锌焙砂在稀酸中的溶解
2019-02-21 15:27:24
氧化物的酸、碱浸出许多遵守缩短中心模型,一个典型的实例是锌焙砂在稀酸中的溶解。它依据每种参加溶解进程的化学物质的离子扩散系数及离子搬迁率,使用方程式(1)和式(2)进行核算。核算假定溶解速率由传质操控,因此所用的核算进程只能用于不触及化学反响的状况。
(1)
(2)
求解方程(1)和式(2)需求几个边界条件,它们规则了模型中各参数的值,并将各物质的通量经过浸出反响的计量联系相关起来。
关于硫酸浸出体系,核算所用的数据包含H+,HSO4-,SO42-及Zn2+的离子扩散系数和离子搬迁率,下列平衡的平衡常数与活度系数稀酸浸出氧化锌的数学模型核算中所用的传质数据列于下表。物质等效离子电导
Λi0∕(Ω-1·cm2·equ-1)离子扩散系数
D∕(cm2·s-1)离子搬迁率
u∕(cm2·V-1·s-1)H+348.99.3×10-53.6×10-3Zn2+53.87.2×10-65.6×10-4SO42-79.01.0×10-5-8.2×10-4HSO4-100.002.7×10-5-1.6×10-3
几个边界条件为
在固液界面即r=rt时, Ci=Cis (3)
因为浸出进程最慢的过程是经过边界层的传质,能够假定在界面上到达化学平衡,然后得到下列边界条件
(4)
(5)
(6)
式中, 、 、 别离表明反响(a)、(b)(c)的平衡常数;Qa、Qb、Qc别离为用浓度表明时反响(a)、(b)、(c)的平衡常数;γi是物质i的活度系数。
在溶液体相即r=∞, E=0 (7)
Ci=Cib (8)
体相浓度用质量平衡和体相的化学平衡求算
(9)
(10)
(11)
(12)
(13)
式中,[H2SO4]与[ZnSO4]是t时刻硫酸和硫酸锌的净浓度。
计量联系 (14)
硫酸根通量 (15)
数学模型由对每种物质组成的写出的方程式(2),方程式(1)和上面导出的边界条件组成。一旦知道了各物质的通量,就可核算ZnO的溶解速率。
假如半径rt的球形粒子含有Nmol的ZnO,则
(16)
式中,Mw为ZnO的分子量。
因为稳态下边界层内没有物质堆集,一切溶解的锌都必须传递到溶液体相中去。因此,反响速率能够与锌和酸经过边界层传质的速率相关如下
(17)
式中JZn-流离表面的锌的净通量;
JH-流向表面的酸的净通量。
由式(16)和式(17)得出
(18)
方程式(18)用有穷区间法数值积分得到rt对时刻的函数。关于单尺度粒子,rt与反响分数α的联系为
(19)
即为式(20)的缩短粒子模型,r0为固体粒子的初始半径。
(20)
粒子尺度散布的景象可作相似处理,m个初始半径r0k的单尺度分数每个组成总质量的分数wk。浸出的程度分粒级核算
(21)
总的浸出率由下式断定
(22)
为了查验模型及核算的正确性,需求研讨硫化锌精矿的焙砂在硫酸、高氯酸、硝酸和等4种酸中溶解的速率。选定的拌和条件使一切的固体粒子都悬浮且溶解速率与拌和速率无关。在高氯酸及硝酸溶液中试验曲线与模型核算得到的猜测曲线符合杰出,而在硫酸溶液中在浸出率80%曾经符合尚可,这以后的溶解曲线符合不抱负的原因是因为固体粒子的溶解并非如假定的那样均匀并始终保持球形,实际上发现部分浸出的焙砂粒子有大而深的孔。简化的模型没有考虑锌的氯合物的构成合氯离子的吸附,因此不能用来猜测浸出焙砂的溶解速率。而用新近树立的未考虑电搬迁对传质的奉献的模型即便关于0.1mol∕L高氯酸浸出的动力学也严峻违背,反映了电搬迁在传质中不行忽视的效果。
钛在装饰(雕塑)领域中的应用
2019-01-25 13:37:11
钛在建筑领域的应用虽已有近30年的历史,但被用于装饰领域是在20世纪8年代后期。钛的本色是银灰色,可氧化着色,还可通过腐蚀处理获得凹凸浮雕图案、文字等。用钛制作雕塑,色彩斑斓,更富有艺术性和装饰性。因此倍受建筑师们的青睐。 1988年,日本用3.0mm厚的抛光钛板制作了西部气体总社的花气塔纪念碑。1998年日本TIG公司制作了长野冬奥会的圣火台。其内侧和正面用了厚2.0mm~3.0mm钛板1.5t,钛板经镜面抛光。1999年在北九州高炉台公园纪念碑、熊本市水道局纪念碑、新日铁八幡制铁所劳动会馆纪念碑、大分智慧纪念碑、古贺市福利会馆纪念碑及塔屋壁面装饰、君津车站主体及装饰柱、北九州市电梯壁面等均使用了钛材。钛的应用为现代化的大都市增添了一道靓丽的风景线,使建筑物更加气派辉煌,使人们对钛充满了神奇感和高科技感。 我国钛在装饰领域中的应用最早始于宝鸡有色金属加工厂。1987年由宝鸡有色金属加工厂制造的钛雕塑“海豚与人”作为一重要景观坐落于陕西省宝鸡市河滨公园内,用钛量约1 t。1989年宝鸡有色金属加工厂又为北京海洋研究所制造了同样的“海豚与人”。1999年宝鸡有色金属加工钛设备制造公司受河北省邢台市建设委员会委托,为邢台市中心广场设计制造了大型钛雕塑“乾坤球”。该雕塑总高为6m,全部用钛制造,用钛量约2.5t,底座内安装有传动装置,使球体每15min旋转一周。球为地球模型,球面上有蔚蓝色的海洋和钛本色的陆地,并标有世界各大河流和世界名城,其做工精湛,色彩明快,气势宏伟,堪称中国一绝,为世界钛球之最。 2001年4月宝鸡有色金属加工厂又制造了大型钛雕塑“雄鸡报晓”,为宝鸡市步行街增添一处新景观。该雕塑属抽象派作品,整体高度8.2m,鸡翅膀长达1.8m,质量达2t多。采用了纯钛、钛合金及钛钢复合材料制作。在制作过程中还采用了等离子氮化技术,使之呈现柔和的金黄色,使雕塑更富艺术性,令人赏心悦目。 随着我国申办2008年奥运会成功,将有大量的体育场馆设施等在北京及其它城市兴建,钛作为特殊的建筑装饰材料必将会得到广泛的应用。
湿法炼锌
2019-01-08 09:52:37
用酸性溶液从氧化锌焙砂或其他物料中浸出锌,再用电解沉积技术从锌浸出液中制取金属锌的方法。该法于1916年开始工业应用,至1998年,全世界产锌802万吨中的70%以上是由湿法炼锌工艺所生产,发展很快。中国年产锌万吨以上的湿法炼锌厂有15家,生产能力约为火法炼锌的2倍多,湿法炼锌产量超过100万吨。该工艺包括硫化锌精矿焙烧、锌焙砂浸出、浸出液净化除杂质和锌电解沉积四个主要工序。工艺流程见图1。 1.锌精矿焙烧 用空气或富氧,在高温下使锌精矿中ZnS氧化成ZnO和ZnSO4,同时除去As、Sb、Cd等杂质的一种作业。焙烧产物焙砂,送去浸出锌,烟气或者制硫酸或者生产液态S02-湿法炼锌的精矿焙烧与火法焙烧不同,湿法炼锌焙砂中要求保留1%-2%的硫以SO42-形态存在,以补充锌焙砂浸出时不足的硫酸。而火法炼锌精矿焙烧希望全部ZnS都氧化为ZnO,以提高冶炼回收率。 现代锌精矿焙烧均采用沸腾焙烧炉。焙烧操作条件是:床层温度900-1000℃,线速度0.5-0.6 m/s,床能力5-6.5 t/(m2·d),烟尘率50%-60%。 主要技术经济指标:脱硫率91%-95%,烟气SO2浓度>6.5%,不溶硫<1%。[next] 2.锌焙砂浸出与浸出液净化 焙砂浸出锌由中性浸出和酸性浸出两段组成。一段中性浸出采用废电解液,二段用硫酸作浸出液,酸度30-60 g/L H2SO4,浸出温度65-70℃。浸出液含Zn>120 g/L。影响浸出的因素有浸出温度、搅拌速度、酸浓度、锌焙砂颗粒大小等。ZnO浸出反应为: ZnO+H2SO4====ZnSO4+H2O 为了提高锌焙砂中锌浸出率,采用空气搅拌,以强化浸出过程。使难溶的ZnO.Fe2O3、ZnO.Al2O3及ZnS得以溶解。 工业生产多将若干个搅拌浸出槽连接起来形成浸出设备组合系列,锌焙砂用废电解液浆化成矿浆后在此进行逆流连续浸出。中性浸出段产出的矿浆经浓密分离,上清液送去净化除杂质,合格净化液送电解生产电锌,底流再经酸性浸出段浸出,上清液返回浆化槽,底流过滤,滤饼为弃渣,送渣场。 浸出工序主要指标为:锌焙砂含Zn 47%-57%(可溶Zn>90%),锌浸出率>85%,浸出渣含Zn 18%-20%,浸出渣产率53%。 所得浸出液含锌130-150 g/L,其他杂质为(g/L):Cu 0.2-0.4, Cd 0.5-0.7, Co0.01-0.04,Ni 0.002-0.007,As 0.0002-0.0004,Sb 0.0003-0.0004。这些杂质对锌电积十分有害,电积前必须将其除到允许的浓度。 传统的浸出液净化过程包括两个工序:先加锌粉置换除铜、镉;再加黄药除钴。前者是利用铜与镉的氧化还原标准电位分别为+0.344和-0.40,均较锌-0.762为正的原理,将Cu2+、Cd2+还原成Cu和Cd沉淀除去;后者则是向溶液中加入CuSO4,使Co2+氧化成Co3+,而后加入磺酸盐(2C4H9OCSSK)使和Co3+成钴盐(C4H9OCSS)3Co沉淀除去。 沈阳冶炼厂采用白砷(As2O3)代替黄药除Co,一次净化时浸出液中加入As2O3、锌粉、硫酸铜,同时除去As、Sb、Ni、Cu、Ge,二次净化时浸出液中加KMnO4除Fe,加锌粉除残Cd。经过两次净化,可基本除净有害杂质,电解电流效率可提高到90%。 白砷净化溶液的条件与指标:一次净化,温度60-70℃,白砷、锌粉和硫酸铜的用量分别为0.15 kg/m3、0.5 kg/m3和0.2 kg/m3,终液含Co降到0.002 g/L;二次净化,50-60℃,用空搅拌除铁,净化后溶液含铁 锌电积的主要设备是电解槽,多为钢筋混凝土制成的内衬聚氯乙烯或玻璃钢防腐材料槽,电解槽尺寸为2250mm×850mm×1450mm。铝板阴极,大小为1m×0.7m×4mm,上边焊接铜导电棒,侧边夹绝缘条。阳极用含银1%的铅基合金制成,尺寸稍小于阴极。 锌电沉积的主要技术经济指标为:电解温度40℃,同极中心距60mm,电流密度450A/m2,槽电压3.2-3.4V,电流效率89%,直流电耗3100kWh/t Zn,电解回收率99.3%。 熔铸析出锌片的冶金炉有低频感应炉和反射炉。前者常用的规格有1250 kW,40t容量炉型,工作温度450-500℃,电耗120 kWh/t。后者常见炉床面积7.4m2,容量5 t/炉,以煤或油为燃料。产品锌锭重20-25kg,质量为1#锌国家标准(%):Zn>99.99,Pb<0.005,Fe<0.003,Cu<0.001,杂质总量<0.01。
浸出及浸出率
2019-01-04 15:47:49
浸出,是湿法冶金中的一个过程。所谓浸出,就是将固体物料(例如矿石、精矿、熔砂或其他半成品)加入液体溶剂内,让固体物料中的一种或几种有价金属溶解于液体溶剂中,以便下一步从溶液中提取出有价金属。
例如湿法炼锌中的浸出过程,就是采用稀硫酸溶液或来自电解车间的废电解液作溶剂,对锌焙砂进行浸出,使焙砂中的锌溶解于硫酸溶液中,浸出过程一般是在常温常压下进行的,但为了使浸出过程得到强化,也常常使用高温高压浸出。
浸出的目的,在于使所有要提取的金属尽量溶解于溶剂中,而杂质则溶解得越少越好,不管选择什么样的溶剂,所要提取的金属总是难得100%都溶解。
同样,所含杂质也总要溶解一些,为了表示某一物质被浸出的程度,常用浸出率来表示。
浸出率,就是该物质被浸出的百分率。例如,锌焙砂浸出时,如果被浸出锌占焙砂中的锌的80%,则锌的浸出率为80%。
我国钢管行业产能概况
2019-03-15 11:27:19
我国钢管行业在技术结构上由无缝管机组、直缝焊管机组又分为高频直缝焊管(ERW)和大口径直缝埋弧焊管机组(LSAW)以及螺旋焊管机组(SSAW)组成。其中无缝管产量稍低于焊管产量,而且焊管产量还在呈上升趋势,这是因为无缝管在某些领域逐步为焊管所替代。 据不完全统计,无缝钢管约250多套机组,年产能力约450多万吨,直缝中小焊管机组(ERW)约1600-1800多套,年产能力约500多万吨;直缝大口径埋弧焊管机组的4~5套,年产量能力约150多万吨;螺旋焊管机组约90多套,年产能力约200多万吨。以上总计我国钢管行业的年生产能力约1300多万吨。从展开来看,无缝管企业约240多家。其中从口径看,<φ76的,占35%,<φ159-650的,占25%。 从品种看,一般用途管190万吨,占54%;专用管占46%,其中:石油管76万吨,占5.7%;液压支柱、精密管15万吨,占4.3%;不锈管、轴承管、汽车管共5万吨,占1.4%。焊管企业以中小直缝焊管(ERW)机组套数最多,估计有1600~1800多套,其中φ114的占95%,产品以水、煤管为主体,年产能力100万吨左右;φ114-φ355机组共6套,宝鸡φ426机组及锦西φ508机组各一套,以上中直径焊管机组约8套,年产能力约100万吨。大口径φ406-φ1800直缝双面埋弧焊管机组约3-4套,其中广州番愚珠江钢管有限公司HMEφ406-φ1800机组及UOEφ508-φ118机组各一套(均为引进),太钢引进.UOEφ610机组(不锈钢)一套,辽阳UOE机组(国产)一套,共计年产能力约160万吨左右,真正投入生产运作的主要是广州番愚珠江钢管公司的机组能生产石油天然气管。螺旋焊管机组φ219-φ1400约70多套,近年又新增约20多套,共计90多套,年生产能力约200多6家石油钢管厂(宝鸡、青县、沙市、资阳、胜利和辽阳)共22套机组;此外,还有上海宝冶从德国引进的φ3100机组;天津从德国引进的φ1240机组等。
针铁矿法在湿法冶金中的应用
2019-01-07 17:38:37
利用沉淀针铁矿除铁的技术是由比利时老山公司巴伦厂(Vieille Montagne)首先开发和工业化的,称为VM法。成功地沉淀针铁矿的关键在于维持溶液中Fe3+的低浓度,例如<1kg∕m3,否则在沉淀针铁矿的pH范围(2~3.5)内将得到胶状的Fe(OH)3或碱式硫酸铁 Fe4SO4(OH)10。VM法解决此问题采用的是还原-沉淀法,流程如图1所示,从热酸浸出得到的含100kg∕m3Zn,25~30kg∕m3Fe3+及50~60kg∕m3H2SO4的硫酸锌溶被先经过还原作业,即在沉淀针铁矿前在一个单独的作业中先用锌精矿(ZnS)将溶液中的Fe3+都还原成Fe2+,还原后未反应的ZnS与反应生成的元素硫一同分离出来送回焙烧炉。还原后液再用焙砂ZnO预中和至3~5kg∕m3H2SO4,得到的铁渣返回热酸浸出作业,溶液则送入沉淀反应器。向沉淀器通空气将Fe2+氧化成Fe3+而使之水解沉淀出针铁矿晶体。图1 VM针铁矿法
沉淀针铁矿时需不断在加入焙砂以中和水解反应产生的酸,将pH值控制在适当的范围内,如pH=2~3.5。VM法需要特别注意控制Fe2+的氧化速度,使得溶液中Fe3+的浓度在水解沉淀针铁矿的过程中始终保持在1kg∕m3以内。与黄铁矾法不同的是,针铁矿沉淀时无需提供一价阳离子,而得到的针铁矿渣也不能进行酸洗回收其中由焙砂中和带入的未溶解的锌。为防止这部分锌的损失,一个对策是使用低铁的闪锌矿焙砂作中和剂。
澳大利亚电解锌公司开发的EZ法直接将含Fe3+的待水解液缓缓加入水解沉淀器中,控制水解液Fe3+浓度不超过1kg∕m3从而控制水解,因而EZ法亦称部分分解法。在70~90℃下连续水解沉淀针铁矿,同时不断加入锌焙砂中和因水解产生的酸,维持溶液pH值在2.8以适于水解。
两种针铁矿法相比,沉淀同样数量的铁,VM法水解产生的酸此EZ法少,因而为中和水解的酸需要消耗的锌焙砂也少,随锌焙砂损失的锌电少,除铁的效果也好于EZ法。但VM法涉及先还原后氧化两道工序,比较繁琐。此外,VM法用空气氧化Fe2+的速度较慢,而用别的氧化剂则成本高。
与黄铁矾法相比,针铁矿法不需要硫酸根和碱金属,可应用于任何酸浸体系,包括氯化物体系和硝酸盐体系,除铁的效果也更好(从30kg∕m3到小于1kg·kg∕m3),但针铁矿对酸的稳定性较差,沉淀中未溶解的铁酸锌不能如黄铁矾法那样用酸洗来回收。
雾化热解法制备活性氧化锌
2019-02-11 14:05:30
超细氧化锌是一种近年来开展的新式高功用无机产品,它具有了其本体块状物料所无法比拟的优异功能。现在氧化锌的制备办法首要有:直接沉淀法、均相沉淀法、溶胶-凝胶法、微乳液法、水热法、醇盐水解法、溶剂蒸腾法等。
雾化热解进程作为一种新式的超细粒子制备技能,遭到材料、化学工程、气溶胶、超导等范畴研究人员的广泛重视。本文以锌焙砂为质料,用NH3-NH4·HCO3-H2O系统作为浸出剂,经浸出-雾化热解-锻烧制取活性氧化锌。
一、实验
(一)实验原理
锌焙砂的首要成分为ZnO,并伴有少数的ZnSO4、ZnO·SiO2、ZnO·Fe2O3及ZnS,在性系统中浸出时,锌焙砂中Cu、Ni、Cd、Co等杂质元素也生成合作物进入溶液,ZnO·SiO2、ZnO·Fe2O3及ZnS等不溶解,残留在渣中。
在净化进程中,因系统呈弱碱性,Cu、Ni、Cd、Co等杂质均易被锌粉置换除掉,净化后液选用并流式离心雾化枯燥器雾化枯燥,溶液通过高速旋转的离心盘雾化成微米级液滴,当即与热风触摸,在枯燥器中呈螺线型运动,而且随同枯炎热分化进程。雾化后的每一个球形液滴能够作为一个反响器,其阅历三个阶段,首要因为NH3蒸腾温度低,在高温下NH3敏捷蒸腾,导致溶液中[Zn(NH3)m]2+合作物失去平衡,分出碱式碳酸锌前躯体,此阶段相当于蒸进程;第二阶段为水的蒸腾,粒子表面的水蒸气分压远大于空气中的水蒸气分压,枯燥进程持续进行,分压差为枯燥进程的推动力;第三阶段为降速阶段,粒子表面的水蒸气分压等于空气中的水蒸气分压,两者之间的分压差等于零,不再进行枯燥,可是此刻物料分化敏捷,而得到高活性氧化锌。
因碱式碳酸锌分化不彻底,将前躯体在马弗炉中锻烧,锻烧温度300~600℃,锻烧时刻30~60min,而得到高活性氧化锌。
(二)试剂及试料
(25%~28%)、碳酸氢铵,分析纯;实验质料取自江西某炼锌厂的锌焙砂,其化学成分(%):Zn 53.17、S 2.58、Cu 1.03、Pb 1.48、Cd 0.09、Fe13.06、As 0.24、Sb 0.08。
(三)实验装置
浸出实验在1 L圆底三口烧瓶中进行,选用恒温磁力拌和器坚持稳定的反响温度,操控温度差错士1℃,拌和速度为450 r/mine
(四)实验及分析办法
每次取40 g氧化锌焙砂,按必定的液固比参加配好的及碳酸氢铵混合液,通过必定时刻的浸出后过滤,用EDTA滴定法分析滤液中Zn的浓度,核算Zn的浸出率。锌粉置换除杂反响所用锌粉粒度为145~175μm,在快速拌和下缓慢参加。净化液通过滤后在离心喷雾枯燥器中雾化、枯燥、分化得到中间产品,最终在马弗炉中煅烧得到活性氧化锌。以SEM、XRD等分析手法分析产品的粉体结构、描摹特征。
二、成果与评论
(一)浸出
1、 NH3/NH4+对Zn浸出率的影响
在总浓度8mol/L,液固比8∶1,温度35℃、时刻lh的条件下,调查NH3/NH4+对Zn浸出进程的影响,成果见图1。从图1可知,NH3/NH4+对Zn浸出率的影响显着,当NH3/NH4+从1∶1添加到2.5∶1时,Zn浸出率显着进步,通过预订的浸出时刻,Zn浸出率由75.96%添加到82.56%,当铵比持续增大,Zn浸出率缓慢下降。其原因首要是因为NH3/NH4+的改变,引起浸出液pH的改变,依据Zn浸出电位-pH图,pH的巨细直接影响ZnO的浸出进程,在NH3/NH4+=2.5∶1时,浸出液pH=12。因而断定浸出液NH3/NH4+=2.5∶1。图1 铵比对Zn浸出率的影响
2、液固比对Zn浸出率的影响
在总浓度8 mol/L、NH3/NH4+=2.5∶1、温度35℃,时刻1h的条件下,调查液固比对Zn浸出进程的影响,成果如图2所示。从图2可看出,液固比对Zn浸出率的影响非常显着,当液固比低于8∶1时,跟着液固比的添加,Zn浸出率显着添加;可是当液固比大于8∶1后,Zn浸出率改变不大。因而断定液固比为8∶1。图2 液固比对Zn浸出率的影响
3、总浓度对Zn浸出率的影响
在液固比=8∶1、NH3/NH4+=2.5∶1、温度35℃、时刻1h的条件下,调查总浓度对Zn浸出进程的影响,成果如图3所示。从图3可看出,总浓度对Zn浸出率的影响显着,当总浓度小于8 mol/L时,跟着总浓度的添加,Zn浸出率显着进步;可是总浓度大于8mol/L后,Zn浸出率改变不大。因而断定总浓度为8mol/L。图3 总浓度对Zn浸出率的影响
4、浸出时刻对Zn浸出率的影响
在总浓度8mol/L、NH3/NH4+=2.5∶1、液固比=8∶1、温度为35℃的条件下,调查浸出时刻对Zn浸出进程的影响,成果如图4所示。从图4可看出,浸出时刻对Zn浸出率的影响显着。在NH3-NH4·HCO3-H2O系统中,Zn浸出反响敏捷,在浸出时刻为10min时,Zn浸出率就到达72.28%,而且跟着时刻连续,浸出率快速进步,浸出40min时,Zn浸出率到达82%。当浸出时刻到60min,Zn浸出率到达82.34%,可浸Zn根本浸出彻底。
5、浸出归纳条件实验
依据以上实验成果,断定最佳浸出的归纳条件为:总浓度8 mol/L、NH3/NH4+=2.5∶1、液固比=8∶1,时刻1h。浸出液锌含量为54.34g/L,浸出率为82.56%,首要杂质元素含量(mg/L):Cu250、Pb 25.1、Co 0.52、Cd 31.6、Fe 3.3、As 0.43、Sb 0.15。按可溶性的氧化锌、硫酸锌核算,可溶锌浸出率大于97%。形成浸出率低的原因是焙砂中铁酸锌、硅酸锌含量较高。浸出液进行二次浸出,锌含量可到达97.62 g/L。图4 浸出时刻对Zn浸出率的影响
(二)净化
由上述成果可知浸出液中Cu、Ni、Cd、Co等杂质元素含量较高,本实验选用锌粉置换法除掉这些杂质,净化实验在高拌和强度下进行,选用的锌粉粒度为145~175μm,温度操控在50℃左右,反响时刻1h。在此条件下,溶液中Cu、Cd、Co、Fe等杂质均可被置换除掉,净化后液杂质元素含量(mg/L):Cu 0.32、Pb 0.79、Co 0.02、Cd 0.68、Fe 1.3、As0.06、Sb 0.0。Cu净化率到达99.87%,一起Co净化率为96.15%,净化后液中Fe含量为1.3 mg/L,
到达净化要求。
(三)雾化分化
雾化分化在并流式离心喷雾枯燥器中进行,溶液通过蠕动泵泵入雾化器中,经高速离心效果,将机械能转化成细微雾滴的表面能,而且在极短的时刻内完结蒸腾、水蒸腾、碱式碳酸锌的分出及分化进程。溶液的黏度及表面张力对雾化起阻止效果,其首要由物料的性质及组成操控。
雾化热解进程在人口温度为340℃,出口温度180℃以上,雾化转速为400n/s,进料速度为60mL/min;料液浓度为100g/L的条件下进行,产品进行SEM分析,成果如图5所示。从图5可看出,大部分为长度不大于2μm的针状物,其为前期跟着气蒸腾而分出的碱式碳酸锌,通过水分蒸腾枯燥分化而得的氧化锌。还有少部分为未彻底分化的前躯体,为表面润滑的实心球体。这是因为物料在枯燥器内与执风并行活动,目在枯燥器内只逗留20~30s,热风温度跟着水分的蒸腾直线下降,在出口温度仅能到达180℃左右,低于碱式碳酸锌的分化温度,所以有部分不能分化。图5 雾化分化粉体的SEM图
(四)煅烧
锻烧在马弗炉中进行,温度设定为400℃,时刻1h。锻烧后的粉末XRD谱图与ZnO的XRD标准卡片(JCPDS)对照分析标明,煅烧后制备的氧化锌微粒与JCPDS标准卡片相符,这阐明得到了六方晶系结构的氧化锌粉体,衍射峰都很尖利,而且几乎没有杂质衍射峰,阐明结晶程度和纯度都较高。
锻烧后描摹及粒度经电镜分析,其成果如图6~7。如图6所示,其间大部分针状物的描摹、粒度都没有发作显着的改变,少部分发作聚会现象。从图7能够看出,前躯体中的球形碱式碳酸锌则生成蜂窝状,增大了其比表面积。图6 400℃煅烧后针状ZnO粉体的SEM图图7 400℃煅烧后蜂窝状ZnO粉体的SEM
三、定论
(一)在总浓度8 mol/L,液固比=8∶1、NH3与NH4+的比为2.5∶1,温度35℃、时刻1h的条件下,一段浸出液锌含量为54.34 g/L,浸出率为82.56%,两段浸出液进锌含量可到达97.62 g/L,平均可浸锌浸出率到达97%以上;
(二)在性条件下,Fe根本不会浸出,浸出液铁离子浓度仅为3.3 mg/L,净化液中Co的净化率到达96.15%;
(三)在进口温度为340℃,出口温度为 180℃,雾化转速400n/s,进料速度为60mL/min,料液浓度为100g/L的条件下进行为行雾化热解,能够得到长度不大于2μm的针状活性氧化锌。可是因为温度不行,有部分前躯体没有分化彻底,有必要进行煅烧处理;
(四)前驱体在马弗炉中400℃煅烧1h后,为蜂窝状氧化锌。
湿法炼锌黄铁矾法
2019-01-07 17:38:37
黄铁矾法作为有效的除铁方法在湿法炼锌厂的实践最具代表性。黄铁矾法的开发成功是在20世纪60年代中期,当时澳大利亚的电锌公司、挪威锌公司和西班牙阿斯图里亚那公司各自独立地开发了这项技术并几乎同时申请了专利。此后黄铁矾法迅速得到广泛应用,成为电解锌生产中主要的除铁技术,目前世界上至少有16家大型电解锌厂采用了此技术。现在用以除铁的黄铁矾法是将溶液pH值调到1.5且维持这一pH值,并在95℃左右加入一价阳离子从酸性硫酸盐溶液中沉淀黄铁矾。工业中最常用的一价阳离子是NH4+和Na+。黄铁矾沉淀后,溶液中铁的浓度一般降到1~5kg∕m3。
湿法炼锌中黄铁矾法典型的操作分3个基本步骤:中性浸出、热酸浸出和黄铁矾沉淀。在中性浸出阶段,酸性电解贫液被锌焙砂ZnO中和,得到含铁酸锌的渣和供电解沉积锌的中性硫酸锌溶液。铁酸锌渣在热酸浸出段用补克了硫酸的电解贫液造成的热酸中溶解,得到的含Zn和Fe的浸出液再在黄铁矾沉淀段处理,先用锌焙砂调整酸度,再加入硫酸铵或硫酸钠沉淀碱金属黄铁矾。沉铁后液返回中性浸出,黄铁矾渣则弃去。需要指出,沉淀黄铁矾时用作中和剂的锌焙砂中所含的铁酸锌将不溶解而进入铁矾渣中,因此新生成的黄铁矾渣不宜直接弃去,以免损失焙砂中和剂中未溶的铁酸锌。鉴于黄铁矾一旦生成则对酸相当稳定,实践上黄铁矾渣弃去前可在类似热酸浸出的条件下进行酸洗,溶解回收渣中残存的铁酸锌,而黄铁矾本身不致溶解。
黄铁矾法的3个基本步骤的具体操作条件及顺序在不同厂家不尽相同,但目的是相同的;最大限度地回收锌而不考虑少量的伴生元素如Pb和Ag。例如,铁酸锌的热酸浸出和黄铁矾的沉淀可以合而为一,即所谓转化法,其总反应如下:
(1)
该合并步骤的溶液然后可用新鲜焙砂中和,产出溶液供电解和渣返回循环。若精矿中含有较大量的Pb和Ag,则采用另外的流程,得到含Pb∕Ag的渣、黄铁矾沉淀和中性Zn电解液。这类流程中包含有一个预中和作业。在通常的黄铁矾流程中是用焙砂降低热酸浸出液的酸度,从而迅速而有效地沉淀黄铁矾。焙砂中存在的Zn2+,Cd2+,Cu2+,Pb2+和Ag进入黄铁矾而损失。在热酸浸出和黄铁矾沉淀作业之间引入一个预中和作业可以降低黄铁矾中的金属损失。在预中和作业中,溶液中的酸一部分被焙砂中和,所得的渣返回热酸浸出段溶解其中的Zn和Fe,而Pb和Ag留在铅-银渣中。部分中和过的溶液随后加入所需要的中和剂进行黄铁矾沉淀。
图1为集成的黄铁矾法流程示意图。它的设计中结合了各种黄铁矾法方案中的大多数改进环节。图1 集成黄铁矾法
除应用于湿法炼锌工业中外,黄铁矾法还在铜、镍、钴等金属提取中用作除铁工艺,尤其是在硫酸盐体系中。例如,在处理钴-铜精矿的阡比什(Chambishi)焙烧-浸出-电积法中,铜电积前的除铁就是采用黄钾铁矾沉铁。由于硫酸化焙烧本身提供了K+离子,沉淀黄钾铁矾时无需外加高成本的硫酸钾。
黄铁矾法的优点是沉淀容易过滤,Zn,Cd和Cu在沉淀中的损失最少,可以同时控制硫酸根和碱金属离子,容易与各种湿法冶金流程结合。但它也有其自身的缺陷,例如:1)所用试剂成本较高;2)渣的体积较大,为1.4kg∕(m3·t),堆存占地较大;3)需要充分洗涤以除去吸附的有害环境或可供利用的金属;4)需要在控制条件下存放以免分解放出有害组分污染环境。通过热分解或水热分解将黄铁矾转化为赤铁矿供生产铁并将硫酸钠/硫酸铵循环至黄铁矾沉淀作业,可望克服这些缺点。
氨法超细活性氧化锌研究
2019-02-18 15:19:33
据全国锌盐协作组查询,国外氧化锌工业开展较为老练,近几年处于相对安稳的状况,1999年美国、日本、西欧的氧化锌消费量共582.3万吨,实践产值共466.5万吨。与国外构成显着对照的是,近几年我国汽车工业的快速开展,加上我国涂料工业的快速开展,使我国氧化锌的需求在逐年上升。估计到2005年,我国氧化锌仍将以6~8﹪的速度开展。据全国锌盐协作组2000年职业查询,现在我国氧化锌出产厂商为96家,2000年氧化锌实践产值30.63万吨。
国内外氧化锌出产工艺还是以直接法和直接法为主,少数以湿法工艺出产。而湿法工艺出产氧化锌中大部分是硫酸法工艺的产品,其很多副产品难以收回,环保问题不易处理;直接法氧化锌工艺以含氧化锌的质料经氧化复原直接产出氧化锌产品。该法受质料约束,质量不高,价格较低;直接法氧化锌出产工艺以冶炼提纯的金属锌为质料,经熔化、汽化、氧化出产出氧化锌。该法出产成本较高。法湿法工艺是现在国内氧化锌出产工艺的开展方向。且其产品简单完成多种类、多规格。可广泛用于橡胶、涂料、陶瓷、磁性材料等范畴。
南京铅锌银矿业公司经过以广西冶金研讨所协作研讨,以成功开发了法超细氧化锌新工艺及其产品。《法超细氧化锌新工艺及其产品》在2001年经过江苏省科技厅安排专家判定,并被南京市经委认定为高新技术产品。国内近年稀有家单位都在研讨类似工艺,咱们现在的水平在同行中处于先进水平。
法超细氧化锌新工艺,克服了硫酸法工艺环保问题难以处理的缺陷,它以氧化锌焙砂为质料,经脱硫、洗刷、浸出,除铜、铅、铁、锰;深度静化、水解、蒸、枯燥、煅烧,制得超细活性氧化锌产品。
与现有的各种氧化锌出产工艺比较,法超细氧化锌新工艺的优势:
1、出产成本低。直接法氧化锌与直接法氧化锌因为所用质料不同。所以出产成本也不一样。前者出产成本显着低于后者。直接法中法和酸法出产成本附近,法在质猜中能够调配运用低度氧化锌、锌灰、菱锌矿、锌烟尘,使出产成本更低。
2、产品活性高。氧化锌出产原理不同,制品的晶型也不一样,因而化学活性不同很大,法工艺出产的超细氧化锌,具有粒度细、比表面积大、晶型出现多孔的结构。因而,具有化学活性高的特色。
3、产品纯度高。因为法在出产中应用了多种净化办法,使得杂质金属含量降到最低。一起,也避免了酸法工艺的产品中硫酸根的残留问题。
4、产品种类多。直接法受工艺的约束,只要一种产品——直接氧化锌。而法经过微调工艺可出产出不同功能的氧化锌和锌盐产品。以满意用户不同的需求。习惯商场的广泛需求。
5、质料来历广。法工艺质料习惯性最广。锌焙砂、低度氧化锌、锌灰、菱锌矿等都能够作为法工艺的出产质料。在矿产资源越来越匮乏的今日,这是一个很大的优势。
6、环保有保证。法工艺的规划思维就是水、闭路循环。没有一般湿法出产水的污染问题。
别的,咱们经过调整某些工艺参数、流程工序,能够出产出粒径40~60nm的氧化锌。
钒的主要应用
2019-03-08 12:00:43
在我国,钒90%左右用于钢铁工业,钒在钢中的使用首要是经过增加钒来提
高强度和耐性。在结构钢中参加0.1%的钒,可进步强度10%—20%,减轻结构分量15%—25%,降低成本8%—10%。因为钒钢具有强度大,耐性、耐磨性及耐蚀性好的特色而广泛使用于输油(气)管道、建筑、桥梁、钢轨和压力容器等工程建设中。2000年我国钒钢使用量现已到达120万t/a,含钒钢使用量年均增加10%。
钒和钛组成重要的金属合金Ti—6Al—4V,用于飞机发动机、宇航船舱骨架、、军舰的水翼和引入器、蒸汽涡轮机叶片、火箭发动机壳等。此外,钒合金
还使用于磁性材料、硬质合金、超导材料(如V,Ca)及核反应堆材料等范畴。国内出产钒铝中间合金的厂商有宝鸡有色金属加工厂和锦州铁合金厂,国内的钒铝合金产值不能彻底满意国内需求,每年需要从国外进口一部分,钒铝中间合金的商场发展潜力相当大。
在化工中首要使用的钒制品有深加工产品V2O5,(98%—99.99%),NH4VO3()、NaVO3及KVO3等。它们别离使用于催化剂、陶瓷着色剂、显影剂、干燥剂及出产高纯氧化钒或钒铁的质料。V2O5作催化剂具有特殊的活性,其它元素难以替代。国内的粉状V2O5现首要由石煤提取。因为国内相关厂商规模小、产值低、且难出产高级产品。因而这部分高级产品现首要靠进口处理。
钒的盐类的色彩五颜六色,有绿、红、黑、黄等。如二价钒盐常呈紫色;三价钒盐呈绿色,四价钒盐呈浅蓝色,四价钒的碱性衍生物常是棕色或黑色,而五氧化二钒则是赤色的。这些色彩缤纷的钒的化合物,被制成艳丽的颜料,如加到玻璃中,可制成彩色玻璃,也能够用于制作各种墨水。
此外,二氧化钒薄膜和超细粉体因为其本身共同的相变特性,可广泛使用于电学和光学开关设备、太阳能操控材料、光盘介质材料、涂层、热敏电阻等范畴;北京烁光特晶科技有限公司研制出长距离光纤通讯用的钒酸钇晶体材料,具有双折射率大、透过率高、透光性好,是功能极佳的双折射晶体。