮数质量流程表28  闭路实验成果产品称号产率(%)金档次(g/t)金回收率(%)精矿9.7847.5687.15尾矿90.220.7612.85原矿100.005.34100.00    4.9.2 四次精选作业的一段磨浮流程闭路实验     实验流程及条件如图19,数质量流程如图20,实验成果见表29。图19  四次精选的一段磨浮闭路流程图20  四次精选的一段磨浮数质量流程表29  闭路实验成果产品称号产率(%)金档次(g/t)金回收率(%)精矿7.3362.4886.18尾矿92.670.7913.82原矿100.005.31100.00    4.10阶段磨浮流程闭路实验     4.10.1 两次精选作业的阶段磨浮流程闭路实验     实验流程及条件如图21,数质量流程如图22,实验成果见表30。图21  两次精选的阶段磨浮闭路流程图22  两次精选的阶段磨浮数质量流程表30  浮选闭路实验成果产品 称号产率 (%)档次(%)回收率(%)Au(g/t)AsSAuAsS金精矿10.2147.870.7518.7490.5289.5090.26尾  矿89.790.570.010.239.4810.509.74原  矿100.005.400.0862.12100.00100.00100.00     4.10.2 四次精选作业的阶段磨浮流程闭路实验     实验流程及条件如图23,数质量流程如图24,实验成果见表31。图23  四次精选的阶段磨浮闭路流程图24  四次精选的阶段磨浮数质量流程 表31  闭路实验成果产品称号产率(%)金档次(g/t)金回收率(%)精矿7.5263.5989.60尾矿92.480.6010.40原矿100.005.34100.00    5 浮选实验产品考察     5.1 原矿-0.074mm占85%、90%、95%硫化物单体解离度考察     对该产品首要是经过磨制团矿片,镜下进行金属硫化物单体解离度考察,在镜下检测过程中,因为富连体在浮选过程中简单进入精矿样品,在检测计算过程中视为单体硫化物,丈量成果见表32。 表32  原矿硫化物单体解离度考察成果连生联系单体 (富连体)硫化物与 脉石脉石包裹算计相对含量 (%)-0.074mm占85%79.614.06.4100.0-0.074mm占90%82.811.75.5100.0-0.074mm占95%84.410.55.1100.0    经过表32中硫化物单体解离度考察成果能够看到,大大都硫化物呈单体和富连体,而纯脉石包裹硫化物别离占6.4%、5.5%、5.1%,硫化物解离特征无显着差异。     5.2 –0.074mm占90%粒度原矿金的赋存状况考察     对该粒度的样品进行消除有机碳和挑选性溶金办法进行考察,其成果见表33。 表33  金的赋存状况分析成果赋存状况单体可浸金硫化物中金脉石中金算计相对含量 (%)6.1686.267.58100.0    5.3 浮选尾矿硫化物丢失状况及金矿藏丢失状况考察     对金档次为0.57g/t的闭路浮选尾矿进行考察,经过磨制团矿片经镜下检测,样品基本上见不到硫化物颗粒,偶然只见到小于3微米以下的硫化物包裹体,选别作用较好。丢失于尾矿中的硫化物绝大大都为脉石包裹硫化物,丢失于尾矿中的金矿藏绝大大都为脉石包裹金。其硫化物赋存状况检测成果见表34,金的赋存状况见表35。 表34  浮选尾矿硫化物丢失状况考察连生联系硫化物单体与脉石连生脉石包裹算计相对含量 (%)2.64.193.3100.0表35  浮选尾矿金的赋存状况考察赋存状况单体露出金硫化物中金脉石中金 ,算计相对含量 (%)1.121.4397.45100.0     5.4 金精矿多元素分析 表36  多元素分析成果元素Au(g/t)Ag(g/t)SFeCaOMgOAl2O3含量(%)47.8710.5018.7423.654.013.4210.49元素SiO2AsCCuPbZnSb含量(%)21.810.755.210.0510.0250.0741.40     注:金精矿为阶段磨浮二次精选作业闭路实验精矿。    5.5 精矿碳物相分析 表37  精矿碳物相分析相别C/碳酸盐C/有机碳C/石墨C总含量(%)1.291.762.165.21相对含量(%)24.7633.7841.46100.00    5.6 精矿硫物相分析 表38  精矿硫物相分析相别S/硫酸盐S/硫化物S/天然硫S总含量(%)0.2118.280.2518.74相对含量(%)1.1297.551.33100.00    5.7浮选精矿产品考察     对浮选精矿进行磨制团矿片,经镜下进行硫化物单体解离度考察,其成果见表39,金的赋存状况见表40。 表39  精矿硫化物单体解离度考察连生联系单体与脉石连生脉石包裹算计相对含量 (%)92.16.51.4100.0表40  精矿金的赋存状况考察赋存状况单体露出金硫化物中金脉石中金算计相对含量(%)12.1584.743.11100.0    5.8 沉降实验     (1)原矿-0.074mm占90%沉降速度测定。     对原矿进行浓度为15%、20%沉降实验,成果见表41,沉降曲线见图25。 表41  原矿-0.074mm占90%沉降速度实验成果沉降时刻弄清区高度(mm)小时分浓度:15%浓度:20%515810301520582830864140112545013667115679120190103140217125223914823026817832802093302832254286229430288232529023562942408297243930024624312266沉降总高度(mm)392362 图25  原矿沉降速度曲线    (2)原矿-0.074mm占60%沉降速度测定。     对原矿进行浓度为25%、30%沉降实验,成果见表42,沉降曲线见图26。 表42  原矿-0.074mm占60%沉降速度实验成果20沉降时刻弄清区高度(mm)小时分浓度:25%浓度:30%5141110251620462530653340844150102501119631 1557614017587219610423020212932061343302081384211142430213145521514862191528225159922616224231179沉降总高度(mm)392362图26  原矿沉降速度曲线     (3)浮选精矿沉降速度测定。     选用图十九浮选闭路实验精矿,矿浆浓度10%、15%,沉降实验成果见表43,沉降曲线见图27。 表43  浮选精矿沉降速度实验成果沉降时刻弄清区高度(mm)小时分浓度:10%浓度:15%512111110193159152882152029124530293265129427313029427422942753294276529427624294276沉降总高度(mm)325325图27 精矿沉降速度曲线     (4)浮选尾矿沉降速度测定。      选用图二十三浮选闭路实验尾矿,矿浆浓度15%、20%,沉降实验成果见表44,沉降曲线见图28。 表44  浮选尾矿沉降速度实验成果沉降时刻弄清区高度(mm)小时分浓度:15%浓度:20%5851015102029193041274053355065441765212098681401198421409923017112332031493302181724222177522818462321877235190823919492431981026122224262222沉降总高度(mm)341321图28  尾矿沉降速度曲线 6 引荐准则工艺流程及技能条件 工艺参数及流程结构: 一段磨矿:-0.074mm占60% 一段浮选:一次粗选、一次扫选、二次精选 二段磨矿:-0.074mm占90% 一段浮选:一次粗选、二次扫选、二次精选技能条件:药剂条件 作业Na2CO3 (g/t)丁铵黑药 (g/t)丁基黄药 (g/t)2#油 (g/t)浮选时刻 (min)一段磨矿粗选60050100405扫选3570205二段磨矿粗选3004080408扫选Ⅰ2040206扫选Ⅱ2040206算计90016533014030图29  引荐浮选工艺流程    7 结语     (1)云南镇沅矿石中金矿藏及其载体矿藏粒度微细,晦气于金矿藏的露出与解离,需要在较细的磨矿粒度条件下进行浮选。     (2)浮选实验研讨标明,该矿石选用阶段磨浮流程成果好于一段磨浮流程,在原矿粒度为90%-0.074mm时,一段磨浮尾矿档次为0.76g/t,浮选回收率为87.15%,阶段磨浮尾矿档次为0.57g/t,浮选回收率为90.52%。因而断定选用阶段磨浮流程进行浮选。     (3)因为矿石中含有一定量的含泥碳质矿藏,影响矿石矿化速度,因而矿石浮游速度缓慢,需要在较高药剂浓度下长时刻浮选。     (4)闭路实验浮选尾矿档次0.57g/t,经产品考察,丢失于尾矿中的硫化物93.3%为脉石包裹,丢失于尾矿中的金97.45%为脉石中金。

云南铜业将建全国规模最大的铜矿山

2019-01-25 10:18:44

从云铜集团了解到,到2010年,云铜将在云南省迪庆藏族自治州形成年产20万吨精矿含铜的规模,建成全国规模最大的铜矿山。     2006年下半年,云铜集团将在迪庆首期建成一座2万吨采选厂,此为云南建国以来一次建成的产量规模最大,速度最快,投资最省的铜采选厂。     据了解,云铜集团把迪庆矿业开发作为实施资源战略重中之重的项目,在短短一年多时间一举突破迪庆矿业几十年徘徊不前的局面,新建矿山迪庆矿业公司从洽谈到风险勘探,研究论证,确定采选厂开工建设仅用了14个月,云铜集团先期投入勘探资金5000万元,探获近300万吨铜金属储量。迪庆州投资8000万元建设的矿区公路,11万伏输电线路进展顺利,将于10月份建成。

云南氧化锌矿浮选药剂制度实例介绍

2019-02-26 16:24:38

氧化锌矿的浮选 氧化锌矿藏有:菱锌矿(ZnCO3)、红锌矿(ZnO)、异极矿(Zn2SiO4·H2O)、硅锌矿(Zn2SiO4)等。其间最有利用价值的是菱锌矿。 最常用的浮选办法有两种:加温硫化浮选法;常温下阳离子捕收剂法。 加温硫化法:首要脱去-10μ细泥,浓缩今后,升温至50℃,用硫化氧化锌矿藏,用硫酸铜活化,再用高档黄药作首要捕收剂,用柴油、焦油等作辅佐捕收剂,2#油作起泡剂,水玻离作脉石按捺剂,一般浮选作用杰出。但当含有很多氢氧化铁时作用欠好。 阳离子捕收剂法,也就是伯胺法,适用于含高铁物料的浮选。 阳离子捕收剂法是在常温下进行的浮选,用阳离子捕收剂。在伯胺中只要C12~C18浮选作用最好。伯胺中饱满胺比不饱满胺好,直链的比支链的好,C16以上的胺不易于溶解矿浆要加温,C10~C20的混合胺比单一的十八碳榜首胺好。矿浆pH值为10.5~11.5,调整pH用,按捺剂采用水玻离按捺铁质脉石以及绢云母化和绿泥石化脉石、用六偏磷酸钠按捺石英和白云石,以上两种按捺剂合用几呼能按捺一切脉石矿藏。用栲胶能够更有用的按捺白云石等碳酸盐类脉石矿藏。 若原矿氧化锌是以异极矿和硅锌矿为主而脉石以绿泥石和绢云母为主,用磷酸盐类按捺剂按捺脉石,作用比较好。 在阳离子捕收剂浮选中,矿泥的影响比较突出,-10μ细泥含量在15%以内时加苏打、水玻璃、羧甲基纤维素、腐植酸钠等能够消除矿泥影响,不用脱泥。大于15%时要进行脱泥加0.3~0.5公斤/吨·原矿的、硅酸钠等分散剂脱泥作用好。 广西泗顶选矿厂氧化铅锌矿的浮选 矿石类型有硫化矿、氧化矿、混合矿,原生金属矿藏首要为方铅矿、闪锌矿,此外还有黄铁矿、褐铁矿和赤铁矿。氧化金属矿藏首要有白铅矿、铅矾、菱锌矿、红锌矿和水锌矿等。锌的氧化矿藏中菱锌矿和氧化锌约占80%,硅锌矿和异极矿占18%,硫酸锌矿藏占2%,脉石矿藏首要为方解石、白云石、重晶石、石英和粘土。闪锌矿粒度0.01~12mm。锌档次6%~7%,氧化率40%,有时达50%。铅档次1%~2%,氧化率20%~30%。浮选目标:锌原矿档次7.24%,锌精矿档次49.5%,锌回收率74%,铅原矿档次1.2%,铅精矿档次54%,铅回收率65%。选锌浮选前脱除细泥,用混合胺作捕收剂,用作调整剂,混合胺与多段增加比一段增加为好,浮选氧化锌时pH值在11左右。代号 ZNY 有用物质含量 90(%),外观为淡黄色膏状 首要用途:氧化锌矿浮选(菱锌矿、硅锌矿、异极矿等氧化锌矿) 浮选功能:具有杰出的浮锌挑选功能,耐低温功能(最低温度5℃)。 运用办法:将药剂用水兑成2%水溶液运用,用40℃温水溶解即可。 适用范围:菱锌矿等,锌1%左右的氧化矿能够选到含锌30%以上的锌精粉,锌回收率70%以上。 环保功能:药剂无毒无害,易生物降解,对环境友好,契合环保要求。 产品特色: 1.不脱泥优先浮选办法; 2.可常温浮选,节能降耗; 3.泡沫适中,浮选安稳,易于出产操作; 4.对各类氧化锌矿有特效,可完成氧化锌矿资源加工工业化。 产品质量标准:Q/HS-2017 项目 质量标准 实验办法 外观(250C) 粘稠物 目测 活性物含量,% ≥ 90 PH值(5%水溶液) 8-9 PH试纸法 包装规格:200公斤/铁桶或塑料桶。 运送与储存: 不燃不爆,按一般化工产品运送。

云南某铜钴矿的选冶试验研究

2019-02-22 14:08:07

钴是一种银白色金属,归于铁族元素。钴的矿藏或钴的化合物一向用作陶瓷、玻璃、搪瓷的釉料。直到20世纪,钴及其合金才在电机、机械、化工、航空和航天等工业部门得到广泛的使用,且消费量逐年添加。当今,钴已经成为一种全球的战略物资。我国钴资源十分稀缺,2007年对外依存度到达90%,是对外依存度最高的有色金属元素。因而,加大对钴矿石的选别使用具有重要的含义。 1 矿石性质          矿样来自云南某选厂的铜钴矿石,矿样首要化学成分分析见表1                            表1矿样首要化学组成分析成果(质量分数)/%CuCoSFeAsSiO2CaOAl2O3MgO0.230.247.499.270.04155.12.698.720.99矿石中首要有用金属矿藏为黄铁矿、黄铜矿、含钴黄铁矿、铁硫砷钴矿以及少数的铁硫砷钴矿等;麦石矿藏首要为石英、长石、白云母等。由于该矿石中有用矿藏品种繁复,所以该矿藏归于杂乱难选的硫化矿。 2实验研讨         钴多伴生在铁、铜和镍矿中。工艺矿藏学研讨发现,该矿石中的钴首要是以类质同象的办法代替黄铁矿中的铁离子赋存在黄铁矿中。现在国内外对处理硫化铜钴矿石的浮选工艺流程计划首要有两种:第一是混合浮选;第二是优先浮选。本文选用石灰抑硫、优先浮选取得铜,然后再对硫钴精矿选用焙烧-湿法浸出取得钴和铁。 2.1选矿实验       2.1.1磨矿粒度对现场原矿在不同磨矿粒度下进行了选矿探究实验。矿样磨细,粗精矿中铜钴档次改变不大,收回率逐步升高,适宜的磨矿粒度为-0.074mm粒级占80%。 2.1.2浮选实验工艺矿藏学研讨标明,硫钴精矿中首要钴矿藏为铁硫砷钴矿(Co,Fe)AsS,矿藏含钴量12%~30%,钴与铁类质同象代替。由于钴矿藏首要以含钴黄铁矿办法存在,一般用石灰按捺钴、铁硫化矿藏。其原理是,石灰在水中生成氢氧化钙,它进一步解离得到ca2+和OH一,这两种离子对硫化铁矿藏均有按捺作用,OH一使硫化铁矿藏表面生成氢氧化铁的亲水薄膜,阻碍了捕收剂的吸附,而Ca2+在硫化铁矿藏表面生成CaSO4等难溶化合物,从而使硫化铁矿藏遭到按捺。依据矿样的矿石性质,实验决议选用抑硫浮铜的计划,进行铜硫别离实验。别离取得铜精矿、硫钴精矿。原矿浮选准则流程见图3,浮选探究实验成果见表2。表2成果标明,选用优先浮铜,铜、钴别离经一次粗选、二次精选的工艺,可取得含铜16.95%、含钴0.37%的铜精矿和含钴1.17%、含铜0.23%的钴精矿,铜钴取得较好别离。                                            表2原矿浮选实验成果产品名称产率/%档次/%收回率/%铜钴铜钴铜精矿0.816.950.3760.281.28铜中矿5.530.520.6712.7816.01硫钴精矿12.710.231.1712.9964.26硫钴中矿6.220.120.353.329.41尾矿74.740.0320.02810.639.04给矿100.000.2250.231100.00100.00选用电子显微镜能谱分析和MLA矿藏自动检测技能对浮选所获硫钴精矿进行了矿藏查定和定量测定,硫钴精矿的首要成分见表3。表3硫钴精矿首要成分分析成果(质量分数)/%CuCoSCaOAl2O3FeMgOSiO20.231.1747.10.210.8740.070.0812.53检测标明,浮选所获硫钴精矿含钴1.17%,含硫47.1%,含铁40.07%。工艺矿藏学研讨标明硫钴精矿中的钴首要会集在黄铁矿中,且以类质同象的办法与黄铁矿共生,这也是通过屡次精选,硫钴精矿含钴仅为1%左右的原因。 2.2硫钴精矿冶金实验 钴含量为1.17%的精矿在市场上较难供应,因而对浮选所获硫钴精矿进行了冶金提钻探究实验研讨。对浮选所获硫钴精矿,选用高压氧浸出,在技能上可行,但由于钴的档次太低,设备的投入将很大,一起生产中要耗费很多的氧,经济上不划算,所以选用火法焙烧-湿法浸出的办法。在火法焙烧过程中硫能够得到充沛的使用,通过收回焙烧过程中的烟气制取硫酸,经济效益较好,焙砂浸出后的浸出渣中铁的档次能够到达65%,可直接作为铁精矿供应,浸出液通过一次除铁后用沉钴得到的钴渣中钴的档次能够提高到13%左右,直接作为钴精矿进行供应。实验成果见表4。                                表4硫钴精矿冶金实验成果产品名称档次/%收回率/%钴铁钴铁钴渣13.0215.886.5-铁精矿0.2362.25-90.33结语 1)对原矿样选用石灰抑硫、优先浮铜工艺流程,在磨矿粒度为-0.074mm粒级占80%的条件下,可取得铜精矿含铜16.95%、铜收回率60.28%,硫钴精矿含钴1.17%、钴收回率64.26%的技能指标,钴能得到有用富集。2)浮选所获硫钴精矿的首要成分为黄铁矿,钴类质同象代替黄铁矿中的铁。这也是通过屡次精选,硫钴精矿含钴仅为1%左右的原因。3)对含钴1.17%、硫47.1%、铁40.07%的硫钴精矿选用焙烧-湿法浸出的办法进行富集,得到钴渣中钴的档次可达13.02%,浸出渣铁精矿中铁的档次可到达62.25%,钴得到很好的富集,而且硫能够制取硫酸,铁能够归纳收回。

云南某高磷褐铁矿石选冶联合工艺研究

2019-01-24 09:38:21

随着我国钢铁工业的高速发展,国内铁矿石资源日益紧张,可利用的铁矿资源日益趋向于贫、细、杂。为提高我国铁矿石资源的自给率,缓解进口铁矿石的压力,需要研究开发利用大量的难选铁矿石。我国铁矿资源中硫、磷、二氧化硅等有害杂质含量高,杂质与有用铁矿物紧密共生,给铁精矿除杂造成了一定的难度。磷是钢铁冶炼过程中主要的有害元素之一,严重影响炼钢工艺和钢材产品质量。随着冶金工业的发展和新工艺的实施,对铁精矿的质量要求越来越高,对磷的含量也有严格的限定,因此铁精矿高效降磷迫在眉睫[1-3]。 目前国内外对难选低品位高杂质褐铁矿的选矿多采用强磁选-正浮选、弱磁选-强磁选-正浮选、分级-重选-细粒级浮选、絮凝-强磁选、反浮选-焙烧-弱磁选、焙烧-弱磁选-反浮选等联合流程[4]。 云南某褐铁矿石资源量好,铁矿物粒度嵌布复杂,含磷高,且泥化现象严重,属难选呆矿石,长期以来一直没得到开发。为了开发利用矿产资源,提高企业矿产资源自给率,企业方委托昆明理工大学对该矿石进行选冶试验研究。经一系列探索性试验研究,发现采用常规单一的强磁选,重选,浮选方法选别后得到的精矿铁品位很难达到48%以上,含磷却在0.8%以上。针对这种情况,研究了反浮选-磁化还原焙烧-超细磨磁絮凝的选冶联合工艺,最终获得了铁品位为69.57%,回收率为71.62%的铁精矿,其中含磷0.29%、含硫0.17%、含硅5.75%、获得了令人满意的技术指标。 一、矿石工艺矿物学研究 云南某铁矿是一个多期、多因、多类型叠加的具有复合特征的大型铁矿床,地质储量达19.94亿t,主要分为原生矿和氧化矿两大类别。氧化矿石分布于矿体露天,占总储量的16%,氧化矿石矿物组分以褐铁矿为主,分子式为2Fe2O3•3H2O,含量约占70%。矿石中的褐铁矿通常是多矿物的集合体,由针铁矿、纤铁矿、水针铁矿、水纤铁矿、以及含水的氧化硅、泥质等机械混人物组成。褐铁矿常呈不规则粒状、网状、胶状嵌布在石英中,由于矿物单体大部分粒度细小,彼此大多互相呈浸染状分布而不易区分;脉石矿物主要为石英和绿泥石,其次为胶磷矿和蒙脱石。褐铁矿粒度一般为0.004~0.15mm,最小为0.002mm。该矿石中的褐铁矿有两种成因类型,一种为沉积型褐铁矿,是在沉积岩形成的过程中形成,常以胶结物的形式分布于石英碎屑之间,中间常混入细小的蒙脱石、绿泥石。沉积型褐铁矿呈隐晶状集合体;褐铁矿的第二种成因类型为外生作用下经氧化水解形成褐铁矿集合体。这种类型褐铁矿的成分差异比较大,其中磷的含量也有较大的变化。石英嵌布粗细不均,产出粒度为0.015~1mm。矿石中有3种成因形成的石英,第一种为沉积形成的硅质岩后重结晶形成显微粒状的石英;第二种为石英碎屑;第三种为后生石英,粒度相对较大,常成脉状条带状分布。矿石中有害元素磷是以胶磷矿的形式存在,胶磷矿是由极细的磷灰石集合体构成,胶磷矿产出粒度为0.003~0.2mm。矿石中含磷较高,而磷并不是以独立矿物的形式存在,而是有90%以上呈类质同象和极细的机械混入物的形式存在于载体矿物褐铁矿中。 原矿主要化学元素分析结果如表1所示。从表1可见,原矿全铁含量为43.75%,杂质硅和磷含量较高,而硫含量较低。原矿铁物相分析结果如表2所示。从表2可见:原矿中主要含铁矿物为褐铁矿,褐铁矿之中的铁占69.10%,其它矿物中的铁很少。鉴于对原矿工艺矿学的研究以及在对类似铁矿石研究的基础上,曾得出单一的选矿或冶金都不是最佳的方法,只有通过选矿与冶金的有机联合,才能获得比较好的经济效益,以下研究工作主要思路:通过选矿的方法尽量降低原矿中磷的含量,同时要确保铁的回收率,再将所得脱磷粗精矿进行磁化还原焙烧-弱磁选或磁絮凝试验,最终得到合格铁精矿。 二、选矿工艺技术的研究 (一)强磁选流程试验 褐铁矿与脉石矿物的磁性差异较大,具备强磁选的分选条件,因此进行强磁选流程试验。将原矿磨至-0.074mm占90%,调解好冲洗水,给矿浓度及分选时间等条件后,在磁场强度为880kA/m下进行强磁选,试验结果见表3。从表3可见,强磁选作业得到的铁精矿品位和回收率分别为45.35%,69.03%,磷在精矿中有所富集。其原因是双重的。一方面,铁物相分析结果表明硅酸铁占有率为17.67%,这部分铁在强磁选中不能很好地回收。另一方面,由于原矿中磷灰石嵌布粒度非常细,无法使其与铁矿很好地解离,因而不能降低精矿中磷的含量,最终磷随铁精矿的富集而富集。原矿经磨矿后,铁矿物的粒度两极分化严重,使得部分细粒铁矿物又损失在尾矿中,因此强磁选作业并没有达到预先抛尾保铁降磷的效果。 (二)直接反浮选脱磷流程试验 在一定的浮选条件下,利用弱磁性铁矿物与磷灰石矿物表面性质的差异,采用阴离子捕收剂进行直接反浮选脱磷试验[5],来达到“保铁降杂”的目的,下面对这一工艺的浮选条件及合理的药剂制度进行了探索性试验。 1、磨矿细度试验 磨矿细度对选矿的标影响非常大,对于细粒嵌布铁矿而言,磨矿不仅要使矿物达到单体解离的目的,同时不能使矿石泥化而影响分选指标。在矿浆自然pH为6.5的条件下,进行了磨矿细度试验。试验流程为一段反浮选脱磷粗选,试验结果见表4。从表4可见,随着磨矿细度的增加,铁精矿铁品位变化不大,但铁的回收率有所下降。磷品位有所上升,脱磷率不高。当磨矿细度增大后含磷矿物解离度会增加,同时褐铁矿也容易泥化,使得捕收剂选择性变差,此外由于含磷矿物基本上是以类质同象及极细的机械混入物的形式存在于褐铁矿中,通过细磨也无法使含磷矿物单体解理出来。综合考虑,反浮选磨矿细度-0.074mm占90%较为适宜。 2、Na2CO3用量试验 在磨矿细度为-0.074mm占90%下,为消除矿浆中Ca2+,Mg2+等有害离子的影响,同时反浮选脱磷宜在碱性矿浆中进行,试验采用Na2CO3调节矿浆pH值,进行Na2CO3用量试验,试验结果见表5。从表5可见,随着Na2CO3用量的增大,铁精矿中铁品位呈上升趋势,磷品位变化不大,铁回收率有所上升,尾矿中磷品位增大。综合考虑,Na2CO3用量6.5~7.4kg/t比较适宜,此时矿浆pH=9~10之间,铁精矿含磷0.75%,铁回收率为93.61%。 3、捕收剂种类试验 在磨矿细度为-0.074mm占90%,pH=9~10,新调整剂(1)240g/t,水玻璃4 000g/t,淀粉800g/t下,进行捕收剂种类试验,试验结果见表6。从表6可见,捕收剂M反浮选脱磷效果相对较好,M为脂肪酸类捕收剂按一定比例配制而成,当用量为600g/t时,得到精矿铁品位为44.86%,含磷0.74%,铁的回收率为93.23%。 4、二段反浮选脱磷试验 粗选条件探索性试验表明:一段反浮选脱磷后,槽内铁精矿含磷为0.74%,为进一步降低槽内铁精矿中磷的含量,进行了二段浮选脱磷试验,试验流程及条件如图1所示。试验结果见表7。   从表7可见,粗选2并没有使槽内精矿磷进一步降低,其尾矿含磷仍有0.84%,磷的脱除率低,同时损失近4个百分点的铁矿物回收率。因此通过多段反浮选来降低槽内铁精矿中磷含量的效果并不明显。此外,抑制剂及捕收剂用量探索性试验结果表明该矿石采用反浮选深度降磷的难度非常大,槽内精矿含磷在0.75%左右,铁矿物回收率在90%左右。 三、磁化还原焙烧工艺技术的研究 (一)焙烧温度试验 上述选矿工艺技术研究结果表明,整个作业磷的脱除率不高,铁精矿品位不到45%,含磷0.75%左右。为提高铁精矿品位,同时降低铁精矿中磷的含量,将脱磷铁精矿进行了磁化还原焙烧试验。磁化还原焙烧-弱磁选是在矿石中加入还原剂碳粉及助剂Na2CO3进行焙烧,使褐铁矿等弱磁性铁还原成强磁性铁矿物。助剂Na2CO3改变有害杂质的物相组成,然后采用弱磁选方法分选出铁精矿。影响焙烧的因素较多,主要有矿石性质、焙烧温度、焙烧时间、入烧粒度、焙烧气氛以及助剂种类和用量等。经一系列条件探索性试验后,确定了煤粉用量为15%,助剂Na2CO3用量为10%,焙烧时间为120min的条件。在最佳条件组合下,考察了焙烧温度的影响。脱磷精矿还原焙烧试验流程见图2,焙烧温度试验结果见表8。     从表8可见,在不同的温度下,脱磷精矿经磁化还原焙烧后,有5%~8%的烧失率,焙烧后铁品位能提高1%~3%。同时磷含量由0.75%上升到0.8%左右。还原焙烧温度对分选指标也有很大的影响,温度从800℃增大到1 070℃,精矿铁品位从51.52%升到63.80%,铁回收率从34.76%上升到74.31%。但铁精矿中磷品位含量超标。焙烧温度为1 070℃时,铁精矿含磷量也高达0.63%,试验中发现温度超过1 100℃后,矿石发生软熔,弱磁选作业铁回收率很低,因此取焙烧温度为1 070℃。 (二)磁絮凝试验 为降低最终铁精矿中磷的含量,对焙烧矿样进行超细磨以增大铁矿物与磷矿物的解离度,考虑到常规的弱磁选设备不能很好地回收细粒级铁矿物,试验中采用磁絮凝的方法来分选磁性矿物,同时进行了磁絮凝与磁选管对比试验。磨矿细度对磁絮凝的影响试验结果见表9。从表9可见,磨矿细度对磁絮凝指标影响比较大,随着磨矿细度的增加,最终精矿铁品位有所提高,磷含量明显降低。磨矿细度为38μm占90%时,磁絮凝精矿铁品位为68.06%,含磷0.3%,铁回收率为82.74%。同时通过表8数据对比可以看出,磁絮凝比磁选管能获得更高的铁回收率,精矿磷含量由0.63%降至0.30%;同时对38μm占90%的焙烧矿样进行了磁选管试验,在磁场强度为96kA/m下经1次粗选,最终铁精矿铁品位为70.12%、含磷0.28%、铁回收率为60.59%。这表明焙烧矿样经过超细磨后,增大了铁矿物与磷矿物的解离度,采用磁絮凝能很好地降低精矿中磷的含量。此外磁絮凝过程中微细粒铁矿物被外加磁场所磁化形成絮凝,进而增大了分选粒度,克服了弱磁选设备对微细粒铁矿物回收差的弊端,从而获得更高的铁回收率。 四、全流程试验 在以上试验的基础上,进行了反浮选-磁化还原焙烧-磁絮凝的全流程试验,试验全流程如图3,精矿主要化学元素分析结果见表10。试验结果表明,在反浮选-磁化还原焙烧-磁絮凝全流程试验中,可以获得品位为69.57%、回收率为71.62%的铁精矿。铁精矿含磷0.29%,含硫0.17%,含硅5.75%。 五、结论 (1)工艺矿物学研究表明:云南某褐铁矿铁石性质复杂、矿物粒度嵌布微细、泥化现象严重、含磷高、且大部分磷以类质同象和极细的机械混入物的形式存在褐铁矿中,属难选呆矿石。 (2)常规单一的强磁选、重选、浮选工艺对该矿石几乎没有分选效果。为此采用反浮选-磁化还原焙烧-超细磨磁絮凝的工艺流程处理该矿石,获得了铁品位为69.57%、回收率为71.62%、铁精矿含磷为0.29%、含硫为0.17%,含硅为5.75%,技术指标令人满意。 (3)超细磨-磁絮凝能很好降低精矿中磷的含量,提高精矿品位,同时解决常规弱磁选设备不能有效回收微细粒级铁矿物的问题。这一工艺为难选高磷铁矿石的提铁降杂提供了一种新的方法。试验中最佳参数的确定需要作进一步研究。 (4)随着矿石资源的日益紧张和对冶炼原料的要求越来越高,用简单的物理选矿工艺处理难选矿石变得越来越困难,寻求新的选矿工艺显得尤为重要。本研究为类似难选褐铁矿石的分选提供了一种新的思路。 参考文献 [1] 袁致涛,高太,印万忠,等.我国难选铁矿石资源利用的现状及发展方向[J].金属矿山,2007(1):1-6. [2] 褚  永,李玉平.国际铁矿石资源市场均衡价格探讨[J].金属矿山,2008(2):13-15. [3] 孙克己,卢寿慈,等.弱磁性铁矿石脱磷选矿试验研究[J].中国矿业,1999(6):61-64 [4] 孙炳泉.近年我国复杂难选铁矿石选矿技术进展[J].金属矿山,2006(3):11-14 [5] 胡为柏.浮选[M].北京:冶金工业出版社.1997. [6] 罗立群,张泾生,高远扬,等.菱铁矿干式冷却磁化焙烧技术研究[J].金属矿山,2004(10):28-31.

云南某铅锌矿选矿工艺试验研究

2019-02-20 10:04:42

云南硫化铅锌矿资源丰富、类型多。云南某铅锌矿系一黄铁矿型含银多金属硫化矿。首要金属矿藏为方铅矿、铁闪锌矿、黄铁矿。矿石具有原矿含银高(首要在方铅矿中)、锌矿藏为铁闪锌矿、矿石黄铁矿含量高的特色。研讨、开发、运用该铅锌资源对进步云南铅锌资源的运用率、对当地经济发展具有重要意义。 一、矿石性质 (一)矿藏组成 试样系一黄铁矿型含银多金属硫化矿,以黄铁矿、铁闪锌矿、方铅矿为主,其次为毒砂、黄铜矿、白铁矿及微量磁黄铁矿、褐铁矿等;脉石矿藏以石英、方解石为,其次为长石、白云母、绢云母等粘土矿藏及微量磷灰石等。矿藏相对量成果见表1,原矿多元素分析及各物相分析成果别离见表2和表3。 表1  矿藏相对量测定成果(质量分数)/%表2  原矿多元素分析成果(质量分数)/%表3 原矿藏相分析成果(二)首要矿藏的嵌布特征 方铅矿(PbS)首要呈粒状、块状产出。部分受应力作用,呈压碎结构。与铁闪锌矿、黄铁矿、方黄铜矿等亲近共生。一般粒度在0.20~0.02mm。方铅矿中包体矿藏首要有硫锑铅矿、铁闪锌矿、方黄铜矿及微量锌黄锡矿。也有呈细粒、细粒星散状不均匀嵌布在脉石中,粒度为0.02~0.001mm。 铁闪锌矿(Zn,Fe)S首要呈粒状、碎屑状、细密块状。首要与方铅矿、方黄铜矿、黄铁矿等亲近共生。孔隙较多。部分铁闪锌矿中有方铅矿、毒砂等包体。为粗细不均匀嵌布,一般产出粒度为10~0.04mm。适当部分的铁闪锌矿中有乳滴状方黄铜矿(包含少量黄铜矿),呈固熔体别离结构。方黄铜矿粒度在0.01~0.0004mm。也有呈微细粒状。团絮状不均匀散布在脉石中,粒度在0.006~0.001mm。 黄铁矿(FeS2)多呈自形晶、半自形晶、碎屑状及他形不规则粒状。与方铅矿、铁闪锌矿、毒砂、黄铜矿等亲近共生。部分黄铁矿显碎斑结构及骸晶结构。少量黄铁矿与毒砂相互告知成连晶。在黄铁矿中有被告知的方铅矿包体,黄铁矿堆积体孔隙中嵌布有黄铜矿、铁闪锌矿、方铅矿及脉石矿藏等。脉石矿藏也有呈网脉状穿插在黄铁矿中。呈粗细粒不均匀粒状产出,一般粒度40~0.03mm。也有呈他形微细粒、斑驳状、叶片状、浸染状不均匀嵌布在脉石中,粒度在0.001~0.0005mm左右。 石英(SiO2)呈他形粒状,少量呈自形晶、半自形晶嵌布在其他脉石及金属矿藏。大都石英为细粒、微细粒集聚,其间有呈浸染状微细粒金属矿藏。产出粒度在3.8~0.02mm左右。 方解石(CaCO3)多为细粒、微细粒集聚成粒状、脉状产于石英等脉石及金属矿藏中。有的呈细粒星散嵌布在石英中。粒度在1.1~0.2mm左右,脉宽1.4~0.3mm。 银首要以天然银及硫化银等呈超显微包体(1μm以下)涣散在方铅矿、黄铁矿、铁闪锌矿、及脉石矿藏中,部分银呈固熔体状况存在。砷首要以毒砂方式存在,大都与黄铁矿共生、连生。 二、实验计划挑选 原矿性质考察成果标明,试料首要收回目标为方铅矿、铁闪锌矿及黄铁矿。方铅矿、铁闪锌矿及黄铁矿多呈细密状、浸染状,呈自形晶、半自形晶产出,适合浮选收回,故选定浮选对其进行研讨。 对试料进行了优先浮选、铅锌分混合浮选、等可浮探究实验。实验成果标明,优先浮选的成果显着优于铅锌部分混选和等可浮的成果。铅锌部分混浮流程反映出的首要问题是:铅锌混合精矿的别离,虽然选用了混合精矿再磨、混合精矿脱药,包含运用作为按捺剂等多种办法,其别离作用均难到达令人满意的程度;等可浮流程其目标虽优于铅锌部分混浮流程,但仍比优先浮选差。且操作较难操控,目标不易重现。故选用优先浮选计划。实验流程见图1。图1  实验流程 三、优先浮选实验 (一)磨矿细度实验 依照图1所示流程,磨矿细度对精矿档次和收回率的影响成果见图2。图2标明,跟着磨矿细度的添加,铅、银收回率略有进步,但档次呈下降趋势。当-0.074mm粒级含量不小于85%时,磨矿细度添加,锌档次、收回率添加;当-0.074mm粒级含量大于85%时,锌档次添加,锌收回率下降。归纳考虑,本实验磨矿细度挑选-0.074mm粒级占80%。别的,图2联系曲线还标明铅银之间呈正相关性。  图2 磨矿细度对铅锌精矿目标的影响 1-铅精矿铅收回率;2-锌精矿锌收回率;3-铅精矿银收回率; 4-铅精矿银档次;5-铅精矿铅档次;6-锌精矿锌档次 (二)铅循环粗选药剂条件实验 依据经历,挑选对黄铁矿有杰出按捺作用的石灰作为黄铁矿的按捺剂,挑选硫酸锌、钠组合作为铁闪锌矿的按捺剂,因为高碱环境,挑选捕收才能相对较强的丁黄药为捕收剂[1~4],起泡剂为2#油。鉴于铅粗选药剂品种多,为考察药剂全体运用情况,确保药剂运用的归纳作用,且为节约实验本钱,进步实验功率,本铅循环药剂用量实验选用正交法(4要素3水平)。在磨矿细度为-0.074mm粒级占80%,2#油用量为36g/t时,挑选CaO、ZnSO4、NaSO3、丁黄药作为本正交实验的4个要素,每个要素的用量设置为3个水平(在探究实验的基础上进行)。实验流程如图1,实验组织见表4,实验成果见表5。 表4 铅粗选药剂实验组织(单位:g/t)表5 铅粗选药剂用量正交实验成果实验成果标明,多相目标较好计划为A2B2C1D3,即CaO,5kg/t;ZnSO4,1kg/t;Na2SO3,50g/t;丁黄药150g/t。按要求对此计划进行验证实验。验证实验成果标明,A2B2C1D3确为一较好计划。据此断定了终究铅粗选药剂用量。 (三)锌循环粗选药剂条件实验 与铅循环相同,锌循环粗选黄铁矿按捺剂、捕收剂、起泡剂仍选石灰、丁黄药和2#油,活化剂用硫酸铜。本实验选用正交法(3要素3水平)。2#油用量为48g/t时,挑选CaO、CuSO4和丁黄药作为本正交实验的3个要素,每个要素的用量设置为3个水平(在探究实验的基础上进行)。实验流程见图1,实验组织见表6,实验成果见表7。 表6 锌粗选药剂实验组织(单位:g/t)表7 锌粗选药剂用量正交实验成果归纳较好计划为A2B3C2,即CaO1.0kg/t;Cu2SO41.5kg/t;丁黄药50g/t。按此计划进行验证实验。验证实验成果标明,此计划确为一较好计划。据此断定了终究锌粗选药剂用量。 锌精选探究实验标明,锌精选作业无须加捕收剂、起泡剂。只须在锌精选Ⅰ加适量石灰即可。 (四)硫循环系统条件实验 锌尾矿中的硫选用浮选收回,浮选收回活化剂选用硫酸,捕收剂用丁黄药,起泡剂用2#油。依据实验成果,断定药剂用量为硫粗选:H2SO4,7kg/t;丁黄药,200g/t;2#油,48g/t;硫扫选:H2SO4,1kg/t;丁黄药,100g/t;2#油,36g/t。 (四)小型闭路实验 小型实验流程及药剂准则见图3,实验成果见表8。小型闭路实验进程安稳、成果牢靠,实验成果标明该工艺流程和药剂条件对该试料有着很好的适用性。图3  小型实验流程及药剂准则 表8  小型闭路实验成果四、结语 1、实验研讨成果标明,对云南某黄铁矿型含银铅锌多金属硫化矿选用优先浮选工艺处理可获得铅档次57.33%、铅收回率94.08%、银档次2201.72g/t、银收回率83.14%的铅精矿;锌档次48.28%、锌收回率88.38%的锌精矿和硫档次45.09%、硫收回率77.39%的硫精矿。 2、因为所选工艺没有精矿别离问题,药剂条件又人为地加大了矿藏间的浮选性质差异,为矿藏更好地分选发明了条件。实验研讨标明,本优先浮选工艺具有实验进程安稳、实验目标重现性好的特色,阐明该工艺对该矿石是适合的。 3、用正交法断定铅、锌粗选药剂的用量,不但可确保药剂运用的全体作用最佳,还可节约时间、节约实验经费、节约实验本钱,进步实验功率。 4、因为原矿含As高(1.09%),在分选进程中,砷多在硫精矿中富集(首要以毒砂方式存在,大都与黄铁矿共生、连生),黄铁矿的运用将取决于黄铁矿与砷矿藏的别离作用。 参考文献: [1] 胡熙庚.有色金属硫化矿选矿[M].北京:冶金工业出版社,1987.[2] 程德明.我国硫化铅锌矿选矿技能的现状与远景[J] .广东有色金属学报,1994(1):6 - 12. [3] 谢雪飞.高碱条件下归纳收回伴生银的研讨与实践[J].矿冶工程,2002(1):58 - 60. [4] 赵纯禄.铁闪锌矿浮选工艺进程的特性[J].有色金属(选矿部分) ,1995(5):4 - 7.44

铂矿

2019-02-11 14:05:30

铂是一种稀有、柔软的银白色金属,十分沉重。铂和它的同系金属——钌、铑、钯、锇、铱和金相同,简直彻底成单质情况存在于自然界中。它们在地壳中的含量也和金附近,且它们的化学慵懒和金比较也平起平坐,可是人们发现并运用它们却远在金后。它们在自然界中的极度涣散和它们的高熔点,可能是形成这种情况的原因。至今发现的最大的天然铂块是9.6千克。铂的熔点1772℃,钌的熔点2310℃,铑的熔点1966℃,钯的熔点1552℃,锇的熔点2054℃,铱的熔点2410℃,而金的熔点是1063℃。南美洲古代印第安人早已经使用铂和金的合金制成装饰品。因为铂在铂系矿产中的含量比其他元素的含量大的多,因此它是铂系元素中首要被发现的。在欧洲首要说到铂的可能是法国矿产学家斯卡里吉在1557年宣布的著作中。他讲到一切金属都能熔化,但有一种墨西哥和达里南Darian(今巴拿马)矿里的一种金属不能熔化。这能够以为是指铂。18世纪中叶,南美洲的铂矿传到欧洲一些学者手中,他们对铂进行了研讨。不少学者以为铂不是一种纯金属,而是金、铁和的合金,还有人以为它是一种半金属。1752年瑞典化学家谢斐尔必定它是一种独立的金属,称它为aurum album(白金)。1789年拉瓦锡宣布他拟定的元素表,铂被列入其间。如今铂的拉丁名称是platinum,元素符号是Pt。 铂挖掘自天然游离态铂矿产。用于制作首饰、坩埚、特种容器和标准量具衡具,充任催化剂,与钴合制强磁体。铂耐蚀、耐酸(在外)。铂在氢化、脱氢、异构化、环化、脱水、脱卤、氧化、裂解等化学反应中均可作催化剂。