湿法炼铜,铜的湿法冶炼介绍
2018-08-01 17:19:18
铜的冶炼有两种方法,一种是火法炼铜,另一种是湿法炼铜。以前铜的冶炼主要依靠火法冶炼,后来随着铜冶炼技术的提升,湿法炼铜的技术逐步发展,湿法炼铜的优势使得其逐步取代火法炼铜,同时也使
铜
的冶炼成本大大减少。下面我们来介绍湿法炼铜:湿法炼铜,又叫水法冶金,是指利用某种溶剂,借助化学反应(包括氧化、还原、中和、水解及络合等反应),对原料中的金属进行提取和分离的冶金过程。湿法炼铜主要适用于:湿法炼铜一船适于低品位的氧化铜,生产出的精铜称为电积铜。湿法炼铜的过程:1.焙烧-浸出净化-电积法:用于处理硫化铜精矿。2.硫酸浸出—萃取—电积法:用氧化矿、尾矿、含铜废石、复合矿石。3.NH₃浸—萃取—电积法:用于处理高钙、镁氧化铜矿或硫化矿的氧化砂。湿法炼铜的方程式与原理:1.CuO+H2SO4=CuSO4+H2O 基本反应类型:复分解反应2.CuSO4+Fe=Cu+FeSO4 基本反应类型:置换反应湿法炼铜的工艺流程图:湿法炼铜的优点:1. 主要金属和伴生金属的回收率更高;2.工艺更加灵活;3.能耗比较小;4.比较容易解决环境保护问题;5.冶金过程易于实现机械化和自动化。与火法炼铜相比,湿法炼铜工艺的优势:(1)湿法炼铜的冶炼设备更简单,但杂质含量较高,是火法炼铜的有益补充。(2)湿法炼铜具有局限性,受制于矿石的品位及类型。(3)湿法炼铜成本比火法炼铜的低。
硫化镍矿湿法冶炼
2019-02-27 12:01:46
有名的是在加拿大工业化的舍里特一高尔登法了该操作流程图。此法是将含贵金属少的钻硫化精矿(10-16%Ni, 1-2%Cu,0,3-0,5%Co,33-40%Fe,28-34%S,贵金属0.6g/t)在高压釜用和加压的空气于340-350K (70-80℃)经两段浸出,溶出镍和铜的络合物Ni(NH3)4 2+ , Cu(NH3)4 2+ .浸出完毕后,滤液在高压釜中,于500K用加压空气将S2O3 2+ 等硫的不饱和含氧酸的离子氧化为S042-的一起,使大部分铜沉积为CuS。剩余的铜用H2S处理,FeSO4作为催化剂加进滤液中,在高压釜中于3500kPa(35atm)氢压力,450-470K条件下高压复原,则得档次达99.87%的镍粉。残液中喷吹H2S,沉积钴和镍的混合硫化物,送往钴的收回工序(参看钻冶炼)。
铅的湿法冶炼工艺—引言
2019-02-14 10:39:59
为了彻底消除火法炼铅发生的污染,各国冶金工作者长时间展开了湿法炼铅的研讨,其间较为成功的有:美国矿务局进行的方铅矿浸出-融盐电解制取金属铅的实验[1]; Forward等[2]进行的在有机铵系统中对方铅矿加压氧化成硫酸铅,然后通入二氧化碳气体,沉积出碳酸铅,再用低温熔炼,把碳酸铅还原成金属铅的实验;Bratt[3]等展开了用高浓度-硫酸铵溶液浸出氧化铅和硫酸铅,再用沉积、溶解、电解等进程出产金属铅的实验。可是这些办法因进程杂乱、介质腐蚀性强、出产成本高级原因,没有有完成工业化的报导。 中国科学院进程工程研讨所陆克源等在20世纪80年代成功研讨了碳酸化转化炼铅工艺[4,5],该工艺具有以下特色, (1)进程简略、操作条件温文、易于工业化。 (2)对矿石适应性强,综合利用好,能处理低档次铅矿和多金属杂乱铅矿。 (3)金属回收率高,产品多样化(金属铅和各种铅的化工产品),经济效益好。 (4)为全湿法操作,基本上消除了三废污染。 参考文献: 1 M. M. Wong,R G. Sandberg and C.H. Elges,Ferric Chloride Leach-Electrolysis Process for Production of Lead,U. S. Bureau of Mines,Rep. Invest.(1983),No. 8770 2 F. A. Forward,H. Veltman and A.Vizsolyi,Aqueous Oxidation of Galena Under Pressure in Amine Solutions,International Mineral Processing Congress 1960,Instn. Min. Metall.,London,p. 823-837 3 G. C. Bratt and R. W. Pickering,Production of Lead Via Ammoniacal Ammonium Sulfate Leaching Met. Trans.,I(1970),P. 2141~2149 4 K. Y. Lu and C. Y. Chen,Conversion of Galena to Lead Carbonate in Ammonium Carbonate Solution-A New Approach to Lead Hydrometallurgy,Hydrometallurgy,17(1976)p. 73-83 5 陆克源,陈家铺.碳酸钠转化处理铅基金矿或铅矿工艺.中国专利ZL89109462. 8(1989)
钼湿法冶炼车间设计
2019-03-05 12:01:05
以辉钼精矿为质料,经焙烧(分化)、浸出、净化、结晶等工序出产钼化合物的钼冶炼厂车间规划。
钼化合物有多钼酸铵、化学纯租高纯仲钼酸铵、化学纯和高纯氧化钼等。
工艺流程挑选 钼的湿法冶炼流程由精矿焙烧(分化)一浸出,溶液净化,结晶和焙解等工序组成。
精矿焙烧(分化)-浸出一般有氧化焙烧一浸出法、石灰焙解一酸浸出法和氧压煮一浸出法等。
(1)氧化焙烧一浸出法。辉钼精矿中的硫化钼在必定的温度下与空气中的氧发作反响。生成的氧化钼焙砂,用浸出,使钼进入溶液。而悉数二氧化硫和部分氧化铼蒸汽,脱离焙砂进入烟气。因烟气量大,含二氧化硫及铼的浓度很低,给净化收回带来较大困难。但此法工序少,能耗低,操作简略,焙砂成本低,各种规划的出产均可选用,一般用于处理含铁和铼低的精矿。
(2)石灰焙解一酸浸出法。辉钼精矿与石灰粉混合,在必定温度下,硫、钼与石灰反响生成钙盐,用稀酸浸出,钼铼均与硫酸钙别离后进入溶液。经此法处理,铼的分化和浸出率一般到达98%以上,无二氧化硫气体污染,但因配入了很多石灰,炉猜中钼的档次下降一半以上,能耗高、工序多,一般用于处理高铼精矿。
(3)氧压煮一浸出法。在辉钼精矿中参加定量的催化剂(如等),按必定的固液比加水配成料浆,置于压力容器中升温并通氧气,在必定的温度和压力下,使硫、钼氧化,在强酸介质中钼生成钼酸沉积物,98%以上的铼进入溶液,铝酸用溶解,钼进入溶液。其特点是无二氧化硫污染,钼、铼收回率高,产品纯度高,但要装备高压设备和供氧体系,加压操作杂乱,技能难度大,适于处理含铼高和钼档次低的质料。
溶液净化 用各种办法分化钼精矿所得含钼溶液的净化办法有传统的化学法、离子交流法和溶剂萃取法
(1)化学法。参加或硫化铵,使溶液中的铜铁等杂质生成硫化物沉积除掉。此工艺老练,操作易把握,但流程长,收回率低。(2)离子交流法或溶剂萃取法。选用树脂或有机溶剂从溶液中吸附或萃取钼,这种办法流程短、收回率高、产品质量好,可完成进程接连化、主动化,但须严格操控技能条件,操作不易把握。
结晶和枯燥煅烧 经净化处理后的纯钼酸铵溶液,一般选用蒸腾结晶分出仲钼酸铵结晶,经枯燥制得化学纯(或高纯)仲钼酸铵;再将其煅烧取得纯(或高纯)氧化钼产品。
钼钼湿法冶炼准则工艺流程见图。钼湿法冶炼准则工艺流程图
设备挑选 首要设备有精矿焙烧或分化设备、净化结晶和枯燥煅烧设备等。
精矿焙烧或分化设备有多膛焙烧炉、反转管炉、反射炉和氧压煮设备等。
(1)多膛焙烧炉。为一固定简体,内分8~12层,中心有一旋转轴,轴上每层带有耙齿3~4个,物料由顶层流到底层。炉子各层由耐火材料砌成,加料和卸料均为主动化,收回选用多管收尘器和电收尘器,总收回率可达98.5%~99.0%,单位产钼才能为50~100kg/dm2,炉子寿命长,但结构较杂乱,制作修理较困难,一般用于大型厂商。
(2)反转管炉。由一钢制滚动筒体和传动体系组成,主动加料、卸料,选用电热或气、油加热。炉气中二氧化硫浓度高,有利于净化收回制酸,设备结构简略,易于制作和修理。但炉温不易操控,脱硫不充分,增加了氧化钼焙砂中不溶钼的含量。
精矿与石灰混合焙解,选用类似于氧化焙烧的反转管炉。
(3)反射炉。设备结构简略,操作简单,造价低,习惯不同质料的处理,但劳动强度大,单位出产才能低,烟气中二氧化硫浓度低,不易净化收回。一般用于小型厂商。
(4)氧压煮设备。选用内衬钛材的立式拌和高压釜,夹套加热,归于耐高温(约220℃)、耐高压(3.5MPa)的专用设备,造价高,操作技能杂乱,要有确保安全的办法。
净化结晶设备 溶液的净化、沉积、结晶等设备,一般选用化工出产中通用的拌和槽;溶剂萃取一般选用多级混合一沉清箱式萃取器;离子交流选用立式交流柱;固液别离选用真空过滤机或离心机。
枯燥、煅烧设备 仲钼酸铵的枯燥和煅烧,一般选用带有2~3个温度带的反转管电炉,枯燥和煅烧可在同一设备内进行,机械加料,主动控温,劳动条件好,出产才能大。
车间装备与技能要求 火法与湿法出产要分隔装备。火法选用单层厂房,要求有天窗和防火办法。湿法选用单层或多层厂房,地板、根底、建(构)筑物内部要进行防酸、防碱处理,在恰当方位设天井或天窗,便于排气、通风;电器、外表操控设备宜会集设置,并采纳防腐蚀办法。
粗铜的生产工艺介绍 火法冶炼 湿法冶炼
2018-12-05 10:10:48
铜治金技术的发展经历了漫长的过程,但至今铜的冶炼仍以火法治炼为主,其产量约占世界铜总产量的85%,现代湿法冶炼的技术正在逐步推广,湿法冶炼的推出使铜的冶炼成本大大降低。 接下来会详细介绍火法冶炼与湿法冶炼(SX-EX)以及两种冶炼法的特点。a.火法炼铜: 通过熔融冶炼和电解精火炼生产出阴极铜,也即电解铜,一般适于高品位的硫化铜矿。火法冶炼一般是先将含铜百分之几或千分之几的原矿石,通过选矿提高到20-30%,作为铜精矿,在密闭鼓风炉、反射炉、电炉或闪速炉进行造锍熔炼,产出的熔锍(冰铜)接着送入转炉进行吹炼成粗铜,再在另一种反射炉内经过氧化精炼脱杂,或铸成阳极板进行电解,获得品位高达99.9%的电解铜。该流程简短、适应性强,铜的回收率可达95%,但因矿石中的硫在造锍和吹炼两阶段作为二氧化硫废气排出,不易回收,易造成污染。近年来出现如白银法、诺兰达法等熔池熔炼以及日本的三菱法等、火法冶炼逐渐向连续化、自动化发展。 生产过程大致如图: 除了铜精矿之外,废铜做为精炼铜的主要原料之一,包括旧废铜和新废铜,旧废铜来自旧设备和旧机器,废弃的楼房和地下管道;新废铜来自加工厂弃掉的铜屑(铜材的产出比为50%左右),一般废铜供应较稳定,废铜可以分为:裸杂铜:品位在90%以上;黄杂铜(电线):含铜物料(旧马达、电路板);由废铜和其他类似材料生产出的铜,也称为再生铜。b.湿法炼铜: 一船适于低品位的氧化铜,生产出的精铜称为电积铜。现代湿法冶炼有硫酸化焙烧-浸出-电积,浸出-萃取-电积,细菌浸出等法,适于低品位复杂矿、氧化铜矿、含铜废矿石的堆浸、槽浸选用或就地浸出。湿法冶炼技术正在逐步推广,预计本世纪末可达总产量的20%,湿法冶炼的推出使铜的冶炼成本大大降低。 湿法冶炼过程为:c.火法和湿法两种工艺的特点 比较火法和湿法两种铜的生产工艺,有如下特点:(1)后者的冶炼设备更简单,但杂质含量较高,是前者的有益补充。(2)后者有局限性,受制于矿石的品位及类型。 (3)前者的成本要比后者高。 可见,湿法冶炼技术具有相当大的优越性,但其适用范围却有局限性,并不是所有铜矿的冶炼都可采用该种工艺。不过通过技术改良,这几年已经有越来越多的国家,包括美国、智利、加拿大、澳大利亚、墨西哥及秘鲁等,将该工艺应用于更多的铜矿冶炼上。湿法冶炼技术的提高及应用的推广,降低了铜的生产成本,提高了铜矿产能,短期内增加了社会资源供给,造成社会总供给的相对过剩,对价格有拉动作用。
锌湿法冶炼中高钴矿的处理
2019-02-21 10:13:28
在湿法炼锌的进程中,钴是一种非常有害的杂质元素,假如净化进程中除钴作用欠好,会引起电解液中钴的含量俄然上升.当钴含量超越必定浓度后,钴会在阴极上分出,对锌电积有较大的影响:一方面因为氢在钴上分出的超电压低,简单分出,会下降锌电流效率;另一方面钴与锌结合,构成微电池,促进分出的锌反溶,引起阴极锌的腐蚀(“烧板”),使锌腐蚀成黑色的斑驳,而且愈接近铝板一面愈严峻,构成喇叭形的圆孔.我公司近几年连续购进的部分高杂锌精矿,首要是钴、铜、硅等有害杂质含量高。本文所讲的高钴矿是指锌精矿中钴的质量分数大于0.0079/5。
一、高钴锌精矿给净化工序带来的问题
硫酸锌溶液的净化工艺有多种,其间锌粉一黄药净化工艺是一种较为传统的工艺.黄药除钴法的原理是:在硫酸铜存在的条件下,溶液中的硫酸钴与黄药作用,构成难溶的黄酸钴沉积,这儿的Cu2+可使Co2+氧化成Co3+与锌粉一锑盐法比较,此法最大的长处是二次除钴能力强,但缺陷是镉复溶严峻。
上清液含钴高会形成一次净化溶液含钴高,使二次净化困难,且净化时刻相对延伸,镉复溶加重,劳动强度加大,产值和质量均受到影响。
(一)中上清液含钴高
1、钴的浸出率
湿法炼锌的浸出进程是,以锌电积发生的废液作为溶剂,将含锌原猜中的有价金属溶解而进入溶液的一个进程.运用水解净化将部分有害杂质除掉,可减轻净化工序的担负.依据Zn-M-H2O系电势-pH图(图略)可知,当a(Co=2×10-4mol/L时,Co2+和Co(OH)2的安稳区域分界线在pH=8.15。在氧化剂的作用下Co2+变为Co3+,而以Co(OH)3形状沉积时的pH要到达6.6,所以在中性浸出的条件下(pH操控在5.0~5.5),钴仍有部分溶解,钴的浸出率约70%。
2、钴的体系内循环
锌精矿配料含钴动摇是引起中上清液含钴动摇的首要原因,而钴在体系内部的循环相应进步了中上清液的含钴量.钴在体系内部的循环首要有六个去向:氧化锌中上清液、铟锗萃余液、贫镉后液、钴渣酸洗后液、残液和镉浓缩上清液及铟置换后液,其间原猜中的钴对贫镉后液的影响最大。
按锌精矿含钴质量分数0.0084%、矿粉中上清液含锌155mg/L核算,矿粉中上清液含钴为l3mg/L。然而在实践出产中,上清液中的钴可到达l6mg/L.假如将高钴矿进行会集处理,矿粉中上清液的钴含量达20mg/L以上均属正常。这是因为一部分钴在溶液中的循环形成的。表l为本公司某年矿粉中上清液的钴含量.由表l可知,溶液含钴量超越20rng/L的批次为7.95%。
表1 本公司某年矿粉中上清液的钴含量(二)一次净化的除钴率
一次净化进程即置换进程,是用标准电极电位负的金属置换标准电极电位更正的金属离子。
表2 部分元素的标准电极电位依据锌粉置换钴的反响式(Zn+Co2+=Zn2++Co↓)核算,当反响到达平衡时,φ=0,a(Co2+)=10-16.47a(Zn2+)。由此可知,Co2+完全能够被锌置换出来,但在实践出产中,|φ(Zn)|与|φ(Co)|简直持平,没有活化剂的作用,反响很难进行。只有当φ|(Zn)|>|φ(Co)|时,反响才会继续进行本公司某日一次净化的除钴率列于表3。
表3 一次净化部分物猜中的钴含量二、处理办法
经过上面分析能够看出,处理高钴矿的难度首要体现在以下三方面:一是钴的浸出率约为70%%;二是钴的内部循环;三是一次净化的除钴率不高。
(一)进步一次净化的除钴率
1、用合金锌粉替代自产锌粉
没有活化剂的作用,锌粉置换钴的反响很难进行。出产实践证明,可参照锑盐净化法和砷盐净化法,在锌粉-黄药净化工艺中坚持上清液中含必定量的砷锑,或许运用含砷锑的合金锌粉,有助于进步一次净化的除钴率。两种锌粉的净化目标列于表4。
表4 合金锌粉与自产锌粉运用情况的比照2、操控适合的中上清液温度
只有当φ|(Zn)|>|φ(Co)|时,锌粉置换沉钴反响才会不断进行。φ|(Zn)|与|φ(Co)|随溶液中该离子的浓度、溶液的温度以及阴极金属的性质的改动而改动。溶液的温度及离子浓度对φ的影响列于表5。
从表5能够看出,随溶液温度升高,φ|(Zn)|和|φ(Co)|都是削减的,可是|φ(Co)|削减的数值比φ|(Zn)|削减的数值要大得多。也就是随温度升高,φ|(Zn)|-|φ(Co)|差值增大,有利于锌粉置换除钴。但要留意,镉复溶属吸热反响,随温度升高,镉复溶显着加重.因而,在实践出产中,假如中上清液中含镉高而含钴正常,则上清液的温度应操控在63~65℃;假如上清液含钴较高(大于l8mg/L),则可恰当进步上清液的温度,一般可操控在65~67℃。
表5 温度和离子浓度对中φ(Zn)及中φ(Co)的影响(二)体系钴开路
一次净化排出来的钴随铜镉渣进入镉收回工序,再与贫镉液一道又入主体系,使钴在体系内部不断地环循堆集,影响了一次净化的作用。铜镉渣在收回镉、铜后的贫镉液部分进行钴开路是处理除钴率低的重要手法。
因为黄药法、砷盐法除钴均存在一些缺陷,故选用锑盐法除掉贫镉液中的钴。其首要流程是:将贫镉液送入除钴槽(在槽的上部取样分析镉和钴),当温度升至8.~95℃时,依据贫镉液中的钴含量参加锑盐(按8mg/L参加),拌和5min后缓慢参加锌粉(按8~12g/L参加),又拌和1~2h后取样分析镉和钴,镉和钴含量合格后压滤,滤液送浸出,钴渣外运。另出产实践证明,温度与酸度是限制钴开路作用的两个不行忽视的重要因素。
1、温度对除钴的影响
温度升高,φ|(Zn)|-|φ(Co)|差值增大有利于锌粉置换除钴。因为除钴前溶液温度约40℃,用蒸气将溶液加热到约85℃所需求的时刻较长,所以有些操作人员在温度还不到85℃时就开端加锌粉。别的,现在的测温方法是操作人员用吊筒将除钴槽内的溶液吊出后丈量,测验温度与实践溶温度(特别是在冬天)相差较大,形成净化温度控禁绝,影响了除钴作用.所以,改动测温方法和提升温速率有助于进步除钴率。
2、酸度对除钴的影响
当溶液pH>5时,溶液发白并变污浊,除钴低。Zn抖水解生成的Zn(OH)2沉积吸附在电极表面,阻止了Co2+进一步转化;假如pH很低,锌粉耗费就会添加,那么出产成本也会添加。实践标明,溶液的pH操控在3.5~4.0较适宜。
三、定论
(一)坚持矿粉上清液含必定量的砷和锑,并操控适宜的上清液温度,有助于进步一次净化的除钴率。
(二)为防止钴在内部循环堆集,可将部分体系钴开路。为确保开路份额,温度和酸度的操控是要害。
锌焙砂在稀酸中的溶解
2019-02-21 15:27:24
氧化物的酸、碱浸出许多遵守缩短中心模型,一个典型的实例是锌焙砂在稀酸中的溶解。它依据每种参加溶解进程的化学物质的离子扩散系数及离子搬迁率,使用方程式(1)和式(2)进行核算。核算假定溶解速率由传质操控,因此所用的核算进程只能用于不触及化学反响的状况。
(1)
(2)
求解方程(1)和式(2)需求几个边界条件,它们规则了模型中各参数的值,并将各物质的通量经过浸出反响的计量联系相关起来。
关于硫酸浸出体系,核算所用的数据包含H+,HSO4-,SO42-及Zn2+的离子扩散系数和离子搬迁率,下列平衡的平衡常数与活度系数稀酸浸出氧化锌的数学模型核算中所用的传质数据列于下表。物质等效离子电导
Λi0∕(Ω-1·cm2·equ-1)离子扩散系数
D∕(cm2·s-1)离子搬迁率
u∕(cm2·V-1·s-1)H+348.99.3×10-53.6×10-3Zn2+53.87.2×10-65.6×10-4SO42-79.01.0×10-5-8.2×10-4HSO4-100.002.7×10-5-1.6×10-3
几个边界条件为
在固液界面即r=rt时, Ci=Cis (3)
因为浸出进程最慢的过程是经过边界层的传质,能够假定在界面上到达化学平衡,然后得到下列边界条件
(4)
(5)
(6)
式中, 、 、 别离表明反响(a)、(b)(c)的平衡常数;Qa、Qb、Qc别离为用浓度表明时反响(a)、(b)、(c)的平衡常数;γi是物质i的活度系数。
在溶液体相即r=∞, E=0 (7)
Ci=Cib (8)
体相浓度用质量平衡和体相的化学平衡求算
(9)
(10)
(11)
(12)
(13)
式中,[H2SO4]与[ZnSO4]是t时刻硫酸和硫酸锌的净浓度。
计量联系 (14)
硫酸根通量 (15)
数学模型由对每种物质组成的写出的方程式(2),方程式(1)和上面导出的边界条件组成。一旦知道了各物质的通量,就可核算ZnO的溶解速率。
假如半径rt的球形粒子含有Nmol的ZnO,则
(16)
式中,Mw为ZnO的分子量。
因为稳态下边界层内没有物质堆集,一切溶解的锌都必须传递到溶液体相中去。因此,反响速率能够与锌和酸经过边界层传质的速率相关如下
(17)
式中JZn-流离表面的锌的净通量;
JH-流向表面的酸的净通量。
由式(16)和式(17)得出
(18)
方程式(18)用有穷区间法数值积分得到rt对时刻的函数。关于单尺度粒子,rt与反响分数α的联系为
(19)
即为式(20)的缩短粒子模型,r0为固体粒子的初始半径。
(20)
粒子尺度散布的景象可作相似处理,m个初始半径r0k的单尺度分数每个组成总质量的分数wk。浸出的程度分粒级核算
(21)
总的浸出率由下式断定
(22)
为了查验模型及核算的正确性,需求研讨硫化锌精矿的焙砂在硫酸、高氯酸、硝酸和等4种酸中溶解的速率。选定的拌和条件使一切的固体粒子都悬浮且溶解速率与拌和速率无关。在高氯酸及硝酸溶液中试验曲线与模型核算得到的猜测曲线符合杰出,而在硫酸溶液中在浸出率80%曾经符合尚可,这以后的溶解曲线符合不抱负的原因是因为固体粒子的溶解并非如假定的那样均匀并始终保持球形,实际上发现部分浸出的焙砂粒子有大而深的孔。简化的模型没有考虑锌的氯合物的构成合氯离子的吸附,因此不能用来猜测浸出焙砂的溶解速率。而用新近树立的未考虑电搬迁对传质的奉献的模型即便关于0.1mol∕L高氯酸浸出的动力学也严峻违背,反映了电搬迁在传质中不行忽视的效果。
湿法炼铜
2019-03-04 16:12:50
铜的湿法冶金技能是选用各种浸出办法(堆浸、拌和浸出、生物浸出、地下浸出等)直接从难采选的铜矿或低档次铜矿中提取铜,用特定的萃取剂将含铜溶液富集、除杂后选用电积的办法出产出精铜。因为该项技能的出资和本钱低于传统的炼铜工艺以及不污染环境,然后得到了敏捷的开展,在国外已达到了很大的出产规模和很高的机械化、自动化水平。近年来处理硫化铜矿的生物冶金技能得到了敏捷的开展,为铜湿法冶金的进一步开展供给了宽广的远景。
一、硫化铜精矿的湿法处理
(一)硫化铜精矿焙烧―浸出―电积流程
硫化铜精矿焙烧―浸出―电积流程如图1所示。这种办法曾在20世纪60年报代我国10多个小厂运用,现在仅有3家小厂还在选用。它首要的问题是:(1)浸出渣含铜高(1%),从浸出渣收回Cu、Au和Ag及其他元素时流程较杂乱,不易收回;(2)每产1t电铜就要产10~20m3废电解液,一般约有30%能回来,其他70%需用石灰乳中和,每产1t电铜产出废渣1.5t,费用高;(3)冶炼收回率低,一般为90%,电铜总电耗3000~4000kW·h/t。
图1 硫化铜精矿焙烧―浸出―电积流程
二、硫化铜精矿的直接浸溶
硫化铜精矿用熔剂直接浸溶有常压和高压两种办法。
(1)常压浸:是在挨近常压和60~80℃条件下,在机械拌和的密闭设备顶用氧、和硫酸铵进行浸出。因为压力低,部分铜矿藏及悉数黄铁矿未参加反响,浸出残渣用浮选法处理,取得黄铁矿精矿、铜精矿和尾矿。浸出液用二氧化硫作复原剂复原出铵亚铜沉积,再经高温加压分化产出铜粉。最佳条件下铜收回率为97%~99%。运用该流程的供应商是美国阿纳康达公司(1974年)。
(2)常压下浸出:用作浸出剂,使硫化铜精矿中铜呈Cu2 C12形状入浸出液,硫成元素硫,用电积法或其他办法从浸出液中收回铜。此法的研讨流程有克利尔法、柯明科法、美国矿务局的FeCl3浸出流程、南非国立研讨所流程以及塞梅特法。
(3)硫化铜精矿的高压浸出。高压浸出有高压酸浸和高压浸,两者在经济上只适合于处理镍铜钴或镍铜复合质料(精矿、高锍)。对黄铜矿精矿,必须在3500kPa压力和115℃温度下才干得到90%以上的浸出率。现在国内外尚无成功的工业实践。加拿大舍利特公司正在研讨加催化剂以降低压力。
三、硫化们矿的细菌浸出
细菌浸出是凭借于某些微生物的生物催化作用使浸出剂中Fe2(SO4)3不断再生。使用H2SO4和Fe2(SO4)3将矿石中铜浸溶出来,一般含铜低于选矿要求档次(0. 4%以下)的矿石都可以凭借此法浸溶出来。浸溶方法有堆浸、就地浸出等方式。我国德兴报矿选用此法对含铜废石进行处理。年产电铜2000t,含铜废石档次不到0.1%。浸出液用萃取法处理,后经电积产出A级铜。
细菌浸出速度很慢,故只适用于处理低档次矿或含铜废石。
四、氧化铜矿和低档次铜矿的处理
低档次铜矿包含难选低档次氧化铜矿、氧化-硫化混合矿、含铜废石等。这类矿除了档次低外,储量都不大,散布散。最适合的流程是浸出-萃取-电积工艺。其准则流程如图2所示。
图2 氧化矿、低档次铜矿的处理准则流程
我国浸出―萃取―电积流程的出资概略见表1。
表1 某500tCu/aL―SX―EW出资概略项目名称建筑工程设 备装置工程其他费用总价值一、工程费用
1、土建
2、给排水
3、供电
4、工艺设备及设备
5、工艺办理及阀门
6、外表
二、出产预备
1、萃取剂
2、火油
3、硫酸
4、阳极
三、技能费
四、不行预见费
合 计
40.0
20.0
5.0
15.0
140.0
50.0
4.0
15.0
5.0
5.0
45.0
5.0
15.0
175.0
55.0
4.0
40.0
10.0
10.0
35.0
25.0
30.0
449.0
表2指出了该法的本钱构成。
表2 某500tCu/a工厂的原辅材料耗费入本钱构成项目名称单耗/t·t-1(Cu)单价/元·t-1单位本钱/元t-1(Cu)占有率/%一、矿石
二、辅助材料
1、硫酸
2、萃取剂
3、火油
4、其他
三、动力、水
1、电
2、水
四、工资福利
五、折旧
六、修理
七、办理费
合 计
88.9
4.0
0.004
0.100
3500kW·h
30
50人
50
600.0
150.0元/kg
3.0
0.6元kW·h
0.50
500元/(人·月)
4445.0
2400.0
600.0
300.0
100.0
2100.0
15.0
600.0
400.0
200.0
300.0
11460.038.79
20.94
5.24
2.62
0.87
18.32
0.13
5.24
3.49
1.74
2.62
100.00
注:核算根据:1、矿石档次1.5%;2、金属收回率75%。
表3列出了现在全球各地低档次铜矿的处理实例。
表3 世界各地湿法产铜使用实例序 号国 家矿 山浸出矿藏产 量1加拿大直布罗陀矿含铜废石与低档次矿5000t(铜)/a2
智 利
EL.Teniente
(埃尔·特尼安特矿)烟尘浸出硫化矿就地浸出5~9t(铜)/d
20 t(铜)/d3
智 利
LoAguirre
阿吉雷矿混合矿浸出12000 t(铜)/a4
美 国
Magma.San.Manuel
玛格玛圣曼吾尔矿氧化矿浸出(占2/3)
就地浸出(占1/3)总量73000(铜)/a5
美 国
Cyprus.sierrita
塞浦路斯西牙利载塔圹氧化矿、废石矿藏浸出15 t(铜)/d6
美 国
Cyprus.TwinButte
塞浦路斯双峰矿氧化矿浸出日处理10000t矿7
美 国
CyprusMiami Ⅰ
迈阿密矿(Ⅰ)低档次混合矿65000t t(铜)/a8
美 国
CyprusMiami Ⅱ
迈阿密矿(Ⅱ)就地浸出废石尾矿12 t(铜)/d9
美 国
MagmaPintoWalley
玛格玛平托谷矿低档次矿20385kg/d10
日 本
Kosaka
柯撒卡矿低档次矿800 t(铜)/a11俄罗斯Digtyanskiurals硫化矿800 t(铜)/a12
美 国
Bluebirdmine
蓝鸟矿氧化矿6800 t(铜)/a13
西班牙
RioTinto
里奥廷托矿低档次矿8000 t(铜)/a14
美 国
Baghdad
巴格达矿混合氧化矿13600 t(铜)/a15墨西哥卡纳里矿硫化矿8700 t(铜)/a
铜冶炼厂流态化焙烧炉的湿法加料设备
2019-03-05 10:21:23
湿法加料具有不需要枯燥、炉子出产能力大、热工准则简单调理、劳动条件好等长处,但要求加料设备耐磨、耐腐蚀性强。
我国华夏冶炼厂从含铜、铅、锌、硫及其它杂质的难处理金精矿中提取黄金,因为金精矿含水16%以上,遂选用湿法加料流态化焙烧炉,炉况安稳,流态化层温度的动摇小于 5℃,炉子密封性好。该厂的矿浆浓度为70%。为了使流态化焙烧炉正常出产,有必要确保矿浆运送体系四通八达,故在浆化槽出口装有固定筛和振动筛铲除精矿中的杂物。矿浆以恰当的运送速度,通过从澳大利亚引入的两台定容泵和矿浆分配器均匀地进入喷参加炉内。精矿在炉内进行硫酸化焙烧,经浸出、铁屑置换后,得出海绵铜,并进行脱铅、锌和提金等进程。
美国宝穴厂将熔剂配入精矿,通过浆化槽和振动筛制成含固体78%的矿浆,用泵经混合槽送往流态化焙烧炉顶部,用喷参加炉内。赞比亚查姆比希湿法炼铜厂含固体65~68%的铜精矿矿浆流入贮槽,经泵泵入加料槽中,再经电磁流量计后用喷参加流态化焙烧内。图1为加料喷。图1 加料喷
美国阿纳康达铜冶炼厂在浆化体系中调整到含固体75%的矿浆,通过衬胶管泵到中间贮槽,用分配器参加流态化焙烧炉内。加料器是一个悉数气封的溢流箱,由一个中间溢流给料体系和同心圆式出口分配板(12个出口)构成,一切受潮部件都用不锈钢制造,整个设备是由减压阀维护的。矿浆通过12个空吸式加料参加炉内焚烧区。石英熔剂通过料仓、胶带运送机和密封螺旋运输机直接参加焚烧区。
湿法炼铜(一)
2019-03-05 09:04:34
该法是用酸性或碱性溶剂从含铜物猜中浸取铜,再从浸出液中复原制取金属铜或铜的化合物产品。湿法炼铜视含铜物料的铜矿藏形状、铜档次、脉石成分的不同,首要有以下三种出产工艺:①硫化铜精矿-硫酸化焙烧-废电解液浸出-浸出液净化-不溶阳极电解;②氧化铜矿石、含铜废石-分层堆浸-溶液净化-有机溶剂萃取-废电解液反萃取-净液-不溶阳极电解;③高MgO, CaO氧化铜矿或硫化矿氧化焙砂-加压浸-溶剂萃取-废电解液反萃取-电积产出电积铜,或反萃液蒸后出产硫酸铜,或浸液直接蒸锻烧出产CuO粉。铜矿石和二次含铜料的矿浆电解法也通过了半工业实验。 (一)硫化铜精矿焙烧-浸出-电积法 该法通过焙烧将硫化铜精矿中铜转化成为水溶性硫酸铜,再用酸性浸出剂浸出铜,浸出液经净化处理后,在不溶阳极电解槽中电堆积出阴极金属铜,工艺流程见图1。该工艺有金属收回率低(铜收回率小于96%)、渣含铜1%-2%、贵金属残留于浸出渣中难以收回、废电解液产出量大、经济效益欠安等缺陷,没有在出产中广泛使用。 1.硫化铜精矿硫酸化焙烧 硫酸化焙烧与半硫酸化焙烧的意图在于使硫化铜精矿中铜的硫化物转变成水溶性硫酸盐和酸溶性氧化物,而操控铁悉数生成尴尬溶的高价氧化物。依据热力学原理,在体系温度677℃条件下,即可达到此意图。[next] 硫酸化焙烧: 铜精矿焙烧在欢腾炉中进行。铜精矿从矿仓通过皮带运输机、螺旋加料机或加料圆盘参加炉内,焙烧用空气由鼓风机经管路、炉底风斗送入欢腾床。产出的烟气通过旋风收尘器、布袋收尘器、洗刷体系净化除尘后,进入制酸体系出产硫酸。焙砂与烟尘别离送浸出工序。 硫酸化焙烧产出焙砂中的悉数铜和部分铁呈硫酸盐形状存在。浸出液一般含酸20-30g/L,而电解废液含酸130-150g/L,即流程中酸量添加不能平衡,有必要开路处理废电解液中剩余的酸。一起因为进入浸出液的铁量较多,添加了净液担负和铜的丢失。而半硫酸化焙烧操控含铜量的50%左右为硫酸盐,其他为氧化物,既下降了废酸产出量,进步了进入烟气的硫量,也削减了可溶铁量,对进步技能经济目标有利。二者操作条件及成果见表1。表1 硫酸化焙烧与半酸化焙烧比照办法硫酸化焙烧半硫酸化焙烧办法硫酸化焙烧半硫酸化焙烧焙烧温度/℃680~700720~725酸溶铜/%99.598.8过剩空气系数/℃1.51~.81.5酸溶铁/%2~3.91~2线速度/(m/s)0.360.36焙砂SSO4/%7.44.2床层高度/m1.31废酸处理量/(t/tCu)1.50.8水溶铜/%90~9350~64.8硫使用率/%7287
2.焙砂与烟尘的浸出 浸出通常在钢板衬铅的机械拌和槽中进行。浸出温度60℃,液固比2:1,时刻2-3h。产出浸出液含铜80-90g/L,铁2-3g/L。为削减铁离子重复氧化复原下降的电流效率,浸出液需净化除铁。常用的办法是参加MnO2使Fe2+氧化成,Fe3+,然后在pHl-1.5(H2SO4 4-5g/L)时使Fe3+水解堆积除掉:[next] 6FeSO4+3MnO2+H2SO4=====3Fe2O3·4SO3+3MnSO4+H2O 净化后电解液送电积工序。 3.电积 在带有防腐蚀面料的电解槽中进行。阴极与铜电解相同为纯铜始极片,而阳极选用不溶性的Pb-Sb或Pb-Ca-Sn板材制成。电极上的电化反应是: 阳极上氧气生成并逸出槽面,会夹带出酸雾严重影响车间和环境卫生。一种有用的除酸雾办法是在电解槽中参加可构成泡沫层的无害添加剂。 电解槽按多级摆放,同一槽内阳极和阴极别离并联,槽与槽串联。电解液次序流经各槽,电积技能条件为:电积温度35-45℃;槽电压2.5-1.8V;电流密度150-180A/m2;阴极周期7天;同极间隔90mm。电解液成分(g/L):Cu70-90; H2SO420-30。废电解液成分(g/L):Cu10-12;H2SO2 150-180。 首要目标:电积铜纯度99.5 %-99.95 %;电流耗费3000-3500kWh/t;冶炼铜收回率94%-96%;浸出渣含铜0.7%-1.2%;电流效率77%-92%。 硫化铜精矿-焙烧-浸出-电积技能中各工序单元操作简略、老练,建厂投产简单。但工艺中废酸处理和渣中有价金属收回成了两道难关。中和法处理废酸简略易行,但酸未得到使用,并且碱耗很大;浸出渣中1%左右的铜及贵金属也无可行办法收回。正是这些难题,使兴隆了几年的该湿法工艺,逐步,缈了炼铜范畴。 (二)浸出——萃取——电积法 用酸性或碱性浸出剂从含铜物猜中浸出铜,再经萃取得到含铜富液,最终通过电解堆积出产出金属铜的炼铜技能。此项技能自20世纪60年代在美国投入工业出产以来,在国际范围内现已取得广泛使用,出产能力敏捷进步,至1999年,选用该技能出产的铜已占国际矿铜总产量的21%。我国选用该技能炼铜的工厂已多达百家,不过出产规模均较小。该项技能发展敏捷的首要原因有以下几点:一是建厂出资和出产费用低,出产成本低于火法,具有很强的市场竞争力;二是以难选矿难处理的低档次含铜物料为质料,独具技能优越性;三是无废气、废水和废渣污染,契合清洁出产要求;四是具有牢靠的特效萃取剂市场直销。工艺流程见图2。[next] 浸出的办法有堆浸、槽浸、地下浸等多种,浸出剂也有酸性硫酸溶液和碱性液之分,使用最广最遍及的是硫酸溶液堆浸。细菌浸出法关于从硫化铜矿中提取铜是一种有用的办法。 1.氧化铜矿堆浸 适用于硫酸溶液堆浸的铜矿石铜氧化率要求较高,铜首要应以孔雀石、硅孔雀石、赤铜矿等形状存在。脉石成分应以石英为主,一般SiO2含量均大于80%,而碱性脉石CaO、MgO含量低,二者之和不大于2%-3%。矿石含铜档次从0.1%-0.2%。浸出进程的首要化学反应是: Cu2CO3(OH)2+2H2SO4====2CuSO4+CO2+3H2O CuSiO3·2H2O+H2SO4====CuSO4+SiO2+3H2O 2Cu2O+4H2SO4====4CuSO4+4H2O 矿石堆浸前先要通过破碎,操控粒度不大于20mm,在底部不渗漏、有必定天然斜度的堆矿场上分区分层地堆上矿石,每层堆到预订高度层(1-3m),喷撒含硫酸稀溶液进行浸出。喷淋体系设备包含输液泵、PVC管路、喷头号。浸出液自上而下在渗滤进程中将矿石中铜浸出,正常出产时将萃余液回来作为浸出液。通过较长时刻的浸出(数月),得到含铜1-4 g/L, pH1.5-2.5的浸出后液,聚集于集液池,再用泵送到萃取工序处理。氧化铜矿堆浸浸出率在85%左右。
湿法冶金(四)
2019-03-05 09:04:34
当料液中的交流离子分散到树脂表面后,还需求以下进程才干完结交流的完好进程:①膜分散即溶液中的交流离子抵达离子交流树脂和溶液构成的表面膜后,在向这层膜内进行分散;②粒子分散即交流离子抵达离子交流树脂相后,持续在离子交流树脂颗粒内部进行分散;③发作交流反响;④交流下来的离子在离子交流树脂内分散,分散到离子交流树脂颗粒表面;⑤交流下来的离子持续分散穿过颗粒表面膜。 影响离子交流反响速度的要素有交流树脂的品种、交流离子、离子浓度、搅搅拌作业温度等,真实影响交流速度的是分散。 (六)电渗析 是一种以电.位差为推动力,使用离子交流膜的挑选透过性,从溶液中脱除或富集电解质的膜别离技能。电渗析的功用首要取决于离子交流膜,它以高分子材料为基体,接上可电离的功用基团而成。按功用基团的性质,能够把交流膜分为阳膜和阴膜两类。从膜结构上分析阳膜含有酸性功用基团,能离解出阳离子,只允许透过阳离子。阴膜含有碱性功用基团,能离解出阴离子,只允许透过阴离子。离子交流膜的挑选透过性是根据膜上固定离子的电性效果,由于它的电荷和活动离子的电荷电性相反,故能招引溶液中的异性电荷离子进人膜内,随后又透过膜转人另一侧溶液中;与此一起排挤同性电荷离子,不能进人膜内,留在溶液中。 进行电渗析的设备为电渗析器,它由离子交流膜、隔板和电极组成。片状的阳膜和阴膜替换摆放,隔板放置在其间,隔板仅1-2mm厚,内有隔网起坚持膜的距离和扰动液流,这样构成一系列相间的小水室,设有进出水管。渗水器的两头设电极室,端侧有电极,阳极用石墨或涂钉的钦制造,阴极则用不锈钢制造。 当含盐溶液通人渗析器的每个水室时,在直流电场的效果下,溶液中的离子作定向的搬迁。由于阳膜只允许阳离子经过而截留阴离子,反之也相同,其结果是相邻的水室,一个室变成无离子的无盐溶液,另一室则聚集了离子,到达浓缩和别离的意图。在湿法冶金中电渗析作为技能别离杂质或富集金属的单元技能得到广泛使用。 (七)膜别离技能 是在外加推动力下,使溶液中的溶剂或溶质挑选性地经过隔阂的别离办法。根据外加推动力和别离膜的不同,膜别离包含反浸透、超滤、微孔过滤、分散渗析和液膜别离等。反浸透、超滤和微孔过滤以不同的压力差作外加推动力,到达溶剂与溶质、巨细溶质粒子和悬浮物与溶液别离的意图。分散渗析以离子浓度差作为推动力。液膜别离则使用物质在液膜中的溶解度和浸透速度不同完成物质的别离。 膜别离在湿法冶金使用中的开展趋势是:①开展新式膜材料和别离技能,以习惯湿法冶金中高温高酸碱介质的要求,进步材料的稳定性和使用寿命;②开展别离技能的归纳工艺,扩展使用规模,进步别离功率;③结合膜别离和惯例别离技能,以下降能耗、节约出资、进步经济效益;④开展新式膜别离设备。[next] 四、从溶液中提取金属 把水溶液中所含的金属物料经过金属状况的转化从溶液中分出收回单元的操作进程,是湿法冶金的重要进程之一。从溶液中提取金属的办法分电解法和化学法两种。而化冶金则是兼具二者的一种特殊冶金办法。 电解提取又称电解堆积,是向含金属盐的水溶液或悬浮液中经过直流电而使其间的某些金属堆积在阴极的进程。 化学提取是用一种复原剂把水溶液中的金属离子复原成金属的进程。 电解提取和化学提取各有其优缺陷。电解提取不需很多试剂,对环境污染小,特别适合于大规模出产,是工业上从水溶液中提取铜、镍、锌的首要办法。但该法耗费很多电能,不适用于电力缺少的区域。此外,一次性设备出资大,占地面积大,操作周期长。而化学提取规律具有不需求耗费很多的电能、设备出资少、占地面积小、操作周期短等长处;缺陷是需求耗费复原剂,发作的废液经处理才干排放。 精粹冶金是使用浸取固体物猜中的金属,然后用歧化沉积从含液中提取金属的进程。化冶金只适用于提取铜、银等少量几种金属,除电解提取则详见第三节电冶金部分。现别离叙说化学提取和腈法冶金。 (一)电解提取 内容详见第三节电冶金部分。 (二)化学提取 用复原剂把水溶液中的金属离子复原为金属态分出的提取金属的办法。工业常用的复原剂有、SO2气体、亚铁离子、铁、锌、铝、铜等金属以及草酸和联胺等。 1.加压氢复原法 在压煮器(高压釜)内用使水溶液中的金属水溶物复原成金属、化合物或贱价离子的化学提取办法。 氢从水溶液中分出金属的反响为:
[next] 当金属的电极电位大于氢的电极电位(ФMe>ФH)时,能够用氢复原分出金属,直至ФMe=ФH停止。 经过上式可知,增大金属复原程度,其一是经过增大氢分压和进步溶液的pH值来下降氢电位;其二是靠添加溶液中金属离子浓度来进步金属电位。跟着复原进程的进行,溶液中的金属浓度不断下降,ФMen+/Me也不断下降,而H+浓度不断添加,Ф2H+/H2不断上升,当ФMen+/Me=Ф2H+/H2时复原反响到达平衡。当然,随之压力、温度升高对复原金属是有利的。为了处理分出金属的新相生成问题,需预先往水溶液中加人晶种。现在该办法用于别离金属和出产金属粉末与金属氧化物。 2.二氧化硫复原法 以二氧化硫为复原气体将溶液中的金属离子复原成贱价离子或金属的化学提取办法。 SO2溶于水生成H2SO3 ,是杰出的复原剂。因而,二氧化硫的复原效果实质上是经过进行的。电极SO42-/SO32-的标准电极电位Ф0=+0.20V,因而,二氧化硫能将溶液中电位较正的一些金属离子复原成贱价离子或金属。 二氧化硫复原法在湿法冶金中广泛用于铜、金和锌等出产中。 3.亚铁复原法 以亚铁离子为复原剂将溶液中金属离子直接复原沉积出金属的化学提取办法。由于亚铁具有较正的标准电极电位,因而许多常见杂质难以分出而可得到高纯度金属粉末,且亚铁复原剂制备简单和报价便宜。 4.置换 用电极电位较负的金属将金属盐水溶液或某些不溶盐悬浮液中电极电位较正的金属离子复原成金属的进程。具有电极电位较渗(的金属称为置换剂。在湿法冶金出产进程,置换既可作为溶液中金属提取的一种手法,也可作为溶液净化的办法。 按金属在水溶液中标准电极电位排序,任何一种金属都可将其后边的金属置换出来。任何一种金属都能够作为置换剂。常见金属的标准电极电位列入表1中。[next]表3-1 常见金属的标准电极电位(298K,1mol/L溶液)金属电极标准电极电位Ф0/V金属电极标准电极电位Ф0/V金属电极标准电极电位Ф0/VK+/K-2.925Fe2+/Fe-0.44Sb2+/Sb0.1Ca2+/Ca-2.87Cd2+/Cd-0.402Bi3+/Bi0.2Na+/Na-2.713Co2+/Co-0.3As3+/As0.3Mg2+/Mg-2.37Ni2+/Ni-0.25Ca2+/Ca0.337Al3+/Al-1.66Sn2+/Sn-0.14Ag+/Ag0.8Mn2+/Mn-1.19Pb2+/Pb-0.126Mg2+/Mg0.854Zn2+/Zn-0.7632H+/H2±0.000Au3+/Au1.5 在挑选置换剂时,首要考虑的是电极电位的巨细,一起还有必要考虑溶液特性、金属收回的难易程度和经济要素以及是否污染溶液对提取金属发作影响等。常用的置换剂有铁、锌、铅、镍、钻等,其形状有板、粒和粉,粉状的表面积大,效果最好。置换广泛用于浸出液提取金属,并用于溶液净化。 5.联胺复原法 联胺即用N2H4·H2O与适量合作将水溶液中的金属盐复原成金属粉末的化学提取办法。又称肼或复原法,是制取金属粉末的重要办法之一。 联胺是一种无色油状液体,但有毒和有气味,具有很强的复原效果。联胺将金属离子复原成金属,无论是不溶性盐(AgCl)或可溶性盐(AgNO3),都是先与效果转变成金属配离子,然后将金属配离子复原成金属,如:[next] AgCl+2NH3·H2O====Ag(NH3)2·Cl+2H2O 4Ag(NH3)2Cl+N2H4+4H2O====4Ag+N2+4NH4Cl+4NH3·H2O 该法出产的银粉粒度细、纯度高,是制造银触头的抱负材料。 6.歧化沉积法 操控必定条件使溶液或溶盐中具有多种价态的金属离子,发作本身的氧化复原生成高价态的离子和金属的化学办法。 一些具有多种价态的金属如铜、镓、铟、铝、钛、锆、铪、铌和钽等,都可用歧化沉积法提纯,其特点是金属有必要具有多价态的特性。如铟的歧化沉积提纯,是先用氯化氢使铟生成InCl: 2In(I)+2HCl(g)→2InCl(s)+H2(g) 制得的InCI(s)在水中发作歧化反响得到高纯海绵铟。 3InC1(s)→InCl3(t)+2In(海绵) (三)腈法冶金(nitrile metallurgy) 是用腈的水溶液提取金属的一种湿法冶金办法。又叫甲基腈,是出产腈的一种副产品。对Cu+和Ag+有很强的合作力。此法是由澳大利亚人帕克(A.J.Parker)在20世纪70年代提出的。 在的存在情况下常温反响: Cu0+Cu2+====2Cu+ 向右进行平衡常数K=10-6,但当有时,以上反响的K=108-1022,并随浓度的添加,K值持续增大,阐明Cu0简单氧化成Cu+而进人溶液。这是帕克提出该法的根据。 该法首要用于从含铜的固体物料(粗铜粉、置换铜、废杂铜屑以及氧化铜离析产品),氧化铜矿和硫化铜中提取铜。应该说,该法仍是一种很有出路的办法,由于该法出资少,总处理费用低,产品质量高。但现在还处在实验阶段,真实用于工业出产,还需做很多的作业。
湿法炼锌
2019-01-08 09:52:37
用酸性溶液从氧化锌焙砂或其他物料中浸出锌,再用电解沉积技术从锌浸出液中制取金属锌的方法。该法于1916年开始工业应用,至1998年,全世界产锌802万吨中的70%以上是由湿法炼锌工艺所生产,发展很快。中国年产锌万吨以上的湿法炼锌厂有15家,生产能力约为火法炼锌的2倍多,湿法炼锌产量超过100万吨。该工艺包括硫化锌精矿焙烧、锌焙砂浸出、浸出液净化除杂质和锌电解沉积四个主要工序。工艺流程见图1。 1.锌精矿焙烧 用空气或富氧,在高温下使锌精矿中ZnS氧化成ZnO和ZnSO4,同时除去As、Sb、Cd等杂质的一种作业。焙烧产物焙砂,送去浸出锌,烟气或者制硫酸或者生产液态S02-湿法炼锌的精矿焙烧与火法焙烧不同,湿法炼锌焙砂中要求保留1%-2%的硫以SO42-形态存在,以补充锌焙砂浸出时不足的硫酸。而火法炼锌精矿焙烧希望全部ZnS都氧化为ZnO,以提高冶炼回收率。 现代锌精矿焙烧均采用沸腾焙烧炉。焙烧操作条件是:床层温度900-1000℃,线速度0.5-0.6 m/s,床能力5-6.5 t/(m2·d),烟尘率50%-60%。 主要技术经济指标:脱硫率91%-95%,烟气SO2浓度>6.5%,不溶硫<1%。[next] 2.锌焙砂浸出与浸出液净化 焙砂浸出锌由中性浸出和酸性浸出两段组成。一段中性浸出采用废电解液,二段用硫酸作浸出液,酸度30-60 g/L H2SO4,浸出温度65-70℃。浸出液含Zn>120 g/L。影响浸出的因素有浸出温度、搅拌速度、酸浓度、锌焙砂颗粒大小等。ZnO浸出反应为: ZnO+H2SO4====ZnSO4+H2O 为了提高锌焙砂中锌浸出率,采用空气搅拌,以强化浸出过程。使难溶的ZnO.Fe2O3、ZnO.Al2O3及ZnS得以溶解。 工业生产多将若干个搅拌浸出槽连接起来形成浸出设备组合系列,锌焙砂用废电解液浆化成矿浆后在此进行逆流连续浸出。中性浸出段产出的矿浆经浓密分离,上清液送去净化除杂质,合格净化液送电解生产电锌,底流再经酸性浸出段浸出,上清液返回浆化槽,底流过滤,滤饼为弃渣,送渣场。 浸出工序主要指标为:锌焙砂含Zn 47%-57%(可溶Zn>90%),锌浸出率>85%,浸出渣含Zn 18%-20%,浸出渣产率53%。 所得浸出液含锌130-150 g/L,其他杂质为(g/L):Cu 0.2-0.4, Cd 0.5-0.7, Co0.01-0.04,Ni 0.002-0.007,As 0.0002-0.0004,Sb 0.0003-0.0004。这些杂质对锌电积十分有害,电积前必须将其除到允许的浓度。 传统的浸出液净化过程包括两个工序:先加锌粉置换除铜、镉;再加黄药除钴。前者是利用铜与镉的氧化还原标准电位分别为+0.344和-0.40,均较锌-0.762为正的原理,将Cu2+、Cd2+还原成Cu和Cd沉淀除去;后者则是向溶液中加入CuSO4,使Co2+氧化成Co3+,而后加入磺酸盐(2C4H9OCSSK)使和Co3+成钴盐(C4H9OCSS)3Co沉淀除去。 沈阳冶炼厂采用白砷(As2O3)代替黄药除Co,一次净化时浸出液中加入As2O3、锌粉、硫酸铜,同时除去As、Sb、Ni、Cu、Ge,二次净化时浸出液中加KMnO4除Fe,加锌粉除残Cd。经过两次净化,可基本除净有害杂质,电解电流效率可提高到90%。 白砷净化溶液的条件与指标:一次净化,温度60-70℃,白砷、锌粉和硫酸铜的用量分别为0.15 kg/m3、0.5 kg/m3和0.2 kg/m3,终液含Co降到0.002 g/L;二次净化,50-60℃,用空搅拌除铁,净化后溶液含铁 锌电积的主要设备是电解槽,多为钢筋混凝土制成的内衬聚氯乙烯或玻璃钢防腐材料槽,电解槽尺寸为2250mm×850mm×1450mm。铝板阴极,大小为1m×0.7m×4mm,上边焊接铜导电棒,侧边夹绝缘条。阳极用含银1%的铅基合金制成,尺寸稍小于阴极。 锌电沉积的主要技术经济指标为:电解温度40℃,同极中心距60mm,电流密度450A/m2,槽电压3.2-3.4V,电流效率89%,直流电耗3100kWh/t Zn,电解回收率99.3%。 熔铸析出锌片的冶金炉有低频感应炉和反射炉。前者常用的规格有1250 kW,40t容量炉型,工作温度450-500℃,电耗120 kWh/t。后者常见炉床面积7.4m2,容量5 t/炉,以煤或油为燃料。产品锌锭重20-25kg,质量为1#锌国家标准(%):Zn>99.99,Pb<0.005,Fe<0.003,Cu<0.001,杂质总量<0.01。
湿法冶金法
2019-01-04 17:20:18
湿法冶金就是在低温下(一般低于100℃)用适当的溶剂来处理矿石、精矿或半成品,使其中要提取的金属溶解进入溶液,从而与不溶解的脉石或其他杂质分离,并随后从溶液中提取我们所需的金属的方法。它一般包括浸出、过滤、净化(包括液固分离)及提取金属4个过程。湿法冶金多用于处理低品位矿石。它在稀有金属冶金中占有很重要的地位,大多数稀有金属的提取都需要经过湿法冶金的处理。
在重有色金属冶金中,目前铜的生产约15%~20%,用湿法生产,锌的生产约40%用湿法生产。其金属金和银大部分也用湿法冶金提取。湿法冶金与火法冶金比较有很多优点,例如金属回收率高,原料综合利用可能性大,可以直接处理难选或难熔的贫矿,燃耗低,生产过程易于控制,劳动条件比较好,与火法冶金相比较减轻了废气对环境的污染。但其设备与工艺均比火法冶金复杂。
湿法冶金(三)
2019-03-05 09:04:34
(2)离心萃取器 离心萃取器由于转速高、混合效果好,所以能大大缩短混合停留时间,又由于以离心力替代重力效果,加快两相的别离,其操作原理见图5。 这种萃取设备结构紧凑,单位容积通量大,所以特别适用于化学稳定性差(如抗菌素)、需求触摸时间短、产品保存时间短的系统,或易于乳化、别离困难等系统的萃取。缺陷是因其精细结构、造价和修理费用都比其他类型萃取器要高。 离心萃取器有波氏离心萃取器、阿尔法一拉瓦尔(Alfa-Laval)离心萃取器、奎德罗尼克(Quadronic)离心萃取器,还有韦氏、罗伯特路威斯特、SRL ANL等离心萃取器。很少在有色冶金中运用。 (3)混合弄清萃取箱 一般说,萃取塔占地面积小和体积密封好是它潜在的长处。相反,混合弄清萃取箱占地面积大,但因设备对地域无特殊要求,不管在城市或矿山都可缔造运用,所以现在大型混合弄清萃取箱大多建在矿山,并且是露天作业。 混合弄清萃取箱大多由两个相连的容器组成,即混合室和弄清室,两者构成一级。水相和有机相在混合室内,由搅拌器输人能量使它们充沛混合,待传质进程挨衡后,混合相进人大面积的弄清室进行两相别离。别离后的水相和有机相别离流人相邻级的混合室,完成逆流多级萃取进程。 混合弄清萃取箱见图6。
[next]
这种萃取箱的混合室和弄清室交织装备在同一个箱体内,用隔板离隔,毗连级间两相液流由箱内相应隔板的开孔连通,无管道衔接。搅拌器通常用桨叶,只起两相混合效果。液体的活动是靠各级两相的密度差发生的推动力完成,因而对萃取箱有必要确保必定的高度,不然难以完成液体自流,由于密度差发生的活动推力与液层深度成正比。当时为了削减设备的占地面积、添加单位容积流量等,箱式萃取器在有色冶金职业得到广泛运用。 (五)离子交流法 离子交流剂功用基中的阳离子或阴离子与溶液中的同性离子进行可逆交流的进程。 离子交流法在湿法冶金中常用于从水溶液提取有价金属或作为溶液净化的一种手法。离子交流树脂有固定阴离子的离子交流树脂,它交流的离子带正电荷,其交流进程称为阳离子交流;另一种树脂有固定阳离子的离子交流树脂,所交流的离子带有负电荷,其交流进程,称为阴离子交流。经过离子交流剂的吸附和解吸效果进行物质的别离或富集以及离子交流树脂再生。触及离子交流的主要参数有交流树脂分配系数、交流率。在工艺进程中,按处理的料液是否含有悬浮固体,分矿浆吸附法和清液吸附法。 交流的典型反响为: A++BReS-====B++AReS- 式中,BReS-为离子交流树脂的功用基,ReS-为固定在离子交流树脂或其他类型离子交流剂上的离子,B+为可交流的一价阳离子,A+为料液中的一价阳离子。 (1)交流 料液中的A+替代B+而为离子交流树脂所捕获的进程称为交流式吸附。在交流进程中当B+简直悉数被A+所替代后,即便再通人含A+的料液,A+也会原封不动地流出来,此刻,便以为离子交流处于平衡状况。 (2)淋洗 当往被A+所交流的离子交流树脂中通人某种含B+,而B+又能替代离子交流树脂中A+的溶液时,反响便向交流和逆方向进行,即流出含A+的溶液,而BReS-功用基团又再生,称这一操作为淋洗、再生或解吸。称所用的这种溶液为淋洗液或再生剂。 (3)反洗 是在淋洗之前洗去离子交流树脂中的杂质和松动离子交流树脂层。 (4)正洗 是在淋洗之后洗去离子交流树脂颗粒之间及表面上的再洗剂(淋洗液)。 离子交流的工艺按以下结构组成:[next] 离子交流模型见图7,以Na+和H+型阳离子树脂交流为例。
湿法炼锑
2019-01-08 09:52:37
火法炼锑历史悠久,但迄今有关砷、硫污染和复杂锑矿有效利用等问题尚未圆满解决。中国湖南水口山矿务局等单位开发的碱性湿法炼锑终于取得突破,1986年建成了一座规模为年产万吨精锑的湿法炼锑厂。该工艺可使用高铅复杂锑矿作原料,先用Na2S浸出锑,浸出液再电解沉积金属锑。 (一)浸出 在碱性溶液中Na2S可以溶解锑矿中的Sb2S3,而砷、铜、铅、锌、铁等硫化物不与Na2S起作用。浸出在搅拌槽中进行。原料锑精矿含锑55%,粒度85%小于0.074mm。浸出液固比7:1,温度95-98℃,搅拌速度220-300r/min,浸出时间30min,浸出剂浓度Na2S 135g/L, NaOH 25g/L, Sb 113g/L。所得浸出液含Sb 90-100g/L, Na2S 20g/L,NaOH 120g/L, Na2SO4 28g/L, Na2CO3 65g/L,锑浸出率94.1%,浸出渣含锑0.4%。 (二)电解沉积锑 电解槽采用耐碱混凝土制成,槽内装入用4mm厚钢板制成的阴极和用Ф14mm圆钢焊成条栅状的阳极和阴极,阳极置于帆布制成的阳极袋中,阳极袋挂在框架上。槽一端有阴极液进液区,另一端有阴极液排出口,阳极液经过总管、框架上软管流入阳极袋,又从对侧软管排出汇集返回净化。阴极用厚4mm钢板制做,阳极利用Ф14mm钢条焊成栅状。阳极膜袋用帆布缝制,外涂环氧树脂防止破损,阳极框架用圆钢焊成,并加防腐处理。电解时,阴极液起始浓度Sb 90-100g/L, Na2S 200g/L;最终浓度Sb 10g/L, Na2S 180g/L。电解温度50-55℃,电流密度阴极第一段300A/m2,二段150A/m2,阳极1100A/m2;槽电压2.7-3V;电流效率8.2%,直流电耗2650-2850kWh/t Sb,阴极锑品位98.05-98.29%。
湿法冶金(二)
2019-01-08 09:52:35
3.萃取设备 高效率的萃取器对实现良好的萃取工艺具有重要意义,它不仅关系到萃取过程能否实现,而且极大地影响着萃取工厂的经济效益。目前主要萃取器有三种:箱式(又称混合一澄清器)、萃取塔和离心萃取器。 (1)萃取塔分无搅拌萃取塔和机械搅拌萃取塔两类。前者有喷雾塔、填料塔和孔板(筛板)塔三种,见示意图2。 后者又根据机械运动的形式可分为旋转搅拌塔和往复(或震动)板塔,在众多的旋转搅拌塔中,最为突出的有希贝尔(Scheibel)塔转盘塔和奥尔德舒一拉什顿(Oldshue-Rushton)多级混合塔。 萃取塔主要应用在石油化工、制药、废水处理以及铀的提取,在冶金上,特别是有色冶金上应用比较少,具体内容从略。其典型形式见图3。[next]
往复板萃取塔第一个被利用的是脉冲式接触,经改进后目则获得工业应用的是多孔型结构,具有大径孔、大孔隙度(约58%)和板型是小孔径、孔的有效面积少的待点。则者被应用在北美,后者则应用在东欧和前苏联。除此之外还有脉冲塔。 多孔型往复板塔示意图见图4。
湿法炼铜(二)
2019-03-05 09:04:34
2.含硫铜矿细菌堆浸 细菌浸铜技能是一种生物化学冶金法,已有数百年的运用发展史。近几十年的科学研究和出产实践证明,细菌冶金是从低档次难选硫化矿、半氧化矿中提取铜的可行办法。全世界已挖掘的铜矿山85%以上为硫化矿,在挖掘进程中发生很多含铜从0.1%-0.3%的表外矿和含铜废石,其间的铜有适当数量是以原生或次生硫化物形状存在,而这些铜矿藏仅用硫酸溶液浸出效果很差,如细菌参加,能够收到显效。 细菌浸铜实践运用的菌种均为嗜中温菌,它是氧化亚铁硫杆菌、氧化硫硫杆菌、氧化铁钩端螺旋菌和氧化铁铁杆菌的混合培育物。这些细菌在适合条件下,如pHl.5-3.0,温度30℃左右,可直接或以其代谢产品氧化含铜硫化矿藏,使铜溶解出来。 ①细菌直接浸出: 我国现有多处细菌浸出炼铜厂在出产。 3.萃取与反萃取 铜溶剂萃取的工业运用始于20世纪60年代,该技能被敏捷广泛选用,得益于具有特效、报价合理的铜萃取剂的牢靠直销。现有的工业用铜萃取剂一般均归于改质肟类或肟与酮肟的混合物一类,其品牌前者如ACORGA P5100、ACORGA M5640等;后者如LIX973N, LIX984等。萃取前首先用稀释剂(常用260#炼油)将萃取剂溶解,配制成5%(体积)的有机相,然后将有机相与水相一浸出液混合,铜转入萃取剂,萃取剂释放出H+,萃取反应为: 式中,RH为萃取剂;R2Cu为萃铜络合物。[next] 萃铜后的有机相(负载有机相),用电积后回来的含硫酸180-200g几的废电解液进行反萃,铜进入反萃液成为富铜液-电解原液,萃取剂得到再生循环运用。 4.萃取设备 常用的有萃取塔、离心萃取器、混合弄清萃取箱等多种,其间以结构简略、出资少、操作便利、效率高的浅池式混合弄清萃取箱运用最多。萃取箱的一端为混合室,有机相和水相别离进入混合室,在机械拌和下充沛混合后进入弄清室,两相在此依其密度不同分层,上层负载有机相和基层水相别离经弄清室另一端的溢流堰排出。 萃取作业的首要技能条件与目标是:浸出液(萃原液)含铜浓度Cu2+≥g/L, pH1.5-2.0;有机相中萃取剂5%(体积)左右,稀释剂260#火油95%(体积);萃取比较1:1;混合时刻3min;反萃剂中H2SO4 160-210g/L, Cu2+ 30-35g/L, Fe<5g/L。萃取剂耗费小于3kg/t Cu。 5.电解堆积 选用不溶性阳极,在直流电效果下,将电解液中铜堆积到阴极上制取金属的炼铜进程。电解槽中刺进用Pb-Ca-Sn合金制成的阳极板和用纯铜始极片或不锈钢制成的阴极。电解液自一端入另一端出,接连流过电解槽。堆积了铜的阴极定时取出,始极片阴极洗刷后即为产品,而不锈钢阴极上堆积的铜片需用剥片机剥下,洗刷后出售,不锈钢阴极循环运用。首要技能经济目标为:电流密度150-180A/m;槽电压2-2.5V;电解液Cu 45g/L、H2SO4150-180g/L;阴极周期7-10天;电积铜纯度大于99.95%;电耗3000-4000kWh/tCu。 (三)铜矿浸——萃取——电积 氧化铜矿(或硫化铜精矿氧化焙烧后的焙砂)用浸出铜,再经萃取一电积铜。本工艺适于处理碱性脉石(CaO、MgO)含量高的铜矿石或焙砂。浸出的技能条件是:质料粒度小于0.074 mm的占80%以上;矿浆浓度30%-40%;浸出剂含NW2-3mol/L, CO2 0.6mol/L,选用常温(焙砂浸出80-100℃);常压(焙砂浸出0.2MPa)。浸在加盖浸出槽(焙砂在加压釜)中进行,浸出矿浆通过稠密机液固别离,浸出液送去萃取,底流过滤后浸渣堆存,滤液回来用于滤渣洗刷。浸出液可用LlX54、LIX54-100等萃取剂萃取,此类萃取剂负载才能高、粘度小、反萃取简单,见图3。铜电解堆积在硫酸性溶液中进行,电解废液用于反萃。[next]
湿法冶金(一)
2019-03-05 09:04:34
湿法冶金是运用浸出剂将矿石、精矿、焙砂及其他物猜中有价金属组分溶解在溶液中或以新的固相分出,进行金属别离、富集和提取的科学技能。因为这种冶金进程大都是在水溶液中进行,故称湿法冶金。 湿法冶金的前史能够追溯到公元前200年,我国的西汉时期就有用胆矾法提铜的记载。但湿法冶金近代的开展与湿法炼锌的成功、拜尔法出产氧化铝的发明以及铀工业的开展和20世纪60年代羟肟类萃取剂的发明并运用于湿法炼铜是分不开的。 跟着矿石档次的下降和对环境保护要求的日益严厉,湿法冶金在有色金属出产中的作用越来越大。 湿法冶金首要包含浸出、液固别离、溶液净化、溶液中金属提取及废水处理等单元操作进程。 一、浸出 浸出是凭借于溶剂挑选性地从矿石、精矿、焙砂等固体物猜中提取某些可溶性组分的湿法冶金单元进程。 依据浸出剂的不同可分为酸浸出、碱浸出和盐浸出。依据浸出化学进程分为氧化浸出和复原浸出。依据浸出办法分为堆浸、就地浸、渗滤浸、拌和浸出、热球磨浸出、管道浸出、流态化浸出。依据浸出进程的压力可分为常压浸出和加压浸出。 影响浸出速度的要素首要有固体物料的组成、结构和粒度、浸出剂的浓度、浸出的温度、液固相相对活动的速度和矿浆粘度等。 (一)以溶剂分类 1.酸浸出 是用酸作溶剂浸出有价金属的办法。常用的酸有无机酸和有机酸,工业上选用硫酸、、硝酸、、和等。硫酸的沸点高,来历广,报价低,腐蚀性较弱,是运用最广泛的酸浸出剂。在有色冶金中硫酸常用于氧化铜矿的浸出、锌焙砂浸出、镍锍和硫化锌精矿的氧压浸出等。的反响才干强,能浸出多种金属、金属氧化物和某些硫化物。如用来浸出镍锍、钴渣等。但及生成的氯化物腐蚀性较强,设备防腐要求较高。硝酸是强氧化剂,报价高,且反响分出有毒的氮氧化物,只在少量特殊状况下才运用。 2.碱浸出 用碱性溶液作溶剂的浸出办法。常用的碱有、碳酸钠和。铝土矿加压碱浸出是碱浸出最重要的运用实例。碱浸出还用于浸出黑钨矿、铀矿(Na2CO3浸出UO3)、硫化和氧化锑矿(Na2S+NaOH浸出)等。碱性溶液的浸出才干一般较酸性溶液弱,但浸出的挑选性较好,浸出液较纯,对设备的腐蚀性小,不需特殊防腐,制造设备的原料较易处理。 3.盐浸出 是以盐作溶剂浸出有价金属的进程。如硫化矿用硫酸铁浸出铜: CuS+Fe2(SO4)3→CuSO4+2FeSO4+S 氯化钠浸出铅: PbSO4+2NaCl→Na2SO4+PbCl2 PbCl2+2NaCl====Na2[PbCl4] 浸出矿石中的金和银: 2Au+4NaCN+O2+2H2O==== 2Na[Au(CN)2]+2NaOH+H2O2 (二)以浸出反响式分类 依据浸出进程发作的反响可分为氧化浸出和复原浸出。[next] 1.氧化浸出 加人氧化剂使矿石、精矿或其他固体物猜中的有价组分在浸出进程中发作以氧化反响为特征的浸出办法。工业上常用的氧化剂有空气、氧、Fe3+、MnO2和Cl2等等。 对金属或贱价金属氧化物而言,氧化浸出的意图是使金属氧化为离子或使贱价离子氧化为易溶性高的高价离子进人溶液。前者如含金、银矿石的化浸出。 2Au+4NaCN+O2+2H2O====2NaAu(CN)2+2NaOH+H2O2 2Au+H2O2+4NaCN====2NaAu(CN)2+2NaOH 或溶解反响: 4Au+8NaCN+O2+2H2O====4NaAu(CN)2+4NaOH 2Ag+2CN-+O2+2H2O====2Ag(CN)2++4OH- 浸出进程中单体金和银别离被空气中的氧氧化并与CN-络合,呈配位离子形状进人溶液,后者可举浸出黄铜矿为例: CuFeS2+4FeCl3====CuCl2+5FeCl2+2S CuFeS2+3FeCl3====CuCl+4FeCl2+2S 此刻,氧化剂为Fe3+,为了防止反响物的水解,浸出进程是在酸性介质中进行。后者发作氧化反响的首要是硫。 2.复原浸出 加人复原剂使被浸出固体物猜中的有价组分在浸出进程中发作以复原反响为特征的浸出办法。工业中常用的复原剂有SO2、FeSO4等。 典型的复原浸出实例如钴渣的浸出,钴渣中钴以难溶的高价氢氧化物CO(OH)3形状存在。为了提取钴有必要使CO3+复原易溶的Co2+。此刻能够用SO2作复原剂。 2Co(OH)3+SO2====CoSO4+Co(OH)2+2H2O (三)浸出办法 就浸出的办法可分为堆浸、就地浸、渗滤浸、常压浸、加压浸。 1.堆浸 就地浸出(溶液采矿)和渗滤浸出虽然浸出的办法有所不同,但根本上可归于一类。处理的目标都是比较贫的氧化矿、表外矿和地表矿。矿石浸出之前一般不作深度加工,即便稍作加工,也仅仅停留在粗碎,处理的规划除渗滤外一般都比较大,有的沉出块,规划能够到达几百万吨,浸出的速度不很快,提取率相对较低,但出资省,加工费用低。[next] 2.常压和加压拌和浸出 管道化浸出、流态化浸出和热球浸出办法可归人另一类。它们的共同点:浸出之前矿石都需求深加工,为浸出发明了杰出的热力学和动力学条件,不仅把拌和、加热和化学反响结合起来,如热球磨浸出还把破碎和机械活化有机地结合起来。溶液中颗粒散布均匀,反响速度快,金属提取率高。浸出进程强化,使设备单位出产才干进步,并运用于有色金属冶金中,管道化浸出现在已成为处理铝土矿制取氧化铝的标准办法。 二、固液别离 将浸出液别离成液相和固相的进程,常用的固液别离办法有沉降别离和过滤两种办法,过滤一般又有离心别离和过滤别离。 (一)沉降别离 是凭借于重力作用将浸出矿浆别离为含固体量较多的底流和清亮的溢流的液固别离办法,其先决条件是在固相和溢流液之间存在密度差。因为矿浆中粒子直径规模很宽,从几百微米以上到几个微米均有,沉降速率不能用理论公式核算,一般要靠试验测定。 进步底流浓度的工业设备称之为浓缩槽或弄清槽。它的弄清才干与槽的沉降面积成正比,底流的浓度与浸出矿浆在槽内的停留时刻有关(即与槽深度有关)。为了进步其容量,节约占地面积,则选用多层浓缩槽。 当处理含极细物料的矿浆时,可运用离心力替代重力以加快颗粒沉降。如水力旋流器和螺旋离心机来强化沉降进程。或凭借化学试剂—聚凝剂或絮凝剂促进矿浆中涣散的、不凝集的颗粒转化成弄清溢流和稠密底流。聚凝剂(如石灰)可使颗粒相互凝集,絮凝剂可使细颗粒构成絮团来强化沉降进程。 (二)过滤别离 运用多孔介质阻拦浸出矿浆中的固体粒子,用压强差或其他外力为推动力,使液体经过微孔的液固别离办法。阻拦固体粒子的介质有多种多样,或为编织物,或为多孔陶瓷、多孔金属,或为纸浆及石棉等,但不论是那种过滤介质,其孔隙一般都大于被过滤粒子的直径。真实的过滤是靠粒子群在介质上经过架桥作用或疏松的滤饼来完成的,只要构成滤饼后的滤液才是明澈的。过滤分恒压和恒速两种,前者在滤饼加厚今后在不改动抽力的状况下,过滤速度会减慢,后者则为了坚持过滤速度,在滤饼加厚的状况下有必要加大抽力,才干确保速度不变。 过滤器挑选最重要的要素是滤饼的比阻、过滤物料的固体含量、滤液粘性等。常用过滤器有反转筒真空过滤机、带式过滤机、板框式过滤机等。 三、溶液净化 除掉溶液中杂质的湿法冶金进程,一般浸出液中除欲提取金属外,尚有金属和非金属杂质,有必要先别离掉这些杂质才干终究提取意图金属。溶液净化作用首要有:确保产品质量,一些杂质元素影响产品的用处,有必要严厉按规则标准出产,确保产品质量。 (1)使后续作业顺利进行。如硫酸锌水溶液电积时,杂质氟、氯并不影响电锌质量,但它们的存在则影响电锌的极板外观、起泡、曝裂和作业。[next] (2)进步出产的技能经济目标,某些杂质会直接影响工艺进程的顺利进行,如电积时氯离子则影响电流功率和收回率目标。 (3)归纳收回有价金属,如湿法炼锌中浸出液可收回稀散金属锢、锗等,又如电镍时浸出液可收回钻等。 溶液净化办法多种多样,工业上常用的有结晶、蒸馏、沉积、置换、溶剂萃取、离子交流、电渗析和膜别离等。为取得纯洁溶液,往往多种办法归纳运用。 (一)结晶 物质从溶液、熔融物或蒸气中以晶体状况分出的进程叫结晶。在湿法冶金中,结晶操作首要是从溶液中分出晶体,以制取纯洁的固体产品。 物质从溶液中结晶分出首要依赖于它的过饱和度,发作过饱和度的办法可分为降温、蒸腾、真空和盐析结晶四种。 (1)降温结晶将溶液冷却使之变为过饱和溶液而发作结晶的进程。 (2)蒸腾结晶在常压或减压下蒸腾溶液以除掉部分溶剂,使之变为过饱和溶液而发作的结晶进程。 (3)真空结晶溶液在真空和外界绝热的条件下闪急蒸腾,因为部分溶剂移除和固溶剂快速蒸腾时吸收热量则构成溶液冷却的两层作用使溶液变为过饱和而发作的结晶进程。 (4)盐析结晶向溶液中加人溶解度大的盐类,以下降被结晶物的溶解度,使之到达过饱和而发作的结晶进程。 (二)蒸馏 使物料的某成分蒸腾并冷凝以提取或纯化物质的进程。这是一种运用液体混合物中各组合蒸气压的差异,加热混合物至必定的温度使蒸气压大的组分蒸腾,或使由矿藏中复原出来的组分以气态蒸发,然后再使其冷凝成液体或固体的进程。蒸馏的作用取决于提取或纯化物与混合物的蒸气压的差异,差异越大作用越好。 蒸馏是有色金属提取冶金的重要进程之一,常用于锌、镉、、硒、镓、锂、、的合金别离和精粹。 蒸馏的办法许多,有简略蒸馏、真空蒸馏、分子蒸馏等。 (三)沉积 使水溶液中金属离子生成难溶固体化合物从溶液中分出的进程叫沉积。有水解沉积、中和沉积、硫化沉积、成盐沉积、离子浮选和共沉积。 1.水解沉积 是金属盐类和水发作复分解反响生成氢氧化物或碱式盐沉积的进程,水解的办法有两种,一种是中和水解,一种是稀释水解。当水溶液中的某些金属离子和某种配位体生成合作物时,经过加水稀释使溶液中的配位体浓度下降会导致水解的发作。例如SbCln3-n的稀释水解: SbCln3-n+H2O=====SbOCl↓+2H++(n-1)Cl- 2.中和沉积 向酸性溶液中参加碱或向碱性溶液中参加酸使溶液中的金属离子水解成氢氧化物或碱性盐沉积的进程。例如: Me2++2H2O=====Me(OH)2+2H+ WO42-+2H2O=====H2WO4↓+2OH- 为使上述反响向右进行,有必要别离加人碱和酸中和所生成的酸和碱,并运用金属氢氧化物的溶度积的差异,操控pH值以到达沉积和别离金属的意图。湿法冶金中常用中和水解沉积从溶液中除掉Fe3+,从Na2WO4, Na2MoO4, Na2SnO4溶液中沉积出H2WO4, H2MoO4,H2SnO4。[next] 3.硫化沉积 是向原生溶液中加人硫化剂生成难溶的金属硫化物沉积,常用的硫化剂有H2S, Na2S。除碱金属外,一般金属硫化物在水中的溶解度都比较小(用溶度积标明)。 选用硫化沉积能够从水治进程产出的很多稀溶液中,有用地沉出有价金属,如硫酸镍溶液中Cu的除掉: CuSO4+Na2S====Na2SO4+CuS↓ 4.成盐沉积 使水溶液中的金属离子生成某种难溶盐并沉出的进程。常用的难溶盐有硫酸盐如CaSO4, BaSO4、SrSO4,卤盐CaF2, AgCl, PbCl2,碳酸盐如BaCO3,草酸盐如COC2O4,还有CaWO4, Ca (AsO3)2 ,(NH4)2PtCI6,(NH4)2PdCl6,(NH4)2lrCl6和复盐Me+Fe3(SO4)2·(OH)6等。能够运用成盐沉积作为从溶液中除掉杂质的手法,如以沉积CaF2除掉溶液中的F-,以MgNH4·PO4除掉碱性溶液中的磷,以沉积黄钾(钠)铁矾除掉酸性溶液中的Fe3+等。
5.离子浮选法 用捕集剂(表面活性物质)与溶液中的金属离子构成一种难溶疏水化合物,粘附于气泡上浮而得以别离的进程。特别合适从稀溶液中提取有价元素或消除废水中有害组分的有用办法。依据不同状况,可选用阳离子捕集剂和胺型的R-RH2, R-NH3+、RR-NH2+等和阴离子捕集剂如脂肪酸型的R-COO-、R-SO3-等。 6.共沉积 是存在溶液中的几种物质一起发作沉积的现象。当然共沉积有同晶、吸附、失常合结晶和内吸附之说,但关于恣意一种共沉积现象,很难确定是那种现象为主。大都状况部属吸附作用的共沉积。共沉积技能广泛用于放射性同位素的别离。在湿法炼锌中运用Fe以Fe(OH)3形状吸附溶液中的砷、锑、锗等杂质而共沉积除掉,到达净化溶液的意图。[next] (四)溶剂萃取 运用水溶液中某些金属在有机溶剂和水溶液中分配份额的不同,当有机相和水相充沛触摸时,水相中某些金属会挑选性地搬运到有机相,金属的这种搬运进程被称为萃取。在湿法冶金中,常用于水溶液提取有价金属或作为溶液净化的一种手法。因为触摸的水溶液和有机溶液都是液相,因而常把溶剂萃取称为液一液萃取。 与其他别离法如沉积法、离子交流祛比较,溶剂萃取法具有提取和别离功率高、革除过滤、试剂耗费少、收回率高、出产才干大、易完成自动化和接连化等长处。近年来在湿法冶金、石油、化工、环保等部分得到广泛运用。 一个萃取系统一般由互不溶解的有机相和水相组成。有机相由萃取剂和稀释剂组成,水相常含一种或多种被提取或别离的金属离子。被萃取物从有机相搬运到水溶液的进程被称为反萃取。按水相料液是否含有固体悬浮物分为清液萃取和矿浆萃取。按萃取进程选用萃取剂数量在两种以上的称为协同萃取和反协同萃取。触及萃取的技能经济目标的有关名词有:稀释剂、改质剂、分配比、别离系数、萃取率、级数等等。 (1)相 萃取系统所谓的相,是指系统中具有相同物理性质和化学组成的均匀部分。互不相溶的相与相之间会有界面,能够用机械办法分隔,金属溶剂萃取的两相,一般是指含有萃取剂和稀释剂的有机相和含金属离子的水相。 (2)稀释剂 它是一种不与金属发作作用的慵懒溶剂,用来调理萃取剂的浓度,下降有机相(萃取剂)的粘度与密度,添加萃合物的溶解度。 (3)改质剂 为了防止萃取或反萃取时发作安稳的乳化或第三相,往有机相加人一些高碳醇或其他有机化合物,添加萃取剂、萃取剂的盐类或金属萃合物的溶解度。这些化合物通称为改质剂。 (4)比较 即在萃取进程中有机相体积和水相体积的份额,一般是用O/A标明(O代表有机相的体积,A代表水相的体积),在萃取进程中有机相和水相是接连招供的,因而比较用有机相和水相流量的份额标明。 (5)分配比D 实践萃取系统到达平衡后某溶质在水相和有机相平衡浓度的比值。 (6)萃取率 金属被萃取到有机相中的份数,一般用百分数标明,萃取率用η标明: (7)别离系数β 用β标明同一萃取系统内两种金属在相同萃取条件下分配比的比值。标明两种金属别离的难易程度。 β值越大阐明两种金属越简单别离,当β=1时,则标明两金属运用萃取无法别离。[next] (8)萃取级数 即在萃取系统中,为取得预期的萃取成果,要经过若干个萃取器完成到达分级触摸平衡,这就是所谓的萃取级数。 1.萃取剂 工业上常用的金属萃取剂有中性萃取剂、碱性萃取剂和酸性萃取剂三类。 (1)中性萃取剂 是萃取剂的电子给予体和中性无机分子或络合物发作溶剂作用,使无机物质添加在有机相的溶解度,完成对金属无机物的萃取。 这种萃取剂有两个基团,一种是含氧-碳键的有机萃取剂,如醚[二R1=(CH3)2·CH,醇(R=C4H9)和酮(甲基二丁酮R1=CH3, R2=(CH3)2·CHCH2)]等。另一类是氧或硫与磷键合的萃取剂,如磷酸酯类(磷酸三丁酯R1=R2=R3=C4H9O)和硫醚类(二乙基硫醚R=C6H13)。 (2)碱性萃取剂 碱性萃取剂也称离子缔合萃取剂,首要分胺和季铵卤化物两类,伯胺(RNH2)、仲胺R2NH、叔胺R3N和季铵盐[R3N(CH3)]+Cl-,胺类萃取剂的萃取才干与水相中金属离子构成络阴离子的才干有关。这种萃取剂对金属络阴离子的萃取进程是阴离子交流进程。 2.萃取工艺 萃取工艺流程一般由萃取、洗刷和反萃取三个根本进程构成。萃取到达平衡经静置分层后,这时的水相称为萃余液,而含有某种或某些金属的有机相称为负载有机相。负载有机相经反萃取使某种被萃人有机相的金属转人水溶液,然后从反萃取中收回其间的金属,然后到达金属的别离或富集的意图。反萃后不含或少含金属的有机相称为再生有机相,有时在反萃取之前要用洗刷剂从负载有机相洗去某些杂质。[next] 在萃取流程中,依据水相和有机相的触摸办法可分为并流萃取、错流萃取、逆流萃取。 (1)并流萃取行将新鲜水相和新鲜有机相(溶剂)一起进人一个萃取器,经混合后顺流进人下一萃取器,再次混合,以同一方向及相同办法直至最终一级分相,萃余液和负荷有机相同向排出。并流多级萃取,实践仅仅添加两相触摸时刻,其萃取功率并不比单级萃取高。这种办法在萃取工艺中很少选用。 (2)错流萃取错流萃取是将新鲜的有机溶剂S和料液F按必定的比较加到榜首个萃取器,经充沛混合分相后,将负荷有机相E3排出。萃余液R1进入第二个萃取器,并按前次相同的比较参加新鲜有机溶剂S,混合再弄清分相,萃余液持续往下一个萃取器活动。以此类推,直到萃余液金属浓度到达预期成果停止。因为错流萃取每一级都参加新鲜溶剂进行触摸,所以别离作用好,但水相中被萃金属都因每次参加新鲜溶剂而涣散。 (3)逆流萃取即料液从榜首级进入,与由第二级来的负荷有机相触摸,分相后取得含金属有机相从榜首级排出送反萃,萃余液流入第二级与第三级来的负荷有机相触摸,分相第二级萃余液经第三级与新鲜有机相触摸后排出,这就是三级逆流萃取。能够看出,这种水相和有机相沿着相反方向活动的多级触摸进程,只需参加1份萃取剂,即能够取得错流萃取的别离作用,大大地节约萃取剂的需用量。 并流、错流和逆流萃取示意图见图1。
铅锌冶炼
2017-06-06 17:50:12
铅锌冶炼的相关信息: 工业协会铅锌部主任赵翠青9月11日称,2010年全年中国铅产量预计为400至405万吨,同比增加7%-8%;锌产量预计为495至500万吨,同比增加14%-15%。受2009年铅锌产量“前低后高”的影响,今年下半年铅锌产量环比增速将放缓。在“2010上海铅锌峰会”上,赵翠青详细介绍了我国今年1至7月铅锌工业的运行情况。数据显示今年1至7月,铅月产量由1月的23.17万吨稳步递增至7月的36.32万吨;而同期锌月产量则呈现“倒U型”,5月最高单月产量达45.22万吨,7月回落至40.26万吨。赵翠青认为,尽管电解铅产量同比增幅下降了近10%,但7月单月产量已上升接近去年12月份时产量,而这其中再生铅是1至7月铅增产的主导因素。据中国有色金属工业协会统计,今年1至7月,铅产量共计216.32万吨,同比增加6.87%,其中矿产铅140.59万吨,同比增加4.36%。由此可推算出今年1至7月中国再生铅产量约为75.73万吨,同比增加11.88%。在谈到铅锌工业的固定资产投资时,赵翠青指出,今年1至7月冶炼完成投资118.1亿元,已远远超过矿山完成投资的88.99亿元。反映了近年来冶炼产能增幅加速,矿山产能增幅赶不上的情况,这将容易造成无矿企业吃不饱的局面。因此,赵翠青明确表示不鼓励无矿、少矿企业扩张冶炼流水线,特别是在“十一五”节能减排冲刺的关键时刻。同时冶炼产能的扩张过度将引起原料供应紧张,导致加工费下降,从而使行业陷入恶性循环中。更多有关铅芯冶炼请详见于上海有色网。
硅冶炼
2017-06-06 17:50:12
近年来,工业硅冶炼的新工艺,新技术不断出现,我国工业硅的生产和技术有了很大的发展。现在工业硅的发展和出口量,在世界上均居于首位。2000年以来,工业硅年出口量实际以达30万吨以上,但是,出口
价格
严重偏低,效益低下。这虽然与我国工业硅出口体制,各工业硅厂家竞相降价,外商有意压价有关外,其核心的问题还是我们的产品质量不高,化学用硅比例小,出口价值低。如2002年上半年日本从中国进口工业硅的到岸价平均
价格
是每吨865美元,而同期挪威的是1764美元,法国的是1260美元,中国的工业硅
价格
最低,比最高
价格
低了近一半,严重制约着我国工业硅的发展。所以,我国的工业硅要进一步扩大出口,要增加效益,进一步提高产品质量,扩大产品品种,是必须重视的一个重要方面。扩大和提高化学用硅生产比例,大力发展化学用硅生产是提高工业用硅
市场
竞争力的途径。一、高温冶炼冶炼工业硅与硅铁相比,需要更高的炉温,生产硅含量大于95%以上的工业硅,液相线温度在1410℃以上,需要在1800℃以上高温冶炼,此外,由于炉料不配加钢屑,所以SiO2还原热力学条件恶化,破坏SiC的条件也变得更加不利。由此产生三个结果:其一是炉料更易烧结;其二是上层炉料中生成的片状SiC积存后容易使炉底上涨;其三是Si和SiO高温挥发的现象更加显著。为此,在冶炼过程中必须做到:1)控制较高的炉膛温度。2)控制Si和SiO挥发。3)使SiC的形成和破坏相对平衡。为了提高炉温,减少Si和SiO的挥发损失,基本上应保持SiC在炉内平衡。在具体操作中必须千方百计地减少热损失,基本上保持或扩大坩埚。 在工业硅生产中,采用烧结性良好的石油焦,有利于炉内热量集中,但料面难以自动下沉。与小电炉生产75硅铁相比,可以采用一定时间的焖烧和定期集中加料的操作方法。二、正确的配加料正确的配加料是炉况稳定的先决条件。对于小电炉生产工业硅来说,更应强调这一点。正确配比应根据炉料化学成分、粒度、含水量及炉况等因素确定,其中应该特别注意还原剂使用比例和使用数量,正确的配比应使料面松软又不塌料,透气性良好,能保证规定的焖烧时间。炉料配比确定后,炉料应进行准确称量,误差应不超过0.5%,均匀混合后入炉。 炉料配比不准或炉料混合不均都会在炉内造成还原剂过多或缺少现象,影响电极下插,缩小“坩埚”,破坏正常冶炼进行。三、沉料捣炉在工业硅生产中采用烧结性良好的石油焦,以自动下沉,一般需要强制沉料。当炉内炉料焖烧到规定的时间时,料面料壳下面的炉料基本化清烧空,料面也开始发白发亮,火焰短而黄,局部地区出现刺火塌料,此时应该立刻进行强制沉料操作。沉料时,先用捣炉机从锥体外缘开始将料壳向下压,使料层下塌。然后用捣炉机捣松锥体下脚,捣松熟料就地推在下塌的料层上,捣出的大块黏料和死料推向炉心,同时铲净电极上的黏料。沉料时高温区外露,热损失很大,因而,沉料捣炉操作必须快速进行。四、炉料形状和焖烧提温沉料捣炉完毕后,应将混合炉料迅速集中加于电极周围炉心地区,使炉料在炉内形成一平顶锥体,并保持一定的料面高度。不准偏加料,一次加入新料数量相当于1h左右的用料量。 新料加完后,进行焖烧,焖烧时间控制1h左右,焖烧和定期沉料的操作方法,有利于减少热损失,提高炉温和扩大:“坩埚”。五、扎透气眼集中加料时,大量生料加入炉内,可能使反应区温度下降。因而在加料前期,炉温较低,反应进行得缓慢,气体生成量不会太多,在焖烧一段时间后,炉温迅速上升,反应趋于激烈,气体生成量也将急剧增加,此时为了帮助炉气均匀外逸,有必要在锥体下脚“扎眼透气”。石油焦具有良好的烧结性能,集中加料焖烧一段时间后,容易在料面形成一层硬壳,炉内也容易出现块料,为了改善炉料的透气性,调节炉内电流分布,扩大“坩埚”,除扎眼氧气外,还应用捣炉机或钢棒松动锥体下脚严重的部分炉料。至于彻底的捣炉,则在沉料时进行。六、炉况正常的标志及不正常炉况的处理电炉生产工业硅,炉况容易波动,较难控制,因此必须正确判断炉况并及时处理。和生产75%硅铁一样,影响炉况的因素是很多的,但是在实际生产中,影响炉况最主要的因素还是还原剂用量,还原剂用量不当会使炉况发生急剧变化。一般来说,炉况变化通常反应在电极插入深度、电流稳定程度、炉子表面冒火情况,出铁情况及产品质量波动情况等几方面。1)炉况正常的标志是电极深而稳地插入炉料,电流电压稳定,炉内电弧响声稳而低,料面冒火区域广而均匀;炉料透气性好,料面松软而且有一定的烧结性,各处炉料烧结程度相关不大,焖烧时间稳定,基本上无刺火塌料现象;出铁时炉眼好开,流头开始较大,而后均匀变小,产品质量稳定。2)不正常炉况的处理。原料含水量波动,还原剂质量变化,称量准确程度较差,操作不当等各种因素,均会影响实用碳量,炉子出现还原剂不足或过剩现象。 炉子还原剂过剩的特征是料层松散,火焰变长,火头大多集中于电极周围,电极周围下料快,炉料不烧结,“刺火”塌料严重,电极消耗慢,炉内显著生成SiC,锥体边缘发硬,电流上涨,电极上抬,当还原剂过剩严重时,在电极周围窄小区域内频繁“刺火”塌料,其他地区的料层发硬,不吃料,坩埚大大缩小,热量高度集中于电极周围,电极高抬,热损失严重,电弧声很响,炉底温度严重下降,假炉底很快上涨,铁水温度低,炉眼缩小,有时甚至烧不开炉眼,被迫停炉。更多有关硅冶炼请详见于上海
有色
网
废锡冶炼
2017-06-06 17:49:54
废锡冶炼是投资锡的人较为关心的一个信息,其特性需要掌握。冶炼是一种提炼技术,用于焙烧、熔炼、电解以及使用化学药剂等方法把矿石中的金属提取出来;减少金属中所含的杂质或增加金属中某种成分,炼成所需要的金属。 金属冶炼金属的冶炼:把金属从化合态变为游离态。 常用冶炼法:用 碳 一氧化碳 氢气等还原剂与金属氧化物在高温下反应。 冶炼的原理: 1.还原法:金属氧化物(与还原剂共热)--→游离态金属 2.置换法:金属盐溶液(加入活泼金属)--→游离态金属 火法冶炼又称为干式冶金,把矿石和必要的添加物一起在炉中加热至高温,熔化为液体,生成所需的化学反应,从而分离出粗金属,然后再将粗金属精炼。 湿式冶金,湿法冶金这种冶金过程是用酸、碱、盐类的水溶液,以化学方法从矿石中提取所需金属组分,然后用水溶液电解等各种方法制取金属。此法主要应用在低本位、难熔化或微粉状的矿石。现在世界上有75%的锌和镉是采用焙烧-浸取-水溶液电解法制成的。这种方法已大部分代替了过去的火法炼锌。其他难于分离的金属如镍-钴,锆-铪,钽-铌及稀土金属都采用湿法冶金的技术如溶剂萃取或离子交换等新方法进行分离,取得显著的效果。 废锡的形成:静态熔融焊料的氧化根据液态金属氧化理论,熔融状态的金属表面会强烈的吸附氧,在高温状态下被吸附的氧分子将分解成氧原子,氧原子得到电子变成离子,然后再与金属离子结合形成金属氧化物。暴露在空气中的熔融金属液面瞬间即可完成整个氧化过程,当形成一层单分子氧化膜后,进一步的氧化反应则需要电子运动或离子传递的方式穿过氧化膜进行,静态熔融焊料的氧化速度逐渐减小;熔融的SnCu0.7比Snpb37合金氧化的要快。毕林-彼德沃尔斯(Pilling-Bedworth)〈1〉理论表明:金属氧化膜是否致密完整是抗氧化的关键,而氧化膜是否致密完整主要取决于金属氧化后氧化物的体积要大于金属氧化前金属的体积;熔融金属的表面被致密而连续氧化膜覆盖,阻止氧原子向内或金属离子向外扩散,使氧化速度变慢。氧化膜的组成和结构不同,其膜的生长速度和生长方式也有所不同;熔融SnCu0.7和Snpb37合金从260℃以同等条件冷却凝固后,SnCu0.7的表面很粗糙,而Snpb37的表面较细腻。从这一角度反映了液态SnCu0.7合金氧化膜得致密完整度较Snpb37 要差。哈佛大学的Alexei Grigoriev〈2〉 等人用99.9999%的纯锡样本放置在坩埚中,并在超低真空下加热到240℃,然后向其中充纯氧,通过X光线衍射、反射及散射观察熔融Sn的氧化过程。他们在研究中发现,在没到达氧化压之前,熔融锡液具有抗氧化能力。压力达到4×10﹣4Pa至8.3×10﹣4Pa范围时,氧化开起发生。在这个氧分压界限上,观察到了在熔融锡表面氧化物“小岛”的生长。这些小岛的表面非常粗糙,并且从清洁锡表面的X射线镜面反射信号一致减少,这种现象可以证明氧化碎片的存在。表面氧化物的X射线衍射图案不与任何已知的Sn氧化物相相匹配,而且只有两个Bragg峰出现,它的散射相量是√3/2,并观察到强度很明确的面心立方结构。通过切向入射扫描(GID)测量了熔融液态锡表面结构,并与已知锡氧化物进行比较。可以说熔融液态锡在此温度和压力情况下,在纯氧中的氧化物相结构不同于SnO或SnO2。另外,不同温度下SnO2与PbO的标准生成自由能不同,前者生成自由能低,更容易产生,这也在一定程度上解析了为什麽无铅化以后氧化渣大量的增加。表一列出了氧化物的生成Gibbs自由能,可以看出SnO2比其他氧化物更易生成。通常静态熔融焊锡的氧化膜为SnO2和SnO的混合物。氧化物按分配定律可部分溶解于熔融的液态焊料, 同时由于溶差关系使金属氧化物向内部扩散,内部金属含氧逐步增多而使焊料质量变差,这在一定程度上可以解释为何经过高温提炼(或称还原)出来的合金金属比较容易氧化,且氧化渣较多;氧化膜的组成、结构不同,其膜的生常速度、生长方式和氧化物在熔融焊料中的分配系数将会有很大差异,而这又和焊料的组成密切相关。此外,氧化还和温度、气相中氧的分压、熔融焊料表面对氧的吸收和分解速度、表面原子和氧原子的化合能力、表面氧化膜的致密度、以及生成物的溶解、扩散能力等有关。 如果你想更多的了解废锡冶炼等其他信息,你可以登陆上海有色网进行查询。
2×1.5万吨/年红土镍矿湿法冶炼项目可行性分析
2019-03-05 12:01:05
2×1.5万吨/年红土镍矿湿法冶炼项目可行性分析
2010年4月25日
目录
一、概略
二、建造规划及厂址的挑选
三、产品计划
四、质料来历
五、工艺流程
六、三废管理和环境保护
七、出资预算
八、供应收入、出产本钱及损益测算
一、概略
全球陆基镍储量约为12000万吨,其间40%为硫化矿,60%为氧化矿(红土矿),硫化矿首要散布在俄罗斯、加拿大和我国,总量约5000万吨,现在镍产值的60%来自硫化矿。硫化矿资源通过多年挖掘,资源已逐步干涸,最近十多年未见有发现大型硫化镍矿的报导,为满意国际经济发展对镍的需求,遍及已将目光转向开发红土矿型镍资源。红土矿资源的特色:1)资源丰富,埋藏浅,易勘探,均为露天挖掘,采矿本钱低。2)伴生钴含量高,钴能够分摊部分镍本钱。3)红土矿产于热带、亚热带、大多接近海洋,交通运送便利。
发达国家依托雄厚资金,先进技能和国际运营经历,在国际矿业全球化的竞赛中已先走一步。现在国外的许多闻名镍出产厂商都已进入红土矿开发,部分已取得了实质性发展。例如鹰桥公司与BHP公司协作开发的印度尼西亚含镍红土矿项目, Inco公司在印尼以及新喀里多尼亚开发的红土矿项目等。
因为硫化镍可供开发资源的显着削减,国际未来十年镍产值的添加将首要来历于红土型镍矿资源的开发,而红土型镍矿资源开发中,湿法技能发展趋势大于铁镍火法冶炼技能;尽管湿法技能与红土型镍矿的火法冶炼厂的出资本钱大体相当,即年出产才能每磅镍8~12美元。可是跟着湿法技能的日趋老练、设备制作技能的前进和规划的扩展,湿法镍厂鄙人一轮兴修或扩建项目中,其基建出资将会显着下降;湿法工艺的出产本钱在一般状况下低于铁镍流程,加上湿法耗能显着低于铁镍流程。因而,在经济上,湿法技能将显示出其优越性;
国内现在处理红土镍矿大部分都是选用火法出产镍铁或镍铬合金,但最近已有三个常压酸浸的项目投产,其间广西银亿科技矿冶有限公司(年产5000吨电积镍,300吨碳酸钴)运营状况较好,正在扩建二期5000吨/年项目,而且配套建造从废水中提取镁盐产品的出产线。
二、建造规划及厂址挑选
国内外红土镍矿湿法冶炼单项意图镍产值规划大多在3万吨以下,国际上比较闻名的如古巴毛阿湾的规划3万吨/年;尼加罗切格瓦那2.3万吨/年;澳大利亚的雅布鲁3万吨/年;澳大利亚布隆0.9万吨/年;考斯0.9万吨/年;澳大利亚的莫林莫林的规划规划4.5万吨/年(实践产能3.5万吨/年),国内广西银亿和江西江锂的规划产能5000吨/年,云南元江规划才能为3000吨/年。现在广西银亿正在进行技能改造将现有产能扩展到10000吨。江西江锂也有计划新建1.5万吨/年的项目。
结合江铜的实践状况,并考虑红土镍矿资源的直销现状,拟将建造规划定为2×1.5万吨/年金属镍,一同配套建造2×30万吨/年硫铁矿循环经济项目,能够为湿法冶炼供应硫酸、蒸汽及电力。
红土镍矿湿法冶炼出产耗水耗酸量大、用地多及物流量大,必需依靠大容量物流通道,为下降厂商本钱、打造中心竞赛力,项意图选址需求考虑的首要要素有:首要原材料(硫酸、石灰和红土镍矿)的物流本钱、物流吞吐量、可就近选址建造尾矿库堆存酸浸废渣、工业基础设施齐备等。
通过调查和调研,咱们以为瑞昌市码头镇工业园建造条件相对较好,首要状况如下:1、土地直销富余。工业城规划面积有78平方公里,现在工业城内暂无大的厂商进驻,能够预留数千亩土地,工业城内路域平阔,岸坡陡峭,平坦量小,可满意园区集约化和可持续发展要求。2、区位交通快捷。境内105、316国道与九景高速、昌九高速、赣粤高速、沪蓉高速和杭瑞高速交错贯穿,公路交通优势显着;铁路货运站白杨站、夏畈站距工业城别离只要14公里、7公里;长江岸线全长19.5公里,主航道深泓线紧贴南岸,为双向航道,属长江一级主航道,终年习惯2000吨级以上船只作业,最大停靠才能为万吨级海轮,境外矿石可由江海联运直达专用码头,物流本钱较低。相对于把建造地址选在德兴铜矿做了物流本钱比照(见表1) 3、供水、供电、运送、动力等基础设施齐备。工业城内规划建造有220KV和110KV的变电站各一座,其间工业城110KV变电站已开工建造,估计可在2010年10月竣工,西气东输二线线路通过工业城,接口距建造地址约3~4公里,并在工业城内预留接口。4、工业园方位距江铜武山铜矿尾矿库只要约10公里,便于酸浸废渣的堆存,可不用新建尾矿库,节约出资。5、项目所需的石灰资源丰富。6、园区内水泥产能较大,可适当消化出产过程中发生的废渣。7、硫铁矿循环经济项目及江铜九江铅锌冶炼项目建成后可供应项目所需的硫酸。
三、产品计划
依据国内现在的红土镍矿冶炼技能发展和环保要求,拟选用常压
表1 吨镍物流本钱比较 建造地址
物流计划 项目物流量(吨)建造地址选在德兴建造地址选在瑞昌单价(元/吨)物流本钱(元)单价(元/吨)物流本钱(元)红土镍矿在南通港泊岸首要质料:硫精矿4520900803600 红土镍矿105959975282940 石灰283598015420 硫酸55402200小计233140556960首要产品:硫酸渣2390207015345 镍1400400400400小计242470745算计257165257705红土镍矿在宁波港泊岸首要质料:硫精矿4520900803600 红土镍矿10511211760515355 石灰283598015420 硫酸55402200小计233158409375首要产品:硫酸渣2390207015345 镍1400400400400小计242470745算计2571831010120
酸浸工艺,处理进口硅镁型红土镍矿,首要产品为1#镍,碳酸钴,并依据商场的需求出产氧化镁、硫酸镁和氢氧化镁等镁盐产品。
四、质料来历
项意图首要质料为进口硅镁型红土镍矿(含镍1.6%)和硫酸,每吨镍耗费红土镍矿105吨(湿基含水30~35%),耗费硫酸55吨。1.5万吨/年红土镍矿项目年耗费红土镍矿157.5万吨,硫酸82.5万吨。
红土镍矿资源系硫化镍矿岩体风化―淋滤―堆积构成的地表风化壳性矿床,国际上红土镍矿散布在赤道线南北30度以内的热带国家,会集散布在环太平洋的热带―亚热带地区,首要有:美洲的古巴、巴西,东南亚的印度尼西亚、菲律宾,大洋洲的澳大利亚、新喀里多尼亚、巴布亚新几内亚等。居前三位的是古巴、新喀里多尼亚和澳大利亚,具有镍金属储量别离为2300万吨、1500万吨、1100万吨。亚洲的印度尼西亚和菲律宾的储量为130万吨和150万吨。
2009年全年我国累计进口红土镍矿1642万吨,同比添加33.3%,创前史新高。其间从印尼进口717万吨,菲律宾进口869万吨,大多数是港口现货交易。国内红土镍矿进口的首要港口包含:山东的日照港、岚山港,天津港和江苏连云港。进口的红土镍矿现在只要不到10%用于湿法冶炼,大多数均用于火法冶炼出产镍铁。因为火法工艺在能耗、环保和本钱方面都处于下风,依照现在的商场行情,运营状况不佳。
通过港口现场调查,现在各首要港口红土镍矿库存较大。日照港现在的库存有370多万吨,各种质量的都有,但首要以含镍2%以上的为主。连云港的库存也比较大,依据贸易商供应的质量报告单,有很多的现货归于咱们需求的硅镁型红土镍矿。从对以上两个港口调研的状况来看,咱们以为现在红土镍矿的直销相对足够,在现货商场上每年购买150多万吨硅镁型红土镍矿仍是比较简略的。一同可在国外活跃寻觅矿权协作,为公司镍工业可持续发展供应牢靠的资源保证。
跟着镍金属报价的上涨,近期红土镍矿报价也在不断上扬,含镍1.6%的硅镁型红土镍矿港口现货报价现已从360元/吨上涨到近500元/吨(湿吨含税)。
近期因为油价高企及“世博会”要素影响,日照或连云港走海运再走长江水运抵达九江港运费大约要80元/吨,运费较高。通过向港口物流部分咨询,主张咱们可采纳以下两种物流计划:其一、3万吨级左右的海运船可在南通港泊岸,过驳到7000吨级左右的内河船运抵九江,从南通到九江的运费22元/吨,过驳费用大约6元/吨;其二、4万吨以上的海运大船受长江口吃水深度的约束,必须在宁波北仑港泊岸,过驳到吨位较小的且可通过长江口的船上,然后再到南通或张家港进行二次过驳运到九江,抵达九江的物流费用为60元/吨左右。
项目所需硫酸由配套建造的硫铁矿循环经济项目供应,缺口部分可由江铜铅锌冶炼厂和贵溪冶炼厂供应。
五、工艺流程
依据红土镍矿的成因和成分的不同,能够简略地把红土矿分为褐铁矿和硅镁镍矿两种。褐铁矿型矿石含硅镁低、含铁高,合适浸和加压酸浸。硅镁镍矿合适火法熔炼复原或常压酸浸。火法是传统的处理办法,而湿法技能是从20世纪70年代开端发展起来的,无论是常压仍是加压酸浸,现在技能都比较老练,国内外均有多条老练的出产线。
本项目选用的工艺为常压酸浸,首要工艺流程:质料经球磨制浆→加热常压酸浸→一步除铁→二步除铁→除杂→稠密机逆流洗刷→洗刷后的废渣中和→浓缩送尾矿库→上清滤液加碱发生氢氧化镍浆液→浓缩→洗刷→板框压滤→压滤后的氢氧化镍加硫酸溶解→萃取→电积镍
矿石通过格筛进入中间矿仓,十分少数的块度大于300mm矿石选用人工处理后进入中间仓,中间仓下部出口接振动筛,筛上矿送颚式破碎机,将矿石破碎到30mm以下,破碎后矿石和筛下矿一同通过运送皮带送球磨工序。
球磨后矿浆直接送入浸出槽中参加硫酸浸出,操控必定的温度和酸度使得92%以上的镍、钴进入溶液,大部分镁和部分铁也进入溶液中。矿浆直接进行中和除铁,结尾pH值操控在4.0左右,中和除杂后矿浆进入下一段CCD洗刷工序。
依据工艺要求和矿浆特色,选用稠密逆流洗刷来进行中和后矿浆的洗刷和液固别离,洗刷水最终一级稠密机参加,溢流液进入上一级稠密洗刷,底流进入尾渣中和工序,榜首级稠密机底流进入第二级稠密洗刷,以此类推。溢流液部分进入下一个中和除杂工序。
通过中和除杂和稠密洗刷后得到溶液含镍~1.7g/l,选用溶液做为中和剂,反应时间2~3h,得到镍钴氢氧化物沉积,镍、钴沉积率>99%。沉积后矿浆进入稠密机液固别离,底流压滤取得镍钴氢氧化物沉积混合物滤饼。稠密机溢流液和压滤液回来主工序作为CCD洗刷前液循环运用。滤饼用硫酸溶解,制得浓度比较高的硫酸镍、钴的溶液。
制得的溶液进入萃取车间,进行镍钴别离,进一步除杂,除杂后的硫酸镍溶液送电积车间出产电积镍。别离后的硫酸钴溶液出产碳酸钴。
六、三废管理与环境保护
废气:本项目出产过程中不产出有毒烟气,少数浸出除铁过程中的蒸汽通过冷凝吸收后回来工艺体系中循环运用。
废水:本项目出产中每天需求新水量2788m3,外排水首要是浸出渣和中和渣带走的水量,pH在11左右,性质安稳,重金属离子如铜、镍、铅等含量均小于0.1mg/L,工艺过程中需求很多水进行洗刷除镁,发生很多的含镁废水,一般的做法是选用加石灰乳将镁沉积,除镁后的废水可回用至工艺流程中。
废渣:首要是酸浸尾渣和石膏。每出产一吨镍发生的酸性废渣约100吨(含水20%),选用加石灰中和处理后送尾矿库堆存。废水除镁的过程中发生的石膏和镁盐经浓缩后可直接送尾矿库堆存。
综上所述,本项目中的废气、废水、废渣都已有相应的管理办法,不会对周围环境形成污染,因而对周围环境不会发生晦气的影响。
七、出资预算
通过调研,现在在国内选用此工艺的工厂出资强度为10万元/吨镍。1.5万吨规划的出资额约为15亿元人民币左右。若考虑共用武山铜矿的新建尾矿库,可大起伏节约出资。八、供应收入、出产本钱及损益测算
表2 产品产值与供应收入构成表 序号称号年产值单价
(不含税)年供应收入(亿元)11#镍1.5万吨165000元/吨24.75亿元2碳酸钴900吨200000元/吨1.80亿元3氢氧化镁3000吨4270元/吨0.128亿元算计26.678亿元表4 达产年镍出产本钱预算表序号项目单位单耗单价单位本钱(元/吨)总本钱(万元)补白1质料 红土镍矿吨1054905145077175含镍1.6%,含水35%含运费 98硫酸吨553401870028050 2辅助材料 石灰吨2822061609240 烧碱吨2170034005100 萃取剂公斤904338705805 其他公斤9001350 3动力 水吨600.53045 电度81000.5947797168.5 4薪酬元 36005400 按定员1000人,人均薪酬5.4万元5制作费用 折旧费 800012000 修理费 40006000 按4%计零散费10001500按1%计 算计 105889158833.5 损益表 年份
项目投产期达产期12345678910出产负荷80%100%100%100%100%100%100%100%100%100%一、产品供应收入213,424.00266,780.00266,780.00266,780.00266,780.00266,780.00266,780.00266,780.00266,780.00266,780.001、1#镍198,000.00247,500.00247,500.00247,500.00247,500.00247,500.00247,500.00247,500.00247,500.00247,500.002、碳酸钴14,400.0018,000.0018,000.0018,000.0018,000.0018,000.0018,000.0018,000.0018,000.0018,000.003、氢氧化镁1,024.001,280.001,280.001,280.001,280.001,280.001,280.001,280.001,280.001,280.00二、经营总本钱146,704.16173,499.55172,662.29171,776.81170,835.20170,835.20170,835.20170,835.20170,835.20170,835.20其间:经营本钱132,046.80158,833.50158,833.50158,833.50158,833.50158,833.50158,833.50158,833.50158,833.50158,833.50 经经营务税金及附加1,067.121,333.901,333.901,333.901,333.901,333.901,333.901,333.901,333.901,333.90 经营费用2,134.242,667.802,667.802,667.802,667.802,667.802,667.802,667.802,667.802,667.80 管理费用8,000.008,000.008,000.008,000.008,000.008,000.008,000.008,000.008,000.008,000.00 财务费用3,456.002,664.351,827.09941.61 三、利润总额66,719.8493,280.4594,117.7195,003.1995,944.8095,944.8095,944.8095,944.8095,944.8095,944.80减:所得税16,679.9623,320.1123,529.4323,750.8023,986.2023,986.2023,986.2023,986.2023,986.2023,986.20四、净利润50,039.8869,960.3470,588.2871,252.3971,958.6071,958.6071,958.6071,958.6071,958.6071,958.60
镍铁冶炼
2017-06-06 17:50:12
有关镍铁冶炼的工艺:虽然红土镍矿处理工艺主要分为湿法冶炼工艺和火法冶炼工艺,但目前世界范围内比较成熟的利用红土镍矿冶炼镍铁合金的工艺方法仍旧以火法冶炼为主。火法冶炼镍铁是在高温条件下,以C(或Si)作还原剂,对氧化镍矿中的NiO及其他氧化物(如FeO)进行还原而得。同时采用选择性还原工艺,合理使用还原剂,按还原顺序NiO、FeO、Cr2O3、SiO2进行还原反应。NiO+C→Ni+CO↑ T=420℃ (1)FeO+C→Fe+CO↑ T=650℃ (2)Cr2O3+C→Cr+ CO↑SiO2+C→Si+CO↑因不同产地的镍矿成分不同,NiO及各种氧化物之间组成的化合物也有所不同,因而,在镍铁冶炼过程中,其实际反应较复杂。反应生成的Ni和Fe能在不同比例下互溶,生成镍铁。从上述(1)、(2)反应式中可看出:NiO、FeO还原反应开始温度较低,而且,NiO的开始反应温度比FeO约低200℃;因而,火法冶炼镍铁过程中,尽管所采用的镍矿NiO含量较低,但NiO 90%以上被还原,而且,在Ni/Fe很低的情况下,可通过不同的工艺操作,使产品含Ni量提高到较高水平,与铁合金其他产品(如高碳铬铁、锰硅合金等)相比,电炉粗镍冶炼难度相对较低。目前我国镍铁冶炼主要采用高炉法和电炉法两种:1、高炉法:镍矿→脱水、烧结、造块→配入焦炭、熔剂→高炉冶炼→粗镍铁→精炼降Si、C、P、S→镍铁。在国内,近年采用的火法冶炼镍铁较为普遍,主要是借用于现有炼铁小高炉直接转产,具体操作与小高炉生产生铁操作相似,特别适合于使用低Ni、高Fe镍矿生产低Ni镍铁(含镍生铁)。该工艺仍以焦炭燃烧放热作为冶炼热能,入炉镍矿中FeO可被焦炭中的C充分还原,故粗镍铁中的Ni含量高低基本受限于入炉镍矿Ni/Fe的比值大小。由于国家限制400 立方米以下小高炉的使用,而使用矿热电炉,利用低镍高铁镍矿,直接生产低Ni镍铁,其工艺的合理性和易操作性,似乎不及高炉法,因而采用大容量高炉冶炼低Ni镍铁值得关注和研究。2、电炉法镍矿→脱水、造块→配入焦炭、熔剂→电炉冶炼→粗镍铁→降C、Si、P、S精炼→镍铁。电炉法是以C作还原剂,在电能高温条件下,对镍矿中的NiO、FeO等氧化物进行还原,冶炼出镍铁,因而,在电炉冶炼过程中,调整合适的配炭量,限制FeO还原,可生产出Ni含量较高的电炉镍铁。国外火法冶炼镍铁主要采用此工艺,国内厂家生产含Ni大于10%的产品时亦普遍采用。主要冶炼设备为矿热电炉,国内个别厂家也有使用与电弧炉结构相似的电炉生产(其设备最大容量为9 MVA),其镍矿预处理方式,冶炼工艺的具体操作,精炼工艺设备配套情况及精炼效果均不尽相同,各项指标对比也存在一定差异。更多有关镍铁冶炼请详见于上海
有色
网
紫铜冶炼
2017-06-06 17:50:09
紫铜技术集一种用于紫铜厚板不预热TIG焊接的方法本发明提供的是一种用于紫铜厚板不预热TIG焊接的方法。将Ti或Ti合金预置于焊接坡口内坡口内,熔敷
金属
按质量百分比铜占66~99%、钛或钛合金占1~34%;采用氩氮混合气体保护,普通氮气比例:50~85%,高纯氮气比例:20~85%;采用TIG焊接;焊接时焊枪采用左右摆动前进的焊接方式进行。本发明的焊接方法在焊接紫铜厚板时不需要预热,同时消除了焊缝的气孔和裂纹,它还具有操作简单、节能、高效、成本低的特点,有利于在工业生产中推广。一种紫铜管弯制方法本发明涉及一种紫铜管弯制方法,其具体步骤:选择干燥的铸造用的粒度为40-80目擦洗砂;选择木材车制成锥状木塞;将待弯紫铜管下端塞入木塞竖立放置,从紫铜管的上口灌入擦洗砂边灌充边用木棰均匀敲打管壁使擦洗砂灌实,当擦洗砂与紫铜管管口平齐后将木塞从紫铜管上口打入同时用木棰均匀敲打紫铜管壁,使擦洗砂均匀填实;将灌好擦洗砂的紫铜管平放在设有胎具的平台上划好弯曲位置,放好弯曲胎棒并固定在平台上,用气体火焰加热弯曲区域,用小型绞车牵引紫铜管的管端并有小量过盈;用样杆检查弯管精度及麻坑深度,校正,交检。本发明优点是:经弯曲的管子仍保持内壁光滑,弯曲线型光顺,弯曲角度、圆度完全符合设计标准,适合大小管径的弯制。紫铜螺旋管表层燃烧室常压热水炉本实用新型涉及一种紫铜螺旋管表层燃烧室常压热水炉。它由排烟器、内壳、标牌座、外壳、表层燃烧室、炉门、清灰门、炉箅子、紫铜螺旋管构成。内壳和外壳套装在一起,紫铜螺旋管装在内壳的上部,排烟器安在外壳的顶端,表层燃烧室设在内壳炉箅子上部,清灰门安在炉箅子下部,炉门设在外壳的下部。该产品采用表层燃烧室燃烧,煤排出可燃物时面积、数量、温度、配氧、燃烧稳定。自然形成燃烧干净,达到了节能又环保的目的。它具有使用寿命长、维修方便、体积小等优点。一种用于不需预热焊接紫铜厚板的复合焊丝及其焊接方法一种用于不需预热焊接紫铜厚板的复合焊丝及其焊接方法,它涉及焊接厚铜板的焊料及其焊接方法,解决了焊接紫铜厚板需要预热和焊缝易出现气孔和裂纹的问题。用于不需预热焊接紫铜厚板的复合焊丝由元素铜和钛组成,按质量百分比紫铜占66~99%、钛占1~34%,复合焊丝由上述的两种材料中的一种包裹另一种形成。用于不需预热焊接紫铜厚板的方法步骤如下:A.将要焊接的紫铜厚板3对接;B.采用氮氩混合气体保护;C.在紫铜厚板3的对接部填充复合焊丝4;D.焊接时焊枪采用摆动的方式进行。本发明的复合焊丝及其焊接方法,在焊接紫铜厚板时不需要预热,同时消除了焊缝的气孔和裂纹,它还具有操作简单、节能、高效、成本低的特点。厚壁紫铜管对接焊缝不预热单面焊双面直接成形焊接方法本发明涉及厚壁紫铜管对接焊缝不预热单面焊双面直接成形焊接方法,步骤如下:加工紫铜管焊接坡口,加工铜镍合金熔化垫圈或合金定位塞块;焊前清除焊缝两侧污物及氧化皮并用丙酮擦拭干净;将熔化垫圈或定位塞块置入焊接坡口定位;采用钨极氦弧焊焊接定位焊缝、打底焊缝和充填焊缝。本方法焊制的焊缝质量可满足国家射线检验标准GB3323-87的二级质量要求,采用特殊的钨极氦弧焊方法,来提高电弧功率和电弧熔透能力,实现厚壁紫铜6-30mm不预热焊接,通过焊接材料中加入一定数量的Ni和脱氧Si、Mn合金元素,提高液态焊缝
金属
表面张力,降低液态
金属
流动性,提高焊缝
金属
熔点方法,使得焊接成形好,接头强度高、塑性好,同时改善了工作环境。厚板紫铜不预热氩弧熔焊方法厚板紫铜不预热氩弧熔焊方法,它涉及厚壁紫铜板焊接方法的改进。本发明是这样实现的:a、在紫铜厚板试件上开坡口,将陶瓷垫片或耐高温材料垫于紫铜板坡口的下方;b、调整焊接电流,加热母材坡口,填充合金焊料,使紫铜板被加热的坡口处
金属
与填充合金相互溶解;c、向前移动电弧,重复b步骤,实现整条焊缝的焊接。本发明可实现氩气保护下的厚板紫铜无预热焊接;焊接表面无须特殊处理,操作简单;焊接温度较低,可有效的减少母材热影响区的宽度及晶粒的粗大程度;焊逢的余高低于熔焊的余高,可有效节约焊材;背面成形好,变形小;焊接速度比TIG熔焊方法提高1倍多;接头拉伸强度≥95%,弯曲角≥170°,焊接接头韧性比电弧钎焊提高4倍。发泡塑覆紫铜管及其制造模具本实用新型提供一种发泡塑覆紫铜管及制造发泡塑覆管的模具,该发泡塑覆紫铜管包含内层的紫铜管(A)、发泡的高分子化合物形成的中间保温层(B),以及阻燃的高分子化合物形成的外保护层(C),所述内层、中间保温层和外保护层为同轴套叠的圆筒体。该制造发泡塑覆管的模具,包含发泡芯模座(1)、发泡段导流套(2)、模体(3)、发泡体阻流环(4)、发泡段支撑环(5)、发泡段口模(6)、塑覆段导流套(7)、发泡段芯模(8)、塑覆段芯模(9)、塑覆段阻流环(10)、塑覆段口模(11)、固定件(12)和调整螺钉(13)。紫铜盘管连续光亮退火的管内吹扫装置本实用新型公开了紫铜盘管连续光亮退火的管内吹扫装置,其特征在于:料架设有进气管、进气接口、排气管和排气接口,在料架上装有紫铜盘管,紫铜盘管的两端与进气管或排气管连通,在料架的一侧设有进气装置,在料架的另一侧设有排气装置。保证盘管在整个退火过程中不断地有新鲜的高纯保护气体通过,管内不氧化,光亮,可实现不同区域的保护气管内连续吹扫,盘管管内始终不受氧化及外界污染。一种具有紫铜内衬层的聚丙烯直管本发明公开了一种具有紫铜内衬层的聚丙烯直管,包括外层管和内衬层,直管一侧设有与其相连通的包括外层管和内衬层的第一支管,第一支管,外层管1采用的材质为聚丙烯,内衬层采用的材质为紫铜。本发明的直管检测结果表明,卫生性能符合GB/T17219规定的生活饮用水输配水设备的安全型评价标准,机械性能达到GB/T7306-1987,GB/T611-1985所规定的要求。本发明的直管,由于在设置了紫铜作为内衬层,又采用了具有应当强度的聚丙烯,因此,强度较高,耐腐蚀性能优良,能够保证流通介质的质量。利用废旧紫铜生产无氧铜的装置一种利用废旧紫铜生产无氧铜的装置,属于
金属
冶炼领域。本发明包括:熔炼炉、流槽、保温炉、吹氧装置、除渣装置、过滤脱氧装置,其连接关系为:熔炼炉和保温炉都采用工频感应加热,它们通过熔炼炉底部的流槽相通,吹氧装置悬浮于熔炼炉中,除渣装置设置于流槽的两端,过滤脱氧装置浸没于保温炉,并紧靠流槽的端部。本发明装置简单,成本低廉,无污染。采用熔剂净化技术和泡沫陶瓷过滤板两级过滤,去除氧化物夹渣;采用碳化硅结合氮化硅材料作为过滤器框架,内部充填块状煅烧木炭作为过滤介质的过滤脱氧装置对熔体脱氧,使熔体中氧含量降至10ppm,甚至5ppm以下,制品的电阻率不大于0.017241Ω.mm2.m-1。利用废旧紫铜生产无氧铜的工艺一种利用废旧紫铜生产无氧铜的工艺,属于
金属
冶炼领域。本发明首先将废旧紫铜进行分拣,分拣后的废旧紫铜进行烘烤,再经水洗并烘干后直接投炉,然后通过石墨管向熔炼炉内鼓入压缩空气或富氧空气,将熔体中的杂质氧化,采用熔剂覆盖熔炼炉,采用石墨粉覆盖保温炉,在流槽两端安装泡沫陶瓷过滤板,在保温炉中安装木炭过滤脱氧装置,最终进入保温炉的熔体全部进入木炭过滤脱氧装置彻底脱氧。采用该工艺,废旧紫铜的熔体成分均匀,工序简单、能耗低,而且废旧紫铜用量占炉料的比例不受限制,制品的氧含量低于10ppm,甚至在5ppm以下,电阻率不大于0.017241Ω.mm2.m-1。一种紫铜螺纹管接件的生产方法本发明公开了一种紫铜螺纹管接件的生产方法,其特征在于:选用含铜量在99%以上的紫铜管坯作为原料,该紫铜管坯料为厚壁,将紫铜管坯料按5-30厘米的尺寸截下,将截下管坯料放入挤压模具中,然后在专用压力机挤压的外力作用下将坯料冷挤压成型为半成品,该专用挤压机的每个液压缸的压力必须大于50吨,最后将半成品紫铜管件进行金加工切削后即为完整的产品。本发明减少了生产设备的投入,减少了生产工序过程,减少了生产过程中的环境污染,减少了能源的浪费,减少了产品的耗材,提高了产品的质量,提高了产品的材质纯度,本发明采用含铜量在99%以上的紫铜管坯原料生产各种螺纹管接件可用于各种管道上的连接接头,特别是一些特定要求的管道使用中,是一种目前较理想的生产新方法。高强度紫铜合金焊丝及其用途本发明公开了一种高强度紫铜合金焊丝,焊丝是由合金材料铝、锰、铁、镍、锌、镁、硼砂、铜按一定配比经电炉熔炼后,拉拔成丝而成,其制作过程是首先将各合金材料按上述配比,放入感应电炉进行熔炼,熔炼温度为1300-1400℃,达到终点温度时可以进行浇注,铸成圆棒深加工,再
废铅冶炼
2017-06-06 17:49:56
上海有色网根据中国市场监测中心,对废铅冶炼相关信息进行了资料搜索收集,提供相关2009-2010年中国废铅冶炼销售市场监测与分析、废铅冶炼市场发展研究、废铅冶炼投资咨询、废铅冶炼市场行情分析、废铅冶炼市场现状分析等资讯。下面我们为您具体介绍一下废铅酸蓄电池湿法冶炼工艺流程,我们可以先从流程图简单地留一个印象。 废铅冶炼中的废铅酸蓄电池湿法冶炼工艺采用湿法冶炼工艺,可使用铅泥、铅尘等生产含铅化工产品,如三碱基硫酸铅、二碱基亚硫酸盐铅、红丹、黄丹和硬脂酸铅等,可在化工和加工行业得到应用,其工艺简单,流程短,溶液操作,污染小,没有环境污染,可以取得较好的经济效益。湿法处理流程为:将废蓄电池切割,放出硫酸,分出塑料壳、橡胶壳,加入石灰活化使蓄电池中的SO42-转变成CaSO4,用氟硼酸在直流电作用下溶解Pb及PbO,在氟硼酸溶液中进行电解沉积。
湿法炼铜-处理流程
2019-02-20 09:02:00
在再生有色冶金中,湿法冶金法的运用日益广泛,适当有用。与火法冶金比较,其首要长处是:
(1)首要金属和伴生金属的收回率更高;
(2)工艺愈加灵敏;
(3)能耗比较小;
(4)比较简略处理环境维护问题;
(5)冶金进程易于完结机械化和自动化。
湿法冶金处理再生料有其杰出的特色。这些特色首要表现在配料阶段。金属废料在其表面上有各式各样的出产油污状的油脂沉积物、各种乳剂、污物团块等。废料尺度大对湿法冶金十分晦气。细粒级的残渣、盐、金刚砂泥及其他物料含有许多非金属搀杂物,使处理这些物料发作困难。
为了得到湿法冶金法处理工艺的高技术目标,有必要备好质料。
处理流程
在用工业溶剂湿法处理废料时,一般运用硫酸溶液、溶液,很少选用和铁盐溶液、热水。
下面列出某些金属在工业溶剂中的性状资料:
图1 磁性流体静力学分选机
1-磁铁片支架;2-磁铁片;3-灯头;4-支承架;
5-极顶端;6-激磁线圈;7-磁路;8-磁楔 铜 与硝酸、热浓硫酸发作反响,与含氧的和NH4OH溶液缓慢反响
锌 与酸、碱发作反响
铅 与硝酸、热浓硫酸发作反响
锡 与、硫酸、硝酸、热浓发作反响
镍 与硝酸发作反响,与、硫酸反响弱,与NH3不发作反响
铁 与无机酸发作反响,不溶于碱和NH3溶液
硫酸应认为是最有用的溶剂。其缺陷是腐蚀设备。溶液是浸蚀性较小的溶剂。在铵盐(硫酸铵或碳酸铵)存鄙人,溶液与有色金属相互效果时,生成络合物,并以络合物办法转入溶液中。在温度30℃下,某些络合离子的不安稳常数为:
K pH
AgNH3+←→Ag+NH3 4.79×10-4 3.32
Cd(NH3)24+ ←→ Cd2+4NH3 2.75×10-7 6.56
Co(NH3)26+←→Co2++6NH3 4.07×10-5 4.39
Cu(NH3)26+←→Co2++4NH3 9.33×10-13 12.09
Ni(NH3)26+←→Ni 2++6NH3 9.77×10-9 8.01
Zn(NH3)24+ ←→Zn 2+4NH3 2.0×10-9 8.07
浸出法的长处是可能使有色金属与铁别离,因为铁不与相互效果。
的络合物大多数是不稳固的化合物。在加热时,这些化合物与别离而分化。从头回来运用。下列反响就是一例:
〔Me(NH3)n〕CO3→MeO+nNH3+CO2 (1)
络合物的各种性质能够经过分化法而使其别离,以及用其它办法使各种金属有挑选地分出。
在今世从溶液中分出金属的实践中选用了下列办法:置换沉积、电萃取、吸附、出溶、水解。在再生有色金属冶金中,从硫酸盐和铵溶液中电萃取,以及从溶液中以盐和粉末的办法分出金属的办法是最简略把握的办法。[next]
硫酸铜的出产 处理再生质料时,铜的湿法冶炼最有前众矢之的 发展方向之一是出产硫酸铜,其需求量逐年俱增。
作为正电位的金属,铜只溶解于具有显着氧化性质的酸溶液(硝酸和浓硫酸)中。在稀硫酸溶液(0.5~2.0M)中,铜只在有氧化剂存在(如空气中的氧或工业用氧)的条件下溶解:
Cu+H2SO4+1/2O2=CuSO4+H2O (2)
这是典型的涣散进程。水合氢离子或许溶解了的氧分子的涣散是操控阶段。
这一进程的动力学特色是:
(1)氧化速度与金属表面的巨细成份额;
(2)在一同加大氧化剂的浓度时,温度的影响加速;
(3)铜离子在溶液中的堆集有催化效果。
因为铜转入溶液中,介质添加的粘度对进程有负效果。
在出产条件下,铜的溶解在硫酸的过量耗费中完结。因而,在进程动力学中氧的涣散所溶解的铜表面积巨细起着决定性的效果。添加溶液中氧的质量交流有必要选用富氧空气、工业氧来进步氧的溶解度,进步气体氧化剂的压力或许优化溶液的搅动。后者取决于设备的结构。
应把涡轮充气器、脉动塔、高压釜列入有出路的设备,它们经过机械拌和确保有用的液体拌和。
关于含铜物料在各种设备里的硫酸溶液中的溶解目标列于表21。
依据表1,铜的溶解速度跟着氧的压力、温度、涣散度的升高而增大。应该考虑到,在设备中,跟着拌和强度添加,特别是在进步铜粒级含量时,空气过剩时及在浓溶液中构成细粒级的悬液体时,而使进程复杂化。为防止这种不良现象,需求在浸出前别离出铜的细粒级并约束溶解第一阶段的拌和速度。还可运用泡沫抑制剂(有机添加剂)。
表1 含铜物料在硫酸溶液中的溶解状况被溶解的物料参数铜的溶解速度(克/分米3·小时)温度(℃)空气耗量(分米3/分)Po2(兆帕)H2SO4/Cu涡轮充气所应器氧化皮铜750.750.0211.020~26雾化铜751.00.0210.520~23 851.60.0211.070~75高压釜氧化皮铜801.50.0631.067~70雾化铜20~90—0.08~0.121.0120~140 803.00.0631.040~45 1203.00.101.060~65 100~120—0.08~0.121.059~60 150—0.08~0.121.0130~140脉动塔雾化铜70~802.40.0210.3330.0
原著公式(131)删掉,其它公式的序号不变。----编者注 对铜粉溶解速度影响最大的是空气耗量、温度、拌和强度,换句话说,是液相的氧饱满度和温度。 为了出产硫酸铜,能够选用各种不同类型的再生质料。最佳的应该认为是从矿水中置换所得到的沉积铜,以及从各种工业用溶液(镍、钴、锌)除铜时所得到的沉积铜,沉积铜是一种粉末,常含有许多杂质。置换沉积铜常含有在置换沉积中用过的金属(铁、锌、镍、钴)以及与铜一同沉积下来的金属。在更有利的条件下(溶液中金属的浓度高,拌和得好),好置换所得到的沉积铜粉溶解,然后在再用沉积铜的办法使硫酸盐蒸腾和结晶前除掉除某些杂质。 直到最近,铜的溶解设备----氧化器、帕丘克拌和槽等(酸的原始浓度为120~150克/分米3)----用普通碳钢或木材制成。其内表面衬以耐酸绝缘物。选用石油沥青、水玻璃、耐酸砖、耐酸板作为耐酸材料。 现在用合金钢、钛或许碳钢来制作现代化的溶解设备----脉动塔、高压釜----在预先施加均匀的铅覆盖层后再内衬钛。拌和设备、管道、阀门、管接头由钛或钢材制作,内衬橡皮。 脉动塔应该认为是出产硫酸铜时溶解铜的最有出路的设备。其长处不只在于出产能力高,而且不需求拌和设备、油封,消除空气气泡。 现已研发出一套脉动设备,凭借放在脉动塔外的滑阀式换向机械,确保在1分钟内振荡1~300次。依据进程特色,振荡可能是正弦曲线或锯齿形的。实验中测定铜溶解的时刻时,考虑了拌和强度、原始硫酸浓度、温度。 采纳水压作业来挑选液体流向(顺流或许逆流)拌和办法。工业上制作脉动塔的直径为400~600毫米和高8~10米。塔内部有砖格子。塔内溶液活动速度为0.5米/秒,在铜粉溶解时,浆液中含固体物质10%。 氧化器的功能与带砖格子的脉动塔比较,能够必定脉动塔有如下特色:(1)每1千克铜空气单耗削减40%;(2)硫酸铜的出产能力进步24倍;(3)空气压力为0.3兆帕时,塔内空气的运用率为50%;(4)设备的体积减3/4;(5)单位出产率为60~64千克/米3·小时;(6)依托蒸汽预热溶液,在热的总吸入量中约有70%热量;(7)溶解铜粉时铜的收回率为95%。 溶解后,为出产硫酸铜所预备的溶液应含铜100~120克/分米3及6~10克/分米3的游离硫酸(防止水解)。在密封条件下用蒸汽蒸腾后,密度到达1.4克/厘米3,溶液送去过滤以除掉机械杂质,然后送去结晶。 第一批晶体CuSO4·5H2O一般含有很少的杂质并契合一等品。经过离心机别离的母液得到再次蒸腾和第2次结晶。所得到的第2次硫酸铜晶体质量较差。 在很多杂技存在的状况下,第二母液转入带不溶极板的槽中电萃取,电萃取到溶液终究含0.2克/分米3停止。这样,每1吨沉积铜的电耗近4000千瓦小时。 电萃取后的电解液,视其成分,送入浓缩设备蒸腾或许离子交流吸除其间的杂质,然后用作循环供水。 细密铜的出产 溶解再生铜时所得到的硫酸盐溶液能够用电萃取法出产阴极铜。进程在带不溶阳极的电解槽中进行。依据出产规模,电解槽能够制生长近10米、;宽1.2米、深1.3米的规格。规则尺度的电解槽放入97根铅阳极和96根铜阴极。 一般阳极做成板状。其厚度为10毫米。往铅中添加3~8%的锑。阴极片在母槽中出产。电解槽的操作与铜电解精粹槽的操作并无不同。但应多加留意电解液的成分并要及时将电解液排出再生(因堆集了负电性金属杂质)。为了得到杰出的阴极沉积物,电解液中锌的含量不该高于25克/分米3、含镍20克/分米3、铁5克/分米3。阴极在槽中存留的时刻,视其电流密度和铜在溶液中的含量一般不该超越6~8昼夜。沉积的阴极铜的质量一般低于阳极铜精粹所得到的阴极铜。电解是在电流密度200~300安/米2、槽电压2.0~2.5伏、电耗2000~2500千瓦小时/吨铜的条件下进行,电流效率为90%。[next] 在一家电缆工业厂商进行了出产废料的处理,产出了铜箔。在氧化槽中溶解废铜线的工艺流程如图2。为了除掉有机油脂,最好在500℃下将铜线予以焙烧。选用含铜40~42克克/分米3的废电解液或许酸洗液作作溶剂。溶解在温度为80~85℃,接连鼓入空气的条件下进行。空气耗量为350米3/小时。溶液铜含量富集约2倍后送入鼓形电解槽。电解槽和起阴极作和的转鼓均用不锈钢制成,而不溶阳极用钛制成(见图3)。电积在阴极电流密度1600~2250安/米2;电解液℃、循环速度1.8~2.0米3/小时的条件下进行。 图2 氧化槽示意图 1-槽子;2-带多孔底的可替换的提篮;3-袋状过滤器; 4-空气进步器;5-热交流器;6-环形管;7-空气直销管图3 出产铜箔的鼓形电解槽示意图
1-阴极鼓;2-阳极;3-导向辊;4-电解槽;5-洗刷槽;6-卷筒
在鼓形阴极上得到的铜箔厚度约为100微米。可产出厚度为35~20微米的铜箔。电解液中有机杂质的含量不得超越0.04~0.09克/分米3,氯的含量不得超越0.02~0.07克/分米3,铁的含量不得超越0.8~3.0克/分米3。供应用户的铜箔的抗拉强度σb=200~250兆帕。
溶液中溶解 此法适合用来处理铁含量高的有色金属废料,首要是含铁约90%的双金属废料。
选用溶液和某种铵盐的溶液作浸出溶剂。例如,可用-碳酸盐流程来收回铝一铜双金属废料和镀铜废塑料中的铜。用含铜15克/分米3、含碳酸铵250~450克/升的溶液来浸出。在含铜55克/分米3、游离150克/分米3、碳酸铵100克/分米3的溶液中浸出焙烧过的发电机定子找业实验标明,铜溶解速度随溶液循环速度、铜离子浓度和温度的进步而加速。
-碳酸盐溶液关于下一步用蒸馏法从溶液中收回铜来说是适宜的。这样生成氧化铜,分出的和二氧化碳收回后又从头用作浸出。
全苏再生有色金属科研规划院研发了处理废旧电动机(含铜20%、铁76%、绝缘体4%)的工艺,产出铜钒。依据此工艺,用硫酸铵和溶液浸出灼烧过的废料。所得到的硫酸四铵铜溶液加热到360℃,用分步蒸馏法脱除结晶水和。在80~90℃下加95%硫酸将无水硫酸铜重结晶为五水硫酸铜。过滤掉饱满的热溶液并冷却到20~25℃。别离出结晶的母液送去溶解无水硫酸铜。
浸一般在55~60℃下于渗滤设备中进行。浸不只便于溶解颗粒状铜,而且便于溶解压块的铜。溶液中的原始浓度约为100~150克/分米3,二氧化碳的原始浓度约为80~100克/分米3。
铜在溶液中浸出率为99%。与铜一块浸出的有锌和镍。铁、锡和铅留在不溶残渣中。浸的首要长处之一就在于此。[next]
经济核算标明,铜以铜粉状况从溶液中分出是最合理的,铜粉的价值比细密铜的价值高50%。铜粉的出产工艺相对简略,将溶液蒸馏,便沉积出氧化铜:
〔Cu(NH3)4〕CO3←→CuO+4NH3+CO2 (3)
下一步在700~760℃温度下用氢复原氧化铜而得到纯度达99.4%的铜粉。
双金属废料的处理 溶解和出产铜粉两道工序能够在一个设备----电解槽中完结。这时,需求留意如下事项:在-硫酸铵电解液中通入电流时,除电化学进程外还伴跟着发作化学溶解,后者使阳极电流效率增高并使浓差极化影响增大。溶液中铜的富集和游离的贫化促进阳极钝化、阴极铜溶解并下降阴极的电流效率。在常常操控电解液成分并常常调整电解液的铜和的含量的条件下可取得满足的电化学溶解目标。
图4标明的是搜集铜粉用的带锥底的圆柱形实验电解槽。结构高2250毫米,作业部分的直径1370毫米,圆锥高750毫米。电解槽外壳用钢制成而且内衬聚氯乙烯胶板。电解槽安装在绝缘体上。提蓝用条状不锈钢制成。提蓝的内直径为1100毫米,提篮浸没在电解液中的部分高度为880毫米,提篮分量(未装载)为150千克,一次装入散料双金属和压块300~350千克。提篮用三个接触点支撑在阴极板上。
图4 处理双金属废料的实验电解槽
1-槽体;2-阳极篮;3-槽盖;4-阴极;
5-阳极接触点;6-阳极母线;7-阴极母线;8-绝缘子
在阳极蓝周围装有28个不锈钢阴极板,尺度1100×100×2毫米(总作业表面积2.46米2),接触点滑润,用铜制成。
为了排出气,电解槽装有旁边面出口。电解液从上往下流,在锥形底部。逆循环排除了铜粉的拢动并使其缩小因化学溶解而构成的丢失。
在工业实验条件下处理工艺依照图5所示流程图进行。原双金属料脱脂、洗净、称重并装入阳极提篮。剥掉镀层后,用电解液冲刷钢基、称重并操控剩余的铜含量。铜粉依照环烷酸皂流程加以处理。
图5 处理高铁含铜废料流程图
为了制取硫酸铵电解液,选用了、硫酸铜和硫酸铵。电解液的试样每小时取一次。用这样的时刻隔操控电流负荷、槽电压、温度和电解液的循环速度。
为出产铜粉的电解在阴极电流密度570~810安/米3下进行。在实验进程中,研讨了电流密度对进程的动力学目标、电解液中的铜含量和铜粉的物理性质的影响。
下面列出电流密度对电流效率、槽电压和能耗(30℃)的影响数据:
铜电解(克/分米3) 10.5 12.6 12.9 14.7
Dk(安/米2) 570 650 730 810
η(%) 77 75 72 68
槽电压(伏) 4.4 4.4 5.0 5.4
W(千瓦小时/吨铜) 4800 4910 5880 6670
这些数据标明,跟着流电流密度的升高,电流效率下降,相应地电耗添加。
槽电压U是可变参数,其数值决定于电流负荷、电极距离、电解液成分和温度及其它要素(表2)。
Dk=650安/米2
表2 工艺流程中槽电压的改变
V循环=1100升/小时时刻
(小时)温度
(℃)溶液成分(克/分米3)槽电压
(伏)铜NH4OH总(NH4)2SO4锌—2712.6166.501320.894.412713.3166.85132—4.422813.3166.85132—4.433012.9966.50132—4.243012.9966.15132—4.153112.9765.45132—4.063113.1565.8132—4.073212.5365.75132—3.983212.5365.051321.493.9
电解液的温度在电解槽中作业8小时内从25℃上升到35℃,使槽电压从4.4伏降到3.9伏,这与溶液的电导率的增大有关。
为了取下落在电极上的铜粉,电解槽每隔1小时周期性地摇摆一次电极板。这样,很多沉积物(70~80%)抖落下来并搜集在圆锥形容器中。从电解槽底部自出口将桨状的铜粉周期性地卸出。
及时振荡阴极是电解进程进行的必要条件。反之,沉积物在阴极表面上的添加使电流密度下降并生成较粗、较大的粉粒。这样的沉积物在颤动时不能落下,而在某些状况下还会损坏橡皮或许金属拌和捧。[next]
实验标明,在电解液(铜10~14克/分米3及电流密度650安/米2强)中铜的浓度低时所得到的铜粉很简略从阴极取下来。在溶液中含铜15~20克/分米3及电流密度Dk=500~570安/米2时,生成铜的金属衬底,它能同钢制阴极牢固地连在一同。
在研讨电流密度和铜在硫酸铵溶液中的浓度时,可观察到树枝状大颗粒增多,很少能进入溶液深处。这种与阴极表面严密相连的沉积物的增多,使电解槽的操作复杂化。
电解液中铜的浓度是影响铜粉构成的重要要素(表3)。
表3 铜粉的粒度成分和物理性能电流密度(安/米2)电解液成分(克/分米3)堆比重(克/厘米3)活动性(克/秒)比表面(米2/克)粒度成分(%);块度(微米)铜锌+800+400+100+71+44-446509.5~10.40.511.692.180.0520.050.2123.6213.0032.1830.9402.262.320.062——5.05.5032.3057.2073011.5~11.10.881.732.130.0330.100.7658.3914.8517.608.302.432.780.34—0.1435.8012.8829.3821.8073012.9~12.81.602.052.500.0350.470.3251.2010.2821.0316.702.673.580.036—0.1634.8813.0829.0222.8673013.9~14.52.252.162.630.0200.423.7266.908.7012.327.942.792.790.028—0.1441.469.4227.8421.14
注:分子标明磨碎前,分母标明磨碎后。
跟着铜浓度的添加,颗粒的尺度也增大,各种粒级的产率相应增高:+800微米从0.05%增至0.42%;+400浅笑从0.21%增至3.72%;+100微米从23.62%增至66.9%。看来,跟着接近阴极层中的络合铜离子含量的添加,其放电也削弱,微粒的涣散程度减小,堆比重增大。这样,比表面从0.052米2/克减小到0.020米2/克,活动性从2.18克/秒增大到2。63克/秒。
乌拉尔电解铜厂出产铜铁标明,比较均质的产品铜粉能够在其磨碎或筛分后取得。这时,重的是维护村枝状结构,以及适合于标准要求的粒度成分和铜粉的堆比重。
将在处理双金属废料时所得到的铜粉在铁心磨碎机中研磨20分钟,可进步其破坏程度(—44微米粒级的产率大大进步),添加堆比重、活动性和比表面(参见表3)。
堆重和比表面(磨碎前后)的改变规模证明铜粉有适当细密的结构。
铜粉的化学成分如下:
铜 99.7 99.7 99.3 99.4 99.9 99.9 99.5
锌 0.015 0.01 0.046 0.13 0.014 0.011 0.034
锌 0.023 0.040 0.060 0.071 0.018 0.015 0.056
镍 0.002 0.002 0.004 0.003 痕量 痕量 0.002
在所发作的铜粉中铜的含量为99.3~99.9%。铜粉中的铁以机械搀杂的微粒状存在。这个结论是根据铜粉中铁的存在并发作磁性这一现象。明显,铁在腐蚀层掉落时从钢基双金属表面转入铜粉。锌八成聚积在溶液中。例如,在电解液中锌的浓度为0.5~3.6%克/分米3时,锌在铜粉中的含量不高于0.07%。
在实验进程中,实验电解槽标明晰作业的可靠性的操作的简便性,所以可运用它作为规划工业槽的根底。电解槽处理双金属的最佳参数是:电解液中含铜10~15克/分米3,阴极电流密度600~700安/米2,电解时刻6~8小时。因而,金属镀层的溶解程度为98.5~99.5%、电耗为4900~5500千瓦小时/吨铜粉,电流效率为75~77%。铜粉按其性质有利于精磨以到达合格,契合标准的要求。无有色金属的废钢能够在炼钢时或从溶液中置换各种金属时运用。
人们曾进进行过上述镀铜双金属的实验性工业实验。但在再生有色冶金厂商内,能够收到镀黄铜的双金属废料。在相同的压块中能够有不同的废料。
在电化学溶解中,锌与铜相相似,生成安稳的络合物。这种络合物在电解中的性状具有必定的含义。在实验室条件下完结的研讨标明,在电流密度为350安/米2和溶液中铜锌比为1:1的条件下,出产出锌含量为0.3~0.4%的铜粉(溶液中铜含量为12~15克/分米3)。 在电解液中锌的积累伴跟着发作黄铜粉。例如,电解液中铜:锌=1:1.5时,黄铜粉中锌含量为2.63%;在铜:锌=1:2.2时,锌含量添加到3.27%。
溶液中含相同铜和锌的溶液电解,而在较高电流密度下,实际上导致锌在铜粉中的含量进步。关于上述例子来说,把电流密度从350进步到510安/米2,使铜粉中的锌从3.27进步到10.27%。电解液中铜含量越低,阴极中锌沉积就越活泼。例如,在铜:锌=1:7时,将发作出含锌约20%的沉积物。
因而,为了用电化学法从镀铜锌铁基下得到单金属铜粉,电解液有必要除锌。最简略的办法是将部分铜锌电解液送到电流密度高而电解液铜含量低的条件下出产黄铜粉的再生槽。脱锌后,电解液能够重返出产主流程。黄铜粉作为出产黄铜和粉末冶金的炉料组分可在火法冶金工序中运用。
再生铜湿法炼铜
2019-02-20 09:02:00
将含铜或氧化铜的废料,用碳酸铵溶液在鼓风条件下浸出,铜以碳酸铵络铜形状进入溶液中,浸出液净化除杂质后,进行加压氢复原而得到铜粉;或将净化液煮沸,使铜成为氧化物从碳酸铵络铜溶液中沉积出来。沉积出来的铜氧化物,用氢进行固态复原成铜粉或铜块,也可将铜的氧化物溶于硫酸,然后用不溶阳极进行电解制取阴极纯铜。
再生铜的湿法冶金工艺首要由浸出、净化除铅和锡、从锡出液中收回金属铜等进程组成。
(1)浸出
浸出是在搅拌器或塔式浸出器中进行,搅拌器要求物料破碎到6.4mm以下,可破坏的物料,切成条后入塔式浸出器中循环浸出。含铜物料在浸出前需通过加工处理,以除掉其有机污染,如油、蜡和绝缘塑料等。
浸出通常在常压下进行,温度控制在300~324K之间,浸出时从浸出器底部喷入空气或氧气。
浸出时,近规则数量往浸出器中参加含铜物料和碳酸铵溶液,然后将其加热到反响温度,鼓入空气或氧气,金属铜或含铜氧化物
CuO+(NH4)2CO3+2NH3=Cu(NH3)4CO3+H2O
2Cu+(NH4)2CO3+2NH3+1/2O2=Cu2(NH3)4CO3+H2O
Cu+Cu(NH3)4CO3=Cu2(NH3)4CO3
Cu2(NH3)4CO3+1/2O2+(NH4)2CO3+2NH3=2Cu(NH3)4CO3+H2O
浸出进程进行到溶液含铜达140~160g/L停止,此刻溶液中2/3为络亚铜,1/3为络铜。
杂铜中最遍及的杂质是Fe、Zn、Pb、Ni和Sn,浸出时Zn和Ni构成水溶性络合物而与铜一同溶解,Fe、Pb和Sn在碳酸溶液中溶解度有限,大部分留于浸出渣中。
(2)净化除铅和锡
浸出液进一步处理之前,需先除掉其间的铅,而镍和锌则在下一阶段加以除掉。每批浸出液先进行弄清,然后参加硫酸即SrSO4以除掉铅和锡。硫酸是通过研磨的天然天青石,其能吸附铅、锡等重金属离子。实践证明,天青石是有用的除铅、锡药剂,对铅的净化率可达96%,对锡可达50%,由所以天然产品,报价便宜,故被工业生产所选用。
天青石的参加量,按质量比为1:9参加,即溶液中1份需加9份天青石,此刻除铅、锡作用最好。溶液温度一般在300~333K之间,恰当进步并使天青石粒度变细均能使除铅、锡速度添加。
当溶液中的铅、锡含量符合要求时,将溶液进行两段过滤,以除掉固体物质。
(3)从浸出液中收回金属铜
从浸出液中收回金属铜,可用下面几种办法。
①在高压釜中加压用氢直接复原浸出液 在加压条件下,向碳酸铵络铜的溶液中直接通入时,发作如下复原反响
Cu(NH3)4CO3+H2=Cu+(NH4)2CO3+2NH3
Cu2(NH3)4CO3+H2=2Cu+(NH4)2CO3+2NH3
反响产品为细粉状铜、碳酸铵和,铜粉通过洗刷并在流中烧结后研磨,筛分得到各种规格的产品,碳酸铵和收回并在浸出回路中循环。
复原后的溶液含有锌、镍、、硫酸铵和剩余铜,其间镍、锌杂质因复原后的循环而富集,从复原后液中收回镍、锌的简洁办法,就是用蒸馏法除和碳酸铵,并在气态中加以收回,回来浸出的阶段;而锌和镍以碱性碳酸盐的形状优先于铜沉积出来,作为有价副产品加以收回,蒸馏后得到的残液通过滤后回来浸出阶段。
②固态复原法提取金属铜 此法是先将溶液煮沸,使含碳酸盐溶液中的铜呈氧化物和碱性碳酸盐的形状沉积,然后将沉积物用氢复原制取金属铜。
铜的沉沉分两种状况,先是Cu2O沉积,接着是CuO。若溶液中有锌、镍杂质时,也与铜一同沉积,使下一步的固态复原制取金属铜难以进行,因而,固态复原法仅适用于不含锌和镍的铜料的处理。
③不溶阳极电解制取金属铜 不论是碱性碳酸铜仍是铜的氧化物,均能在室温下敏捷溶解于硫酸。因而,将煮沸碳酸铵络铜溶液得到的沉积物溶于硫酸后,参加电解槽内用不溶阳进行电解,可制取纯度为99.9%的铜。
不溶阳极电解时,电解液中锌、镍和铁的会计师不受约束,因而,此法适用于处理含锌和镍高的铜料。
综上所述,用碳酸铵络法处理再生铜物料时,浸出反响为放热反响,首要浸出药剂碳酸铵和均循环运用,整个进程只需少数动力、空气、气和药剂,因而既有经济价值,又不污染环境及水质。
钢铁冶炼
2017-06-06 17:50:11
钢铁冶炼是钢铁冶金工艺的总称。工业生产的铁根据含碳量分为生铁(含碳量2%以上)和钢(含碳量低于2%)。基本生产过程是在炼铁炉内把铁矿石炼成生铁,再以生铁为原料,用不同方法炼成钢,再铸成钢锭或连铸坯。炼钢主要是以高炉炼成的生铁和直接还原炼铁法炼成的海绵铁以及废钢为原料,用不同的方法炼成钢。主要的炼钢方法有转炉炼钢法、平炉炼钢法、电弧炉炼钢法3类(见钢,转炉,平炉,电弧炉)。以上3种炼钢工艺可满足一般用户对钢质量的要求。为了满足更高质量、更多品种的高级钢,便出现了多种钢水炉外处理(又称炉外精炼)的方法。如吹氩处理、真空脱气、炉外脱硫等,对转炉、平炉、电弧炉炼出的钢水进行附加处理之后,都可以生产高级的钢种。对某些特殊用途,要求特高质量的钢,用炉外处理仍达不到要求,则要用特殊炼钢法炼制。如电渣重熔,是把转炉、平炉、电弧炉等冶炼的钢,铸造或锻压成为电极,通过熔渣电阻热进行二次重熔的精炼工艺;真空冶金,即在低于1个大气压直至超高真空条件下进行的冶金过程,包括
金属
及合金的冶炼、提纯、精炼、成型和处理。 钢液在炼钢炉中冶炼完成之后,必须经盛钢桶(钢包)注入铸模,凝固成一定形状的钢锭或钢坯才能进行再加工。钢锭浇铸可分为上铸法和下铸法。上铸钢锭一般内部结构较好,夹杂物较少,操作费用低;下铸钢锭表面质量良好,但因通过中注管和汤道,使钢中夹杂物增多。近年来,在铸锭方面出现了连续铸钢、压力浇铸和真空浇铸等新技术。现代炼铁绝大部分采用高炉炼铁,个别采用直接还原炼铁法和电炉炼铁法。高炉炼铁是将铁矿石在高炉中还原,熔化炼成生铁,此法操作简便,能耗低,成本低廉,可大量生产。生铁除部分用于铸件外,大部分用作炼钢原料。由于适应高炉冶炼的优质焦炭煤日益短缺,相继出现了不用焦炭而用其他能源的非高炉炼铁法。直接还原炼铁法,是将矿石在固态下用气体或固体还原剂还原,在低于矿石熔化温度下,炼成含有少量杂质元素的固体或半熔融状态的海绵铁、
金属
化球团或粒铁,作为炼钢原料(也可作高炉炼铁或铸造的原料)。电炉炼铁法,多采用无炉身的还原电炉,可用强度较差的焦炭(或煤、木炭)作还原剂。电炉炼铁的电加热代替部分焦炭,并可用低级焦炭,但耗电量大,只能在电力充足、电价低廉的条件下使用。更多有关钢铁冶炼请详见于上海
有色
网
粗铜冶炼
2017-06-06 17:50:04
粗铜冶炼拥有一定的准入条件: 为加快结构调整,规范铜冶炼
行业
的投资行为,促进我国铜工业的持续协调健康发展,根据国家有关法律法规和
产业
政策,制定铜冶炼
行业
准入条件。 一、 企业布局及规模和外部条件要求 在国家法律、法规、行政规章及规划确定或县级以上人民政府批准的饮用水水源保护区、自然保护区、风景名胜区、生态功能保护区等需要特殊保护的地区,大中城市及其近郊,居民集中区、疗养地、医院和食品、药品、电子等对环境质量要求高的企业周边1公里内,不得新建铜冶炼企业及生产装备。 新建或者改建的铜冶炼项目必须符合环保、节能、资源管理等方面的法律、法规,符合国家
产业
政策和规划要求,符合土地利用总体规划、土地供应政策和土地使用标准的规定。 单系统铜熔炼能力在10万吨/年及以上,落实铜精矿、交通运输等外部生产条件,自有矿山原料比例达到25%以上(或者自有矿山原料和通过合资合作方式取得5年以上矿山长期合同的原料达到总需求的40%以上),项目资本金比例达到35%及以上。 二、 工艺和装备 采用先进的闪速熔炼、顶吹熔炼、诺兰达熔炼以及具有自主知识产权的白银炉熔炼、合成炉熔炼、底吹熔炼等生产效率高、工艺先进、能耗低、环保达标、资源综合利用效果好的富氧熔池熔炼或者富氧漂浮熔炼工艺。 必须有制酸、资源综合利用、节能等设施。火法熔炼须配置烟气制酸、收尘及余热回收设施;烟气制酸须采用稀酸洗净化、双转双吸(或三转三吸)工艺,严禁采用热浓酸洗工艺。设计选用的冶炼尾气余热回收、收尘工艺及设备必须满足国家《节约能源法》、《清洁生产促进法》、《环境保护法》等法律法规的要求。 禁止利用直接燃煤的反射炉熔炼废杂铜。在矿产粗铜熔炼工艺和装备方面,依法立即淘汰现有的1.5平方米及以下密闭鼓风炉,2006年底前淘汰反射炉、电炉和1.5-10平方米(不含10平方米)熔炼用密闭鼓风炉,2007年底前淘汰所有鼓风炉。 三、 能源消耗 新建铜冶炼企业:粗铜冶炼工艺综合能耗550千克标准煤/吨以下。电解精炼(含电解液净化)部分综合能耗在250千克标准煤/吨以下。电铜直流电耗285千瓦时/吨以下。 现有铜冶炼企业:粗铜冶炼综合能耗900千克标准煤/吨以下。电铜直流电耗310千瓦时/吨以下。现有冶炼企业要通过技术改造节能降耗,在准入条件发布两年内达到新建企业能耗标准。 四、 资源综合利用 新建企业铜冶炼总回收率达到97%以上;粗铜冶炼回收率98%以上;水循环利用率95 %以上,吨铜新水消耗25吨以下;占地面积低于4平方米/吨铜。铜冶炼硫的总捕集率达98%以上;硫的回收率达到96%以上。 现有企业的铜冶炼总回收率达到96%以上;粗铜冶炼回收率97%以上;水循环利用率90 %以上,吨铜新水消耗28吨以下。铜冶炼硫的总捕集率达98%以上。硫的回收率达到95%以上。并通过技术改造降低资源消耗,在准入条件发布两年内达到新建企业标准。 五、 环境保护 根据《中华人民共和国环境保护法》等有关法律法规,所有新建、改建项目必须严格执行环境影响评价制度,持证排污(尚未实行排污许可证制度的地区除外),达标排放。环保部门对现有铜冶炼企业执行环保标准情况进行监督检查,定期发布环保不达标生产企业名单,对达不到排放标准或超过排污总量的企业决定限期治理,治理不合格的,应由地方人民政府依法决定给予停产或关闭处理。 铜冶炼污染物排放要符合国家《工业炉窑大气污染物排放标准》(GB9078-1996)、《污水综合排放标准》(GB8978-1996)和有关地方标准的规定。 六、 安全生产与劳动卫生 必须具备国家安全生产法律、法规和部门规章及标准规定的安全生产条件,并建立、健全安全生产责任制;新建、改建项目安全设施必须与主体工程同时设计、同时施工、同时投入生产和使用,制酸、制氧系统项目及安全设施设计、投入生产和使用前,要依法经过安全生产管理部门审查、验收。必须建立劳动保护与工业卫生的设施,建立健全相关制度,必须通过地方行政主管部门组织的专项验收。 七、 监督管理 新建和改造铜冶炼项目必须符合上述准入条件。铜冶炼项目的投资管理、土地供应、融资、环境影响评价等手续必须依据准入条件的规定办理。建设单位必须按照国家环保总局有关分级审批的规定报批环境影响报告书,粗铜冶炼项目的环评报告书,必须按照规定向国家环保总局报批。符合
产业
政策的现有铜冶炼企业要通过技术改造达到新建企业在资源综合利用、能耗、环保等方面的准入条件。 新建或改建铜冶炼项目投产前,要经省级及以上投资、土地、环保、安全生产、劳动卫生、质检等行政主管部门和有关专家组成的联合检查组监督检查,检查工作要按照准入条件要求进行。经检查认为未达到准入条件的,投资主管部门应责令建设单位根据设计要求限期完善有关建设内容。对不符合环保要求的,环境保护主管部门要根据有关法律、法规进行处罚,并限期整改;对未依法取得土地或者土地利用不符合有关规定的,要按照土地管理法规或土地使用合同的约定予以处罚,限期整改,且不得发放土地使用权证书。新建铜冶炼生产能力,须经过有关部门验收合格后,按照有关规定办理《排污许可证》(尚未实行排污许可证的地区除外)后,企业方可进行生产和销售等经营活动。涉及制酸、制氧系统的,应按照有关规定办理《危险化学品生产企业安全生产许可证》。现有生产企业改扩建的生产能力经省级有关部门验收合格后,也要按照规定办理《排污许可证》和《危险化学品生产企业安全生产许可证》等相关手续。 各地区发展改革委、经委(经贸委)、工业办和环保、工商、安全生产、劳动卫生等有关管理和执法部门要定期对本地区铜冶炼企业执行准入条件的情况进行督查。中国
有色金属
工业协会协助有关部门做好跟踪监督工作。对不符合
产业
政策和准入条件的铜冶炼新建和改造项目,投资管理部门不得备案,土地行政主管部门不得办理供地手续,环保部门不得批准环境影响评价报告,金融机构不得提供授信,电力部门依法停止供电。依法撤销或责令关闭的企业,要及时到工商行政管理部门依法办理变更登记或注销登记。 国家发展改革委定期公告符合准入条件的铜冶炼生产企业名单。实行社会监督并进行动态管理。 八、 附则 本准入条件适用于中华人民共和国境内(港澳台地区除外)所有类型的铜冶炼
行业
生产企业。 本准入条件也适用于利用其他装备改造成铜冶炼设备后从事的铜冶炼生产行为。 本准入条件中涉及的国家标准若进行了修订,则按修订后的新标准执行。 本准入条件自2006年 7月 1日起实施,由国家发展和改革委负责解释,并根据
行业
发展情况和
宏观
调控要求进行修订。 粗铜冶炼
行业
应该严格遵循次标准。
废铜冶炼
2017-06-06 17:49:54
废铜冶炼,废铜冶炼,目前无论是国外还是国内,利用100%废铜连铸连轧生产线生产符合相关国家标准的低氧光亮铜杆已是较为成熟的技术。以下即从国内外废铜冶炼技术现状、废铜市场、废铜来源及废铜冶炼工艺等几个方面谈谈废铜冶炼技术现状。 长期以来,处于对铜资源和成本的考虑,各国铜杆生产商一直想在现代的连铸连轧生产线上使用尽量多的废铜作为原材料。事实上,在80年代以前,生产商使用纯铜废料的量始终限制在10~15%。因为那时利用全废铜生产高质量的低氧光亮铜杆是一项代价非常大的措施,为此必须熔化和精炼铜获得阳极铜,进而用电解法取得阴极铜。直到80年代初,西班牙巴塞罗那和意大利米兰的两家公司,对如何利用全废铜生产低氧光亮铜杆进行了研究,在共同的努力下,两家公司在他们最初接触的两年内各自成功地达到了目标。1986年,用100%废铜的第一条欧洲连铸连轧生产线开始运行,在很短的时间里工程的投资即被偿还。但最初用废铜生产铜杆的生产线,其标称能力为7吨/小时,每天(8小时计算)可生产50吨铜杆,后经多次改造,于1995 年推出的全废铜连铸连轧生产线,竖炉的熔化能力增加到了10吨/小时,生产能力增加到了80吨/8小时,如果取掉设备维护、保养及节假日时间,年产量至少可达6万吨。此生产线生产的铜杆性能的导电率等指标达到ISO标准的要求,原材料价格可节省8%~15%,每吨铜杆可便宜250~270元。国内废铜冶炼技术现状 我国废铜连铸连轧生产线的研制约在90年代初。经过十年的艰辛努力,四川德阳东方电工机械有限责任公司技术人员,于2000年推出了我国第一条UL+Z-1800+255/14型全废铜连铸连轧机组生产线,该条生产线结合了美国、法国、意大利等公司的先进经验,一经推出该生产线即制造出了符合相关国家标准的低氧光亮铜杆,年产量可达5万吨,此生产线将我国100%废铜料加工成高质量光亮铜杆的梦想变成了现实。目前我国已有多家生产铜连铸连轧生产线的企业,形成一定规模的企业有三家:东方电工(已生产21条生产线)、四川煤田地质局141机械厂(已生产4条生产线)和合肥华新(已生产19条生产线)。我公司准备购买的UL+Z-1800+255/12型铜杆连铸连轧机组生产线是东方电工公司的最新换代产品,它可以将一级或二级废铜冶炼轧制成符合表1性能的光亮圆铜杆。欢迎访问上海有色网
http://www.smm.cn/
了解更多废铜冶炼 ,或与我们互动!