您所在的位置: 上海有色 > 有色金属产品库 > 锌焙砂冷却

锌焙砂冷却

抱歉!您想要的信息未找到。

锌焙砂冷却百科

更多

锌焙砂在稀酸中的溶解

2019-02-21 15:27:24

氧化物的酸、碱浸出许多遵守缩短中心模型,一个典型的实例是锌焙砂在稀酸中的溶解。它依据每种参加溶解进程的化学物质的离子扩散系数及离子搬迁率,使用方程式(1)和式(2)进行核算。核算假定溶解速率由传质操控,因此所用的核算进程只能用于不触及化学反响的状况。    (1)    (2) 求解方程(1)和式(2)需求几个边界条件,它们规则了模型中各参数的值,并将各物质的通量经过浸出反响的计量联系相关起来。 关于硫酸浸出体系,核算所用的数据包含H+,HSO4-,SO42-及Zn2+的离子扩散系数和离子搬迁率,下列平衡的平衡常数与活度系数稀酸浸出氧化锌的数学模型核算中所用的传质数据列于下表。物质等效离子电导 Λi0∕(Ω-1·cm2·equ-1)离子扩散系数 D∕(cm2·s-1)离子搬迁率 u∕(cm2·V-1·s-1)H+348.99.3×10-53.6×10-3Zn2+53.87.2×10-65.6×10-4SO42-79.01.0×10-5-8.2×10-4HSO4-100.002.7×10-5-1.6×10-3 几个边界条件为 在固液界面即r=rt时,                  Ci=Cis          (3) 因为浸出进程最慢的过程是经过边界层的传质,能够假定在界面上到达化学平衡,然后得到下列边界条件     (4)     (5)     (6) 式中, 、 、 别离表明反响(a)、(b)(c)的平衡常数;Qa、Qb、Qc别离为用浓度表明时反响(a)、(b)、(c)的平衡常数;γi是物质i的活度系数。 在溶液体相即r=∞,                E=0    (7) Ci=Cib   (8) 体相浓度用质量平衡和体相的化学平衡求算    (9)    (10)    (11)    (12)    (13) 式中,[H2SO4]与[ZnSO4]是t时刻硫酸和硫酸锌的净浓度。 计量联系            (14) 硫酸根通量                        (15) 数学模型由对每种物质组成的写出的方程式(2),方程式(1)和上面导出的边界条件组成。一旦知道了各物质的通量,就可核算ZnO的溶解速率。 假如半径rt的球形粒子含有Nmol的ZnO,则    (16) 式中,Mw为ZnO的分子量。 因为稳态下边界层内没有物质堆集,一切溶解的锌都必须传递到溶液体相中去。因此,反响速率能够与锌和酸经过边界层传质的速率相关如下    (17) 式中JZn-流离表面的锌的净通量;     JH-流向表面的酸的净通量。 由式(16)和式(17)得出    (18) 方程式(18)用有穷区间法数值积分得到rt对时刻的函数。关于单尺度粒子,rt与反响分数α的联系为    (19) 即为式(20)的缩短粒子模型,r0为固体粒子的初始半径。    (20) 粒子尺度散布的景象可作相似处理,m个初始半径r0k的单尺度分数每个组成总质量的分数wk。浸出的程度分粒级核算    (21) 总的浸出率由下式断定    (22) 为了查验模型及核算的正确性,需求研讨硫化锌精矿的焙砂在硫酸、高氯酸、硝酸和等4种酸中溶解的速率。选定的拌和条件使一切的固体粒子都悬浮且溶解速率与拌和速率无关。在高氯酸及硝酸溶液中试验曲线与模型核算得到的猜测曲线符合杰出,而在硫酸溶液中在浸出率80%曾经符合尚可,这以后的溶解曲线符合不抱负的原因是因为固体粒子的溶解并非如假定的那样均匀并始终保持球形,实际上发现部分浸出的焙砂粒子有大而深的孔。简化的模型没有考虑锌的氯合物的构成合氯离子的吸附,因此不能用来猜测浸出焙砂的溶解速率。而用新近树立的未考虑电搬迁对传质的奉献的模型即便关于0.1mol∕L高氯酸浸出的动力学也严峻违背,反映了电搬迁在传质中不行忽视的效果。

铝合金淬火炉的淬火冷却时间

2019-01-14 11:15:20

铝合金淬火炉的功能和原理的介绍一定有很多人在介绍,其实作为一种锅炉介绍这些就可以了,能了解如何使用就可以,可是铝合金淬火炉有一些特殊,我想这和应用方面是息息相关的,因为主要是用于铝合金制品,那么物品的形状大小对于如何使用铝合金淬火炉都有影响,在其淬火工艺上我们说了很多,今天说说冷却速度。    淬火时的冷却速度是指必须确保饱和固溶体被固定下来而不分解,防止强化相析出,降低淬火时效的力学性能。因此淬火时的冷却速度越快越好。但是冷却速度越大,淬火制品的残余应力和残余变形也越大,因此冷却速度要根据不同的合金和不同形状、尺寸的制品来确定。一般合金的淬火对冷却速度敏感性强的,选择的冷却速度要大。其实说到这很明显大家能看出来铝合金淬火炉相比网带炉要复杂的很多,这和他们的使用范围有关系的。    对于形状、尺寸大小不同的制品应采用不同的冷却速度,通常主要靠调整淬火介质的温度来实现。对于形状简单、中小型、棒材可用室温水淬火,对于形复杂、壁厚差别较大的型材,可用中等温度的水淬火。而对于特别易产生变形的制品,甚至可以将水温升至较高温度进行淬火。随着水温升高使其淬火制品的力学性能和抗蚀性能有所降低。关于铝合金淬火炉的淬火工艺还有很多知识呢。

铝型材冷却弯曲的阶段及原因分析

2018-12-25 17:03:42

随着铝型材在建筑、电子、汽车和轨道交通等方面的应用日渐增加,铝型材的形状也日趋多样化和复杂化。研究发现,在目前的冷却方式和条件下,型材正常出料后在冷床上冷却,数分钟后就会出现型材向空心部位或壁厚较厚的部位弯曲的现象,这种冷却后产生弯曲的过程,可分为以下几个阶段:   1、型材薄壁部分温度下降快,先产生收缩力,厚壁部分或空心管部分温度下降慢,几乎没有收缩力;   2、薄壁部分截面积较小,产生的收缩力较小,或被牵引机牵引力消除;   3、型材离开牵引机,温度继续下降;   4、型材厚壁部分或空心管部分截面积较大,随着温度下降逐渐产生较大收缩力,薄壁部分温度已大幅下降,不再产生收缩力或收缩力较小;   5、型材截面上受到的收缩力大小不均,型材沿挤压方向往厚壁部分或空心管部分弯曲。   试验结果表面,局部冷却的方式能够有效调节型材出料后的冷却平衡。其主要原因如下:   1、普通风冷条件下,型材各部位与空气接触的换热系数均相等,但由于壁厚或形状不同,各部位的散热速度不相等,所以,厚壁部或空心管的散热速度比薄壁部慢;   2、采用局部高压气雾冷却时,由于同时存在空气和水两种换热介质,且水的换热系数比空气大,所以能提高散热速度;   3、高压空气将水雾化,增加了水和型材接触的表面积,同时破坏了水和高温型材接触时产生的蒸气膜,提高了换热效率;   4、高压气雾喷嘴具有较强的方向性,气雾的夹角约为25°~30°,能够实现局部冷却而不影响型材其它部位。

铜合金挤压润滑和冷却技术

2019-05-29 18:30:55

铜合金揉捏光滑和冷却技能       铜合金揉捏时一次变形盆很大,金属健坯与揉捏工其触摸面上的单位正压力极高.在此条件下.变形金脚的表面更新效果加重,从而使金属枯结东西的现象严该,铜合金揉捏时光滑剂的效果是尽可能地使表面干冲突转变为鸿沟冲突。在揉捏过程中,为了进步揉捏制品的表面质量,改进和延伸揉捏东西的运用寿命以及下降揉捏力削减能址耗费,应对揉捏东西进行光滑口揉捏时运用光滑剂的效果是:尽可能地改进金属与揉捏简、揉捏摸、穿孔针等揉捏东西的冲突条件,削减表面千冲突,这不仅能够进步揉捏制品的质盆和东西的运用寿命,并且因为下降了揉捏东西对金属的冷却效果,使金属的活动不均匀性削减。铜合金外摩接对全属压力制作的影响   当受压力效果的两个相互触摸的物体,其触摸表面发作相对运动,或有相对运动走势时.它们之间就发生一种阻止相对运动的效果力,这种现象称为外尽擦.这种阻力叫做库擦力。    铜合金外冲突对金属压力制作的影响主要有以下几个方面:    (1)添加了战胜卑攘力的附加变形功.使作业应力添加,能盆耗费进步。    (2)引起应力与变形的不均匀散布.下降产质量盆。   (3)因为率擦生热.使东西表面祖度升高.下降了东西的强度,一起便东西磨损,形响东西运用寿命及制品表面质盆和尺度精度。

铝型材阳极氧化冰机冷却塔降温效果

2019-01-14 11:16:06

在铝型材卧式阳极氧化生产过程中,通过现场考察,实际生产,研究了铝型材氧化工艺温度控制的问题,针对铝型材氧化工艺中冰机夏天制冷效果较差的情况进行分析探讨,并理论设计一套改进制冷效果的方案。    铝及铝合金由于具有密度小、电导热能力强、成型加工性好等优异的综合性能,在交通、能源、食品、电子等领域都有广泛的应用,已经成为现代工业中使用量仅次于钢铁的第二大金属材料[1]。    本文通过在广东佛山某铝材企业对铝型材进行立式阳极氧化生产过程中,研究了铝型材立式氧化工艺中进行阳极氧化生产过程中各工序对温度控制工艺流程进行研究。通过对冰机冷却塔的改进,降低冷却水温度,提高冰机制冷效率,降低冰水温度,从而达到有效控制阳极氧化各工序中低于常温槽液要求的水温效果。    对于阳极氧化过程中槽液要求室温的工序,例如:脱脂、中和,常温封孔等工序,对温度没有太多控制难点,不是本文研究重点故不做详细分析。    对于阳极氧化过程中槽液要求高于室温的工序,例如:酸腐蚀、碱腐蚀、汤洗、中温封孔、干燥等工序。其中酸腐蚀、碱腐蚀因为化学反应会使槽液升温,基本上也采用冰机降温,因为需控制的温度高于常温,所以温度控制上没有太大难度。而汤洗、中温封孔等槽液温度控制基本上采用锅炉加温蒸汽,通过管道给槽液加温来控制槽液温度,因为是升温控制难度也不大,本文不做详细分析。干燥工序采用燃气燃烧升温,不在本文研究范围这里不做详细说明。    对于氧化、着色、电泳等工序,对温度有严格工艺控制要求,并且由于南方夏天天气温度影响,外部环境温度远高于要求的控制温度,故采用冰机制冷的方式对槽液温度进行控制。因为控制要求高,且需控制的温度远低于外部环境,所以对冰机制冷效果要求较严,一旦冰机制冷效果达不到需要的温度,冰水温度太高,不能有效控制槽液温度,常使生产被迫停止或限产,待冰水温度降下后才能恢复正常生产。

解决铝型材冷却弯曲的方法研究

2019-03-01 09:02:05

文章介绍了铝型材冷却后发生曲折原因,主要是因为型材在冷却后截面各点发生的缩短应力不平衡所造成的。而型材截面各点的冷却速度不均,是导致缩短应力不平衡发生的主要原因。经过制作和运用高压气雾喷嘴,对型材进行部分冷却,使型材截面各点的冷却速度和缩短应力趋于平衡,较终减小型材冷却后的曲折程度,进步型材的矫直质量。实验条件为型材出口温度,揉捏速度10~12m/min,高压气雾气压约0.4MPa、气水混合比约5:1,水温40~45℃,喷嘴数量1个。实验成果为型材脱离牵引机时其厚壁部或空心管表面温度340~350℃,薄壁部表面温度约370℃,冷却后曲折型材的弧为200~250mm。    跟着铝合金型材在建筑、电子、轿车和轨道交通等方面的使用日渐添加,铝合金型材的形状也日趋多样化和复杂化。某些形状的型材会给揉捏出产带来必定的困难,如图1和图2所示A、B两款型材,归于形状不对称且壁厚不    1 原理    咱们对相似型材进行了很多的调查,发现在现在的冷却方法和条件下,型材正常出料后在冷床上冷却,数分钟后就会呈现型材向空心部位或壁厚较厚的部位曲折的现象,如图3和图4所示。    这种冷却后发生曲折的进程,可分为以下几个阶段[1]:    (1)型材薄壁部分温度下降快,先发生缩短力,厚壁部分或空心管部分温度下降慢,几乎没有缩短力;    (2)薄壁部分截面积较小,发生的缩短力较小,或被牵引机牵引力消除;    (3)型材脱离牵引机,温度持续下降;    (4)型材厚壁部分或空心管部分截面积较大,跟着温度下降逐步发生较大缩短力,薄壁部分温度已大幅下降,不再发生缩短力或缩短力较小;    (5)型材截面上遭到的缩短力巨细不均,型材沿揉捏方神往厚壁部分或空心管部分曲折。

浅析数控机床冷却装置的清洁

2018-12-28 09:57:14

数控机床的冷却装置跟润滑装置一样的重要,良好的冷却能够有提高工件的的加工质量机机床零部件的寿命。一般情况下,冷却装置的日常维修主要是冷却液的补给、更换及过滤装置的清洗。   那么什么时候应该对冷却装置进行维护呢?   1.观察水箱前面上的油标,当冷却水减少时,应及时补充。一般情况下,主轴周边出水配置的,至少应使冷却泵吸入口的滤油器完全没入水中。    2.当冷却水发生污染变质时,应全部及时更换,卸下水箱下方的螺塞将废液放出,清洗水箱后再罐入新的、清洁的冷却液。    3.冷却水箱分为水箱和泵箱两个容腔,过滤网需清洗时容易提出,清洗十分方便,另外在冷却泵入口处还装有一个滤油器,上述两种装置在机床使用一定时间后应及时检查及清洗。    4.一般情况下,每两个月要清洗一次滤油器、过滤网。    机械的维护保养不同却又有很多共同点,所以数控机床的保养也是十分的重要的。

快速冷却加热器选择氮化铝

2018-12-27 14:45:26

半导体制造商一直在寻找环氧树脂和共晶焊锡材料芯片在键合和集成电路应用中迅速冷却方法。最常见的方法是加热,气温上升激活环氧或熔体共晶材料,包装必须冷却以使粘合剂在从设备上被取出之前提供足够的力量。这种方法要花很多时间。随时可从加热和冷却步骤中剃光,使半导体制造商可以增加其产量。  最近加热器技术的发展允许使用氮化铝(氮化铝),为结构矩阵的取暖炉供暖包装半导体芯片键合,超过了其他材料,减少加热时间。工程师已研制出一种氮化铝矩阵加热器,设计与集成的热发电电阻器电路,使线索电力将直接连到氮化铝矩阵。热电偶集成了以AlN 矩阵包括第三套的附件导致矩阵。这种配置创造了迅速发生的热, 然而, AlN 陶瓷需要迅速冷却以使半导体包装被移动。  工程师也试验了其他几种可能的代替方法,譬如液体水或油冷却, 热电元素, 和吸热器,可以迅速冷却。对这些选择的成本效益分析表明, 压力空气冷却会是一个好的, 低廉的, 和方便选择的AlN 热化技术,可以推广应用。

高炉冷却壁的损坏形式及原因探讨

2019-03-06 10:10:51

高炉炼铁技能不断进步,优质、高产、低耗、长命逐渐成为高炉出产的开展方向,高炉大型化、高效化敏捷进步。高炉长命技能是进步炼铁厂商效益的要害。从高炉结构上看,炉缸炉底及炉腹到炉身下部是高炉长命的两个要点区域,挑选适宜的耐火材料及冷却设备对延伸高炉寿数至关重要。 跟着高炉的利用系数和冶炼强度进步,高炉炉腹、炉腰和炉身下部的热负荷上升,炉缸侧壁温度升高级现象频频发作。一起,国内高炉原燃料质量安稳性较差,常引起炉况动摇,进而构成软熔带方位频频上下移动,加快炉腹到炉身下部区域耐材的腐蚀和冷却壁的损坏。跟着宝钢湛江等厂商大型高炉选用全铸铁冷却壁,炼铁厂商关于选用何种冷却壁呈现了较多不合,因而,有必要对不同冷却壁在运用进程中的问题进行讨论。 高炉冷却壁的损坏方式及原因 2000年以来铜冷却壁以其杰出的导热才能和构成渣皮才能在我国高炉上得到广泛的运用,现在全国约200座以上的高炉选用铜冷却壁,尤其是在炉腹、炉腰和炉身下部等热负荷较高的区域。高炉冷却壁首要包含铸铁和纯铜,别的还呈现过铸钢冷却壁。铸铁冷却壁抗热震功能差、导热系数低。别的,其冷却水管是铸入铸铁本体内的,因为原料和膨胀系数的不同,构成气隙层,而影响了传热。这些缺点约束了铸铁冷却壁的进一步开展。因而,从上世纪70年代欧洲开发和运用了铜冷却壁,得到较好的效果。 1铜冷却壁 高炉铜冷却壁热面大面积损坏具有以下特征:(1)严峻损坏部位会集在炉腰部位,具有显着的区域性;(2)损坏期间,高炉呈现冷却强度缺乏、冷却壁本体温度升高的现象。 (1)化学腐蚀 氧元素在铜中的固溶量很小,但易与铜反响生成Cu2O,生成的Cu2O散布在晶界或枝晶网络中。一方面铜冷却壁的纯度有限,一般含有少数的氧,另一方面,高温条件下,炉渣、煤气中的氧元素可向铜基体分散,构成冷却壁热面壁体氧含量升高。李峰光等选用纳克ON-3000氧氮分析仪测定冷却壁热面损坏严峻的“沟槽处”和完好部位的氧含量,成果分别为19ppm和15ppm,该氧含量可构成铜冷却壁发作晶界裂纹。 冷却壁热面处于复原气氛,高炉煤气中的CO和H2可以与冷却壁中的Cu2O发作复原反响。 反响发作高压的CO2和H2O气体,高压气体效果下铜冷却壁基体发作细小裂纹,反响(2)的灵敏度显着较高,因而这种现象往往称为“氢病”。“氢病”被认为是铜冷却壁破损的首要原因之一。“氢病”的发作首要受三个要素影响:氧含量、温度和渣皮掉落。氧含量越高,温度越高,越简单发作“氢病”,而渣皮掉落则是“氢病”发作的直接原因。 因为铜冷却壁导热才能强,导热系数到达380W/(m·K),正常炉况条件下,高炉渣粘附在冷却壁热面后,热量敏捷被冷却水带走,在冷却壁热面构成必定厚度的渣皮。渣皮阻止高炉煤气中H2和CO向冷却壁壁体的分散,然后避免了“氢病”现象的发作。当发作边际煤气流过剩等反常炉况时,渣皮不能安稳存在于冷却壁表面,构成冷却壁热面露出于煤气中,冷却壁表面不只要接受高温高速煤气的冲刷腐蚀和渣铁的化学腐蚀,“氢病”发作的状况也大幅进步,构成冷却壁寿数下降。 (2)磨损 与化学腐蚀类似,在炉况反常、渣皮频频掉落的状况下,冷却壁遭到大块高温物料的机械冲击和高温煤气流的冲刷。铜冷却壁标明呈现不同程度的破损,乃至呈现冷却水管道露出的现象。王宝海[9]选用金相显微镜调查破损严峻的铜冷却壁不同方位的试样,发现金相安排均为ɑ固溶体,且冷却壁热面未呈现晶粒长大现象,标明铜冷却壁破损的首要原因是机械磨损,而不是熔损。 铜冷却壁磨损一方面是因为铜的硬度较低,相对铸铁更简单被块状炉料磨损,另一方面,操作上长期保持中心气流过强,边际过重,软熔带根部过低,块状带大块物料,很简单磨损铜冷却壁。 (3)挠曲变形 铜冷却壁一般用于炉身下部、炉腰和炉腹等热负荷高的区域,渣皮频频掉落时,冷却壁热面露出在高温煤气中,遭到煤气、渣铁等的热辐射效果。一起,因为冷却水的冷却效果,构成冷却壁冷热面间呈现必定的温度梯度,然后发作热应力效果。热应力效果是铜冷却壁呈现挠曲变形的首要原因,且热负荷越大,挠曲变形越严峻。必定热负荷下,冷却壁高度越高,挠度越大。2铸铁冷却壁 铸铁冷却壁常用于炉身上部、炉喉及炉缸部位的冷却,除延伸率高、抗拉强度高级长处外,铸铁冷却壁还具有以下不利要素:(1)抗热震功能差,导热系数低,在高热负荷区域作业时,冷却壁冷热面温差较大,构成壁体内部热应力较大,简单构成壁体挠曲变形,乃至呈现裂纹。(2)因为制作工艺约束,铸铁冷却壁壁体与冷却水管之间存在气隙,大幅增加热阻,构成冷却壁传热功能较差,冷却才能缺乏。 炉腹、炉腰及炉身下部等高热负荷区域选用铸铁冷却壁时,因为铸铁冷却壁壁体导热系数较低,且壁体与冷却水管间存在气隙和陶瓷涂层,因而铸铁冷却壁的冷却才能远低于铜冷却壁,不利于快速构成安稳的渣皮。精料水平较低的状况下,一方面,冷却壁简单遭到块状带下降的大块物料的碰击、磨损,另一方面,冷却壁热面在渣铁腐蚀、煤气冲刷及高温热辐射等的归纳效果下,热面温度敏捷升高,并简单超越壁体本身能接受的温度上限,然后构成壁体熔损。宝钢3号高炉选用全铸铁冷却壁,一代炉役寿数长达19年,标明在宝钢原燃料条件下,选用全铸铁冷却壁,配以恰当的冷却系统和耐火材料可以完成高炉长命。但是在现在我国绝大多数高炉精料水平遍及偏低的环境下,选用全铸铁冷却壁能否保持高炉长命,尤其是炉腹、炉腰和炉身下部的长命,尚有待进一步的实践查验。 3 铜钢复合冷却壁 铜钢复合冷却壁以纯铜作为冷却壁热面传热层材料,发挥铜冷却壁的传热优势,一起以高强度钢板为冰脸被覆层材料,进步冷却壁的机械强度。选用爆破焊接工艺将铜板和钢板焊接成铜钢复合冷却壁,统筹了抗变形才能和传热功能。因为爆破焊接瞬时能量较大,使钢与铜之间完成高强度的冶金结合,界面无气隙和中间产品层。一起冷却壁被覆层选用钢质材料,使冷却水进出水管与冷却壁壁体焊接时,避免了异种材料焊接时预热难度大、易呈现焊接缺点的问题,进步了焊接质量。选用钢板代代替部分纯铜,制构本钱大幅度下降。 更重要的是,铜冷却壁相对铸铁冷却壁更简单发作挠曲变形,变形后冷却壁与耐火材料间的气隙是影响传热的重要要素。选用高强度钢反抗冷却壁的热震变形,对铜冷却壁保持杰出的作业状况十分重要。因而,可以预见,铜钢复合冷却壁或许成为新一代冷却壁而得到广泛推行。 渣皮对冷却壁寿数的影响 关于炉腹、炉腰及炉身下部等高热负荷区域,无论是铸铁冷却壁仍是铜冷却壁,渣皮的维护效果对冷却系统的长命至关重要。冷却壁热面存在安稳渣皮时,块状带物料、熔融渣铁及高温煤气等不能直触摸摸冷却壁壁体,然后削减磨损、渣铁腐蚀、“氢病”及有害元素等问题的发作,大幅进步冷却壁寿数。渣皮的构成进程受多方面要素影响。 渣皮的安稳生成首要受三方面要素影响:(1)冷却壁本身冷却才能。冷却壁冷却才能越强,熔融渣铁越简单在冷却壁热面凝结成渣皮并安稳存在;(2)渣动性。渣铁的流动性首要与化学成分及环境温度有关。边际气流过度开展,渣铁的流动性越强,在高温煤气冲刷效果及物料冲击效果下,越不简单在冷却壁表面构成渣皮。反之,边际过重,软熔带下移,渣铁在高热负荷区以固体方式存在,则不存在粘附冷却壁构成渣皮的条件;(3)高炉操作。高炉操刁难渣皮的影响是多方面且至关重要的,首要安稳的原燃料条件是渣皮安稳的根底。烧结矿碱度和粒度、焦炭灰分和粒度等的动摇易构成炉况动摇,煤气流异常,构成渣皮频频掉落。此外,布料准则选用过度压重边际,或中心和边际敞开,中间过重等布料形式时,往往构成炉墙结厚或边际气流过剩,渣皮不能安稳存在。 结语 渣皮频频掉落是构成炉身下部到炉腹段冷却壁损坏的首要原因。高炉强化冶炼要确保炉况顺行,应恰当开展边际气流,使高负荷区域可以构成熔融的、具有必定粘度的渣铁,触摸铜冷却壁后构成安稳的渣皮。 过度开展边际气流和边际过重均不利于渣皮安稳,边际过度开展,渣皮熔化,液态渣铁粘度下降,现已构成的渣皮简单掉落。边际过重,简单构成炉墙结厚,渣皮相同简单频频掉落。 (1)冷却壁制作方面:优化铜冷却壁原料,在确保高导热率的前提下,严格控制氢、氧元素含量;改善冷却结构,尽量削减冷却壁冷却死区的份额。 (2)原燃料质量方面:安稳烧结矿和焦炭质量,避免呈现烧结矿碱度、焦炭灰分等的大动摇,顶装焦换捣固焦,干熄焦换湿熄焦时应逐渐过渡,避免大份额调整。 (3)高炉操作方面:选用合理的操作炉型,挑选适宜的炉腰直径、炉腹角和炉身角;探究合理的布料准则,恰当开展边际气流,避免边际过重和过火开展,构成安稳的渣皮维护冷却壁。 (4)中修或大修进程中,依据本身原燃料条件及操作水平,挑选适宜的冷却壁原料。炉腹、炉腰和炉身下部宜选用铜冷却壁,进步冷却才能,为避免挠曲变形,可选用铜钢复合冷却壁,炉缸、炉喉及炉身上部等热负荷较低的区域宜选用铸铁冷却壁,下降出资本钱。

中厚板轧后超快速冷却系统快速发展

2019-02-18 10:47:01

跟着操控轧制和操控冷却(TMCP)技能的开展,中厚板轧后冷却过程中冷却温度向低温区开展,冷却速率不断进步。20世纪晚期以来,新式超快速冷却系统快速开展,板带材的轧后超快速冷却技能逐渐得到业界的遍及认可。可是,由冷却不均带来的剩下应力及板形不良,严峻影响产品的质量和使用性能。高冷却速率情况下的板形操控,已经成为使用传统TMCP技能进行高强钢开发的瓶颈问题。针对这个问题,能够采纳以下办法:(1)改进喷发集管规划。超快冷区域内集管规划要尽或许扩展射流冲击换热区的面积,尽量防止膜欢腾换热区和过渡欢腾换热区等不稳定换热区域的发作,然后有用地增强冷却换热功率和冷却均匀性。为此,冷却区内选用缝隙集管和高密快冷喷嘴摆放集管两种方式,高压冷却水以约6~30m/s的速度从冷却集管中喷出,以必定视点冲击高温钢板表面,恰当调整冷却区域内的水流密度,可有用确保集管与集管之间射流冲击换热区域面积所占集管间换热总面积的份额。由集管喷发出的高压冷却水,构成沿水平方向较大的速度重量。针对钢板上下表面严峻的换热不对称的问题,能够在冷却区内将部分集管进行反向排布,防止高速活动的冷却水在冷却区出口对钢板上表面发作的二次冷却,又可将钢板上表面的剩下冷却水均匀散布到各个区域之内,防止冷却区域内呈现较厚的积水层区域。(2)铲除剩下冷却水。剩下冷却水在钢板表面的无序活动,会与钢板表面发作不均匀的二次换热,一起也将影响检测仪表的丈量精度。要将侧喷、中喷及吹扫等辅佐设备合理安置到冷却区内,用于铲除钢板表面的剩下冷却水,以进步冷却功率和改进冷却均匀性。在1.2MPa压力作用下,侧喷水以约40m/s的流速,冲击钢板上表面剩下冷却水,将其铲除出钢板上表面。强力吹扫设备铲除规模覆盖于整个钢板表面,关于剩下的少数剩下冷却水能够起到彻底铲除的作用。(3)严格操控上下表面冷却的均匀性。为完成钢板上下表面的对称换热,需求添加下集管流量以对下表面换热才能进行补偿,而上下集管流量的份额与集管射流水流量、辊道运转速度等工艺规程参数以及钢板厚度、宽度等尺度规格密切相关,合理的下集管与上集管水量比通常在1∶1.3~1∶2.5的规模之内。(4)操控辊道速度。为了消除钢板进入冷却区时沿长度方向存在温度散布“头高尾低”的问题,当钢板头部进入超快冷区域或许尾部脱离超快冷区域时,恰当添加辊道速度能够减小冷却水对钢板头尾的过度冷却。