锌焙砂在稀酸中的溶解
2019-02-21 15:27:24
氧化物的酸、碱浸出许多遵守缩短中心模型,一个典型的实例是锌焙砂在稀酸中的溶解。它依据每种参加溶解进程的化学物质的离子扩散系数及离子搬迁率,使用方程式(1)和式(2)进行核算。核算假定溶解速率由传质操控,因此所用的核算进程只能用于不触及化学反响的状况。
(1)
(2)
求解方程(1)和式(2)需求几个边界条件,它们规则了模型中各参数的值,并将各物质的通量经过浸出反响的计量联系相关起来。
关于硫酸浸出体系,核算所用的数据包含H+,HSO4-,SO42-及Zn2+的离子扩散系数和离子搬迁率,下列平衡的平衡常数与活度系数稀酸浸出氧化锌的数学模型核算中所用的传质数据列于下表。物质等效离子电导
Λi0∕(Ω-1·cm2·equ-1)离子扩散系数
D∕(cm2·s-1)离子搬迁率
u∕(cm2·V-1·s-1)H+348.99.3×10-53.6×10-3Zn2+53.87.2×10-65.6×10-4SO42-79.01.0×10-5-8.2×10-4HSO4-100.002.7×10-5-1.6×10-3
几个边界条件为
在固液界面即r=rt时, Ci=Cis (3)
因为浸出进程最慢的过程是经过边界层的传质,能够假定在界面上到达化学平衡,然后得到下列边界条件
(4)
(5)
(6)
式中, 、 、 别离表明反响(a)、(b)(c)的平衡常数;Qa、Qb、Qc别离为用浓度表明时反响(a)、(b)、(c)的平衡常数;γi是物质i的活度系数。
在溶液体相即r=∞, E=0 (7)
Ci=Cib (8)
体相浓度用质量平衡和体相的化学平衡求算
(9)
(10)
(11)
(12)
(13)
式中,[H2SO4]与[ZnSO4]是t时刻硫酸和硫酸锌的净浓度。
计量联系 (14)
硫酸根通量 (15)
数学模型由对每种物质组成的写出的方程式(2),方程式(1)和上面导出的边界条件组成。一旦知道了各物质的通量,就可核算ZnO的溶解速率。
假如半径rt的球形粒子含有Nmol的ZnO,则
(16)
式中,Mw为ZnO的分子量。
因为稳态下边界层内没有物质堆集,一切溶解的锌都必须传递到溶液体相中去。因此,反响速率能够与锌和酸经过边界层传质的速率相关如下
(17)
式中JZn-流离表面的锌的净通量;
JH-流向表面的酸的净通量。
由式(16)和式(17)得出
(18)
方程式(18)用有穷区间法数值积分得到rt对时刻的函数。关于单尺度粒子,rt与反响分数α的联系为
(19)
即为式(20)的缩短粒子模型,r0为固体粒子的初始半径。
(20)
粒子尺度散布的景象可作相似处理,m个初始半径r0k的单尺度分数每个组成总质量的分数wk。浸出的程度分粒级核算
(21)
总的浸出率由下式断定
(22)
为了查验模型及核算的正确性,需求研讨硫化锌精矿的焙砂在硫酸、高氯酸、硝酸和等4种酸中溶解的速率。选定的拌和条件使一切的固体粒子都悬浮且溶解速率与拌和速率无关。在高氯酸及硝酸溶液中试验曲线与模型核算得到的猜测曲线符合杰出,而在硫酸溶液中在浸出率80%曾经符合尚可,这以后的溶解曲线符合不抱负的原因是因为固体粒子的溶解并非如假定的那样均匀并始终保持球形,实际上发现部分浸出的焙砂粒子有大而深的孔。简化的模型没有考虑锌的氯合物的构成合氯离子的吸附,因此不能用来猜测浸出焙砂的溶解速率。而用新近树立的未考虑电搬迁对传质的奉献的模型即便关于0.1mol∕L高氯酸浸出的动力学也严峻违背,反映了电搬迁在传质中不行忽视的效果。
湖南龙山锑砷金矿石选矿
2019-02-12 10:08:06
该矿的浮选流程见下图。
龙山的矿石属中低温热液裂隙充填矿床,首要矿藏为辉锑矿,次为天然金、硫锑铅矿、黄铜矿、黄铁矿、毒砂及锑的氧化物等,脉石矿藏首要为石英,次为绢云母、硅酸盐,浮选条件及作业目标列于下表。
表 湖南龙山锑金砷矿石的浮选条件及作业目标项 目PH药 剂 配 方/ g·t-1锑金混合选矿6.5黄药和黑药作捕采剂,和硫酸铜作活化剂锑金别离浮选>11碳酸钠1~2kg·t-1,0.5~1 kg·t-1抑锑浮金作业目标原矿含锑17.22%,砷 0.63%,Au 8.13% g·t-1,精矿含锑46.95%,As 0.31%,Au 14.34%g/t,锑回收率93.58%,砷90.58%,Au64.25%
图 龙山锑、金、砷选厂流程图
湖南黄金洞金钨选厂
2019-02-21 08:58:48
湖南黄金洞矿业有限责任公司新建金钨选矿厂的各采矿区内均存在必定程度的伴生矿钨,已探明钨矿储量7.48万吨,均匀钨档次4.2‰,折合WO3保有储量314.93吨。新建金钨选厂的规划日处理能力为150吨/日,从资源质量、档次、回收率等经济技能指标来看,达产后赢利十分可观。钨以纯金属状况和以合金系状况广泛应用于现代技能中,合金系状况中最首要的是合金钢、以碳化钨为基的硬质合金、耐磨和强热合金。钨首要别离应用于以下工业范畴。钢铁工业钨大部分用于出产特种钢。广泛选用的高速钢含有9%~24%的钨、3.8%~4.6%的铬、1%~5%的钒、4%~7%钴、0.7%~1.5%碳。高速钢的特点是在空气中有高的强化回火温度(700~800℃)下,能主动淬火,因而,直到600~650℃它还坚持高的硬度和耐磨性。合金东西钢中的钨钢含有0.8%~1.2%的钨;铬钨硅钢含有2%~2.7%的钨;铬钨钢中含有2%~9%的钨;铬钨锰钢中含有0.5%~1.6%的钨。含钨的钢用于制作各种东西:如钻头、铣刀、拉丝模、阴模和阳模,气支东西等零件。钨磁钢是含有5.2%~6.2%的钨、0.68%~0.78%碳、0.3%~0.5%铬的永磁体钢。钨钴磁钢含有11.5%~14.5%的钨、5.5%~6.5%钼、11.5%~12.5%钴的硬磁材料。它们具有高的磁化强度和矫顽磁力。
碳化钨基硬质合金
钨的碳化物具有高的硬度、耐磨性和难熔性。这些合金含有85%~95%的碳化钨和5%~14%的钴,钴是作为粘结剂金属,它使合金具有必要的强度。首要用于加工钢的某些合金中,还含有钛、钽和铌的碳化物。所有这些合金都是用粉末冶金法制作的。当加热到1000~1100℃时,它们仍具有高的硬度和耐磨性。硬质合金刀具的切削速度远远地超过了最好的东西钢刀具的切削速度。硬质合金首要用于切削东西、矿山东西和拉丝模等。
热强和耐磨合金
作为最难熔的金属钨是许多热强合金的成分,如3%~15%的钨、25%~35%的铬、45%~65%的钴、0.5%~2.75%的碳组成的合金,首要用于激烈耐磨的零件,例如航空发动机的活门、压模热切刀的作业部件、涡轮机叶轮、发掘设备、犁头的表面涂层。
在航空和火箭技能中,以及要求机器零件,发动机和一些仪器的高热强度的其它部分中,钨和其它给熔金属(钽、铌、钼、铼)的合金用作热强材料。
触头材料和高比重合金
用粉末冶金办法制作的钨-铜(10%~40%的铜)和钨-银合金,兼有铜和银的杰出的导电性、导热性和钨的耐磨性。因而,它成为制作闸刀开关、断路器、点焊电极等的作业部件十分的效的触头材料。成分为90%~95%的钨、1%~6%的镍、1%~4%的铜的高比重合金,以及用铁代铜(~5%)的合金,用于制作陀螺仪的转子、飞机、操控舵的平衡锤、放射性同位素的放射护罩和料筐等。电真空照明材料
钨以钨丝、钨带和各种铸造元件用于电子管出产、无线电电子学和X射技能中。钨是白织灯丝和螺旋丝的最好材料。高的作业温度(2200~2500℃)确保高的发光功率,而小的蒸腾速度确保丝的寿命长。钨丝用于制作电子振动管的直热阴极和栅极,高压整流器的阴极和和各种电子仪器中旁热阴极加热器。用钨做X光管和气体放电管的对阴极和阴极,以及无线电设备的触头和原子氢焊电极。钨丝和钨棒作为高温炉(达3000℃)的是加热器。钨加热器在气氛、慵懒气氛或真空中作业。
钨的化合物钨酸钠用于出产某些类型的漆和颜料,以及纺织工业中用于布匹加剧和与硫酸铵和磷酸铵混合来制作耐火和防水布匹。还用于金属钨、钨酸及钨酸盐的制作以及染料、颜料、油墨、电镀等方面。也用作催化剂等。钨酸在纺织工业中是媒染剂与染料和在化学工业中用作制取高辛烷汽油的催化剂。二硫化钨在有机组成中,如在组成汽油的制取中用作固体的润滑剂和催化剂。
湖南再生铝生产熔炼设备解析
2018-12-07 10:47:19
2017年铝行业在前所未有的压力下去产能政策稳步推进,供给侧改革成效显著。上游电解铝企业减产消息不断爆出,铝价飙升。在这样的大背景下环保督查持续发力,迅速以不及眼耳之势席卷中国。设备的好坏决定产品的质量,产品的质量就是企业的生命,2017年8月我们走访了湖南的再生铝企业,一起来探究一下他们的生产设备是怎样的。 熔炼炉的形式基本上是两种:坩埚式和熔池式。 1.坩埚炉 炉坩埚是熔炼再生铝合金的常用设备,其优点是投资少、操作方便,金属回收率高,但缺点是生产能力小,寿命短和成分不稳定,很难与大型反射炉相比。坩埚炉的形式有多样,常用的有铸铁坩埚和石墨坩埚。 坩埚炉在使用时,炉体固定在用耐火材料砌筑的锅台上,坩埚炉的下部和四周是燃烧室。在使用较大的坩埚炉时,因为考虑到坩埚炉的自重问题,炉体的底部不能架空,应该落在稳定的耐火材料上,尤其是大型的铸铁坩埚炉,在高温下会使炉体变形而影响其寿命。 坩埚炉的燃料适应性强,可以煤炭、焦碳、燃气等,对燃料的选择空间较大。在用燃油或煤气为燃料时,坩埚下面有喷嘴,喷入燃料和空气燃烧加热,此即是燃油坩埚炉或煤气炉。在用电加热时,将电阻加热元件(电阻丝或碳化硅棒)布置在坩埚周围,即电阻坩埚炉。用燃料的坩埚炉,一般加热升温迅速,但其温度控制不能很严格。电阻坩埚炉的加热升温速度较慢,电热丝时可达900,碳化硅棒可达1200,比燃料炉的温度低些,同时其设备费用贵、耗电大和熔炼成本高。但是它的生产环境和劳动条件较好,且熔化温度能够精确控制,适用于铝和镁合金的熔炼。 外部热源首先加热坩埚,坩埚被热后,再传热给坩埚内部的金属炉料或熔液。根据这种传热特点,坩埚炉是外热式熔化炉,为提高热效率。坩埚均制成直径较高度的尺寸为小的形式,以增加金属与坩埚壁的接触面积。这样,熔化后的液体金属与外界气氛的接触面积相对较小,可减轻金属的氧化和吸气,对金属有利。 在熔炼铝合金时,多采用的坩埚有两种,一种是强度和耐火度均较高的石墨坩埚,另一种是铸铁坩埚。 2.反射炉 熔池式炉膛的熔炼设备称为反射炉。原始的反射炉是燃煤的,有燃烧室,火焰通过拱型的炉顶反射到熔炼室。随着再生铝技术的发展,大量现代化的反射炉已经不采用煤为燃料,更多的采用燃油和燃气,因此,反射炉的概念已经淡化,目前一般都称之为火焰式熔炼炉。燃料加热的反射炉主要由炉底、炉墙和炉顶构成熔炼室。形成深度浅而面积广的熔池,以盛放金属炉料及熔化的液体金属。炉墙正面有加料和操作用的炉门。正规的熔炼炉是配备烟囱的,这样可以有效的改变操作环境,节约能源和便于治理烟气的污染,但目前实际中许多企业的炉子没有烟囱,一些是敞开的,一些在炉门设有集烟罩。燃煤的炉子在熔炼过程中,从燃烧室来的高温炉气从侧面窗孔冲入熔炼室,而燃油、燃气的炉子的火焰直接喷入炉内,加热了炉顶和炉墙,同时也加热了炉料。金属炉料就是靠高温炉气和被热到高温的炉顶和炉墙的辐射来加热和熔化的,反射炉因用燃料不同,其构造有较大的差异。 由于反射炉炉堂容积大,其容量可达几十吨,目前熔炼铝合金的炉子大的可达50吨以上。故可以熔炼各种的炉料,很适用于生产量较大的再生铝企业。目前反射炉是熔炼铝合金的主要设备。 反射炉有矩形的和圆形的,而大多数采用矩形的,该种炉型筑造比较容易,造价较低。圆形反射炉成本高,维修不方便,但热能利用率较高,因为相同的周长圆的表面积最大,因此,相同周长的炉子,圆炉的表面积最大,受热的面积大,热效率高。 反射炉在生产中因金属被直接加热,故热效率高,炉料和熔液浅,故升温快和生产率高。同时,反射炉在清除炉内杂质时也比较容易。但由于金属与燃烧气相接触,故金属的氧化和吸收气体严重,故杂质较多,影响熔液质量。另外,由于火焰与炉料直接接触,铝的烧损较大,回收率相对于坩埚炉要低。 反射炉亦可采用电阻加热方式,即电阻反射炉,电阻丝(带)或碳化硅棒悬挂在炉顶土,靠高温的电热元件和炉顶辐射传热,加热炉底上的金属。它适用熔化熔点较低的铝合金,电阻反射炉的劳动条件较好,熔炼铝合金质量好,但是耗电量很大是严重缺点。
永兴鑫裕环保镍业填补湖南镍冶炼空白
2018-12-10 09:46:12
今年,湖南永兴鑫裕环保镍业有限公司在洞口乡工业项目区投入6000万元,征地50亩,建成了我省第一个大规模的镍业生产企业。该公司含镍污泥火、湿法处理项目被列入国家“十大重点节能工程、循环经济和资源节约重大示范项目及重点工业污染治理工程”2009年第三批扩大内需中央预算内投资计划,获得中央投资480万元。 该公司以高科技含镍污泥火、湿法处理提取镍,填补了我省镍冶炼行业的空白。其生产的主要产品金属镍,系不锈钢制造业的重要工业原料。
该公司现已投入生产,为社会提供了200个就业岗位,一年可处理工业金属污泥30万吨,产精镍400吨,总产值过亿元,可实现利税1500多万元. (miki)
湖南湘西金矿钨-锑-金矿的选矿
2019-02-12 10:08:06
该矿的选矿工艺流程见下图。
该矿的矿石属中低温热液钨-锑-金矿床,首要矿藏为白钨矿、辉锑矿、天然金。其次为黑钨矿、黄铁矿、闪锌矿、方铅矿、毒砂等,脉石矿藏首要为石英,其次为方解石、磷灰石、白云石等,有用矿藏呈粗细不均匀状况嵌布在矿脉中。
在工艺流程中,锑用浮选收回,金和钨均用重选加浮选收回,浮选条件和目标列于下表。
表 湘西金矿钨锑金矿石的浮选条件及作业目标项 目PH药 剂 配 方/ g·t-1锑金混合选矿6.7丁黄药40,火油8.2,硫酸46,钠91锑金别离浮选7.5丁黄药200,黑药80,松醇油(适量),100,硫酸铜700作业目标原矿含锑1.71%,精矿含锑34.72%,尾矿含锑0.057%,锑收回率96.62%,砷20%~58%,Au64%~75%
图 湘西金矿钨、锑、金矿选矿流程图
湖南某白钨矿选矿试验研究
2019-01-24 09:37:11
一、原矿性质
湖南某白钨矿石属于斑岩型白钨矿,伴生少量锡石。金属硫化矿物的数量较少,但种类较多,有黄铁矿、白铁矿、磁黄铁矿以及微量的辉铋矿、闪锌矿等。白钨矿的嵌布粒度偏细且不均匀,主要粒度范围在0.01~0.08mm,粒度上限0.3mm。脉石矿物主要为石英、长石、黑云母、白云母,其次为黄玉、重晶石、石榴石、磷灰石、电气石、萤石、方解石等。该白钨矿多元素分析和钨物相分析结果见表1、表2。
表1 原矿多元素分析结果∕%表2 原矿钨物相分析结果由表1、表2可知,可回收的有价元素为钨,白钨矿的占有率达94.05%。
经鉴定,白钨矿主要以半自形晶粒状、不规则粒状单粒或数粒零星分布在矿石缝隙中,或分布于黑云母边缘和解理缝隙中。
二、选矿试验研究
(一)选矿工艺流程的确定
由于主要回收的矿物白钨矿结晶粒度较细,宜用浮选工艺回收,而矿石中又含有一定量的硫化矿,将会影响最终白钨精矿品位,因此,在选钨之前应预先脱除硫化矿。根据探索试验和条件试验,确定采用“优先浮硫-白钨常温粗选-钨粗精矿加温精选”的工艺流程。
(二)磨矿细度的影响
磨矿细度试验流程如图1所示,结果见图2。从图2试验结果可知,随着磨矿细度的增加,粗精矿WO3含量下降,WO3回收率增加。考虑到磨矿成本和工业上实现的难易度,选择磨矿细度为-200目占72%。图1 优先浮硫-白钨常温粗选试验原则流程图2 磨矿细度试验结果
(三)捕收剂种类的选择
目前,白钨矿浮选的捕收剂种类较多,因此选择了4种常用捕收剂进行试验。试验原则流程见图1,结果见表3。从表3可以看出,用GYR作选钨捕收剂,粗精矿(WO3)品位和回收率相对较好。
(四)白钨常温粗选条件试验
1、调整剂Na2CO3用量的影响
Na2CO3既可调节矿浆的碱度,改变白钨矿表面活性,又可调整矿浆粘度和分散矿泥。Na2CO3用量试验原则流程见图1,试验结果见图3。从图3可知,随着Na2CO3用量增加,钨精矿WO3品位增高,而回收率下降。综合考虑,选择Na2CO3用量为1000g∕t。图3 调整剂Na2CO3用量的影响
2、调整剂水玻璃用量的影响
水玻璃(Na2SiO3)对白钨矿浮选影响很大,因为它对萤石、方解石、白钨矿等含钙矿物有抑制作用。用量小,脉石矿物不能得到有效的抑制,粗精矿含WO3量偏低;用量大,则白钨矿受到抑制,钨回收率低。水玻璃(Na2SiO3)用量试验原则流程见图1,试验结果见图4。从图4结果可知,随着水玻璃用量的增加,钨精矿品位提高,但回收率减少。综合考虑,选择Na2SiO3用量为1000g∕t。图4 水玻璃用量试验结果
表3 捕收剂对比试验结果3、捕收剂GYR用量的影响
GYR用量试验原则流程见图1,结果见图5。从图5可知,随着捕收剂用量的增大,回收率提高,但钨精矿品位下降。综合考虑,GYR粗选用量为300g∕t。图5 GYR用量试验结果
(五)钨粗精矿精选水玻璃用量的影响
白钨粗精矿精选是白钨浮选的关键。目前,国内外对白钨粗精矿精选工艺有两种,即加温精选法和常温精选法。加温精选法由于生产上易控制,钨精矿质量稳定,因此被普遍采用。加温精选时,白钨粗精矿一般浓缩到50%左右的浓度,加水玻璃(Na2SiO3)搅拌,加温至90℃,保温1h,然后稀释到20%左右的浓度进行精选。水玻璃(Na2SiO3)用量是影响精选指标的重要因素,其试验结果见表4。从表4可知,随着水玻璃(Na2SiO3)用量增加,钨精矿(WO3)品位呈上升趋势,但回收率逐渐下降。综合考虑,选择Na2SiO3用量为1000g∕t。
表4 加温精选Na2SiO3用量试验结果(六)白钨矿选矿工艺全流程闭路试验
白钨矿浮选闭路试验工艺流程及条件见图6,试验结果见表5。图6 白钨矿浮选闭路试验工艺流程
表5 白钨矿选别全流程试验结果三、结论
(一)该钨矿属斑岩型白钨矿床,伴生少量锡石。金属硫化物的数量较少,但种类较多,有黄铁矿、白铁矿、磁黄铁矿,以及微量的辉铋矿、闪锌矿等。脉石矿物主要为石英、长石、黑云母、白云母、黄玉、重晶石、石榴石、磷灰石、电气石、萤石、方解石等。白钨矿结晶粒度在0.01~0.3mm之间。矿石中主要回收的矿物为白钨矿,硫化矿中有用矿物少,没有回收价值。
(二)采用“优先浮硫-白钨常温粗选-粗精矿加温精选”的工艺流程,对含WO30.41%的原矿,获得了白钨精矿含WO3 66.20%、回收率81. 27%的技术指标,使钨得到了较好的回收。
湖南省衡东铅锌矿选矿厂
2019-02-13 10:12:44
(一)概略 衡东铅锌矿坐落湖南省衡东县境内,有公路相通,交通便利。 该矿于1965年兴办,靠手艺挖掘富矿,人工桶洗,至1973年5月共向国家供给铅锌金属量7000多吨,萤石块矿9万余吨,上缴利润306万元。 为了合理运用国家资源,改进劳动条件,进步劳动出产率,矿山自筹资金65万元,于1972年6月开工,以十个月时刻,建成了一座200吨/日的浮选厂。当年出产铅锌金属一千多吨,上缴利润41万元(占选矿厂出资的64%)。 矿山选用平窿一盲斜井开辟,浅孔溜矿法采矿。平窿口至选矿厂约350米,原矿经内燃机车牵引至选矿厂原矿仓,人工卸矿。 供电:选矿厂供电由矿区东南12公里的县办甘浮水电站,以10千伏单回路送至选矿厂降压变电所,降至380伏后送至各工段。 供水:选矿厂出产用水运用坑内水,自流至选矿厂150米3高位水池。 尾矿:经过垮度205米的倒虹吸管及1200米明渠自流至尾矿库,其容积为200万米3。 (二)工艺流程 1.原矿性质 矿山现有两个出产工区,均为产于变质岩系的脉状矿床。银矿冲工区以产萤石为主。副产铅锌。原矿经手选后,萤石块矿直接外销,铅锌块矿用轿车运至选矿厂处理。石岩冲工区以产铅锌为主,萤石档次较低,手选困难。选矿厂以处理石岩冲工区2号矿脉矿石为主。2号脉为变质岩、火成岩脉状铅锌多金属矿床。首要金属矿藏为方铅矿、闪锌矿、少数黄铜矿及黄铁矿。脉石矿藏为石英、萤石等。原矿含铅3%,锌3%,氟化钙大于10%。含水及氧化率均不高,为粗粒嵌布易选矿石(2号脉南端,部分矿石氧化较深,现在没有挖掘)。 2.工艺流程 破碎为两段一闭路,原矿粒度为220毫米,破碎终究产品粒度为25~0毫米。原矿仓上部装有固定条格筛,大于220毫米矿石人工手碎。 矿石磨至-200目占50%左右,进行铅、锌优先浮选。选铅流程为一次粗选、一次扫选、二次精选及一次精扫。选锌流程为一次粗选、一次扫选、二次精选。铅、锌粗扫选均选用浮选柱,精选用浮选机。萤石现在没有收回。其工艺流程及技能条件见下图1。
[next]
铅锌精矿脱水,现在选用天然沉积与土灶烘干。占用劳动力多,劳动条件极差,该矿正在设法选用机械脱水。 (三)选矿厂首要设备(下表) (四)其他 1.选矿厂厂址挑选有以下特色: (1)原矿运送间隔短。选矿厂距主平窿口约350米,重车下坡。 (2)山坡荒地建厂,不占农田,也不阻碍农田水利建设。 (3)充分运用地型,做到厂内矿浆自流、尾矿运送自流、厂外供水自流。选矿厂无泵类设备,节省了出产费用。 2.设备装备紧凑,特别是一切浮选柱装备在同一标高,中矿回来运用提高拌和槽与压缩空气,而不必砂泵。节省了高差且便于操作办理。四台浮选柱总断面积为4×1.82=7.28米2,包含矿浆提高的总耗风量为18米3/分,进口风压为1.5公斤/厘米2。浮选机——拌和槽——浮选柱高差联系见下图2。
[next]
3.尾矿运送选用倒虹吸管与明渠自流运送详见下图3。 虹吸管管径为Ф100毫米,跳过垮度205米的山沟,进口标高197.5米,出口标高185米,管子最低标高约155米。明渠全长1200米,矩形断面,宽×高=120×250毫米,斜度4%,明渠为砖砌,外抹水泥砂浆。 经过出产证明,该运送体系基本上是成功的,但还存在: (1)进口缓冲槽容积偏小,当浮选尾矿量改变较大时,矿浆有溢出现象。 (2)倒虹吸管下贱段磨损较快,运用半年左右需要将管子翻转。 4.浮选柱压风设备系运用乡村抛弃的120型煤气机改装。每台风量约为6米3/分,出口风压为2公斤/厘米2。该机为单缸作业,结构简略,修理便利。运用中存在问题是弹用40号普通圆钢车制,强度较低,简单损坏,需常替换。
湖南常德金刚石矿选矿厂
2019-02-18 10:47:01
生产能力:该厂于1958年投产,是我国第一座金刚石选矿厂。最大生产能力1万克拉/a。 原矿性质:该矿属细谷砂矿床。原矿中首要重矿藏为金刚石、黄金、锆英石、钛铁矿、金红石、赤铁矿、水铝石、石榴石。首要轻矿藏为石英、长石、云母、蛋白石等。原矿中金刚石含量为1~6mg/m3。金刚石均匀分量为10.9~15.4mg,首要会集在-4~1mm等级中。晶体质量较好。晶形以八面体和菱形十二面体为主。 选矿流程:该厂流程由洗矿、粗选、精选组成。原矿经两次洗矿后进入粗选。粗选选用跳汰选矿法。跳汰包含粗选跳汰、精选跳汰和扫选跳汰作业。粗选跳汰原选用分级当选,分级比为2,当选物料分为-16+8mm、-8+4mm、-4+2mm、-2+1mm、-1+0.5mm,5个等级别离当选,后改为不分级分选。选用不分级当选能够下降水耗,节约筛分设备。精选跳汰为了确保收回率,仍选用分级当选。精选由油选、表层浮选、手选、X光电选、手选等作业组成。该厂除收回主产品金刚石外,还收回副产品黄金。黄金选用混法收回。分选目标:金刚石收回率为98%左右。
湖南桃林铅锌矿选矿厂
2019-01-29 10:09:51
该厂于1975年由长沙有色冶金设计研究院设计,设计规模为3000t/d。
(1)矿石性质:桃林铅锌矿是多金属萤石矿属中温热液充填矿床。矿石中有用矿物以方铅矿、闪锌矿、萤石为主,并含有少量黄铜矿、黄铁矿、铜蓝等。铅锌里硫化矿出现,占全部铅锌含量的90%以上,在靠近地表部分有少量的铝氧化物和次生的硫化铜矿。脉石矿物以石英为主,SiO2的含量占60%~80%,此外,还有重晶石、绿泥石、绢云母、高岭土、千枚岩等。
矿石以块状构造为主。方铅矿主要与闪锌矿、黄铁矿呈连生体嵌布于石英脉中,结晶颗粒一般为1~5mm,最大达18~20mm,最小0.01~0.05mm。闪锌矿主要呈不规则粒状嵌布在石英脉或绢绿片岩中,或与黄铁矿、方铅矿连生。结晶颗粒一般为2~10mm,最大为22~10mm,最小为0.025~0.05mm。萤石主要为块状结晶,一般以细粒状与方铅矿、闪锌矿共生。
原矿中含铅0.91%,锌1.25%,萤石13.49%;但波动范围较大,铅1.9%~0.62%,锌3.27%~1.44%,萤石18.48%~0.9%;铜的含量0.081%。
原矿含泥8%,含水8%~9%。原矿密度2.761t/m3,原矿松散密度1.75t/m3;铅精矿密度5.7t/m3,锌精矿密度4.3t/m3,萤石精矿密度3.10t/m3,铜精矿密度4.1t/m3,尾矿密度2.67t/m3。
(2)工艺流程:该厂生产铅、锌为主,综合回收萤石粉精矿。原矿采用三段开路破碎流程,最终破碎产品粒度小于22mm,磨矿为一段闭路流程,磨矿细度小于0.074mm为48%~50%。选别流程为优先浮选,先进行铜、铅混合浮选,铜、铅尾矿进行锌浮选,锌尾中再进行浮选萤石。工艺流程见图1。选矿工艺指标见表1,萤石浮选部分的单位消耗指标见表2,萤石浮选部分的主要设备见表3。图1 桃林铅锌矿选矿厂工艺流程
(需要本图资料来电免费提供)
[next]
表1 选矿工艺指标项 目19811982198319841985原矿品位,%Cu
Pb
Zn
CaF20.087
0.79
1.30
13.880.081
0.72
1.50
13.040.08
0.80
1.23
11.740.081
0.73
1.60
13.80 铜精矿,%Cu
Pb
Zn
CaF225.1725.85
26.2527.57
6.36
5.84
0.62 铅精矿,%Cu
Pb
Zn
CaF2
72.40
71.83
70.370.65
71.85
3.48
0.46 锌精矿,%Cu
Pb
Zn
CaF2
56.66
56.64
55.930.29
1.12
53.48
0.80 萤石精矿,%Cu
Pb
Zn
CaF2
97.17
97.12
97.320.0017
0.073
0.10
97.74
98回收率,%Cu
Pb
Zn
CaF2
88.82
88.95
65.7764.67
88.56
88.59
64.5855.2366.82
89.17
86.91
46.46 尾矿品位,%Cu
Pb
Zn
CaF20.028
0.056
0.097
4.470.018
0.05
0.10
5.200.017
0.047
0.13
6.380.015
0.036
0.17
8.20
[next]
表2 萤石浮选部分单位消耗指标(按原矿计)项 目19811982198319841985油 酸
水玻璃
碳酸钠
硫酸锌
硫酸铝
煤
钢 球
衬 板
滤 布
电kg/t
kg/t
kg/t
kg/t
kg/t
kg/t
kg/t
m2/t
kW·h/t0.103
0.14
1.742
1.61
0.0080.107
0.152
1.536
29.19
1.45
0.00284
28.450.15
0.10
1.71
0.13
28.44
1.79
0.004
28.920.152
0.08
1.728
0.20
0.123
30.63
1.89
0.0033
28.77
28.74
表3 萤石浮选部分主要设备序号设备名称及规格单位数量处理量1
2
3
4
5XJK-2.8浮选机
ф18m周边传动浓缩机
ф24m周边传动浓缩机
34m2圆盘真空过滤机
ф1500×1200圆筒干燥机槽
台
台
台
台29
1
1
3
30.022m3/(d·t)
0.45t/(d·m2)
0.03t/(m2·h)
0.047t/(m3·h)
湖南省清水塘铅锌矿选矿厂
2019-01-25 15:50:14
(一)概况 清水塘铅锌矿位于湖南省祁东县境内。 该矿原为民窿开采,1953年收归国营,土法开采富矿,人工桶洗。1966年建成100吨/日浮选厂(简称新厂)。现实际生产能力为200吨/日,计划扩建至500吨/日。 1958年至1973年全矿共生产铅锌金属3万余吨,上缴利润840万元。其中1973年产铅锌金属3562吨,上缴利润176万元。 生产用水由选矿厂下面溪沟取水,由湘中电力网以35千伏单回路供电,枯水季节电力不足,故每年约有三个月的时间停产。尾矿排入选矿厂前面溪沟,自流至下游牛场湾尾矿池。 矿山采用平窿——斜井开拓,采矿方法为浅孔溜矿法。原矿经自制1.5吨电机车牵引至选矿厂原矿仓人工卸矿。 (二)工艺流程 1.矿石性质 该矿为产于黑色或灰色变质板岩中的脉状铅锌多金属矿床。金属矿物以闪锌矿、方铅矿为主,其次为黄铁矿、黄铜矿等。脉石矿物以石英为主,其次为重晶石、绢云母、方解石等。铅锌矿物以粗粒嵌布为主。该矿矿石性质简单,有用矿物呈粗粒嵌布,铅锌矿物可浮性差异较大,易于分离,采用简单的优先浮选流程,能获得较高的选别指标。原矿含水3%左右,含泥约2%,矿石真比重2.88,假比重1.8。 2.工艺流程 老厂破碎为三段开路,原矿由200~0毫米破碎至12~0毫米。因所处理原矿含泥含水较高,破碎前在条格筛上进行洗矿,筛下产品用螺旋分级机脱水,分级机溢流经摇床选别,摇床精矿、分级机返砂与细碎产品合并进粉矿仓。 新厂破碎流程为两段一闭路,原矿由250~0毫米破碎至15~0毫米 为一段磨矿,磨至-200目占45%,进行铅、锌优先浮选。铅、锌精矿分别采用浓缩、过滤两段脱水。 选矿工艺流程,新、老厂基本相同,下图为新厂工艺流程及技术操作条件。
[next]
(三)选矿厂主要设备(下表)
湖南省有色金属选矿技术实现新突破
2019-01-18 11:39:34
湖南有色金属研究院发布消息,该院前不久完成的刚果(金)SICONIMES铜矿氧化铜钴矿选矿试验项目,选矿指标取得了重大突破,铜的回收率达到85%,钴的回收率由38%提高到61%,创下了国内外同行业研究成果新高。近段时间,国内外大型企业华刚矿业有限公司、北方公司、白银有色集团、浙江华友等纷纷来到湖南有色院,商谈选矿技术合作事宜。
作为我国有色金属行业几大科研院所之一,湖南有色院在有色金属矿产资源开发利用技术研发和新材料开发生产等方面成果卓著,至今已有科研成果441项,其中国家级、省部级以上发明奖、科技进步奖102项、专利29项,部分技术和产品填补了国内空白。近年来,该院在低碳高效选矿技术领域进行了大量深入的试验研究,取得多项科研成果。
铜铅锌复杂多金属选矿技术,一直是选矿技术领域公认的技术难题。湖南有色院经过多年攻关,取得了重大突破。其“复杂铜铅锌高效选矿分离技术及工业应用”技术,可提高铜回收率5-15%、铅回收率3-10%,创下了新中国成立以来复杂铜铅锌硫化矿精矿品位和回收率等指标的最高水平,被评为全国有色金属行业科技进步一等奖。中国工程院原常务副院长、两院院士王淀佐认为,这项研究成果填补了国内复杂铜铅锌多金属矿选矿技术的空白。目前,该项技术已在西藏中凯墨竹工卡选矿厂、白银小铁山有色金属矿、江西七宝山铅锌矿、湖南宝山铅锌矿等国内外多家企业成功应用,为企业创造直接经济效益3亿元以上。
前不久,该院完成了刚果(金)SICONIMES铜矿氧化铜钴矿选矿试验项目,该项目创造性采用了氧化铜钴异步浮选铜,中矿再磨,中矿集中再选以及创新性的高效选矿药剂等新工艺,每年可为企业创造数亿美元的经济效益。
湖南张家界铁矿焙烧磁选试验报告
2019-01-21 10:38:58
1 前言
随着矿产资源的不断的开采利用,其日趋紧缺,原矿品位也不断降低,不仅大量的矿石需要经过选矿加工才能利用,而且在入选矿石中难选矿石愈来愈多。为探索由重钢集团矿业有限公司提供的湖南张家界铁矿矿样性质,为其投入实际生产提供参考,重钢集团矿业有限公司綦江铁矿在矿化验室完成焙烧磁选试验。
2 试验目的及方法
采用常规焙烧磁选方法,力争得到较高品位的铁精矿,和较高的金属回收率。通过实验室试验,确定磨矿细度,磁场强度等有关参数。探索湖南张家界铁矿性质,为今后实际生产提供参考。
3 试验内容及过程
3.1 矿样制备
将全部矿样在XPC150×100型鄂式破碎机粗碎,再用PC180×150型锤式破碎缩分机破碎成0~4mm粒级的矿样。用堆锥四分法缩分取得主样,将其放入101A-4型电热鼓风恒温干燥箱烘干。缩分取得主样后剩下的矿样作为副样并留存。从已烘干主样中取2g矿样用-1型GJ系列密封式化验制样粉碎机粉碎制取化验样。
原矿矿样制备流程见图3-1。图3-1 原矿矿样制备流程图
3.2 原矿化学成分
原矿化学分析结果见表3-1。
原矿化学分析 表3-1名称分析项目(%)TFeSiO2SPLoss原矿48.309.600.180.7155.11
3.3 焙烧试验
3.3.1 焙烧试验设备
试验采用的焙烧设备为上海路达实验仪器有限公司制造的4-13型箱式电阻炉,其主要技术参数为:
⑴ 加热室尺寸:250×150×100mm
⑵ 额定功率:4KW
⑶ 额定电压:220V
⑷ 温度:1300℃
⑸ 温度控制仪:KSY4-13
3.3.2 焙烧试验气氛、温度和时间
由于提供矿样主要为赤铁矿,因此参考重庆钢铁集团矿样有限公司綦江铁矿选矿试验研究结果,确定试验焙烧气氛为还原气氛(密封、根据矿样重量加入10%的0~2mm的煤粉),试验焙烧温度为900℃左右,焙烧时间在90min。焙烧用煤粉质量指标见表3-2。
煤粉质量指标 表3-2名称分析项目(%)AadVadFCadSt,adQnet,ad煤粉13.109.5477.360.627065.84
3.3.3 焙烧试验过程
用架盘天平从主样中称取50g0~4mm的矿样,再称取5g0~2mm的已准备好的煤粉,将其充分混匀后,装入一个陶瓷小坩埚中。按同样步骤,共准备8个装好样的小坩埚并盖好坩埚盖。待电阻炉炉内温度达900℃时置入炉内,稳定加热90min后,快速取出坩埚并立即放入盛满水的水盆中进行水封,并冷却至常温,取出坩埚,将盆静置,待盆内焙烧矿澄清后,过滤。最后将焙烧矿样烘干。从烘干焙烧矿样中取2g矿样用-1型GJ系列密封式化验制样粉碎机粉碎制取化验样。
焙烧试验流程见图3-2。图3-2 焙烧试验流程图
3.4 磨矿磁选试验
3.4.1 磨矿磁选设备
磨矿:Φ140×190棒磨机
磁选:XCGS74-Φ50型磁选管
3.4.2 磨矿磁选试验
⑴ 磨矿细度试验
用架盘天平准确称量烘干的焙烧矿200g,放入棒磨机中,开启棒磨机,同时用秒表控制磨矿时间。然后将磨好的矿样取出,用架盘天平准确称量50g,倒入-200目的筛子中,用XSB-200型顶击式标准筛振筛机筛分20min,将筛上物倒出筛子,称重,通过筛上物重量,计算出-200目粒度矿物的重量百分比。
此次试验磨矿时间为20min时,粒度为-200目91.00%。
⑵ 磁场强度试验
用架盘天平分别称量上述粒度的矿样3个于烧杯中,每个烧杯中装入20g。磁场强度分别设定800GS(控制电流强度为0.80A)、1200GS(控制电流强度为1.20A)、1600GS(控制电流强度为1.60A),在XCGS74-Φ50型磁选管上进行以上3个磁场强度的矿样磁选试验,将得到的精矿、尾矿分别澄清、过滤、烘干、称重、制化验样。
⑶ 磨矿磁选流程及试验指标
磨矿磁选试验流程见图3-3。图3-3 磨矿磁选试验流程图
磨矿磁选试验指标见表3-3。
磨矿磁选试验指标 表3-3项目序号焙烧温度(℃)焙烧时间(min)磁场强度(GS)磨矿细度(-200目%)焙烧矿(TFe%)精矿(TFe%)尾矿(TFe%)精矿产率(%)金属回收率(%)19009080091.0047.3057.2332.8458.6470.95120091.0047.3056.9424.2970.7185.12160091.0047.3056.6421.3973.7688.32
由表3-3可以知道,随着磁场强度的增加,精矿品位下降,尾矿品位下降,精矿产率上升,金属回收率上升。
3.4.3 产品化学成分
经过焙烧磁选所获得的产品化学成分分析结果见表3-4。
焙烧磁选产品化学分析 表3-4焙烧温度(℃)焙烧时间(min)名称分析项目(%)TFeFeOSiO2SPLoss90090焙烧矿47.0618.47---7.20精矿56.64-7.750.100.593-尾矿21.39-----
4 试验结论
由试验可以知道,按原矿样重量加入10%的0~2mm的煤粉,焙烧温度900℃,焙烧时间90min时,焙烧矿铁品位在47%左右,残余烧损在7%左右,残余烧损非常高。磁选试验中,随着磁场强度的增加,精矿品位下降,尾矿品位下降,精矿产率上升,金属回收率上升。
铅锌尾矿回收萤石实例(湖南邵东铅锌矿)
2019-01-21 18:04:37
湖南邵东铅锌矿是一个日采选原矿石200余吨的矿山,矿床属中-低温热液裂隙萤石-石英脉型铅锌多金属矿床。选厂采用铅锌优先浮选的选矿工艺回收铅锌两种金属,年排尾矿量6.0~6.3万t,尾矿矿物组成较简单,主要为石英、板岩屑、萤石,少量的方解石、长石、重晶石、白云母等,其中主要矿物石英、板岩屑、萤石含量达90%左右,尾矿主要元素含量及矿物组成分别见表1、表2。
表1 尾矿主要元素含量 (%)成分SiO2CaF2Al2O3BaSO4K2OTFePCaONa2OFe2O3PbZn质量分数73.0913.923.742.861.090.630.692.720.120.170.430.18
表2 尾矿矿物组成及含量 (%)成分石英板岩屑萤石重晶石方解石氧化铁矿物长石白云母方铅矿闪锌矿白铅矿合计质量分数52.525.013.53.02.00.81.50.50.20.30.299.5
长沙有色金属研究所对铅锌选别后的尾矿进行利用研究,根据原料性质,采用分支浮选流程(见图1)回收萤石,试验结果表明,得到的萤石精矿品位为CaF2年回收萤石4500余吨,利润60余万元。
图1 分支浮选流程
国家有色金属冶金污染控制工程技术中心在湖南组建
2019-02-27 16:03:57
国家有色金属冶金污染操控工程技能中心在湖南组成 3月19日,国家环保总局在对中南大学和湖南环保科学研究所进行全面调查后,赞同依托上述两家单位,在湖南组成我国重要环境保护有色金属冶金污染操控工程技能中心。 据介绍,我国现在年有色金属产值已达1012万吨,居国际靠前位。但有色金属冶金也是较严峻的环境污染大户之一。为处理这一刻不容缓的问题,国家有关部门把赶快组成污控中心提上了重要议事日程。 中南大学是一所学科类别完全、冶金学科优势尤为显着、教育科研实力雄厚的全国要点大学,先后承当并完成了多项冶金和污控方面的重要重大成果。湖南环保科研所具有水污染办理工程技能省部级要点实验室等优胜条件。 专家们以为,依托这两家单位组成,可为国家对有色金属冶金及相关范畴的环境污染操控办理和决议计划供给技能支持;一起,将有要点地开发和推行有色金属冶金清洁出产和污染物办理技能,促进我国有色金属冶金与环境保护协调发展;还可加速相关技能成果转化,为有用操控冶金环境污染发挥重要作用。来历:中息网
湖南宝山有色金属矿业选矿尾矿综合利用
2019-02-22 11:02:45
湖南宝山有色金属矿业有限责任公司尾矿库总共有各类矿石排放的尾矿近800万吨,其间铜钼矿排放的尾矿占尾矿库总量的79%,现年排放年约为45500吨。
跟着现化工业化出产的迅速发展和新开矿山数量的连续添加,尾矿的排放、堆积量越来越大,给矿业、环境及经济形成不少的难题,危及矿区及周边生态环境,因而,研讨尾矿的使用途径,变废为宝,化害为利,将尾矿作为一种资源来对待,对社会、经济和生态环境的改进具有十分重要的含义。
针对湖南宝山有色金属矿业有限责任公司尾矿的特色,经过新药剂、新工艺与选矿流程结构,直接充沛收回尾矿中的铜、钼、硫、钨等有价金属元素及石榴子石、微粉等非金属矿藏,以尾矿为研讨目标,选用如下研讨办法断定尾矿归纳使用的工艺流程:
一、对湖南宝山有色金属矿业有限责任公司尾矿进行调研,体系搜集、收拾尾矿资源的调研数据,查清矿山历年来不同类型矿石处理量、矿石档次,历年不同尾矿排放量及矿山尾矿库的堆存量,现场用手持GPS对尾矿库形状进行测定,参照尾矿库卫星相片对尾矿库形状进行制作,依据尾矿库平面图及尾矿库的不同地段布设采样点,用X荧光光谱法对现场排放尾矿及尾矿库各采样点中常量元素、首要含矿元素、伴生元素等30余种元素进行分析测验,查询各元素等在尾矿中的散布规则。
二、挑选有代表性的样品,混合均匀后制成薄片,用偏光显微镜等仪器分析办法与化学分析办法对尾矿进行工艺矿藏学研讨,包含化学组成、矿藏含量、赋存状况、粒度分析及单体解离度分析。
三、尾矿中铜钼硫钨矿档次低,首要对尾矿进行了分级预富集,预富集后的尾矿选用铜钼混选---铜钼别离—浮硫流程收回铜、钼、硫精矿,选用铜钼混选组合捕收剂,查询其用量,铜钼混选取得的粗精矿进行屡次精选、再磨,并参加的黄铁矿抑制剂,使铜钼粗精矿与硫进一步别离。归纳收回铜钼后的尾矿矿浆pH值已降至合适黄铁矿的浮选,经过条件实验对铜、钼、硫档次与收回率的影响规则,然后断定最佳浮选工艺条件,取得合格的铜、钼、硫精矿产品。
四、选用碳酸钠为调整剂,水玻璃为脉石抑制剂,氧化白腊皂作为捕收剂对选铜钼硫后的尾矿进行白钨粗选,首要考察了水玻璃用量、温度、拌和时刻及等条件对取得的白钨粗精矿精选目标的影响,然后断定最佳白钨浮选工艺条件,取得合格的白钨精矿产品。
五、以浮选完钨后的尾矿为研讨目标,选用磁选工艺收回石榴子石,超细分级工艺收回微粉产品计划,结合市场行情,对石榴子石、微粉进行了较好的使用。
经过尾矿浮选探究实验,取得了杰出的作用,尾矿收回钼精矿Mo档次40.22%,Mo收回率为21.08%;铜精矿Cu档次15.01%,Cu收回率为20.26%;钨精矿WO3档次62.56%,WO3收回率为45.49%;硫精矿S档次38.12%,S收回率为55.35%;石榴子石矿藏含量为90.4%,收回率为28.07%;微粉产率为1.08%,含Al2O3为18.83%。
本项意图技能道路为:拟在现场查询及尾矿样品性质研讨根底上,从资源归纳收回的视点,提出铜、钼、硫、钨等有价金属元素及石榴子石、微粉等非金属矿藏等归纳收回与使用的技能计划;针对矿石的首要成分与特色,拟定合理的选别流程,经过选用分级预富集、浮选技能收回硫化矿(铜、钼、硫)及氧化矿(白钨矿),使用磁选收回石榴子石,超细分级收回微粉,保证尾矿的高效与归纳使用。
本项目按小型实验研讨-工业实验-安稳出产分阶段逐渐完结。在小试根底之上,经过流程结构的合理规划与优化,安排施行规划、建厂与工业化实验,并稳步过度到试出产、安稳运转。
湖南东湘桥氧化锰矿强磁工业试验
2019-01-18 11:39:42
湖南东湘桥锰矿石是供应上海宝钢炼钢、烧结所需原料的重要基地,由于本矿区矿石内锰结核约占30%,且含铁、硅高,属于难选锰铁氧化矿。 多年来不少科研单位及高等院校先后进行了研究,我院自1980年来又试验了焙烧—弱磁、焙烧—重选—弱磁、擦洗—分级—强磁、化学选矿(连二硫酸洗)等流程,进行多方案比较,虽可使原矿锰品位由25%提高到38%±,回收率80%,但由于经济效益问题,难于工业应用。 1983年经冶金部全国锰矿技术委员会评议,通过我院单一强磁选方案为最佳小试验。。。。。。
湖南省首条彩色铝材生产线在海大铝业投产
2018-12-11 09:57:58
5月5日消息 铝材门窗清一色的银灰与光滑质感,跟室内的装饰环境很不“搭调”,这种状况将改变。今天,湖南省首条真皮质感彩色铝材生产线在宁乡正式投入批量生产,填补了湖南省铝材市场无彩材的空白,为美化城乡居民的生活空间增添亮色。 湖南省是铝型材需求大省,彩色铝材生产一直是空白。随着居民生活质量的提升,建筑用彩色铝型材的需求日益增长。长沙海大铝业公司瞄准这一需求,引进世界领先的“硅化烷二代技术”,结合自身生产工艺进行研发,经过近半年时间的反复试验,成功将银灰色平滑质感的铝材实现一次雅黑作色、二次紫金作色的双层作色工艺,形成表面凹凸有致的紫金色真皮质感。这种真皮质感,与用户家中常用的沙发、餐桌颜色非常协调,大大改善了家居环境。
湖南龙王山铁帽型泥质氧化金矿堆浸提金实例
2019-02-20 11:59:20
湖南龙王山金矿为铁帽型泥质氧化矿。矿石氧化程度深,外观呈蜂窝状结构,孔隙兴旺,天然金首要赋存于褐铁矿中,含金档次2.43~2.7g∕t。矿石经一次粗碎后,-1mm粒级的泥质粉矿就占40%左右。从前选用浮选处理,金回收率只25%左右。选用破碎后直接堆浸-锌置换工艺,金的回收率也只在40%~50%之间。后改用粉矿制粒堆浸,金的回收率达75%以上,NaCN耗费也由1.5kg∕t降至0.59kg∕t。
本矿的矿堆虽超越万吨,但运用移动式皮带运输机筑堆,不饱尝载重车辆碾压。故堆场是用推土机推平压实后,低凹处再填细土并洒水压实,经查看场所平坦无碎石树根冒出后,铺油毛毡两层,上盖50μm塑料薄膜一层。薄膜上再铺一层厚50mm的卵石层。场所外围筑400mm×300mm的防雨水堤,下部边际开350mm×200mm的集液沟。
进入原矿仓的矿石为-200mm,并从矿仓主动给入250mm×400mm颚式破碎机,破碎后经振动筛筛分,+10mm筛上块矿经由皮带运输机送至堆场筑堆,筛下粉矿由皮带运输机给入φ2800mm圆盘制球机加水泥(11kg∕t)、石灰(11.7kg∕t)并喷0.1%NaCN液制球。因为粉矿含泥量特高,除水泥和石灰增加量增大外还需适量增加水,圆盘制粒机的倾角为48°,粉矿在圆盘上翻滚约6min,制成含水12%~15%、φ10~20mm的球粒滚落到皮带机上,并经移动皮带运输机送至矿堆上与块矿天然混合筑堆并固化。湿球粒强度94.7%,安眠角38°~42°,固化时刻24h。
筑好的堆高3.5m左右,整平后在堆的表面铺一层厚100mm的5~10mm块矿,以防表面板结,削减沟流和偏析。喷淋先用含CaO0.005%~0.01%的石灰水喷至排出液pH10~11后,再用NaCN和CaO液喷浸。NaCN浓度前期为0.08%~0.12%,中期0.05%~0.08%,后期0.03%~0.05%。矿堆顶部用喷头喷淋,四周边坡用φ25mm塑料管喷液,以确保浸液掩盖均匀。为改进矿堆中的供氧条件,矿堆中还按必定距离埋设竹制通气管,并选用间歇式浸出,即喷液1h停喷1h,喷液强度为45~52L/(d·t)。浸出周期30~45d。
浸出贵液中金的吸附运用5个φ500mm×2000mm吸附塔串联运转,每个塔装活性炭100kg.贵液含金约4g∕m3,以线速度25m3/h供入塔中,金的吸附回收率98%,尾液回来浸出进程。载金炭的工业饱满容量控制在10kg/t左右,解吸运用NaCN4%~5%,NaOH3%的溶液在温度98℃解吸4~5h,再用1m3洗液洗刷8~10h。脱金炭含金100~300g∕t,经酸洗后回来吸附进程。解吸液的电解选用钢棉阴极和不锈钢阳极,在槽电压3.5V,电流强度120~140A电解至贫液含金1~5g∕m3。金泥送火法熔炼。
堆浸停止后,用清水洗矿堆2d,沥干3d,再按2kg∕t矿将漂撒在矿堆上,静置3d后用推土机折堆。
整个进程中,金的浸出率大于75%,总回收率63%~70%。按车间生产成本(不包括原矿生产成本)核算,1991年处理原矿3.78万t,车间成本94.89万元,毛赢利157.79万元。1992年处理原矿3.71万t,车间成本85.53万元,毛赢利138.0万元。
湖南郴县柿竹园钨-锡-钼-铋多金属矿选厂实例
2019-02-19 09:09:04
1、简介:柿竹园多金属矿坐落湖南郴县,是东坡矿田中一个大型钨-锡-钼-铋多金属矿床。它从属中国有色金属工业总公司。现在,生产中仅有一个50t/d的实验工厂于1971年在东坡投产,并一向在生产中。3000t/d采、选厂商在建设中。
2、矿床、矿石和采矿
柿竹园是东坡矿田中一个矿床,处于郴-资复背斜和五盖山复背斜之间的东坡-月枚复向斜北段昂起处。
柿竹园矿床由近于水平状产出的上下平行的锡矿体,由锡-铋-钨-钼归纳矿体组成。矿床中矿石储量大,均匀档次为0.064%Mo、0.344%WO3、0.112%Sn、0.126%Bi。
锡-铋-钨-钼归纳矿体与矽卡岩散布共同,呈透镜状、似层状产出。单一锡矿体产于归纳矿体之上的大理岩及部分矽卡岩化大理岩中。
Ⅲ号矿体长600m、宽500m、厚50~130m,呈透镜状。矿石均匀档次:0.109%Mo、0.460%WO3、0.106%Sn、0.148%Bi。
Ⅱ号矿体长900m、宽800m、厚50~l00m,呈似层状、透镜状产出。矿石均匀档次0.02%Mo、0.238%WO3、0.123%Sn、0.107%Bi。
Ⅰ号矿体长750m、宽500m、厚10~50m,呈似层状产出。矿石均匀档次:0.105%Sn。
矿石首要有如下三个类型。
矽卡岩型钨-钼-铋矿石;紧靠花岗岩侵入触摸带,东部则位锡矿体下部。首要矿藏以白钨矿、辉铋矿为主,共生有辉钼矿、锡石、黑钨矿等,脉石矿藏首要为石榴石、透辉石、萤石、角闪石、长石、云母等。矿石均匀档次:0.1~0.5%WO3(少数>1%WO3)、0.01%~0.04%Mo(少数≥0.1% Mo)、0.05%~0.2%Sn、0.03%~0.20%Bi。
云英岩-矽卡岩混合型钼-钨-铋矿石:散布于上类矿石的下部,底板与花岗岩直触摸摸。构成部分富矿段。矿石均匀档次:0.454%WO3、0.107%Mo、0.146%Bi、0.106%Sn。WO3中30.6%为黑钨矿,云英脉和石英脉为主,以网脉或平行细脉状产出。首要金属矿藏为黑钨矿、白钨矿、辉钼矿、辉铋矿。
大理岩型锡矿石简直不含钼。此从略。
柿竹园多金属矿床中的钨、钼、铋含量均到达独自挖掘的工业档次。挖掘矿石的成份见表1。
表1 矿石多元素分析
元素WO3MoBiSnFeCuPbZn含量(%)0.6140.140.130.0556.350.0050.0160.016元素SFFeOTiO2SiO2Al2O3CaOMgO含量(%)0.3518.53.220.2740.889.7023.721.07元素MnBeOV2O5PAsReNb2O5Ta2O5含量(%)0.600.028<0.0050.034<0.005<0.00030.002<0.0005
矿石中首要有用矿藏嵌布粒度不只细,并且很不均匀。当矿石磨至90%-200目时,黑钨矿、白钨矿的单体解离度大于85%,辉钼矿仅80%、辉铋矿仅80%。
矿石中矿藏共生关系亲近,部分钨矿藏内包裹有3~5μm微粒的辉钼矿。少数钼还以类质同象进入白钨矿,构成含钼白钨矿或钨-钼钙矿。
鉴于有用矿藏品种繁复、共生亲近、粒度不均匀,并且含钙矿藏多,给分选代来很大困难。[next]
3、选矿工艺
选矿工艺见图1~图5。流程实验目标列于表2。
根据工业实验经判定同意,新规划大厂采用了重-浮-磁-浮的准则流程。
表2 工业流程实验目标(%)
准则流程年份计算班数原矿档次精矿档次钼收回率钨精矿铋精矿萤石精矿WO3收回率Bi收回率CaF2收回率重-浮-重-浮1974100.11847.8580.69①>6575.2125.1870.7795.6437.56浮-重1975110.12142.4882.6166~6871.9920.6266.4595.8228.931979100.10748.6983.7366~6972.1131.4353.6094.4317.22重-浮1978140.10947.7478.4968~6977.5226.9564.9395.7127.331979100.1164881.5964~6975.992758.3093.9928.26重浮磁浮1980180.11646.4881.3467.7480.6632.1666.1997.3128.76浮-重-浮-磁-浮198090.12652.0583.1866.3578.8935.1061.0597.13
①包含中矿水冶收回钼酸钠(占7.67%)。
图1 重-浮-重-浮准则流程
图2 浮-重准则流程
[next] 图3 重-浮准则流程
图4 重-浮-磁-浮准则流程
图5 浮-重-浮-磁-浮准则流程
4、选矿药剂
按1978年规划,浮选药剂21种;1980年修正初步规划改为18种。
药剂准则列于表3。
表3 柿竹园规划药剂准则
药剂丁黄药硫9#火油氧化白腊皂2#油草酸单耗(g/t)0.812030081085256 药剂琥珀酸硫酸苏打石灰硫酸锌单耗(g/t)392605051310440163药剂硫酸铅钠水玻璃CMC单耗(g/t)22260 171041505
5、选矿目标(1980年12月15日修正规划)
原矿档次:0.601%WO3、0.132%Mo、0.178%Bi、21.76%CaF2;钼精矿档次45%Mo、钼收回率80%,钼精矿产量2059t/a;铋精矿档次30%Bi,铋收回率65%,铋精矿产量3868t/a;钨精矿档次70%WO3,钨精矿产量6818t/a;钨中矿9%WO3;萤石精矿档次97%CaF2,CaF2收回率30%,萤石产值66626t/a;铁精矿产量13077t/a;硫精矿产量78814t/a。
湖南发布微晶石墨材料产业链技术创新路线图,高端产品制备技术寻突破!
2019-01-04 15:47:49
2017年5月10日,湖南省经信委发布了微晶石墨材料、农业机械、特高压输变电装备三大重点产业的产业链技术创新路线图,旨在加快技术创新,推动产业集群发展。
在微晶石墨材料产业领域,湖南省经信委特别强调,需重点突破高纯微晶石墨制备技术及装备、高性能各向同性微晶石墨制品制备技术、微晶石墨负极材料制备技术、微晶石墨烯等前沿材料制备技术等关键共性技术,实现高纯微晶石墨材料、高性能各向同性微晶石墨制品、动力锂离子电池负极材料、石墨烯等产品规模化生产。
预计到2020年,微晶石墨高端产品市场经济规模达到200亿元。
作为隐晶质石墨的一种,微晶石墨近些年的需求量正在逐渐加大,尤其是在高精尖应用领域,为了摆脱依赖进口的局面,国内众多研究者、企业也都在积极寻求加工技术、应用领域等方面的突破。
下面我们对微晶石墨结构特点、加工处理、市场应用、代表性生产企业作简要介绍。
微晶石墨结构特点
微晶石墨是煤炭变质成矿,矿物本身品位高(通常≥60%C,优质矿物80-85%C,少数高达≥90%C),石墨化程度高。主要产地有湖南、内蒙、福建、湖北等地。
天然微晶石墨是由粒径约1μm的石墨微晶构成的无规堆积体,淡灰色,呈金属光泽,石墨微晶颗粒之间常含有绿泥石、云母等矿物杂质。由于微晶石墨晶体颗粒细小,取向分散,具有各向同性特点。微晶石墨加工处理
利用微晶石墨制备高科技领域的新材料,必须先对微晶石墨进行提纯、粉体加工、改性等加工过程。
1、提纯:纯化处理可显著降低天然微晶石墨中的杂质含量,使细小的石墨微晶表面裸露出来,但不会影响天然微晶石墨的晶体结构。分为物理提纯、化学提纯、高温提纯等。
物理提纯:多磨多选,80%原矿浮选提纯达到≥90%高碳产品
化学提纯:一次提纯80%原矿浮选提纯达到≥92%高碳产品,二次提纯达到99%C
高温提纯:≥2700℃,80%原矿一次提纯达到99.9%C
2、粉体加工:有两点需要注意:
微晶石墨颗粒强度低,加工时易粉碎;
微晶石墨粉体球化机理与鳞片石墨不同,因此设备、参数不同。
3、改性:与鳞片石墨类似,改性方法有多种,如表面包覆、GICs改性、插层/氧化/还原制备石墨烯等。
微晶石墨市场应用
1、低端应用:直接开采出原矿应用到耐火材料、铸造涂料、增碳剂等领域。
2、高端应用:生产加工成高品质微晶石墨粉,用来制作锂离子电池负极材料、超级电容器电极材料、骨料、各向同性石墨、石墨烯粉体等产品,应用在动力电池、超级电容器、航空航天、核能等高精尖领域。动力电池
代表性生产研发企业
1、南方石墨有限公司
南方石墨有限公司隶属于中国建材集团有限公司,2011年3月25日在湖南省郴州市注册成立,注册资本10亿元,主要经营范围为石墨及伴生资源开发、石墨精深加工、新材料产品研发与贸易。
南方石墨作为中国建材集团资源开发业务平台和新材料领域旗舰公司,致力于积极推动石墨产业资源整合和技术进步,做强、做大、做优中国微晶石墨产业,引领微晶石墨产业健康持续发展。目前,公司已投入近40亿元用于矿区技改建设,计划在未来五年内投入50亿元,用于原矿生产基地、石墨精深加工项目、新材料工程技术研发中心和石墨烯产业园等项目建设,形成科技成果就地转化的产业研究基地,努力将公司打造成集原矿生产、石墨精深加工、新材料产品研发、技术转化、物流贸易于一体的石墨产业集群。
2、内蒙古瑞盛新能源有限公司
内蒙古瑞盛新能源有限公司是在母公司内蒙古日新集团整合兴和九家石墨矿山企业后,为延伸产业链条,提高产品附加值,并实现资源高效综合利用,于2010年7月份在兴和县注册成立的一家集石墨产品研发、生产、销售为一体的综合性新能源新材料高新技术企业,并拥有多项发明专利及专有技术。
瑞盛石墨应用产业园规划占地面积1902亩,总工期为三年,分两期实施。一期规划设计九个产品,包括高纯石墨、球形石墨、细粉石墨、可膨胀石墨、柔性石墨纸、石墨乳、锂离子电池负极材料、锂离子电池正极材料、高导热石墨块、高导热石墨纸等。二期规划设计三个产品,包括等静压石墨、电动汽车锂离子动力电池、太阳能及风能大功率蓄能电池等。
3、大盛石墨新材料股份有限公司
乌兰察布市大盛石墨新材料有限股份公司成立于2012年9月4日,目前注册资本1亿元人民币。公司位于内蒙古乌兰察布市兴和县兴旺角工业园区,占地面积1900亩,是一家集天然石墨产品研发、精深加工生产、应用技术服务和销售为一体的综合性新材料高新技术企业。
大盛公司高端产品包含有高纯石墨、细粉石墨、可膨胀石墨、电池负极材料、柔性石墨、高导热石墨材料、等静压石墨等,主要目标客户包括德国、日本、韩国、美国、瑞士、法国等在内的全球石墨碳素领域的高端企业客户,以及国内电池、电子制造、石油化工、冶金钢铁、航天军工、核工业等领域的领军企业等。
湿法炼锌
2019-01-08 09:52:37
用酸性溶液从氧化锌焙砂或其他物料中浸出锌,再用电解沉积技术从锌浸出液中制取金属锌的方法。该法于1916年开始工业应用,至1998年,全世界产锌802万吨中的70%以上是由湿法炼锌工艺所生产,发展很快。中国年产锌万吨以上的湿法炼锌厂有15家,生产能力约为火法炼锌的2倍多,湿法炼锌产量超过100万吨。该工艺包括硫化锌精矿焙烧、锌焙砂浸出、浸出液净化除杂质和锌电解沉积四个主要工序。工艺流程见图1。 1.锌精矿焙烧 用空气或富氧,在高温下使锌精矿中ZnS氧化成ZnO和ZnSO4,同时除去As、Sb、Cd等杂质的一种作业。焙烧产物焙砂,送去浸出锌,烟气或者制硫酸或者生产液态S02-湿法炼锌的精矿焙烧与火法焙烧不同,湿法炼锌焙砂中要求保留1%-2%的硫以SO42-形态存在,以补充锌焙砂浸出时不足的硫酸。而火法炼锌精矿焙烧希望全部ZnS都氧化为ZnO,以提高冶炼回收率。 现代锌精矿焙烧均采用沸腾焙烧炉。焙烧操作条件是:床层温度900-1000℃,线速度0.5-0.6 m/s,床能力5-6.5 t/(m2·d),烟尘率50%-60%。 主要技术经济指标:脱硫率91%-95%,烟气SO2浓度>6.5%,不溶硫<1%。[next] 2.锌焙砂浸出与浸出液净化 焙砂浸出锌由中性浸出和酸性浸出两段组成。一段中性浸出采用废电解液,二段用硫酸作浸出液,酸度30-60 g/L H2SO4,浸出温度65-70℃。浸出液含Zn>120 g/L。影响浸出的因素有浸出温度、搅拌速度、酸浓度、锌焙砂颗粒大小等。ZnO浸出反应为: ZnO+H2SO4====ZnSO4+H2O 为了提高锌焙砂中锌浸出率,采用空气搅拌,以强化浸出过程。使难溶的ZnO.Fe2O3、ZnO.Al2O3及ZnS得以溶解。 工业生产多将若干个搅拌浸出槽连接起来形成浸出设备组合系列,锌焙砂用废电解液浆化成矿浆后在此进行逆流连续浸出。中性浸出段产出的矿浆经浓密分离,上清液送去净化除杂质,合格净化液送电解生产电锌,底流再经酸性浸出段浸出,上清液返回浆化槽,底流过滤,滤饼为弃渣,送渣场。 浸出工序主要指标为:锌焙砂含Zn 47%-57%(可溶Zn>90%),锌浸出率>85%,浸出渣含Zn 18%-20%,浸出渣产率53%。 所得浸出液含锌130-150 g/L,其他杂质为(g/L):Cu 0.2-0.4, Cd 0.5-0.7, Co0.01-0.04,Ni 0.002-0.007,As 0.0002-0.0004,Sb 0.0003-0.0004。这些杂质对锌电积十分有害,电积前必须将其除到允许的浓度。 传统的浸出液净化过程包括两个工序:先加锌粉置换除铜、镉;再加黄药除钴。前者是利用铜与镉的氧化还原标准电位分别为+0.344和-0.40,均较锌-0.762为正的原理,将Cu2+、Cd2+还原成Cu和Cd沉淀除去;后者则是向溶液中加入CuSO4,使Co2+氧化成Co3+,而后加入磺酸盐(2C4H9OCSSK)使和Co3+成钴盐(C4H9OCSS)3Co沉淀除去。 沈阳冶炼厂采用白砷(As2O3)代替黄药除Co,一次净化时浸出液中加入As2O3、锌粉、硫酸铜,同时除去As、Sb、Ni、Cu、Ge,二次净化时浸出液中加KMnO4除Fe,加锌粉除残Cd。经过两次净化,可基本除净有害杂质,电解电流效率可提高到90%。 白砷净化溶液的条件与指标:一次净化,温度60-70℃,白砷、锌粉和硫酸铜的用量分别为0.15 kg/m3、0.5 kg/m3和0.2 kg/m3,终液含Co降到0.002 g/L;二次净化,50-60℃,用空搅拌除铁,净化后溶液含铁 锌电积的主要设备是电解槽,多为钢筋混凝土制成的内衬聚氯乙烯或玻璃钢防腐材料槽,电解槽尺寸为2250mm×850mm×1450mm。铝板阴极,大小为1m×0.7m×4mm,上边焊接铜导电棒,侧边夹绝缘条。阳极用含银1%的铅基合金制成,尺寸稍小于阴极。 锌电沉积的主要技术经济指标为:电解温度40℃,同极中心距60mm,电流密度450A/m2,槽电压3.2-3.4V,电流效率89%,直流电耗3100kWh/t Zn,电解回收率99.3%。 熔铸析出锌片的冶金炉有低频感应炉和反射炉。前者常用的规格有1250 kW,40t容量炉型,工作温度450-500℃,电耗120 kWh/t。后者常见炉床面积7.4m2,容量5 t/炉,以煤或油为燃料。产品锌锭重20-25kg,质量为1#锌国家标准(%):Zn>99.99,Pb<0.005,Fe<0.003,Cu<0.001,杂质总量<0.01。
浸出及浸出率
2019-01-04 15:47:49
浸出,是湿法冶金中的一个过程。所谓浸出,就是将固体物料(例如矿石、精矿、熔砂或其他半成品)加入液体溶剂内,让固体物料中的一种或几种有价金属溶解于液体溶剂中,以便下一步从溶液中提取出有价金属。
例如湿法炼锌中的浸出过程,就是采用稀硫酸溶液或来自电解车间的废电解液作溶剂,对锌焙砂进行浸出,使焙砂中的锌溶解于硫酸溶液中,浸出过程一般是在常温常压下进行的,但为了使浸出过程得到强化,也常常使用高温高压浸出。
浸出的目的,在于使所有要提取的金属尽量溶解于溶剂中,而杂质则溶解得越少越好,不管选择什么样的溶剂,所要提取的金属总是难得100%都溶解。
同样,所含杂质也总要溶解一些,为了表示某一物质被浸出的程度,常用浸出率来表示。
浸出率,就是该物质被浸出的百分率。例如,锌焙砂浸出时,如果被浸出锌占焙砂中的锌的80%,则锌的浸出率为80%。
针铁矿法在湿法冶金中的应用
2019-01-07 17:38:37
利用沉淀针铁矿除铁的技术是由比利时老山公司巴伦厂(Vieille Montagne)首先开发和工业化的,称为VM法。成功地沉淀针铁矿的关键在于维持溶液中Fe3+的低浓度,例如<1kg∕m3,否则在沉淀针铁矿的pH范围(2~3.5)内将得到胶状的Fe(OH)3或碱式硫酸铁 Fe4SO4(OH)10。VM法解决此问题采用的是还原-沉淀法,流程如图1所示,从热酸浸出得到的含100kg∕m3Zn,25~30kg∕m3Fe3+及50~60kg∕m3H2SO4的硫酸锌溶被先经过还原作业,即在沉淀针铁矿前在一个单独的作业中先用锌精矿(ZnS)将溶液中的Fe3+都还原成Fe2+,还原后未反应的ZnS与反应生成的元素硫一同分离出来送回焙烧炉。还原后液再用焙砂ZnO预中和至3~5kg∕m3H2SO4,得到的铁渣返回热酸浸出作业,溶液则送入沉淀反应器。向沉淀器通空气将Fe2+氧化成Fe3+而使之水解沉淀出针铁矿晶体。图1 VM针铁矿法
沉淀针铁矿时需不断在加入焙砂以中和水解反应产生的酸,将pH值控制在适当的范围内,如pH=2~3.5。VM法需要特别注意控制Fe2+的氧化速度,使得溶液中Fe3+的浓度在水解沉淀针铁矿的过程中始终保持在1kg∕m3以内。与黄铁矾法不同的是,针铁矿沉淀时无需提供一价阳离子,而得到的针铁矿渣也不能进行酸洗回收其中由焙砂中和带入的未溶解的锌。为防止这部分锌的损失,一个对策是使用低铁的闪锌矿焙砂作中和剂。
澳大利亚电解锌公司开发的EZ法直接将含Fe3+的待水解液缓缓加入水解沉淀器中,控制水解液Fe3+浓度不超过1kg∕m3从而控制水解,因而EZ法亦称部分分解法。在70~90℃下连续水解沉淀针铁矿,同时不断加入锌焙砂中和因水解产生的酸,维持溶液pH值在2.8以适于水解。
两种针铁矿法相比,沉淀同样数量的铁,VM法水解产生的酸此EZ法少,因而为中和水解的酸需要消耗的锌焙砂也少,随锌焙砂损失的锌电少,除铁的效果也好于EZ法。但VM法涉及先还原后氧化两道工序,比较繁琐。此外,VM法用空气氧化Fe2+的速度较慢,而用别的氧化剂则成本高。
与黄铁矾法相比,针铁矿法不需要硫酸根和碱金属,可应用于任何酸浸体系,包括氯化物体系和硝酸盐体系,除铁的效果也更好(从30kg∕m3到小于1kg·kg∕m3),但针铁矿对酸的稳定性较差,沉淀中未溶解的铁酸锌不能如黄铁矾法那样用酸洗来回收。
雾化热解法制备活性氧化锌
2019-02-11 14:05:30
超细氧化锌是一种近年来开展的新式高功用无机产品,它具有了其本体块状物料所无法比拟的优异功能。现在氧化锌的制备办法首要有:直接沉淀法、均相沉淀法、溶胶-凝胶法、微乳液法、水热法、醇盐水解法、溶剂蒸腾法等。
雾化热解进程作为一种新式的超细粒子制备技能,遭到材料、化学工程、气溶胶、超导等范畴研究人员的广泛重视。本文以锌焙砂为质料,用NH3-NH4·HCO3-H2O系统作为浸出剂,经浸出-雾化热解-锻烧制取活性氧化锌。
一、实验
(一)实验原理
锌焙砂的首要成分为ZnO,并伴有少数的ZnSO4、ZnO·SiO2、ZnO·Fe2O3及ZnS,在性系统中浸出时,锌焙砂中Cu、Ni、Cd、Co等杂质元素也生成合作物进入溶液,ZnO·SiO2、ZnO·Fe2O3及ZnS等不溶解,残留在渣中。
在净化进程中,因系统呈弱碱性,Cu、Ni、Cd、Co等杂质均易被锌粉置换除掉,净化后液选用并流式离心雾化枯燥器雾化枯燥,溶液通过高速旋转的离心盘雾化成微米级液滴,当即与热风触摸,在枯燥器中呈螺线型运动,而且随同枯炎热分化进程。雾化后的每一个球形液滴能够作为一个反响器,其阅历三个阶段,首要因为NH3蒸腾温度低,在高温下NH3敏捷蒸腾,导致溶液中[Zn(NH3)m]2+合作物失去平衡,分出碱式碳酸锌前躯体,此阶段相当于蒸进程;第二阶段为水的蒸腾,粒子表面的水蒸气分压远大于空气中的水蒸气分压,枯燥进程持续进行,分压差为枯燥进程的推动力;第三阶段为降速阶段,粒子表面的水蒸气分压等于空气中的水蒸气分压,两者之间的分压差等于零,不再进行枯燥,可是此刻物料分化敏捷,而得到高活性氧化锌。
因碱式碳酸锌分化不彻底,将前躯体在马弗炉中锻烧,锻烧温度300~600℃,锻烧时刻30~60min,而得到高活性氧化锌。
(二)试剂及试料
(25%~28%)、碳酸氢铵,分析纯;实验质料取自江西某炼锌厂的锌焙砂,其化学成分(%):Zn 53.17、S 2.58、Cu 1.03、Pb 1.48、Cd 0.09、Fe13.06、As 0.24、Sb 0.08。
(三)实验装置
浸出实验在1 L圆底三口烧瓶中进行,选用恒温磁力拌和器坚持稳定的反响温度,操控温度差错士1℃,拌和速度为450 r/mine
(四)实验及分析办法
每次取40 g氧化锌焙砂,按必定的液固比参加配好的及碳酸氢铵混合液,通过必定时刻的浸出后过滤,用EDTA滴定法分析滤液中Zn的浓度,核算Zn的浸出率。锌粉置换除杂反响所用锌粉粒度为145~175μm,在快速拌和下缓慢参加。净化液通过滤后在离心喷雾枯燥器中雾化、枯燥、分化得到中间产品,最终在马弗炉中煅烧得到活性氧化锌。以SEM、XRD等分析手法分析产品的粉体结构、描摹特征。
二、成果与评论
(一)浸出
1、 NH3/NH4+对Zn浸出率的影响
在总浓度8mol/L,液固比8∶1,温度35℃、时刻lh的条件下,调查NH3/NH4+对Zn浸出进程的影响,成果见图1。从图1可知,NH3/NH4+对Zn浸出率的影响显着,当NH3/NH4+从1∶1添加到2.5∶1时,Zn浸出率显着进步,通过预订的浸出时刻,Zn浸出率由75.96%添加到82.56%,当铵比持续增大,Zn浸出率缓慢下降。其原因首要是因为NH3/NH4+的改变,引起浸出液pH的改变,依据Zn浸出电位-pH图,pH的巨细直接影响ZnO的浸出进程,在NH3/NH4+=2.5∶1时,浸出液pH=12。因而断定浸出液NH3/NH4+=2.5∶1。图1 铵比对Zn浸出率的影响
2、液固比对Zn浸出率的影响
在总浓度8 mol/L、NH3/NH4+=2.5∶1、温度35℃,时刻1h的条件下,调查液固比对Zn浸出进程的影响,成果如图2所示。从图2可看出,液固比对Zn浸出率的影响非常显着,当液固比低于8∶1时,跟着液固比的添加,Zn浸出率显着添加;可是当液固比大于8∶1后,Zn浸出率改变不大。因而断定液固比为8∶1。图2 液固比对Zn浸出率的影响
3、总浓度对Zn浸出率的影响
在液固比=8∶1、NH3/NH4+=2.5∶1、温度35℃、时刻1h的条件下,调查总浓度对Zn浸出进程的影响,成果如图3所示。从图3可看出,总浓度对Zn浸出率的影响显着,当总浓度小于8 mol/L时,跟着总浓度的添加,Zn浸出率显着进步;可是总浓度大于8mol/L后,Zn浸出率改变不大。因而断定总浓度为8mol/L。图3 总浓度对Zn浸出率的影响
4、浸出时刻对Zn浸出率的影响
在总浓度8mol/L、NH3/NH4+=2.5∶1、液固比=8∶1、温度为35℃的条件下,调查浸出时刻对Zn浸出进程的影响,成果如图4所示。从图4可看出,浸出时刻对Zn浸出率的影响显着。在NH3-NH4·HCO3-H2O系统中,Zn浸出反响敏捷,在浸出时刻为10min时,Zn浸出率就到达72.28%,而且跟着时刻连续,浸出率快速进步,浸出40min时,Zn浸出率到达82%。当浸出时刻到60min,Zn浸出率到达82.34%,可浸Zn根本浸出彻底。
5、浸出归纳条件实验
依据以上实验成果,断定最佳浸出的归纳条件为:总浓度8 mol/L、NH3/NH4+=2.5∶1、液固比=8∶1,时刻1h。浸出液锌含量为54.34g/L,浸出率为82.56%,首要杂质元素含量(mg/L):Cu250、Pb 25.1、Co 0.52、Cd 31.6、Fe 3.3、As 0.43、Sb 0.15。按可溶性的氧化锌、硫酸锌核算,可溶锌浸出率大于97%。形成浸出率低的原因是焙砂中铁酸锌、硅酸锌含量较高。浸出液进行二次浸出,锌含量可到达97.62 g/L。图4 浸出时刻对Zn浸出率的影响
(二)净化
由上述成果可知浸出液中Cu、Ni、Cd、Co等杂质元素含量较高,本实验选用锌粉置换法除掉这些杂质,净化实验在高拌和强度下进行,选用的锌粉粒度为145~175μm,温度操控在50℃左右,反响时刻1h。在此条件下,溶液中Cu、Cd、Co、Fe等杂质均可被置换除掉,净化后液杂质元素含量(mg/L):Cu 0.32、Pb 0.79、Co 0.02、Cd 0.68、Fe 1.3、As0.06、Sb 0.0。Cu净化率到达99.87%,一起Co净化率为96.15%,净化后液中Fe含量为1.3 mg/L,
到达净化要求。
(三)雾化分化
雾化分化在并流式离心喷雾枯燥器中进行,溶液通过蠕动泵泵入雾化器中,经高速离心效果,将机械能转化成细微雾滴的表面能,而且在极短的时刻内完结蒸腾、水蒸腾、碱式碳酸锌的分出及分化进程。溶液的黏度及表面张力对雾化起阻止效果,其首要由物料的性质及组成操控。
雾化热解进程在人口温度为340℃,出口温度180℃以上,雾化转速为400n/s,进料速度为60mL/min;料液浓度为100g/L的条件下进行,产品进行SEM分析,成果如图5所示。从图5可看出,大部分为长度不大于2μm的针状物,其为前期跟着气蒸腾而分出的碱式碳酸锌,通过水分蒸腾枯燥分化而得的氧化锌。还有少部分为未彻底分化的前躯体,为表面润滑的实心球体。这是因为物料在枯燥器内与执风并行活动,目在枯燥器内只逗留20~30s,热风温度跟着水分的蒸腾直线下降,在出口温度仅能到达180℃左右,低于碱式碳酸锌的分化温度,所以有部分不能分化。图5 雾化分化粉体的SEM图
(四)煅烧
锻烧在马弗炉中进行,温度设定为400℃,时刻1h。锻烧后的粉末XRD谱图与ZnO的XRD标准卡片(JCPDS)对照分析标明,煅烧后制备的氧化锌微粒与JCPDS标准卡片相符,这阐明得到了六方晶系结构的氧化锌粉体,衍射峰都很尖利,而且几乎没有杂质衍射峰,阐明结晶程度和纯度都较高。
锻烧后描摹及粒度经电镜分析,其成果如图6~7。如图6所示,其间大部分针状物的描摹、粒度都没有发作显着的改变,少部分发作聚会现象。从图7能够看出,前躯体中的球形碱式碳酸锌则生成蜂窝状,增大了其比表面积。图6 400℃煅烧后针状ZnO粉体的SEM图图7 400℃煅烧后蜂窝状ZnO粉体的SEM
三、定论
(一)在总浓度8 mol/L,液固比=8∶1、NH3与NH4+的比为2.5∶1,温度35℃、时刻1h的条件下,一段浸出液锌含量为54.34 g/L,浸出率为82.56%,两段浸出液进锌含量可到达97.62 g/L,平均可浸锌浸出率到达97%以上;
(二)在性条件下,Fe根本不会浸出,浸出液铁离子浓度仅为3.3 mg/L,净化液中Co的净化率到达96.15%;
(三)在进口温度为340℃,出口温度为 180℃,雾化转速400n/s,进料速度为60mL/min,料液浓度为100g/L的条件下进行为行雾化热解,能够得到长度不大于2μm的针状活性氧化锌。可是因为温度不行,有部分前躯体没有分化彻底,有必要进行煅烧处理;
(四)前驱体在马弗炉中400℃煅烧1h后,为蜂窝状氧化锌。
湿法炼锌黄铁矾法
2019-01-07 17:38:37
黄铁矾法作为有效的除铁方法在湿法炼锌厂的实践最具代表性。黄铁矾法的开发成功是在20世纪60年代中期,当时澳大利亚的电锌公司、挪威锌公司和西班牙阿斯图里亚那公司各自独立地开发了这项技术并几乎同时申请了专利。此后黄铁矾法迅速得到广泛应用,成为电解锌生产中主要的除铁技术,目前世界上至少有16家大型电解锌厂采用了此技术。现在用以除铁的黄铁矾法是将溶液pH值调到1.5且维持这一pH值,并在95℃左右加入一价阳离子从酸性硫酸盐溶液中沉淀黄铁矾。工业中最常用的一价阳离子是NH4+和Na+。黄铁矾沉淀后,溶液中铁的浓度一般降到1~5kg∕m3。
湿法炼锌中黄铁矾法典型的操作分3个基本步骤:中性浸出、热酸浸出和黄铁矾沉淀。在中性浸出阶段,酸性电解贫液被锌焙砂ZnO中和,得到含铁酸锌的渣和供电解沉积锌的中性硫酸锌溶液。铁酸锌渣在热酸浸出段用补克了硫酸的电解贫液造成的热酸中溶解,得到的含Zn和Fe的浸出液再在黄铁矾沉淀段处理,先用锌焙砂调整酸度,再加入硫酸铵或硫酸钠沉淀碱金属黄铁矾。沉铁后液返回中性浸出,黄铁矾渣则弃去。需要指出,沉淀黄铁矾时用作中和剂的锌焙砂中所含的铁酸锌将不溶解而进入铁矾渣中,因此新生成的黄铁矾渣不宜直接弃去,以免损失焙砂中和剂中未溶的铁酸锌。鉴于黄铁矾一旦生成则对酸相当稳定,实践上黄铁矾渣弃去前可在类似热酸浸出的条件下进行酸洗,溶解回收渣中残存的铁酸锌,而黄铁矾本身不致溶解。
黄铁矾法的3个基本步骤的具体操作条件及顺序在不同厂家不尽相同,但目的是相同的;最大限度地回收锌而不考虑少量的伴生元素如Pb和Ag。例如,铁酸锌的热酸浸出和黄铁矾的沉淀可以合而为一,即所谓转化法,其总反应如下:
(1)
该合并步骤的溶液然后可用新鲜焙砂中和,产出溶液供电解和渣返回循环。若精矿中含有较大量的Pb和Ag,则采用另外的流程,得到含Pb∕Ag的渣、黄铁矾沉淀和中性Zn电解液。这类流程中包含有一个预中和作业。在通常的黄铁矾流程中是用焙砂降低热酸浸出液的酸度,从而迅速而有效地沉淀黄铁矾。焙砂中存在的Zn2+,Cd2+,Cu2+,Pb2+和Ag进入黄铁矾而损失。在热酸浸出和黄铁矾沉淀作业之间引入一个预中和作业可以降低黄铁矾中的金属损失。在预中和作业中,溶液中的酸一部分被焙砂中和,所得的渣返回热酸浸出段溶解其中的Zn和Fe,而Pb和Ag留在铅-银渣中。部分中和过的溶液随后加入所需要的中和剂进行黄铁矾沉淀。
图1为集成的黄铁矾法流程示意图。它的设计中结合了各种黄铁矾法方案中的大多数改进环节。图1 集成黄铁矾法
除应用于湿法炼锌工业中外,黄铁矾法还在铜、镍、钴等金属提取中用作除铁工艺,尤其是在硫酸盐体系中。例如,在处理钴-铜精矿的阡比什(Chambishi)焙烧-浸出-电积法中,铜电积前的除铁就是采用黄钾铁矾沉铁。由于硫酸化焙烧本身提供了K+离子,沉淀黄钾铁矾时无需外加高成本的硫酸钾。
黄铁矾法的优点是沉淀容易过滤,Zn,Cd和Cu在沉淀中的损失最少,可以同时控制硫酸根和碱金属离子,容易与各种湿法冶金流程结合。但它也有其自身的缺陷,例如:1)所用试剂成本较高;2)渣的体积较大,为1.4kg∕(m3·t),堆存占地较大;3)需要充分洗涤以除去吸附的有害环境或可供利用的金属;4)需要在控制条件下存放以免分解放出有害组分污染环境。通过热分解或水热分解将黄铁矾转化为赤铁矿供生产铁并将硫酸钠/硫酸铵循环至黄铁矾沉淀作业,可望克服这些缺点。
氨法超细活性氧化锌研究
2019-02-18 15:19:33
据全国锌盐协作组查询,国外氧化锌工业开展较为老练,近几年处于相对安稳的状况,1999年美国、日本、西欧的氧化锌消费量共582.3万吨,实践产值共466.5万吨。与国外构成显着对照的是,近几年我国汽车工业的快速开展,加上我国涂料工业的快速开展,使我国氧化锌的需求在逐年上升。估计到2005年,我国氧化锌仍将以6~8﹪的速度开展。据全国锌盐协作组2000年职业查询,现在我国氧化锌出产厂商为96家,2000年氧化锌实践产值30.63万吨。
国内外氧化锌出产工艺还是以直接法和直接法为主,少数以湿法工艺出产。而湿法工艺出产氧化锌中大部分是硫酸法工艺的产品,其很多副产品难以收回,环保问题不易处理;直接法氧化锌工艺以含氧化锌的质料经氧化复原直接产出氧化锌产品。该法受质料约束,质量不高,价格较低;直接法氧化锌出产工艺以冶炼提纯的金属锌为质料,经熔化、汽化、氧化出产出氧化锌。该法出产成本较高。法湿法工艺是现在国内氧化锌出产工艺的开展方向。且其产品简单完成多种类、多规格。可广泛用于橡胶、涂料、陶瓷、磁性材料等范畴。
南京铅锌银矿业公司经过以广西冶金研讨所协作研讨,以成功开发了法超细氧化锌新工艺及其产品。《法超细氧化锌新工艺及其产品》在2001年经过江苏省科技厅安排专家判定,并被南京市经委认定为高新技术产品。国内近年稀有家单位都在研讨类似工艺,咱们现在的水平在同行中处于先进水平。
法超细氧化锌新工艺,克服了硫酸法工艺环保问题难以处理的缺陷,它以氧化锌焙砂为质料,经脱硫、洗刷、浸出,除铜、铅、铁、锰;深度静化、水解、蒸、枯燥、煅烧,制得超细活性氧化锌产品。
与现有的各种氧化锌出产工艺比较,法超细氧化锌新工艺的优势:
1、出产成本低。直接法氧化锌与直接法氧化锌因为所用质料不同。所以出产成本也不一样。前者出产成本显着低于后者。直接法中法和酸法出产成本附近,法在质猜中能够调配运用低度氧化锌、锌灰、菱锌矿、锌烟尘,使出产成本更低。
2、产品活性高。氧化锌出产原理不同,制品的晶型也不一样,因而化学活性不同很大,法工艺出产的超细氧化锌,具有粒度细、比表面积大、晶型出现多孔的结构。因而,具有化学活性高的特色。
3、产品纯度高。因为法在出产中应用了多种净化办法,使得杂质金属含量降到最低。一起,也避免了酸法工艺的产品中硫酸根的残留问题。
4、产品种类多。直接法受工艺的约束,只要一种产品——直接氧化锌。而法经过微调工艺可出产出不同功能的氧化锌和锌盐产品。以满意用户不同的需求。习惯商场的广泛需求。
5、质料来历广。法工艺质料习惯性最广。锌焙砂、低度氧化锌、锌灰、菱锌矿等都能够作为法工艺的出产质料。在矿产资源越来越匮乏的今日,这是一个很大的优势。
6、环保有保证。法工艺的规划思维就是水、闭路循环。没有一般湿法出产水的污染问题。
别的,咱们经过调整某些工艺参数、流程工序,能够出产出粒径40~60nm的氧化锌。
锌冶炼工艺简述
2019-02-26 10:02:49
现在国际上经过锌精矿出产精粹锌的冶炼首要有两种工艺:火法冶炼和湿法冶炼。
火法炼锌中的竖罐蒸馏炼锌已趋筛选,电炉炼锌规划小且未见新的开展。密闭鼓风炉炼铅锌是国际上最首要的几乎是仅有的火法炼锌办法。国际上总共有15台(包含国内ISP工厂)密闭鼓风炉在进行锌的出产,占锌的总产值12%-13%,其技能开展首要是添加二次含铅锌物料的处理办法;改善冷凝功率;富氧技能的运用等。
湿法炼锌是当今国际最首要的炼锌办法,其产值占国际总锌产值的85%以上。近期国际新建和扩建的出产能力均选用湿法炼锌工艺。湿法炼锌技能开展很快,首要表现在:硫化锌精矿的直接氧压浸出;硫化锌精矿的常压富氧直接浸出;设备大型化,高效化;浸出渣归纳收回及无害化处理;工艺进程自动操控系统等几个方面。一、火法炼锌
在高温下,用碳作复原剂从氧化锌物猜中复原提取金属锌的进程就叫做火法炼锌。
1、冶炼办法介绍(一)横罐炼锌
横罐炼锌是20世纪初选用的首要的炼锌办法,一座蒸馏炉约有300个罐,出产周期为24h,每罐一周期出产20~30kg,残渣中含锌月5~10%,锌收回率只要80~90%。
横罐炼锌的出产进程简略,基建投资少,但因为罐体容积少,出产能力低,难以完成接连化和机械化出产。并且燃料及耐火材料的耗费大,锌的收回率还很低,所以现在已根本筛选。
(二)竖罐炼锌
竖罐炼锌具有接连性作业,出产率、金属收回率、机械化成都都很高的有点,但存在制团进程杂乱、耗费贵重的碳化硅耐火材料等缺乏。竖罐炼锌是20实践30年代应用于工业出产,现在已根本筛选,但现在在我国的锌出产仍占必定的位置。
(三)电炉炼锌
电炉炼锌的特点是直接加热炉料的办法,得到锌蒸汽和熔体产品,如冰铜、熔铅和熔渣等。因而此法可处理多金属锌精矿。此法锌的收回率约为90%,电耗在3000~3600KW·h/t(Zn)。电炉炼锌仅适于电力廉价的区域。
(四)鼓风炉炼锌(ISP法)
英国于1950年开展的办法,此法与罐式蒸馏法直接加热的办法不同,它是将热交换和氧化锌复原进程在同一容器内进行。鼓风炉既能处理锌、铅混合硫化矿或锌铅氧化矿,也能处理铅锌烟尘等,现在为火法炼锌的首要工艺。
硫化锌铅精矿经烧结焙烧成烧结矿,配以焦炭,参加鼓风炉内,鼓入预热空气,使炭焚烧,在高温文强复原性气氛中进行复原熔炼。复原所得锌蒸汽从炉顶扫除,经铅雨冷凝得粗锌,一起从炉底排出复原熔炼所产的粗铅。
2、冶炼工艺介绍
(一)竖罐炼锌
在高于锌沸点的温度下,于竖井式蒸馏罐内,用碳作复原剂复原氧化锌矿藏的球团,反响所发作锌蒸气经冷凝成液体金属锌。我国葫芦岛锌厂是我国惟一和国际仅存的两家竖罐炼锌厂之一。竖罐炼锌的出产工艺由硫化锌精矿氧化焙烧、焙砂制团和竖罐蒸馏三部分组成。竖罐炼锌炉示意图
(1)硫化锌精矿的氧化焙烧
一般硫化锌精矿的成分是:Zn46%-62%,S27%-34%,Pb
首要焙烧反响为:
2ZnS+3O2=2ZnO+2SO2
2SO2+O2=2SO3
ZnO+SO3=ZnSO4
4FeS2+11O2=2Fe2O3+8SO2
ZnO进而与Fe2O3生成铁酸锌ZnO.Fe2O3。
大型欢腾炉断面为圆形,下部设有耐高温炉底,炉底上等间隔按必定规矩摆放着风帽。炉底以上1m高左右设有焙砂溢流口,炉顶有烟气出口。加料室建在炉底部分扩出部分。含水6%左右的锌精矿自前室加进炉内,在风帽吹出风力煽动下,敏捷混入流态化层,被加热,发作焙烧反响。经过溢流口产出的焙砂送去制球团,烟气净化后送硫酸出产系统,捕集的烟尘供归纳利用。
欢腾焙烧的首要技能经济目标是:脱硫率90%,锌收回率99.5%,镉收回率85%,烟尘率23%。
(2)焙砂制团与焦结
竖罐蒸馏炼锌是气固反响进程,要求参加的物料有必要具有杰出透气性和传热功能,以及适当的热强度,抗压强度在4.9MPa以上。为此将锌焙砂制成团块并焦结处理。工艺上首先将锌焙砂和复原用粉煤、胶粘剂充沛混合、碾磨、限制成团块,然后送入机械化燃油枯燥库枯燥。枯燥后团矿用机械进步从炉顶参加焦结炉,在800℃温度下,在团矿中的焦性煤发作粘结效果下使团块焦结,一起干团矿中的残存水分蒸发分被完全除掉。
(3)竖罐蒸馏
竖罐本体是用机械强度高、传热功能好、高温下化学性安稳的碳化硅材料砌成的直井状炉体,横断面成细长矩形,高8-12m,受热面积100-110m2。
近代大型竖罐的尺度为(2535mm×2mm)×290mm×12261mm,两长边罐壁外侧各有煤气焚烧室,对罐内团矿进行直接加热。来自焦结炉的热团矿经密封料钟参加罐顶,下降进程中被加热到1000℃以上,团矿中ZnO复原反响开端剧烈进行:
ZnO+CO=CO2+Zn (1)
CO2+C=2CO (2)
ZnO复原反响首要是气一固反响,系统中(团矿中)配入过量的碳在1000℃高温下发作的CO在数量上完全能够确保反响(1)顺利完成。固体碳与ZnO间固一固复原反响只具有极非必须的含义。
复原发作的炉气中含气体锌约35%,经罐口下的上延部进入装有石墨转子的冷凝器,在转子扬起的锌雨捕集下,锌蒸气冷凝成了液态锌,守时从冷凝器中放出液态锌并铸成锌锭。出冷凝器的气体经过洗刷净化除掉剩下的锌,成为含CO80%左右、含H2约10%的罐气,悉数回来竖罐作为燃料。竖罐底部有接连工作的排渣机,蒸锌后的团块经此机械排出。竖罐炼锌的首要技能经济目标如下:锌冶炼收回率>94%;弃渣含锌
(二)密闭鼓风炉炼锌
该办法是在密闭炉顶的鼓风炉中,用碳质复原剂从铅锌精矿烧结块中复原出锌和铅,锌蒸气在铅雨冷凝中冷凝成锌,铅与炉渣进入炉缸,经中热前床使渣与铅别离。此办法是英国帝国熔炼公司(ImperialSmelting Corp.)研讨成功的,简称ISP,对质料适应性强,既能够处理原生硫化铅锌精矿,也能够熔炼次生含铅锌物料,能源耗费也比竖罐炼锌法低。密闭鼓风炉炼锌示意图
燃料焚烧和金属氧化物复原是密闭鼓风炉中的根本反响。参加炉内的焦炭在高温下与风口鼓入空气中的氧发作焚烧,发作炼锌进程所需的热量。首要熔炼反响为:
C+O2=CO2
CO2+C=2CO
ZnO+CO=Zn+CO2
CdO+CO2=Cd+CO2
PbO+CO=Pb+CO2
ISP的技能特点是:①选用密封高温炉顶(1000-1100℃),以避免锌蒸气进入铅雨冷凝器之前降温氧化;②选用高密度、低熔点、低蒸气压的铅作冷凝捕收锌蒸气介质,有利于锌蒸气的快速冷凝,避免氧化和铅锌别离;③选用高钙渣系(CaO/SiO2=1.0-1.5),渣型熔点高(125℃),密度较低,为下降炉渣含锌和渣与铅别离发明了有利条件。
密闭鼓风炉炼铅锌流程首要包含含铅锌物料烧结焙烧、密闭鼓风炉复原蒸发熔炼和铅雨冷凝器冷凝三部分。
(1)烧结焙烧
般铅锌精矿含Pb+Zn在45%-60%,与其他含锌物料混合配料后,在烧结机上脱硫烧结成块。烧结块要有必定的热强度,以确保炉内的透气性,烧结块的成分是(%):Zn41.4、Pb19.2、FeO 12、CaO 5.7、SiO2 3.8、S 0.8。
(2)密闭鼓风炉复原蒸发熔炼
前期炉子风口区断面积为5.1-6.4m2,现在最大的达27.2m2,大都工厂选用10m2和17.2m2。炉柱高度6m,炉高10.66m,风口内径159mm,共16个。炉顶设双层料钟密封加料器,炉身上部内砌轻质高铝砖,下部为高铝砖,炉缸用镁砖砌成,钢板外壁三杯水冷却。熔炼时,烧结块、石灰熔剂和经预热的焦炭分批自炉顶参加炉内,烧结块中的铅锌被复原,锌蒸气随CO2、CO烟气一道进入冷凝器,熔炼产品粗铅、铜锍和炉渣经过炉缸流进电热前床进行别离,炉渣烟气处理收回锌后弃去,锍和粗铅进一步处理。
(3)锌蒸气冷凝
冷凝设备为铅雨飞溅冷凝器,冷凝器外形长7-8m,高3m,宽5-6m,内设8个转子,浸入冷凝内的铅池中。转子扬起的铅雨使含锌蒸气炉气敏捷降温到600℃以下,使锌冷凝成锌液溶入铅池,铅液用泵不断循环,流出冷凝器铅液在水冷流槽中被冷却到450℃,然后进入别离槽,液体锌密度小在铅液上层,操控必定深度使其不断流出,浇铸成锌锭。
鼓风炉炼铅锌的首要技能经济目标为:热风温度950-1150℃,冷凝功率90%-92%,烟化炉渣含Pb 0.15%、Zn1.35%,粗锌含锌大于98%、含铅1.2%-1.5%,粗铅含铅大于98%、含锌0.1%,冶炼收回率Pb>93%、Zn>94%,原猜中S利用率90%-92%。
(三)电炉炼锌
20世纪30年代在国外呈现电炉炼锌技能。80年代,我国开端选用电炉炼锌技能,至今已有10多处小型火法炼锌厂推广应用,出产规划为500-2500t/a。
电炉炼锌是以电能为热源,在焦炭或煤等复原剂存在条件下,直接加热炉料使其间的ZnO成分接连复原成锌蒸气并冷凝成金属锌。该工艺能够处理高铜高铁锌矿,但要求质料含S不得大于1%,关于含S高的碳酸盐锌矿需求预脱除处理。
电炉形状为圆形或矩形,卧式,功率有500kW、1250kW、200kW和2250kW多种。炉床面积4-8m2,电极直径200-350mm。首要目标为:熔炼温度1250一1350℃,电能耗费4600kWh/tZn,残渣含锌3%-5%,粗锌档次98.7%,直收率80%,总收回率95%。
二、湿法炼锌
湿法炼锌是用稀硫酸(即废电解液)浸出锌焙烧矿得硫酸锌溶液,经净化后用电积的办法将锌从溶液中提取出来。当时,湿法炼锌具有出产规划大、能耗较低、劳动条件较好、易于完成机械化和自动化等优点在工业上占主导位置。
国际上近80-85%的锌均产自湿法冶炼,大大都选用酸浸出液电解,在惯例流程中,因为对其间浸渣的处理办法不同而派生出不同的湿法冶炼工艺。湿法炼锌示意图
(1)锌精矿焙烧
用空气或富氧,在高温下使锌精矿中ZnS氧化成ZnO和ZnSO4,一起除掉As、Sb、Cd等杂质的一种作业。焙烧产品焙砂,送去浸出锌,烟气或许制硫酸或许出产液态S02-湿法炼锌的精矿焙烧与火法焙烧不同,湿法炼锌焙砂中要求保存1%-2%的硫以SO42-形状存在,以弥补锌焙砂浸出时缺乏的硫酸。而火法炼锌精矿焙烧期望悉数ZnS都氧化为ZnO,以进步冶炼收回率。
(2)锌焙砂浸出与浸出液净化
焙砂浸出锌由中性浸出和酸性浸出两段组成。一段中性浸出选用废电解液,二段用硫酸作浸出液,酸度30-60 g/LH2SO4,浸出温度65-70℃。浸出液含Zn>120 g/L。影响浸出的要素有浸出温度、拌和速度、酸浓度、锌焙砂颗粒巨细等。ZnO浸出反响为:
ZnO+H2SO4=ZnSO4+H2O
为了进步锌焙砂中锌浸出率,选用空气拌和,以强化浸出进程。使难溶的ZnO.Fe2O3、ZnO.Al2O3及ZnS得以溶解。
(3)锌电解堆积
经过净化后的硫酸锌溶液参加添加剂,经过高位槽接连送入电解槽,槽中布以不溶性铅钙合金阳极和铝阴极。在南北极上施以直流电压时,电解液中的锌离子便不断在铅阴极上分出。电解最终发作的废电解液,部分送去作焙砂浸出剂,部分配成电解液回来。分出的锌铝阴极,每隔必守时刻(24-48h)取出,清洗后剥离锌片,然后熔化铸成锌锭,阴极经清洗加工后回来运用。锌电解堆积的根本反响是:
在阴极上 :Zn2++SO42-+2e=Zn+SO42-
在阳极上:2H+2OH--2e =1/2O2+2H++H20
总反响式:ZnSO4+H2O=Zn+H2SO4+1/2O2
三、部分冶炼厂冶炼工艺介绍
铁水解沉淀在湿法冶金中的应用
2019-03-05 09:04:34
运用水解堆积除铁的最典型的实却是锌的焙烧-浸出-电积法出产实践。尽管焙烧是为了将硫化锌转变为氧化锌,但原猜中的铁在焙烧过程中简直悉数与锌结组成铁酸锌。稀硫酸溶解焙砂中的氧化锌只能到达85%~93%的总浸出率,而用热酸浸出铁酸锌中的锌则导致很多铁进入溶液,净化除铁因此曾一度成为电解锌出产的瓶颈问题。通过艰苦而行之有用的尽力,到20世纪60年代中后期开发了几个能发生易于过滤的铁化合物的除铁办法,并首要工业应用于电解锌工业,焙烧-浸出-电积法自此得到长足发展,成为出产电解锌的首要办法,现在国际80%的电解锌系由此法出产。这些除铁办法在很大程度上也可应用于其他溶液的除铁实践。
一、黄铁矾法
黄铁矾法作为有用的除铁办法在湿法炼锌厂的实践最具代表性。黄铁矾法的开发成功是在20世纪60年代中期,其时澳大利亚的电锌公司、挪威锌公司和西班牙阿斯图里亚那公司各自独登时开发了这项技能并简直一同申请了专利。尔后黄铁矾法敏捷得到广泛应用,成为电解锌出产中首要的除铁技能,现在国际上至少有16家大型电解锌厂选用了此技能。现在用以除铁的黄铁矾法是将溶液pH值调到1.5且保持这一pH值,并在95℃左右参加一价阳离子从酸性硫酸盐溶液中堆积黄铁矾。工业中最常用的一价阳离子是NH4+和Na+。黄铁矾堆积后,溶液中铁的浓度一般降到1~5kg∕m3。
湿法炼锌中黄铁矾法典型的操作分3个根本过程:中性浸出、热酸浸出和黄铁矾堆积。在中性浸出阶段,酸性电解贫液被锌焙砂ZnO中和,得到含铁酸锌的渣和供电解堆积锌的中性硫酸锌溶液。铁酸锌渣在热酸浸出段用补克了硫酸的电解贫液形成的热酸中溶解,得到的含Zn和Fe的浸出液再在黄铁矾堆积段处理,先用锌焙砂调整酸度,再参加硫酸铵或硫酸钠堆积碱金属黄铁矾。沉铁后液回来中性浸出,黄铁矾渣则弃去。需求指出,堆积黄铁矾时用作中和剂的锌焙砂中所含的铁酸锌将不溶解而进入铁矾渣中,因此新生成的黄铁矾渣不宜直接弃去,避免丢失焙砂中和剂中未溶的铁酸锌。鉴于黄铁矾一旦生成则对酸恰当安稳,实践上黄铁矾渣弃去前可在相似热酸浸出的条件下进行酸洗,溶解收回渣中残存的铁酸锌,而黄铁矾本身不致溶解。
黄铁矾法的3个根本过程的详细操作条件及次序在不同供应商不尽相同,但意图是相同的;最大极限地收回锌而不考虑少数的伴生元素如Pb和Ag。例如,铁酸锌的热酸浸出和黄铁矾的堆积能够合而为一,即所谓转化法,其总反响如下:
(1)
该兼并过程的溶液然后可用新鲜焙砂中和,产出溶液供电解和渣回来循环。若精矿中含有较很多的Pb和Ag,则选用其他的流程,得到含Pb∕Ag的渣、黄铁矾堆积和中性Zn电解液。这类流程中包含有一个预中和作业。在一般的黄铁矾流程中是用焙砂下降热酸浸出液的酸度,然后敏捷而有用地堆积黄铁矾。焙砂中存在的Zn2+,Cd2+,Cu2+,Pb2+和Ag进入黄铁矾而丢失。在热酸浸出和黄铁矾堆积作业之间引进一个预中和作业能够下降黄铁矾中的金属丢失。在预中和作业中,溶液中的酸一部分被焙砂中和,所得的渣回来热酸浸出段溶解其间的Zn和Fe,而Pb和Ag留在铅-银渣中。部分中和过的溶液随后参加所需求的中和剂进行黄铁矾堆积。
图1为集成的黄铁矾法流程示意图。它的规划中结合了各种黄铁矾法计划中的大多数改善环节。图1 集成黄铁矾法
除应用于湿法炼锌工业中外,黄铁矾法还在铜、镍、钴等金属提取顶用作除铁工艺,尤其是在硫酸盐系统中。例如,在处理钴-铜精矿的阡比什(Chambishi)焙烧-浸出-电积法中,铜电积前的除铁就是选用黄钾铁矾沉铁。因为硫酸化焙烧本身供给了K+离子,堆积黄钾铁矾时无需外加高本钱的硫酸钾。
黄铁矾法的长处是堆积简单过滤,Zn,Cd和Cu在堆积中的丢失最少,能够一同操控硫酸根和碱金属离子,简单与各种湿法冶金流程结合。但它也有其本身的缺陷,例如:1)所用试剂本钱较高;2)渣的体积较大,为1.4kg∕(m3·t),堆存占地较大;3)需求充沛洗刷以除掉吸附的有害环境或可供运用的金属;4)需求在操控条件下寄存避免分化放出有害组分污染环境。通过热分化或水热分化将黄铁矾转化为赤铁矿供出产铁并将硫酸钠/硫酸铵循环至黄铁矾堆积作业,可望战胜这些缺陷。
二、针铁矿法
运用堆积针铁矿除铁的技能是由比利时老山公司巴伦厂(Vieille Montagne)首要开发和工业化的,称为VM法。成功地堆积针铁矿的关键在于保持溶液中Fe3+的低浓度,例如<1kg∕m3,否则在堆积针铁矿的pH规模(2~3.5)内将得到胶状的Fe(OH)3或碱式硫酸铁Fe4SO4(OH)10。VM法处理此问题选用的是复原-堆积法,流程如图2所示,从热酸浸出得到的含100kg∕m3Zn,25~30kg∕m3Fe3+及50~60kg∕m3H2SO4的硫酸锌溶被先通过复原作业,即在堆积针铁矿前在一个独自的作业中先用锌精矿(ZnS)将溶液中的Fe3+都复原成Fe2+,复原后未反响的ZnS与反响生成的元素硫一同别离出来送回焙烧炉。复原后液再用焙砂ZnO预中和至3~5kg∕m3H2SO4,得到的铁渣回来热酸浸出作业,溶液则送入堆积反响器。向堆积器通空气将Fe2+氧化成Fe3+而使之水解堆积出针铁矿晶体。图2 VM针铁矿法
堆积针铁矿时需不断在参加焙砂以中和水解反响发生的酸,将pH值操控在恰当的规模内,如pH=2~3.5。VM法需求特别注意操控Fe2+的氧化速度,使得溶液中Fe3+的浓度在水解堆积针铁矿的过程中一直保持在1kg∕m3以内。与黄铁矾法不同的是,针铁矿堆积时无需供给一价阳离子,而得到的针铁矿渣也不能进行酸洗收回其间由焙砂中和带入的未溶解的锌。为避免这部分锌的丢失,一个对策是运用低铁的闪锌矿焙砂作中和剂。
澳大利亚电解锌公司开发的EZ法直接将含Fe3+的待水解液慢慢参加水解堆积器中,操控水解液Fe3+浓度不超越1kg∕m3然后操控水解,因此EZ法亦称部分分化法。在70~90℃下接连水解堆积针铁矿,一同不断参加锌焙砂中和因水解发生的酸,保持溶液pH值在2.8以适于水解。
两种针铁矿法比较,堆积相同数量的铁,VM法水解发生的酸此EZ法少,因此为中和水解的酸需求耗费的锌焙砂也少,随锌焙砂丢失的锌电少,除铁的作用也好于EZ法。但VM法触及先复原后氧化两道工序,比较繁琐。此外,VM法用空气氧化Fe2+的速度较慢,而用其他氧化剂则本钱高。
与黄铁矾法比较,针铁矿法不需求硫酸根和碱金属,可应用于任何酸浸系统,包含氯化物系统和硝酸盐系统,除铁的作用也更好(从30kg∕m3到小于1kg·kg∕m3),但针铁矿对酸的安稳性较差,堆积中未溶解的铁酸锌不能如黄铁矾法那样用酸洗来收回。
三、赤铁矿法
日本秋田公司饭岛锌冶炼厂和德国鲁尔锌公司达特伦电锌厂均选用赤铁矿法处理锌厂中性浸出的浸渣收回其间以铁酸锌存在的锌及其他有价组分。用赤铁矿法处理湿法炼锌的铁渣源于环境保护的压力。赤铁矿法准则流程见图3。来自浸出主流程的高铁渣在村耐酸砖和铅的高压釜顶用电解贫液补加酸再提出,反响温度95~100℃。浸出在SO2(分压0.15~0.25MPa)气氛下进行,所以也称为SO2浸出。在此条件下渣中的铁酸盐很简单溶解,高铁复原成二价伴随铁酸盐中的锌和铜进入溶液:
(2)
(3)图3 赤铁矿法准则流程图
从溶液中排去过量的SO2和用H2S堆积除掉铜后,对含大约Zn90kg∕m3,Fe60kg∕m3,H2SO4 20kg∕m3的溶液用石灰百分两段中和。榜首段中和到pH=2以发生可供应的高等第石膏,然后再中和到pH=4.5,堆积分出含有价金属如Ca和In的石膏,一同有碍赤铁矿堆积的元素如Al等也在此阶段随石膏堆积除掉。第二段中和发生的浆料经重力沉降得到的固体回来榜首段中和槽,沉降后液高压过滤得到氧化物-氢氧化物的混合堆积,送熔炼厂收回镓和铟。一同用空气氧化堆积部分铁和其他杂质。堆积石膏有助于除掉SO2氧化发生的硫酸根以保持硫酸根平衡。两段中和后的溶液(含Fe 40~45kg∕m3)用赤铁矿法堆积除铁。沉铁在衬钛高压釜中进行,通入新鲜蒸汽和氧气,温度从95℃升高到200℃,压力进步到1.8MPa(氧分压0.15~0.25MPa),溶液中的硫酸亚铁被氧化成硫酸铁并发生水解:
(4)
高压釜中停留时间约3h,首要水解产品为赤铁矿,含有w(Fe)=59%和w(S)=3%,固液别离后赤铁矿也首要供应给水泥厂。别离出赤铁矿的溶液含Fe5~7kg∕m3和H2SO460~70kg∕m3,回来焙砂的中性浸出段。
选用赤铁矿法的饭岛锌冶炼厂自1972年投产以来,至今已成功运行了26年,经1997年扩产,电锌产值巳达190000t∕a。因为锌精矿铁含量添加,出产功率进步和工厂扩产,赤铁矿法处理的铁量逐年添加,并在技能上作了若干改善。例如,锌焙砂弱酸浸出的渣与元素硫混合用电解贫液补加硫酸后在衬铅和耐酸砖的高压釜中再浸出。参加元素硫使溶液中大部分铜作为硫化铜堆积。热酸浸出的排料除掉过量的SO2后,在拌和槽中通入H2S堆积其他的铜。沉铜槽的排料稠密、压滤,得到的滤渣含铜、铅和贵金属,送熔炼厂收回。沉铜稠密机溢流含30kg∕m3游离酸,用细磨的石灰石两段中和。榜首段中和游离酸(至pH=1)得到纯的石膏,离心过滤后供应给水泥厂。
近些年来,跟着锌精矿中铁含量的添加,焙砂中进入铁酸盐中的铜添加,焙砂弱酸浸出的铜削减而进入浸渣的铜添加,因此浸渣赤铁矿法处理厂中需求堆积的铜大为添加,然后使渣处理厂堆积铜的本钱进步。1992年曾经,渣处理厂中溶液中的铜用元素硫和硫化氧堆积:
(5)
(6)
饭岛锌冶炼厂1992年用于堆积铜的硫化氧气体耗费本钱占总的耗费性本钱的25%。这无疑太高,需求开发一个不必堆积铜的新办法。后来发现硫化锌精矿能够替代气体,它堆积除铜的反响如下
(7)
(8)当出产上用硫化锌精矿沉铜时,铜的堆积并不彻底。后来运用更细的精矿添加SO2分压处理了这一问题。现在这种办法有用地脱除了铜。
高铁水解成赤铁矿和铝水解堆积铝矾都发生酸,因此下降赤铁矿堆积釜的料液中游离硫酸的浓度和铝的浓度对促进高铁的水解很有用:本来第二段中和的溶液有30%回来榜首段,从1997年3月以来,第二段溶液回来的量逐步添加,赤铁矿水解高压釜的料液中游离硫酸浓度从7kg∕m3降到4kg∕m3,铝的浓度降到2kg∕m3以下,除铁功率进步到88%以上,使操作本钱要素如氧气或蒸汽的本钱下降。
尽管赤铁矿法在环保方面比黄铁矾法和针铁矿法更有利,它依然遭到环境方面的压力。为了使堆积的赤铁矿能悉数售出给水泥厂,有必要处理赤铁矿中的含砷和含硫问题。因为火法冶金不只本钱高,并且很难满足脱除砷,所以饭岛炼锌厂研讨在堆积赤铁矿前从溶液中脱砷,提出了图4所示的改善赤铁矿法新流程。图4 改善的赤铁矿法新流程
在改善的赤铁矿法中,弱酸提出的渣在105℃下SO2气氛中浸出而不加锌精矿或元素硫,发生的含银和铅的渣过滤别离。滤液用石灰榜首段中和到pH=1,发生纯石膏。然后在该中和段的溶液中参加锌灰,堆积砷化铜,铜和砷的脱除率到达99%。脱砷后液榜首段加石灰石中和到pH=4,堆积出含Ga,In和Al的石膏。该段的溶液大部分送赤铁矿堆积高压釜,其他溶液用于浸出砷化铜。浸除在独自的高压釜中氧气氛下进行,铜被浸出而砷堆积为铁。浸液中的铜用锌灰置换,然后将溶液回来焙砂中性浸段。改善的赤铁矿法进行了中试和可行性研讨,得到的赤铁矿质量及本钱都令人满足。
德国鲁尔公司(Ruhr-Zink GmbH)的赤铁矿法首要包含以下过程:
(1)中性浸出渣两段热酸浸出。榜首段为热酸浸出,中性提出渣用第二段超热酸浸出的滤液在95℃下浸出,浸出的终酸浓度50kg∕m3。渣中的大部分有价金属如锌、铜和镉伴随铁一同溶解。浸出的排料稠密后溢流泵送至复原段,底流在过热酸浸段中沸点以上浸出,酸浓度140kg∕m3。过热酸浸中铁酸盐都溶解,残留的低铁富铅的Pb-Ag渣经稠密和高压膜压滤机过滤,滤液回来热酸浸出。
(2)高铁复原。为了在堆积赤铁矿前净化溶液并能在最尽或许低的温度下堆积铁,需求将离解的高铁先复原成亚铁。硫化锌精矿可用作复原剂,它的本钱低,但需大大过量,反响温度在90℃左右。未反响的含元素硫的渣过滤后回来焙烧。
(3)溶液的净化与中和。复原后液用焙砂在中和槽和稠密机中两段中和,使一切影响赤铁矿质量的元素大部分堆积分出,特别是砷和锑。铜则部分共堆积。这些元素富集在中和渣中,再在终浸作业中彻底溶解。终浸用废酸进行,终酸浓度为40kg∕m3。在稠密机中固液别离后,底流送去热酸浸出作业,溢流送去用海绵铁置换沉铜,将铜的浓度降至500g∕m3以下,再返至前面的中和作业。置换的铜用废酸洗刷后出售。
(4)赤铁矿堆积。这是最重要的部分。中和净化的浸液(含Fe2+25~30kg∕m3,Zn120~130kg∕m3)用蒸汽加热到180℃以上,其间的亚铁在氧压1.8MPa下氧化并水解成含w(Fe)=60%左右的细粒赤铁矿,铁的堆积率达90%~95%。详细流程如图5所示。图8 鲁尔公司电解锌厂赤铁矿法准则流程
赤铁矿法出资和操作费用远高于黄铁矾法和针铁矿法,但它或许收回锌精矿的悉数成分,发生的满是可供应的产品,一切作为中间产品的渣帮可进一步加工而无需堆存。
锌焙烧矿的浸出目的与浸出工艺流程
2019-01-03 09:36:46
一、锌焙烧矿浸出的目的
湿法炼锌浸出过程,是以稀硫酸溶液(主要是锌电解过程产生的废电解液)作溶剂,将含锌原料中的有价金属溶解进入溶液的过程。其原料中除锌外,一般还含有铁、铜、镉、钴、镍、砷、锑及稀有金属等元素。在浸出过程中,除锌进入溶液外,金属杂质也不同程度地溶解而随锌一起进入溶液。这些杂质会对锌电积过程产生不良影响,因此在送电积以前必须把有害杂质尽可能除去。在浸出过程中应尽量利用水解沉淀方法将部分杂质(如铁、砷、锑等)除去,以减轻溶液净化的负担。
浸出过程的目的是将原料中的锌尽可能完全溶解进入溶液中,并在浸出终了阶段采取措施,除去部分铁、硅、砷、锑、锗等有害杂质,同时得到沉降速度快、过滤性能好、易于液固分离的浸出矿浆。
浸出使用的锌原料主要有硫化锌精矿(如在氧压浸出时)或硫化锌精矿经过焙烧产出的焙烧矿、氧化锌粉与含锌烟尘以及氧化锌矿等。其中焙烧矿是湿法炼锌浸出过程的主要原料,它是由ZnO和其他金属氧化物、脉石等组成的细颗粒物料。焙烧矿的化学成分和物相组成对浸出过程所产生溶液的质量及金属回收率均有很大影响。
二、焙烧矿浸出的工艺流程
浸出过程在整个湿法炼锌的生产过程中起着重要的作用。生产实践表明,湿法炼锌的各项技术经济指标,在很大程度上决定于浸出所选择的工艺流程和操作过程中所控制的技术条件。因此,对浸出工艺流程的选择非常重要。
为了达到上述目的,大多数湿法炼锌厂都采用连续多段浸出流程,即第一段为中性浸出,第二段为酸性或热酸浸出。通常将锌焙烧矿采用第一段中性浸出、第二段酸性浸出、酸浸渣用火法处理的工艺流程称为常规浸出流程,其典型工艺原则流程见图1。图1 湿法炼锌常规浸出流程
常规浸出流程是将锌焙烧矿与废电解液混合经湿法球磨之后,加入中性浸出槽中,控制浸出过程终点溶液的PH值为5.0~5.2。在此阶段,焙烧矿中的ZnO只有一部分溶解,甚至有的工厂中性浸出阶段锌的浸出率只有20%左右。此时有大量过剩的锌焙砂存在,以保证浸出过程迅速达到终点。这样,即使那些在酸性浸出过程中溶解了的杂质(主要是Fe、AS、Sb)也将发生中和沉淀反应,不至于进入溶液中。因此中性浸出的目的,除了使部分锌溶解外,另一个重要目的是保证锌与其他杂质很好地分离。
由于在中性浸出过程中加入了大量过剩的焙砂矿,许多锌没有溶解而进入渣中,故中性浸出的浓缩底流还必须再进行酸性浸出。酸性浸出的目的是尽量保证焙砂中的锌更完全地溶解,同时也要避免大量杂质溶解。所以终点酸度一般控制在1~5g/L。虽然经过了上述两次浸出过程,所得的浸出渣含锌仍有20%左右。这是由于锌焙砂中有部分锌以铁酸锌(ZnFe2O4)的形态存在,且即使焙砂中残硫小于或等于1%,也还有少量的锌以ZnS形态存在。这些形态的锌在上述两次浸出条件下是不溶解的,与其他不溶解的杂质一道进入渣中。这种含锌高的浸出渣不能废弃,一般用火法冶金将锌还原挥发出来与其他组分分离,然后将收集到的粗ZnO粉进一步用湿法处理。
由于常规浸出流程复杂,且生产率低,回收率低,生产成本高,随着20世纪60年代后期各种除铁方法的研制成功,锌焙烧矿热酸浸出法在20世纪70年代后得到广泛应用。现代广泛采用的热酸浸出流程见图2。图2 现代广泛采用的热酸浸出流程
热酸浸出工艺流程是在常规浸出的基础上,用高温(>90℃)高酸(浸出终点残酸一般大于30g/L)浸出代替了其中的酸性浸出,以湿法沉铁过程代替浸出渣的火法烟化处理。热酸3湿法炼锌的浸出过程35浸出的高温高酸条件,可将常规浸出流程中未被溶解进入浸出渣中的铁酸锌和ZnS等溶解,从而提高了锌的浸出率,浸出渣量也大大减少,使焙烧矿中的铅和贵金属在渣中的富集程度得到了提高,有利于这些金属下一步的回收。