您所在的位置: 上海有色 > 有色金属产品库 > 锌焙砂浸出工艺

锌焙砂浸出工艺

抱歉!您想要的信息未找到。

锌焙砂浸出工艺专区

更多
抱歉!您想要的信息未找到。

锌焙砂浸出工艺百科

更多

镍矿的化学浸出工艺

2019-02-22 16:55:15

从国际范围看,挖掘的镍资源有硫化矿和红土镍矿两类,现在约有70%的镍是从硫化镍矿中提取的。可是,跟着国际镍硫化矿资源的日益干涸,低档次红土镍矿的开发和归纳运用逐步成为研讨热门。 红土镍矿资源为硫化镍矿岩体经风化、淋滤和堆积后构成的地表风化壳矿床,矿石天然类型以褐铁矿型和腐岩型为主,工业类型为硅酸镍矿石,镍元索首要以硅酸盐矿藏办法赋存,因而选用传统选矿工艺难以收回红土镍矿中的镍资源,这严峻约束了红土镍矿的有用运用。 红土镍矿矿床由三层组成:上层含铁较高,镍与褐铁矿共生在一起,称之为褐铁矿型红土镍矿;基层硅酸盐矿藏比较富集,镍与硅酸盐矿藏共生,构成硅镁镍矿,称之为硅镁镍矿型红土镍矿;褐铁矿和硅镁镍矿之间的部分称之为过渡型红土镍矿。因为红土镍矿的成分杂乱、矿石性质多变悬殊,现在研讨标明,选用火法冶金工艺处理红土镍矿制取镍铁产品是最有用办法,但火法冶金进程中的相变转化影响着镍铁产品的富集收回。 现在,研讨较多并得到工业运用的首要是高压酸浸(HPAL,PAL)和复原焙烧浸(CARON工艺)两种工艺,但两种工艺都存在着必定的问题。CARON工艺的浸出率低,且能耗高,大大约束了此法的开展运用。HPAL工艺关于镍的档次低、镁铝含量高和泥质含量高的红土镍矿,该工艺硫酸的消耗量比较大,处理起来并不经济;基础建设出资大、高温高压操作条件严苛,工程化方面存在一些问题,例如高压釜结垢,影响接连化出产加压浸出需用高盐度水,而高盐度水对设备、管道及阀门的腐蚀较为严峻。 针对传统焙烧工艺的缺点,近几年学者们首要做了如下研讨:(l)活化焙烧,经过活化焙烧对矿石进行预处理,使部分矿相的晶型改动,导致矿藏原有结构坍塌,使得比表面积和孔隙增加,有利于后续的浸出进程;(2)加盐焙烧,碱金属盐或氯化铵使金属氧化物的晶格点阵发作畸变,以及使复原产品发作微孔、加快复原气体的内分散,然后使得以类质同象办法赋存于铁氧化物中的镍露出出来;(3)直接复原焙烧,在红土镍矿中配加必定质量的复原剂、熔剂和其他增加剂,制成红土镍矿含碳球团,运用直接复原的办法出产含镍粒铁,有用地除去粒铁中所含的硫。 在浸出方面,首要的研讨进展为:(l)酸浸方面,除了选用传统的硫酸作为浸出剂外,选用浸出并用抗坏血酸做复原剂,镍的浸出率高达95%以上;(2)碱浸方面,探究了一次浸出两次洗刷工艺和高浓度碱浸红土镍矿提硅工艺;(3)高压浸出方面,探究了加碱预处理酸浸物料、十二烷基磺酸钠除垢、硝酸高压浸出等工艺;(4)其他方面,首要是研讨了参加高能物理场的复合能场的办法和微波水热法以及加温法。 1 焙烧工艺的开展 在镍矿的焙烧方面,研讨者们对镍矿焙烧进程中复原剂、增加剂等要素对镍矿焙烧的影响机理做了深人的讨论。在焙烧工艺方面首要是提出了参加不同增加剂的焙烧、活化焙烧和直接复原焙烧等新工艺。 A 参加增加剂焙烧工艺 不同的增加剂会对焙烧发作不同的影响,研讨者们经过热力学、动力学等的分析对增加剂的影响机理有了较清晰的论述。孙体昌选用石煤和无烟煤进行的比照实验发现,用石煤作复原剂所得镍铁精矿中镍、铁档次均高于相同用量的无烟煤所得到的镍、铁档次,但镍、铁的收回率比相同用量的无烟煤要低。石剑锋以硅镁型和褐铁矿型红土镍矿为研讨目标,选用硫酸化焙烧-水浸工艺,对硫酸钠在硫酸化焙烧进程中的影响机理进行了研讨。卢杰则研讨了硫酸钠对红土镍矿在和气氛下的复原性。此外,石剑锋等人研讨了焙烧红土镍矿的机理。经过对反响的热力学分析,发现进步低温焙烧温度能促进蛇纹石与的反响,但会按捺橄榄石与的反响。 参加增加剂可以有用地进步焙烧后镍的浸出率。史唐明研讨了增加含硫增加剂强化红土镍矿固态复原焙烧。单质硫(S)、硫酸钙(CaSO4)、(Na2S)、磁黄铁矿(FeS)、硫酸钠(Na2SO4)五种含硫增加剂可以强化红土镍矿复原焙烧-别离作用,其间硫酸钠(Na2SO4)作用最为明显。王志坚等人增加硫酸钠的硫酸化焙烧,得到了相同的抱负作用。胡宝磊等人选用硫酸铵焙烧-水浸工艺,镍浸出率为82.99%,钴浸出率为84.56%。彭俊等人针对现行镍钼矿处理工艺存在的钼镍需求别离提取的缺点,提出镍钼矿加钙氧化焙烧-低温硫酸化焙烧-水浸提取镍钼的新工艺。经过对贵州遵义镍钼矿的研讨实验,在最佳工艺条件下,钼的浸出率为97.33%,镍的浸出率为93.16%。李光芒等人发现配加钠盐焙烧可改善红土镍矿的复原-磁选作用,明显进步磁性产品的镍、铁档次及收回率。符芳铭等人运用氯化铵氯化焙烧办法处理红土镍矿完成了挑选性氯化。运用水浸时,将镍、钴和锰等有价金属浸出,而铁和镁很少浸出。为了下降焙烧本钱,阮书锋等人用烟煤作复原剂挑选性复原焙烧低档次红土镍矿可以获得较好的经济效益。 B 活化焙烧工艺和直接复原工艺 李金辉等人选用活化焙烧红土矿的处理办法,经过焙烧之后,可以在较短的时刻、较低的酸度以及较低的反响温度下到达在其他相对严苛的浸出条件下相同的镍浸出率,一起,在必定程度下按捺了铁的浸出,有利于后续的净化富集工序。 煤基直接复原工艺处理红土镍矿是红土镍矿冶炼的一个十分重要的办法,而红土镍矿的含水量很高,一般含有25%~30%(质量分数)的游离水和结晶水,使高温复原熔炼进程能耗过高,而且将导致出产进程无法顺利进行,在冶炼进程中需求对其进行枯燥处理。张建良对脱水进程机理进行了深化的研讨,发现红土镍矿在升温进程中存在4个质量丢失台阶,红土镍矿的复原进程也可分为3个阶段。此外,毛瑞等人研讨了红土镍矿直接复原出产含镍粒铁脱硫工艺。以红土镍矿为质料,配加复原剂、熔剂和增加剂MnO制成含碳球团,在高温下进行复原和熔分,制取含镍粒铁。脱硫率由51.4%增至77.6%,脱硫作用明显进步,且增加MnO对粒铁中镍、铁档次和镍、铁收回率影响较小。 2 浸出工艺的开展 关于含镍矿藏的浸出处理,依据浸出剂的挑选分为酸浸和碱浸,依据浸出办法又分为加压浸出和常压浸出。 A 酸浸 近年来,研讨者们对镍酸浸进程进行了许多的热力学和动力学分析。苏秀珠调查了微波酸浸进程的动力学,得到镍的浸出进程受表面化学反响操控,钴的浸出进程受内分散操控。王刚等人研讨了硫酸浸出蛇纹石动力学,蛇纹石的硫酸浸出属液-固多相反响进程,硫酸浸出蛇纹石矿中的镍时,硫酸浓度、浸出温度和矿石粒径对镍浸出率有明显影响,拌和速度对镍浸出率影响较小,所研讨的蛇纹石酸浸提镍进程遵从未反响缩短核模型的动力学规则,浸出进程受化学反响操控。罗伟等人对硫酸进出系统动力学进行核算得出镍和锰的活化能别离53.9kJ/mol和69.4kJ/mol。李金辉等人研讨浸出系统,经过热力学核算分析成果标明,矿藏中存在的各矿相(除Fe2O3,)常压下均能与发作反响,而且随看温度的升高反响平衡常数逐步下降。 经过对惯例酸浸工艺的改善,研讨者们获得了较好的工艺目标。在常压酸浸范畴,李建华等人针对金川表外低档次氧化镍矿提出了酸法制粒堆瓷工艺。范兴祥等人对硫酸酸浸工艺进行改善,选用稀硫酸两段逆流浸泡法从红土镍矿中浸出镍。在最佳条件下,镍浸出率在78%以上,酸耗在64t/t镍左右,作用较为抱负。罗伟等人发现,选用硫酸常压酸浸工艺处理红土矿,选用低温(90℃左右)并延伸浸出时刻有助于进步镍的浸出率。刘瑶等人选用常压硫酸()浸出工艺,很简略从腐殖土矿中溶解镍。佘宗华选用浸出-中和-沉镍工艺,处理印度尼西亚Manuran岛的腐殖土矿也是可行的。周晓文等人选用常压酸法处理定南某红土镍矿,镍的归纳收回率可到达75%以上,将氢氧化亚镍沉积参加浓硫酸蒸腾结晶,得到的结晶硫酸镍到达国家GB6392-1986二级品的要求。 R.G.McDonald对红土矿先进行磨矿和分级处理,将磨细后的矿浆与洗刷液和硫酸按必定的份额在加热的条件下反响,将矿石中的镍浸出进入溶液,再选用碳酸钙进行中和处理,往后进行液固别离。高岩研讨了常压浸出工艺提取红土镍矿中的镍钴镍、钴、锰、铁、镁的浸出率别离到达93.94%、60.5%、94%、56%、94%。符芳铭讨论了对云南沅江区域的红土镍矿进行浸出的工艺条件,镍的浸出率到达93.94%。符芳铭又用抗坏血酸作复原剂,用稀浸出红土镍矿,镍浸出率达95%。 除了处理红土镍矿,车小奎选用硫酸常压浸出硅镍矿,浸出贵液中镍的浸出率为86%左右,浸渣中含镍0.12%左右。王宝全等人对碳酸钠焙烧后的褐铁矿型红土镍矿碱浸渣选用常压硫酸浸出,镍、钴和铁的浸出率别离达99.2%、99.5%、97.8%。 B 碱浸和浸 姜波等人依据镍、铜浸出率与时刻的联系,经过拟合核算得出了浸进程的动力学方程,成果契合内分散操控模型。部分氧化镍以类质同相形状进入硅酸镁矿藏晶格中,这部分镍在-铵盐-水系统下不能浸出是镍浸出率偏低的首要原因。此外,牟文宁等人经过正交实验得到红土镍矿高浓度碱浸提硅的优化条件为浸出进程选用一次浸出两次洗刷的工艺,SiO2的提取率可达85%以上。红土镍矿经高浓度碱浸后,镍、镁、铁等元素在渣中得到了富集,其间镍含量可达2.89%。可见,选用高浓度碱浸红土镍矿提硅技能可行,为红土镍矿的高附加值归纳运用拓荒了一条新的途径。 C 加压浸出 针对加压浸出常呈现的高压釜易结垢、高酸对设备腐蚀较大等问题,研讨者们对加压浸出的工艺作了必定的改善,取得了较好的作用。高压酸浸红土镍矿的研讨,浸出温度均在250~280℃,在此温度下,压力较高,对高压釜要求较高,存在安全隐患。汪云华对传统高压酸浸(HPAL)工艺进行改善,在反响初始充入必定量的氧气,在较低温度下浸出澳大利亚干型红土镍矿。镍、钴浸出率别离为99.83%、90.44%,与250℃不充入氧气时的镍、钴浸出率大致适当。翟秀静等人研讨了红土镍矿高压酸浸进程中反响器结垢问题,发现十二烷基磺酸钠可以减小矿浆表面张力和黏度。张永禄等人选用碱性预处理办法处理红土镍矿,在混合酸介质中加压浸出,工艺具有杰出的稳定性,镍与钴浸出率别离保持在95%和80%左右。马保中选用硝酸对红土镍矿加压浸出工艺进行了中试研讨。镍、钴浸出率别离为84.50%和83.92%,而铁浸出率低至1.08%,完成了镍(钴)与铁之间的高效别离,且工艺稳定性杰出。 此外,关于镍钼矿的浸出,朱军等人在焙烧温度为500~550℃,焙烧时刻为4h的条件下,完成了钼、镍硫化物向氧化物的转化,终究镍的浸出率可达97.18%,钼的总浸出率可达92.72%。别的,张邦胜提出了一种加压酸浸-常压碱浸-萃取相结合的全湿法处理镍钼矿的新工艺。在加压酸浸时,钼的转化率可以到达98.3%以上,镍的浸出率到达98.7%。经过碱浸-萃取后钼镍归纳收回率达92%以上。 D其他浸出工艺 近年来,研讨者们经过改动浸出进程的物理条件来进步浸出作用。韩朝辉等人选用功率为40KW的高能物理场的复合能场来强化镍的浸出。 微波水热法是镍矿浸出的一种新办法。翟秀静选用微波办法浸出,镍、铁浸出率和反响系统的温度跟着微波辐射功率的进步而增加,得到镍的浸出率为99%。赵艳等人进一步研讨水热系统微波浸出工艺,微波水热浸出系统与普通水热浸出系统比较,镍、钴的浸出作用最好。 此外,张仪等人选用加温办法处理了红土镍矿极易泥化、板结,直接人堆浸出,渗透性差,镍浸出率很低的问题,薛娟琴等人在浸出系统中参加硫代硫酸盐,发现镍的浸出率跟着Na2S2O3浓度的增加而增大。跟着温度的升高,镍浸出率增大,可是当温度高于70℃后,浸出率的进步不明显。罗永吉等人经过实验,发现含镍蛇纹石矿在常压下运用硫酸拌和浸出是可行的,硫酸对镍和铁的浸出具有很好的挑选性。 3 新工艺的开展 A 离析 为了下降焙烧进程的高污染、高能耗问题,许多研讨者研讨了氯化离析提镍工艺。镍红土矿氯化离析首要是经过将其间的有价金属氯化,然后使氯化物在复原剂表面得到复原和富集。这个杂乱的化学变化进程首要是遭到复原剂用量、离析温度、离析时刻、升温准则和外界增加剂等的影响。 贺振江等人经过实验得出复原剂的用量为6%左右、氯化剂用量(以氯元素计)为8%、离析温度在1000℃、离析时刻为60min、升温进程中在600℃保温40min和增加0.1%的铁粉是最佳的氯化离析条件。肖军辉等人选用离析-磁选工艺,成果也十分抱负。陈晓鸣对元江硅酸镍矿进行了半工业实验,取得了抱负的实验目标。选用原矿粉磨增加氯化剂、复原剂团球、离析焙烧磁选的新工艺,可以得到档次10.33%、收回率87.22%的镍精矿。 B 萃取和沉积 李玲等人发现基磷酸树脂的功用团结构能较好的组成,对镍和铁的别离有明显作用,具有较好的运用远景,可以运用于离子交换法提取镍,处理收回贫杂溶液中镍的难题,该树脂很有开展远景。姜承志以Span80为表面活性剂,TBP为活动载体,Na2S为内相试剂,选用乳状液,其对镍的提取作用可达80%以上。  在沉积工艺方面,王玲等人以Na2S·9H2做沉积剂,常温常压下,对开始除铁后的红土镍矿酸溶浸出液中镍、钴等有价金属进行富集收回,镍、钴等有价金属富集收回率高,办法简略,便于操作,特别是与高浓度的镁有用别离,获得了高档次镍精矿。齐建云对某进口红土镍矿进行研讨,用硫酸在常压下浸出,操控必定条件,镍浸出率可达78.62%。

离子型稀土矿浸出工艺

2019-01-18 09:30:31

该浸出工艺采用硫铵渗浸-碳铵沉淀,能处理低品位离子型稀土矿,其特点在于克服了硫铵渗浸-草酸沉淀工艺效率低、成本高的缺点.。 它通过改善药剂制度,控制选择性浸出条件和碳铵沉淀形态,使稀土总回收率较原工艺提高5%,达到80%左右。 由于采用高浓度硫铵渗浸,低浓度硫铵淋洗的加药制度,以及采用草酸铵代替草酸液沉淀稀土,使浸出液中含铅低,不必单独净化除铅,从而获得了过滤性能好的晶形稀土沉淀,解决了碳铵沉淀工艺中存在的难题。 该工艺流程简单,操作方便,避免了草酸的毒性,而且可利用原有草酸工艺的生产设施,有利于原有工艺的技术改造,成本低,经济效益显著。 其主要技术指标为:(原矿品位0.0839%)稀土总收率76.3%,生产药剂成本2.22元/吨,稀土质量>92%。

复杂硫化钴矿加压浸出工艺研究

2019-02-19 10:03:20

我国钴资源的首要特点是贫矿多、富矿少,短少独自的钴矿床,大部分共生或伴生在铜、镍、铁矿中。现在首要从镍铜等重金属冶炼体系钴渣中提取钴,约占钴总产量的35%,其它从进口钴质料和废料中提取的钴约占总产量的65%。我国某地杂乱硫化钴矿中含有镍、铜、铁、砷等元素,钴首要以辉钴矿为主,镍以镍辉钴矿为主。选用火法工艺不能进 行有用的别离。本文选用加压湿法浸出工艺进行处理,使得钴、镍、铜进入溶液中,铁和砷构成安稳的铁进入浸出渣。 一、实验研讨 (一)实验质料 实验所用质料为我国某地杂乱硫化钴矿,原矿中硫化物首要以黄铜矿、黄铁矿、毒砂为主,其次为闪锌矿、黝铜矿、辉钴矿,少数镍辉钴矿。原矿首要成分为(%):Co2.40,Ni0.78,Cu2.10,Fe11.30,S8.45,Zn0.98,As11.99。原矿经细磨后90%以上小于0.074mm.实验所用试剂如硫酸等均为分析纯。制造溶液用水为去离子水。 (二)实验装置 加压氧化实验在GSA-2L立式衬钛加压釜中进行。氧气为98%工业纯氧气。 将原矿、水、硫酸和添加剂按必定份额混合后参加加压釜中,密闭升温,并通入少数氧气。温度升至85~95℃时翻开通气阀门排气。到达设定温度后通入氧气并将总压调整至实验值,开端计时,实验进程中严格控制反响的温度和压力。反响完毕后通入冷却水将釜体冷却至60℃后启釜,物料用旋片式真空泵过滤别离。浸出渣用水淋洗烘干。浸出液和浸出渣别离送分析。 (三)实验原理 依据原矿组成,加压浸出实验进程首要进行下列反响: CoAsS+13/4O2+3/2H2O=CoSO4+H3AsO4 CuFeS2+H2SO4+5/2O2=CuSO4十FeSO4+H2O+S 4FeSO4+O2+2H2SO4=2Fe2(SO4)3+2H2O Fe3++H3AsO4=FeAsO4+3H+ 2ZnS+2H2SO4+O2=2ZnSO4+2H2O+S 二、实验办法和成果 (一)反响温度的影响 实验条件:L/S=5/1,硫酸浓度0.82mol/L,添加剂A0.5g,总压0.85MPa,反响时刻2.0h。实验成果见图1。图1  浸出温度对金属浸出率的影响 由图1可看出,高温有利于铜、镍、钻的浸出,150℃时,铜、镍、钻的浸出率大于90%。铁的浸出率跟温度成正比。但160℃今后铁发作水解沉积。砷的浸出率随温度的升高而下降。但初始酸浓度较高,导致浸出液中砷浓度高于0.3g/L,因而下降初始硫酸浓度。 (二)浸出时刻的影响 实验条件:L/S=5/1,硫酸酸度0.82mol/L,添加剂A0.5g,反响温度60℃,总压0.85 MPa。实验成果见图2。图2  浸出时刻对金属浸出率的影响 由图2能够看出钴、镍、铜、铁浸出率随反响时刻而增大。反响1.5h后,钴、镍、铜的浸出率均达90%以上,一起砷和大部分的铁被按捺在渣中。 (三)初始硫酸浓度的影响 实验条件:L/S=5/1,添加剂A 0.5g;反响温度160℃,总压0.85MPa,反响时刻1.5h。实验成果见图3。图3  初始酸浓度对金属浸出率的影响 成果标明:硫酸有利于钴、镍、铜的浸出。开始酸度为0.51mol/L时,钴、镍、铜的浸出率均达90%以上,但浸出液中铁、砷含量较高。开始酸度为0.41mol/L时,浸液中铁、砷含量低,但钴、镍、铜的浸出率偏低。 (四)氧分压的影响 实验条件:L/S=5/1,硫酸酸度0.4 mol/L,添加剂A0.5g,反响温度150℃,反响时刻1.5h。实验成果见图4。图4  氧分压对金属浸出率的影响 成果标明:氧分压增大,钴镍铜的浸出率升高,但改变较小。一起氧分压对铁砷的浸出影’响也不大。氧分压以0.3MPa以下即可。 (五)矿浆液固比的影响 实验条件:硫酸初始酸度0.41mol/L,添加剂A0.5g,反响温度160℃,总压0.85MPa,反响时刻1.5h。实验成果见图5。图5  矿浆液固比对金属浸出率的影响 成果标明:液固比对钴镍铜的浸出影响较小,但对铁的影响较大。液固比低时,浸出液中铁含量较低。因而液固比以4/1为宜。 (六)归纳实验 实验条件:L/S=4/1,硫酸初始酸度0.61mol/ L,添加剂A0.5g,反响温度160℃,总压0.85MPa,反响时刻1.5h。实验成果标明:钴的浸出率到达93%以上,镍铜的浸出率大于90%。经过对浸出渣XRD衍射图的分析,渣中很多存在的是铁、石英以及硫酸钙。标明浸出后有价金属简直全被浸出,而铁砷进入渣相。此实验成果具有重现性。 三、定论 在低温低压下,参加添加剂,杂乱硫化钴中钴的浸出率大于92%,铜镍的浸出率大于90%,一起砷与铁构成安稳的铁进人浸出渣。

一种黄铜矿浸出工艺

2019-01-25 10:19:13

【申请号】03135210.3【申请人】昆明理工大学【公开号】CN 1462812A     【摘要】本发明涉及一种黄铜矿的浸出工艺,在低温和常压下,采用银盐作为催化剂、过硫酸铵作为氧化剂,对黄铜矿进行氧化浸出,控制温度为70-95℃,浸出5-10小时,可以得到浸出率达96%以上,铜的回收率达97%以上的硫酸铜溶液。由于不需高温、高压,所以浸出时设备防腐及压力的要求不高,对环境不造成危害,过程中使用的银盐不损耗,过硫酸铵经再生后,可循环使用,生产成本可以降低。可见,本发明是一种工艺流程简单,生产周期短,生产成本低,生产效率的浸出黄铜矿的方法。

锌焙烧矿的浸出目的与浸出工艺流程

2019-01-03 09:36:46

一、锌焙烧矿浸出的目的 湿法炼锌浸出过程,是以稀硫酸溶液(主要是锌电解过程产生的废电解液)作溶剂,将含锌原料中的有价金属溶解进入溶液的过程。其原料中除锌外,一般还含有铁、铜、镉、钴、镍、砷、锑及稀有金属等元素。在浸出过程中,除锌进入溶液外,金属杂质也不同程度地溶解而随锌一起进入溶液。这些杂质会对锌电积过程产生不良影响,因此在送电积以前必须把有害杂质尽可能除去。在浸出过程中应尽量利用水解沉淀方法将部分杂质(如铁、砷、锑等)除去,以减轻溶液净化的负担。 浸出过程的目的是将原料中的锌尽可能完全溶解进入溶液中,并在浸出终了阶段采取措施,除去部分铁、硅、砷、锑、锗等有害杂质,同时得到沉降速度快、过滤性能好、易于液固分离的浸出矿浆。 浸出使用的锌原料主要有硫化锌精矿(如在氧压浸出时)或硫化锌精矿经过焙烧产出的焙烧矿、氧化锌粉与含锌烟尘以及氧化锌矿等。其中焙烧矿是湿法炼锌浸出过程的主要原料,它是由ZnO和其他金属氧化物、脉石等组成的细颗粒物料。焙烧矿的化学成分和物相组成对浸出过程所产生溶液的质量及金属回收率均有很大影响。 二、焙烧矿浸出的工艺流程 浸出过程在整个湿法炼锌的生产过程中起着重要的作用。生产实践表明,湿法炼锌的各项技术经济指标,在很大程度上决定于浸出所选择的工艺流程和操作过程中所控制的技术条件。因此,对浸出工艺流程的选择非常重要。 为了达到上述目的,大多数湿法炼锌厂都采用连续多段浸出流程,即第一段为中性浸出,第二段为酸性或热酸浸出。通常将锌焙烧矿采用第一段中性浸出、第二段酸性浸出、酸浸渣用火法处理的工艺流程称为常规浸出流程,其典型工艺原则流程见图1。图1 湿法炼锌常规浸出流程 常规浸出流程是将锌焙烧矿与废电解液混合经湿法球磨之后,加入中性浸出槽中,控制浸出过程终点溶液的PH值为5.0~5.2。在此阶段,焙烧矿中的ZnO只有一部分溶解,甚至有的工厂中性浸出阶段锌的浸出率只有20%左右。此时有大量过剩的锌焙砂存在,以保证浸出过程迅速达到终点。这样,即使那些在酸性浸出过程中溶解了的杂质(主要是Fe、AS、Sb)也将发生中和沉淀反应,不至于进入溶液中。因此中性浸出的目的,除了使部分锌溶解外,另一个重要目的是保证锌与其他杂质很好地分离。 由于在中性浸出过程中加入了大量过剩的焙砂矿,许多锌没有溶解而进入渣中,故中性浸出的浓缩底流还必须再进行酸性浸出。酸性浸出的目的是尽量保证焙砂中的锌更完全地溶解,同时也要避免大量杂质溶解。所以终点酸度一般控制在1~5g/L。虽然经过了上述两次浸出过程,所得的浸出渣含锌仍有20%左右。这是由于锌焙砂中有部分锌以铁酸锌(ZnFe2O4)的形态存在,且即使焙砂中残硫小于或等于1%,也还有少量的锌以ZnS形态存在。这些形态的锌在上述两次浸出条件下是不溶解的,与其他不溶解的杂质一道进入渣中。这种含锌高的浸出渣不能废弃,一般用火法冶金将锌还原挥发出来与其他组分分离,然后将收集到的粗ZnO粉进一步用湿法处理。 由于常规浸出流程复杂,且生产率低,回收率低,生产成本高,随着20世纪60年代后期各种除铁方法的研制成功,锌焙烧矿热酸浸出法在20世纪70年代后得到广泛应用。现代广泛采用的热酸浸出流程见图2。图2 现代广泛采用的热酸浸出流程 热酸浸出工艺流程是在常规浸出的基础上,用高温(>90℃)高酸(浸出终点残酸一般大于30g/L)浸出代替了其中的酸性浸出,以湿法沉铁过程代替浸出渣的火法烟化处理。热酸3湿法炼锌的浸出过程35浸出的高温高酸条件,可将常规浸出流程中未被溶解进入浸出渣中的铁酸锌和ZnS等溶解,从而提高了锌的浸出率,浸出渣量也大大减少,使焙烧矿中的铅和贵金属在渣中的富集程度得到了提高,有利于这些金属下一步的回收。

富铂镍冰铜和高冰镍浸出工艺

2019-02-20 15:16:12

在富铂镍冰铜经浓浸出除镍后的浸出渣中,铜首要以硫化铜的方式存在。化法浸出硫化铜,是向含铜、镍的溶液和硫化铜浸渣的混合矿浆中通入。浸出进程中,为避免生成氯化亚铜沉积,浸出液中有必要含有如氯化镍或游离等氯化物。此刻,铜的氯化反响为: 2Cu++Cl2 2Cu2++2Cl-    (1) Cu2S+Cu2+ CuS+2Cu+    (2) CuS+Cu2+ 2Cu2++S      (3) S+2e S2-                (4) Cu2++S2- CuS           (5) 铜的彻底浸出取决于反响式(3)。反响式(4)和(5)只表明铜是呈硫化物沉积仍是经过调整浸出进程的氧化复原电位(用铂与饱满甘电极刺进溶液中测定)使铜进入溶液?即在高的氧化复原电位下,反响按(3)式进行;而在低的氧化复原电位和特定的温度、酸度、铜浓度条件下,会加快反响式(4)和(5)的进行,而生成很多的硫离子和硫化物。当其间的硫化铜浓度超越它的溶度积时,则会生成硫化铜沉积,这时的铜就不能彻底被浸出。 为使铜尽或许彻底浸出一切必要的最低氧化复原电位,首要取决于溶液中的铜浓度、酸度和温度。但在实践中,浸出作业的电位规模(图1)在0.35~0.45V之间。在此电位规模内铜的氧化浸出率最高,且贵金属基本不溶解。这或许因贵金属在此电位区间不发生溶解,或或许与铜的反响相同,溶解后再接式(6)、(7)反响再次生成沉积: S+2e S2-       (6) P3++S2- PS     (7)图1  不同电位的溶解率 浸出进程中,一切游离硒,都会与贵金属离子反响〔或许像式(6)和(7)那样〕生成不溶性的硒化物沉积。 为了进步铜的浸出率和尽或许不让贵金属进入溶液,能够预先从图1的曲线中选用适宜的氧化复原电位。但应该指出,图中铜和贵金属的溶解曲线会受溶液中的铜浓度、酸度和温度改变的影响。当在高酸、低铜浓度的溶液及高温的操作条件下,曲线会略微移向左边;而在低酸度和高铜浓度以及低温的操作条件下,曲线会略微移向右侧。 水溶化法浸出富铂镍冰铜的工艺,也适用于处理该厂本来的含有贵金属、硫和硒的转炉高冰镍。当在所挑选的氧化复原电位下浸出由上述组成的高冰镍浸出渣时,浸出渣经浸出除硫后,精矿中贵金属的含量比高冰镍进步100倍。故此法能够统筹处理富铂镍冰铜和高冰镍以收回贵金属精矿。这样就能够削减工厂向鹰桥总厂运送中间产品高冰镍,并充分利用挪威厂的镍精粹才能。

富铂镍冰铜液中氯化浸出工艺研究

2019-02-20 15:16:12

挪威镍精粹厂,经改善后用于处理南非富铂镍冰铜(和转炉高冰镍)的工艺流程和产品状况如下。 一、浓浸出镍。 镍冰铜经磨细后,于橡胶面料的拌和浸出槽中浸出。镍以氯化镍方式进入溶液,硫化铜和贵金属留在浸出渣中。氯化镍液经萃取净化除掉杂质后,制成结晶氯化镍,并于欢腾反应器中转化为粒状氧化镍,再于回转窑顶用复原产出纯度98%的产品金属镍。 二、除镍浸出渣的脱铜。 浸出镍后的渣首要含硫化铜。将其于氯化镍或液中通氯化,硫和贵金属留于浸出渣中。浸出除铜亦用橡胶面料的拌和浸出槽。浸出槽装有两套各自独立的铂-饱满甘电极,所测定的数据送电子计算机处理。一套电极用于丈量浸出进程的氧化复原电位,以操控的供入最;另一套用于宣布预调的氧化复原电位规模过高或过低时的报警信号,并随时能够读出高于或低于预调电位的数值,以确保在所选定的氧化复原电位规模内操作。选用这样的设备,首要是为了确保供入的不会过量,避免因氧化复原电位的升高而导致贵金属的溶解,或因电位过低而使铜的溶解不完全。除铜停止后,经丙二醇酯板框压滤机压滤,产出含硫的贵金属精矿。向过滤出的液中通入使铜生成硫化铜沉积,送铜体系处理。 三、除铜精矿的脱硫。 压滤的滤饼,经由装有称量传感器的供料槽,接连供入由夹套直接加热的玻璃面料拌和槽中,参加热溶免除硫,溶解硫后的矿浆,由不锈钢离心泵接连泵至蒸汽外套加热的密封压滤机压滤出贵金属精矿。滤液分出硫结晶后,经离心机脱水收回硫。液经再生回来下次脱硫用。 四、贵金属精矿的富集。 脱硫后的精矿于小型焙烧炉内进行硫酸盐化焙烧。焙烧是将精矿置于炉内的钢盘中,调理空气入炉速度以操控焙烧速度。为了避免空气入炉速度过快而引起焙烧尘粒的丢失,焙烧速度不宜过快。炉温操控在约500℃。焙砂经稀硫酸浸出除掉重金属硫酸盐,过滤、洗刷、烘干,于“V”型旋转混料器(容量1000kg)中混匀排出,称重和主动取样送化验。实践中所产出的终究贵金属精矿档次,在很大程度上取决于镍冰铜质料的贵金属含量和不溶组分。在不溶组分中,以硅的含量影响最大。在通常状况下,处理含0.07%~0.08%铅的镍冰铜质料时,产出的贵金属精矿含15%~30%铂和相当量的其他贵金属。 因为出产进程系接连作业,所以要精确测定一批质料和精矿的分量与档次是很困难的。表1和表2所列为实验室分批处理富铂镍冰铜所得的分析数据,这些数据不包括出产进程中运送和烟尘等的丢失。从表中能够看出,在此处理进程中,各种贵金属在精矿中均富集到330倍以上,收回率均大于92%。终究精矿的产出率小于1%。 表1  镍冰铜和精矿的档次及贵金属富集率分类组分及富集倍数AuPtPdRhRuIr镍冰铜∕%0.00690.07320.03290.00330.00740.0013精矿∕%2.4326.5511.771.202.640.43富集率∕倍352362357363357330 表2  质料和产品的金属平衡分类质量∕g组分及富集倍数AuPtPdRhRuIr镍冰铜∕%900062165882961297666117精矿∕%25.0160866402944300660108收回率∕%0.2897.90>10099.42>10099.9992.30

玉龙铜矿氧化矿石合理浸出工艺研究

2019-01-07 07:51:19

随着铜矿资源的不断开采,易选矿石逐年减少,资源短缺加剧,低品位氧化铜矿的开发已引起高度重视。低品位氧化铜矿一般都具有氧化率高、含泥量大、矿物嵌布粒度细、多金属共生等特点,用常规选冶技术难以取得好的技术经济指标。国内外有关科研人员对氧化铜矿的处理进行了大量的研究,其中堆浸-萃取-电积工艺是应用较多的一种技术。影响氧化铜矿堆浸效果的因素有很多,如矿石性质、矿石粒度、堆矿高度、矿堆的透气性能和渗透性能、喷淋作业制度及浸出周期等。浸出的实质是溶浸液与目的矿物接触并发生化学反应,生成可溶性的目的金属离子,其过程包括内扩散、外扩散和界面化学反应等,其中内外扩散都与矿堆的渗透性能有关。对于含泥量大的氧化铜矿石,堆浸工艺尚不成熟,而矿堆的渗透性能是影响浸出效率的一个决定性因素。为改善高含泥量氧化铜矿石的渗透性能,研究人员提出了一些措施,如制粒技术等,但从现场制粒实践来看,常因配料不当、水分失控、制粒机结构及操作制度欠合理而出现成球率低、团粒强度不够等问题,使得泥质在浸出过程中又被淋洗松散而发生迁移,阻塞矿堆内部通道,造成矿堆渗透性能降低,浸出效率受到影响。 西藏玉龙铜矿是我国超大型铜矿床之一,铜储量6 500 kt,其中上部氧化铜矿带铜储量274 kt,下部硫化铜矿带铜储量3 800 kt。由于上部氧化矿特殊的矿石性质(氧化程度高,含泥含水量大,泥质为粘土矿物)和矿山恶劣的周边环境(高寒、高海拔、缺氧、多雨雪),再加上矿区交通不便,配套基础设施缺乏,使得该矿一直未能得到大规模的开发利用。玉龙铜矿的开发不仅可促进西藏地区的经济发展,而且对整个西部高海拔、高寒地区铜资源的开发有重要的借鉴意义。由于玉龙铜矿矿体的赋存标高为4 570~5 118 m,与智利的Quebrada Blanca铜矿相近,因此可采用与Quebrada Blanca铜矿相似的堆浸-萃取-电积工艺来处理氧化铜矿,但是在首期的工业生产中发现也存在着矿堆渗透性能差,浸出效率低的问题。本研究针对玉龙铜矿氧化矿石进行模拟现场堆浸过程的全粒级柱浸试验和洗矿-矿砂柱浸-矿泥搅拌浸出试验,目的是寻求该矿石的合理浸出工艺。 一、矿样 试验矿样采自西藏玉龙铜矿Ⅱ号矿体3#线和5#线。工艺矿物学研究结果表明:矿石中主要的铜矿物为孔雀石、蓝铜矿等,主要的含铁矿物为褐铁矿和赤铁矿;脉石矿物以石英、碳酸盐、金云母-绢云母、绿泥石、高岭石等为主。矿样的扫描电镜照片见图1。对矿样进行化学多元素分析、铜物相分析及粒度筛析,结果见表1~表3。图1  矿样的矿物学分析照片 表1  矿样化学多元素分析结果    %注:Ag和Au的含量单位为g/t。 表2  矿样铜物相分析结果    %表3  矿样粒度筛析结果从表2可知,矿石的氧化程度很高。从表3可知,矿石中-0.074mm粒级占21.66%,按-1mm计的粉矿比例达38.12%,而按+20 mm计的块矿比例仅25.84%,说明矿石粉化较严重。 二、试验方法 进行全粒级柱浸和洗矿-矿砂柱浸-矿泥搅拌浸出两种试验。柱浸采用高1.5 m,内径0.25 m的有机玻璃柱,搅拌浸出采用体积为5L的不锈钢搅拌罐,洗矿采用φ500mm×4500mm螺旋分级机,溶浸液采用酸度为10 g/L的稀硫酸溶液(用98%的分析纯浓硫酸配成)。 (一)全粒级柱浸。将破碎到一定粒度的矿石混合均匀后装柱,装柱时尽量使矿柱中粒度分布均匀,避免产生偏析现象,装矿高度1m。装矿完毕后用溶浸液按一定滴淋强度进行滴淋,浸出液返回到滴淋池中,形成闭路循环。浸出过程中定时测定浸出液的pH和铜离子浓度。 (二)洗矿-矿砂柱浸-矿泥搅拌浸出。将破碎到一定粒度的矿石用螺旋分级机按不同强度洗矿,得到不同产率的矿泥和矿砂。对矿砂按照与(1)相同的方法进行柱浸,浸出时间为70 d;对矿泥在转速为500 r/min,矿泥量为2 kg,液固比为4∶1的条件下进行搅拌浸出,浸出时间为3h。 三、试验结果与讨论 (一)全粒级柱浸试验 1、不同粒度矿石的全粒级柱浸试验 将矿石分别破碎到- 50,- 30和-10 mm,在10L/(h·m2)的滴淋强度下进行全粒级柱浸,矿柱浸润面的下降情况如图2所示。图2  不同粒度原矿全粒级柱浸浸润面下降曲线 ○-50mm原矿;□-30mm原矿;▲-10mm原矿 由图2可见,全粒级柱浸时,矿柱的浸润速度较慢,其中-50 mm原矿和-30 mm原矿经过24 h才被完全浸润,而-10 mm原矿被完全浸润所需时间更是高达46 h。这说明由于矿样中的细粒级粉矿含量较多,孔隙液膜相对较厚,流动阻力大,因而影响了矿样整体的渗透性能。 自浸出液流出后,定时取样分析其中的酸浓度和铜含量,结果表明,在整个试验期间(46 h)内,各浸出液中基本无酸,也检测不到铜离子存在,这意味着全粒级柱浸难以使铜顺利浸出。分析认为,出现这种情况的原因在于:矿石中粉矿多、泥量大、碱性脉石多,在滴淋过程中,溶浸液中的酸被碱性脉石和氧化铜矿物迅速消耗;溶液中的铜离子在随溶浸液向下渗流的过程中,由于溶液中的酸被进一步消耗,pH值升高,使铜离子沉淀析出,存留在矿柱的中下部,不能进入浸出液中。 2、不同滴淋强度下的全粒级柱浸试验 滴淋强度直接影响到浸出周期、溶浸液渗透速度、柱内热平衡等,是决定铜浸出效果的关键因素之一。改变滴淋强度,对破碎到-30mm的矿样进行全粒级柱浸,其浸润速度和积液情况见表4。 表4  滴淋强度对浸润速度和积液情况的影响由表4可知:在不同的滴淋强度下,浸润速度不同,随着滴淋强度的提高,浸润速度也升高。滴淋强度控制在10L/(h·m2)和12L/(h·m2)时,无积液现象出现;当滴淋强度提高到15 L/(h·m2)时,滴淋192 h后出现积液。高含泥量氧化矿浸出过程中,粉矿水分达到饱和后,溶液的扩散速率明显降低,滴淋强度过高必然造成积液现象。一旦出现积液现象,矿石极容易发生板结且很难处理,所以在堆浸过程中一定要严格控制滴淋强度,避免积液现象出现。 (二)洗矿-矿砂柱浸-矿泥搅拌浸出试验 为了改善矿石的渗透性能,将矿石洗矿脱泥后再进行柱浸,洗出的矿泥则进行搅拌浸出。 1、洗矿结果 对破碎到-30mm的矿石进行不同强度的洗矿,结果见表5。 表5  洗矿结果    %2、矿砂柱浸试验 按15L/(h·m2)的滴淋强度对3种洗矿强度下获得的矿砂进行柱浸试验,结果见图3,图4。图3  矿砂柱浸浸润面下降曲线 □-1#矿砂;-2#矿砂;△-3#矿砂图4  矿砂柱浸铜浸出率变化曲线 □-1#矿砂;○-2#矿砂;△-3#矿砂 试验结果和试验现象表明,通过洗矿脱泥,明显改善了矿石柱浸时的渗透性能,在滴淋强度为15L/(h·m2)的条件下,3种矿砂均未出现堵塞、积液现象,而且洗矿强度越高,矿砂柱浸时的矿柱结构越稳定,渗透性能越好,高洗矿强度下矿砂的浸润速度可达100mm/h,高、中、低洗矿强度下矿砂柱浸70d的铜浸出率分别为81.2%,79.4%和78.5%,浸出效果良好。 3、矿泥搅拌浸出试验 按照试验方法对3种洗矿强度下脱出的矿泥进行搅拌浸出试验,试验结果如表6所示。 表6  矿泥搅拌浸出试验结果由表6可见,洗出的矿泥在转速为500r/min,液固比为4∶1的条件下搅拌浸出3h,铜浸出率可达到96%以上,表明矿泥的搅拌浸出性能优良。 综合图4和表6试验结果,-30mm矿石在高、中、低洗矿强度下矿砂柱浸+矿泥搅拌浸出的总浸出率依次为83.84%,81.51%和80.00%。 四、结论 (一)玉龙铜矿氧化带矿石氧化程度高,主要的铜矿物为孔雀石、蓝铜矿等,呈相互共伴生状态,裸露程度高,在酸性条件下易溶解。 (二)该矿石粉矿比例大,含水量高,全粒级柱浸时渗透性能差,提高滴林强度易出现积液现象,难以顺利浸出。 (三)通过洗矿脱泥,可改善矿石的渗透性能,提高浸出效率。实验室条件下,脱泥后矿石柱浸铜浸出率可达78%以上,而脱出的矿泥经搅拌浸出,铜浸出率可达96%以上。因此,洗矿-矿砂堆浸-矿泥搅拌浸出是处理玉龙铜矿氧化矿石的合理工艺。

富铂镍冰铜的直接氯化浸出工艺研究

2019-02-20 11:03:19

鹰桥(Falconbridge)镍公司挪威精粹厂原处理含贵金属总量0.002%的转炉高冰镍,是先将高冰镍磨细,再用浓挑选性浸出镍,使硫化铜和贵金属留于浸出渣中。浸出渣经溶剂萃取除上杂质后产出结晶氯化镍,再于欢腾反响器内转化为粒状氧化镍,继而在回转窑顶用复原,产出含98%镍的产品镍。浸出渣经焙烧除硫后,用废的铜电解液浸出铜。再从除铜浸出渣中收回贵金属。 当该工厂用此法处理来自南非的富含铂族金属(1~2kg∕t)的镍冰铜时,发现在焙烧、浸出工序中贵金属丢失较大,严重影响经济效益。故将浓浸出镍后的浸出渣改用水溶化法浸出除锅,产出不到镍冰铜分量1%的贵金属精矿。 一、富铂镍冰铜和高冰镍的化法浸出 在富铂镍冰铜经浓浸出除镍后的浸出渣中,铜首要以硫化铜的方式存在。化法浸出硫化铜,是向含铜。镍的溶液和硫化铜浸渣的混合矿浆中通入。浸出进程中,为避免生成氯化亚铜沉积,浸出液中有必要含有如氯化镍或游离等氯化物。此刻,铜的氯化反响为: 2Cu++Cl2 2Cu2++2Cl-    (1) Cu2S+Cu2+ CuS+2Cu+    (2) CuS+Cu2+ 2Cu2++S      (3) S+2e S2-                (4) Cu2++S2- CuS           (5) 铜的彻底浸出取决于反响式(3)。反响式(4)和(5)只表明铜是呈硫化物沉积仍是经过调整浸出进程的氧化复原电位(用铂与饱满甘电极刺进溶液中测定)使铜进入溶液?即在高的氧化复原电位下,反响按(3)式进行;而在低的氧化复原电位和特定的温度、酸度、铜浓度条件下,会加快反响式(4)和(5)的进行,而生成很多的硫离子和硫化物。当其间的硫化铜浓度超越它的溶度积时,则会生成硫化铜沉积,这时的铜就不能彻底被浸出。 为使铜尽或许彻底浸出一切必要的最低氧化复原电位,首要取决于溶液中的铜浓度、酸度和温度。但在实践中,浸出作业的电位规模(图1)在0.35~0.45V之间。在此电位规模内铜的氧化浸出率最高,且贵金属基本不溶解。这或许因贵金属在此电位区间不发生溶解,或或许与铜的反响相同,溶解后再接式(6)、(7)反响再次生成沉积: S+2e S2-       (6) P3++S2- PS     (7)图1  不同电位的溶解率 浸出进程中,一切游离硒,都会与贵金属离子反响〔或许像式(6)和(7)那样〕生成不溶性的硒化物沉积。 为了进步铜的浸出率和尽或许不让贵金属进入溶液,能够预先从图1的曲线中选用适宜的氧化复原电位。但应该指出,图中铜和贵金属的溶解曲线会受溶液中的铜浓度、酸度和温度改变的影响。当在高酸、低铜浓度的溶液及高温的操作条件下,曲线会略微移向左边;而在低酸度和高铜浓度以及低温的操作条件下,曲线会略微移向右侧。 水溶化法浸出富铂镍冰铜的工艺,也适用于处理该厂本来的含有贵金属、硫和硒的转炉高冰镍。当在所挑选的氧化复原电位下浸出由上述组成的高冰镍浸出渣时,浸出渣经浸出除硫后,精矿中贵金属的含量比高冰镍进步100倍。故此法能够统筹处理富铂镍冰铜和高冰镍以收回贵金属精矿。这样就能够削减工厂向鹰桥总厂运送中间产品高冰镍,并充分利用挪威厂的镍精粹才能。 二、富铂镍冰铜化浸出的工艺流程 挪威镍精粹厂,经改善后用于处理南非富铂镍冰铜(和转炉高冰镍)的工艺流程和产品状况如下。 (一)浓浸出镍。镍冰铜经磨细后,于橡胶面料的拌和浸出槽中浸出。镍以氯化镍方式进入溶液,硫化铜和贵金属留在浸出渣中。氯化镍液经萃取净化除掉杂质后,制成结晶氯化镍,并于欢腾反响器中转化为粒状氧化镍,再于回转窑顶用复原产出纯度98%的产品金属镍。 (二)除镍浸出渣的脱铜。浸出镍后的渣首要含硫化铜。将其于氯化镍或液中通氯化,硫和贵金属留于浸出渣中。浸出除铜亦用橡胶面料的拌和浸出槽。浸出槽装有两套各自独立的铂-饱满甘电极,所测定的数据送电子计算机处理。一套电极用于丈量浸出进程的氧化复原电位,以操控的供入最;另一套用于宣布预调的氧化复原电位规模过高或过低时的报警信号,并随时能够读出高于或低于预调电位的数值,以确保在所选定的氧化复原电位规模内操作。选用这样的设备,首要是为了确保供入的不会过量,避免因氧化复原电位的升高而导致贵金属的溶解,或因电位过低而使铜的溶解不彻底。除铜停止后,经丙二醇酯板框压滤机压滤,产出含硫的贵金属精矿。向过滤出的液中通入使铜生成硫化铜沉积,送铜体系处理。 (三)除铜精矿的脱硫。压滤的滤饼,经由装有称量传感器的供料槽,接连供入由夹套直接加热的玻璃面料拌和槽中,参加热溶免除硫,溶解硫后的矿浆,由不锈钢离心泵接连泵至蒸汽外套加热的密封压滤机压滤出贵金属精矿。滤液分出硫结晶后,经离心机脱水收回硫。液经再生回来下次脱硫用。 (四)贵金属精矿的富集。脱硫后的精矿于小型焙烧炉内进行硫酸盐化焙烧。焙烧是将精矿置于炉内的钢盘中,调理空气入炉速度以操控焙烧速度。为了避免空气入炉速度过快而引起焙烧尘粒的丢失,焙烧速度不宜过快。炉温操控在约500℃。焙砂经稀硫酸浸出除掉重金属硫酸盐,过滤、洗刷、烘干,于“V”型旋转混料器(容量1000kg)中混匀排出,称重和主动取样送化验。实践中所产出的终究贵金属精矿档次,在很大程度上取决于镍冰铜质料的贵金属含量和不溶组分。在不溶组分中,以硅的含量影响最大。在通常状况下,处理含0.07%~0.08%铅的镍冰铜质料时,产出的贵金属精矿含15%~30%铂和相当量的其他贵金属。 因为出产进程系接连作业,所以要精确测定一批质料和精矿的分量与档次是很困难的。表1和表2所列为实验室分批处理富铂镍冰铜所得的分析数据,这些数据不包括出产进程中运送和烟尘等的丢失。从表中能够看出,在此处理进程中,各种贵金属在精矿中均富集到330倍以上,收回率均大于92%。终究精矿的产出率小于1%。 表1  镍冰铜和精矿的档次及贵金属富集率分类组分及富集倍数AuPtPdRhRuIr镍冰铜∕%0.00690.07320.03290.00330.00740.0013精矿∕%2.4326.5511.771.202.640.43富集率∕倍352362357363357330 表2  质料和产品的金属平衡分类质量∕g组分及富集倍数AuPtPdRhRuIr镍冰铜∕%900062165882961297666117精矿∕%25.0160866402944300660108收回率∕%0.2897.90>10099.42>10099.9992.30

铝挤出工艺

2017-06-06 17:50:10

关于铝挤出工艺  铝挤出是一种采用迫使材料从一个高压出口通过而生产和制造具有相同横截面的工件的工艺。一般要有一个铝挤出模具来规范 金属 材料,并把它挤压到一个想要的形状。许多 金属 材料都可以用挤出工艺来加工,而挤出工艺中,使用最广泛的就是 金属 铝,因为铝的一些特定的属性,铝挤出或铝挤压产品占所有挤出工艺的 金属 总量的一半。  建筑 行业 是使用铝挤出产品最多的 行业 之一。门窗的框,屋顶,和外层,商店卷帘门等等都是使用铝挤出产品的例子。当然汽车制造,火车车厢,和海运业业大量地使用铝挤出产品。  铝挤出工艺实际上增强了铝的特性,它为生产和制造比其他零件强度更高,耐用程度更好的零件提供了便利,设计师们可用它来设计各种尺寸的东西,同时还能灵活变动和增加设计。  铝锭在炉子中加温到750度或900华氏度,这个温度是铝的可锻点,铝在这个温度下呈软体,可以通过压力使它通过一个模具,这个过程称为挤出,挤出后,通过冷却装置,成型。冷却过程可使用吹风,喷水,或浸水的办法。铝挤出工艺的优点:  高强度/重量比,铝是最合适使用铝挤出工艺的 金属 ,因为它很轻,其他 金属 如铜,黄铜,钢材等最起码要重三倍,所以铝制零件可以是产品更轻量化。耐腐蚀性,自然界中,铝会被一层氧化物覆盖,使得铝制品比较耐腐蚀。铝挤出工艺本身也会使得耐腐蚀性更好。费效比好,铝挤出工艺比较省钱。  灵活性好,铝本身比较容易加工,而铝挤出模具的费用也不高,安装和维护也很容易。  高温特性好,在高温下,铝 金属 不释放挥发气体,对工人和操作人员很安全。  导热和导电性能好。铝制品经常被用来做热交换器。  生产周期短。  更多有关铝挤出工艺请详见于上海 有色 网