您所在的位置: 上海有色 > 有色金属产品库 > 铝传动杆

铝传动杆

抱歉!您想要的信息未找到。

铝传动杆价格

更多
抱歉!您想要的信息未找到。

铝传动杆厂家

更多

大连瑞源动力有限公司

天津市佰瑞得商贸有限公司

益阳市久通冶炼有限公司

优锦化工(上海)有限公司

铝传动杆专区

更多
抱歉!您想要的信息未找到。

铝传动杆百科

更多

铜杆 英文

2017-06-06 17:50:14

铜杆 英文是什么?铜杆英文:copper rod最佳答案一、先进的构造(1) 把熔化炉膛设计成长方形,可以整块电解铜加料而不增加炉膛的散热面积.(2) 用连体炉取代了分体炉,在熔化炉和保温炉之间增设一个过渡仓,铜液从熔化炉经过渡仓流入保温炉时避免直接流入,这不仅有利于温度和液位的平稳,而且在过渡腔内使铜液得到更充分的还原,同时可以比较容易在过渡仓内清除渣质,使铜液的温度稳定均匀,液位平稳,铜液清洁,从而使铜杆质量稳定.(3) 采用W型熔沟,使铜液在熔沟内形成定向高速流动,有充分的热交换,使各种高熔点的氧化渣及已蚀损的石英砂随液流流出熔沟。加速熔铜内铜液的流动,这不仅可以缩短熔炼时间,提高电炉生产能力,而且降低了熔沟内的温度,避免熔渣堵塞,从而提高炉子的工作寿命。在能耗方面使原来每吨熔铜的耗电量由400KWh以上下降到350KWh以内,实现了节能降耗20%以上。(4) 在一般情况下,炉体的寿命是感应器寿命的2-5倍,而且熔化炉和保温炉的感应器寿命也不一样。设计成可拆卸式感应器是可以在某一感应器发生故障时,这样可以在某一感应体发生故障时,不需要拆除整个炉子,而只需拆下损坏的感应体重筑,从而节省停炉时间和生产投入。二、连铸牵引机是上引法的关键设备 (1)上引连铸是间歇向上牵引实现的,间歇牵引每次动作的升程的节距、间歇牵引的开停比例,牵引频率和节距都会影响铸杆的质量。采用伺服电机牵引系统,不仅满足了高频率的间歇牵引,节距可根据不同铸杆直径任意调节,而且不会打滑,运行稳定。(2) 结晶器是牵引机的重要部件,对铸杆的质量和上引速度起决定性的作用,尤其是一次冷却区的结构、材料的选用和加工精度,却直接影响到热传导的效果和结晶速度,结晶器二次冷却区的铜管内壁与铸杆间的间隙大小对铸杆冷却效果也有很大的影响。(3) 电控系统上引法连铸的工艺过程简单是它的特点之一,但是对工艺操作的要求却非常严格,铜液的温度、液位的高低、结晶器插入铜液的温度,牵引的节距、频率以及冷却水的压力、流量和温度等都必须控制在一定的范围内.更多有关铜杆 英文请详见于上海 有色 网

铜杆价格

2017-06-06 17:49:59

铜杆价格,隔夜美联储声明保持低利率水平并表示美国经济复苏正持续前进中,美元走软。今日亚洲交易时段在85.6-86震荡,徘徊于5日均线。LME电铜早市低开于6568美元,日内冲高6681美元,17:30最新价6614美元。伦铜6550-6650美元窄幅整理,空间愈加狭窄,KDJ三线粘连欲作突破性走势。沪期铜小幅高开并上冲30日均线未果,午后承压收报略有收窄日内升幅。主力1009合约开始于日内低点53130元,冲高53900元,日内多在日均线上方作强势整理,午后受A股受阻回落影响而小幅承压,收报53520元,上涨570元,升幅1.08%,成交量44.9万手,换手率258.65%,主力减仓5094手,可见短线空头减仓,1010合约大增13544手,可见多头建仓。期铜在20~30日均线区间震荡,一度上方突破30日均线,底部52500元获得企稳抬高,期铜在53500元一线作强势整理后,后市可看高一期。铜杆市场,日内成交主流价格多在53800~54050元区间,上午升水于 +80~+150元,下午由于期铜承压现货升水略提至+100~+200元,成交价格则维稳于54000元左右。江西一带发生雨水中断交通影响,市场忧虑贵溪铜后续货源,国产优质好铜以贵溪铜为代表报价较坚挺,进口铜供应商则因最近点价premium攀升而出货有限,今沪伦比值回升至8.05上方,进口铜流通量略有增加,下游消费逢低买盘仍较积极,冲高于54000元上方时则会表现犹豫与斟酌,与供应商产生拉锯。随着铜价的企稳、底部的抬高,目标上看55000元。但愈接近短期目标位,买盘积极成交踊跃的市况将受到抑制。

电工铝圆杆铸坯轧制生产工艺

2019-01-15 09:51:44

1、严格控制炉内铝液的化学成分铝液成分中的Fe、Si含量增加,则电阻率增加,抗拉强度提高,延伸率下降。Fe、Si含量降低,抗拉强度下降,延伸率提高,因此要严格控制其含量,在原铝选择上,主要考虑Si不大于0.08%,w(Fe)/w(Si)=1.5~2.0。在铸造前要对铝液进行精炼,通过高纯氮气将粉末精炼剂吹入铝液内,应尽可能使精炼剂均匀分布到铝液中,以利于除气除渣,精炼完成后要静置40~60min。必要时加入适量的Al-Ti-B细化剂,以保证铸坯组织致密,提高铸坯的内部组织质量。   2、连续铸锭在浇注系统中增设过滤装置,即在过滤包中安放两道陶瓷过滤板,一道水平放置,一道竖直安放,将原玻璃丝布过滤改为泡沫陶瓷过滤板过滤;使用较长的流槽,尽可能减少铝液的转注次数;浇铸嘴由相当于十点半的倾斜位置改为相当于十二点的水平位置;并在流槽与中间包的衔接处采用导管导流,这样可以使铝液平稳地进入结晶腔,不产生紊流与湍流,保持流槽与中间包内铝液表面的氧化膜不破裂,减少铝液的再次吸气、氧化,避免氧化膜进入铸腔形成新的夹渣;浇注系统采用新型整体结构打结,耐火材料坚固耐用,消除过去耐火材料对铝液的二次污染。在铸造过程中,严格控制铸造温度、铸造速度、冷却条件三要素,铝液出炉温度一般控制在730℃~740℃,浇铸温度700℃~710℃,浇铸速度0.20~0.22m/s,冷却水在0.1~0.3Mpa,冷却水温度不高于40℃。3、连续轧制热轧时金属具有较高的塑性,抗变形能力较低,因此可以用较少的能量得到较大的变形。在轧制中连轧机的轧制速度、轧制温度、工艺润滑是保证铝杆质量的三要素,轧制时要根据铸坯情况,及时、合理调整轧制参数,以保证铝杆质量。轧制温度轧制温度过高会使坯料内部低熔点组织物熔化而造成轧件过热,出现高温脆裂和轧辊粘铝,铝杆表面有疤痕;轧制温度过低,坯料变形易造成堵杆,根据实际经验,铸锭坯料温度入轧前控制在480~520℃为宜。轧制速度轧制速度直接影响铝杆的生产效率和机械性能。在铝杆的化学成分与生产冷却条件不变的情况下,轧制速度高时热效应大,出现热脆现象,铝杆抗拉强度降低,轧件易拉断;轧制速度低时铝杆抗拉强度提高,但轧制效果不佳。一般入轧速度控制在0.18~0.22m/s,终轧速度控制在6m/s左右为佳。

氧铜杆和无氧铜杆

2019-03-05 09:04:34

氧铜杆和无氧铜杆

再生铜杆行业发展简析

2018-12-07 10:47:19

导读:尽管近年来我国大力扶持循环产业,但国内再生铜的回收量仍处于较低水平,且这些再生铜的杂质含量要远超进口的再生铜。为此,目前国内再生铜杆企业的原料有90%以上是来自国外进口的废铜,使用国产再生铜的比例非常低。我们认为只有进一步完善国内再生铜的回收机制和升级优化再生铜的分拣步骤,国内再生铜才能被更多的再生铜杆厂所使用。   在我国铜产量中,再生铜占比约40%,对于电力电缆行业,再生铜使用比例约50%。在国家大力扶持循环产业的利好政策下,再生铜杆企业开始壮大,并对前景充满信心。 人们经常把那些富含贵重金属的电子产品的地区比作“城市矿山”。在资源越来越紧缺、越来越提倡循环经济的今天,金属的回收再利用也逐渐成为一个庞大的产业。 以铜矿资源来看,据中国有色金属工业协会再生金属分会副会长兼秘书长王吉位介绍,2014年,全国回收的铜产量就在300万吨左右。在过去的5年前,中国一共建立了50个城市矿山的项目。“回收铜资源对于我们的意义非常重大。因为中国已经是全球最大的机电产品制造国和家电生产大国,同时大量的基础设施正在建设,这些都需要大量的铜以及铜制品。 在铜回收产业里,电线电缆的回收又是其中重要的一部分,因为铜在电线电缆里使用的比例非常大,高达60%以上。 坚持可持续民企看好循环产业 富有的“城市矿山”也吸引着一些民营企业纷纷投向这个领域。记者在对天津某资源循环企业采访时发现,在国家大力扶持循环产业的利好政策下,众多从事多种内容的资源型再生企业开始发展壮大,而其中,废铜的精深加工均是这些企业的重要业务之一。 记者在采访中了解到,该企业作为园区里的一个小微企业,从1996年开始涉足再生铜产业,2008年该企业将业务拓展到真正的再生铜冶炼的项目。 据介绍,再生铜杆的发展在国内也还处于初期阶段。该企业制作再生铜杆的原料里有90%以上来自于国外进口的废铜,使用国内废铜比例还比较小。近几年,关于再生铜杆的质量问题也一直被提及。国内大大小小做再生铜杆的企业,技术水平也不尽一样,生产出的再生铜杆质量也有差别。该企业相关负责人在接受记者采访时表示,由于采用了意大利普洛佩兹和西班牙拉法格公司联合开发的废杂铜火法精炼工艺,该企业所生产的再生铜杆,无论是从伸长率、扭曲、电阻率,还是含氧量的这些指标,都可以达到国家标准。 从再生领域的“铜铝之争” 最近几年,电缆行业里“铜铝之争”的声音一直存在。而其中一个观点认为中国铜资源紧缺,而铝资源相对没那么紧张。但是如果从资源循环再生的角度来看,则不尽然。首先,铜本身的性能决定了它可以百分之百进行回收。我国铜产量中,再生铜占比约40%。我国铝产量中,再生铝仅占约20%。对于电力电缆行业,再生铜使用比例约50%,而再生铝使用基本为0。 该企业相关负责人对此也深有体会,在做再生铜杆之前,他有着20多年的做再生铝的经验。“我们现在市面用的稀土铝合金电缆线是不能用再生铝生产的。而原生铝要耗费大量的电能,所以并不能节约很多费用。说铝合金比较经济,并没有把资源再生的角度考虑进来。” 此外,专家认为,虽然现阶段国内铜供应不足,但从国际上能够获取足够的铜以满足国内经济发展的需求。而且铜的需求也不会无止境增长,国外的发展已经证明,随着经济发展到一定程度,人们对于铜资源的需求也会达到顶峰。 再生铜产业将会有快速发展 记者了解到,目前再生铜杆的比例还不算大,再生铜杆目前每年的产量也就在20万~30万吨之间,但是这个行业的未来发展前景不可估量。在欧洲,英国、法国、德国等发达国家再生铜的使用均超过40%,在意大利更是达到了几乎100%。“行业未来会有一个比较快速的增长。因为如果比较再生铜和原生铜的性能,根据目前技术所生产出的电工用铜杆,它的物理性能跟原生铜已经没有太大差别,唯一达不到的指标,是在杂质含量上。再生铜的杂质含量要超过原生铜,但是如果是用先熔炼成阳极板再通过电解的方式,再生铜的杂质含量可以降低到原生铜的标准,只是这样做的成本太高。而这个因素并不会对电工杆的使用造成实质的影响。现在随着整个国家经济的发展,再生材料的利用已经提到了国家的议程上来,再生铜杆的量会越来越多,会成为一个使用的亮点。”该企业相关负责人对再生铜杆的未来充满了信心。

铜线杆质量影响因素浅谈

2018-12-18 10:15:50

云南铜业铜材有限公司                          和晓燕      从20世纪初开始,我国电线电缆行业迅速发展,铜线杆的需求急剧增长。而铜线杆质量的保证成了最为关键的因素,以下从铜线杆中杂质、氧成分、表面质量、稀土作用等方面进行铜线杆质量的影响因素讨论,从而找出可以改进的方法提高铜线杆质量。一、杂质元素的影响    杂质元素对铜线杆的影响很大,纯铜中的杂质元素大致可分为:固溶于铜的杂质元素、很少固溶于铜与铜形成低熔点共晶的杂质元素和几乎不溶干铜与铜形成离熔点脆性化合物的杂质元素三类。固溶于铜的杂质元素。此类杂质元素在允许的含量范围内,能溶于铜中形成固溶体。主要有:铝、铁、镍、锡、锌、银、镉、磷等,以磷为例,该杂质元素在铜中的溶解度随温度的下降而降低,它对铜的机械性能特别是对铜的焊接性能有良好的影响,作为脱氧剂提高铜液的流动性,会降低铜的导电导热性,过量的磷会造成冷脆。总体而言这类杂质元素对金属加工性能无太大影响,能略微提高铜的硬度,但导电、导热性有所降低。很少固溶于铜与铜形成低熔点共晶的杂质元素。此类杂质元素与铜形成低熔点共晶或者与铜形成脆性化合物分布于晶界。主要有:铋、铅、硒、碲、锑,它们在冷凝时分布于晶界,使铜在热加工时产生严重的破裂,是铜线杆产生质量问题的主要原因。以铅、铋、硒、碲为例: 铅:在铜中的溶解度很小,在800℃时溶解0.04%,在300℃时溶解0.02%。铅呈黑色颗粒状分布在晶界上,热加工时铅先熔化,使金属颗粒之间的结合力受到破坏,造成“热脆”,从而在轧制和以后的拉伸过程中易产生裂纹和断裂。所以铅的质量分数控制在(50~500 )× 10-6。    硒:在铜中基本不溶,冷凝时与铜形成脆性化合物Cu2Se,且分布在晶界上,热轧过程中易使铜杆产生表面裂纹,深拉伸过程中易产生断裂。    碲:在铜中基本不溶,冷凝时与铜形成脆性化合物Cu2Te,且分布在晶界上,热轧过程中易使铜杆产生表面裂纹,深拉伸过程中易产生断裂。    铋、:在铜中溶解度很小,在800℃时溶解0.01 %,在300℃时仅融解0.000 1 %。在270℃时与铜生成低温共晶,呈连续网状分布在晶界上。当热加工温度大于其共晶熔点时,共晶膜熔化,使铜的晶粒与晶粒的结合力降低,从而发生晶间破裂,引起“热脆”。除了“热脆”之外,由于铋本身性脆,还会形成“冷脆”。从而在轧制和以后的拉伸过程中易产生裂纹和断裂。几乎不溶干铜与铜形成离熔点脆性化合物的杂质元素。此类杂质元素对铜线杆生产过程有很大影响。从氧、硫、氢三种元素进行讨论。    氧:很少固溶于铜。氧含量对铜材的加工性能有很大的影响,与铜生成Cu2O,Cu2O硬而脆,使冷变形困难,致使金属发生“冷脆”。氧含量过高时,会因氢与氧反映产生不溶于铜的水蒸气,水蒸气又无法扩散,在铜中形成很高的压力,使铜遭到破坏。氧的质量分数达到5×10-5的铜,即出现“氢病”。所以纯铜的氧含量受到严格的限制。氧在与大部分杂质反应的过程中都起到了一个清除器的作用,而这些杂质当它们溶解在铜基质中时对其特性和退火反应都有巨大的影响作用。相反,当这些杂质与不可溶解的氧化物混合在一起的时候,这些坏作用就被抵消了。由此可见当铜中含氧的质量分数低于100×10-6时,氧含量过少,氢和某些不溶于铜的杂质会增多;当铜中氧的质量分数含量超过600×10-6时,过量的氧与铜形成过量的Cu2O,并在铜基体中形成不均匀分布,将导致裂纹的扩展,在铜材的深加工时易引起加工硬化和产生局部裂纹。综上可知,氧含量应控制在一个适当的范围内。    硫:与铜形成共晶,由于共晶温度较高,对铜热变形不明显,由于Cu2S硬而脆,致使金属发生“冷脆”,严重时,会使线杆发生裂纹乃至断裂。    氢:氢能溶于液态铜,且其溶解度随温度的升高而升高。若吸氢较多,过饱和氢会大量析出,在铸坯上出现微小气泡和微裂纹。另外一方面如上文所述形成水蒸气,产生极大内应力,引起所谓“氢脆”现象,严重影响铜的塑性加工性能。二、铜线杆的表面影响在外界温度下,铜线杆总是有一个残留的氧化膜,而这一氧化膜是当铜线进入热杆轧制阶段时从高温的、连续铸造的铜杆上形成的。现在在铜液中通过一种电量分析控制检测手段来测量残留的表面氧化膜的厚度已成为一种比较标准的作法。氧化膜可能会相当地有害,因为它们可能会在拉丝过程中引发许多缺陷、使拉丝膜过度磨损、可焊性变差、搪瓷膜和裸导体之间的附着力变弱。铜杆的缺陷之处往往是源于连续铸造过程和轧制过程,这包括:残渣、铜氧化夹杂物、热裂、裂块、铜杆表面氧化颗粒的形成。在这一系列的铜杆缺陷中:热裂,是在结晶过程中产生,多沿晶界裂开,裂纹曲折而不规则,有时还有分枝裂纹,裂纹多分布在铸锭最后凝固的区域或靠近这些区域。影响热裂纹的因素有:金属及合金本身的性质,如热脆性、收缩率的大小、在固液区内的抗拉强度及延伸率和杂质含量与分布情况;铸造工艺及设备、工具情况和冷却强度大小。    夹渣和夹杂,此缺陷破坏铜基体的连续性,降低铜的塑性。它产生的原因有内因,是铜中含有易氧化生渣的元素;还有外因,是生产中扒渣不净,润滑油或涂料过多,铸造温度低,炉料混杂等因素都可能造成夹渣和夹杂。大部分金属间化合的夹杂物都比较脆,因而都成为拉丝过程中裂纹发生和蔓延的场所。相对于缺陷而言,较细的磁线和成形线是最主要的生产产品。惟一最大的表面缺陷源于拉丝,往往是以拉模划痕、机械损伤、弧口凿或裂片的形式出现在裸导体的表面。因为拉丝问题而形成的裂片往往与所捕获的氧化物没有太大关系。表面损伤通常是由于拉丝机内移动线未对准或拉丝膜炉口内铜精炼的压制力太大则形成的。三、部分稀土元素的影响    在熔融铜中加人微量稀土生产光亮铜线杆的工业试验进行了几年的探索和研究,发现铜杆的各项性能指标得到很大的改善,稀土的作用明显,理论方面具体表现在:1.  在铜中的净化作用    脱氧和脱硫:从上文讨论可知,硫和过量的氧是光亮铜线杆的有害物质。硫与铜生成Cu2S降低铜的塑性,氧与铜生成Cu2O,降低了韧性,使热加工困难。稀土元素与氧、硫的结合能力很强,因此可代替铜,生成稀土氧化物和稀土硫化物,部分形成渣出去,部分将原来氧化物、硫化物的晶界网状分布转变成在熔体中弥散分布。    以脱硫为例举例讨论:稀土能把铜中少量硫除去:Cu2S + Ce = 2Cu +CeS    其标准生成自由焓 ΔGTo与温度T的关系式为:ΔGTo= ﹣192.360﹢9.271ogT一11.8T    在1400K下,ΔG14000= ﹣707.108J/mol 由此可见,在熔铜中,稀土元素脱硫反映的热力学势很大,有一定的能力除去硫杂质。    脱铅、秘等有害杂质:稀土的化学活性强,能与铜中的铅、秘等有害杂质发生作用,形成难熔的二元或多元化合物,与熔渣一起从液体铜中析出,从而达到净化铜液的作用。2.  在铜中的变质及微合金化作用    稀土在铜中的最主要变质作用是消除柱状晶区,急剧细化晶粒。稀土在铜中的固溶度极小,加人微量稀土大部分同其它元素化合生成高熔点化合物,这些化合物在熔体中悬浮和弥散分布,从而提高铜及其合金的塑性和强度,减少表面裂纹和缺陷。为研究稀土元素对铜线杆的作用,已进行了大量试验。其中结果较为明显的是加入富铈混合稀土 ( 组分为:铈:47%,镭:26%,钕:15% ) 的试验。试验结果看出:(1)稀土的加人使铜铸坯的组织改善,从铸坯的端面可看出,晶粒得到细化,柱状晶区域缩小,等轴晶扩大。表1  晶粒直径的比较试样编号 稀土加入质量分数(×10-6) 晶粒直径/(mm)样1 0 0.153样2 50 0.062样3 60 0.084从表1可知,稀土的质量分数在52.2×10-6时,明显细化了晶粒,但稀土含量超过一定范围,则晶粒有变大趋势,因此应在一定范围内加人稀土。(2)富铈稀土的加人对铜杆机械性能影响。按试验对铜杆试样进行了拉伸、扭转试验,延伸率和扭转性能有所提高。这说明稀土加入后有效地改变了铜杆的塑性,提高了铜的塑性变形能力。表2 拉伸率和扭转性能比较试样编号 稀土加入质量分数(×10-6) 伸长率 单向扭转试样1 0 40 45试样2 200 41 61试样3 400 40.5 52从表2可知,稀土元素的适当加人,延伸率略有提高,其扭转性能提高尤其明显。(3)富铈稀土的加人对铜线杆导电率的影响。表3  导电率比较试样编号 稀土加入质量分数(×10-6) 导电率(Ω/mm2 • m- )试样1 0 0.0170 0试样2 40 0.0169 8试样3 70 0.0169 8从表3可知铜杆试样的导电率经测试都在0.001 7Ω/mm2 • m-以下,其数值低于铜线杆一级杆导电率标准。(4)加入富铈稀土对铜液确实起到净化的作用,选取具有代表性的氧、硫、铅、铋作成分比较 。表4  加入富铈稀土度比较(质量分数)×10-6  稀土加入量 氧 硫   铅 铋0 347.0 13.0 2.9 8.040 237.4 11.0 2.8 7.0从表4可看出,稀土元素的加人对氧、硫的脱除能力较强,其他金属杂质随稀土加人也能部分除去,但炉内含金属氧化物较多时,由于稀土的亲和力比其他金属强,稀土将会使其他金属脱氧,还原进入铜熔体中,使铜杆杂质升高,性能变坏,因此必须严格控制金属氧化浮渣。从现今看,稀土运用于铜线杆还未成为产业化的过程,还需作进一步的摸索和探索性试验,但其作为铜晶粒细化剂已被开发投人市场,前景看好。.

废紫铜加工铜杆技术

2018-12-03 10:44:49

导读:废紫铜加工铜杆技术有哪些?废紫铜加工铜杆技术对废紫铜的要求?废紫铜虽然是废铜,但是废紫铜中的铜含量还是比较高的。废紫铜的回收利用可以减少坏境污染、降低生产成本、节约资源。废紫铜回收之后一般都是重熔的,之后在加工成铜杆。废紫铜加工铜杆技术有很多种类。随便科技的不断发展,废紫铜加工铜杆技术已经有了不重熔的方法。不重熔废紫铜加工铜杆技术比较重熔废紫铜加工铜杆技术有着更大的优势,小编介绍下“废紫铜加工铜杆技术”。 废紫铜加工铜杆技术? 1、废紫铜生产上引铸造无氧铜杆技术:无氧铜杆是生产优质电线电缆的基本材料之一。无氧铜杆以其性能优良而获得电线电缆行业的青睐。上引法连续铸造无氧铜杆由于投资少、上马快、生产灵活性大、无环境污染,因而近年来发展很迅速。为了充分利用资源,节材降耗,在上引法铸造无氧铜杆生产中,适当利用一定品位的废旧紫铜作原料,生产出符合国标要求的无氧铜杆,将有利于提高企业的经济效益。2、废紫铜连铸连轧低氧光亮铜杆技术:针对上述废紫铜综合利用的问题,提供一种利用废紫铜反射炉精炼工艺的废紫铜连铸连轧低氧光亮铜杆生产工艺。 废紫铜加工铜杆技术对废紫铜的要求?紫铜有很多牌号。这里我们主要讲解的是废紫铜加工无氧铜杆技术。在无氧铜生产中,能作炉料的紫铜主要包括导电铜材加工过程中的边角余料及废料,废品回收公司收购的紫铜废料,生产企业上引铸造及拉线过程中的废料等,要求品位在97%Cu以上。为了保证其质量,必须仔细分检,分检后附着有机物的料要进行焙烧,并去除尘土。所选铜料要在酸液槽内清洗,然后经碱水中和,最后用清水冲洗干净并放置干燥的地方自然风干,使用时直接利用上引连铸炉上口热量烘烤至500e后直接投料。上述铜料使用前还要人工扎成8kg左右的捆,对于质量较差、杂质元素较高的碎杂料,要经坩埚炉精炼后铸成条块状坯料,再作为上引铸造无氧铜杆炉料使用。 上引铸造铜杆缺陷?上引铸造无氧铜杆易出现铸造缺陷,特别是利用废旧紫杂铜作炉料时,更会加剧气孔、夹渣、晶粒组大缺陷。而且,带入的杂质元素会降低铜的导热性和导电性,降低抗拉强度,严重时造成上引过程中铸杆断裂,不利于进一步拉丝。本文所述的上引铸造无氧铜杆生产中,熔化设备为双室有心工频感应熔炼炉,通过流槽将熔化炉中熔化好的铜液导入保下图:上引铸造原理示意图温炉中。为防止氧化,保温炉一般具有很好的密封性,保温炉上口接带冷却水套的石墨结晶器。上引原理如下图所示,在一定牵引力作用下,铜液上引结晶凝固,金属自上而下凝固形成扁平的液穴,结晶前沿的气体过饱和度很高,当气体达到一定过饱和度时形核长大,分布于最后凝固的柱状晶和中心等轴晶交界处的环形区域内。由于保温炉密封,气体和夹渣主要来自熔炼炉。上引铸造过程中,溶于铜液的气体主要是O2,氧以Cu2O形式溶于铜液中,由于上引工艺中会带入水蒸汽,则发生如下反应产生H2而溶于铜液: C+2H2O(g)=CO2+2H2 C+H2O(g)=CO+H2 2Cu+H2O(g)=Cu2O+H2 当铜液中含氢达到一定浓度,就会与铜液中的氧发生水蒸汽反应生成气孔。应用废旧紫铜引杆时,因铜液中氧化物较多,更会加大气孔产生的趋势,同时也增加了氧化夹杂物的数量。另外,由于氧化夹渣较多,浸蚀石墨结晶器,使其下口增大,导致牵引受阻,而且铜杆易表面开裂,因此,引杆温度较使用电解铜炉料引杆高,又会造成晶粒粗大。 上引铸造原理示意图 废紫铜加工铜杆技术的现状及发展? 1、我国废铜的再生利用还存在不少问题,如企业规模小、工艺技术水平低下,废铜利用水平不高、产品质量不稳定,环保问题仍然严重,与发达国家相比还有较大差距。 2、废紫铜不熔再生成型工艺及配套设备,颠覆了废紫铜加工的传统技术,居国内、外领先水平。 2、废紫铜不重熔直接生产紫铜产品的加工技术项目,产业化后,是中国铜加工业发展的一条新路,将推动我国废铜再生工业的发展。 废紫铜加工铜杆技术之利用废旧紫铜的途径:针对上引连铸无氧铜杆缺陷特征和废旧紫铜质量与数量情况,为了达到符合应用要求的力学性能、电性能的无氧铜杆,可采取以下措施 1、对于质量较优,杂质少且废旧紫铜量较少的无氧铜杆生产厂家,可采用在电解铜中加入一定量的废旧紫铜,使用常用的P-Cu脱氧法生产。以生产51414mm无氧铜杆为例,当加10%废旧紫铜时,生产出的铜杆与用纯紫铜生产的无氧铜杆性能相近,如表所示。 从表中试验结果可以看出,添加10%以下优质废旧紫铜时,对无氧铜杆的性能影响不大,生产的铜杆符合使用要求。 2、对于上述类型废旧紫铜,当废旧紫铜量较大时,可全部采用废旧紫铜上引铸造无氧铜杆。但因废旧紫铜会带入氧化夹渣和少量夹杂元素,且上引铜杆因连续生产不便使用精炼熔剂精炼,否则会阻塞流槽或渣子过多地进入保温炉而不能被清除。试验发现,加入1%左右的RE-Cu中间合金具有好的效果,该中间合金含10%RE,其RE具有脱氧、精炼和变质细化晶粒作用,且熔炼方便,有利于提高RE的利用率。其作用机理122是,稀土与氧的亲和力远大于铜与氧的亲和力,且生成熔点比铜液高、密度小的稀土氧化物,收到良好的脱氧作用。稀土生成的呈弥散分布的难熔氧化物颗粒,起到非均质形核作用,从而细化了晶粒。又由于稀土能与Pb、Bi、P等低熔点杂质起反应,形成高熔点低密度化合物,从而清除了夹杂元素,提高了铜杆的导电性。下面分别为用P-Cu和RE-Cu处理铜液所铸造无氧铜杆的杂质分布及气孔分布状况,很明显,采用稀土处理铜液铸造无氧铜杆,夹杂减少、变细,铜杆的力学性能和电性能都达到了使用要求。3、对于杂质元素含量较高的碎杂紫铜,由于氧化夹杂及杂质元素多,铸造引出的铜杆发脆,无法拉拔,更谈不上性能达标,必须在坩埚炉内用Na2CO3、Na3AlF6、Na2B2O7、NaNO3、RE等组成的复合精炼剂精炼。在熔炼过程中,由于Al、Sn、Si等杂质比Cu活泼得多,熔炼中形成弥散分布的Al2O3、SiO2、SnO2等很难被排除,复合精炼剂的精炼机理132是: Al2O3+Na2CO3=Na2Al2O4+CO2{ SnO2+Na2CO3=Na2SnO4+CO{ SiO2+2Na2CO3=Na4SiO4+2CO2{ 因Na2Al2O4、Na2SnO4、Na4SiO4这些熔渣密度小,易于聚集上浮;另据精炼吸附理论142,上述反应生成CO2、CO气泡在上浮过程中会自动吸附合金中的气体,从而达到清除气体的目的。精炼剂中的Na3AlF6和Na2B2O7还分别具有熔剂和造渣作用,而NaNO3在渣层内放热,有利于渣层中铜豆重新熔化而进入合金液,使合金熔耗明显降低;RE的作用上面已论述过。 废紫铜连铸连轧低氧光亮铜杆技术流程:废紫铜-→反射炉熔炼-→吹氧-→精炼-→还原-→保温炉精炼-→浇铸-→滚剪边-→粗轧-→精轧-→冷却-→排线-→出料 废紫铜连铸连轧低氧光亮铜杆技术流程说明: 1、废紫铜: 用废紫铜冶炼生产铜杆原材料分为三个级别,一级废紫铜要求是由清洁的、不镀锡的、无包覆的和非合金化的铜线和电缆所组成,务必不要用烧过的线,这些废铜由标准含量为96%的非合金化的铜线组成。二级废铜是由小直径的、没有绝缘的,通常为电话线的铜线、铜管,带清漆或绝缘的铜排铜线以及干净紫铜棒所组成,最小含量为94%。三级废铜是由非合金化废铜的混合物,其标准含铜量为92%,为了获得最佳的材料组合,达到最理想的效果,加入炉内的材料组成比例一般为:一级废铜:30%;二级废铜:60%;三级废铜:10%。 2、反射炉熔炼: 废铜冶炼生产铜杆的关健是铜液成份的控制,其核心设备是精炼炉,精炼炉采用耐火材料砌成,炉子可倾斜,以利于除气、除碴和浇铸,该工序的控制也是整个生产线的关键所在,其工序包括:原料-→加料-→熔化-→氧化-→还原-→浇铸。首先应根据废铜的来源等级进行配料,再根据原料的配比添加反应剂。废铜在精炼炉内通过一次精炼,使铜快速熔化后,加入除碴剂,并使熔铜获得最好的均匀性,然后通过炉内通入富氧的空气,使其被氧化的杂质漂浮在熔池进行表面清碴处理。经过一次精炼的铜中主要的基本杂质是铅、锡、锌、铁、砷、锑和硫,这些元素对铜杆的加工工艺和导电率有很大的影响。在此种情况下,通常还需要进行二次精炼,以进一步除去杂质。最后的还原操作需要向熔炉中通入还原性气体,使铜的氧含量调整到200-350ppm的要求。(1)原料: 紫铜、废铜线、废铜管、锯屑、铣屑、废管头等等。 将原料打包成100-400Kg/捆,碎料单独加入。(2)加料: 加料炉温:1000℃左右; 加料用加料小车进行; 先加小料,后加大料; 原料分三批加入,第一批加60%,第二批加30%,第三批加入余量的料。 料离炉顶高度:300-400mm; 加料约8小时左右。(3)熔化 加完料后,应加大火提温,炉温保持在1300℃左右; 炉内保持氧化性气氛; 铜水表面激烈沸腾,即表示熔化结束; 铜料全部熔化后,马上扒去浮碴; 熔化时间约3。5小时。(4)氧化: 按紫杂铜杂质含量分为若干阶段:杂质主要为:Fe、Zn、Pb、Sn、Ni、As、Sb、Bi等; 氧化时,炉温:℃;铜水温度:1200-1250℃; 除杂质: 第一步:除Fe、Zn,炉温:1300℃; Zn+O2-→ZnO ZnO+C-→Zn↑+CO2 锌以挥发物除去 Fe+O2-→FeO FeO+SiO2-→FeO。SiO2 Fe与石英造渣除去。 第二步:除Pb、Sn,炉温:1250℃; Pb+O2-→PbO挥发除去; Pb+O2-→PbO2加石英造渣除去。 Sn与Pb基本一致,挥发或造渣除去。 第三步:除As、Sb、Bi、Ni,炉温:1200℃; 三价As、Sb挥发除去;五价As、Sb和Bi加石英造渣除去。 Ni基本造渣除去,若形成镍云母则反复精炼除去。 (5)还原: 当铜水O量达到1.4%左右时,进行还原; 还原时铜水温度控制在1200℃以上; 还原时铜水表面铺上100mm左右厚的木炭; 还原采用插木和炭还原剂。 (6)浇铸: 还原结束时,Cu:99.7%-99.9%; O:200-450ppm。 然后进行浇铸,锭送连轧机,生产光亮圆铜杆。 3、保温炉精炼: 保温炉精炼使铜熔液在高温静置中,非铜夹杂物与铜熔体比重不同,因而产生上浮或下沉,使铜液达到进一步净化的目的,确保铜线坯的化学成份满标准的要求。4、浇铸: 浇铸采用五轮钢带式连铸机连铸,五轮钢带式连铸机由结晶轮、两个压轮、张紧轮、惰轮和钢带组成,结晶轮上的凹槽和压紧的钢带形成铜液的浇注腔,铸轮和钢带配有冷却系统、吹扫系统、喷碳系统并配有浇包预热装置。5、滚剪边: 将铸坯的预处理包括夹送、剪切、铣棱,连铸机导出的铸坯由夹送辊送到剪切机切头或将不合格产品切除,再经过铣棱去棱角。6、粗轧和精轧: 铜杆连轧机为二辊悬臂式轧机,分粗轧和精轧两套机组。粗轧和精轧的轧辊平、立交替布置。粗轧机采用较大压力下量压下,起到细化晶粒的作用。精轧以保证铜杆的尺寸精度和表面光洁度。7、冷却: 出连轧机的铜杆,进入一个约20米长,向上倾斜的冷却管中,铜杆在冷却管中受到微酸性的酒精溶液冷却、清洗去氧化皮并避免再次氧化。8、排线和出料: 经过冷却清洗的铜杆由曲线辊道将铜杆从轧制线的水平位置换成与绕杆机垂直的位置,然后进入铜杆的后处理装置和绕杆机。

中铝郑州有色院Φ6000大型无传动浮选槽制造成功

2019-01-18 11:39:38

近日,中国铝业郑州有色金属研究院开发的Φ6000型156m3大型无传动浮选槽已完成槽体设计与加工,并在中州铝业磨浮区域进行现场安装,基本具备工业试验要求。 铝土矿浮选脱硅是目前应用最广泛的铝土矿选矿方法,而浮选机种类繁多,按机械搅拌方式可分为机械搅拌式和无机械搅拌式,依靠外部压入空气的无机械搅拌浮选机又称充气式浮选机,即无传动浮选机(槽)。 1无传动浮选机的结构 无传动浮选机结构简单,无机械搅拌装置,主要由入料管、矿浆分配器、微泡发生器、浮选槽、泡沫槽、尾流箱和针形槽等组成,工业生产中通常是多个浮选槽串联。气泡矿化管是充气式微泡浮选机的重要组成部分,每个浮选槽内安装有12-17个矿化管,以利于气泡的均匀矿化。微泡矿化器是由特殊的多孔材质制成,内设有多个矿浆通道,压缩空气透过矿浆通道壁形成微小气泡与矿浆接触,并被高流速的矿浆迅速带走。 浮选槽与尾流管构成“U”型通道,利用尾流箱中尾流堰的高低调整浮选槽内矿浆液面的高度。浮选槽底流矿浆通过循环管重新返回矿浆分配器进行浮选,尽可能的回收有用矿物,同时底流口设有稳流板,减少浮选槽液面波动。1-入料管;2-矿浆分配器;3-气泡矿化管;4-微泡矿化器;5-压风管;6-矿化喉管;7-耐磨喷头;8-浮选槽;9-泡沫槽;10-串联溜槽;11-泡沫排出口;12-泡沫导流槽;13-稳流板;14-循环管;15-尾流箱;16-尾流堰;17-针形槽;18-尾流管; 图1 无传动浮选机单槽结构图 2无传动浮选机的工作原理 无传动浮选槽的工作原理为:矿浆由上料泵以0.05-0.50MPa的压力经入料管进入矿浆分配器,被均匀的分配到各个气泡矿化管中。矿浆通过微泡矿化器时,与压缩空气透过矿化管壁产生的微小气泡接触,实现第一次矿化。高流速的矿浆将微泡迅速带走,通过矿化喉管时被再一次压缩,部分气泡溶解在矿浆中,在矿化喉管底端又被迅速释放,进行第二次矿化。 当矿浆到达矿化管底端,由耐磨喷头喷射到浮选槽内,压力的突然释放使矿浆中的微小气泡迅速析出,微小气泡上浮过程中与下沉的矿浆接触,实现第三次矿化。浮选泡沫溢流到泡沫槽中流走,部分微小气泡与中间密度的颗粒进入底流循环管被再次泵回到浮选槽中进行再次分选。浮选尾流通过尾流箱进入针形槽中,针形槽内矿浆经泵进入扫选槽或尾矿沉降槽。无传动浮选机(槽)结构简单,操作方便,占地面积小,能耗低,运行稳定,对低品位铝土矿具有良好的脱硅效果,选矿回收率高。但在实际生产过程中,存在气泡矿化器易堵塞,检修频繁和可调性差等问题。 无传动浮选机(槽)目前主要用于铝土矿的选矿提纯,在非金属矿浮选过程中的应用还未见报道。

高品质8000系列铝合金杆的特性

2018-12-28 09:57:11

高品质8000系列铝合金杆应有高强、高导、丝质光亮、稳定等特性。   高品质8030铝合金杆要求电气性能、力学和抗腐蚀性等三项质量指标均达优良。铝合金杆抗拉强度需稳定控制在115-130MPa,退火后铝合金线延伸率需稳定在25-30%,铝合金应为61.8%-63.5%,相对纯铝杆抗蠕变、抗腐蚀能力应有显著提高,应符合国家标准GB/T 3954-2014 并通过国家权威检测部门检测合格。

低氧铜杆和无氧铜杆性能的区别

2018-12-03 13:41:39

铜杆是电缆行业的主要原料,生产的方式主要有两种 - 连铸连轧法和上引连铸法连铸连轧低氧铜杆的生产方法较多,其特点是金属在竖炉中融化后,铜液通过保温炉,溜槽,中间包,从浇管进入封闭的模腔内,采用较大的冷却强度进行冷却,形成铸坯,然后进行多道次轧制,生产的低氧铜杆为热加工组织,原来的铸造组织已经破碎,含氧量一般为200〜400ppm的之间。无氧铜杆国内基本全部采用上引连铸法生产,金属在感应电炉中融化后通过石墨模进行上引连续铸造,之后进行冷轧或冷加工,生产的无氧铜杆为铸造组织,含氧量一般在20ppm的以下。由于制造工艺的不同,所以在组织结构,氧含量分布,杂质的形式及分布等诸多方面有较大差别。一,拉制性能铜杆的拉制性能跟很多因素有关,如杂质的含量,氧含量及分布,工艺控制等。下面分别从以上1.熔化方式对S等杂质的影响连铸连轧生产铜杆主要是通过气体的燃烧使铜杆熔化,在燃烧的过程中,通过氧化和挥发作用,可一定程度减少部分杂质进入铜液,因此连铸连轧法对原料要求相对低一些。上引连铸生产无氧铜杆,由于是用感应电炉熔化,电解铜表面的“铜绿”,“铜豆“基本都熔入到铜液中。其中熔入的S对无氧铜杆塑性影响极大,会增加拉丝断线率。铸造过程中杂质的进入在生产过程中,连铸连轧工艺需通过保温炉,溜槽,中间包转运铜液,相对容易造成耐火材料的剥落,在轧制过程中需要通过轧辊,造成铁质的脱落,会给铜杆造成外部夹杂。而热轧中皮上和皮下氧化物的轧入,会给低氧杆的拉丝造成不利的影响。上引连铸法生产工艺流程较短,铜液是通过联体炉内潜流式完成,对耐火材料的冲击不大,结晶是通过石墨模内进行,所以过程中可能产生的污染源较少,杂质进入的机会较少.O,S,P是与铜会生产化合物的元素。在熔态铜中,氧可以溶解一部分,但当铜冷凝时,氧几乎不溶解于铜中。熔态时所溶解的氧,以铜=氧化亚铜共晶体析出,分布在晶粒晶界处。铜 - 氧化亚铜共晶体的出现,显着降低了铜的塑性。硫可以溶解在熔体的铜中,但在室温下,其溶解度几乎降低到零,它以硫化亚的形式出现在晶粒晶界处,会显着降低铜的塑性。3。氧在低氧铜杆和无氧铜杆中分布形式及其影响氧含量对低氧铜杆的拉线性能有着明显的影响。当氧含量增加到最佳值时,铜杆的断线率最低。这是因为氧在与大部分杂质反应的过程中都起到了清除器的作用。适度的氧还有利于去除铜液中的氢,生成水蒸气溢出,减少气孔的形成。最佳的氧含量为拉线工艺提供了最好的条件。低氧铜杆氧化物的分布:在连续浇铸中凝固的最初阶段,散热速率和均匀冷却是决定铜杆氧化物分布的主要因素。不均匀冷却会引起铜杆内部结构本质上的差异,但后续的热加工,柱状晶通常会遭到破坏,使氧化亚铜颗粒细微化和均匀分布。氧化物颗粒聚集而产生的典型情况是中心爆裂。除氧化物颗粒分布的影响外,具有较小氧化物颗粒的铜杆显示出较好的拉线特性,较大的Cu2O颗粒容易造成应力集中点而断裂。无氧铜含氧量超标,铜杆变脆,延伸率下降,拉伸式样端口显暗红色,结晶组织疏松。当氧含量超出为8ppm时,工艺性能变差,表现为铸造及拉伸过程中断杆及断线率极具增高这是由于氧能与铜生成氧化亚铜脆性相,形成铜 - 。氧化亚铜共晶体,以网状组织分布在境界上这种脆性相硬度高,在冷变形时将会与铜机体脱离,导致铜杆的机械性能下降,在后续加工中容易造成断裂现象。氧含量高还能导致无氧铜杆导电率下降。因此,必须严格控制上引连铸工艺及产品质量。氢的影响在上引连铸中,氧含量控制较低,氧化物的副作用呗**降低,但氢的影响成为较显着的问题。吸气后熔体中存在平衡反应:H2O(g)= [O] +2 [H];气体及疏松是在结晶的过程中,氢从过饱和的溶液中分出并聚集而形成的。在结晶前分出的氢又可还原氧化亚铜而生成水气泡。由于上引铸造的特点是铜液自上而下的结晶,形成的液**形状近似锥型。铜液结晶前析出的气体在上浮过程中被堵在凝固组织内,结晶时在铸杆内形成气孔。上引的含气量少时,分出的氢存在于晶界处,形成疏松;含气量多时,则聚集成气孔。氢来源于上引生产过程中的各个工艺环节,如原料电解铜的“铜绿”,辅料木炭**,气候环境**,石墨结晶器未干燥等。因此,熔化炉中的铜液表面应覆盖经烘烤的木炭,电解铜应尽量去除“铜“,”铜豆“”耳朵“,对提高无氧铜杆质量非常重要。在连铸连轧工艺中,往往采用适度控制氧含量来控制氢.Cu2O + H2 = 2Cu + H2O由于铜液在铸造过程中是自下而上结晶,铜液中的氧和氢所产生的水蒸气很容易上浮跑出,铜液中的氢大部分能被有效去除,因而对铜杆的影响较小。二,表面质量在生产电磁线等产品的过程中,对铜杆的表面质量也需提出要求。需要拉制后的铜丝表面无毛刺,铜粉少,无油污。并通过扭转试验测量表面铜粉的质量和扭转后观察铜杆的复原情况来判定其好坏。在连铸连轧过程中,从铸造到轧制前,温度高,完全暴露于空气中,使铸坯表面形成较厚的氧化层,在轧制过程中,随着轧辊的转动,氧化物颗粒轧入铜线表面。由于氧化亚铜是高熔点脆性化合物,对于轧入较深的氧化亚铜,当成条状的聚集物遇模具拉伸时,就会铜杆外表面产生毛刺,给后续的涂漆造成麻烦。而上引连铸工艺制造的无氧铜杆,由于铸造和冷却完全与氧隔绝,后续亦无热轧过程,铜杆表面无轧入表面的氧化物,质量较好,拉制后铜粉少,上述问题较少存在。无氧铜杆也分进口设备做的和国产设备做的,但目前进口产品已无明显优势,铜杆产品出来后区别不是很大,只要铜板选的好,生产控制比较稳定,国产设备也能产出可拉伸0.05的铜杆。进口设备一般是芬兰奥托昆普的设备,国产设备最好的应该是上海的海军厂的了,生产时间最长,军工企业,质量可靠。低氧铜杆进口设备国际主要有两种,一种是美国南线设备,英文是SOUTHWIRE,国内厂家是南京华新,江西铜业,另一种是德国CONTIROD设备,国内厂家是常州金源,天津大无缝。无氧及低氧杆从含氧量上容易区别,无氧铜是含氧量在10-20个PPM以下,但目前有的厂家只能做到50个PPM以下。低氧铜杆在200-400个PPM,好的杆子一般含氧量控制在250个PPM左右,无氧杆一般采取的是上引法,低氧杆是连铸连轧,两种产品相对而言低氧杆对漆包线性能更适适些,如柔软性,回弹角,绕线性能。但低氧杆对拉丝条件相对要苛刻些,同样拉伸0.2的细丝,如果伸线条件不好,普通的无氧杆可拉而好的低氧杆就断线,但如果放在好的伸条件,同样的杆子,低氧杆说不定就能拉到双零五,而普通无氧杆最多只能拉伸到0.1而已,当然做的最细的如双零二却非得依靠进口的无氧铜杆了。目前有企业尝试用剥皮的方式来处理低氧杆来伸0.03线。但有关这方面的内容我还不是很清楚。音响线一般反而喜欢用无氧杆,这和无氧杆是单晶铜,低氧杆是多晶铜有关。低氧铜杆和无氧铜杆由于制造方法的不同,致使存在差别,具有各自的特点。一,关于氧的吸入和脱去以及它的存在状态生产铜杆的阴极铜的含氧量一般在10-50ppm,在常温下氧在铜中的固溶度约2ppm的。低氧铜杆的含氧量一般在200(175)-400(450)ppm时,因此氧的进入是在铜的液态下吸入的,而上引法无氧铜杆则相反,氧在液态铜下保持相当时间后,被还原而脱去,通常这种杆的含氧量都在10- 50PPM以下,最低可达1-2ppm,从组织上看,低氧铜中的氧,以氧化铜状态,存在于晶粒边界附近,这对低氧铜杆而言可以说是常见的但对无氧铜杆则很少见。氧化铜以夹杂形式在晶界出现对材料的韧性产生负面影响。而无氧铜中的氧很低,所以这种铜的组织是均匀的单相组织对韧性有利。在无氧铜杆中的多孔性是不常见的,而在低氧铜杆中则常见的一种缺陷。二,热轧组织和铸造组织的区别低氧铜杆由于经过热轧,所以其组织属热加工组织,原来的铸造组织已经破碎,在8mm的杆时已有再结晶的形式出现,而无氧铜杆属铸造组织,晶粒粗大,这是为什么,无氧铜的再结晶温度较高,需要较高退火温度的固有原因。这是因为,再结晶发生在晶粒边界附近,无氧铜杆组织晶粒粗大,晶粒尺寸甚至能达几个毫米,因而晶粒边界少,即使通过拉制变形,但晶粒边界相对低氧铜杆还是较少,所以需要较高的退火功率对无氧铜成功的退火要求是:由杆经拉制,但尚未铸造组织的线时的第一次退火,其退火功率应比同样情况的低氧铜高10--15% 。经继续拉制,在以后阶段的退火功率应留有足够的余量和对低氧铜和无氧铜切实区别执行不同的退火工艺,以保证在制品和成品导线的柔软性。三,夹杂,氧含量波动,表面氧化物和可能存在的热轧缺陷的差别无氧铜杆的可拉性在所有线径里与低氧铜杆相比都是优越的,除上述组织原因外,无氧铜杆夹杂少,含氧量稳定,无热轧可能产生的缺陷,杆表氧化物厚度可达≤15A。在连铸连轧生产过程中如果工艺不稳定,对氧监控不严,含氧量不稳定将直接影响杆的性能。如果杆的表面氧化物能在后工序的连续清洗中得以弥补外,但比较麻烦的是有相当多的氧化物存在于“皮下”,对拉线断线影响更直接,故而在拉制微细线,超微细线时,为了减少断线,有时要对铜杆采取不得已的办法 - 剥皮,甚至二次剥皮的原因所在,目的要除去皮下氧化物。四,低氧铜杆和无氧铜杆的韧性有差别两者都可以拉到0.015毫米,但在低温超导线中的低温级无氧铜,其细丝间的间距只有0.001毫米。五,从制杆的原材料到制线的经济性有差别。制造无氧铜杆要求质量较高的原材料。一般,拉制直径> 1mm的铜线时,低氧铜杆的优点比较明显,而无氧铜杆显得更为优越的是拉制直径<0.5mm的铜线。六,低氧铜杆的制线工艺与无氧铜杆的有所不同。低氧铜杆的制线工艺不能照搬到无氧铜杆的制线工艺上来,至少两者的退火工艺是不同的。因为线的柔软性深受材料成份和制杆,制线和退火工艺的影响,不能简单地说低氧铜或无氧铜谁软件硬。附:低氧铜杆和无氧铜杆简介1.低氧铜杆低氧铜杆是什么铜杆?低氧铜杆生产工艺是什么?低氧铜杆简介有哪些?首先看看低氧铜杆定义:以铜为原料经过连铸方轧生产出来含氧量200(175)~400(450)ppm之间铜杆材。简单介绍了低氧铜杆定义,接下来就来介绍低氧铜杆简介相关内容吧。低氧铜杆简介 - 低氧铜杆工艺程:低氧铜杆采用连铸连轧工艺进行生产,其工艺流程为:电解铜→竖炉→保温炉→浇铸机→连轧机→清洗→收杆机→成品(ф8mm)电解铜连续加料,经竖炉连续熔化后放出铜水,经浇铸机铸成大截面的梯形锭,进入轧机进行热轧,轧成ф8铜杆坯料。工艺缺陷:(1)竖炉:A。由于竖炉体积小,电解铜边加入边熔化,熔化铜水没有条件进行充分还原..B。整个熔化过程及出铜水过程,不能隔氧,所以含氧量非常高..C。熔铜燃料一般都为气体,气体燃烧过程中,会直接影响铜液化学成分理处,影响较大有硫和氢等。(2)浇铸机:浇铸机结晶轮将铜液成为固体过程中,无法进行隔氧,所以浇铸过程中进行第二次大量吸氧。(3)温度控制:A。铜液温度,由于轧制量大,又受到多种因素制约,该温度不太容易控制.B。进轧机铸锭温度,该温度要求控制在850℃左右,上下偏差越大,对铜杆质量影响越大,而此温度很难控制.C。出轧机铜杆温度,该温度要求控制在600℃,也是上下偏差越大,对铜杆质量影响越大,由于受到前道工序制约,此温度也很难控制.D。整个过程中有很多环节,而某个环节稍出现些问题,都会影响温度控制。(4)其它:A。由于存在以上一些缺陷,会造成铜杆质量不稳定,所以标准规定:连铸连轧低氧铜杆出厂前,必须要做扭转试验。但有生产厂根本不做,或不按规定批量做(每批不应超过60吨),或扭转不合格批量照样出厂.B。含氧高,会影响拉线工序,铜线越拉越硬,中间要增加退火。含氧量高,还会影响导电性能.C。为解决工艺缺陷,需尽可能提高机组性能,所以机组价格昴贵。如美国南线公司年产2.4万吨〜4万吨机组,价格为690万美元,德国克虏勃公司更贵。而用户自己配套设施也要几十万仍至上百万美元。工艺优点:(1)产量(2)铜杆卸线采用梅花式,便于拉线机放线。(3)收线重量大,一般每盘可达4吨。低氧铜杆简介 - 铜杆生产工艺方法:1,浸涂成型法:能生产大长度光亮无氧铜杆,导电率为101~102%IACS,含氧量20ppm以下,铜杆圈重3.5~10吨。浸涂成型利用冷铜杆吸热能力,用一根较细冷纯铜芯(或称种子杆),垂直通过一只能保持一定液位高低铜水池,使铜水与该移动种子杆表面铜熔合在一起,并逐步凝固结合成较粗铸造状态铜杆,然后经冷却,热轧,冷却,绕制成圈,整个过程封闭,有惰性气体保护下进行.2,上引冷轧法:能生产大长度光亮无氧铜杆,导电率为101~101。6%IACS,含氧量10ppm以下,铜杆圈重2吨。它是利用一种管式铜套(即石墨结晶器)其下端伸入并浸没在熔化铜液面下,上端与真空泵连通,开始时将结晶器内空气抽出,真空作用下,使管内产生负压,铜液徐徐吸引向上,并在引升器附近很快凝固成光亮铸锭。然后经冷轧或冷拉成杆。上引法生产铜杆含氧量10ppm以下,表面光亮.3,连铸连轧法:能生产大长度光亮低氧铜杆,导电率为101~102%IACS,含氧量200~300ppm,铜杆圈重达5吨.4,回线轧制法:生产短长度有氧化皮黑铜杆,导电率为99.5~100.5%IACS,含氧量200~500ppm,铜杆圈重只有86~136公斤。 (因受船形铜锭重量限制)低氧铜杆简介 - 低氧铜杆牌号及特性:低氧铜杆牌号有三种,T1,T2,T3,低氧铜杆都为热轧,所以为软杆,代号为R.(1),T1:用高纯电解铜为原料(含铜量大于99.9975%)生产低氧铜杆。(2)),T2:用1#电解铜为原料(含铜量大于99.95%)生产低氧铜杆。(3),T3:用2#电解铜为原料(含铜量大于99.90%)生产低氧铜杆。因高纯电解铜和2#电解铜市场上很少,一般都用1#电解铜为原料,所以一般低氧铜杆牌号为:T2R。低氧铜杆简介 - 低氧铜杆化学成分表:2.无氧铜杆由于生产铜杆的工艺不同,所生产的铜杆中的含氧量及外观就不同。上引生产的铜杆,工艺得当氧含量在20ppm以下,叫无氧铜杆;连铸连轧生产的铜杆是在保护条件下的热轧,氧含量在200-500ppm范围内,但有时也高达700ppm以上,一般情况下,此种方法生产的铜外表光亮,俗称光亮杆。无氧铜杆是不含氧也不含任何脱氧剂残留物的纯铜。但实际上还是含有非常微量氧和一些杂质。按标准规定,氧的含量不大于0.02%,杂质总含量不大于0.05%,铜的纯度大于99.95%。一般用电解铜生产,电阻率于低氧铜杆,因此在生产对电阻要求比较苛刻的产品中,无氧铜杆比较经济;制造无氧铜杆要求质量较高的原材料;无氧铜杆显得更为优越的是拉制直径<0。用于生产铜扁线.3mm的无氧铜杆用于拉丝,生产电线铜芯,漆包线。主要应用于电线电缆和电机。根据含氧量和杂质含量,无氧铜杆又分为TU1和TU2铜杆.TU1无氧铜杆纯度达到99.99%,氧含量不大于0.001%; TU2无氧铜纯度达到99.95%,氧含量不大于0.002%。参考资料: GB / T 3952-2008电工用铜线坯国家标准无氧铜杆液压冷却机液压冷焊机其原理:冷压焊接是在集中压力负荷作用下,使需要连接的两接触表面积扩大,从而使得焊接表面上的原始的阻碍焊接的氧化保护膜破裂,高压负载又使暴露的纯净金属物质紧密接触,产生原子之间的结合。液压冷焊机优点:冷压焊接无须加热,不需要任何填充剂或焊剂,是环保产品。接头没有热影响区和软化区,因此接头的机械强度,电气性能和耐腐蚀性都很好,节约能源,干净,快速。焊接点组织结构不变,弯曲,延伸及内部的导通量优于母体。一经焊上,接头牢固可靠,强度高于母体,无假焊,也不会有拉断的情况。实现一次焊接只需半分钟。