您所在的位置: 上海有色 > 有色金属产品库 > 工业利用锌焙砂 > 工业利用锌焙砂百科

工业利用锌焙砂百科

锌焙砂在稀酸中的溶解

2019-02-21 15:27:24

氧化物的酸、碱浸出许多遵守缩短中心模型,一个典型的实例是锌焙砂在稀酸中的溶解。它依据每种参加溶解进程的化学物质的离子扩散系数及离子搬迁率,使用方程式(1)和式(2)进行核算。核算假定溶解速率由传质操控,因此所用的核算进程只能用于不触及化学反响的状况。    (1)    (2) 求解方程(1)和式(2)需求几个边界条件,它们规则了模型中各参数的值,并将各物质的通量经过浸出反响的计量联系相关起来。 关于硫酸浸出体系,核算所用的数据包含H+,HSO4-,SO42-及Zn2+的离子扩散系数和离子搬迁率,下列平衡的平衡常数与活度系数稀酸浸出氧化锌的数学模型核算中所用的传质数据列于下表。物质等效离子电导 Λi0∕(Ω-1·cm2·equ-1)离子扩散系数 D∕(cm2·s-1)离子搬迁率 u∕(cm2·V-1·s-1)H+348.99.3×10-53.6×10-3Zn2+53.87.2×10-65.6×10-4SO42-79.01.0×10-5-8.2×10-4HSO4-100.002.7×10-5-1.6×10-3 几个边界条件为 在固液界面即r=rt时,                  Ci=Cis          (3) 因为浸出进程最慢的过程是经过边界层的传质,能够假定在界面上到达化学平衡,然后得到下列边界条件     (4)     (5)     (6) 式中, 、 、 别离表明反响(a)、(b)(c)的平衡常数;Qa、Qb、Qc别离为用浓度表明时反响(a)、(b)、(c)的平衡常数;γi是物质i的活度系数。 在溶液体相即r=∞,                E=0    (7) Ci=Cib   (8) 体相浓度用质量平衡和体相的化学平衡求算    (9)    (10)    (11)    (12)    (13) 式中,[H2SO4]与[ZnSO4]是t时刻硫酸和硫酸锌的净浓度。 计量联系            (14) 硫酸根通量                        (15) 数学模型由对每种物质组成的写出的方程式(2),方程式(1)和上面导出的边界条件组成。一旦知道了各物质的通量,就可核算ZnO的溶解速率。 假如半径rt的球形粒子含有Nmol的ZnO,则    (16) 式中,Mw为ZnO的分子量。 因为稳态下边界层内没有物质堆集,一切溶解的锌都必须传递到溶液体相中去。因此,反响速率能够与锌和酸经过边界层传质的速率相关如下    (17) 式中JZn-流离表面的锌的净通量;     JH-流向表面的酸的净通量。 由式(16)和式(17)得出    (18) 方程式(18)用有穷区间法数值积分得到rt对时刻的函数。关于单尺度粒子,rt与反响分数α的联系为    (19) 即为式(20)的缩短粒子模型,r0为固体粒子的初始半径。    (20) 粒子尺度散布的景象可作相似处理,m个初始半径r0k的单尺度分数每个组成总质量的分数wk。浸出的程度分粒级核算    (21) 总的浸出率由下式断定    (22) 为了查验模型及核算的正确性,需求研讨硫化锌精矿的焙砂在硫酸、高氯酸、硝酸和等4种酸中溶解的速率。选定的拌和条件使一切的固体粒子都悬浮且溶解速率与拌和速率无关。在高氯酸及硝酸溶液中试验曲线与模型核算得到的猜测曲线符合杰出,而在硫酸溶液中在浸出率80%曾经符合尚可,这以后的溶解曲线符合不抱负的原因是因为固体粒子的溶解并非如假定的那样均匀并始终保持球形,实际上发现部分浸出的焙砂粒子有大而深的孔。简化的模型没有考虑锌的氯合物的构成合氯离子的吸附,因此不能用来猜测浸出焙砂的溶解速率。而用新近树立的未考虑电搬迁对传质的奉献的模型即便关于0.1mol∕L高氯酸浸出的动力学也严峻违背,反映了电搬迁在传质中不行忽视的效果。

综合利用低品位锰矿及工业废盐酸的试验研究

2019-02-21 11:21:37

一、前语 我国锰矿资源具有经济价值的地质储量到达3.02亿t,在全球占第7位。贵州省锰矿资源储量居全国第3位,其特点是贫矿多、杂矿多、矿层薄、矿藏嵌布粒度细、难采、难选,富矿严峻缺少,含锰均匀档次21.14%,制品矿锰档次均匀不到30%,其资源使用率遭到严峻的约束,一起跟着资源报价的不断上涨,锰矿档次的下降,也日趋严峻地限制了锰业的进一步开展。海绵钛出产以及氯碱工业出产进程中都有很多的废发生,废假如排放就会发生巨大的资源糟蹋并且还会严峻地污染周边环境。所认为完成资源的更好使用,削减“三废”的发生,到达清洁出产的意图,本实验研讨了使用海绵钛出产以及氯碱工业出产进程中发生的很多废和中低档次菱锰矿作为质料制取。 二、实验部分 (一)实验质料 所用菱锰矿及硬锰矿的化学成分见表1,其特点是高铁、高钙。 表1  质料组成    %(二)实验办法及工艺流程 实验选用湿法浸出的办法,将废与菱锰矿按必定的液固比配成浸出液在加热及拌和的条件下进行,然后进行过滤及净化得到产品。详细工艺如图1。图1  工业废浸出菱锰矿工艺流程 (三)实验原理及进程 1、浸出实验原理及进程。锰在菱锰矿中首要以碳酸锰方式存在。因而菱锰矿与的反响是复分化反响的一种,这是用废从菱锰矿中提取锰的依据,该进程中的首要化学反响如下:经过热力学核算可得在标态下以上反响的标准吉布斯自由能△G。≤-42.89kJmol,能够看出上述反响不只能自发进行,并且可进行得完全。从动力学观念来看该系统是一个多相反响和界面化学反响进程,在整个反响进程中能够经过升温,加强拌和等办法来增大固液触摸面积,使反响充沛,因而在动力学上也可得到杰出的反响作用。 浸出实验是在玻璃烧杯中,将定量菱锰矿和水分按必定固液比参加,拌和均匀,加热至70~90℃。随后选用守时分次加酸法,参加所需量的,并参加适量硬锰矿粉,使溶液中Fe2+氧化为Fe3+,当反响接近结束时参加适量石灰水,使溶液pH上升至5~6,溶液中的Fe2+氧化成Fe3+,并水解为胶态的Fe(OH)3,过滤。 2、净化实验原理及进程。向用工业废浸出低档次菱锰矿制得的溶液中参加金属锰粉,单质锰与溶液中的大部分金属离子(包含Fe2+、Fe3+、Pb2+、Co2+、Ni2+、Cu2+、Zn2+等)反响构成沉积而除去。反响如下: Men++Mn=Mn2++Me 式中Me代表溶液中的Fe2+、Fe3+、Pb2+、Co2+、Ni2+、Cu2+、Zn2+等各种金属离子。 当参加反响的氧化型和复原型物质不处于标准状态时,应该依据能斯特方程式求得该给定条件下各电对的电极电势值后再进行比较和判别。在浓度(或气体分压)的改变对电极电势的影响不太大时,假如两个电对的标准电极电势相差大于0.2V以上时,一般仍可用标准电极电势来判别氧化复原反响的方向。 随后向滤液中参加2~3g金属锰粉,进行拌和,加热到大于80℃。过滤生成的重金属沉积,然后在80℃下,操控pH值在4~5之间,操控拌和转速在100r/min左右,向滤液中参加MnSO4的热溶液,1h后过滤。 三、实验成果与评论 (一)浸出实验成果 经过探索性实验阶段的调查,归纳考虑挑选用硬猛矿做氧化剂,反响进程中pH值操控在0.5~1.0,而反响结尾pH值则操控在5~6。这样一方面有利于进步菱锰矿的浸出率,另一方面能够在浸出阶段将铁除去,削减后边的净化工序,实验成果如表2。 表2  正交实验成果(二)浸出实验成果评论及最优工艺条件的挑选 依据表2所示实验成果,能够看出当反响液固比为2.5∶1时反响的浸出率要优于其它条件时的锰浸出率,液固比过低不利于矿粉分化,进步液固比,下降液相粘度,有利于矿粉分化。但过高的液固比,不只会下降反响器的出产能力,并且会使后续过滤液的浓缩增大能耗。从图2中能够看出,适合的液固比为2.5∶1。图2  浸出反响液固比对锰浸出率的影响 如图3所示,跟着浸出温度的增高,锰的浸出率会相应增高。进步反响温度,能下降液相粘度,减小离子扩散阻力,加速化学反响速度,进步矿粉分化率。但温度过高,不只对原料要求进步,并且会使杂质的溶解度添加。图3  浸出反响温度对锰浸出率的影响 从图3可见,在该反响系统中反响温度80℃较好。 酸的过量系数对锰的浸出率也有影响(见图4)。图4  酸的过量系数对锰的浸出率的影响 从图4中能够看出,当的过量系数为1.3时,锰的浸出率就最好,锰的一次浸出率要优于其它的实验条件,所以,挑选浸出进程酸的过量系数为1.3。 跟着浸出时刻的添加,锰的浸出率会相应增高(见图5)。图5  浸出反响时刻对锰出率的影响 从图5中能够看出,浸出时刻从40min添加到60 min浸出率进步了6个百分点,再进步到80 min浸出率也只进步了0.5个百分点,浸出时刻越长锰的浸出作用也就越好。可是浸出时刻到达60 min今后,浸出率的增量显着变小,考虑到60 min今后延伸浸出时刻会增大本钱并且作用也不很显着,所以浸出时刻就挑选在60 min。 综上所述,结合极差分析及归纳经济分析得出最优浸出菱锰矿的工艺条件为A2B2C2D2。即反响液固比为2.5∶1、反响温度80℃、反响时刻60min、酸的过量系数为1.3。因为这个实验条件为正交实验中没有的实验,所以又对其做了验证性实验。 (三)最优工艺条件的验证 依据上述最优工艺条件,进行了3次重复实验,成果如表3所示。 表3  最优工艺条件验证实验成果从表3的验证实验成果能够看出,液固比为2.5∶1,温度80℃,时刻60 min,酸的过量系数为1.3,浸出率到达75%左右,浸出作用较抱负。终究产品经贵州师大化验中心分析到达HG-T3816-2006标准要求。 (四)净化实验及成果评论 在坚持反响温度在80℃以上,按需要量参加锰粉及硫酸锰,反响时刻1h,静置时刻24h。制得的四水产品目标(贵州师范大学分析检测中心检测)见表4。 表4  四水的产品目标    %四水在106℃时失掉一分子结晶水,198℃失掉悉数结晶水而成为带粉色的无水结晶粉末。因而可坚持恒温箱在100℃对脱水后的四水进行烘干,烘干后得到外观玫瑰色的四水针状结晶。经分析测定,产品各项目标到达了HG/T 3816-2006标准。 四、定论 (一)本实验计划的提出,一方面能充沛使用并发挥贵州区域丰厚的锰矿资源优势;另一方面能够处理海绵钛出产以及氯碱工业出产进程中发生的很多废,到达废物再使用的意图。 (二)经过正交实验分别对影响浸出的首要要素(温度、时刻、液固比和酸的过量系数)进行调查,得出了影响菱锰矿浸出要素的主次次序即液固比、温度、酸的过量系数和时刻。找出了该种矿样的最佳浸出条件,即液固比2.5∶1、温度80℃、酸的过量系数1.3和时刻60 min,菱锰矿的实践浸出率到达75%左右。产品质量牢靠,契合HG-T3816-2006标准要求。 (三)实验成果表明该工艺流程简略、技能牢靠,并且为贵州省低档次锰矿资源供给了一种重要的使用办法。

凌源高岭土成矿特征及在陶瓷工业中的利用

2019-01-04 09:45:31

笔者通过野外地质调查及资料分析对凌源高岭土矿成矿特征及工业利用问题进行了初步研究。凌源高岭土矿床形成于燕山早期侵入的正长斑岩床母岩蚀变——构造改造——风化残积型高岭土(简称凌源土)即:多因复成型矿床的成因结论。试验证实凌源土是目前在我国北方用来制作高档瓷原料之一,它的研究对于开辟陶瓷原料矿床成因的新类型,为今后在我国北方大量寻找类似矿床和直接索取优质高岭土原料提供了线索及可喜前景。 一、矿区地质概况 凌源土矿区位于燕山地穹列的中部,朝阳——青龙深断裂的北侧,大凌河中生代北东向火山断裂盆地的西缘,北面是北票——承德深断裂,南邻锦州——青龙深断裂。 区域地层主要出露太古界及下元古界深变质混合岩建造。上元古界单矿石英砂岩建造和含燧石条带的碳酸盐建造,不整合于下元古界混合岩之上。 区域侵入岩主要为燕山期的酸性华岗岩类。 凌源高岭土矿床呈不规则的透镜状出露与燕山第一期侵入正长斑岩床与上古界长城系高于庄组中上段含燧石条带灰质白云岩的接触带中,矿体形态产状与接触带相吻合,呈南北向展布。明显可见张性断裂追综接触带形成了构造叠加的复杂接触性类型,至使矿体形态又受到断裂特征制约,呈南北向延伸不规则的透镜状。优质矿体出露长度约200米左右,宽约1~5米。矿体内矿石具有明显的自然分带现象,由原岩向西依次为:新鲜的正长斑岩——半高岭土化正长斑岩——优质可采高岭土。矿石质量随高岭土化完善程度的加深而表现为不同级别,根据外观大致可分为四级:一级呈白色,致密块状;二级呈炭白色,致密块状;三级呈黄白色,略带浅褐色条纹,疏松土状;四级颜色较深,含多种杂质。 二、凌源土矿床成因探讨 根据野外观测及室内岩矿鉴定结果表明,其矿床形成具有两个阶段的特征,即早期(侏罗纪)正长斑岩床侵入成岩后,中低温气水热液蚀变为初始矿床形成阶段以及后期(白垩纪以后)张性断裂迭加线型风化残积使原矿床进一步改造富化阶段。 正长斑岩——接触带热液蚀变初始矿床的形成: 凌源土矿床成矿母岩为燕山早期第一次侵入的正长斑岩,该岩体给高岭土矿床形成提供了有利的物质基础,即:矿质来源。岩浆期后的中低温富含的酸性气水热液沿其岩体上盘接触带向上运移,同时对岩体形成了交代蚀变作用为其主要成矿条件。主要蚀变类型为高岭土化及少量的绢云母化和黄铁矿化等。蚀变的实质是正长石矿物在气水热液下的水解作用。正长石与含的酸性(PH 构造改造——表生风淋作用对初始矿床的改造富化; 构造迭加改造促使接触带岩石破碎增强了其岩石的渗透性,形成了良好的表生风化淋滤作用成矿构造系统,为矿床的构造迭加表生富化作用提供了有利的构造条件,使原有矿床富化形成现今的优质高岭土矿床。 根据成矿母岩的地质产状,矿体形态,矿体蚀变类型,矿石品级的带状分布等特点得出了“母岩蚀变——构造改造——风化残积富化型”矿床多因复成模式。高岭土矿床成因类型划分出多因复成型并建立相应的矿床成因模式对原认为单一成因矿床的再认识具有一定的理论意义。 三、凌源土理化性能研究: 凌源土化学成分(见表1) 凌源土化学成分表 (表1) 由以上化学分析结果可看出,该原料具有高铝低铁之特点。通过X射线衍射。差热、电镜等项分析结果也充分进一步证实,凌源高岭土主要矿物成份为高岭石,含有少量的蒙脱石伊利石和石英。物理性能鉴定(见表2) 凌源土物理性能鉴定表 (表2)鉴定项目 数 值 原料名称可塑 指数可塑 指标干 燥 收 缩烧成 收缩干燥强度 Kg/cm2白度耐火 度真 比 重氧化焰还原焰凌源土18.471.81216.33.4386.8783.41770℃2.83通过物理性能鉴定及制瓷试验结果表明,凌源土具高可塑性,耐火度高,成型性能好等特点,可作为烧制陶瓷的优质原料。从原料的外观来看,其质地较纯,烧后呈白色,经初步试验在坯料中引入量可在25~35%之间,用该原料烧制的陶瓷样品,其白度达75度左右,据目前各项研究结果认为,凌源土在陶瓷工业中可被用来生产高档瓷。 通过对凌源高岭土矿的初步研究,认为凌源土成因多因复成型矿床,即具有热液蚀变特征又具有构造迭加改造线形风化残积特征,它具有延伸深,规模大,质量好等特点,此外,凌源土形成于中生代燕山运动以来地台的构造岩浆活化区,这一地区在我国北方分布广大,所以对这类矿床的研究是具有一定经济意义的,他的研究有助于高领土矿产资源后备基地的寻找和远景予测。

废铜利用

2017-06-06 17:49:58

废铜利用,实际上所有的废铜都可以再生。再生工艺很简单。首先把收集的废铜进行分拣。没有受污染的废铜或成分相同的铜合金,可以回炉熔化后直接利用;被严重污染的 废铜要进一步精炼处理去除杂质;对于相互混杂的铜合金废料,则需熔化后进行成 分调整。通过这样的再生处理,铜的物理和化学性质不受损害,使它得到完全的更新。再生的废杂铜应按两步法处理,第一步是进行干燥处理并烧掉机油、润滑脂等有机物;第二步才是熔炼金属,将金属杂质在熔渣中除去。 由于废铜可以再生,从而有较高的价值。例如,清洁的1级废铜的价格可以达到新精炼铜价格的90%以上;黄铜新废料的价格也可达到相应黄铜价格的80%以上。 世界上废杂铜处理工艺及设备形成倾动炉火法精炼工艺加ISA电解工艺的废杂铜先进处理工艺。西德精炼公司(NA)胡藤维克凯撒工厂(HK)是目前世界上最大最先进的废杂铜精炼厂,它采用一台倾动炉(350t/f)和一台反射炉 (200t/f)处理废杂铜,采用ISA工艺(DK=313A/m2)生产阴极铜,产能17万t/a。 我国与国外先进的再生处理工艺相比, 对废杂铜的预处理及再生利用工艺及装备整体水平落后,废杂铜的预处理及再生利用两大环节脱钩,我国至今没有一个从废杂铜拆解到阴极铜精炼的完整废杂铜工厂,废杂铜精炼工厂厂多规模小、工艺落后、装备差、环保问题严重。我国至今没有一座现代化的杂铜精炼工厂或车间。这些工厂规模一般在0.5-3万吨级,火法精炼基本采用反射炉,炉能 25-110吨大小不等,这种炉子热效率低、能耗大,还原作业时黑尘污染严重,工人劳动强度大。产品质量只能达到甚至低于 GB/T467-1997标准中标准阴极铜的水平。相当数量的高品位废杂铜未经精炼即被直接生产铜线锭和铜"黑杆"。江铜、云铜、铜陵、大冶等以处理铜精矿为主的国内大型铜企业也将的参与必然加剧国内废杂铜原料的竞争,冲击中小废杂铜企业. 江铜将引进先进的倾动式阳极炉,建立专门杂铜处理车间,作为实现公司十五总体规划的重要措施。

废铝回收利用

2017-06-06 17:50:03

废铝回收利用的方法有很多,当然也有许多关于废铝回收利用的科研和研究。在这一方面中国国内的废铝回收利用体系还不是很完善所以导致不能很好的利用废铝,这也导致 有色金属 铝的原料越来越来少,不得不依靠进口的局面。这是一个恶性循坏,只有好好研究,并且向发展国家学习关于废铝回收利用的技术才能将废铝回收利用的技术实施起来。接下来简单介绍一下关于废铝回收利用的一些技术工艺。废铝冶炼方法及回收利用技术工艺1、含铝塑的废纸再生颗粒料制的容器2、复合铝箔纸废料回收机3、有废气分离净化装置的自焙阳极侧插铝电解槽4、废铝箔纸分离装置5、废铝箔复合制品的回收设备6、一种用于炼铝工业含氟废气湿法处理的吸收塔7、废气分离式自焙侧插铝电解槽8、无废料切制冷挤铝粒模9、一种从废铝箔纸中自动分离铝和纸浆的装置10、废铝破碎机11、一种断桥隔热铝型材滚压机的废料回收切割刀12、烫印机废铝箔复卷装置13、一种铣切废旧铝型材制备铝屑的铣刀14、废旧铝塑分离装置15、废弃铝塑复合材料分离装置16、防止废电化铝箔缠绕的吹气装置17、一种用于废铝回收机的搅拌棒提升装置18、一种用于废铝回收机的搅拌桶下盖扣锁装置19、一种用于废铝回收机的搅拌棒20、一种废铝回收机21、氧化铝工业生产废水处理回用装置22、干法氟化铝废气处理系统23、废铝箔纸干法离心分离装置24、风冷式铝电解槽废热利用装置25、铝电解槽废热利用装置26、氧化铝废水处理后得到的再生水回用方法27、氧化铝废水处理系统的污泥处置新工艺28、从含镍、AL2O3的催化剂废渣中制备镍化学品和铝化学品的方法29、用铝电解废弃物制取再生氟化盐、氧化铝的装置30、利用工业废料生产硫(铁)铝酸盐水泥的工艺31、利用工业废料生产硫(铁)铝酸盐水泥熟料的方法32、含铝塑废纸再生颗粒料及其制作方法和用途33、从废铝基催化剂回收贵 金属 及铝的方法和消化炉34、铝合金型材模具废铝回收工艺35、用衬纸废铝箔制造碳素铝粉的方法36、从废铝熔渣中回收 金属 的熔剂37、氧化铝生产中产生的废物的加工方法38、用废催化剂制碱式氯化铝净水剂39、铝型材加工废渣合成式聚合氯化铝40、用含铝废水制硫酸铝铵的方法41、从生产蒽醌的废水中回收铝化合物的方法42、废铝薄纸回收 金属 铝和纸浆的方法及设备43、用废易拉罐制取铝粉的方法44、从废铝镍合金粉提炼氧化镍的工艺方法45、含工业氧化铝废渣的提纯方法46、从废铝箔纸中回收铝的方法及装置47、处理酸性氯化铜废液以回收铜及衍生多元氯化铝方法48、磁化电极法回收铝镍钴磁钢废料49、一种从铝土矿溶出废渣中回收铁矿物的方法50、含铝的氢氧化钠废液的处理方法51、燃烧式碳化废铝箔衬纸回收铝粒的方法52、铝材表面处理的废液处理方法53、一种镀锡铜线废料和锡铝废渣的再生工艺及用装置54、将废铝塑、铝箔纸分成铝、纸、塑料的方法55、从废铝箔包回收铝箔的方法及其装置56、含 金属 铝放射性固体废料的处理方法57、由废铝箔纸再生硫酸铝和木浆的方法58、一种废铝箔纸边料的铝、纸分离和回收技术59、从废铝箔纸中提取纸浆和铝箔的方法60、硫酸铝废渣制备硅肥的工艺61、铝用阳极焙烧烟气淋洗废水处理及利用62、含铝离子选煤废水的处理方法63、铝电解槽废内衬的综合回收方法64、用于核废料回收的纳米偏铝酸锂粉体的制备技术65、含水聚硅酸铝铁废水净化剂及其生产方法66、复合铝箔纸废料化学回收法67、从废重整催化剂中回收铂、铼、铝等 金属 的方法68、一种用铝厂废弃物合成聚合碱式硅硫酸铝的方法69、铝厂废弃物的综合利用方法70、一种铝塑复合包装废料分离回收的方法71、铝电解阳极炭渣和废旧阴极材料的无害化处理及综合利用的方法72、一种以镁还原渣为添加剂处理铝电解槽废槽衬的方法73、从铝基含钼废渣中回收钼的方法74、利用废铝灰生产铝酸钙的方法75、一种利用废铝灰生产铝电解槽用含氟&beta;氧化铝的方法76、氟化铝工业含氟废水的处理、利用及其配制方法77、铝电化学工艺废渣白泥的精细开发技术78、铝加工厂生产垃圾硅藻土助滤剂废渣的再生方法79、利用 金属 铝对废弃酸性铜蚀刻剂进行处理并回收的工艺80、含氢氧化铝工业污泥固体废物加工再利用方法81、废铝回收系统82、回收铝-锂型合金废料的方法83、一种用铝电解废渣生产冰晶石的方法84、一种用废弃含铝碱渣生产冰晶石的方法85、从铜包铝导线废料中回收铜和铝的方法以及该方法的电解设备所用的阳极装置86、一种从油母页岩废渣中提取氧化铝及白碳黑的方法87、一种铝电解槽废槽衬的无害化处理方法88、利用工业废渣一步合成无机高分子絮凝剂--聚合硫酸铝铁89、废旧涡轮发动机部件上铝化物涂层的改良90、用乙磷铝杀菌剂生产中的废液制造工业硫酸铝铵的方法91、铝、铝合金以及铝废料的无盐非氧化性重熔方法92、从铝基含镍废渣中回收氧化铝的方法93、用废铝灰生产氧化铝的方法94、废旧铝合金熔炼净化再生利用的方法95、回收废钯/氧化铝催化剂中 金属 钯的方法96、利用生物发酵废气CO2生产氢氧化铝的工艺97、一种用废弃电化铝塑料制成的彩色拉力绳及其制法98、废水处理用聚铝硫酸铁型复合净水剂及制法99、利用富铝废渣制备氢氧化铝与氧化铝的方法100、铁皮、铝箔、废易拉罐制画显色技术及其工艺101、用酞菁绿废水制备聚合氯化铝絮凝剂的方法102、用酞菁绿废水制备聚合氯化铝铁絮凝剂的方法103、从废铝基含镍催化剂回收镍和铝的方法104、用湿法从废铝基钼触媒剂中提取钒、钼的生产工艺105、一种从废弃铝膜中分离铝箔和塑料膜的方法106、稀硝酸浸渍和煅烧法再生废活性氧化铝的方法107、一种废弃白土制备超细硅酸铝的方法108、用废分子筛催化剂制备聚合氯化铝的方法109、由工业废料制备纳米氧化铝粉体的方法110、用废催化剂制备聚硅硫酸铝絮凝剂的方法111、净化铝合金废料边屑熔体中非 金属 夹杂物的方法112、从铝基含镍废渣中回收钒的方法113、用废催化剂合成聚合硫酸铝的制备方法及产品114、利用硫酸铝废渣生产白炭黑的工艺115、熔炼净化废旧铝易拉罐再生5182铝合金的方法116、熔炼净化废旧铝易拉罐再生3004铝合金的方法117、熔炼净化废旧6063料再生6063铝合金的方法118、电解铝厂生产废水的处理方法119、一种铝电解槽废阴极炭块无害化的处理方法120、铝废料的产品化方法及其装置121、从废铝基催化剂中提取钒、钼、镍、钴、铝的方法122、一种除去三氯化铝废液中有机物的方法123、利用废旧镁碳砖和镁铝碳砖制备镁阿隆陶瓷材料的方法124、铝 行业 用过含油和铝粉的废硅藻土助滤剂再生方法125、一种铝电解槽废耐火材料的处理方法126、一种处理铝电解槽废槽衬的方法<br /

钨矿尾矿利用

2019-01-21 10:38:58

钨尾矿是钨矿经磨细选取其中的含钨矿物后排放的经细粒尾矿浆脱水后形成的固体物料,一般主要由脉石矿物以及围岩矿物组成,主要含有萤石、石英、石榴子石、长石、云母、方解石等矿物,有些含有钼、铋等少量的多金属矿物,主要化学成分为:SiO2、Al2O3、CaO、CaF2、MgO、Fe2O3等。钨尾矿综合利用途径大致可分为两类:回收有价金属矿物或非金属矿和整体利用,整体利用主要包括钨尾矿制备建筑材料等。 钨尾矿中回收有价金属钨矿床中经常伴生着许多有用金属,如:锡、钼、铋、铜、铅、锌、锑、铍、钴、金、银等。它们中有些是对钨的冶炼工艺和钨制品有害的杂质,通过选冶综合回收其中有用金属,既可提高钨制品的质量,又能有效提高钨矿资源综合利用率。目前回收的有价金属主要为钨、钼和铋。 (1)钨尾矿中回收钨 钨尾矿扫选回收钨是提高钨矿回收率的有效途径。卢友中等[95]采用选冶联合工艺从钨尾矿及细泥中回收钨,给矿品位0.39% WO3,得到钨粗精矿(18%WO3)再微波浸出,总WO3回收率可达82.60%。黄光耀等[96]利用微泡技术从白钨矿精选尾矿中回收微细粒白钨矿,开发了CMPT微泡浮选柱,给矿品位0.76%WO3,获得精矿平均品位24.52%,回收率43.41%。 (2)钨尾矿中回收钼、铋 很多钨矿床都不同程度的伴生钼、铋,虽然在重选作业中能回收部分钼、铋,但由于钼、铋的天然可浮性好,往往在钨重选的摇床作业中自然可浮而排入尾矿,导致钼、铋的综合回收率很低。 傅联海[97]采用浮选工艺直接从钨重选尾矿中回收钼、铋,细泥尾矿则浓缩后直接浮选回收钼、铋,在重选尾矿中钼品位0.024%Mo、铋品位0.019%Bi,细泥尾矿钼品位0.056%Mo、铋品位0.044%Bi的情况下,取得了较好的生产技术指标,钼精矿品位达到46.85%Mo,铋精矿品位达到23.05%Bi,钼总回收率达到41.34%,铋总回收率达到32.5%。 (3)钨尾矿中回收非金属矿 钨尾矿中非金属矿主要有石英、长石、云母、石榴子石、萤石、方解石,其中有综合回收价值的非金属矿为萤石和石榴子石。 A.钨尾矿中回收萤石 萤石是一种广泛应用于化工、冶金、建材工业的重要非金属矿,我国萤石矿品位一般偏低,其中伴生矿床储量占43%,钨尾矿中回收萤石矿物意义重大。 柿竹园多金属矿在回收利用钨钼铋资源后,其尾矿回收萤石。工业生产指标:给矿含25% CaF2左右,萤石精矿品位95%CaF2、回收率大于40%。 B.钨尾矿中回收石榴子石 石榴子石是一种硬度大、化学性质稳定的弱磁性矿物,主要用于磨料、建筑材料、聚合物填料等方面。石榴子石原矿品位不高,工业品位含量大于14%[98],通过合适的选矿工艺提高石榴子石品位是石榴子石深加工的基础。 朱一民等[99]分别采用单一磁选和重磁联合流程选矿工艺,从黄沙坪钨尾矿中回收石榴子石,均可获得石榴子石精矿产品,其中磁选方法获得的精矿回收率高,可得到品位76%的石榴子石精矿,回收率为87.78%。申少华等[100]针对柿竹园多金属矿石榴子石资源特点,分别采用浮-磁浮主干流程和螺旋溜槽预选-预选中矿强磁和摇床从尾砂中回收石榴子石,可得到品位达89%的石榴子石精矿,回收率达40%以上。 (4)钨尾矿用于建筑材料 钨尾矿主要成分为硅、铝的氧化物,并含有钙,与传统建筑材料较为相似,同时钨尾矿颗粒较细,用于建筑材料不需要再作破碎处理,能耗和成本较低,具有天然的优势。 1)钨尾矿用于水泥工业 水泥工业传统的氟硫矿化剂可改善水泥生料的易烧性,但煅烧过程中会逸放部分氟硫污染环境。钨尾矿取代传统的氟硫矿化剂用于水泥工业,可减少氟硫的污染,变废为宝,对水泥工业的可持续发展也有着重要意义。 苏达根等[101]利用钨尾矿作生产水泥的原料,减少萤石掺加量,生料中WO3的质量分数为1×10-6~6×10-4时,可改善生料易烧性,有利于水泥熟料矿物阿利特的形成,且钨的逸出率几乎为零,并可减少铅、隔和氟的逸放,可作为环保型水泥熟料矿化剂。苏达根等[101]还用钨尾矿作为水泥熟料的原料之一,取代含硫矿化剂,提高了水泥熟料的质量和产量,减少了水泥窑氟硫的污染,并利用了废弃资源,节约能耗,降低成本,但钨尾矿作生产水泥的原料需控制其掺加量,过量会产生副作用。YunWangChoi等[102]将钨尾矿用于水泥生产,所得产品各方面均满足相关要求,最大烧损为2.6%,其中铅、铜等有害元素均低于相应标准,但随着钨尾矿的增加,产品流动性和抗压强度有所下降。 2)钨尾矿用于微晶玻璃 微晶玻璃是一种亮度高、韧性强的新型建筑材料。早在20世纪60年代初前苏联就进行了尾矿制备微晶玻璃的研究和生产,后来在许多国家得到发展,并形成规模化生产。匡敬忠等[103]以钨尾矿为主要原料,用量为55%~75%,不添加晶核剂,采用浇注成型晶化法制备出钨尾矿微晶玻璃,其主晶相为β-硅灰石,其核化析晶机理属于表面成核析晶,工艺简单,成本低廉。 (5)钨尾矿的其他应用 除上述应用领域外,钨尾矿还被应用于其他方面,如生物陶粒、矿物聚合材料、瓷砖等。冯秀娟等[104]以钨尾矿为原料,炉渣、粉煤灰、粘土为辅料,采用焙烧法制备了多孔生物陶粒滤料,生物陶粒粒子密度为1.61g/cm3,堆积密度为1.10 g/cm3,比表面积为9.7 m2/g, 酸可溶率为0.17%,碱可溶率为0.33%,筒压强度为8.1MPa。匡敬忠等[105]以钨尾矿和偏高岭土为主要原料,水玻璃和NaOH为碱激发剂制备了矿物聚合材料,结果表明:当钨尾矿占固相比例为75%、养护温度不超过100℃时,所制备的矿物聚合材料性能最佳,其主晶相为α-石英,聚合反应生成的产物为凝胶相硅铝酸盐,呈非晶质形式存在。 目前国内钨矿资源保有储量逐年下降,原矿品位越来越低,钨尾矿资源回收有价金属及非金属矿,可有效提高资源利用率。钨尾矿整体利用有利于推进无尾矿矿山建设,既提高了钨尾矿资源附加值,又改善了矿山环境,是今后钨尾矿综合利用的发展方向。因此,各钨矿企业应提高尾矿资源利用意识,开展钨尾矿综合利用研究,走矿产资源可持续发展道路。

铁矿尾矿利用技术

2019-02-27 08:59:29

尾矿是选矿后的废弃物,是工业固体废弃物的首要组成部分。据不完全统计,全世界每年排出的尾矿及废石在100亿t以上。我国现有8000多个公营矿山和11万多个城镇团体矿山,堆存的尾矿量近50亿t,年排出尾矿量高达5亿t以上,其间黑色冶金矿山年排放尾矿量达1.5亿t。现在,我国的尾矿归纳使用率只要7%,堆存的铁尾矿量高达十几亿吨,占悉数尾矿堆存总量的近1/3。因而,铁尾矿的归纳收回使用问题已遭到全社会的广泛重视。 单金属类铁尾矿 单金属类铁尾矿区分的根据是其存在的首要元素,并有利于挑选不同的使用途径,一般将其分为4种类型:1、鞍山高硅型铁尾矿。该类铁尾矿是数量最大的铁尾矿类型,含硅量高,有的SiO2含量高达75%,一般不含有伴生元素,均匀粒度0.04~0.2mm。归于此类的选矿厂有本钢南芬、歪头山,鞍钢东鞍山、齐大山、弓长岭、大孤山,首钢大石河、密云、水厂,太钢峨口,唐钢石人沟、棒磨山等;2、马钢高铝型铁尾矿。该类尾矿年排出量不大,首要散布在长江中下游宁芜一带,如江苏吉山铁矿,马钢姑山、南山及黄梅山铁矿等选矿厂。其首要特点是Al2O3含量较高,大都尾矿不含有伴生元素和组分,单个尾矿含有伴生S、P,粒度-0.047mm含量占30%~60%;3、邯邢高钙镁型铁尾矿。这类尾矿首要会集在邯邢区域,如玉石洼、西石门、玉泉岭、符山、王家子等选矿厂,首要伴生元素有S、Co及微量Cu、Ni、Zn、Pb、As、Au、Ag等,-0.047mm粒级含量占50%~70%;4、低钙、镁、铝、硅酒钢型铁尾矿。该类尾矿中首要非金属矿藏是重晶石、碧玉,伴生元素有Co、Ni、Ge、Ga和Cu等,尾矿粒度-0.047mm占70%左右。 多金属类铁尾矿 多金属类铁尾矿首要散布在我国攀西、内蒙古包头和长江中下游的武钢区域。特点是矿藏成分杂乱,伴生元素多。除含有丰厚的有色金属,还含有一定量的稀有金属、贵金属及稀土元素。如大冶型铁尾矿(大冶、金山店、程潮、张家洼、金岭等铁矿选矿厂)中除含有较高的铁外,还含有Cu、Co、S、Ni、Au、Ag、Se等元素;攀钢型铁尾矿中除含有数量可观的V、Ti外,还含有值得收回的Co、Ni、S、Ga等元素;白云鄂博型铁尾矿中含有22.9%的铁矿藏、8.6%的稀土矿藏以及15.0%的萤石等。 世纪90年代以来,各选矿厂都完成了从矿石加工后的尾矿中收回有用矿藏和有价元素;铁尾矿广泛用于铺路材料、黄砂替代品、水泥骨料、出产水泥、墙体材料、采空区的充填材料、土壤改良剂及微量元素肥料等。 铁尾矿数量最大的是高硅型类,一般不含有伴生元素,均匀粒度0.04~0.2mm。此类尾矿是石英与磁铁矿的共生体,再选难度高,一般需求投入许多资金引入先进的磁选设备,且磁选后尾矿档次下降较少。因而在工业出产中很少再选,被当作废弃物堆积。许多的尾矿只能长时间堆积在尾矿库,不只占有许多的农、林用土地,一起尾矿库的保护和修理需求耗费许多资金。跟着尾矿数量的不断增加,尾矿坝高度也随之增加,不安全危险日益增大。  铁尾矿由于是石英与磁铁矿的共生体,尾矿的密度比磁铁矿大大下降,一般 磁铁矿尾矿在水净化方面有着比较有远景的使用。磁铁矿作为载体使用于三相流化床的优势:(一)磁铁矿粒度小、比表面积大,因而能够供给较大的生物密度,有利于废水的降解处理;(二)经过外加磁场能够操控载体的运动,使其不易丢失,不需求经常性补给;(三)载体自身具有磁性,能够经过磁选机快速有效地完成泥水别离,一起便于脱膜和再生;(四)磁铁矿资源丰厚,价廉易得。研讨标明,磁铁矿三相生物流化床使用活性污泥挂膜简略、快速,在原水水温25℃左右、pH=7条件下。12天能够使生物膜成长老练;进水COD为400mg/L的日子污水,在水流逗留时间2小时、充气量0.3m3/h、回流比70%(无三相别离器)、0.043~0.075mm磁铁矿增加量55g/L,磁铁矿三相生物流化床处理日子污水出水COD为20mg/L,COD去除率到达95%,单位容积负荷是普通活性污泥法的2.5倍。其首要的缺点在于磁铁矿密度大,不易流化。因而,北京科技大学王慧丽在磁铁矿表面包覆一层乙烯/酸丁酯使用于生物流化床,保留了载体的磁性,下降了载体的密度,且对生物膜无毒无害。选用包覆过的载体,流化床的气-水比大大下降,到达了节省能耗的意图。可是磁铁矿包覆又进步了磁铁矿作为载体的本钱。 将尾矿经磁选后筛分,选取筛分后量较大的粒级(0.076~0.315mm)作为载体增加到普通曝气池模型中,对COD为400mg/L的模仿日子污水进行处理,并在相同条件下使用普通活性污泥法处理同一废水,对两者的出水作用进行了比较。  在相同的条件下,将铁尾矿作为载体增加到普通活性污泥法的曝气池中,在相同的逗留时间下,COD去除率明显进步。逗留2小时,增加载体后出水COD由67mg/L下降到43mg/L;逗留3小时,增加载体后出水COD由44mg/L下降到29mg/L。处理后的载体经磁铁收回可重复使用。因而,选用铁尾矿作为载体对日子污水进行处理,能够缩短水流逗留时间,增大单位时间里的污水处理量,并可选用磁选的方法对载体进行收回,简略便利,具有在工业上使用的远景。 跟着我国城市化进程的加速,城市污水处理的使命El益深重。将铁尾矿作为载体使用于废水处理中:(一)能够处理越来越多的尾矿堆积问题,完成了变废为宝;(二)为废水处理供给了一种粒度小、比表面积大、不易丢失、便利收回及廉价易得的载体,使用于污水处理中能够进步单位时间内废水的处理量,满意增加的污水处理的需求。  若想真正将铁尾矿使用于废水处理中,还有许多的问题需求研讨处理:怎么方便地完成铁尾矿作为载体的低能耗流化及充沛完成铁尾矿的收回等。总归,有了使用的可行性,将会持续不懈的研制,努力完成尾矿资源充沛使用的方针。

铝屑的回收利用

2019-01-14 13:50:20

铝屑的回收铝铸件进行切削加工时,切屑约占铸件重量的20%,较高达30%左右。目前市场上铝价达15000元/吨左右,因此回收活塞系列产品机加工过程中的铝屑可降低生产成本,具有良好的经济效益。铝屑回收工作应往意以下几点:(1)当某一材质牌号的工件加工完毕后,应及时国收,以防铝屑混号。回收时,应把参加切削的各种机床底盘中的铝屑圭部清理干净,(2)回收的铝屑应严格按牌号分类分号堆放于贮放场规定的格仓中,并标明铝屑的种类牌号,有条件时应及时重熔,避免混号。(3)应避免泥沙、棉纱等杂物混入铝屑。    铝屑的熔炼方法一般有二种:(1)两次熔炼法:靠前次是将铝屑熔化成铸块(再生锭)后按其化学成份分类堆放;第二次熔炼时将再生锭搭配入炉熔炼出成品。(2)直接加入法:使用这种方法时,可直接在炉中对铝屑进行烘烤(利用余热或底温情况下),等铝屑烘干后,再升温使其熔化并加入各种主、辅料进行熔炼。两种方法相比,两次熔炼,电耗及元素烧损较大.管理工作烦琐,浪费人力和物力。而第二种方法只适用于连续生产一种牌号的铝铸件时使用,同一时期生产多神牌号的铝件时,用靠前种方法较为适用。

铅锌尾矿利用实例

2019-02-21 13:56:29

一、从铅锌尾矿中收回银 八家子铅锌矿选矿尾矿堆存量300万t以上,其间银含量较高,达69.94g/t,将其再磨至-0.053mm91.6%解离银,用碳酸钠作调整剂(3000g/t),丁铵黑药(53g/t)和丁黄药(63g/t)作捕收剂,2号油(8g/t)作起泡剂,栲胶(100g/t)作抑制剂,浮选出含银精矿,档次达1193.85g/t,收回率63.74%。按尾矿处理量800t/d,年出产天数250天计,每年可收回银8.92t,产量约223万元。 二、从铅锌尾矿中收回钨 宝山铅锌银矿为一归纳矿床,选矿厂处理的矿石别离来自原生矿体和风化矿体。矿石中的首要有用矿藏为黄铜矿、辉钼矿、方铅矿、闪锌矿、辉铋矿、黄铁矿、白钨矿、黑钨矿等;首要脉石矿藏为钙铝榴石、钙铁榴石、石英、方解石、辉石、角闪石、高岭土等。选厂硫化矿浮选尾矿中含有低档次钨矿藏,首要是白钨矿。原生矿浮选铅锌后的尾矿中含0.127%的WO3,其间白钨矿约占81%,黑钨矿占16%,钨华占3%。白钨矿的粒度80%会集在-0.074mm+0.037mm内;黑钨矿的粒度65%会集在-0.037mm+0.019mm内。原生矿浮选尾矿中的首要矿藏含量及粒度组成别离见表1、表2。 表1  原生矿浮选尾矿首要矿藏含量  (%)矿藏称号钙铝 榴石钙铁 榴石钙铁 辉石方解石白云母石 英褐铁矿白铁矿赤铁矿其 他质量分数39.27.113.112.511.48.23.20.060.34.98 表2  原生矿浮选尾矿粒度组成与金属散布粒度/mm产率/%档次(WO3)/%WO3占有率/%+0.07431.740.1230.23-0.074+0.03722.610.1323.32-0.037+0.0198.340.138.60-0.019+0.01012.970.1212.35-0.01024.340.1325.50算计100.000.126100.00 风化矿石浮选尾矿的性质与原生矿相似,WO3含量为0.134%,但黑钨矿的含量比原生矿的稍高,约占25%。白钨矿的粒度较细,大部分会集在-0.074mm+0.019mm之间。脉石矿藏以钙铁辉石为主并有较多的长石和铁矿藏。 实验研讨标明,选用旋流器、螺旋溜槽及摇床富集浮选尾矿中的钨矿藏,可削减白钨浮选药剂耗费和及早收回黑钨矿。即尾矿先用短锥水力旋流器分级后螺旋溜槽选出粗精矿,粗精矿用摇床选出黑钨矿然后再浮选白钨矿,见图1,可获得WO3含量为47.29%~50.56%、收回率为18.62%~20.18%的精矿,一起选出产率为26.95%~34.027%的需再进行白钨浮选的粗精矿,与单一浮选比较,浮选白钨的矿量削减了73.05%~65.97%,然后可很多节约药剂用量,下降选矿本钱。图1  实验流程 湖南邵东铅锌矿是一个日采选原矿石200余吨的矿山,矿床属中-低温热液裂隙萤石-石英脉型铅锌多金属矿床。选厂选用铅锌优先浮选的选矿工艺收回铅锌两种金属,年排尾矿量6.0~6.3万t,尾矿矿藏组成较简略,首要为石英、板岩屑、萤石,少数的方解石、长石、重晶石、白云母等,其间首要矿藏石英、板岩屑、萤石含量达90%左右,尾矿首要元素含量及矿藏组成别离见表3、表4。 表3  尾矿首要元素含量    (%)成分SiO2CaF2Al2O3BaSO4K2OTFePCaONa2OFe2O3PbZn质量分数73.0913.923.742.861.090.630.692.720.120.170.430.18 表4  尾矿矿藏组成及含量   (%)成分石英板岩屑萤石重晶石方解石氧化铁矿藏长石白云母方铅矿闪锌矿白铅矿算计质量分数52.525.013.53.02.00.81.50.50.20.30.299.5 长沙有色金属研讨所对铅锌选别后的尾矿进行使用研讨,依据质料性质,选用分支浮选流程(见图2)收回萤石,实验成果标明,得到的萤石精矿档次为CaF2年收回萤石4500余吨,赢利60余万元。图2  分支浮选流程 高桥铅锌矿是中国有色金属工业总公司扶持的当地小型有色厂商,该矿经改扩建,现在日采选铅锌原矿石的才能为200t,属中温热液充填硫化矿床,现以收回铅、锌两种金属为主,年产尾砂6万t左右。经考察尾矿中重晶石的含量为7.4%,且已根本单体解离。选厂选用重、浮流程对尾矿进行再选,收回重晶石,一起,铅锌在重晶石精矿中也有显着富集,故经过二次收回,达到了资源归纳使用的意图。 收回重晶石的出产流程见图3。经过再选高桥铅锌矿每年可从尾矿砂中获重晶石精矿约3000t,年赢利约30万元,收回的重晶石精矿含BaSO4为97.8%,契合橡胶填料Ⅱ级产品要求。现在重晶石首要用于石油钻井的泥浆加剧剂,也可作为橡胶、油漆中的锌白质料以及出产金属和各种盐的质料,产销远景达观。图3  重晶石收回出产流程 柴河铅锌矿堆存尾矿数百万吨,该矿先将尾矿用螺施溜槽重选,再将重砂作浮选处理,获得了合格的锌、铅、硫精矿,并使银得到归纳收回。按年处理尾矿85万t计,浮选的重选精矿15万t,每年可归纳收回档次为46%的铅精矿1890t,含硫35%的硫精矿10542t,含锌45%的硫化锌精矿5840t,含锌35%的氧化锌精矿18991t。别的铅精矿中含银3212kg。总产量1227万元(不含硫精矿价值),赢利330万元。 国外,俄罗斯别洛乌索夫铅锌选厂的锌浮选尾矿含有锌、铅、铜、铁的硫化物及重晶石,选用浮选再选,产出含铜、锌、铅的硫化物混合精矿;含铁39%~40%、收回率87.8%的黄铁矿精矿以及含BaSO488%~90%、收回率48.2%~61.6%的重晶石精矿。 广东粤西和粤北区域多处铅锌浮选尾矿选用螺旋溜槽重选收回尾矿中的黄铁矿。粤北、粤西铅锌浮选尾矿的矿藏组成、硫铁矿单矿藏分析、铅锌尾矿多项分析、筛分分析别离见表5至表8。 表5  矿藏组成粤北铅锌尾矿粤西铅锌尾矿    黄铁矿及少数铅矿、闪锌矿;脉石以绢云母、石英、方解石、绿泥石为主,次有白云石等。    黄铁矿、少数铅锌矿藏及赤、褐铁矿;脉石矿藏为石英、长石、高岭石、绢云母、白云石、方解石。 表6   粤北硫铁硫单矿藏分析  (%)成分SFePbZnCu算计质量分数52.7343.350.490.0710.00596.85 表7  粤北铅锌尾矿多项分析  (%)成分SAsSiO2Al2O3CaOAg(g/t)质量分数30.50.2116.332.807.2164.0 表8  筛分分析成果  (%)粒级/mm粤北粤西产率档次散布率产率档次散布率+0.27.0614.853.73———-0.20+0.1027.0023.2222.317.162.320.71-0.10+0.07612.2533.5414.6230.1814.3718.68-0.076+0.04318.8735.9224.1224.5531.8533.68-0.043+0.0306.0838.858.4117.6532.8524.96-0.03028.7426.2126.8120.4624.9321.97算计100.0031.46100.00100.0023.22100.00 以实验,铅锌尾矿经螺旋溜槽一次选别(流程见图4)可获得档次39.75%~44.08%、收回率58%~74%的硫铁矿精矿。图4  粤北铅锌尾矿实验流程

钨铜的重要性

2019-05-27 10:11:36

钨铜、钨银材料是一般公认三大类金属钨制品之一(钨丝、钨杆;钨基重合金;钨铜、钨银材料)。由于它们三者各具自己特异的安排功能、特殊的制取办法和特有的应用领域。        钨铜、钨银材料开端开展于本世纪30时代,比创造制取钨丝、钨杆的加工技术晚,而与钨基重合金的创造时刻附近。它们是由钨与铜或银所组成的既不相互固溶又不构成金属间化合物的两相单体均匀混合的安排。关于这样一种特殊安排,其时被称之为“伪合金”(pseudoalloy)。正由于这样的安排。因而,钨铜、钨银材料成为钨的耐高温、高硬度、低膨胀系数等特性和铜与银高的导电导热性、好的塑性等特性的归纳成果,并且,其归纳功能还能够经过改动其组成成分的份额而加以调整。        钨铜、钨银材料一般选用两种办法制取。其一是一般的粉末冶金办法,即混粉、限制、烧结。但这种烧结制品的相对密度很低,大约仅为理论密度的90%左右,并且,铜含量愈低相对密度愈低。因而,这种制品功能很差,现在仅应用在制取高含铜(Cu≥40%质量分数)的钨铜材料,并且在烧结后,还要经过复压来进一步进步密度。另一种办法便是“熔渗法”,这也便是开端时为制取钨铜、钨银材料而创造的专用办法。它是将钨粉或掺入部分铜粉或银粉的混合粉限制成坯块,然后在坯块上放置所需的铜或银,当升温铜、银熔化后即进入到压坯中的孔隙中,构成钨铜、钨银材料。这样制得的钨铜、钨银材料相对密度高,功能好,是制取钨铜、钨银材料的首要办法。        钨铜、钨银材料首要是作为高、低压电器开关的接点和触头,也能够用作其他电制作、电真空和高温模具的材料。五六十时代,美国等选用钨银材料作为高温固体燃料火箭的喷管喉衬和的鼻锥等。由于研讨发现,当高温气流经过钨银材料时,材料安排中所含的银将气化蒸发,汲取很多热量,然后起了冷却效果,维护了留下来的钨的骨架。这便是所谓“自发汗冷却”机理。这样,就能够使钨银材料的运用温度超越3000℃。        我国的钨铜、钨银工业是在新中国建立今后开展起来的,其开展的速度是适当快的。尽管,在一些方面与国外先进水平比较仍有必定距离,可是,现已根本满意国民经济和国防的需求。并且,在某些方面还具有自己的首创和适当的水平。

英国的铝循环利用

2019-03-05 09:04:34

据国外媒体报道,及海德鲁的估测,再生铝产品将会坚持5.8%的年增加,于2015年到达2600万吨。全球约有 1200家的铝厂触及再生铝的出产(原铝出产商200家),首要会集在工业兴旺区域 [欧洲:286家,北美:237家,亚洲(不包括我国):193家]。我国具有100家原铝出产商(占全球总数的一半),而再生铝厂仅为47家。          2006年,英国的铝废料出口降至38.7万吨,较2005年的 47.7万吨下降19%。我国是其最为首要的铝废料消费国,约获取其出口数量的35%。英国每年约有500万只食物及饮料罐(铝或钢制)被收回,约200 万辆轿车带来150万吨的可收回金属,数量远大于其它欧盟国。       铝废料的收回使用,能够削减近95%出产原铝所需的能源耗费,削减填埋废料所需用地及削减煤矿资源的耗费。

金矿尾矿治理与利用

2019-01-16 17:42:21

金矿尾矿粉尘遇风轻易飞扬,遇水轻易流失,长期堆放,不仅占用大量土地,同时尾矿粉尘对附近环境构成危害,本文就尾矿污染现状提出几种简易的管理方法。一、金矿尾矿污染现状招远市现有金矿尾矿库大小近百个,大多呈山谷形、山坡形和平地形,多数已被覆土造田,有的正在使用,还有一部门没有被覆土,也有的尽管压了一层薄土,易形成第二次粉尘危害,仍对附近环境造成影响因为金矿尾矿粒度细,并含有选矿药剂以及金属离子,一遇大风,特别是干季3—6月份,将尾矿刮得黄砂骤起、尘土飞扬,落入村庄、农田、果园,使其受到污染侵害,由此而产生的污染纠纷将直接影响社会的安定团结尾矿对环境污染大体通过三种途径:一种是尾矿在风化过程中逸出某些有害气体,经大气传播而进行污染;另一种是极细的尾矿砂粒受风吹的作用(甚至可形成沙暴),使附近环境受到严峻危害;三是碰到汛期,尾矿连同雨水流入农田、河流,使地下水造成危害综上所述,尾矿污染占用土地,损害景观,破坏泥土,危害生物,淤塞河道,污染大气。二、尾矿污染控制方法  对尾矿管理与利用最为简朴可行的几种方法为:一是覆土造田。在泥土比较充足的地区可采用压10-20厘米土的方法而后进行种植,覆土造田,扩大耕地面积,这种方法合用于呈山谷形的尾矿库。多年来,这种方法已得到肯定。但也有因压的土层较薄,造成粉尘二次危害的。二是利用有机废弃物,对金矿尾矿粉尘采取可降解性固化、封锁,选择适当种子和基质使植物迅速发芽、成长以达到植被利用目的。这种管理尾矿的方法,通过几年的实践,试探出一些经验,尤其是在可降解固化废物选择、基质、种子选择以及种子发芽时间等做了多项实验,有些已获成功。它克服了占用大量土层、受尾矿外形所限管理不便等弊端。同时在沙漠管理等方面也大有可为。三是利用尾矿开发建筑材料。金矿尾矿中某些硅砂、砂岩或脉石英可被利用。砖是最常见的建筑材料,用尾矿制砖也是很好的利用方法,掺加一定量的石灰制成砖坯,然后送入碳化室,通入CO2碳化成砖,不但增加砖的压强,减少取土毁地,而且经济效益也相称可观。尾矿还可以制造平板玻璃及各种保温、隔热、隔音材料。此外,从尾矿中提取有用金属技术也已被利用。三、尾矿管理的几点建议  黄金出产过程中产生大量尾矿,因此要掌握好几个题目。一是尾矿库选址必需公道,这是管理、利用尾矿库的基础。二是用完的尾矿库立刻覆地造田。一般覆土厚度要400—600毫米以上,合用种植,使尾矿不再污染。三是种植能笼盖坝面的植物,如枝叶稠密、根茎发达、繁殖轻易的植物,能保土固堤,达到彻底的管理效果。四是对金矿尾矿,制定严格的治理轨制,谁污染谁管理,谁开垦谁利用,奖罚兑现,保证尾矿管理的顺利实施。

镍的再生与利用

2018-05-10 18:29:44

镍的再生与利用  镍与其他金属类似,可以完全再生利用。含镍产品具有一定的价值,由此产生了收集和处理这些材料的基础设施。现代社会更将金属再生视为与环境有关的行为。世界上很多国家,从事废旧金属的收集、分类、制备、运输及利用等经济活动所雇佣的人员要比矿石开采和冶炼行业的更多,也具有更大的经济价值。  镍与铝、铜、铅、锌一样,是最具经济价值的常见金属。鉴于其商品价值属性,在初次使用之时,提高镍的使用效益的商业动机就很明显。在生产和使用环节的各个阶段,都有对镍进行有效回收和再生的措施。  再生效率的计算基于一套被普通认同和接受的再生指标。数据显示,全球已达生命终点产品的镍再生效率为63%。根据所处地区和特定用途的不同,镍的再生效率大有不同。就含镍不锈钢而言,因为可以达到非常高的再生效率,所以镍的再生效率在金属工业中名列前茅,为构筑循环经济模式作出了贡献。  镍是很多重要应用中都必不可少的材料。这些应用广泛惠及社会生活中的不同领域,从清洁的空气和水、安全食品的制备以及健康呵护等生存必需,到类似厨房用具和电脑这样的家庭用品;在工业领域,镍催化剂和镍合金是现代高效化学工业的关键所在,包括让炼油工业能够生产出低硫燃油。镍使清洁发电成为可能,并在所有的可再生能源解决方案中拥有一席之地。先进的绿色技术提高了能源效率,降低了碳排放量;在建筑领域,各种含镍合金艺术地将功能性与高科再生性结合到一起。  强度、成型性能和提高耐腐蚀能力是镍广为人知的性能,这些性能使含镍材料在严苛的环境和极高的温度下发挥重要作用。镍的新用途还将会出现在数以百万计的零件和工艺之中。此外,含镍材料还是理想的再生材料,这是因为其具有生命终止价值,较容易辨别,并能高效地转化为新的高性能材料。  镍为社会作出了巨大贡献,但镍工业的努力并未止步于此。&nbsp;

铝灰的回收利用

2019-03-01 14:09:46

铝灰是电解铝或铸造铝生产工艺中发生的熔渣经冷却加工后的产品,含有铝及多种有价元素,是一种可再生资源。铝灰首要由金属铝单质、氧化物和盐溶剂的混合物组成,其间含铝10%~30%、氧化铝20%~40%。假如不加以收回运用,不只浪费资源,并且污染环境。从铝灰中收回铝及其他有价元素,充沛合理运用,对进步厂商的经济效益,维护生态环境具有重要的现实意义和实用价值。    目前我国小型再生铝厂遍及选用的办法是“炒灰收回法”。其详细进程是将刚刚耙出的铝灰放置在一个歪斜的铁锅中高处的一侧,运用铝灰本身的热量,人工用铁锹进行翻炒,镁等物质持续氧化放热使铝灰的温度升高。因为铝熔体与铝灰中其它物质的湿润性欠好,在翻炒的进程中铝熔体逐渐地聚集到铁锅的底部,然后将其取出并铸成铝锭,作为回炉料运用。这种办法尽管比较原始,但操作简略,对中小型厂商而言不失为一种较好的办法;但因为是敞开式作业,发生很多的尘埃,尤其是参加氯化锌等之后,会发生,在空气中吸收水分,一部分构成HCl,发生很多的烟雾,对环境是有害的,故应该建立集烟罩、增加收尘设备和喷淋等设备,对发生的烟气进行有用的环保处理。依据资料介绍,日本的一些再生铝厂商也选用炒灰的办法处理铝灰,但配套了有用的环保设备。    一种铝收回率较高的收回办法叫等离子体速溶法。该办法是运用靠风流起作用的等离子喷嘴,在倾动炉内熔炼铝浮渣。在空气中恰当拌入CO2、CH4或H2,因为物料被快速加热至950°C,使铝珠周围的氧化皮决裂,铝珠就流入炉底,并通过出料口流出。通过该办法铝的总收回率可达90%。一起参加氧化钙,生成熔融铝的密度比铝酸钙密度低,在炉内构成界面清楚的两层,定时放出,可得金属铝和铝酸钙两种产品。该法不只铝收回率高,并且不运用盐熔剂,得到渣料铝酸钙可作为产品出售。    铝灰通过一次或屡次收回铝后,铝含量现已很低,此刻铝灰中首要含有氧化铝、铁硅镁氧化物、钾钠钙镁的氯化物等,仍能够进一步综合运用。例如,可用来制备陶瓷清水砖。清水砖是一种优质的墙体砌筑与装修材料,是传统墙体材料―粘土烧结砖的较好的替代品。有报导,以废铝灰为首要原料,增加一定量的粘土、石英和下降烧成温度的增加剂,选用限制成型法可制备高性能的陶瓷清水砖,气孔率为30%~50%,抗折强度>20MPa,抗压强度>60MPa。也能够运用来作路用材料,以铝灰、石灰、统砂为首要原料,所获产品能够满意建造公路的规范规划要求。有报导,将铝灰与硅石粉混合,在1350°C烧结,制成铺设路面的材料,其硬度是普通路面材料的1.5倍,抗滑才能是普铺路面材料的1.2倍。(钢研)

工业用银

2019-02-14 10:39:59

银在所有金属中是最好的电和热的导体,因而作用在许多电器运用中,特别是在导体、开关接触器和熔断器中。接触器在两个可分离的导体间供给衔接,使电流能流过它们,在电气需求中所占的份额最大。         银在电子工业中最重要的用处是供给厚膜涂层,最遍及的是银钯合金用于丝屏蔽回、多层磁电容器和制造水下开关,涂银薄膜用在轿车电热挡风玻璃中以及用在导电粘合剂中。         银易于从双碱金属(例如中或许运用银阳极)中发生电解沉积,因而广泛运用于电镀工艺。银溶液由化、碳酸盐、银和增亮剂制成。参加银时一般运用单金属盐如化银或双金属盐如银。各种形状的银用来做阳极,有板、棒、杆粒状和特制的形状。在某些物品例如熔断器帽上镀层的厚度不到1微米,尽管今后该处的银很简单失去光泽;而重型的电气设备一般镀层为2到7微米。         银反光性是无与伦比的,在抛光今后简直能够100%地反光,使其能用在镜子上,涂在玻璃、赛璐玢或金属上。         许多可充电或不行充电的电池,运用银合金做阴极。尽管贵重,但银电池的功率分量比优于其他金属。这一类电池中最常见的是小的钮扣型电池,(银在分量中约占35%)用在手表、照相机和其他类似的电器产品中。用作催化剂的银一般为网状或结晶状。例如在出产甲醛时银催化剂是很重要的。甲醛首要用于做电视机、计算机和电器开关箱的外壳。在日积月累的医院、边远地区和家庭的水净化体系中,银用作灭菌和除藻剂。银的活动性和强度有助于焊接金属(在摄氏600度以下称为铜焊),含银的铜焊合金广泛运用于从空谐和冷冻设备到电气工程的配电设备中,还用在轿车和飞机工业中。镀有高纯度银的轴承比任何其他方式的轴承具有更高的抗疲劳强度和承载才能,因而在各种高技术范畴广泛运用。          相片业          相片的处理进程是根据对光极灵敏的银卤化物的存在,一般是将银溶液和另一种碱性金属卤化物溶液混合。相片首要用于射线相片、书画印刻和顾客运用的相片。相片制造供应商需求高品质的银。         首饰和银器          银和金有类似的特色,具有极好的反射性和最好的抛光性。因而银匠的意图就是将现已很亮的银的表面打磨得愈加亮堂。纯银(999)不简单失去光泽,但为了添加耐用性,在制造首饰时一般参加少数的铜。此外银还被很多用于金银合金。自14世纪开端纯度为925的先令银就成为了银器的标准。         银币         历史上,银比金更广泛地用于制币,因为银的价值低、直销量大,适用于每日付出。直到19世纪后期绝大多数国家一向用银本位。但随着金的兴起,银本位逐步让坐落金本位。现在在美国、澳大利亚、加拿大和墨西哥,银币仍然是一种流转钱银,首要在投资者手中活动。

贵金属工业

2017-06-06 17:50:14

贵 金属 工业:贵 金属 (Precious metal),通常用来指代黄金,白银和白金三种 价格 昂贵,外表美观,化学性质稳定,具有较强的保值能力的 金属 。其中黄金的地位尤其重要。在布雷顿森林体系崩溃之前,西方各国货币均与美元挂钩,美元则与黄金挂钩,许多国家都公布本国货币的含金量,黄金的地位非常重要。1970年代後,随着世界金融格局的重组和通货膨胀得到缓解,黄金等贵 金属 的地位有所下降,但仍被视为世界通用的交换媒介和保值工具。它是发展现代工业、现代国防和现代科学技术不可缺少的重要材料。钯、铂贵 金属 催化剂的工业应用 贵 金属 催化剂及新材料的发展TH、THC、TO系列钯、铂贵 金属 催化剂是湖北省化学研究院气体净化中心近几年新推出的、具有独立知识产权的产品。该催化剂以活性氧化铝为载体,以钯、铂为主要活性组分,并添加多种特种稳定剂制成,主要用于化工原料气中的脱氢、脱烃及脱氧,也可应用于化肥、精细化工、冶金钢铁、半导体电子、空分等 行业 ,以及环保等新技术领域。&nbsp;&nbsp;&nbsp; 该系列催化剂具有如下特性:①使用空速大,可在5 000~30 000h&mdash;1的大空速下运行;②低温活性好,在同类产品中对杂质气体的脱除所需的净化温度更低;③净化度高,净化后气体中含量可达10&mdash;6级;④使用寿命长,一般可达2~5年(原料气总硫要求&lt;0.1 &times;10&mdash;6)。贵 金属 资源特点   (1)储量丰富、品种多样。我国目前已发现的矿种多达64种, 加上半 金属 共70种。这些矿种在民族地区几乎样样都有。从已探明的储量看,锡、锌、钒、钛和稀土储量均居世界首位,钒占47%,钛占45%。铝、锗、铜、镍、金、铂、钯、钨、锑、汞等储量名列全国前茅。   (2)分布广泛而又相对集中。我国 有色金属 产地遍布全国, 尤其是用途最广的铜、铝、锌等矿在民族地区更是广有分布。且又相对集中在一些省区。如:铝土矿分布于西南各地,但又集中于贵州、广西二省区,其中广西平果铝土矿是我国目前最大的铝土矿。云南、广西的锡,贵州铜仁的汞,内蒙古白云鄂博的稀土,以及正在勘查的柴达木盆地和攀枝花地区两个新老&ldquo;聚宝盆&rdquo;都是具有相当储量的 有色金属 资源。   (3)多贫矿和伴生矿床。 民族地区的 有色金属 多属品位低的贫矿和伴生矿。这增加了冶炼的难度,但又为一矿多用,资源的综合开发创造了条件。例如,云南个旧锡矿,每炼出1吨锡便可回收铜、铅、锌等 有色金属 3.5吨,铁50吨,锰6.3吨,还可以提取大量硫、砷等非 金属 。   (4)资源开发条件良好。民族地区具有得天独厚的水力资源。 有相当多的 有色金属 富集地区,恰好水力资源也很丰富,为发展耗水、耗电多的 有色金属 工业提供了有利条件。想要了解更多关于贵 金属 工业的资讯,请继续浏览上海 有色 网( www.smm.cn ) 有色金属 频道。

工业硅

2017-06-06 17:50:02

&nbsp;工业硅又称化工硅、结晶硅或 金属 硅,主要用途是作为非铁基合金的添加剂,也作要求严格的硅钢的合金剂,冶炼特种钢和非铁基合金的脱氧剂。元素周期表中硅是非 金属 元素,原子量为28.80,密度为2.33g/m3,熔点为1410&deg;C,沸点为2355&deg;C,电阻率为2140&Omega;.m,硅呈灰色,有 金属 色泽,性硬且脆,自然界中硅的含量约占地壳质量的26%。工业上按照硅中铁、铝、钙的含量,可把工业硅分为553、441、411、421、3303、3305、2202、2502、1501、1101等不同的牌号,所以工业硅成了在工业生产中有广泛用途的硅产品的统称,目前包括:硅铁、 金属 硅、硅锰、硅铝、钡锰钛铁、硅锰钒铁、硅铝钡铁、硅铝铁、硅钙、硅钢板、铝硅合金、镍铬-镍硅热电偶丝、锰硅合金、稀土硅钙钡、硅钙合金、硅钡合金、硅铬合金、镁硅合金、锗硅合金、硅钴、硅青铜、铁硅合金、锌硅合金、硅钛铁合金、镍硅合金、铝镁、硅合金、铜硅合金等等。我国工业硅的主要产区分布在西南地区的云南、四川、贵州、广西;华中的湖南、湖北;华东的福建地区;东北地区主要是黑龙江的黑河和临江地带,吉林、辽宁以及内蒙古;陕西、青海等地也有厂家生产。&nbsp;

氧化铝碱性工业废水和生活污水综合利用研究项目通过鉴定

2019-01-16 09:34:55

近日,中国有色金属工业协会组织有关专家在郑州对中国铝业股份有限公司河南分公司完成的《氧化铝碱性工业废水和生活污水综合利用研究》项目的研究成果进行鉴定。与会专家听取了课题组的汇报,审查了鉴定材料,考察了现场,经过认真讨论,专家认为,该项目将氧化铝生产过程中产生的碱性工业废水和生活污水混合,制得了再生水,符合回用水质要求,并在中国铝业河南分公司废水处理站得到成功的应用。利用两种不同性质的废水相互作用、以污治污,综合利用,探索了新的生活污水处理方法。在不增加工业废水处理站设施的情况下,处理后的水质满足回用要求,降低污水处理费用,减少了污水排放量,有明显的经济效益、社会效益和环境效益。达到国内同行领先水平。

废钢铁回收利用

2019-01-30 10:26:27

废钢铁是指生产领域和消费领域产生的废钢铁的总称。 生产领域产生的废钢主要是指钢铁、机械、铁路、建筑、通讯、油田、电力、水利等生产领域产生的钢渣、废钢坯、废次材、边角料、各种报废设备或器材、1995年仅重点钢铁企业就回收废钢铁1320万吨。消费领域产生的废钢铁主要是指城乡居民、企事业单位在消费过程中阁下的各种废钢铁及其制品,包括铁锅、废冰箱、废洗衣机、废自行车、废镰刀、报废的小型农具等。 回收的废钢铁,一是回炉炼钢,废钢铁是电炉钢的重要原料,每利用一吨废钢铁,可炼钢850千克,相对于用铁矿石炼钢可节约铁矿石20吨,节能1.2吨标准煤。二是深加工生产小型农具和小五金制品。

铜的再生利用

2018-12-12 13:51:05

在所有金属中,铜的再生性能最好。废铜是铜工业的一个重要原料来源。在 1997年世界铜消费量中,有37%来自再生铜。  废铜按其来源有两类。一类是新废铜,它是铜工业生产过程中产生的废料。另 一类是旧废铜,它是使用后被废弃的物品。铜和铜基材料,不论处于裸露状态,还 是被包在最终产品里,在产品寿命周期的各个阶段都可回收再生。一般来说,用于 再生的废铜中新废铜占一半以上。  实际上所有的废铜都可以再生。再生工艺很简单。首先把收集的废铜进行分拣。 没有受污染的废铜或成分相同的铜合金,可以回炉熔化后直接利用;被严重污染的 废铜要进一步精炼处理去除杂质;对于相互混杂的铜合金废料,则需熔化后进行成 分调整。通过这样的再生处理,铜的物理和化学性质不受损害,使它得到完全的更 新。  由于废铜可以再生,从而有较高的价值。例如,清洁的1级废铜的价格可以达到 新精炼铜价格的90%以上;黄铜新废料的价格也可达到相应黄铜价格的80%以上。 对于铜制品厂,由于能够收回生产过程中铜废料的价值,可使成本显著降低。  某些国家对铜的需求在很大程度上要依靠再生铜来满足国内需要。例如,美国 的铜消费量居世界首位,在1976到1996年的20年间,由废铜再生提供的铜占每年铜 消费量的比例在44%至54.7%。在欧洲,铜矿资源缺乏,除大量进口铜精矿外,还 要依赖废铜作重要补充。据统计,1997年再生铜占总原料的42.6%。其中废铜直接 利用的为22.4%,经再次精炼的为20.2%。  从矿石开采到生产出精铜,需要经历许多耗能的生产过程,能量消费大。用废 铜回收生产铜,不但经济而且节能,与原生铜的生产相比可以节能80-90%。铜的再 生利用不但可以有效地利用自然资源,而且有利于环境保护。影响铜再生利用的因 素很多,主要有:废物收集系统的效率、技术经济因素、产品设计、社会价值以及 政府的重视程度等等。对材料的合理设计、使用、再生和废弃,是保持社会可持续 发展的重要内容。  3.铜与环境  铜以多种形式天然地存在于环境中。在地壳上层10公里范围内,平均含有约 0.0033%的铜。人类和动、植物等生命在这种存在铜的自然环境中进化,结果在 大多数生物体内建立了利用铜的机制。不但人体健康,而且动、植物的生长都离 不开铜。  当前,在铜和铜基产品的冶炼、加工和应用中,业已采用了许多工艺和技术, 例如,湿法冶金提取铜,火法冶金中回收SO2制酸等等,可以减少甚至在某些情 况下完全消除对环境的不良影响。仔细地规划和选用最佳或者适用的技术、工艺 和实践,再加上恰当的管理,将有益于环境的维护。  人类的活动也把铜引入环境中,这是由于铜工业的冶炼和加工,以及铜产品 的应用、损耗和废弃所造成的。铜可以完全回收利用的特点,大大地减少了它可 能产生的不良影响。  铜与环境的相互作用是复杂的。然而,研究结果表明,进入环境中的铜,大 部分是稳定的,或者很快变成稳定的。它们以不危害环境的形式存在。事实上, 与某些人造物质不同,铜不会在体内增殖,也不会在食物链中出现生物上的聚积。  科学家们已制定出一种称为"危险评估"的方法,用以确定一种元素或化学 制品在环境中存在多少数量,而不造成危险。生物利用度的高低,是指对于某种 元素或化学制品,机体能够摄入而加以吸收或利用的数量。测定这个量是进行危 险评估的关键。在存有生物可利用铜的地方,生物体能够满足对于铜的基本需求, 并把多余的量排出来。如果生物可利用铜量过高,而对环境造成危害时,社会就 应对其危险程度作出评估,做好准备,控制危险,并采取适当的措施。  研究业已表明,从整体上看,我们的环境更可能遭受的是缺铜之患,而不是 过量铜的危险。土壤缺铜是全球食品生产的一个主要问题。特别是近年来,在农 业上采取了强化生产技术,过量地消耗了土壤中的有效铜,如果得不到及时补充, 不但使原来的贫铜现象恶化,而且使原本可以充分供应铜的土壤也变成贫铜土壤。 在许多地区,还必须在喂养牲畜的饲料中补充铜,用以解决缺铜带来的危害。  4.铜与可持续发展  人类今天如何开发利用它的资源,同时又要保证明天的需要不受危害, 这是保持社会可持续发展的一个重要问题。铜和铜合金在人们多姿多彩的 生活中有着广泛的应用。它的生产和应用能够连续不断地进行下去,对社 会发展十分重要。  铜对于发达国家和发展中国家国民经济的发展壮大起重要作用。采矿、 加工、再生,并生产出大量产品,不但创造了财富,而且提供了就业机会。 这些活动为建设一个国家的基础设施,以及创造贸易和投资机遇,做出了 贡献。对于欠发达国家,为了提高生活水平,这是特别重要的。  铜以各种形式和不同的浓度分布在地壳和海洋中,形成了铜的整个资 源基础。在当前的技术经济条件下,一般只有当铜矿床的含铜量超过0.5% 时才有开采价值。这个含量会随着铜矿的处理方法和铜的提取技术的改进 而降低。经常有关于某个金属"世界储量"的资料。储量指的是在所测定 的当时,能够经济地提取这种材料的数量。改进提取技术和工艺,新的勘 探发现,贫化以及经济条件的变化,都会引起储量水平发生变化。例如, 世界铜的储量在1950年时为9000万吨,到1970和1998年时则分别跃升到 2.8亿吨和3.4亿吨。  铜的优良再生利用特性使它成为一种可以反复利用的资源。据估计, 从古至今已开采出约3.5亿吨铜,其中绝大部分仍在不断地反复使用。在铜 的消费中再生铜约占40%。铜基产品的使用寿命有很大差异,用于电子设 备短到只有几年;在建筑上应用则可以长达超过100年。假设大多数产品的 #XXX#均寿命是30年,铜的真实回收率则为85%。  总之,通过发现新矿床、技术进步、改进设计以及铜的再生利用等措 施,可以不断地满足社会持续发展对铜的需求。此外,各种材料之间的竞 争以及供、需原则都会影响材料的经济和有效的使用。铜必将对今后社会的发展不断做出贡献。

工业硅粉

2017-06-06 17:50:01

工业硅粉是投资者想知道的信息,因为了解它可以帮助操作。工业硅粉(也叫微硅粉)(学名&ldquo;硅灰&rdquo;, Microsilica 或 Silica Fume ),硅粉又叫硅灰。是工业电炉在高温熔炼工业硅及硅铁的过程中,随废气逸出的烟尘经特殊的捕集装置收集处理而成。在逸出的烟尘中,SiO2含量约占烟尘总量的90%,颗粒度非常小,平均粒度几乎是纳米级别,故称为硅粉。   硅粉的研究始于斯堪的纳维亚国家,尽管20世纪50年代人们对硅粉作用就有所认识和初步的研究,但应用于实际工程中是从70年代开始的,首先是挪威和瑞典等国家在港口码头、北海油田及地下矿井中部分采用了硅粉混凝土,1982 年,挪威在伏诺维斯坝上正式采用了硅粉混凝土筑坝, 20世纪80 年代初加拿大在魁北克建立了硅粉混凝土,并对大体积硅粉混凝土进行试验研究,拌制高标号混凝土1 万立方米,1983年美国用硅粉混凝土修补了奥里夫尼河上的卡查坝消力池,效果良好。世界上其它国家也都加紧研究和应用。而我国对硅粉的研究历史不长,仅仅10多年时间,1985年水电部东勘院科研所和水电部第十工程局首次在四川渔子溪二级电站中试用了硅粉混凝土,在厂房混凝土中掺硅粉3 %~7 %,以提高早期强度,加快模板周转,达到预期效果,另外,在引水隧洞喷射混凝土中,掺硅粉715 %,以减少混凝土的回弹量,南科院在大伙房水库工程、龙羊峡泄水建筑物和葛洲坝泄水闸修补等工程中都采用了硅粉混凝土,效果较好,水科院对硅粉混凝土的耐久性能及硅粉水泥水藻灌浆材料进行了一些研究,并在二滩水电站基础固结灌浆中,潘家大坝溢流面修复工程、安康及四川秋达电站导流泄洪洞修补等工程中使用了硅粉混凝土,硅粉水泥灌浆。所有这些,说明硅粉混凝土作为一种高性能混凝土在工程中的应用日显重要,所以对其性能特别是其强度与耐久性的研究也倍受关注。配合比  对于硅粉混凝土的配合比设计,主要是根据设计要求, 确定硅粉的掺入方法,硅粉的最佳掺量,减水剂的最优掺量及砂石料调整,而其它则按普通混凝土设计方法进行。   a) 硅粉的掺入方法:硅粉在混凝土中一般有两种方法: 一是内掺,二是外掺,都要与减水剂配合使用。内掺法往往用硅粉代替水泥,又分等量代替和部分等量代替两种,等量代替为硅粉掺量代替相等的水泥,部分代替为1 kg 硅粉代替1~3 kg 水泥,作为研究一般掺量为5 %~30 % ,水灰比一般保持不变:而外掺法指的是硅粉像外加剂那样掺在混凝土中,而水泥用量不减少,掺量一般为5 %~10 % ,一般外掺法而得的混凝土的力学性能要高得多,但增加了混凝土中胶凝材料用量。   b) 硅粉的最优掺量往往控制在8 %~10 %。它是根据所用硅粉、水泥种类和骨料性质而定,并考虑它对性能改善程度及施工方便与否和技术经济指标等。   c) 减水剂的最佳掺量:在混凝土中使用硅粉,如不掺减水剂,想保持相同的流动度,则必然要增加用水量、水灰比增加,掺硅粉的混凝土强度也不上去,这也是过去硅粉在混凝土中未推广使用的原因。硅粉与减水剂联合使用掺用硅粉水灰比不变,即用水量不增加,也能达到与未掺硅粉的混凝土具有相同的流动度且硅粉混凝土强度等性能得到大幅度提高,一般国内较多采用萘系高效减水剂,如建1、H、DH3、FDN、NF、N2B 等,其掺量一般为胶材用量的1 %以内,有时为了减小水灰比,拌制超高强混凝土,减水剂掺量达2 %~ 3 %。   d) 砂石料用量调整:内掺硅粉一般对砂石用量不必调整。外掺硅粉要扣掉与硅粉体积相等的砂石体积。如果你想更多的了解关于工业硅粉的危害的信息,你可以登陆上海有色网进行查询和关注。&nbsp;

工业贵金属

2017-06-06 17:50:14

工业贵 金属 是指在工业中使用的贵 金属 。加强贵 金属产业 技术创新,对于支撑中国国防军工、新型工业发展具有重要意义。贵研铂业公司建议,我国目前可依托贵研铂业公司和昆明贵研所,加强贵 金属产业 技术创新,带动中国贵 金属产业 的提速发展。首先,可依托国家多品种、小批量军用贵 金属 新材料科研生产基地,通过政策和项目扶持建立健全国家军用贵 金属 新材料技术和产品体系,保证国防军工需求,并形成军用民用结合的 产业 格局。贵 金属 军工材料品种繁多、使用数量极少,加工工艺复杂、加工难度大,研制和试验设备专用性极强,绝大多数不能进行规模化生产,因此研制的投入远远大于产出。昆明贵所以及贵研铂业公司长期承担军工协作配套任务,克服困难尽力承制军品的研发项目,如贵研所连续多年为北京正负电子对撞机提供了25种贵 金属 配套材料,总重量不到30公斤。2007年贵研铂业公司被中央有关部委授予&ldquo;高技术武器装备发展建设工程突出贡献奖&rdquo;。但是,一直以来,昆明贵 金属 研究所、贵研铂业军用贵 金属 新材料的研发及试制未得到过国家高强度的扶持,未能形成可持续发展的、强有力的军工配套系统支撑能力。其次,应把贵 金属 新技术和新材料开发上升至国家的创新体系中,依托昆明贵研所、贵研铂业长期形成的科研优势,建立国家级的贵 金属 新材料重点实验室,强化贵 金属 新材料的基础及应用基础研究工作,为贵 金属 新材料的开发提供理论支撑,同时促进人才资源的聚集和贵 金属 研发平台的重构,并以此重点实验室为核心,以企业为依托,建立起我国贵 金属 领域的产学研战略联盟,支撑中国贵 金属产业 的快速发展。贵 金属 (Precious metal),通常用来指代黄金,白银和白金三种 价格 昂贵,外表美观,化学性质稳定,具有较强的保值能力的 金属 。其中黄金的地位尤其重要。在布雷顿森林体系崩溃之前,西方各国货币均与美元挂钩,美元则与黄金挂钩,许多国家都公布本国货币的含金量,黄金的地位非常重要。1970年代後,随着世界金融格局的重组和通货膨胀得到缓解,黄金等贵 金属 的地位有所下降,但仍被视为世界通用的交换媒介和保值工具。想要了解更多关于工业贵 金属 的资讯,请继续浏览上海 有色 网( www.smm.cn ) 有色金属 频道。

铁尾矿回收利用设计

2019-02-21 10:13:28

一、尾矿的性质(尾矿的工艺矿藏学研讨)     该尾矿取自本钢南芬铁矿的矿样。     (一)尾矿的化学和矿藏组成。尾矿的光谱分析、化学组成和矿藏组成别离见表1~表3。 表1  尾矿的荧光光谱分析成果    (%)元 素ONaMgAlSiPSClKCa含 量49.0880.1823.4081.8534.7770.1240.276-0.5712.306元 素TiMnFeCoZnRbSrVPb 含 量0.0870.1137.0960.0120.0110.0040.0050.090.007    表2  尾矿的化学多元素分析成果    (%)元 素PbZnCuSAsTfe含 量0.0010.0210.0010.520.029.31元 素SiO2MgOCaOAl2O3P 含 量72.533.433.341.650.081    表3  尾矿首要矿藏组成及相对含量    (%)矿藏称号磁铁矿赤铁矿、褐铁矿黄铁矿其他硫化物石英、长石相对含量2.05.50.8微51.0矿藏称号角闪石类、辉石类云 母绿泥石、黏土矿藏方解石其 他相对含量36.60.42.01.20.5        分析成果标明该尾矿的首要组成元素有O、Si、Fe、Mg、Ca、Al等,其次为K、Na、S、Ma等,首要化学成分有SiO2和铁的氧化物,其次是镁、钙、铝的氧化物,铜、铅、锌等有色金属元素及硫、砷含量较低。尾矿藏的首要金属矿藏为磁铁矿、赤铁矿,其次为褐铁矿、黄铁矿,微量的磁黄铁矿、毒砂等,其他金属矿藏、硫化物含量甚微。首要的非金属矿藏是石英、角闪石、透闪石等,其次为辉石、长石、阳起石、金云母、黑云母、白云母、绿泥石、方解石、菱铁矿、高岭石类黏土矿藏等,微量的绿帘石、(斜)黝帘石、滑石、电气石、磷灰石等。     (二)铁、硫的赋存状况。铁是尾矿中含量最多的金属元素,尾矿中铁和硫的化学物相分析成果见表4、表5。分析成果标明,铁首要赋存于赤铁矿(包含褐铁矿)及硅酸盐矿藏中,其次赋存于磁铁矿中,微量赋存于黄铁矿等硫化物及碳酸盐矿藏中。硫在尾矿中的含量虽低,矿藏组成相对简略,作为尾矿归纳运用,能够考虑收回,硫首要赋存于黄铁矿中,其次赋存于硫酸盐中。 表4  尾矿中铁的物相分析成果  (%)铁的相含 量散布率备 注磁铁矿中的铁1.4515.10首要的铁相赤铁矿、褐铁矿中的铁3.8339.90首要的铁相硫化物中的铁0.353.65首要为黄铁矿,其他硫化物甚微碳酸盐中的铁0.515.31菱铁矿、方解石等碳酸盐,铁含量甚微硅酸盐中的铁3.4636.04首要赋存于角闪石、辉石、阳起石、 绿泥石、云母等硅酸盐矿藏中总铁9.60100.00-   表5  尾矿中硫的物相分析成果  (%)硫的相含 量散布率备 注硫化物中的硫0.44991.45首要为黄铁矿,其他硫化物甚微硫酸盐中的硫0.0428.55硫化物氧化、水化构成的各种硫酸盐总 硫0.491100.00-         (三)尾矿的粒度分析及单体解离度测定。尾矿的粒度分析、铁矿藏、硫化物的单体解离度测定成果见表6~表8。 表6  粒度组成和铁含量散布粒级/mm产率/%铁档次/%铁散布率/%+0.256.839.146.49+0.156.8319.1913.63+0.109.4211.7611.52+0.07411.2811.3613.32+0.04316.366.9511.82+0.03710.357.948.54-0.03738.938.5734.68全样100.009.62100.00   表7  铁矿藏的单体解离度﹡粒级/mm单体解离度/%备 注+0.2550连生体首要与脉石毗邻连生+0.1566连生体首要与脉石毗邻连生+0.1063连生体首要与脉石毗邻连生+0.07468连生体首要与脉石毗邻连生,部分细粒者被脉石包裹+0.04371连生体首要与脉石毗邻连生,部分细粒者被脉石包裹+0.03775连生体首要与脉石毗邻连生,部分细粒者被脉石包裹-0.03783连生体以毗邻连生为主全样72- ﹡氧化铁矿藏包含磁铁矿、赤铁矿及褐铁矿,二种氧化铁矿藏之间的连晶视为单体。   表8  硫化物的单体解离度﹡粒级/mm单体解离度/%备 注+0.2535连生体首要被脉石包裹或半包裹,其次为毗邻连生+0.1063毗邻连为主,其次被脉石包裹或半包裹+0.07469毗邻连为主,其次被脉石包裹或半包裹+0.04367毗邻连为主,其次被脉石包裹或半包裹+0.03776连生体以毗邻连生为主-0.03780连生体以毗邻连生为主全样68- ﹡金属硫化物首要是黄铁矿,包含一些偶见的磁黄铁矿、毒砂、闪锌矿等,它们之间的连晶视为单体。          粒度分析标明,尾矿产率首要在-0.074mm以下,在-0.037mm最多,铁在-0.037mm散布率最多;首要是磁铁矿和赤铁矿,少数褐铁矿。粒度多在0.04~0.2mm,氧化铁的单体解离度为72%,连生体首要与脉石矿藏呈毗邻连生,部分细粒者(0.03mm以下者)多被脉石包裹或半包裹连生。金属硫化物首要是黄铁矿(FeS2),其他如磁黄铁矿、毒砂、闪锌矿、方铅矿,黄铁矿等含量甚微,镜下偶见。黄铁矿的粒度多在0.03~0.08mm,解离度约68%,连生体首要与脉石矿藏呈毗邻连生,部分细粒者(0.03mm以下者)多被脉石包裹或半包裹连生。脉石矿藏首要是石英,其次为柱状硅酸盐矿藏角闪石、辉石、透闪石、阳起石等,还有少数的方解石和片状硅酸盐矿藏金云母、黑云母、绿泥石、黏土矿藏等。它们是尾砂的首要组成矿藏,粒度从0.01~0.3mm不等。相互间根本呈解离状况,部分集合体可见与氧化铁矿藏、黄铁矿等连生。     工艺矿藏学研讨标明,铁的氧化物和硫化物是可收回的金属矿藏,可加收回运用的非金属矿藏首要是石英、长石类矿藏。从铁的物相分析来看,能够收回的主权是磁性铁和赤、褐铁矿以及碳酸铁(磁化焙烧方案),硅酸铁极难收回,硫化铁中的铁首要在硫精矿中。因而铁的理论收回率为60.31%。因为尾矿中含有脉石矿藏包裹的铁矿藏以及以脉石矿藏为主的连生体,即于出产本钱等原因,不能考虑直接再磨,因而脉石矿藏包裹的铁矿藏以及以脉石矿藏为主的连生体根本难以收回。     二、从尾矿中收回铁     (一)预富集方案的挑选     因为南芬选厂现场尾矿中铁档次较低,因而须选用预富集作业,首要扔掉很多的尾矿,使全铁档次到达30%左右或更高,才有或许使铁的收回具有经济含义。依据工艺矿藏学研讨成果,南芬选厂现场尾矿中铁矿藏首要是赤铁矿及少数磁铁矿和碳酸铁,氧化铁矿藏单体解离度约72%,尾矿再进行磨矿一是出产本钱高,二是在技能上无必要,因而首要断定尾矿不预先磨矿。选用重选(螺旋溜槽)和磁选(弱磁+强磁)两种预富集方案。     依据南芬现场尾矿中铁矿藏单体解离度较高,且铁矿藏密度大于脉石矿藏,重选选用螺旋溜槽预富集,螺旋溜槽实验准则流程见图1。螺旋溜槽规格为Ф400mm。  图1  溜槽实验工艺流程        因为南芬选厂现场尾矿中可收回的铁首要是磁性铁和赤褐铁及碳酸铁,因而首要选用弱磁收回磁性铁,后用强磁收回赤、褐铁矿及碳酸铁,实验准则流程见图2。    图2  磁选预富集铁收回实验准则流程     实验成果标明:     1、南芬铁矿尾矿选用螺旋溜槽预富集,经一粗一精,粗精矿全铁档次可富集至31.28%,经一粗二精,粗精矿全铁档次可富集至41.05%。     2、南芬铁矿尾矿选用磁选预富集,粗精矿须磨矿后才干富集至35%左右,且铁收回率较螺旋溜槽预富集低。从技能、本钱和作用来看,选用重选预富集办法比较抱负。     (二)预富集粗精矿收回铁选矿实验     1、流程方案挑选     依据重选预富集实验成果,南芬选厂现场尾矿经过螺旋溜槽一粗一精(或二精)预富集后,粗精矿全铁档次在30%~40%,到达了一般铁选厂原矿档次,依据收回赤铁矿的经历,断定选用以下三种方案进行铁精矿的收回实验:     (1)脱硫浮选―磁化焙烧―弱磁工艺。工艺流程见图3,实验成果见表9。  图3  南芬现场尾矿方案1全流程实验工艺流程 (需求清楚资料的会员,请来电免费讨取)   表9  南芬现场尾矿方案1全流程实验成果  (%)产品称号产 率品 位收回率TFeSTFeS铁精矿5.2166.340.4535.234.51硫精矿1.1140.2740.564.5686.58弱磁尾矿9.5110.26-9.85-溜槽尾矿84.175.87-50.36-给 矿100.009.810.52100.00-        (2)弱磁―强磁―反浮选工艺。工艺流程见图4,实验成果见表10。    图4  南芬现场尾矿方案2全流程实验工艺流程       表10  南芬现场尾矿方案2全流程实验成果  (%)产品称号产 率品 位收回率TFeSTFeS弱磁精矿0.9863.780.216.31-铁精矿3.9362.290.4024.70-硅精矿0.8127.38-2.24-硫精矿0.1540.1437.570.6110.84强磁尾矿4.9722.30-11.18-溜槽尾矿89.166.11-54.97-给 矿100.009.910.52100.00-        (3)直接反浮选工艺。工艺流程见图5,实验成果见表11。    图5  方案3全流程实验工艺流程   表11  南芬现场尾矿方案3闭路实验成果  (%)产品称号产 率品 位收回率TFeSTFeS铁精矿5.4962.520.2934.54-硫精矿1.1240.1338.854.5283.68硅精矿4.2314.36-6.11-溜槽尾矿89.166.11-54.82-给矿100.009.940.52100.00-        2、方案比较     南芬选厂现场尾矿铁收回方案比较见表12。从表12可知,方案1不管从铁精矿铁收回率、档次,硫精矿硫收回率、档次,仍是终究磨矿粒度目标均优于方案2和方案3。因而,选用方案1收回铁比较抱负,即先选用螺旋溜槽预富集丢掉很多低档次尾矿,铁精矿经脱硫浮选得到硫精矿,浮选尾矿经磁化焙烧,磨至70.76%-0.074mm后进行磁选即可取得高档次铁精矿。流程特点是充分运用铁矿藏和硫矿藏与脉石矿藏的密度差异,先开始富集,得到铁矿藏、硫化物粗精矿,然后运用硫化矿藏与氧化矿藏的可浮性差异得到硫精矿。磁化焙烧将磁铁矿、赤铁矿及碳酸铁改改变为磁性铁,防止角闪石、透闪石等难浮硅酸盐矿藏对铁精矿档次的影响,一同也防止了浮选需求的细磨问题。 表12  南芬选厂现场尾矿铁收回方案比较  (%)方 案铁精矿硫精矿磨矿细度产 率铁档次铁收回率产 率铁档次铁收回率15.2166.3435.231.1140.5686.58-0.074mm70.76%24.9162.5931.010.1537.5710.84-0.043mm81.12%35.4962.5234.541.1238.8583.68-0.043mm88.25%        3、废水废渣处理     螺旋溜槽和磁选废水经沉积后清水可直接回用,浮选废水可直接回来浮选体系,螺旋溜槽和磁选尾矿均进入下一步非金属矿藏资源化归纳运用。     4、铁精矿的质量     铁精矿质量分析见表13。 表13  铁精矿质量分析成果  (%)元素TFeFeOSPAsPbZnSiO2CaOMgOAl2O3含量66.3419.430.450.0050.010.0010.014.340.370.400.23        三、尾矿中非金属矿藏的收回     (一)质料性质     尾矿经得选收回铁后的尾矿作为非金属矿藏收回运用的质料,其首要化学成分、粒度组成和矿藏组成见表14~表16。 表14  选铁后尾矿首要化学成分  (%)成分TFeSiO2Al2O3CaOMgO含量5.6876.122.323.373.59   表15  选铁后尾矿粒度组成粒级/mm+0.25+0.15+0.074+0.043+0.037-0.037产率/%11.2312.1226.6716.009.9224.06   表16  选铁后尾矿首要矿藏组成  (%)矿藏 称号磁铁矿赤铁矿 褐铁矿硫化物石英 长石角闪石 辉石类云母绿泥石 黏土矿藏方解石其他相对 含量1.02.5微48.042.00.41.52.00.5        (二)收回方案     荧光光谱分析标明铁尾矿中不含放射性元素,在重选预富集尾矿中,二氧化硅的含量到达76.12%,石英、长石、角闪石类、辉石类非金属矿藏占90%以上,充分运用这部分非金属矿藏则是铁矿石选矿尾矿归纳运用的重要组成部分。这类非金属矿藏适合于作各种建筑材料、土壤改良剂及无机补强填充材料。     依据重选尾矿的粒度组成,持续选用处理量大、无污染的重选办法别离产出不同粒度规模的产品,经不同的深加工技能处理,取得不同性质和用处的相关产品。归纳运用工艺流程如图6。  图6  非金属矿藏归纳运用工艺流程        (三)各级产品的物化性质     分级产品的产率见表17,化学组成见表18。粒度组成见表19、表20,矿藏组成见表21。 表17  分级产品的散布份额分级产品+0.25mmФ75mm沉砂Ф25mm沉砂Ф25mm溢流产率/%11.2372.1110.705.96   表18  分级产品首要化学组成  (%)分级产品TFeSiO2Al2O3CaOMgO+0.25mm含量4.8670.831.262.353.16Ф75mm沉砂含量5.3879.412.313.193.32Ф25mm沉砂含量7.4870.143.273.034.92Ф25mm溢流含量9.0765.103.783.797.10   表19  Ф75mm旋流器沉砂筛分成果粒级/mm+0.15+0.074+0.043+0.037-0.037含量/%13.5731.1519.6012.0621.62   表20  Ф25mm沉砂、溢流产品激光粒度分析成果产品称号体积累积散布粒径/μm均匀粒径/μm表面积/cm210%50%90%97%Ф25mm沉砂7.4422.3939.4745.3923.222864Ф25mm溢流0.863.7710.9817.765.2128508Ф25mm二次溢流0.511.677.179.072.7960391     表21  分级溢流产品的矿藏组成矿藏称号相对含量/%Ф75mm沉砂Ф25mm沉砂Ф25mm溢流Ф25mm二次溢流氧化铁矿藏1.31.41.51.6硫化物微微微微石英42403736角闪石类、辉石类44.546.55051长石6655绿泥石、黏土矿藏、云母类4444方解石1.71.622其他0.50.50.50.4          四、产品应用技能     (一)建筑用砂     溜槽尾矿的+0.25mm部分经粒度及相关成分分析,到达契合国家建筑用砂3类标准。建筑用砂检测成果见表22。 表22  建筑用砂检测成果  (%)粒径检测成果3级配区标准成分检测成果标准4.75mm010~0云母0.81<2.02.36mm0.6515~0含泥量0.16<5.01.18mm2.1525~0轻物质含量0.32<1.060022.4040~16有机物含量合格合格30057.7585~55硫化物及硫酸盐0.43<0.5150100.00100~90氯化物0.02<0.03粒度模数1.821.6~2.2表观密度2610>2500---堆积密度1400>1350---空地率46.5<47          (二)玻璃     选用Ф75mm旋流器的沉砂,配入硼砂、高等第石英砂等质料,按质料―配料―混料―熔制―成型―退火―加工―产品的工艺流程进行玻璃熔制实验,成果标明,这部分产品可代替部分石英砂用于出产日用普通玻璃,因为质猜中含铁较高,只局限于出产带色普通玻璃。     (三)玻化砖     依据Ф75mm旋流器的沉砂的化学组成及玻化砖的成分要求,配入部分高铝质质料,按质料―配料―混料―熔制―成型―退火―加工―产品的工艺流程出产玻化砖。产品的吸水率0.3%、抗折强度1365N,抗压强度65.3MPa,莫氏硬度为7级,损坏强度1065N,开裂模数49.17MPa。契合相关标准(吸水率≤0.5%、损坏强度≥600N,开裂模数≥35MPa)。成果标明,铁矿尾矿能够部分代替陶瓷质料出产玻化砖(尾矿含铝较低,参加量不能过大),因为含铁较高,局限于出产灰色、棕色、棕红色系列产品。     (四)免烧砖     混凝土免烧砖一般运用的粗细集料别离为卵石(或碎石)和河沙以合理的配比,与水泥一同拌和,运用振荡、加压等工艺手法即可出产具有必定物理功能的混凝土制品。一般来说,混凝土制品中粗细骨料所占份额在80%以上,用经过挑选的铁尾矿Ф75mm沉砂部分,配入必定份额的建筑用砂、采矿废石破碎的碎石、水泥,制造免烧空心砖和实心砖。工业实验产品的检测成果为:免烧空心砖容重3.5kg/块,抗压强度单位最小值9.4MPa,均匀值为11.2MPa,抗冻性检测强度损失率12.7%,质量损失率0.8%,到达行业标准JC943-2004的MU10等级;放射性检测目标均低于技能要求。实验标明,运用铁尾矿代替混凝土粗细集料出产混凝土免烧砖是切实可行的,可充分运用我国现有的较为老练的工艺设备及出产条件,安排规模化出产,为很多归纳运用铁尾矿拓荒一条新的有用算途径。     (五)轻质建材     以铁尾矿Ф75mm沉砂部分为质料,配入必定份额的水泥、石灰、石膏、引发剂、发气剂,按质料―细磨(各质料别离细磨)―配料―拌和―成型―静养―蒸压的工艺进行混凝土加气砌块的实验,检测成果:蒸气加压混凝土砌块抗压强度单块最小值3.4MPa,均匀值为4.0MPa,抗冻性检测质量损失率0.6%,冻后抗压强度3.8MPa,枯燥缩短性0.45mm/m,契合GB11968-2006的技能要求。工业实验成果标明,用铁尾矿出产轻质建材施行产业化是可行的。     (六)填充材料     橡胶补强填充剂是橡胶组成中不行短少的组分,它起着进步橡胶强力。削减缩短、降低本钱等作用。一般在橡胶中的用量为30%~150%,跟着橡胶工业的快速开展,对补强填充剂的需求日益增长,各种新式补强填充剂也不断开发,以习惯橡胶工业开展的需求。用铁尾矿的Ф25mm溢流部分为质料,别离在天然橡胶、MC炭黑和绢云母粉,在丁胶中的补强功能优于除半补强炭黑以外的其他无机补强填充剂;将Ф25mm溢流产品用适宜的表面改性剂改性后,进行配方和胶料功能实验,成果标明其在橡胶中的补强功能显着优于未改性产品。选用Ф25mm的二次溢流产品的胶料物理机械功能比选用一次溢流产品更好。阐明尾矿中细粒级的非金属矿藏可作为橡胶的补强填充材料。并且,粒度越细,作用越好。     (七)土壤改良剂     经过检测,铁尾矿没有放射性,其间含有Fe、Ca、Mg、P、S等植物成长所需的矿藏元素。依据土壤环境质量标准(GB15618-1995),该尾矿契合Ⅱ类土壤分类标准,即可作为一般农田、蔬菜地、茶园、果园、草场等用土,根本上对植物和环境不形成损害和污染。用Ф75mm沉砂和Ф25mm溢流粉、磁选尾矿、植物园土壤按不同份额培养实验,经过6个水平不同配比的土壤培养实验,8个目标的检测,成果标明,有的植物在尾砂中成长状况比单独在植物园土壤中培养好(如莴芛),有的植物需求尾砂两种粒径成分和植物园土壤按必定的份额培养,作用会更好(如雨衣甘蓝)。此成果阐明尾矿还田是或许的,鉴于尾砂的特性,能够将尾砂掺入土壤中,尤其是磁选矿矿的掺入,可进步土壤的磁性,引起土壤中磁团粒结构的改变,导致土壤中铁磁性物质活化,使土壤的吸收功能、缓冲功能、抗逆功能等物理、化学和生物特性得到改进,进步通透性、保水保肥才能和有机质含量,促进作物成长。     综上所述,铁尾矿中的铁矿藏、硫矿藏和很多非金属矿藏均可收回运用,经过有方案的体系开发,得到不同性质和用处的系列产品,归纳运用率可达90%以上。

铁精矿的加工利用

2019-01-25 10:19:03

选矿厂所得的铁精矿,主要用作炼铁原料。由于细粒铁精矿不宜直接加入炼铁高炉。须先加入熔剂,再高温烧结成块;或添加粘合剂压制成型;或滚成小球再烧结成球团;然后装入高炉内冶炼。    高炉冶炼是把铁矿石还原成生铁的连续生产过程。在高炉内矿石中的铁及部分硅、锰被焦炭还原出来,与碳组成熔融的生铁,矿石中的脉石与石灰石组成熔渣,两者分别由炉缸的出铁口与出渣口流出。冶炼产品可以是供炼钢用的生铁,或者是铸造生铁,或者是高炉铁合金。    炼钢主要的原料是生铁。生铁所含的碳及固有杂质(硅、锰、磷、硫和碳)都是在高炉冶炼,过程中从铁矿石及其他原料转入生铁的;而炼钢的任务就在于,在液体生铁中用某种方法引入某些数量的氧把这些元素烧掉,所以叫作氧化熔炼。在一定条件下氧和溶解于生铁中的硅、锰、磷以及某些数量的铁起反应,把它们变成氧化物。这些氧化物在金属中的溶解度都很小,因而差不多全部浮出并形成炉渣。当金属中各元素的含量经过一系列操作步骤已经符合规格,而温度也符合浇铸的要求时,炼钢的任务就完成了。但是炼钢车间是以钢锭作为最后产品,因此,炼钢的任务还包括铸锭工作。总结起来,炼钢生产总的任务即把生铁加以再炼并铸成钢锭供轧钢车间进一步加工之用。

锑矿石工业类型及工业要求

2019-02-26 16:24:38

现在,在地壳上尽管已发现锑矿藏和含锑矿藏达120多种,但具有工业利用价值的合适如今选冶条件,含锑在20%以上的锑矿藏仅有10种,即辉锑矿(含Sb 71.4%)、方锑矿(含Sb 83.3%)、锑华(含Sb 83.3%)、锑赭石(含Sb 74%~79%)、黄锑华(含Sb 74.5%)、硫氧锑矿(含Sb 75.2%)、天然锑(含Sb 100%)、硫锑矿(含Sb 51.6%)、脆硫锑铅矿(含Sb 35.5%)、黝铜矿(含Sb 25%)。其间,辉锑矿是锑的选冶最主要的矿藏质料。图1 锑华 锑矿类型区分,在地质勘探过程中应将矿石区分为天然类型和工业类型。锑矿石的天然类型,可分为氧化矿石、混合矿石、原生矿石3种,其标准按锑氧化率(%)区分:氧化矿石>50%,混合矿石30%~50%,原生矿石 锑矿一般工业要求:鸿沟档次,含Sb 0.7%;工业档次,含Sb 1.5%;可采厚度≥1m;夹石除掉厚度≥2m。这个工业要求目标,仅供详查和勘探初期阶段参阅。凡供给矿山建造根据的地质勘探陈述,勘探的矿床所选用详细工业目标,应由地质勘探单位提出开始定见,并附必要的地质材料,由工业部分托付矿山规划部分进行经济核算和比较研讨,由省以上工业主管部分断定。 当锑矿床中的伴生组分到达下列含量时,应留意归纳点评。 锑矿床中伴生组分档次:Au 0.1g/t、WO3 0.05%、Hg 0.005%、Pb 0.2%、Zn 0.4%、As 0.2%、S 2%、Cu 0.1%、Sn 0.08%、Ag 2g/t、Bi 0.02%、Se 0.001%、Co 0.1%、Ni 0.1%、CaF2 5%、BaSO4 5%。

废旧钢桶再利用需知

2019-03-14 10:38:21

废旧钢桶再生运用有许多方面的用处,最重要的就是钢桶的改制。改制有多种方式,归纳起来有以下几类:     把旧钢桶放于房顶用作贮水箱,加焊入水管和出水管,可作成简易自来水;把钢桶从桶身沿直径切开开,可制成洗衣盆;把钢桶沿轴心切开开可作家畜的食槽,在乡村还有人用它作洗澡盆;在桶身上方开一个大口,再在桶底焊上阀门,就可放在三轮车上用作拉水和贮水的东西;还有人用它作太阳能热水器或淋浴器的水箱等……     这样稍加改制可作成日常用品。     旧钢桶因为运送运用等进程中的磕碰,桶身常有凹坑和变形,桶身与桶顶底的卷封边也多有变形,较难圆整。为了运用它再制造新的钢桶,一种办法就是沿卷边把桶顶和桶底切开下来,把桶身清洗后从头翻边,再加上全新的桶顶和桶底,然后进行卷封,这样制造出来的钢桶比旧桶高度低一些,容量也就小一些。旧桶的顶底可用来制造直径更小一些的钢桶顶底,也能够制造其它产品。     改制成容量较小的钢桶是其别的一种方式。     运用旧桶钢板制造其它产品。将旧钢桶选用气割法拆成三种部件,即桶顶、桶底和桶身,再将难以运用的部分裁去,将可运用部分进行清洗和展平。展平料可作为其它产品加工的毛坯板材。     废旧钢桶的再运用价值很高,但改制进程有时比较复杂,并且还常有风险发作。我国常有钢桶改制时的事端发作,首要是焚烧和爆破事端。因为钢桶的改制一般都离不开焊割操作,焊、割钢桶时,往往因为桶内的剩下汽油和易燃气体接触到焊、割火焰而引起爆破事端。因而对钢桶的焊、割操作,有必要采纳拆迁、清洗、置换等办法,才干进行焊、割操作。     1.废旧钢桶清洗焊、割,详细办法如下:     首先将桶内剩下的易燃液体倒净,然后用火碱()水溶液倒入桶内进行清洗。火碱的用量,一般每只容量为200升的汽油桶运用0.5公斤。清洗时,0.5公斤火碱分三次运用。首先向钢桶内灌进一半开水,放三分之一火碱,将口堵住后用力摇晃桶半个小时,然后将水倒出,如此接连清洗三次。再用清水洗一、二次后才干焊割。若清洗后没有当即焊、割,而存放了一段时间,则有必要从头用清水冲刷一、二次后才干焊、割。不然,没有清洗洁净的少数汽油也会挥宣布易燃蒸气,而发作爆破事端,因为汽油的爆破极限很低(0.76%~7%)。     2.废旧钢桶置换焊接,详细步骤如下:     先把桶内的剩下汽油倒净,灌进氮气等隋性气体,然后用空气冲净,顺次置换二、三次,再灌进隋性气体后,即可进行动火焊接。假如没有隋性气体,可用蒸汽替代,但置换的次数要恰当添加。     3.废旧钢桶加水焊接,详细进程是:     假如汽油桶焊补点仅在桶的顶端高出钢桶的部位,可把汽油放净后,用清水冲刷一、二次,然后在桶内灌满清水,使容器内不积累易燃蒸气。这种办法比较简单,但有它的局限性。在钢桶旁焊接其它任何零部件时,有必要把钢桶内部清洁净或灌满水,因为进行电焊时,不只焊接火星会危及钢桶的安全,并且电焊时会使钢桶处于带电状况,焊接导线的衔接处在通电时可能会发作电火花。     假如是进行补焊,钢桶焊好后,要及时用清水查看焊缝有否渗漏,发现渗漏,应立刻补焊。不然过一段时间再发现渗漏,需进行补焊时,又得从头进行清洗等处理。     值得注意的是,有的人用旧钢桶当锅炉运用,这是极端风险的,国内因而发作事端的已有多起。钢桶对错压力容器,仅仅普通的金属包装物,所以在旧桶再生利时要注意不要违背钢桶的性质进行改制和运用。     焊接、切开运用的设备和动力尽管都有必定的火灾风险性,但火灾爆破事端的发作,首要都不在于这些设备和动力的自身,而绝大多数是因为在焊接、切开作业中思维麻木,操作不妥,准则不严,安全办法执行不力而引起的。所以关键是要注重和防备。操作前做好安全准备工作,操作时要严厉按规程进行,作业完后要进行详尽地安全查看。

废钢铁的回收利用

2019-01-30 10:26:34

废钢铁是钢铁生产中重要的炉料资源,尤其是电炉炼钢,要配用80%的废钢。用废钢代替生铁炼钢,由于其硫、磷等有害元素含量低,还可以缩短冶炼时间。lt废钢可炼出好钢800Kg左右,约等于lt生铁投炉炼钢的产量。用lt废钢,就可少用铁矿石3~5t,焦炭500Kg左右,石灰石300Kg左右,可少采矿石15~20t,减少运输30~40t,降低能耗80%,节约工业用水40%左右。随着合金钢生产的不断发展,废合金钢资源日益增多。工矿企业中报废的工具、刃具、模具中都含有较高的合金元素。如lt废高速钢中就含有钨180Kg、铬40Kg、钒10Kg。     废钢铁的来源有以下几方面:     (1)生产自身返回的。即钢铁冶炼过程中产生的炉底、桶底、汤道、废锭、废模和渣钢,以及初轧的切头、切尾等。     (2)加工工业中产生的。如各种车屑、切屑、料头,以及冲压成型的各种边角料等。     (3)生产和生活中废弃的机器和工具、用品。如报废的机械设备、工具、零部件,废弃的刀剪犁锄等。

高镍渣的回收利用

2019-01-24 09:37:04

高镍渣也是不锈钢渣的一种,由于其导磁率较低,采用传统的强磁选的方法回收率较低,因此设计了重选法回收高镍渣的工艺流程。重选法是根据镍铁颗粒与固体废渣的比重差进行分选的方法,所用到的分选设备主要是跳汰机,有时也用到摇床。 固体废渣中有较多的块状无法直接进行跳汰机,因此需要首先将大块废渣破碎至小块,然后进入棒磨机进行粗磨,磨矿至固体废渣基本与镍铁合金单体分离的状态,然后进入跳汰机进行重力分选,得到纯净的镍铁合金和固体废渣。

铜阳极泥回收利用

2018-12-18 10:15:46

铜阳极泥是提取银、金、铂族金属等有价金属的重要原料。阳极泥的处理工艺的技术难点并不在金、银本身,而在其中所含贱金属杂质(铜、铅、硒、碲、锡等)的脱除问题上,阳极泥脱除贱金属的目的有二,一是为了富集金、银,阳极泥中大量的贱金属,如不除去,将很难回收金、银,二为分摊成本,脱除贱金属要消耗大量试剂和设备等费用,如不充分利用,所回收的金银难有经济效益。    阳极泥回收利用长时间采用火法工艺,而且这种工艺已相当成熟。但火法缺点明显,近来已越来越多使用湿法工艺,并已开发了多种工艺方法,鉴于大通阳极泥的性质和数量并不特别大,初步考虑采用湿法工艺,下面将国内外现有的各种湿法工艺作一介绍。初步打算,INER法和全湿法工艺可作为首选工艺考虑。但因尚缺阳极泥全分析结果,流程的最后选定,尚需详细讨论。这里就铜阳极泥的性质组成和冶炼方法作初步介绍。    铜阳极泥的性质和组份    铜阳极泥是由铜阳极在电解精炼过程中不溶于电解液的各种物质组成,依据来源,一般有三种阳极泥    (1)来源于铜精矿冶炼的阳极泥,一般含有较多的Cu、Se、Ag、Pb、Te、及少量含Sb、Bi、As和脉石矿物,所含铂族金属较少;    (2)来源于硫镍精矿的阳极泥,一般含有较多的Cu、Ni、 S、Se。含Au、Ag、铂族金属较少;    (3)杂铜电解产生的阳极泥,由于来源的多样性,成份变化较大,多数除Ag、Au外,还含较多的Cu、Pb、Sn。    下面为国内4家大型冶炼厂产的铜的铜极泥的主要组份(%)  Cu Ag Au Pb Se Te Sb As  沈阳冶炼厂 15 19 2.8 29 3.2 0.76 14~18 ----  上海冶炼厂 10~20 8~15 0.3~0.7 ---- 3~5 0.56 --- ---  白银冶炼厂 35 8.3 0.27 3.4 13 0.62 --- ---  云南冶炼厂 14 13.1 0.38 5.0 2.85 ---- --- 2.0 .

锗的工业用途

2018-08-29 09:58:12

锗具备多方面的特殊性质,在半导体、航空航天测控、核物理探测、光纤通讯、红外光学、太阳能电池、化学催化剂、生物医学等领域都有广泛而重要的应用,是一种重要的战略资源。在电子工业中,在合金预处理中,在光学工业上,还可以作为催化剂。高纯度的锗是半导体材料。从高纯度的氧化锗还原,再经熔炼可提取而得。掺有微量特定杂质的锗单晶,可用于制各种晶体管、整流器及其他器件。锗的化合物用于制造荧光板及各种高折光率的玻璃。锗单晶可作晶体管,是第一代晶体管材料。锗材用于辐射探测器及热电材料。高纯锗单晶具有高的折射系数,对红外线透明,不透过可见光和紫外线,可作专透红外光的锗窗、棱镜或透镜。20世纪初,锗单质曾用于治疗贫血,之后成为最早应用的半导体元素。单质锗的折射系数很高,只对红外光透明,而对可见光和紫外光不透明,所以红外夜视仪等军用观察仪采用纯锗制作透镜。锗和铌的化合物是超导材料。二氧化锗是聚合反应的催化剂,含 二氧化锗的玻璃有较高的折射率和色散性能,可作广角照相机和显微镜镜头,三GeCl4还是新型光纤材料添加剂。据数据显示,2013年来光纤通信行业的发展、红外光学在军用、民用领域的应用不断扩大,太阳能电池在空间的使用,地面聚光高效率太阳能电站推广,全球对锗的需求量在持续稳定增长。全球光纤网络市场尤其是北美和日本光纤市场的复苏拉动了光纤市场的快速增长。21世纪全球光纤需求年增长率已经达到了20%。未来中国光纤到户、3G建设及村通工程将拉动中国光纤用锗需求快速增长。锗在红外光学领域的年需求量占锗消费量的20-30%,锗红外光学器件主要作为红外光学系统中的透镜、棱镜、窗口、滤光片等的光学材料。红外市场对锗产品的未来需求增长主要体现在两个方面:军事装备的日益现代化带动了对红外产品的需求和民用市场对红外产品的需求。太阳能电池用锗占据锗总消耗量的15%,太阳能电池领域对锗系列产品的未来需求增长主要体现在两个方面:航空航天领域及卫星市场快速发展和地面光伏产业快速增长。从全球产量分布来看,中国供给了世界71%的锗产品,是全球最大的锗生产国和出口国,这主要是由于中国高附加值深加工产品技术环节薄弱,导致内需相对有限,产品多以初加工产品出口为主。但是在需求旺盛刺激下,中国锗生产技术能力提升迅速,目前中国企业已经能够生产光纤级、红外级、太阳能级锗系列产品。加之来政策推动力度大,中国光纤领域锗需求明显增长。2013年PET催化剂用锗约占25%,电子太阳能用锗约占15%,红外光学用锗比重从42%降至25%,而光纤通讯约占锗消费30%左右的市场份额。2011年中国锗消费量为45金属吨,2012年锗消费量为50金属吨,同比增长11.11%;2013年锗消费量为59金属吨,同比增长18.00%。