您所在的位置: 上海有色 > 有色金属产品库 > 回转窑锌焙砂

回转窑锌焙砂

抱歉!您想要的信息未找到。

回转窑锌焙砂百科

更多

稀土回转窑

2017-06-06 17:50:13

稀土回转窑 回转窑生产线|稀土回转窑|节能回转窑按处理物料不同可分为水 泥窑、冶金化工窑和石灰窑。水泥回转窑主要用于煅烧水泥熟料,分干法生产水泥回转窑和湿法生产水泥回转窑两大类。用于湿法生产中的水泥窑称湿法窑,湿法生产是将生料制成含水为32%~40%的料浆。由于制备成具有流动性的泥浆,所以各原料之间混合好,生料成分均匀,使烧成的熟料质量高,这是湿法生产的主要优点。更多有关稀土回转窑的内容请查阅上海 有色 网

铝矾土回转窑

2017-06-06 17:50:11

铝矾土回转窑该系列回转窑主要由回转部分、支承部分、传动装置、窑头罩、窑头窑尾密封、燃烧装置等组成。窑口护板和窑尾回料勺采用分块铸造,安装方便,具有较高的耐热性能和耐蚀、耐磨性能,窑头冷风套内通冷却风,能对窑头筒体及窑口护板进行均匀冷却,使其更安全可靠。窑头罩采用大容积方式,对开窑门结构,使得气流更加平稳。窑头、窑尾密封采用径向磨擦迷宫、鱼鳞片双重密封形式,结构简单,维护方便,是目前国内最先进的密封形式。燃烧装置采用具有喷油点火装置的旋流式四通道煤粉燃烧器。铝矾土回转窑具有:温度自动控制,超温报警,二次进风余热利用,窑衬寿命长、先进的窑头窑尾密封技术及装置,运行稳定、 产量 高等显著特点。 

汞精矿电热回转窑焙烧

2019-03-05 09:04:34

是元素周期表中第六周期ⅡB族元素。原子序数为80,元素化学符号Hg,原子量为200.59,原子的外层电子构型为5d106S2。在0℃时的密度为13.595g/cm2,常温下呈液态,熔点为-38.87℃,沸点356.9℃。是锌副族中最不生动的金属,不与稀、稀硫酸发作效果,但易溶于硝酸。蒸气有剧毒。能与多种金属生成液态合金—齐,其间的金齐最具冶金价值。的化合物有无机和有机两大类,无机化合物中最重要的是硫化、、。在地壳中蕴藏的有工业价值的矿藏是硫化,即层砂。在地壳中的丰度为2×10-6%,全世界的总储量为57.9万吨,其间我国储量为5.1万吨。1988年我国产金属225吨,占当年全世界产5060t的4.4%。跟着环境保护法规的日臻完善和严厉,在传统使用领域如氯碱工业、油漆、农业、医药等职业中的运用已逐步下降,现在主要在电气工业如蓄电池、整流器等设备中运用数量较大。    冶炼办法分为火法和湿法两类。火法炼是在高温下焙烧矿石或精矿,将其间的硫化物还原成金属,并以蒸气形状从矿石中分离出来,经冷凝产出液态金属。湿法炼是以或次氯酸盐溶液为浸出剂,将矿中浸取出来,浸出液通过净化用电积或置换法制取金属。火法炼进程简略,技能经济指标较好,使用遍及。湿法无烟气污染,出产环境好,但经济效益差,未被广泛选用。火法炼常用的焙烧设备有回转窑、欢腾炉、机械蒸馏炉和多膛炉。我国炼工艺和设备不断改进与完善,现行出产流程主要有原矿高炉焙烧、原矿欢腾炉焙烧和精矿回转炉蒸馏三种工艺。三种流程设备不同,冶金原理完全一致,都是操控冶炼温度在矿熔点以下,一般为500-850℃,凭借空气中的矿中HgS使还原成金属,并成蒸气状况蒸发出来。反应式为:                                HgS+O2====Hg+SO2    含烟气通过除尘、冷凝即得到金属产品。    这是使用最多的炼技能。因为焙烧的是精矿,出产相同数量的,所处理的矿量比炼原矿少的多,因而“三废”管理相对简单,建厂出资少,产品纯度高,中间产品少,机械化自动化程度也比其他办法高。[next]    电热蒸馏要求质料含水不高于3%,浮选精矿含水往往高达15%,所以有必要预先枯燥脱水,枯燥办法有电热烘烤、气流枯燥、远红外烘干等。不管使用何种办法,枯燥温度有必要操控在HgS的分化温度285℃以下。枯燥后的精矿一般含Hg 15%-25%,S 5%-13%,脉石成分占70%以上。为固定HgS分化放出的S,入炉猜中要参加石灰和铁屑。蒸馏温度650-700℃,时刻30-40 min。的蒸发率为99.99,脱硫率34%左右。蒸馏出的蒸气除尘后进入冷凝器,冷凝温度200℃,出冷凝器操控温度20℃,排出的冷凝废气含约15mg/m3,经填料吸收塔净化处理合格后放空排放。冷凝器中收集到粗,纯度一般为99.9%,粗通过滤、酸碱洗刷提纯产出高纯,纯度99.99%以上。电热蒸馏的床才能为2.5t/(m2.d),电耗395kWh/t矿,炉子热效率>60%,废渣含Hg<0.008%。全流程的回收率91.8%。    产品用特制铁瓶包装,每瓶34.5 kg.全流程直收率91.81%。    蒸馏用电热蒸馏炉主体为一长圆筒,与水平线成20放置,筒外围设电加热设备,与筒坚持必定空隙,以利筒体滚动和传热杰出。炉头设螺旋加料机,炉尾有排渣斗,蒸气通过炉头蒸气室进入收尘冷凝体系。炉型的参数是:筒体Ф360mm×6300 mm,容积0.64m3,转速2r/min,电耗395kWh/t矿。

氧化铝回转窑

2017-06-06 17:50:13

铝生产中用氧化铝回转窑将氢氧化铝焙烧成氧化铝。 在建材、冶金、化工、环保等许多生产 行业 中,广泛地使用回转圆备对固体物料进行机械、物理或化学处理,这类设备被称为回转窑。回转窑的应用起源于水泥生产,1824年英国水泥工J阿斯普发明了间歇操作的土立窑;1883年德国狄茨世发明了连续操作的多层立窑;1885英国人兰萨姆(ERansome)发明了回转窑,在英、美取得专利后将它投入生产,很快获得可观的经济效益。回转窑的发明,使得水泥工业迅速发展,同时也促进了人们对回转窑应用的研究,很快回转窑被广泛应用到许多工业领域,并在这些生产中越来越重要,成为相应企业生产的核心设备。它的技术性能和运转情况,在很大程度上决定着企业产品的质量、 产量 和成本。&ldquo;只要大窑转,就有千千万&rdquo;这句民谣就是对生产中回转窑重要程度的生动描述。在回转窑的应用领域,水泥工业中的数量最多。 水泥的整个生产工艺概括为&ldquo;两磨一烧&rdquo;,其中&ldquo;一烧&rdquo;就是把经过粉磨配制好的生料,在回转窑的高温作用下烧成为熟料的工艺过程。因此,回转窑是水泥生产中的主机,俗称水泥工厂的&ldquo;心脏&rdquo;。建材 行业 中,回转窑除锻烧水泥熟料外,还用来锻烧粘土、石灰石和进行矿渣烘干等;耐火材料生产中,采用回转窑锻烧原料,使其尺寸稳定、强度增加,再加工成型。 有色 和黑色冶金中,铁、铝、铜、锌、锡、镍、钨、铬、锉等 金属 以回转窑为冶炼设备,对矿石、精矿、中间物等进行烧结、焙烧。如:铝生产中用它将氢氧化铝焙烧成氧化铝;炼铁中用它生产供高炉炼铁的球团矿;国外的&ldquo;SL/RN法&rdquo;、&ldquo;Krupp法&rdquo;用它对铁矿石进行直接还原;氯化挥发焙烧法采用它提取锡和铅等。选矿过程中,用回转窑对贫铁矿进行磁化焙烧,使矿石原来的弱磁性改变为强磁性,以利于磁选。化学工业中,用回转窑生产苏打,锻烧磷肥、硫化钡等。上世纪60年代,美国LapPle等发明了用回转窑生产磷酸的新工艺。该法具有能耗低、用电少、不用硫酸和可利用中低品位磷矿的优点,很快得到推广。&nbsp;&nbsp;&nbsp; 回转窑按处理物料不同可分为水泥窑、冶金化工窑和石灰窑。水泥窑主要用于煅烧水泥熟料,分干法生产水泥窑和湿法生产水泥窑两大类。冶金化工窑则主要用于冶金 行业 钢铁厂贫铁矿磁化焙烧;铬、镍铁矿氧化焙烧;耐火材料厂焙烧高铝钒土矿和铝厂焙烧熟料、氢氧化铝;化工厂焙烧铬矿砂和铬矿粉等类矿物。石灰窑(即活性石灰窑)用于焙烧钢铁厂、铁合金厂用的活性石灰和轻烧白云石。&nbsp;&nbsp;&nbsp; 了解更多有关氧化铝回转窑的信息,请关注上海 有色 网。&nbsp;

石录铜矿一段回转窑离析工艺

2019-02-18 10:47:01

依据焙烧阶段物料处理办法的不同,离析法分为“一段离析”和“两段离析”两种类型。一段离析法是将矿石、食盐及还原剂混合后一起进入焙烧炉内(大部分选用卧式反转窑),物料的加热和离析都在同一设备中进行。两段离析法又称“托尔科”法,是先将矿石预热至反响温度,然后混入适量的食盐和还原剂进入离析反响器内离析。现在的出产标明,两种离析法都能到达较高的选别目标。    石录铜矿一段反转窑离析工艺    我国广东石录铜矿属深度氧化难选铜矿,含铜档次高达1.3~2.5%。1964年以来,有关科研、规划单位通过多种计划比较,以为离析-浮选法具有流程简略、精矿档次和回收率较高级长处,于1966年进行规划,并于1970年建成投入试出产。    难选氧化铜矿直接加热一段离析法是一项新工艺,国外尚无实践经验能够学习。在投产初期,遇到不少问题,如处理才能低、设备工作不正常,精矿档次和回收率都比较低,出产很不安稳。通过几年的尽力和重复改进,根本上处理了直接加热反转窑一段离析工艺和设备要害,开始获得了较好的离析效果,根本上到达了投入出产的水平。    ①原矿性质    该矿归于石英闪长斑岩与石灰系灰岩触摸告知矽卡岩铜矿床。矿石呈土状,氧化程度较深。因为成岩阶段次生富集效果,铜液分散推移过程中与硅、铁和铝的盐类及其氧化物构成结合性氧化铜,覆盖于表面及间夹于孔雀石类型矿石中。含铜矿藏以孔雀石为主,有少数蓝铜矿、硅孔雀石和水胆矾等。铁的矿石首要为褐铁矿,磁铁矿和亦铁矿次之。脉石除铁质粘土外,还有石英、云母、石榴子石、角闪石、蛇纹石、绿泥石和方解石等。原矿中铁质粘土含量很高,-200目高达48%,矿石含水27.1%,矿石最大块300毫米左右。原矿藏质组成列于下两表。[next]  原矿化学成分元素化学成分含量,%CuCoNiAuAgPtSi2O3g/tg/tg/t1.38-2.390.0030.00750.129.47﹤0.0544.34-42.00元素化学成分含量,%Al2O3FeSCaOMgO   Mn11.88-14.6316.43-20.480.040.89-1.541.19    1.24  物相分析与物理特性物相分析结合铜自在氧化铜硫化铜总铜0.49-0.590.53-1.710.16-0.271.38-2.39物理特性密度松懈密度比热软化点g/cm3g/cm3J/g℃3.091.160.6911050     原矿被细泥严峻污染,铜的结合率较高,一般来说原矿档次高则结合铜相应增高。依据物相分析成果:结合铜占总铜的5-40%,自在氧化铜占50-80%,硫化铜占9-20%。[next]    ②离析—浮选工艺    浮选流程中(下图1和图2),实线表明1975年3月曾经运用的流程,浮选机三次精选精矿档次可达40%以上。离析体系首要设备示意图1—焚烧室;2—不锈钢放射状换热器;3—普通钢蜂窝状换热器;4—单管旋涡收尘器;5—多管旋涡收尘器;6—排风机;7—湍动收尘冷却塔;8—水膜除尘器;9—塑料烟囱;10—密封圆盘给料机;11—皮带磅秤[next] 离析—浮选工艺流程[next]     离析反转窖规格为:直径3.6米,长50米,筒体窖头部分会(2米),为20毫米厚的耐热不锈钢板,其他为22-28毫米厚的18MnCu钢板焊接而成。窖内衬为200毫米(低温段150毫米)厚的高铝砖,并在距窖尾6米沿窖头方向安有15.2米的金属换热器,窖的倾斜度为3%,窖用JZS 101型三相异步整流子变速电动机(N=15-25千瓦,n=1050-350转/分)带动,并设有备用电源供电的辅佐传动体系,在正常况下,窖转速为1.48-0.493转/分。    ③离析—浮选的工艺参数和成果    离析技能条件:原矿含铜档次2-3%,粒度-4毫米,水分5%左右,添加剂配比:煤3.5-4%,食盐1.8-2%。离析温度:重油焚烧烟气入窖温度1150-1250℃;窖头温度880-950℃,离析反转窖速度0.66-0.75%转/分。    磨浮技能条件:磨矿溢流细度75-80%-200目,分级浓度30%,浮选浓度24-28%,丁黄药1.2公斤/吨、25#黑药0.15公斤/吨,2#油0.5公斤/吨,水玻璃0.1公斤/吨。    离析—浮选成果:      离析窖处理量                           19.36吨干矿/台时      焚烧率(重油)                          4%      烟尘率                                 25.68%      两级干法收尘率                          86.99%      两级湿法收尘率                          98.39%      蒸发的捕收率                      72.71%      湿法尘含铜量和水溶铜丢失                 3.8%      离析窑作业率                            70%      精矿档次(浮选柱一次精选)               25%以上      尾矿档次                                0.5-0.7%      离析—浮选实收率                        77%左右[next]    ④处理离析工艺及设备方面问题的首要办法    A.为在热工制度上尽量满意离析的要求,既要有适合的离析温度,又要使窑内坚持适合于离析的气氛(呈中性或弱还原性)。    B.为改进重油焚烧条件,防止火焰进窑持续焚烧而引起炉料的烧结,变革了焚烧室。    a.焚烧室的体积由22米3加大到33米3,下降空间热强度。    b.将喷嘴方位由本来的正面改为旁边面,以延伸火焰旅程。    c.将单喷嘴(1000千克/吨)改为多喷嘴(4*25千克/吨)。    C.窑头换接2米耐热不锈钢筒体,选用玻璃布弹性连接活动磨块,无水冷却的密封设备等。    D.选用风量105米3/时、气压9810帕(103毫米水柱)的排风机。    E.为处理防腐问题,1#窑湍动收尘冷却塔烟气进口短管和塔的下半部均用环氧树脂砌衬石墨板,3# 窑选用花岗岩并以环氧树脂胶泥砌筑的湍动收尘冷却塔,进口衬石墨和钛板短管。    F.为简化收尘体系和改进操作条件,将干法收尘设备进步10米,使干尘主动回来窑内。一起,离析配料和加料悉数改装圆盘给料机,并安设了克己皮带磅秤和必要的丈量外表。    G.改建粉煤体系,选用链磨机破碎,风力分级出产离析用煤,处理离析煤产值缺乏、质量差、煤中混矿、矿中混煤的问题。

离析法:石箓铜矿一段回转窑离析工艺

2019-01-25 13:37:03

我国广东石菉铜矿属深度氧化难选铜矿,含铜品位高达1.3~2.5%。1964年以来,有关科研、设计单位经过多种方案比较,认为离析—浮选法具有流程简单、精矿品位和回收率较高等优点,于1966年进行设计,并于1970年建成投入试生产。难选氧化铜矿直接加热一段离析法是一项新工艺,国外尚无实践经验可以借鉴。在投产初期,遇到不少问题,如处理能力低、设备运转不正常,精矿品位和回收率都比较低,生产很不稳定。经过几年的努力和反复改进,基本上解决了直接加热回转窑一段离析工艺和设备关键,初步获得了较好的离析效果,基本上达到了投入生产的水平。  (1)原矿性质    该矿属于石英闪长斑岩与石灰系灰岩接触交代矽卡岩铜矿床。矿石呈土状,氧化程度较深。由于成岩阶段次生富集作用,铜液扩散推移过程中与硅、铁和铝的盐类及其氧化物形成结合性氧化铜,覆盖于表面及间夹于孔雀石类型矿石中。含铜矿物以孔雀石为主,有少量蓝铜矿、硅孔雀石和水胆矾等。铁的矿石主要为褐铁矿,磁铁矿和亦铁矿次之。脉石除铁质粘土外,还有石英、云母、石榴子石、角闪石、蛇纹石、绿泥石和方解石等。原矿中铁质粘土含量很高, -200目高达48%,矿石含水27.1%,矿石最大块300毫米左右。原矿物质组成列于表 。      原矿被细泥污染,铜的结合率较高,一般来说原矿品位高则结合铜相应增高。根据物相分析结果:结合铜占总铜的5~40% ,自由氧化铜占50~80%,硫化铜占9~20% .  (2)离析—浮选工艺  浮选流程中(下两图)。  实线表示1975年3月以前使用的流程,浮选机三次精选精矿品位可达40% 以上。 离析回砖窑规格:直径3.6米,筒体窑头部分( 2 米),为20毫米厚的耐热不锈钢板,其余为22~ 28毫米厚的18 MnCu钢板焊接而成。窑内衬为200毫米(低温段150毫米)厚的高铝砖,并在距窑尾6米沿窑头方向安有12.5 米的金属换热器,窑的倾斜度为3%,窑用JZS101型三相异步整流子变速电动机(N=12~15千瓦, n=1015转/分)带动,并设有备用电源供电的辅助传动系统,在正常情况下,窑转速为1.48~0.493转/分。  1.燃烧室;2.不锈钢放射状换热器;3.普通钢蜂窝状换热器;4.单管漩涡收尘器;5.多管漩涡收尘器,6.派风气;7.湍动收尘冷却塔;8.水膜除尘器;9塑料烟囱;10.密封圆盘给料机;11.皮带磅秤.     磨浮技术条件:磨矿溢流细度75~80% -200目,分级浓度30%,浮选浓度24~28%,丁黄药1.2公斤/吨、25#黑药0.15公斤/吨,2 #油0.5公斤.吨,水玻璃0.1公斤/吨。[next] (3)离析—浮选的工艺参数和结果    离析技术条件:原矿含铜品位2~3%,粒度-4毫米,水分5%左右,添加剂配比:煤3.5~4%,食盐1.8%~2离析温度:重油燃烧烟气入窑温度1150~1250 0C ;窑头温度880~9500C,离析回转窑速度0.66~0.75转。                                磨浮技术条件:磨矿溢流细度75~80% -200目,分级浓度30%,浮选浓度24~28%,丁黄药1.2公斤/吨、25#黑药0.15公斤/吨,2 #油0.5公斤.吨,水玻璃0.1公斤/吨。(4)解决离析工艺及设备方面问题的主要措施  A. 为在热工制度上尽量满足离析的要求,既要有适宜的离析温度,又要使窑内保持适宜于离析的气氛 (呈中性或弱还原性)。  B. 为改善重油燃烧条件,避免火焰进窑继续燃烧而引起炉料的烧结,改革了燃烧室。  a. 燃烧室的体积由22米3加大到33米3,降低空间热强度。  b. 将喷嘴位置由原来的正面改为侧面,以延长火焰路程。  c. 将单喷嘴( 1000千克/吨)改为多喷嘴( 4*25千克/ 吨)。  C. 窑头换接2米耐热不锈钢筒体,采用玻璃布伸缩连结活动磨块,无水冷却的密封装置等。  D. 采用风量105米3/时、气压9810帕(103毫米水柱)的排风机。  E. 为解决防腐问题,1# 窑湍动收尘冷却塔烟气入口短管和塔的下半部均用环氧树脂砌衬石墨板, 3 #窑采用花岗岩并以环氧树脂胶泥砌筑的湍动收尘冷却塔,入口衬石墨和钛板短管。  F. 为简化收尘系统和改善操作条件,将干法收尘设备提高10米,使干尘自动返回窑内。同时,离析配料和加料全部改装圆盘给料机,并安设了自制皮带磅秤和必要的测量仪表。  G. 改建粉煤系统,采用链磨机破碎,风力分级生产离析用煤,解决离析煤产量不足、质量差、煤中混矿、矿中混煤的问题。

某鲕状高磷赤、褐铁矿回转窑磁化焙烧试验

2019-01-24 09:35:03

钢铁工业是国民经济的支柱产业之一,尤其是正处于国民经济高速发展中的我国钢铁工业就显得更为重要。解决铁矿原料不足、弥补供需缺口的途径有两条,一是寻找和开发新的铁矿原料基地;二是继续利用国外铁矿资源。我国的铁矿石资源中,具有易选、含杂低、含铁高、选矿工艺简单等特点的铁矿石正逐步面临枯竭;相反,具有含杂高(主要是P和S)、含铁低、嵌布粒度细等特点的难选铁矿石资源仍然没有得到合理的开发利用。     目前,难选铁矿石中的鲕状高磷赤、褐铁矿由于选矿工艺复杂,所得铁精矿产品铁品位低,含磷高仍然没有合理的选矿工艺利用这部分宝贵的铁矿石资源,故开发合理的选矿新工艺处理鲕状高磷赤、褐铁矿具有重大的现实意义。     一、试样性质     本次半工业试验试样来自四川某地区,嵌布粒度较细的高磷鲕状赤、褐铁矿,该矿石呈块状、硬度较大。原矿最大粒度在50mm以下约占全样的20%,一部分在25mm以下约占全样35%,其余的均在m15mm以下,从肉眼观察原矿中的脉石(石英、方解石等)矿物比较多,同时呈致密状分布,鲕状比较明显。原矿铁品位为39.38%,磷含量为0.763%。矿石主要铁矿物成分为赤、褐铁矿,其次为磁铁矿、硅酸铁矿、菱铁矿、黄铁矿等;矿石主要脉石矿物为石英、方解石、透辉石、普通辉石、绿泥石、文石、石榴石等。为满足工业试验的要求,将试样加工制备成-10mm以下进行试样的光谱分析、多元素分析、铁物相分析和筛分试验,试验结果依次见表1~表4。 表1  试样光谱分析结果   %元素AgAlAsBBaBe含量0.0030.280.04<0.001<0.02<0.001元素BiCaCdCoCuFe含量<0.0010.5<0.0010.0030.04>10元素GaGeMgMnMoNi含量0.001<0.0010.90.080.0030.006元素PPbCrSiSnTi含量<0.10.0070.00150.0020.02元素VWZnInTaNb含量0.08<0.01<0.005<0.01<0.005<0.01 表2  试样多元素化学分析结果  %元素FeSPAsSiO2MgOCaOAl2O3含量39.380.0160.76395.9815.982.981.126.09 注:As单位为×10-6 表3  试样铁物相分析结果铁物相TFe磁性铁碳酸铁黄铁矿硅酸铁赤、褐铁矿其它铁含  量39.381.894.920.565.1226.660.23占有率100.004.8012.491.4213.0067.700.59 表4  试样筛分试验结果粒级/mm产率/%Fe品位/%P品位/%Fe分布率/%P分布率/%个别累积个别累积个别累积个别累积个别累积-10+826.1226.1239.683.680.9020.90226.3126.3126.6526.65-8+530.0856.2040.1839.950.8980.90030.6856.9930.5657.21-5+2.515.9872.1838.8639.710.8650.89215.7672.7515.6472.85一2.5+111.9484.1239.2239.640.8620.88811.8984.3411.6484.49-1+0.457.2291.3437.8939.500.8830.8876.9491.587.2191.70-0.45+0.283.9895.3237.9239.430.7890.8833.8395.413.5595.25-0.28+0.13.1298.4438.1139.390.9010.8833.0298.433.1898.43一0.11.56100.0039.9339.400.8890.8841.57100.001.57100.00合计100.0039.400.884100.00100.00    从表1~表3的光谱分析结果、多元素分析结果、铁物相分析结果可知,试样中主要回收的元素是铁,其它有价值元素铜、锌、铅、钼、镍、钴、钛、金、银等含量均较低,无综合回收价值;有害元素硫、砷含量不超标,但磷严重超标为0.763%。试样中的可选性铁为赤、褐铁矿、菱铁矿和磁性铁,三者占原矿的84.99%。因此,该矿石主要是实现提铁降磷得到合格的铁精矿。     从表4可知,铁的分布随着粒度的变化不是很大,磷的分布随着粒度减小变化也比较小。     二、试验主要设备及降磷药剂     试验主要设备为φ800mm×9000mm回转窑、螺旋输送给料机、颚式破碎机、辊式破碎机、振动筛、雷蒙磨、末煤给煤机、螺旋分级机、水力旋流器、2台900mm×1800mm球磨机、筒式磁选机(B=0.30T)、永磁筒式磁选机(B=0.15T)、水淬螺旋连续运输机(自行研制)及辅助设备。     本次试验采用回转窑磁化焙烧,通过原矿的工艺矿物学研究表明,试样中的磷以胶磷矿形式赋存于矿石中,胶磷矿的特点是嵌布粒度相当细,并与铁矿物以晶格取代形式共生。同时,铁以鲡状形式嵌布于矿石中,粒度也比较细。这就决定了常规的磁化焙烧很难实现提铁降磷的理想效果,故采用自行研发的复合焙烧降磷药剂(代号为LCP)进行降磷。     该药剂属于盐类无机化合物,具有熔点低、亲磷矿物性、受干扰程度低等特点,主要机理是利用矿石在焙烧温度900~1100℃下,LCP迅速与铁矿石中的磷矿物反应生成以一种新矿物,实现磷矿物的有效转型,最终与铁矿物产生有效的分离。     三、半工业试验研究     经过前期的小型试验研究和扩大试验研究得出了适合该矿石的工艺流程为磁化焙烧一两段磨矿一两次磁选工艺流程,通过磁化焙烧过程添加自行研发的LCP组合降磷药剂,得到了铁品位65 %,含磷≤0.30%,铁回收率≥75%的选矿指标。故采用磁化焙烧一两段磨矿一两次磁选工艺流程进行回转窑(小800mm×9000mm)半工业试验研究,并根据半工业试验过程中所出现的问题和试验结果进行调整工艺参数,以寻求最优工艺参数得到理想的铁精矿产品指标,半工业试验工艺流程见图1。图1  半工业试验工艺流程     (一)焙烧条件试验     焙烧是整个工艺流程的关键因素之一,焙烧条件包括焙烧温度、焙烧时间(从物料进入回转窑到出料之间的时间差)、焦炭用量、降磷药剂(LCP)用量、焦炭粒度、球团直径。其中焙烧温度通过安装在回转窑上的温度传感器(A,B,C,D,E)来反映,高温带为A~B,长度2m,焙烧反应带为B~C,长度4m,烘干带为C~E,长度3m,焙烧时间通过调整回转窑的转速控制,回转窑不同转速通过调整变频器频率f实现,变频器不同频率对应焙烧时间关系见表5。 表5  变频器频率对应焙烧时间关系频率/Hz焙烧时间/min频率/Hz焙烧时间/min10904045207550303060    1、焙烧温度试验     焙烧温度通过回转窑的温度传感器来控制。回转窑变频器f=30Hz(焙烧时间为60min),LCP用量10%,焦炭用量8%,焦炭粒度-1mm,球团直径-20+5mm,弱磁选磁感应强度B1=0.30 T,B2=0.12T,一段磨矿细度-0.100mm占95%,二段磨矿细度-0.045mm占80%以上的条件下,进行焙烧温度试验,试验工艺流程见图1,试验结果见图2。图2  焙烧温度试验结果 ■-Fe品位;▲-Fe回收率;◆-P品位(×10-2);●-P回收率     从图2可见,温度在900℃~1000℃,随着焙烧温度升高,铁品位逐渐升高,铁回收率也呈升高趋势变化;温度升高至1050℃时,铁品位有所降低,铁回收率也有一定的降低。铁精矿中的磷含量随着焙烧温度的升高呈先降低后升高的趋势变化。综合考虑选择焙烧温度为1000℃,可以得到铁品位为65.74%,含磷0.236%,铁回收率为78.11%的选矿指标。     2、焙烧时间试验     通过焙烧温度试验得出了焙烧温度为1000℃比较合适,故在控制回转窑温度为1000℃,LCP用量10%,焦炭用量8%,粒度-1mm,球团直径-20+5mm,弱磁选磁感应强度B1=0.30T,B2=0.12T,一段磨矿细度-0.100mm占95%,二段磨矿细度-0.045mm占80%以上的条件下,进行焙烧时间试验。试验工艺流程见图1。试验结果见图3。图3  焙烧时间试验结果 ■-Fe品位;▲-Fe回收率;◆-P品位(×10-2);●-P回收率   从图3可知,随着焙烧时间的增加,铁品位逐渐降低,铁回收率也呈逐渐降低趋势变化,整个变化过程中当f=40Hz时,出现一个极值点,对应焙烧时间为45min(表5);时间增加磷品位升高,时间减少磷品位也升高,出现两头高中间低的变化趋势。选择焙烧时间为45min可以得到铁品位为66.01%,含磷0.225%,铁回收率为79.09%的选矿指标。     3、焦炭用量试验     还原剂的种类比较多,如褐煤、无烟煤、烟煤等,这类还原剂一般含杂(硫、磷、砷等)比较高,容易带入精矿中影响产品质量,故只选择焦炭作为还原剂进行试验。焦炭在整个焙烧过程中主要起提供还原性气氛和还原载体的双重作用,焦炭用量直接影响焙烧产品质量。故就回转窑变频器f=40Hz(焙烧时间45min),LCP用量10%,焦炭粒度-1mm,球团直径-30+5mm,弱磁选磁感应强度B1=0.30T,B2=0.12T,一段磨矿细度-0.100mm占95%,二段磨矿细度-0.045mm占80%以上的条件下,进行焦炭用量试验,试验工艺流程见图1,试验结果见图4。图4  还原剂用量试验结果 ■-Fe品位;▲-Fe回收率;◆-P品位(×10-2);●-P回收率     从图4可知,焦炭用量增加,铁品位升高,磷含量降低,铁回收率升高,但用量增加至8%再继续增加用量时,铁品位、磷品位、铁回收率变化比较小,故选择焦炭用量8%比较合理,可以得到铁品位为65.98%,含磷0.215%,铁回收率为78.89%的选矿指标。     4、焦炭粒度试验     焦炭粒度主要体现为焦炭的比表面性质,粒度越大,比表面积越小;反之,比表面积越大。此外,由于需将试样进行球团,粒度越大,相应的均匀程度不够;粒度越细,与试样的接触面积越大。在焙烧温度1000℃(回转窑温度传感器),回转窑变频器f=40Hz(焙烧时间45 min),LCP用量10%,焦炭用量8%,球团直径-20+5mm,弱磁选磁感应强度B1=0.30T,B2=0.12T,一段磨矿细度-0.100mm占95%,二段磨矿细度-0.045 mm占80%以上的条件下,进行焦炭用量试验,试验工艺流程见图1,试验结果见图5。图5  还原剂粒度试验结果 ■-Fe品位;▲-Fe回收率;◆-P品位(×10-2);●-P回收率     从图5可知,粒度在-1mm以下均可以得到铁品位大于65%,含磷低于0.3%,铁回收率高于78%的选矿指标,焦炭粒度增大至+1mm时,铁精矿中的磷升高至0.328%。因此,焦炭粒为-1mm比较合理。     5、球团直径试验     球团直径的大小主要影响焙烧时间,直径越大,焙烧时间增加;反之,焙烧时间越短。此外,焙烧时间过长影响回转窑的单位处理量,同等条件下增加了选矿成本。因此,球团直径不宜过大或者过小。在焙烧温度1000℃,回转窑变频器f=40Hz(焙烧时间45min),LCP用量10%,焦炭用量8%,焦炭粒度-1mm,弱磁选磁场强度B1=0.30T, B2=0.12T,一段弱磁选磨矿细度-0.100mm占95%,二段弱磁选磨矿细度-0.045mm占80%以上的条件下,进行球团直径大小试验,试验工艺流程见图1,试验结果见图6。图6  球团直径大小试验结果 ■-Fe品位;▲-Fe回收率;◆-P品位(×10-2);●-P回收率     从图6可知,球团直径在-30+5mm之间比较合适,所得到的铁精矿中铁品位均大于65%,含磷低于0.3%,铁回收率高于78%。但从焙烧过程中发现-10 +5mm有“结圈”现象,因此控制球团直径在-30+10mm之间比较合理,这样既可以得到较好的选矿指标,又可以降低回转窑的“结圈”程度。     6、LCP降磷药剂用量试验     LCP降磷药剂属于复合药剂,根据其组分的市场价格,综合价格约400元/t,用量的多少不仅影响铁精矿中的磷含量,而且影响选矿成本。在焙烧温度1000℃,回转窑变频器f=40Hz(焙烧时间45min),焦炭用量8%,焦炭粒度-1mm,球团直径-30+10mm,弱磁选磁感应强度B1=0.30T,B2=0.12T,一段磨矿细度-0.100mm占95%,二段磨矿细度-0.045mm占80%以上的条件下,进行球团直径大小试验,试验工艺流程见图1,试验结果见图7。图7  LCP用量试验结果 ■-Fe品位;▲-Fe回收率;◆-P品位(×10-2);●-P回收率     从图7可知,随着LCP用量增加,铁精矿中的磷含量逐渐降低至0.109%,但铁品位和铁回收率呈先升高后降低的趋势变化。当LCP用量为15%时,铁品位63.65%,含磷0.109%,铁回收率71.68%。因此,兼顾铁精矿品位、铁回收率、磷含量等因素,选择LCP用量为10%,可以得到铁品位65.71%,含磷0.223%,铁回收率78.91%的选矿指标。     (二)连续焙烧全流程试验     通过回转窑焙烧的主要工艺参数试验得到了磁化焙烧-弱磁选(阶段磨矿阶段选别)工艺流程的焙烧条件:焙烧温度1 000℃,f=40 Hz(焙烧时间45 min),焦炭用量8%,焦炭粒度-1mm,球团直径-30+10mm,LCP用量10%,弱磁选磁感应强度Bl=0.30T,B2=0.12T,一段磨矿细度-0.100mm占95%,二段磨矿细度-0.045 mm占80%以上。为考察所获得的工艺参数的可靠性和稳定性,在所取得的焙烧条件下进行连续72h工艺流程全流程试验,试验工艺流程见图1,试验结果见表6。 表6  连续72h焙烧全流程试验结果产物名称产率品位回收率FePFeP铁精矿50.4165.930.22578.9215.06尾矿49.5917.901.2911.0884.94合计100.0042.110.753100.00100.00     从表6可知,可以得到产率50.41%,铁品位65.93%,含磷0.225%,铁回收率78.91%的选矿指标,该指标与焙烧条件试验相比较,差别较小,故获得的工艺流程参数比较可靠,具有可重复性,产品指标稳定;此外,连续72 h回转窑焙烧过程中没有出现“结圈”现象,整个连续过程设备运转正常。     四、结论     (一)通过φ800 mm×9000mm回转窑磁化焙烧工业试验研究,得到了铁品位大于65%,含磷低于0.25%,铁回收率高于78%的选矿指标。     (二)采用自行研发成功的LCP复合降磷药剂有效地降低了铁精矿中的磷含量,得到了质量较高的铁精矿产品。LCP具有熔点低、价格便宜、来源方便、污染小等特点,在高磷铁矿石焙烧过程中添加一定量,可以有效地降低铁精矿中的磷含量。此外,用LCP对其它类型的高磷铁矿石也进行了大量的试验研究,也得到了较好的降磷效果。     (三)磁化焙烧(添加LCP降磷)一弱磁选(阶段磨矿阶段选别)工艺流程的成功,为难选高磷铁矿石的开发利用提供了一条新思路。     (四)在易选、含铁高、含杂低、工艺简单的铁矿石资源紧缺的状况下,难选含杂高的铁矿石资源的开发利用是必然趋势。因此,开发新技术、新工艺处理这部分宝贵的铁矿石资源将具有重大的现实意义。

锌焙砂在稀酸中的溶解

2019-02-21 15:27:24

氧化物的酸、碱浸出许多遵守缩短中心模型,一个典型的实例是锌焙砂在稀酸中的溶解。它依据每种参加溶解进程的化学物质的离子扩散系数及离子搬迁率,使用方程式(1)和式(2)进行核算。核算假定溶解速率由传质操控,因此所用的核算进程只能用于不触及化学反响的状况。    (1)    (2) 求解方程(1)和式(2)需求几个边界条件,它们规则了模型中各参数的值,并将各物质的通量经过浸出反响的计量联系相关起来。 关于硫酸浸出体系,核算所用的数据包含H+,HSO4-,SO42-及Zn2+的离子扩散系数和离子搬迁率,下列平衡的平衡常数与活度系数稀酸浸出氧化锌的数学模型核算中所用的传质数据列于下表。物质等效离子电导 Λi0∕(Ω-1·cm2·equ-1)离子扩散系数 D∕(cm2·s-1)离子搬迁率 u∕(cm2·V-1·s-1)H+348.99.3×10-53.6×10-3Zn2+53.87.2×10-65.6×10-4SO42-79.01.0×10-5-8.2×10-4HSO4-100.002.7×10-5-1.6×10-3 几个边界条件为 在固液界面即r=rt时,                  Ci=Cis          (3) 因为浸出进程最慢的过程是经过边界层的传质,能够假定在界面上到达化学平衡,然后得到下列边界条件     (4)     (5)     (6) 式中, 、 、 别离表明反响(a)、(b)(c)的平衡常数;Qa、Qb、Qc别离为用浓度表明时反响(a)、(b)、(c)的平衡常数;γi是物质i的活度系数。 在溶液体相即r=∞,                E=0    (7) Ci=Cib   (8) 体相浓度用质量平衡和体相的化学平衡求算    (9)    (10)    (11)    (12)    (13) 式中,[H2SO4]与[ZnSO4]是t时刻硫酸和硫酸锌的净浓度。 计量联系            (14) 硫酸根通量                        (15) 数学模型由对每种物质组成的写出的方程式(2),方程式(1)和上面导出的边界条件组成。一旦知道了各物质的通量,就可核算ZnO的溶解速率。 假如半径rt的球形粒子含有Nmol的ZnO,则    (16) 式中,Mw为ZnO的分子量。 因为稳态下边界层内没有物质堆集,一切溶解的锌都必须传递到溶液体相中去。因此,反响速率能够与锌和酸经过边界层传质的速率相关如下    (17) 式中JZn-流离表面的锌的净通量;     JH-流向表面的酸的净通量。 由式(16)和式(17)得出    (18) 方程式(18)用有穷区间法数值积分得到rt对时刻的函数。关于单尺度粒子,rt与反响分数α的联系为    (19) 即为式(20)的缩短粒子模型,r0为固体粒子的初始半径。    (20) 粒子尺度散布的景象可作相似处理,m个初始半径r0k的单尺度分数每个组成总质量的分数wk。浸出的程度分粒级核算    (21) 总的浸出率由下式断定    (22) 为了查验模型及核算的正确性,需求研讨硫化锌精矿的焙砂在硫酸、高氯酸、硝酸和等4种酸中溶解的速率。选定的拌和条件使一切的固体粒子都悬浮且溶解速率与拌和速率无关。在高氯酸及硝酸溶液中试验曲线与模型核算得到的猜测曲线符合杰出,而在硫酸溶液中在浸出率80%曾经符合尚可,这以后的溶解曲线符合不抱负的原因是因为固体粒子的溶解并非如假定的那样均匀并始终保持球形,实际上发现部分浸出的焙砂粒子有大而深的孔。简化的模型没有考虑锌的氯合物的构成合氯离子的吸附,因此不能用来猜测浸出焙砂的溶解速率。而用新近树立的未考虑电搬迁对传质的奉献的模型即便关于0.1mol∕L高氯酸浸出的动力学也严峻违背,反映了电搬迁在传质中不行忽视的效果。

利用隧道窑煅烧优质镁砂试验

2019-01-07 17:37:56

我矿菱镁矿易烧结,采用二步煅烧工艺,以煤气隧道窑做为煅烧设备,进行了优质镁砂的煅烧试验。试制出了MgO含量为96.28%、体积密度为3.33g/cm3的优质镁砂。 一、原料及结合剂 原料为我矿选矿厂浮选提纯的两种镁精矿粉,编号分别为MB和MC,其化学组成见表1。 表1  镁精矿粉的化学组成,%镁精矿粉轻烧是在隧道窑内进行,需将镁精矿粉压成荒坯,镁精矿粉本身无结合性能,需要加入一定量的结合剂。我们在试验中选用了轻烧氧化镁粉做为镁精矿粉压坯用的结合剂,其性能指标:灼减1.60%、SiO2 0.55%、Fe2O3 1.12%、Al2O3 0.35%、CaO 1.27%、MgO 96.74%,细度小于74μm占90%。 二、轻烧 混合设备采用JW250型强制式涡浆搅拌机。混合时先加镁精矿粉和7%(外加)的轻烧氧化镁粉,干混2min,再加自来水5%(外加),湿混3min出料。将混合好的镁精矿粉在300t摩擦压砖机上压成长230宽115高65mm的荒坯。荒坯体积密度均大于2.3g/cm3。压坯时荒坯不得有层裂,以避免荒坯在轻烧过程中散裂,造成“倒垛”。 压制后的荒坯在24.5m隧道式干燥器内干燥32h。干燥后的荒坯水分不大于0.5%。荒坯在窑车上采用侧立放,坯垛为空心,高温气体可进入坯垛内,增加了与荒坯之间的换热面积,以达到缩短轻烧时间的目的。 荒坯的轻烧是在隧道窑内进行,窑净空尺寸:长82.7宽2.3高1.4m,共33个车位,15~20#车位为煅烧带,以热发生炉煤气为燃料,煅烧带温度为1000~1050℃,推车时间间隔1h,即每辆窑车在煅烧带停留6h。轻烧后的荒坯经粉碎设备粉碎后就得到了具有一定细度的轻烧氧化镁粉。两种镁精矿粉轻烧后得到的轻烧氧化镁粉的指标见表2。 表2  轻烧氯化镁粉指标1)轻烧氧化镁粉编号MQB、MQC与对应的镁精矿粉编号分别是MB和MC。 三、死烧 磨细是本试验中的关键工序之一。因为隧道窑尽管窑温较高(最高煅烧温度1630℃),但与超高温竖窑相比,窑温至少要低250℃左右。表2中轻烧氧化镁粉的细度远不能满足工艺要求。因此,必须对轻烧氧化镁粉进行再磨细。磨细能够破坏轻烧氧化镁中存在的母盐假象,破坏轻烧氧化镁的未分解的菱镁矿的结晶架,增加轻烧氧化镁粉的比表面积和表面缺陷,进一步提高其烧结活性,以达到在较低的烧结温度下获得致密的烧结镁砂之目的。 本试验采用筒磨机为磨细设备。为了找出最适宜的细度,我们将表2中所列的两种轻烧氧化镁粉磨至不同的细度,以便比较。磨细后的轻烧氧化镁粉细度:MQB小于45μm为98%;MQC小于45μm为89.5%,MQC为80%。 混料是采用人工混合。将磨细的轻烧氧化镁粉放入干净的水泥地面上,然后往上面喷水(外加6%),边喷水边翻动,并借助于工县反复地搅拌加挤压,直到把物料混好(手握即可成团)。 将混好的料在300t摩擦压砖机上压成长230宽115高60mm的荒坯。由于物料细,吸附的空气较多,在压坯时特别加强了排气操作,增加了冲压次数,每块荒坯冲压5次,按照“先轻后重,逐次增压”的要求进行操作。压出的荒坯体积密度均大于2.3g/cm3、最高达2.28g/cm3。压好的湿坯在隧道式干燥器内干燥48h,干燥后坯体水分小于1%。 将干坯体按装车图装在窑车上,推入隧道窑内死烧。隧道窑净空尺寸为:长404宽2高1.25m,52个车位,25#-34#车位为煅烧带,以热发生炉煤气为燃料,最高煅烧温度为1630℃,推车时间间隔2h。煅烧出的镁砂指标见表3。 表3  镁砂理化指标1)镁砂编号MSB、MSC1和MSC2对应轻烧氧化镁粉编号分别为MQB、MQC1和MQC2。 四、结语 试验表明,以我矿浮选提纯的镁精矿粉为原料,采用二步煅烧工艺,在隧道窑内煅烧,可生产出纯度高、体积密度高的优质烧结镁砂。

提高短窑技术经济指标的措施

2019-03-04 16:12:50

一、前语       某公司粗铅精粹选用电解精粹,粗铅火法开始精粹时产出的很多铜浮渣,铸锭时产出少数铅铸锭渣。铜浮渣成分一般为:Pb75%~85%,Cu6%~10%;铅铸锭渣成分一般为Pb80%~90%,有很高的经济价值。该公司运用短窑处理铜浮渣和铅铸锭渣,短窑为Φ3.1×3.64m,前三个月均匀每炉出产粗铅9.508吨,产值偏低,技经目标欠好,经济效益不抱负。所以,进步技经目标,添加效益势在必行。       二、短窑处理铜浮渣和铅铸锭渣的原理       该公司选用苏打(Na2CO3)-铁屑法处理铜浮渣和铅铸锭渣。其长处是铅回收率高,可到达95%~98%,铅锍含铅低,铜铅比高,可达4%~8%,铜回收率可达85%~90%。配入苏打是为了下降炉渣和硫的熔点,构成钠硫,下降渣含铅并使砷、锑钠、锑酸钠造渣,脱除部分砷、锑。化学反响式如下:   4PbS+4Na2CO3=4Pb+3NaS+Na2SO4+4CO2↑   As2O5+3Na2CO3=2Na3AsO4+3CO2↑   Sb2O5+3Na2CO3=2Na3SbO4+3CO2↑   PbO·SiO2+Na2O→Na2SiO3+PbO       配入无烟煤是为了保护炉内有必定的复原气氛,防止硫化物氧化,以确保造锍有满足的硫,并有复原PbO的作用,化学反响式如下:   PbO+C=Pb+CO   ZnO+C=Zn↑+CO       配入PbO可使部分砷蒸发,削减黄渣的生成,进步铅回收率,当浮渣含砷、硫低时能够不加PbO。       铁屑不配入物猜中,一般是在放渣后分批参加铁屑,然后滚动炉子,使其与锍充沛反响,下降锍中含铅量,参加量以参加的铁屑不在发作反响停止,其化学反响式为:   PbS+Fe=Pb+FeS   PbO+Fe=Pb+FeO   Cu3As+2Fe=3Cu+Fe2As   2Cu+PbS=Cu2S+Pb   表1  某公司近期短窑炉产值表(t/炉)时刻1周2周3周4周5周6周7周8周9周10周11周12周单炉 产值9.5819.4059.5459.4439.2339.6479.7239.5169.4579.5019.5939.451均匀9.508       三、影响短窑技经目标的主要因素       (一)复原反响不充沛       因为无烟煤配入量缺乏或无烟煤量足但配料不均,致使炉内复原气氛缺乏,铅复原不充沛,粗铅和冰铜别离作用欠好,冰铜和复原渣铅别离高达28.97%和5.24%,粗铅产值下降。       (二)炉结严峻       因为配料不均及粉状物料投入,加之炉温操控欠好,致使炉结成长严峻,影响了短窑的有用容积,致使粗铅产值下降。       (三)焚烧高温区违背炉膛中心       因为运用重油喷嘴烧柴油,柴油太轻,致使焚烧高温区无集,违背炉膛中心,使物料在炉内熔炼不均匀,呈现部分过热,熔炼周期加长,柴油耗量添加。       (四)熔体分层不抱负,排放操控不到位       因为新工艺和新设备,职工操作不熟练,短窑滚动次数、频次及停止、放粗铅时刻温度等操作经验缺乏,技经目标不抱负。       四、进步短窑技经目标的办法       (一)准确配料,均匀加料       依据计算出的配料比,进行出产实践,终究断定配料比,一起,加强配料作业,使物料均匀混合,均匀加料,防止呈现部分熔剂和复原煤缺乏或过量,影响熔炼作用。下表是试验计划配料比表。   表2  试验计划配料比序号(铅浮渣+铜浮渣)∶纯碱∶铁屑∶复原煤配料比1100∶4∶4∶3配料比2100∶6∶6∶4.5配料比3100∶8∶8∶6       经过2周的试验,配料1炉产粗铅9.839吨,配料2炉产粗铅10.615吨,配料3炉产粗铅11.125吨。能够看出,配料比3使现在工艺下最优配料比。       (二)改动投料方法,削减炉结和进步铅回收率       前三个月均选用1次投料法,即一次就将物料投入炉内,致使物料加热时刻过长,炉内粉料逗留时刻长,炉结成长加速,容积显着变小。优化后改为2次投料法,即第一次投入物料50%,第2次投入物料50%,间隔时刻为第一次投入的物料刚好彻底熔化,有用操控了炉结的成长,熔化速度加速,节省了出产时刻。       前三个月加料时,对体系负压没有操控,负压一般在-100~-300Pa,优化后加料时将体系负压操控在-10~50Pa的微负压状态下,在加料时大大削减了粉状物料没有经过熔炼就直接进入收尘体系,进步铅回收率。       (三)进步操作水平,精密操作       经过技能交流和岗位练兵,操作水平不断进步,并总结经验,断定了现阶段最佳操作方法,缩短了每炉周期,进步了功率,使技经目标大幅上升。下表是优化过的短窑操作周期和炉温操控表。   表3  短窑操作周期和炉温操控表项目前三个月优化后时刻(h∶min)温度(℃)时刻(h∶min)温度(℃)第一次进料0∶4012000∶151100熔化12∶00~16∶0012005∶00~7∶001200第2次进料/ 0∶151200熔化/ 5∶00~6∶001200扒渣0.3012000.301200加铁屑2∶0012001∶301200扒渣0∶3012000∶301200沉积别离0∶4011000∶401100放冰铜1∶3010001∶001000出铅0∶30800~9000∶30800~900每炉操作时刻算计19∶20 16∶10        从上表能够看出,依照现阶段最佳操作方法操作,每炉能够缩短3小时10分钟,每月能够多开7炉。       (四)烧嘴改造,节省了柴油       运用重油喷嘴烧柴油规划存在缺点,须对烧嘴进行改造,选用柴油专用烧嘴-颜氏焚烧器替代重油喷嘴,使焚烧焦点区会集,进步焚烧功率,节省了柴油,每吨粗铅节省柴油10kg。       五、短窑技能经济目标比照表和经济效益预算       (一)短窑技能经济目标比照表   表4  短窑技能经济目标比照表序号目标称号单位技能目标技能目标前三个月优化后1短窑出产能力t/d12.21413.8112短窑炉出产能力t/炉9.83911.1253短窑操作周期h∶min19∶2016∶104复原渣含铅%5.244.785冰铜含铅%28.9728.166铅直收率%91.0191.587铅回收率%97.2598.518烟尘率%2.642.139渣率%16.0515.3610煤kg/t606011柴油kg/t11011012铁屑耗量kg/t18018013纯碱耗量kg/t190190       (二)经济效益预算       1、粗铅产值       按前三个月计,每月开37.25炉,每炉多产粗铅=11.125-9.839=1.411吨,多产粗铅52.560吨;优化后每月多开7炉,多产粗铅77.875吨;算计多产粗铅130.435吨。价值130.435万元(粗铅按10000元/t计)。       2、柴油节省       优化后每月产粗铅495.466吨,每吨节省柴油10kg,每月节省柴油4950.466kg,价值2.4752万元(柴油按5元/kg计)。       3、算计多产出价值132.9102万元。       六、定论       (一)上述办法的有用施行,进步了短窑的技经目标,并取得了较好的经济效益。       (二)因为开产时刻短,现阶段最佳操作方法不必定最好,进步短窑的技经目标将是长期不懈的作业。       七、往后尽力方向       (一)主动操控技能使用       现在质料主动加料体系开展很快,某厂的冷料主动计量,移动皮带加料,并运用微机长途会集操控,逐渐完成了主动操控。       (二)短窑的主动操控       将短窑质料体系、温度、炉内负压、短窑滚动体系等等相关信息会集收集,智能化分析然后完成主动化操控短窑是咱们短窑技能人员的往后尽力方向。