电工铝圆杆铸坯轧制生产工艺
2019-01-15 09:51:44
1、严格控制炉内铝液的化学成分铝液成分中的Fe、Si含量增加,则电阻率增加,抗拉强度提高,延伸率下降。Fe、Si含量降低,抗拉强度下降,延伸率提高,因此要严格控制其含量,在原铝选择上,主要考虑Si不大于0.08%,w(Fe)/w(Si)=1.5~2.0。在铸造前要对铝液进行精炼,通过高纯氮气将粉末精炼剂吹入铝液内,应尽可能使精炼剂均匀分布到铝液中,以利于除气除渣,精炼完成后要静置40~60min。必要时加入适量的Al-Ti-B细化剂,以保证铸坯组织致密,提高铸坯的内部组织质量。
2、连续铸锭在浇注系统中增设过滤装置,即在过滤包中安放两道陶瓷过滤板,一道水平放置,一道竖直安放,将原玻璃丝布过滤改为泡沫陶瓷过滤板过滤;使用较长的流槽,尽可能减少铝液的转注次数;浇铸嘴由相当于十点半的倾斜位置改为相当于十二点的水平位置;并在流槽与中间包的衔接处采用导管导流,这样可以使铝液平稳地进入结晶腔,不产生紊流与湍流,保持流槽与中间包内铝液表面的氧化膜不破裂,减少铝液的再次吸气、氧化,避免氧化膜进入铸腔形成新的夹渣;浇注系统采用新型整体结构打结,耐火材料坚固耐用,消除过去耐火材料对铝液的二次污染。在铸造过程中,严格控制铸造温度、铸造速度、冷却条件三要素,铝液出炉温度一般控制在730℃~740℃,浇铸温度700℃~710℃,浇铸速度0.20~0.22m/s,冷却水在0.1~0.3Mpa,冷却水温度不高于40℃。3、连续轧制热轧时金属具有较高的塑性,抗变形能力较低,因此可以用较少的能量得到较大的变形。在轧制中连轧机的轧制速度、轧制温度、工艺润滑是保证铝杆质量的三要素,轧制时要根据铸坯情况,及时、合理调整轧制参数,以保证铝杆质量。轧制温度轧制温度过高会使坯料内部低熔点组织物熔化而造成轧件过热,出现高温脆裂和轧辊粘铝,铝杆表面有疤痕;轧制温度过低,坯料变形易造成堵杆,根据实际经验,铸锭坯料温度入轧前控制在480~520℃为宜。轧制速度轧制速度直接影响铝杆的生产效率和机械性能。在铝杆的化学成分与生产冷却条件不变的情况下,轧制速度高时热效应大,出现热脆现象,铝杆抗拉强度降低,轧件易拉断;轧制速度低时铝杆抗拉强度提高,但轧制效果不佳。一般入轧速度控制在0.18~0.22m/s,终轧速度控制在6m/s左右为佳。
铸铝
2019-05-30 18:54:34
铸铝 铝的密度小 , 塑性高 , 具有优秀的电功能和热功能 , 表面有细密的氧化膜维护 , 抗腐蚀功能好。 铝在地壳中的蕴藏量大 , 据统计 , 地壳中铁占 4.7% ( 质量分数 , 下同 ) , 铝占 7.5% 。现在铝已经成为非铁金属中加工量最大的金属。铸造铝合金是在纯铝的基础上参加其他金属或非金属元素 , 不仅能坚持纯铝的根本功能 , 并且因为合金化及热处理的效果 , 使铝合金具有杰出 的归纳功能。铝及铝合金在工业上占有重要的位置 , 很多用于军事、工业、农业和交通运输等范畴 , 也广泛用作建筑结构材料、家庭生活用具和体育用品等。红铜,钨铜,锻打红铜,铝青铜,磷青铜,杯土铜
铸铝技术分析
2019-01-02 16:33:43
铝的密度小,塑性高,具有优良的电性能和热性能,表面有致密的氧化膜保护,抗腐蚀性能好。铝在地壳中的蕴藏量大,据统计,地壳中铁占4.7%(质量分数,下同),铝占7.5%。目前铝已经成为非铁金属中生产量最大的金属。
铸造铝合金是在纯铝的基础上加入其他金属或非金属元素,不仅能保持纯铝的基本性能,而且由于合金化及热处理的作用,使铝合金具有良好的综合性能。铝及铝合金在工业上占有重要的地位,大量用于军事、工业、农业和交通运输等领域,也广泛用作建筑结构材料、家庭生活用具和体育用品等。
在这类合金中Si是主要合金化元素,Si改善合金的流动性,降低热裂倾向,减少疏松,提高气密性。这类合金具有好的耐腐蚀性能和中等的机加工性能,具有中等的强度和硬度,但塑性较低。按合金中的Si含量多少,该系合金可分为共晶铝硅合金(ZL102、YL102、ZL108、YL108 和ZL109)过共晶铝硅合金(ZL1l7和YL1l7)和亚共晶铝硅合金(其余合金)。
ZLI02是典型的二元共晶铝硅合金,合金中Si的质量分数为10%-13%,该合金具有优良的铸造性能,但力学性能和切削加工性能较差。为了改善ZL102合金的室温和高温力学性能,加入一定量的Mg、Cu和Mn, 成为ZL108合金,使热膨 胀系数小,耐磨性能提高。ZL109也是共晶铝硅合金,与ZL108合金相比,降低了Cu含量,提高了Mg含量,并且用Ni代替Mn, 合金具有更好的耐热性。ZL108 和 ZL109合金广泛地用做内燃机的活塞。YL102和YL108主要用作压铸合金。
亚共晶铝硅合金中属Al-Si-Mg系的合金有ZL101、ZL101A、ZL104、YL104、ZL114A、ZLl15和ZL1l6。这类合金在成分上的主要区别是:ZL104合金加入了Mn,ZL115合金加入了Zn和他,ZL1l6合金加入了Ti和Be,ZL101A和ZL114A合金是用高纯度的精铝作原材料,减少杂质含量。这类合金具有良好的铸造性能,中等的力学性能和良好的抗腐蚀性能,在工业中应用广泛。属于Al-Si-Cu系的合金有ZL105、ZL105A、ZL106、ZL11O、ZL111、ZL107、YL112 和 YL113。前五个合金含有Mg,后三个合金无Mg,但Cu含量偏高。此外在ZLI06和ZL111合金中还加入了少量的 Mn和TicZL110合金的Cu含量高,Mg含量低。Al-Si-Cu系合金具有良好的铸造性能,中等的力学性能,抗腐蚀性能与 Al-Si-Mg 系合金相比较差,YL112 和 YL113合金主要用作压铸合金,其他合金用于砂型铸造、金属型铸造和精密铸造等。
过共晶铝硅合金中Si的质量分数一般超过15%。美国的390.0合金、德国的KS281合金和我国的YL117合金中Si的质量分数为18%左右;我国的ZL117合金、德国的KS280合金中Si的质量分数为21%左右; 德国的KS282合金中Si的质量分数为24%左右。这类合金随着Si含量的增加,密度减小,热膨胀系数降低,硬度、耐磨性和体积稳定性相应提高,主要用作活塞材料,其主要缺点是难于机加工,对刀具的要求严格。
我国光亮铜杆连铸连轧设备浅析
2019-01-25 10:19:13
20世纪80年代,随着世界有色金属冶炼铸造技术的发展,国内相继引进了多条光亮铜杆连铸连轧生产线。 目前,除少数生产线因管理和经营不善停产外,大部分都还在正常运转。连铸连轧生产技术的引进推动了我国铜线杆生产的发展和技术革新。但由于历史局限性,这些生产线产能普遍偏低,另外,在引进这些设备的同时,没有配套引进过程检测技术,致使生产的铜杆在性能、质量上波动较大。总的来说,这些生产线铸坯规格普遍偏小,总变形率小,致使产能上不去,能耗降不下来,产品质量也欠佳。 近年来,借着资产重组和异地搬迁的机会,这些生产线都得到了不同程度的改进和完善。从20世纪90年代开始,我国电线电缆行业迅速发展,铜线杆的需求急剧增长。据中国有色金属工业信息中心统计,1999年,我国圆铜杆的实际产量仅为40万吨,而消费量为65万吨左右,缺口大部分从国外进口。另外随着电磁线、通讯电缆及其他特种用途电线电缆的迅速发展,多线多模高速拉丝机的出现,对铜杆的要求越来越高。小规格铸坯生产的铜杆越来越不能满足要求。于是在20世纪末,我国又先后引进或搬迁改造了多条连铸连轧生产线。 这些生产线装备水平高,生产规模大,具有能耗低、工艺过程连续、计算机监控程度高、产品质量优良稳定等特点,代表着当今世界先进的“SCR”和“Contirod”光亮铜杆生产技术。同步引进的SpectroLabS大型多通道光谱分析仪、在线涡流探伤仪等设备,为保证生产优质低氧光亮铜杆提供了更加迅速、准确的检测手段。它们依赖先进的工艺装备、较高的生产效率、低能耗和优良的产品质量赢得了市场,取得了显著的经济效益,其产品不但满足了国内市场,而且还出口世界各地。 目前,我国铜杆的总加工能力已有280万~300万吨,是需求量的3倍左右。对现有生产线来讲,提高设备的使用率,提高产品质量,降低生产成本是在竞争中取得有利地位的根本保证。 国产连铸连轧生产装备自20世纪80年代我国建成自行设计、制造的第一条铜线杆连铸连轧生产线以来,至今已有10余条年产几万吨级的国产铜连铸连轧生产线投放市场。这些生产线设备投资较低,生产成本也大大降低。但由于行业的开发能力、技术设计力量还很薄弱,应用高新技术、在线检测手段也比较缺乏,设备制造的内在精度和外部质量与先进国家的技术水平还有相当差距。具体体现在以下几个方面:[next] 1、竖炉的制造和控制还不成熟,生产线多配套反射炉,各炉次成本和氧含量不均匀,即使是同一炉次,也很难保证成分和氧含量始终均一,连铸连轧工艺的质量稳定、性能均一和节能等特点很难得到充分体现。 2、缺乏在线质量检测与控制的装备和手段。 3、计算机过程监控技术还不完善。 4、缺少完备的辅助设备,再加上设备制造精度低,可靠性差。 5、单机产能偏低,规格效益得不到体现。 与引进生产线相比,目前国产生产线产品质量普遍偏低,主要面向低端市场。面对铜线杆后续加工对铜杆质量要求的不断提高,国外技术的不断进步,国内同行只有抓紧研制,迎头赶上,才能在未来的竞争中取得优势。 连铸连轧光亮铜杆的发展随着电气方面的不断发展,对铜导线的质量要求越来越高,为了获得优质的光亮铜杆,国内外设备制造厂家和铜线杆生产厂家均在生产工艺、装机水平、质量检测和管理方面作了大量工作,如增设自动化装置,提高对工艺过程的监控,改进设备并采用电脑管理,以提高质量,降低成本。 另外,SCR生产线还采用了以下新技术:采用双叉加料系统,不冲击炉壁,布料均匀,进一步提高炉子热效率(使炉子能耗降低10%);铸机钢带采用双向张紧装置,提高钢带使用寿命。Contirod生产线液位自动控制采用更先进的EMLI电磁传感器,比传统的光学传感器更精确可靠;轧机分粗、中、精三组,中轧与精轧间设光电控制活套,实现无张力轧制,中轧与精轧间设冷却管,降低精轧温度,改善拉丝加工性能。 市场在发展,随着市场需求的增大,对铜杆质量要求的提高,以及全球电线电缆行业规模化、经济化生产的发展趋势,连铸连轧法在我国铜杆生产中的应用将会越来越广。
铜杆 英文
2017-06-06 17:50:14
铜杆 英文是什么?铜杆英文:copper rod最佳答案一、先进的构造(1) 把熔化炉膛设计成长方形,可以整块电解铜加料而不增加炉膛的散热面积.(2) 用连体炉取代了分体炉,在熔化炉和保温炉之间增设一个过渡仓,铜液从熔化炉经过渡仓流入保温炉时避免直接流入,这不仅有利于温度和液位的平稳,而且在过渡腔内使铜液得到更充分的还原,同时可以比较容易在过渡仓内清除渣质,使铜液的温度稳定均匀,液位平稳,铜液清洁,从而使铜杆质量稳定.(3) 采用W型熔沟,使铜液在熔沟内形成定向高速流动,有充分的热交换,使各种高熔点的氧化渣及已蚀损的石英砂随液流流出熔沟。加速熔铜内铜液的流动,这不仅可以缩短熔炼时间,提高电炉生产能力,而且降低了熔沟内的温度,避免熔渣堵塞,从而提高炉子的工作寿命。在能耗方面使原来每吨熔铜的耗电量由400KWh以上下降到350KWh以内,实现了节能降耗20%以上。(4) 在一般情况下,炉体的寿命是感应器寿命的2-5倍,而且熔化炉和保温炉的感应器寿命也不一样。设计成可拆卸式感应器是可以在某一感应器发生故障时,这样可以在某一感应体发生故障时,不需要拆除整个炉子,而只需拆下损坏的感应体重筑,从而节省停炉时间和生产投入。二、连铸牵引机是上引法的关键设备 (1)上引连铸是间歇向上牵引实现的,间歇牵引每次动作的升程的节距、间歇牵引的开停比例,牵引频率和节距都会影响铸杆的质量。采用伺服电机牵引系统,不仅满足了高频率的间歇牵引,节距可根据不同铸杆直径任意调节,而且不会打滑,运行稳定。(2) 结晶器是牵引机的重要部件,对铸杆的质量和上引速度起决定性的作用,尤其是一次冷却区的结构、材料的选用和加工精度,却直接影响到热传导的效果和结晶速度,结晶器二次冷却区的铜管内壁与铸杆间的间隙大小对铸杆冷却效果也有很大的影响。(3) 电控系统上引法连铸的工艺过程简单是它的特点之一,但是对工艺操作的要求却非常严格,铜液的温度、液位的高低、结晶器插入铜液的温度,牵引的节距、频率以及冷却水的压力、流量和温度等都必须控制在一定的范围内.更多有关铜杆 英文请详见于上海
有色
网
铸铝件的缺陷
2019-01-08 17:01:46
铸铝是以熔融状态的铝,浇注进模具内,经冷却形成所需要形状铝件的一种工艺方法。铸铝所得到的铸件,称为铸铝件。
铸铝件在铸造形成过程中,容易产生内部疏松、缩孔、气孔等缺陷,这些含有缺陷的铸件在经过机加工后,表面致密层部件被去掉而使内部的组织缺陷暴露出来。
造成缺陷的表象:
1.铸造裂纹:是一种在较高温度下形成的裂纹。在铸件体积收缩较大热膨张系数较大情况下容易出现。
2.热处理裂纹:由于热处理过烧或过热引起,常呈穿晶裂纹。
裂纹的产生原因:
1. 铸件结构设计不合理,有尖角,壁的厚薄变化过于悬殊 。如在这种情况下产生裂痕的应改进铸件结构设计,避免尖角,壁厚力求均匀,圆滑过渡。
2.砂型(芯)退让性不良也会产生裂纹。应采取增大砂型(芯)退让性的措施。
3.铸型局部过热会导致裂纹 ,应保证铸件各部分同时凝固或顺序凝固,改进浇注系统设计。
4.浇注温度过高也会产生裂纹,应适当降低浇注温度。
5.自铸型中取出铸件过早会铸件变形时采用热校正法 应控制铸型冷却出型时间
6.热处理过热,冷却速度过激后产生裂纹,铸件变形时采用热校正法。正确控制热处理温度,降低淬火冷却速度。
铸铝技术探讨分析
2018-12-28 14:46:50
铝的密度小 , 塑性高 , 具有优良的电性能和热性能 , 表面有致密的氧化膜保护 , 抗腐蚀性能好。 铝在地壳中的蕴藏量大 , 据统计 , 地壳中铁占 4.7% ( 质量分数 , 下同 ) , 铝占 7.5% 。目前铝已经成为非铁金属中生产量最大的金属。
铸造铝合金是在纯铝的基础上加入其他金属或非金属元素 , 不仅能保持纯铝的基本性能 , 而且由于合金化及热处理的作用 , 使铝合金具有良好 的综合性能。铝及铝合金在工业上占有重要的地位 , 大量用于军事、工业、农业和交通运输等领域 , 也广泛用作建筑结构材料、家庭生活用具和体育用品等。
在这类合金中 Si 是主要合金化元素 , Si 改善合金的流动性 , 降低热裂倾向 , 减少疏松 , 提高气密性。这类合金具有好的耐腐蚀性能和中等的机加工性能 , 具有中等的强度和硬度 , 但塑性较低。 按合金中的 Si 含量多少 , 该系合金可分为共晶铝硅合金 (ZL102 、 YL102 、 ZL108 、 YL108 和 ZL109) 、过共晶铝硅合金 ( ZL1l7 和 YL1l7) 和 亚共晶铝硅合金 ( 其余合金 ) .
ZLI02是典型的二元共晶铝硅合金 , 合金中 Si 的质量分数为 10%-13% , 该合金具有优良的 铸造性能 , 但力学性能和切削加工性能较差。为了改善ZL102合金的室温和高温力学性能 , 加入一定量的 Mg, Cu 和 Mn, 成为ZL108合金 , 使热膨 胀系数小 , 耐磨性能提高。ZL109也是共晶铝硅合金 , 与ZL108合金相比 , 降低了 Cu 含量 , 提高了 Mg 含量 ,并且用 Ni 代替 Mn, 合金具有更好的耐热性。ZL108 和 ZL109合金广泛地用做内燃机的活塞。YL102 和 YL108主要用作压铸合金。
亚共晶铝硅合金中属Al-Si-Mg系的合金有ZL101 、 ZL101 A 、 ZL104 、 YL104 、 ZL114A 、 ZLl15 和 ZL1l6。这类合金在成分上的主要区别是 :ZL104合金加入了 Mn,ZL115合金加入了 Zn 和他 ,ZL1l6合金加入了 Ti 和 Be,ZL101A 和 ZL114A合金是用高纯度的精铝作原材料 , 减少杂质含量。这类合金具有良好的铸造性能 , 中等的力学性能和良 好的抗腐蚀性能 , 在工业中应用广泛。属于Al-Si-Cu系的合金有ZL105 、 ZL105A 、 ZL106 、 ZL11O 、 ZL111 、 ZL107 、 YL112 和 YL113。前五个合金含 有 Mg, 后三个合金无 Mg, 但 Cu 含量偏高。此外 在ZLI06和ZL111合金中还加入了少量的 Mn 和 TicZL110合金的 Cu 含量高 , Mg 含量低。 Al-Si- Cu 系合金具有良好的铸造性能 , 中等的力学性能 , 抗腐蚀性能与 Al-Si-Mg 系合金相比较差 ,YL112 和 YL113合金主要用作压铸合金 , 其他合金用于砂型铸造、金属型铸造和精密铸造等。
过共晶铝硅合金中 Si 的质量分数一般超过 15% 。美国的 390. 0 合金、德国的 KS281 合金和我国的 YL117 合金中 Si 的质量分数为 18% 左右 ; 我国的 ZL117 合金、德国的 KS280 合金中 Si 的质量分数为 21% 左右 ; 德国的 KS282 合金中 Si 的质量分数为 24% 左右。这类合金随着 Si 含量的增加 , 密度减小 , 热膨胀系数降低 , 硬度、耐磨性和体积稳定性相应提高 , 主要用作活塞材料 , 其主要缺点是难于机加工 , 对刀具的要求严格。
基体打底铸铝的材料
2019-01-14 13:50:17
选择什么样的溶液刷镀底层,将直接影响镀层的质量,要根据不同的基材,选择合适的溶液。特殊镍对于大多数基材的金属都有极高的结合强度,常用在钢、铁、铜、铬、不锈钢等基体金属上镀底层。对于硬度比较高的基材,要选择低应力的溶液,像铸铝和铸铝合金件等材质比较疏松,孔隙比较高,不宜使用酸性很强的溶液刷镀底层,而选择碱性铜溶液比较适合。具体工艺流程如下: 1)电解脱脂用2#电净液去油。 2)自来水冲洗。 3)活化用1#活化液,反向,l0~15V,通电量为0.7~1A·h/dm2。 4)水冲洗。 5)碱性铜打底。正向。6~8V,1~2μm。 6)自来水冲洗。 7)刷镀工作层。
铸铝基体打底的材料
2019-01-02 09:41:17
选择什么样的溶液刷镀底层,将直接影响镀层的质量,要根据不同的基材,选择合适的溶液。特殊镍对于大多数基材的金属都有极高的结合强度,常用在钢、铁、铜、铬、不锈钢等基体金属上镀底层。对于硬度比较高的基材,要选择低应力的溶液,像铸铝和铸铝合金件等材质比较疏松,孔隙比较高,不宜使用酸性很强的溶液刷镀底层,而选择碱性铜溶液比较适合。具体工艺流程如下:
1)电解脱脂用2#电净液去油。
2)自来水冲洗。
3)活化用1#活化液,反向,l0~15V,通电量为0.7~1A·h/dm2。
4)水冲洗。
5)碱性铜打底。正向。6~8V,1~2μm。
6)自来水冲洗。
7)刷镀工作层。
铸铝锭
2017-06-06 17:49:57
铸铝锭相关知识很多,让我们对它进行下介绍。这个得用铝粉加上各种的料将其配合经过高温注到磨具里面出来的就是一块块铝锭了.在金属冶炼中,铸锭时分为上铸和下铸。钢水铸锭通常是下铸法,由钢水包的下面放出钢水,进入中铸管,由下面进入钢锭模,这时残渣缩孔集中在钢锭上部,保证了钢锭的质量。有色金属的铸锭通常是上铸法,浇铸成一个个金属锭,如常见的铝锭,杂质附在上表面不能分离。这两种铸锭的方法,和它们的后续工艺是相关的。钢锭用于轧制钢材,可以切去铸锭的上部,以保证质量。而铝锭用于多种加工工艺,再次熔化时杂质也可以分离。上铸为“浇”,下铸为“铸”。显然下铸比上浇能够保证质量。钢的铸造性能不太好,保证质量比较困难,保证钢水温度至关重要。铝锭的生产是由铝土矿开采、氧化铝生产、铝的电解等生产环节所构成。 生产氧化铝的铝土矿主要有三种类型:三水铝石、一水硬铝石、一水软铝石。在已探明的铝土矿全球储量中,92%是风化红土型铝土矿,属三水铝石型,这些铝土矿的特点是低硅、高铁、高铝硅比,集中分布在非洲西部、大洋洲和中南美洲。其余的8%是沉积型铝土矿,属一水软铝石和一水硬铝石型,中低品位,主要分布在希腊、前南斯拉夫及匈牙利等地。由于三种铝土矿的特点不同,各氧化铝生产企业在生产上采取了不同的生产工艺,目前主要有拜耳法、碱石灰烧结法和拜尔-烧结联合法三种。通常高品位铝土矿采用拜耳法生产,中低品位铝土矿采用联合法或烧结法生产。拜尔法由于其流程简单,能耗低,已成为了当前氧化铝生产中应用最为主要的一种方法,产量约占全球氧化铝生产总量的95%左右。 铝电解生产可分为侧插阳极棒自焙槽、上插阳极棒自焙槽和预焙阳极槽三大类。自焙槽生产电解铝技术有装备简单、建设周期短、投资少的特点,但烟气无法处理,污染环境严重,机械化困难,劳动强度大,不易大型化,单槽产量低,等一些不易克服的缺点,是正在被淘汰的生产工艺。而目前世界上大部分国家及生产企业都在使用大型预焙槽,槽的电流强度达到了350KA 以上,不仅自动化程度高,能耗低,单槽产量高,而且满足了环保法规的要求。世界铝工业的真正工业化生产始于1886 年,1956 年全球铝产量开始超过铜跃居有色金属的首位,成为仅次于(钢)铁的第二大金属。近几年全球铝加工业技术和装备水平的提高,特别是中国铝工业的迅速发展,带动了全球铝产量迅猛增长。截止到2004 年末,全球原铝总产量达到了2985 万吨。铝锭生产主要集中在中国、美国、俄罗斯、加拿大、澳洲、巴西、挪威等国家,产量约占全球的60%以上。铝的供应来源除了原铝(铝土矿-氧化铝-电解铝)外,回收铝也占有很高比例。回收铝又分为旧料回收(主要来源是饮料罐和汽车废件)、新料回收(加工过程中的废屑)两种。通过了解铸铝锭的知识,我们才可以掌握其真正的价值,你可以登陆上海有色网查找更多的信息。
铜杆价格
2017-06-06 17:49:59
铜杆价格,隔夜美联储声明保持低利率水平并表示美国经济复苏正持续前进中,美元走软。今日亚洲交易时段在85.6-86震荡,徘徊于5日均线。LME电铜早市低开于6568美元,日内冲高6681美元,17:30最新价6614美元。伦铜6550-6650美元窄幅整理,空间愈加狭窄,KDJ三线粘连欲作突破性走势。沪期铜小幅高开并上冲30日均线未果,午后承压收报略有收窄日内升幅。主力1009合约开始于日内低点53130元,冲高53900元,日内多在日均线上方作强势整理,午后受A股受阻回落影响而小幅承压,收报53520元,上涨570元,升幅1.08%,成交量44.9万手,换手率258.65%,主力减仓5094手,可见短线空头减仓,1010合约大增13544手,可见多头建仓。期铜在20~30日均线区间震荡,一度上方突破30日均线,底部52500元获得企稳抬高,期铜在53500元一线作强势整理后,后市可看高一期。铜杆市场,日内成交主流价格多在53800~54050元区间,上午升水于 +80~+150元,下午由于期铜承压现货升水略提至+100~+200元,成交价格则维稳于54000元左右。江西一带发生雨水中断交通影响,市场忧虑贵溪铜后续货源,国产优质好铜以贵溪铜为代表报价较坚挺,进口铜供应商则因最近点价premium攀升而出货有限,今沪伦比值回升至8.05上方,进口铜流通量略有增加,下游消费逢低买盘仍较积极,冲高于54000元上方时则会表现犹豫与斟酌,与供应商产生拉锯。随着铜价的企稳、底部的抬高,目标上看55000元。但愈接近短期目标位,买盘积极成交踊跃的市况将受到抑制。
铸铝发动机的优点及缺点
2018-12-28 09:57:19
铸铝发动机的优点:
从使用来看,铸铝缸体的优势就是重量轻,通过减轻重量实现省油。在同等排量的发动机中,使用铝缸体发动机,能减轻20公斤左右的重量。汽车的自身重量每减少10%,燃油的消耗可降低6%~8%。据最新资料,国外汽车自身重量与过去相比减轻了20%~26%。
除了重量上的差别以外,在生产过程中,铸铁缸体和铸铝缸体也有很多不同。铸铁生产线占地面积大,对环境污染大,加工工艺复杂;而铸铝缸体的生产特点恰好相反。从市场竞争的角度来说,铸铝缸体具有一定的优势。
全铝发动机在材质,散热性等方面都优于铸铁发动机。
铸铝发动机的缺点:
体积大
由于铝的比重较轻,因此铝的单位体积结构强度就要小于铸铁,所以铝缸体的体积通常会比铸铁的要大一些,很难达到铸铁缸体的紧凑与小体积。
耐腐蚀性及强度差
众所周知,铝容易与燃烧时产生的水发生化学反应,因此,耐腐蚀性远不及铸铁缸体,尤其对温度压强都更高要求的增压引擎更是如此。在加上已经阐述过的有关于体积的结论,因此,当汽车的引擎体积要求较小时,使用铝缸体就很难达到铸铁缸体的强度。所以说,高增压的引擎大多采用铸铁缸体。在这两方面,全铝发动机明显要逊色于铸铁缸体发动机。
摩擦系数较大
现在的轿车引擎,为了降低往复运动的部件惯性,通常会提高转速和响应的速度,活塞也大多使用铝合金作为材料。如果气缸壁采用铝材料。铝和铝之间的摩擦系数就比较大。为此,引擎的性能就会大大受到影响,相反,铸铁发动机就不会产生如此的问题,因此在这方面,铸铁缸体也是优于全铝发动机的。
氧铜杆和无氧铜杆
2019-03-05 09:04:34
氧铜杆和无氧铜杆
铸铝零件的化学氧化
2019-02-28 09:01:36
1 前语 铸造铝合金是现在广泛使用的工程材料之一,可分为铝-硅,钨-铜,铝-镁和铝-锌等品种,其间以铝-硅系铸铝合金的使用较广。铸铝合金很多使用于轿车、摩托车工业,航空航天工业、船只、潜艇工业,特别是作为结构、支架等结构件以及外装零件如机匣壳体等。 铸铝零件加工成型后,往往要求进行装饰性表面处理。铸铝合金零件表面情况遍地不同,有的部位对错加工表面,表面生成氧化皮膜,油污重,有的部位是机加工表面,表面情况杰出。铸造铝合金,特别是铝铜含量较高的铸铝合金,硅铜的参加大大进步了铝合金的强度,却增加了表面精饰加工困难。某些类型的铸铝合金是不能进行电镀或阳极氧化处理的。比如对含Cu2%~2.5%Si7.5%~12%的铸铝合金,不管电镀或阳极氧化处理都是适当困难的,要确保电镀或阳极氧化的顺利进行,往往要有特殊的前处理。 某产品壳匣类零件,是硅铜含量较高的压铸铝合金,通过机械加工成型。依据产品零件规划要求,产品零件需表面精饰加工和强化。咱们通过重复工艺实验,挑选了无色化学氧化办法取得膜层质量杰出。 2 工艺流程 化学氧化办法首要分为4个过程: ①喷丸处理。 ②活化处理。 ③无色化学氧化成膜。 ④查验入库。工艺流程如下: 喷丸前查验→喷丸处理→活化处理→活动水洗→无色化学氧化→活动水洗→吹干→查验入库。 2.1 喷丸处理 ①喷丸强化并为化学氧化成膜做好前处理预备对铸铝零件表面进行喷砂处理,尽管可以去除铸铝零件表面油污、氧化皮及毛刺等,并使表面发作压应力而得到强化。但表面粗糙而无金属光泽。 铸铝零件表面在70~90℃碱性除油腐蚀溶液处理虽可以有效地清洁零件表面,但由于零件表面情况不同,有非加工表面、有经加工的表面,除油腐蚀时刻不易操控。假如除油腐蚀时刻过长,往往发作不均匀腐蚀。并且除油腐蚀过度,也会使零件表面粗糙且无金属光泽,不能发作压应力而强化表面。 本工艺选用玻璃球丸进行喷丸处理。球状玻璃丸喷发到铸铝零件表面不只能有效地去除油斑污迹,氧化皮等,并且在零件表面构成许多细小半圆形表面,经光线反射,出现金属光泽,表面粗糙度得到显着的改观。并且喷丸处理还能使表面发作压应力,进步表面的疲惫寿数,下降表面对应力腐蚀的敏感性,大大强化了零件表面。经化学氧化处理的表面可生成细密而亮光的氧化膜层,彻底满意产品规划要求。因而咱们选用了喷丸强化处理作为化学氧化成膜的前处理工序。 玻璃球喷丸处理一般操控喷发间隔为200~350mm,喷发角60~70℃,喷发压力5kg/mm2,留意防止零件表面部分区域长时刻喷发。 2.2 活化处理 ②为坚持零件表面压应力层不受损坏,对现已喷丸强化处理的铸铝零件表面进行活化处理。 活化处理溶液成分: HNO3(d=1.42) 60% HF(40%) 20% 室温活化浸渍时刻 1~5s 2.3 化学氧化成膜 铸铝合金零件经喷丸强化、活化处理后应及时进行化学氧化处理。以生成均匀、无色通明的氧化膜层。 化学氧化有以下A、B两配方,可任选其一: 配方A: (Na2Cr2O7) 3~3.5g/L 铬酐(CrO3) 3~5g/L (NaF) 0.5~0.8g/L 氧化温度 室温 氧化时刻 3~5min 配方B: 重(K2Cr2O7) 0.8~lg/L (HF40%) 0.25~0.5ml/L 非离子型表面活性剂 适量 pH 2.7~3.5 氧化温度 20~40℃ 氧化时刻 30~90s 配方中、铬酐、重、及、供给重铬酸根离子和氟离子,在化学氧化成膜过程中起重要效果。重铬酸根离子是氧化剂,是促进氧化膜生成的首要成分。氟离子是活化剂,它与重铬酸根离子一起效果,有利于生成细密的氧化膜层,须严格操控二者的含量和份额。化学氧化溶液的pH 值要操控在规则的规模内,用稀HNO3或NaOH溶液调整。 氧化溶液中增加适量的非离子型表面活性剂有利于增强溶液和零件表面的潮湿性,有效地进步产品零件表面的氧化膜质量。 当温度低时,氧化成膜反响较慢,温度升高则反响速度加速。溶液温度超越40℃时,氧化膜将粉化,所以,氧化成膜温度以25~30℃为佳。 当氧化溶液中铝离子含量不断升高,pH 值上升超越操控规模时,氧化膜质量低质。这时应该及时部份或悉数替换氧化溶液。 2.4 查看查验 铸铝零件化学氧化处理后,清洗吹干,接着对氧化膜层进行查看。氧化膜不完整或膜层疏松、挂灰的零件,要进行返修,从头氧化。
铸铝件该如何进行碱蚀处理
2019-03-01 09:02:05
铸铝件除含有游离硅之外,还有金属之间的多种化合物以及其他夹杂物。且因为铸铝件安排疏松,因此有或许存在化学成分偏析不均匀等现象,一起在浇铸后冷却时未加工的面会构成细密的氧化膜。碱蚀时间短,则铸铝件有或许不能完全除尽,且因为碱蚀时铸铝的溶解速度比较快,碱蚀后往往会由此而形成铸铝件的过腐蚀,然后引起公役尺度的改动,甚至会形成产品作废。 鉴于上述这一状况的存在,可采纳改动碱蚀程序来处理,即铸形成型后先进行碱蚀处理。按此工艺程序操作既可防备因碱蚀而引起制件作废等问题的发作,又有利氧化后的表面质量。 采纳上述碱蚀办法可防止制件被过腐蚀,碱蚀后还可使用1:1的进行2~3s的快速出光,替代毒性较大的,既有利环境保护,改进劳动条件,又可下降生产成本。
铸铝件该如何进行碱蚀处理?
2019-03-11 11:09:41
铸铝件除含有游离硅之外,还有金属之间的多种化合物以及其他夹杂物。且因为铸铝件安排疏松,因此有或许存在化学成分偏析不均匀等现象,一起在浇铸后冷却时未加工的面会构成细密的氧化膜。碱蚀时间短,则铸铝件有或许不能完全除尽,且因为碱蚀时铸铝的溶解速度比较快,碱蚀后往往会由此而形成铸铝件的过腐蚀,然后引起公役尺度的改动,甚至会形成产品作废。 鉴于上述这一状况的存在,可采纳改动碱蚀程序来处理,即铸形成型后先进行碱蚀处理。按此工艺程序操作既可防备因碱蚀而引起制件作废等问题的发作,又有利氧化后的表面质量。 采纳上述碱蚀办法可防止制件被过腐蚀,碱蚀后还可使用1:1的进行2~3s的快速出光,替代毒性较大的,既有利环境保护,改进劳动条件,又可下降生产成本。
如何有效降低铝熔铸过程中的铸损?
2019-03-14 11:25:47
铝是元素周期表中坐落Ⅲ A族元素,是仅次于K、Ca、Na、Mg的一种生动金属,在高温条件下能与空气中氧气、氮气、水蒸气、二氧化碳等相互作用。
铝熔铸便是将液铝经过配料、拌和、静置、精粹、扒渣等进程变成铝锭、棒材或其他形状的制品、半制品。铝及铝合金在熔铸进程中会因氧化、精粹、扒渣等原因呈现不同程度的损耗。
所谓铝铸损就是铝及铝合金在熔炼进程中因为氧化、蒸发以及与炉墙、精粹剂相互作用构成的不行收回的金属丢失和铝渣所含金属的总称[1]。
铸损的一般计算公式是:(原铝量-制品量)÷原铝量×100%,铸损越高,制品量就越少,关于年产值在10万吨的铝厂商,假如铸损下降1个千分点,不需额定投入,就多产出100吨铝产品(即削减烧损100吨铝产品),这将是可观的社会和经济效益,因而怎么有用下降铸损显得十分重要。
2 剖析铸损发作的原因
2.1 发作铸损的首要外在表现办法能够分红两部分:一是以纯铝灰办法,二是以大块铝及次品铝、铝渣办法
我在河南xx铝业公司熔铸车间进行过数据统计,其间不行收回纯铝灰占铸损的份额约90%(氧化烧损造渣构成),其他要素约占10%,针对占有10%其他要素进行进一步数据统计分析,其首要是大块铝、次品铝等二次回炉烧损和铝灰中含铝量(铝灰铝的首要原材料)构成,因而内涵构成铸损发作的首要原因就是氧化烧损、次品铝等二次烧损、铝灰中含铝量。
2.2 铝的氧化烧损原理能够经过以下化学方程式进行进一步了解:
4Al+ 3O?=2Al?O?
金属氧化热力学研讨标明:金属氧化趋势、各合金元素氧化次序和氧化程度等都是由金属与氧的亲合力决议的,并与合金的成分、温度和压力等条件有关。金属与氧亲合力越大,其氧化程度趋势越大,氧化程度越高;温度越高,金属与氧亲合力越大,其氧化程度趋势越大,氧化程度越高;氧化物分解压越小,金属与氧亲合力越大,其氧化程度趋势越大,氧化程度越高[1、3]。
在熔炼温度范围内,铝与氧的亲合力很大,简略被氧化,氧化后其表面构成Al?O?膜,当高于500℃时为亚安稳的r-Al?O?,这种亚安稳的氧化膜向安稳氧化膜改动进程中,发作体积缩短并进一步发作氧化和龟裂。跟着铝液温度的升高和时刻的延伸,氧化膜生长越快,氧化量和厚度也明显添加[1、3]。
2.3 影响铸损的要素有:
1)液铝温度;2)铝液与氧气触摸力度;3)铝渣中含铝量;4)扒渣带出的铝液;5)次品铝、大块铝的多少;6)其他构成的损耗
3 下降铸损的途径
3.1 操控好液铝温度
铝的熔点为660℃ ,一般来说原铝铸造温度操控在730℃左右、乃至更低,而铝合金流动性较好相应铸造温度比原铝要低,约710℃-730℃,关于直接运用电解槽内液铝的单位,当高温铝液进入混合炉后,应及时配入冷料,即向混合坚持炉内参加次品铝、铝渣等,也能够将部分中间合金(工业硅)提早参加炉内,构成压熔状况,既添加其实收率又下降温度。一起参加的冷料表面要清洁不能有油污等不然或许焚烧放热促进烧损。总归将铝液温度有用地下降到相应铸造温度,可下降温度对铸损的巨大影响。
3.2 下降铝液与空气触摸力度,液铝与氧气触摸的力度越大,氧化烧损越严峻,铸损越大
1)削减液铝与氧气触摸时刻:① 在满意出产需求条件下,尽或许快的将炉内液铝变成制品,最好当班配料当班出产,不要使液铝在炉内停留时刻过长;② 合理安顿熔铸设备,尽或许缩短流槽长度,以削减液铝在空气中露出时刻,一起可在流槽上部加盖硅酸铝保温板,既有必定保温作用又可削减流槽内氧气含量。
总归,根绝因各种原因导致铝液长时刻存于混合炉内,以削减铝液和氧气触摸时刻来下降铸损。
2)操控液铝拌和办法:不管是人工用大耙拌和仍是机械拌和都是在炉门打开状况下进行,不只会带来液面巨大动摇、添加与氧气触摸面积并且也添加了炉内含氧量,必定加快了上述化学反应,烧损加大。电磁拌和能够在关闭状况下进行且液面动摇很小,有用防止了相应下风,一起还能够削减空气中水分进入炉内,下降了液铝对氢元素的吸收概率。
3)操控液铝精粹时吹泡高度:一般精粹办法是人工直接将精粹剂撒入炉内,然后进行拌和精粹,可是关于部分合金出产需求进行吹氮气精粹(精粹时刻较长,可达30分钟左右),必定会有必定的吹泡高度且横到边、竖到头,带动液铝的巨大动摇,因而最好调理氮气压力,将吹泡高度操控在10-15mm。
3.3 正确挑选、运用精粹剂,使渣铝充沛别离
在铝及铝合金熔炼进程中,除本身搀杂物外、铝极易与氧生成氧化铝或次氧化铝等,导致铝液表面有一层浮渣,它与铝熔体有必定的浸润性,渣中混有适当数量的熔体,这样就需求一种精粹剂来改动两者的浸润性、添加渣和铝界面上的表面张力,使渣和铝别离。
铝及铝合金用熔剂一般由碱金属及碱土金属的氯化物及氟化物组成,其首要成分是KCl、NaCl、NaF.CaF?、Na3AlF6、Na?SiF6等,但组分含量不同较大,作用也不尽相同。除运用熔剂厂出产的熔剂外,最好依据所熔炼铝合金的成分调正熔剂组分份额。一起严厉操控精粹工艺条件,如熔剂的用量,熔剂与熔体的触摸时刻、触摸面积、拌和状况、温度等,运用精粹剂能有用削减渣中带铝,下降铸造丢失。
3.4 对熔铸进程中发作的铝渣进行有用处理
铝渣是熔铸进程中不行防止的一部分,虽然采纳相关办法,都会有必定份额的金属铝被带出,需求对其进行有用处理,而不是直接供应给其他单位,最简略、经济的办法能够是运用碾子对铝渣进行重复碾磨、再进行挑选,然后有用地收回部分铝豆等。
3.5 下降混合炉扒渣坡斜度,将铝渣充沛扒出炉外
混合炉扒渣坡斜度的巨细直接影响铝渣的扒出量,若斜度过大大部分渣就扒不出,然后导致铝渣与铝很多堆积,清炉时构成渣与铝堆积物无法及时收回,在保证混合炉容量的前提下,尽或许下降扒渣坡斜度。
3.6 严厉把关扒渣质量,防止液铝被带出
现有扒渣操作基本上是人工使用大耙将铝渣扒出炉门口,在此操作进程中除了要求人员精心操作,尽或许不要将铝液带出,一起大耙规划也需求讲究,主张将大耙表面开几排小圆孔,能够使铝渣中带有的液铝流入炉内,不然过多的液铝被带出后再次回炉会带来烧损。
3.7 下降次品铝、大块铝的量
在出产进程中,严厉依照工艺要求操作,保证出产一炉、合格一炉,尤其在出产普铝进程中,尽或许防止飞边、毛刺、波纹、分量不符等次品铝发作,一起在出产要完毕前尽或许将流槽内液铝推入模具内构成合格产品,以削减大块铝量。
3.8 对已发作的次品铝等进行有用处理
关于各种原因发作的次品铝、大块铝以及铝渣、铝豆等采纳适宜的装炉次序参加混合炉内,在必要的状况下可先进行废料复化操作,以防止不必要的烧损。
4 完毕语
经过上述分析,铸损虽然在熔铸进程中不行防止,但经过操控铝液温度、下降铝液和空气触摸力度、操控铝灰中含铝量、削减次品铝量等办法,对有用下降熔铸进程中的铸损,将会发作明显作用,也必将给厂商带来可观的经济效益。
铝热轧机与铝铸轧机的应用情况介绍
2019-01-02 09:41:22
国外70%左右铝箔是用铸锭热轧坯料生产,而2005年我国铝箔约有82%是用双辊式连续铸轧带坯轧制的,如云南新美铝铝箔有限公司自主开发的铸轧坯料生产0.005mm铝箔技术,在国内首次应用铸轧坯料批量生产出电容器用0.005mm规格铝箔。最近,华北铝业公司采用铸轧工艺生产超宽幅铝箔坯料获得成功,成为国内首家采用铸轧坯料生产1700mm以上规格超宽幅双零铝箔坯料的企业。从我国铝板坯铸轧生产线分布情况看,以铝箔生产为主的企业,坯料生产大多采用铸轧卷,而综合性的铝板带生产企业,坯料大多采用热轧卷。
在铸轧生产工艺中,连铸连轧生产线是一种先进的带坯生产工艺,在节约能源与资源、投资成本、生产成本方面优于铸锭热轧法,在产品品质方面接近铸锭热轧法且优于双辊式连续铸轧法。其中哈兹莱特连铸连轧工艺是目前世界上成熟的并商业化生产的连铸连轧法。
截至2006年底,全世界约有590条双辊式铸轧生产线,而我国占有约近300条,铸轧产能约为2500kt/a。其中,从国外引进的有14台,产能为152kt/a,是全球拥有铝带坯铸轧机最多的国家,但单台的平均生产能力约比工业发达国家的低35%。预计到2010年,中国可拥有350台以上的连续铸轧机,板带坯生产能力将达到3700kt/a左右。至2006年底,中国已建成的热轧项目有183个,总的铸锭热轧产能约为2800kt/a。
铝铸轧机未来市场的发展
1.高速铸轧机的新技术、新工艺继续得到开发和应用
目前在高速薄带坯铸轧生产线中使用的新技术有:金属液面高度自动控制系统;新的熔体供流系统;改进铸轧辊设计和辊套材料;改进喷淋技术等。
我国将进一步研究开发铝合金板带快速铸轧技术,即将铸轧机运行速度提高50%以上,厚度保持在6mm左右,可提高生产率30%~50%,从而在各种中低档铝合金板带材制造方面会具有更加突出的成本优势。我国从20世纪90年代开始研究电磁铸轧技术,也将会随着研究的深入而使铸轧产品得到进一步的推广。
2.我国铝铸轧机的未来市场发展
更新改造现有的双辊连续铸轧机,提高现有连续铸轧机的装机水平
有必要对国内部分的双辊连续铸轧机进行更新和改造,通过数学模型模拟试验和数据处理获得工艺参数最佳化值,把人工智能计算机控制、视频技术、仪表监控、液压技术都应用到铝板带双辊连续铸轧工艺技术中来,实现整个生产过程的自动化和最佳化运行,提高我国整体双辊连续铸轧工艺技术水平。
加大铝板带双辊连续铸轧工艺技术的研究开发力度
国外一直在研究开发利用双辊连续铸轧工艺技术生产铝合金板带,特别是铝缸、缸盖和拉环毛料。在这方面,我国还有许多工作要做,例如,双辊连续铸轧工艺技术的理论研究、铸轧铝板带的金相组织和表面质量的研究、双辊连续铸轧机的设备及耐火材料的研究和改进等。
进一步开发薄带坯快速铸轧技术
采用薄带坯高速铸轧工艺生产PS版基铝板带材的毛料。由于薄带坯高速铸轧比常规铸轧具有更大冷却强度,可以得到更细小的晶粒尺寸及枝晶间距,提高合金元素在固溶体中的过饱和度,可以充分抑制常规铸轧带坯表面经常出现的由于重熔而产生的粗大化合物组织和表面偏析等缺陷,从而能提高表面和内部质量。
继续立足于研究铝合金电磁铸轧技术
电磁铸轧技术的研究立足于发扬常规铸轧节能、投资少的突出优势。用电磁铸轧技术和装备可生产多种合金品种,铸轧带坯质量明显改善,组织性能优于常规铸轧板,特别是深加工性能获得突破性进展,为高性能铝板带材提供性价比高的铝带坯,拓宽了铸轧板的应用范围。
发展超薄、超宽、快速连铸连轧机列
铝连铸连轧存在的普遍问题是速度和厚度问题。厚度一般都限定在6mm~10mm,速度在1m/min~1.5m/min之间。这样,势必增加后续工序的轧制道次,同时为提高产量就必须增加机组数量。φ1050×1600mm超薄快速铸轧机的研制成功,证明在解决热交换问题的前提下,铸轧厚度可以降至3.5mm~2mm,速度可以提高到3m/min~8m/min,甚至更高,这样铸轧机的生产效率可以成倍递增。
引入哈兹莱特连铸连轧技术与工艺
哈兹莱特连铸连轧工艺是一项成熟的优秀工艺,值得在中国推广应用。其技术和工艺优势能满足中国铝板带市场的巨大需要量,能满足中国包装业、运输业、建筑业的发展所需要的价廉物美的铝合金板。
铝铸轧机与热轧机在未来市场的发展
2019-01-15 09:49:27
据介绍,在世界铝板、带、箔总产量中,用铸锭热轧坯料的冷轧板还不到20%,而80%以上的板、带、箔都用成本较低的双辊式连续铸轧板带坯或哈兹莱特连铸连轧板带坯进行冷轧生产。 目前铝铸轧机与热轧机的应用情况 国外70%左右铝箔是用铸锭热轧坯料生产,而2005年我国铝箔约有82%是用双辊式连续铸轧带坯轧制的,如云南新美铝铝箔有限公司自主开发的铸轧坯料生产0.005mm铝箔技术,在国内首次应用铸轧坯料批量生产出电容器用0.005mm规格铝箔。较近,华北铝业公司采用铸轧工艺生产超宽幅铝箔坯料获得成功,成为国内采用铸轧坯料生产1700mm以上规格超宽幅双零铝箔坯料的企业。从我国铝板坯铸轧生产线分布情况看,以铝箔生产为主的企业,坯料生产大多采用铸轧卷,而综合性的铝板带生产企业,坯料大多采用热轧卷。 在铸轧生产工艺中,连铸连轧生产线是一种先进的带坯生产工艺,在节约能源与资源、投资成本、生产成本方面优于铸锭热轧法,在产品品质方面接近铸锭热轧法且优于双辊式连续铸轧法。其中哈兹莱特连铸连轧工艺是目前世界上成熟的并商业化生产的连铸连轧法。 普通铸轧板坯与热轧板坯性能比较参见表1,表2对双辊铸轧和1+X热轧进行了综合性比较。 截至2006年底,全世界约有590条双辊式铸轧生产线,而我国占有约近300条,铸轧产能约为2500kt/a。其中,从国外引进的有14台,产能为152kt/a,是全球拥有铝带坯铸轧机较多的国家,但单台的平均生产能力约比工业发达国家的低35%。预计到2010年,中国可拥有350台以上的连续铸轧机,板带坯生产能力将达到3700kt/a左右。至2006年底,中国已建成的热轧项目有183个,总的铸锭热轧产能约为2800kt/a。铝铸轧机未来市场的发展 1.高速铸轧机的新技术、新工艺继续得到开发和应用 目前在高速薄带坯铸轧生产线中使用的新技术有:金属液面高度自动控制系统;新的熔体供流系统;改进铸轧辊设计和辊套材料;改进喷淋技术等。 我国将进一步研究开发铝合金板带快速铸轧技术,即将铸轧机运行速度提高50%以上,厚度保持在6mm左右,可提高生产率30%~50%,从而在各种中低档铝合金板带材制造方面会具有更加突出的成本优势。我国从20世纪90年代开始研究电磁铸轧技术,也将会随着研究的深入而使铸轧产品得到进一步的推广。 2.我国铝铸轧机的未来市场发展 更新改造现有的双辊连续铸轧机,提高现有连续铸轧机的装机水平 有必要对国内部分的双辊连续铸轧机进行更新和改造,通过数学模型模拟试验和数据处理获得工艺参数较佳化值,把人工智能计算机控制、视频技术、仪表监控、液压技术都应用到铝板带双辊连续铸轧工艺技术中来,实现整个生产过程的自动化和较佳化运行,提高我国整体双辊连续铸轧工艺技术水平。 加大铝板带双辊连续铸轧工艺技术的研究开发力度 国外一直在研究开发利用双辊连续铸轧工艺技术生产铝合金板带,特别是铝缸、缸盖和拉环毛料。在这方面,我国还有许多工作要做,例如,双辊连续铸轧工艺技术的理论研究、铸轧铝板带的金相组织和表面质量的研究、双辊连续铸轧机的设备及耐火材料的研究和改进等。 进一步开发薄带坯快速铸轧技术 采用薄带坯高速铸轧工艺生产PS版基铝板带材的毛料。由于薄带坯高速铸轧比常规铸轧具有更大冷却强度,可以得到更细小的晶粒尺寸及枝晶间距,提高合金元素在固溶体中的过饱和度,可以充分抑制常规铸轧带坯表面经常出现的由于重熔而产生的粗大化合物组织和表面偏析等缺陷,从而能提高表面和内部质量。 继续立足于研究铝合金电磁铸轧技术 电磁铸轧技术的研究立足于发扬常规铸轧节能、投资少的突出优势。用电磁铸轧技术和装备可生产多种合金品种,铸轧带坯质量明显改善,组织性能优于常规铸轧板,特别是深加工性能获得突破性进展,为高性能铝板带材提供性价比高的铝带坯,拓宽了铸轧板的应用范围。 发展超薄、超宽、快速连铸连轧机列 铝连铸连轧存在的普遍问题是速度和厚度问题。厚度一般都限定在6mm~10mm,速度在1m/min~1.5m/min之间。这样,势必增加后续工序的轧制道次,同时为提高产量就必须增加机组数量。Φ1050×1600mm超薄快速铸轧机的研制成功,证明在解决热交换问题的前提下,铸轧厚度可以降至3.5mm~2mm,速度可以提高到3m/min~8m/min,甚至更高,这样铸轧机的生产效率可以成倍递增。 引入哈兹莱特连铸连轧技术与工艺 哈兹莱特连铸连轧工艺是一项成熟的工艺,值得在中国推广应用。其技术和工艺优势能满足中国铝板带市场的巨大需要量,能满足中国包装业、运输业、建筑业的发展所需要的价廉物美的铝合金板。
铸铝门的选购原则
2018-12-21 16:01:47
1.配套的原则:选择的铸铝门在图案、颜色、风格上要与门框套、整个室内装修的风格、颜色、花纹等协调搭配,才能产生完整统一的装饰效果。欧华尊砥铸铝门拥有风水、富贵、平安和幸福四大系列上百款图案,几十种背板款式,总有一款是您想要的。
2.保证安全的原则:无论是户外门还是室内门,都需要有较好的隔音、防盗、耐冲击的能力,才能有使用的安全感。欧华尊砥铸铝门具有防爆、防盗、防火、隔音等主要特色。
3.耐用持久性的原则:一个高档的铸铝门耐用度持久度也非常关键,欧华尊砥铸铝门面板采用国际标准铝锭,进行抛丸抗氧化处理,然后进行纯聚脂喷塑,经过200度高温固化,具有超强的附着力、耐冲击性、耐侯性、耐腐蚀性和耐黄变性等功效。欧华尊砥铸铝门保证十年不变型,不氧化,不褪色,是铸铝门的最佳选择。
3D集成铸铝电加热器
2019-01-09 10:13:37
3D集成铸铝加热器,专业名称为:3D MAX集成极速加热系统,是即热电热水器的核心加热系统。由独立的水流通道三维立体环绕于加热元件周围,集成环绕水路、核心平面加热、恒温控制撒热装置、防干烧保护装置、防水垢设计系统于一体,有效地解决了即热式加热系统的漏水、漏电、水垢、干烧及出水温度忽冷忽热等安全性能方面问题,更好的提高了效率和速度。 因其加工工艺为铝合金整体铸造成形的铸铝加热技术,俗称“铸铝”加热器。是由独立的水流通道三维立体环绕于加热元件周围,集环绕水路、核心平面加热、恒温控制撒热装置、防干烧保护装置、防水垢设计系统等于一体,有效地解决了即热式加热系统的漏水、漏电、水垢、干烧及出水温度忽冷忽热等安全性能方面问题,更好的提高了效率和速度。是中山市汉功电器有限公司技术人员通过多年努力结合各种热水器与即热式加热技术之优点而研发出来的集成加热系统,将即热电热水器加热技术得到提升和完善。并逐步得到广泛关注和应用,并获得国家实用新型专利证书。 特别提示 目前市场上有模仿该加热系统的产品出现,但其模仿者为了降低成本不但在材质上使用劣质材料,而且缩短水道和双头加热管等材料,虽然外观相似,但其性能和品质已大打折扣,“3D MAX集成极速加热系统”因其结构为铝合金集成铸造而成,故被简称“铸铝加热器”,整体成型的填充导热介质可以是任何导热效率高的金属材料,不仅限于铝合金材料,特别提示,以免日后模仿该技术的称为“铸锌、铸铜加热器”来误导消费者。
再生铜杆行业发展简析
2018-12-07 10:47:19
导读:尽管近年来我国大力扶持循环产业,但国内再生铜的回收量仍处于较低水平,且这些再生铜的杂质含量要远超进口的再生铜。为此,目前国内再生铜杆企业的原料有90%以上是来自国外进口的废铜,使用国产再生铜的比例非常低。我们认为只有进一步完善国内再生铜的回收机制和升级优化再生铜的分拣步骤,国内再生铜才能被更多的再生铜杆厂所使用。
在我国铜产量中,再生铜占比约40%,对于电力电缆行业,再生铜使用比例约50%。在国家大力扶持循环产业的利好政策下,再生铜杆企业开始壮大,并对前景充满信心。
人们经常把那些富含贵重金属的电子产品的地区比作“城市矿山”。在资源越来越紧缺、越来越提倡循环经济的今天,金属的回收再利用也逐渐成为一个庞大的产业。
以铜矿资源来看,据中国有色金属工业协会再生金属分会副会长兼秘书长王吉位介绍,2014年,全国回收的铜产量就在300万吨左右。在过去的5年前,中国一共建立了50个城市矿山的项目。“回收铜资源对于我们的意义非常重大。因为中国已经是全球最大的机电产品制造国和家电生产大国,同时大量的基础设施正在建设,这些都需要大量的铜以及铜制品。
在铜回收产业里,电线电缆的回收又是其中重要的一部分,因为铜在电线电缆里使用的比例非常大,高达60%以上。
坚持可持续民企看好循环产业
富有的“城市矿山”也吸引着一些民营企业纷纷投向这个领域。记者在对天津某资源循环企业采访时发现,在国家大力扶持循环产业的利好政策下,众多从事多种内容的资源型再生企业开始发展壮大,而其中,废铜的精深加工均是这些企业的重要业务之一。
记者在采访中了解到,该企业作为园区里的一个小微企业,从1996年开始涉足再生铜产业,2008年该企业将业务拓展到真正的再生铜冶炼的项目。
据介绍,再生铜杆的发展在国内也还处于初期阶段。该企业制作再生铜杆的原料里有90%以上来自于国外进口的废铜,使用国内废铜比例还比较小。近几年,关于再生铜杆的质量问题也一直被提及。国内大大小小做再生铜杆的企业,技术水平也不尽一样,生产出的再生铜杆质量也有差别。该企业相关负责人在接受记者采访时表示,由于采用了意大利普洛佩兹和西班牙拉法格公司联合开发的废杂铜火法精炼工艺,该企业所生产的再生铜杆,无论是从伸长率、扭曲、电阻率,还是含氧量的这些指标,都可以达到国家标准。
从再生领域的“铜铝之争”
最近几年,电缆行业里“铜铝之争”的声音一直存在。而其中一个观点认为中国铜资源紧缺,而铝资源相对没那么紧张。但是如果从资源循环再生的角度来看,则不尽然。首先,铜本身的性能决定了它可以百分之百进行回收。我国铜产量中,再生铜占比约40%。我国铝产量中,再生铝仅占约20%。对于电力电缆行业,再生铜使用比例约50%,而再生铝使用基本为0。
该企业相关负责人对此也深有体会,在做再生铜杆之前,他有着20多年的做再生铝的经验。“我们现在市面用的稀土铝合金电缆线是不能用再生铝生产的。而原生铝要耗费大量的电能,所以并不能节约很多费用。说铝合金比较经济,并没有把资源再生的角度考虑进来。”
此外,专家认为,虽然现阶段国内铜供应不足,但从国际上能够获取足够的铜以满足国内经济发展的需求。而且铜的需求也不会无止境增长,国外的发展已经证明,随着经济发展到一定程度,人们对于铜资源的需求也会达到顶峰。
再生铜产业将会有快速发展
记者了解到,目前再生铜杆的比例还不算大,再生铜杆目前每年的产量也就在20万~30万吨之间,但是这个行业的未来发展前景不可估量。在欧洲,英国、法国、德国等发达国家再生铜的使用均超过40%,在意大利更是达到了几乎100%。“行业未来会有一个比较快速的增长。因为如果比较再生铜和原生铜的性能,根据目前技术所生产出的电工用铜杆,它的物理性能跟原生铜已经没有太大差别,唯一达不到的指标,是在杂质含量上。再生铜的杂质含量要超过原生铜,但是如果是用先熔炼成阳极板再通过电解的方式,再生铜的杂质含量可以降低到原生铜的标准,只是这样做的成本太高。而这个因素并不会对电工杆的使用造成实质的影响。现在随着整个国家经济的发展,再生材料的利用已经提到了国家的议程上来,再生铜杆的量会越来越多,会成为一个使用的亮点。”该企业相关负责人对再生铜杆的未来充满了信心。
搅拌摩擦加工铸态铝铁合金组织和性能研究
2018-12-27 16:26:15
搅拌摩擦加工(FSP)是在搅拌摩擦焊接(FSW)基础上发展起来的一种新型有效的加工技术,可用于材料微观组织改性和新型材料制备。加工过程中,利用高速旋转搅拌头的搅拌和摩擦作用,使加工区材料混合破碎,并发生剧烈塑性变形和热机循环作用,实现微观结构的细化、致密化和均匀化。
FSP可破碎粗大枝晶组织和第二相,溶解沉淀相,消除铸态缺陷,显著改善金属材料的性能。铝铁合金具有质轻、耐热性好和抗腐蚀等诸多优良性能,在航天航空领域有着广泛的应用前景。普通熔铸铝铁合金中,铁在铝中的固溶度很低,主要生成Al3Fe等金属间化合物。
Al3Fe呈针状或片状,严重割裂基体,成为应力集中源,显著降低铝铁合金的力学性能。控制和改善含铁相的形态、大小和分布,能使铝铁合金成为实用的结构材料,提高合金性能和实际应用价值。因此,寻求有效的加工细化方法成为解决问题的关键。目前采用高压扭转和等径弯曲等强塑性变形方法能显著细化组织和Al3Fe金属间化合物,增加铁原子在铝基体中的固溶度,提高该合金的力学性能。不过这些方法加工工序复杂,而且得到的试样尺寸较小,因而在实际应用中受到限制。
FSP能有效的细化合金组织,适合连续加工制备大面积的块状材料,是一种很有潜力的材料细化方法。因此,本文采用FSP对普通熔铸方法制备出的铝铁合金进行3道次往复加工,研究3道次加工后铝铁合金组织和性能的变化。
实验用99.9%工业纯铝和Al-20Fe中间合金为原材料,配制含铁3%(质量分数)的Al-3%Fe合金。合金在箱式电阻炉中用石墨坩埚熔炼,经除气和精炼后,于820℃在铜模中浇注成100mm×80mm×5mm板坯试样。FSP实验在改造的X5032型立式升降台铣床上进行。搅拌头材料为W18Cr4V,轴肩直径为16mm,搅拌针直径为5mm,高度为3.8mm。搅拌头旋转速度为1180r/min,焊接速度为47.5mm/min。对铸态合金进行3道次往复FSP。
合金铸态组织存在大量针状Al3Fe相,尺寸约为20~50μm。经搅拌摩擦加工后,针状Al3Fe相被破碎成长度小于1μm的粒状,弥散均匀分布在铝基体中。铸态组织转变为低位错密度的再结晶晶粒,基体中存在细小的含铁亚稳相。搅拌摩擦加工后,加工区的显微硬度较铸态区降低,但分布较均匀。加工区合金的抗拉强度稍微下降,延伸率显著增大。搅拌摩擦加工前后,合金拉伸断口呈现出微孔聚合韧性断裂特征。加工前,韧窝呈抛物线状的撕裂韧窝,韧窝尺寸较小而且较浅,而加工后的韧窝形貌呈等轴状。
铝脱氧钢板坯连铸水口堵塞成因及解决措施
2019-01-09 09:34:20
连铸中间包水口堵塞一直是困扰炼钢厂的一个难题,对于它的研究已经开展了30多年,然而该课题仍没有很好地解决。堵塞是由钢水中的固态微小夹杂物(尤其是Al2O3、TiO2和CaS)沉积引起。浇铸时,Al2O3等非金属夹杂在浸入式水口壁上逐渐形成,周期性地剥落带入结晶器,使铸坯中有害的大型夹杂物增加。此外,水口堵塞导致浇铸提前结束,以致连浇炉数减少和降低连铸机的生产率。尽管通过向塞棒、中间包水口和套管吹氩可以减少堵塞,但分散的非金属夹杂和弯月面处的扰动仍会增加连铸板坯的大型夹杂物的数量,因此影响产品的表面质量。
京唐公司在生产过程中发现连铸水口堵塞与品种、工艺有关,低碳、超低钢比其他品种易出现堵塞现象;LF炉工艺发生水口堵塞现象后棒位上涨迅速,CAS、RH工艺发生水口堵塞现象后棒位上涨相对缓慢。京唐公司技术人员对连铸水口堵塞原因进行分析,对其堵塞机理有了一定的认识,并提出了改善措施。
水口堵塞物的特征
通过大量收集典型易堵品种连铸水口的堵塞图片,对水口堵塞物、钢水中非金属夹杂物的成分以及组成进行分析,以便弄清水口堵塞物的来源。
水口侵蚀只是造成水口堵塞的一个必要条件。观察大量的废弃水口,都有不同程度的侵蚀,但其中一部分水口的粘附层很薄,甚至没有粘附层。这说明即使水口发生侵蚀,但只要钢水中氧化夹杂物,特别是氧化铝夹杂少,水口堵塞几率就能大大降低。因此,尽量降低钢水氧化性夹杂,并做好防止钢水二次氧化工作,是降低水口结瘤率的关键。堵塞的水口由基体、中间反应层、表面沉积层三部分组成。
低碳、超低钢比其他品种易出现堵塞现象,钢水中硅含量、碳含量越低越易出现堵塞现象,钢水中钛含量越高越易出现堵塞现象。低碳和超低钢水口堵塞较大的不同是超低钢水口堵塞含有一定量的钢。
对典型的堵塞水口堵塞物进行分析,低碳钢LF工艺造成的堵塞物其主要是由高熔点氧化物组成,大多数是Al2O3,其中混有MgO·Al2O3(尖晶石),CaO—Al2O3系矿相及少量硅酸盐。低碳钢CAS、RH工艺造成的堵塞物其主要是由高熔点Al2O3组成。含Ti超低碳钢水口堵塞物主要由Al2O3及其外部包裹着一定量的TiO2组成,并含有一定量的钢。
水口堵塞形成的原理
堵塞的水口由基体、中间反应层、表面沉积层三部分组成,目前许多研究普遍认为水口堵塞形成的原因主要有以下四方面:
钢中存在的氧化物向水口壁的传输:水口堵塞较重要的原因是钢水中的固态夹杂物在水口壁上的沉积;固态夹杂物来源较多,如炼钢及精炼过程中的脱氧产物、二次氧化产物、卷渣、化学反应形成的固态夹杂物等。
水口接缝处的吸气:水模型实验和数值计算表明钢水流经滑动水口或塞棒后产生较大的负压,极易造成空气吸入;如空气进入水口,氧气将和Al反应生成氧化铝夹杂;吸入的氧在水口壁产生表面张力,这种张力在水口壁上对钢中夹杂物颗粒产生一种不可思议的吸附作用;Rackers计算得出:即使是导致增氮0.3ppm的较小氧气吸入量产生的表面张力可以使一个10μm的颗粒以0.9m/s的速度向水口壁运动,这可能是在湍流程度较低的区域产生水口堵塞的主要机理。
水口耐火材料和钢水之间的反应:某些区域的堵塞从形貌上看是一层均匀的薄层,而不是颗粒的网状烧结物,这种堵塞产生的原因是由于钢中的Al和耐火材料中的氧反应造成的;
SiO2(s)+C=SiO(g)+CO
3SiO(g)+2(Al)=Al2O3(s)+3(Si)
3CO(g)+2(Al)=Al2O3(s)+3(C)
控制耐火材料的成分或在水口内壁覆以各种材料,如纯铝质材料等可以避免产生此类堵塞。钢水含硅量高,可以阻止反应的进行。反之,水口堵塞几率就会加大,生产低硅钢SPHC容易水口结瘤就证明这一点。
钢水在水口壁上的凝固:虽然通过水口耐火材料的热损失很少,在开浇初期如果水口预热不好,钢水就会在水口壁凝固;在钢水过热度很小的情况下更有可能发生。
水口堵塞的主要影响因素
随着FeO+MnO含量的升高水口堵塞率升高,LF工艺顶渣FeO+MnO含量<1%时水口堵塞率较低,CAS、RH工艺顶渣FeO+MnO含量在5—10%水口堵塞率较低。
钙处理效果对水口堵塞的影响。由于铝镇静钢经LF精炼处理后钢中S较低,这里不考虑S对Ca收得率的影响。经过钙处理,确保钢中形成低熔点化合物C12A7,减少连铸水口堵塞。实践表明,控制喂入钙在Ca/AlS=0.06—0.09时水口堵塞现象大幅度降低。
软吹时间大于8min,纯循环时间大于6min水口堵塞率明显降低。这是因为夹杂物上浮需要一定的时间。
调铝后延缓调钛时间与水口堵塞率降低,这是因为含Ti超低碳钢的生产工艺为在RH脱碳结束后向钢水中加入铝来脱除过剩的溶解氧,铝与钢中的氧反应形成Al2O3夹杂物与钢水不润湿,易在钢水中碰撞簇集形成大颗粒夹杂物,从钢水中上浮排除,随后进行Ti合金化,Ti与钢中的过剩氧结合形成TiO2,其以Al2O3为核心,形成TiO2—Al2O3复合夹杂物。而且随着钢水中Ti含量的增加,TiO2—Al2O3数量增加。由于TiO2处于Al2O3夹杂物的外层,增加了Al2O3夹杂物与钢水的润湿作用,使Al2O3夹杂物碰撞絮集并从钢水中上浮的能力减弱,从而使钢水中夹杂物的尺寸降低,数量增加。TiO2—Al2O3复合夹杂物数量的增加加剧了其在浸入式水口内壁粘结的机率。延缓调钛时间,钢中Al2O3夹杂物减少,形成TiO2—Al2O3复合夹杂物减少。
钢水纯净度对水口堵塞率有较大的影响,降低水口堵塞率,首先要提高钢水纯净度,要求ALS/ALT>0.90%。
水口形状对水口堵塞的影响。必须避免水口几何形状的突变,确保形成层流,减少紊流。水口内表面的粗糙度大于0.3mm,可以完全破坏涡流边界层的粘滞部分,粘滞层的保护作用消失。所以水口耐火材料的工作面必须尽可能地光滑,并在浇铸过程中,不能破坏钢液的连续性。经过实践发现圆形水口比方形或跑道形不易堵塞,同时水口内壁制作工艺不标准易堵塞。
其它参数对水口堵塞的影响。通过实践,发现RH升温吹氧量,下渣检测自动连锁灵敏度,转台镇静,中间包钢水增氮量,塞棒、上水口和板间背压等,对降低水口堵塞率也都有显著影响,水口堵塞是各种因素综合作用产生的。
降低水口堵塞的措施
转炉炼钢:降低终点O含量(C控制、底吹强度、终点命中);钢包残渣清理;出钢严格挡渣,采用滑板挡渣;钢包渣改质。
炉外精炼:防止中后期加铝调整Al,LF炉渣控制(碱度≧5,Al2O3:25—30%,FeO+MnO含量<1%),CAS、RH工艺顶渣FeO+MnO含量在5—10%;软吹时间大于8min,纯循环时间大于6min,钙处理效果钙在Ca/AlS=0.06—0.09;超低碳钢RH加铝循环5min后加钛,RH升温吹氧量<100m3。
连铸:下渣检测自动连锁灵敏度10%,转台镇静大于10min,中间包钢水增氮量<3ppm,塞棒、上水口和板间背压>0.2bar,控制合理的吹氩流量,将跑道形水口改为圆形,水口保温。
通过改进后,因水口堵塞造成的断浇次数由6—7次/月降低到目前的1次/月;单支浸入式水口的使用寿命由原来的平均120min延长到230min;夹杂物缺陷发生率由原来的0.9%降低到目前的0.3%。
铜线杆质量影响因素浅谈
2018-12-18 10:15:50
云南铜业铜材有限公司 和晓燕 从20世纪初开始,我国电线电缆行业迅速发展,铜线杆的需求急剧增长。而铜线杆质量的保证成了最为关键的因素,以下从铜线杆中杂质、氧成分、表面质量、稀土作用等方面进行铜线杆质量的影响因素讨论,从而找出可以改进的方法提高铜线杆质量。一、杂质元素的影响 杂质元素对铜线杆的影响很大,纯铜中的杂质元素大致可分为:固溶于铜的杂质元素、很少固溶于铜与铜形成低熔点共晶的杂质元素和几乎不溶干铜与铜形成离熔点脆性化合物的杂质元素三类。固溶于铜的杂质元素。此类杂质元素在允许的含量范围内,能溶于铜中形成固溶体。主要有:铝、铁、镍、锡、锌、银、镉、磷等,以磷为例,该杂质元素在铜中的溶解度随温度的下降而降低,它对铜的机械性能特别是对铜的焊接性能有良好的影响,作为脱氧剂提高铜液的流动性,会降低铜的导电导热性,过量的磷会造成冷脆。总体而言这类杂质元素对金属加工性能无太大影响,能略微提高铜的硬度,但导电、导热性有所降低。很少固溶于铜与铜形成低熔点共晶的杂质元素。此类杂质元素与铜形成低熔点共晶或者与铜形成脆性化合物分布于晶界。主要有:铋、铅、硒、碲、锑,它们在冷凝时分布于晶界,使铜在热加工时产生严重的破裂,是铜线杆产生质量问题的主要原因。以铅、铋、硒、碲为例: 铅:在铜中的溶解度很小,在800℃时溶解0.04%,在300℃时溶解0.02%。铅呈黑色颗粒状分布在晶界上,热加工时铅先熔化,使金属颗粒之间的结合力受到破坏,造成“热脆”,从而在轧制和以后的拉伸过程中易产生裂纹和断裂。所以铅的质量分数控制在(50~500 )× 10-6。 硒:在铜中基本不溶,冷凝时与铜形成脆性化合物Cu2Se,且分布在晶界上,热轧过程中易使铜杆产生表面裂纹,深拉伸过程中易产生断裂。 碲:在铜中基本不溶,冷凝时与铜形成脆性化合物Cu2Te,且分布在晶界上,热轧过程中易使铜杆产生表面裂纹,深拉伸过程中易产生断裂。 铋、:在铜中溶解度很小,在800℃时溶解0.01 %,在300℃时仅融解0.000 1 %。在270℃时与铜生成低温共晶,呈连续网状分布在晶界上。当热加工温度大于其共晶熔点时,共晶膜熔化,使铜的晶粒与晶粒的结合力降低,从而发生晶间破裂,引起“热脆”。除了“热脆”之外,由于铋本身性脆,还会形成“冷脆”。从而在轧制和以后的拉伸过程中易产生裂纹和断裂。几乎不溶干铜与铜形成离熔点脆性化合物的杂质元素。此类杂质元素对铜线杆生产过程有很大影响。从氧、硫、氢三种元素进行讨论。 氧:很少固溶于铜。氧含量对铜材的加工性能有很大的影响,与铜生成Cu2O,Cu2O硬而脆,使冷变形困难,致使金属发生“冷脆”。氧含量过高时,会因氢与氧反映产生不溶于铜的水蒸气,水蒸气又无法扩散,在铜中形成很高的压力,使铜遭到破坏。氧的质量分数达到5×10-5的铜,即出现“氢病”。所以纯铜的氧含量受到严格的限制。氧在与大部分杂质反应的过程中都起到了一个清除器的作用,而这些杂质当它们溶解在铜基质中时对其特性和退火反应都有巨大的影响作用。相反,当这些杂质与不可溶解的氧化物混合在一起的时候,这些坏作用就被抵消了。由此可见当铜中含氧的质量分数低于100×10-6时,氧含量过少,氢和某些不溶于铜的杂质会增多;当铜中氧的质量分数含量超过600×10-6时,过量的氧与铜形成过量的Cu2O,并在铜基体中形成不均匀分布,将导致裂纹的扩展,在铜材的深加工时易引起加工硬化和产生局部裂纹。综上可知,氧含量应控制在一个适当的范围内。 硫:与铜形成共晶,由于共晶温度较高,对铜热变形不明显,由于Cu2S硬而脆,致使金属发生“冷脆”,严重时,会使线杆发生裂纹乃至断裂。 氢:氢能溶于液态铜,且其溶解度随温度的升高而升高。若吸氢较多,过饱和氢会大量析出,在铸坯上出现微小气泡和微裂纹。另外一方面如上文所述形成水蒸气,产生极大内应力,引起所谓“氢脆”现象,严重影响铜的塑性加工性能。二、铜线杆的表面影响在外界温度下,铜线杆总是有一个残留的氧化膜,而这一氧化膜是当铜线进入热杆轧制阶段时从高温的、连续铸造的铜杆上形成的。现在在铜液中通过一种电量分析控制检测手段来测量残留的表面氧化膜的厚度已成为一种比较标准的作法。氧化膜可能会相当地有害,因为它们可能会在拉丝过程中引发许多缺陷、使拉丝膜过度磨损、可焊性变差、搪瓷膜和裸导体之间的附着力变弱。铜杆的缺陷之处往往是源于连续铸造过程和轧制过程,这包括:残渣、铜氧化夹杂物、热裂、裂块、铜杆表面氧化颗粒的形成。在这一系列的铜杆缺陷中:热裂,是在结晶过程中产生,多沿晶界裂开,裂纹曲折而不规则,有时还有分枝裂纹,裂纹多分布在铸锭最后凝固的区域或靠近这些区域。影响热裂纹的因素有:金属及合金本身的性质,如热脆性、收缩率的大小、在固液区内的抗拉强度及延伸率和杂质含量与分布情况;铸造工艺及设备、工具情况和冷却强度大小。 夹渣和夹杂,此缺陷破坏铜基体的连续性,降低铜的塑性。它产生的原因有内因,是铜中含有易氧化生渣的元素;还有外因,是生产中扒渣不净,润滑油或涂料过多,铸造温度低,炉料混杂等因素都可能造成夹渣和夹杂。大部分金属间化合的夹杂物都比较脆,因而都成为拉丝过程中裂纹发生和蔓延的场所。相对于缺陷而言,较细的磁线和成形线是最主要的生产产品。惟一最大的表面缺陷源于拉丝,往往是以拉模划痕、机械损伤、弧口凿或裂片的形式出现在裸导体的表面。因为拉丝问题而形成的裂片往往与所捕获的氧化物没有太大关系。表面损伤通常是由于拉丝机内移动线未对准或拉丝膜炉口内铜精炼的压制力太大则形成的。三、部分稀土元素的影响 在熔融铜中加人微量稀土生产光亮铜线杆的工业试验进行了几年的探索和研究,发现铜杆的各项性能指标得到很大的改善,稀土的作用明显,理论方面具体表现在:1. 在铜中的净化作用 脱氧和脱硫:从上文讨论可知,硫和过量的氧是光亮铜线杆的有害物质。硫与铜生成Cu2S降低铜的塑性,氧与铜生成Cu2O,降低了韧性,使热加工困难。稀土元素与氧、硫的结合能力很强,因此可代替铜,生成稀土氧化物和稀土硫化物,部分形成渣出去,部分将原来氧化物、硫化物的晶界网状分布转变成在熔体中弥散分布。 以脱硫为例举例讨论:稀土能把铜中少量硫除去:Cu2S + Ce = 2Cu +CeS 其标准生成自由焓 ΔGTo与温度T的关系式为:ΔGTo= ﹣192.360﹢9.271ogT一11.8T 在1400K下,ΔG14000= ﹣707.108J/mol 由此可见,在熔铜中,稀土元素脱硫反映的热力学势很大,有一定的能力除去硫杂质。 脱铅、秘等有害杂质:稀土的化学活性强,能与铜中的铅、秘等有害杂质发生作用,形成难熔的二元或多元化合物,与熔渣一起从液体铜中析出,从而达到净化铜液的作用。2. 在铜中的变质及微合金化作用 稀土在铜中的最主要变质作用是消除柱状晶区,急剧细化晶粒。稀土在铜中的固溶度极小,加人微量稀土大部分同其它元素化合生成高熔点化合物,这些化合物在熔体中悬浮和弥散分布,从而提高铜及其合金的塑性和强度,减少表面裂纹和缺陷。为研究稀土元素对铜线杆的作用,已进行了大量试验。其中结果较为明显的是加入富铈混合稀土 ( 组分为:铈:47%,镭:26%,钕:15% ) 的试验。试验结果看出:(1)稀土的加人使铜铸坯的组织改善,从铸坯的端面可看出,晶粒得到细化,柱状晶区域缩小,等轴晶扩大。表1 晶粒直径的比较试样编号 稀土加入质量分数(×10-6) 晶粒直径/(mm)样1 0 0.153样2 50 0.062样3 60 0.084从表1可知,稀土的质量分数在52.2×10-6时,明显细化了晶粒,但稀土含量超过一定范围,则晶粒有变大趋势,因此应在一定范围内加人稀土。(2)富铈稀土的加人对铜杆机械性能影响。按试验对铜杆试样进行了拉伸、扭转试验,延伸率和扭转性能有所提高。这说明稀土加入后有效地改变了铜杆的塑性,提高了铜的塑性变形能力。表2 拉伸率和扭转性能比较试样编号 稀土加入质量分数(×10-6) 伸长率 单向扭转试样1 0 40 45试样2 200 41 61试样3 400 40.5 52从表2可知,稀土元素的适当加人,延伸率略有提高,其扭转性能提高尤其明显。(3)富铈稀土的加人对铜线杆导电率的影响。表3 导电率比较试样编号 稀土加入质量分数(×10-6) 导电率(Ω/mm2 • m- )试样1 0 0.0170 0试样2 40 0.0169 8试样3 70 0.0169 8从表3可知铜杆试样的导电率经测试都在0.001 7Ω/mm2 • m-以下,其数值低于铜线杆一级杆导电率标准。(4)加入富铈稀土对铜液确实起到净化的作用,选取具有代表性的氧、硫、铅、铋作成分比较 。表4 加入富铈稀土度比较(质量分数)×10-6 稀土加入量 氧 硫 铅 铋0 347.0 13.0 2.9 8.040 237.4 11.0 2.8 7.0从表4可看出,稀土元素的加人对氧、硫的脱除能力较强,其他金属杂质随稀土加人也能部分除去,但炉内含金属氧化物较多时,由于稀土的亲和力比其他金属强,稀土将会使其他金属脱氧,还原进入铜熔体中,使铜杆杂质升高,性能变坏,因此必须严格控制金属氧化浮渣。从现今看,稀土运用于铜线杆还未成为产业化的过程,还需作进一步的摸索和探索性试验,但其作为铜晶粒细化剂已被开发投人市场,前景看好。.
废紫铜加工铜杆技术
2018-12-03 10:44:49
导读:废紫铜加工铜杆技术有哪些?废紫铜加工铜杆技术对废紫铜的要求?废紫铜虽然是废铜,但是废紫铜中的铜含量还是比较高的。废紫铜的回收利用可以减少坏境污染、降低生产成本、节约资源。废紫铜回收之后一般都是重熔的,之后在加工成铜杆。废紫铜加工铜杆技术有很多种类。随便科技的不断发展,废紫铜加工铜杆技术已经有了不重熔的方法。不重熔废紫铜加工铜杆技术比较重熔废紫铜加工铜杆技术有着更大的优势,小编介绍下“废紫铜加工铜杆技术”。 废紫铜加工铜杆技术? 1、废紫铜生产上引铸造无氧铜杆技术:无氧铜杆是生产优质电线电缆的基本材料之一。无氧铜杆以其性能优良而获得电线电缆行业的青睐。上引法连续铸造无氧铜杆由于投资少、上马快、生产灵活性大、无环境污染,因而近年来发展很迅速。为了充分利用资源,节材降耗,在上引法铸造无氧铜杆生产中,适当利用一定品位的废旧紫铜作原料,生产出符合国标要求的无氧铜杆,将有利于提高企业的经济效益。2、废紫铜连铸连轧低氧光亮铜杆技术:针对上述废紫铜综合利用的问题,提供一种利用废紫铜反射炉精炼工艺的废紫铜连铸连轧低氧光亮铜杆生产工艺。 废紫铜加工铜杆技术对废紫铜的要求?紫铜有很多牌号。这里我们主要讲解的是废紫铜加工无氧铜杆技术。在无氧铜生产中,能作炉料的紫铜主要包括导电铜材加工过程中的边角余料及废料,废品回收公司收购的紫铜废料,生产企业上引铸造及拉线过程中的废料等,要求品位在97%Cu以上。为了保证其质量,必须仔细分检,分检后附着有机物的料要进行焙烧,并去除尘土。所选铜料要在酸液槽内清洗,然后经碱水中和,最后用清水冲洗干净并放置干燥的地方自然风干,使用时直接利用上引连铸炉上口热量烘烤至500e后直接投料。上述铜料使用前还要人工扎成8kg左右的捆,对于质量较差、杂质元素较高的碎杂料,要经坩埚炉精炼后铸成条块状坯料,再作为上引铸造无氧铜杆炉料使用。 上引铸造铜杆缺陷?上引铸造无氧铜杆易出现铸造缺陷,特别是利用废旧紫杂铜作炉料时,更会加剧气孔、夹渣、晶粒组大缺陷。而且,带入的杂质元素会降低铜的导热性和导电性,降低抗拉强度,严重时造成上引过程中铸杆断裂,不利于进一步拉丝。本文所述的上引铸造无氧铜杆生产中,熔化设备为双室有心工频感应熔炼炉,通过流槽将熔化炉中熔化好的铜液导入保下图:上引铸造原理示意图温炉中。为防止氧化,保温炉一般具有很好的密封性,保温炉上口接带冷却水套的石墨结晶器。上引原理如下图所示,在一定牵引力作用下,铜液上引结晶凝固,金属自上而下凝固形成扁平的液穴,结晶前沿的气体过饱和度很高,当气体达到一定过饱和度时形核长大,分布于最后凝固的柱状晶和中心等轴晶交界处的环形区域内。由于保温炉密封,气体和夹渣主要来自熔炼炉。上引铸造过程中,溶于铜液的气体主要是O2,氧以Cu2O形式溶于铜液中,由于上引工艺中会带入水蒸汽,则发生如下反应产生H2而溶于铜液: C+2H2O(g)=CO2+2H2 C+H2O(g)=CO+H2 2Cu+H2O(g)=Cu2O+H2 当铜液中含氢达到一定浓度,就会与铜液中的氧发生水蒸汽反应生成气孔。应用废旧紫铜引杆时,因铜液中氧化物较多,更会加大气孔产生的趋势,同时也增加了氧化夹杂物的数量。另外,由于氧化夹渣较多,浸蚀石墨结晶器,使其下口增大,导致牵引受阻,而且铜杆易表面开裂,因此,引杆温度较使用电解铜炉料引杆高,又会造成晶粒粗大。 上引铸造原理示意图 废紫铜加工铜杆技术的现状及发展? 1、我国废铜的再生利用还存在不少问题,如企业规模小、工艺技术水平低下,废铜利用水平不高、产品质量不稳定,环保问题仍然严重,与发达国家相比还有较大差距。 2、废紫铜不熔再生成型工艺及配套设备,颠覆了废紫铜加工的传统技术,居国内、外领先水平。 2、废紫铜不重熔直接生产紫铜产品的加工技术项目,产业化后,是中国铜加工业发展的一条新路,将推动我国废铜再生工业的发展。 废紫铜加工铜杆技术之利用废旧紫铜的途径:针对上引连铸无氧铜杆缺陷特征和废旧紫铜质量与数量情况,为了达到符合应用要求的力学性能、电性能的无氧铜杆,可采取以下措施 1、对于质量较优,杂质少且废旧紫铜量较少的无氧铜杆生产厂家,可采用在电解铜中加入一定量的废旧紫铜,使用常用的P-Cu脱氧法生产。以生产51414mm无氧铜杆为例,当加10%废旧紫铜时,生产出的铜杆与用纯紫铜生产的无氧铜杆性能相近,如表所示。 从表中试验结果可以看出,添加10%以下优质废旧紫铜时,对无氧铜杆的性能影响不大,生产的铜杆符合使用要求。 2、对于上述类型废旧紫铜,当废旧紫铜量较大时,可全部采用废旧紫铜上引铸造无氧铜杆。但因废旧紫铜会带入氧化夹渣和少量夹杂元素,且上引铜杆因连续生产不便使用精炼熔剂精炼,否则会阻塞流槽或渣子过多地进入保温炉而不能被清除。试验发现,加入1%左右的RE-Cu中间合金具有好的效果,该中间合金含10%RE,其RE具有脱氧、精炼和变质细化晶粒作用,且熔炼方便,有利于提高RE的利用率。其作用机理122是,稀土与氧的亲和力远大于铜与氧的亲和力,且生成熔点比铜液高、密度小的稀土氧化物,收到良好的脱氧作用。稀土生成的呈弥散分布的难熔氧化物颗粒,起到非均质形核作用,从而细化了晶粒。又由于稀土能与Pb、Bi、P等低熔点杂质起反应,形成高熔点低密度化合物,从而清除了夹杂元素,提高了铜杆的导电性。下面分别为用P-Cu和RE-Cu处理铜液所铸造无氧铜杆的杂质分布及气孔分布状况,很明显,采用稀土处理铜液铸造无氧铜杆,夹杂减少、变细,铜杆的力学性能和电性能都达到了使用要求。3、对于杂质元素含量较高的碎杂紫铜,由于氧化夹杂及杂质元素多,铸造引出的铜杆发脆,无法拉拔,更谈不上性能达标,必须在坩埚炉内用Na2CO3、Na3AlF6、Na2B2O7、NaNO3、RE等组成的复合精炼剂精炼。在熔炼过程中,由于Al、Sn、Si等杂质比Cu活泼得多,熔炼中形成弥散分布的Al2O3、SiO2、SnO2等很难被排除,复合精炼剂的精炼机理132是: Al2O3+Na2CO3=Na2Al2O4+CO2{ SnO2+Na2CO3=Na2SnO4+CO{ SiO2+2Na2CO3=Na4SiO4+2CO2{ 因Na2Al2O4、Na2SnO4、Na4SiO4这些熔渣密度小,易于聚集上浮;另据精炼吸附理论142,上述反应生成CO2、CO气泡在上浮过程中会自动吸附合金中的气体,从而达到清除气体的目的。精炼剂中的Na3AlF6和Na2B2O7还分别具有熔剂和造渣作用,而NaNO3在渣层内放热,有利于渣层中铜豆重新熔化而进入合金液,使合金熔耗明显降低;RE的作用上面已论述过。 废紫铜连铸连轧低氧光亮铜杆技术流程:废紫铜-→反射炉熔炼-→吹氧-→精炼-→还原-→保温炉精炼-→浇铸-→滚剪边-→粗轧-→精轧-→冷却-→排线-→出料 废紫铜连铸连轧低氧光亮铜杆技术流程说明: 1、废紫铜: 用废紫铜冶炼生产铜杆原材料分为三个级别,一级废紫铜要求是由清洁的、不镀锡的、无包覆的和非合金化的铜线和电缆所组成,务必不要用烧过的线,这些废铜由标准含量为96%的非合金化的铜线组成。二级废铜是由小直径的、没有绝缘的,通常为电话线的铜线、铜管,带清漆或绝缘的铜排铜线以及干净紫铜棒所组成,最小含量为94%。三级废铜是由非合金化废铜的混合物,其标准含铜量为92%,为了获得最佳的材料组合,达到最理想的效果,加入炉内的材料组成比例一般为:一级废铜:30%;二级废铜:60%;三级废铜:10%。 2、反射炉熔炼: 废铜冶炼生产铜杆的关健是铜液成份的控制,其核心设备是精炼炉,精炼炉采用耐火材料砌成,炉子可倾斜,以利于除气、除碴和浇铸,该工序的控制也是整个生产线的关键所在,其工序包括:原料-→加料-→熔化-→氧化-→还原-→浇铸。首先应根据废铜的来源等级进行配料,再根据原料的配比添加反应剂。废铜在精炼炉内通过一次精炼,使铜快速熔化后,加入除碴剂,并使熔铜获得最好的均匀性,然后通过炉内通入富氧的空气,使其被氧化的杂质漂浮在熔池进行表面清碴处理。经过一次精炼的铜中主要的基本杂质是铅、锡、锌、铁、砷、锑和硫,这些元素对铜杆的加工工艺和导电率有很大的影响。在此种情况下,通常还需要进行二次精炼,以进一步除去杂质。最后的还原操作需要向熔炉中通入还原性气体,使铜的氧含量调整到200-350ppm的要求。(1)原料: 紫铜、废铜线、废铜管、锯屑、铣屑、废管头等等。 将原料打包成100-400Kg/捆,碎料单独加入。(2)加料: 加料炉温:1000℃左右; 加料用加料小车进行; 先加小料,后加大料; 原料分三批加入,第一批加60%,第二批加30%,第三批加入余量的料。 料离炉顶高度:300-400mm; 加料约8小时左右。(3)熔化 加完料后,应加大火提温,炉温保持在1300℃左右; 炉内保持氧化性气氛; 铜水表面激烈沸腾,即表示熔化结束; 铜料全部熔化后,马上扒去浮碴; 熔化时间约3。5小时。(4)氧化: 按紫杂铜杂质含量分为若干阶段:杂质主要为:Fe、Zn、Pb、Sn、Ni、As、Sb、Bi等; 氧化时,炉温:℃;铜水温度:1200-1250℃; 除杂质: 第一步:除Fe、Zn,炉温:1300℃; Zn+O2-→ZnO ZnO+C-→Zn↑+CO2 锌以挥发物除去 Fe+O2-→FeO FeO+SiO2-→FeO。SiO2 Fe与石英造渣除去。 第二步:除Pb、Sn,炉温:1250℃; Pb+O2-→PbO挥发除去; Pb+O2-→PbO2加石英造渣除去。 Sn与Pb基本一致,挥发或造渣除去。 第三步:除As、Sb、Bi、Ni,炉温:1200℃; 三价As、Sb挥发除去;五价As、Sb和Bi加石英造渣除去。 Ni基本造渣除去,若形成镍云母则反复精炼除去。 (5)还原: 当铜水O量达到1.4%左右时,进行还原; 还原时铜水温度控制在1200℃以上; 还原时铜水表面铺上100mm左右厚的木炭; 还原采用插木和炭还原剂。 (6)浇铸: 还原结束时,Cu:99.7%-99.9%; O:200-450ppm。 然后进行浇铸,锭送连轧机,生产光亮圆铜杆。 3、保温炉精炼: 保温炉精炼使铜熔液在高温静置中,非铜夹杂物与铜熔体比重不同,因而产生上浮或下沉,使铜液达到进一步净化的目的,确保铜线坯的化学成份满标准的要求。4、浇铸: 浇铸采用五轮钢带式连铸机连铸,五轮钢带式连铸机由结晶轮、两个压轮、张紧轮、惰轮和钢带组成,结晶轮上的凹槽和压紧的钢带形成铜液的浇注腔,铸轮和钢带配有冷却系统、吹扫系统、喷碳系统并配有浇包预热装置。5、滚剪边: 将铸坯的预处理包括夹送、剪切、铣棱,连铸机导出的铸坯由夹送辊送到剪切机切头或将不合格产品切除,再经过铣棱去棱角。6、粗轧和精轧: 铜杆连轧机为二辊悬臂式轧机,分粗轧和精轧两套机组。粗轧和精轧的轧辊平、立交替布置。粗轧机采用较大压力下量压下,起到细化晶粒的作用。精轧以保证铜杆的尺寸精度和表面光洁度。7、冷却: 出连轧机的铜杆,进入一个约20米长,向上倾斜的冷却管中,铜杆在冷却管中受到微酸性的酒精溶液冷却、清洗去氧化皮并避免再次氧化。8、排线和出料: 经过冷却清洗的铜杆由曲线辊道将铜杆从轧制线的水平位置换成与绕杆机垂直的位置,然后进入铜杆的后处理装置和绕杆机。
铸铝及铝合金表面处理:铝化学抛光技术
2019-03-11 13:46:31
一、对铝制品表面进行机械抛光: 1、机械抛光工序为:粗磨、细磨、抛光、抛亮、喷砂、刷光或滚光等,依据制表面的粗糙程度来恰当采纳不同的工序。 二、化学除油: 化学除油进程是借着化学反应和物理化学效果,除掉制件表面的油污。化学除油选用弱碱性溶液中进行。 化学除油液的配方和工艺条件: 1、配方:30-50G/L,工业洗涤剂0.5-1ML/L,水70-125G。 2、工艺条件:温度:50-60℃时刻:1-2min 3、除油后用清水冲刷。 4、化学除氧化膜:进行酸洗处理以中和制件表面残留的碱液,并除掉其天然氧化膜,使之显露制件的铝及铝合金基体,关于含硅铝合金制造,有必要用混合溶液进行酸洗,以除掉其表面的暗色硅浮灰。 酸洗液的配方: 浓硝液200~270ML/L 温度:室温时刻:1-3min 除掉含硅铝合金制件表面氧化膜和硅浮灰的酸洗液配方: 浓硝酸3体积;浓1体积。 温度:室温时刻:5-15min 铝及铝合金制件经化学酸洗后,有必要立即用活动温水和冷水清洗,以除掉残酸,然后浸入水中,以备化学抛光。 5、化学抛光: 化学抛光是使用铝和铝合金制造在酸性或碱性电解质溶液中的选择性自溶解效果,来整平抛光制年表面,以下降其表面粗糙度、PH的化学加工办法。这种抛光办法具有设备简略、不必电源,不受制件外型尺度约束,抛兴速度高和加工成本低一级长处。 铝及铝合金的纯度对化学抛光的质量具有很大的影响,它的纯度愈高,抛光质量愈好,反之就愈差。 化学抛光就是选用扼要的粘性液膜理论进行的。 抛光液配方和工艺条件: 配方一:(分量份) 浓磷酸75%;浓硫酸8.8%;浓硝酸8.8%;尿素3.1%;硫酸胺4.4%;硫酸铜0.02%。 温度:100-200℃时刻:2-3min 配方二:(分量份) 浓磷酸85%;浓硝酸5%;冰乙酸10%。 温度:90-105℃时刻:2-5min 抛光液的制造办法: 1、先把磷酸、硫酸和硝酸依照必定的(%)分量,逐步顺次倒入抛光槽内,当心拦匀。 2、再按配方的成分,别离用水溶解必定(%)分量的冰乙酸、尿素、硫酸胺、硫酸铜参加槽内拌匀。 3、然后,在拌和状态下,逐步调理上述抛光液至各配方所需的温度规模,即可进行化学抛光。 三、化学抛光工艺条件的影响: 1、温度影响:温度应控制在90-115℃之间,其间最佳温度为105℃。 2、抛光时刻的影响:抛光时刻与抛光温度成反比,温度低延伸抛光时刻,温度高缩抛光时刻。
节能铸铝棒加热炉
2019-03-01 10:04:59
特色: ·该型炉能耗低,比传统炉型节能40-50%; ·该型炉规划有显着功用区别的预热段、加热段和保温均热段; ·选用引射排烟与强制抽烟使炉内烟气定向活动并能调理操控炉压; ·结构紧凑、占用空间小、功用安稳、噪音低、操作简略便利; ·各功用部分均为可拆,查看修理极为便利; ·控温精度高:≤±5℃,铸棒(含不同根铸棒)温度均匀:≤±7℃。 ◇规格(配套揉捏机吨位):350T、550T、800T、1250T、1600T、1800T、2500T、3600T等。 ◇能耗(104Kcal/T·Al):350-800T炉≤28;1250-1800T炉≤26;2600-3600炉≤24。 ◇适用燃料:轻柴油、液化、天然气等。 ◇适用范围:铸(铝)棒揉捏前的加热等。
高品质8000系列铝合金杆的特性
2018-12-28 09:57:11
高品质8000系列铝合金杆应有高强、高导、丝质光亮、稳定等特性。
高品质8030铝合金杆要求电气性能、力学和抗腐蚀性等三项质量指标均达优良。铝合金杆抗拉强度需稳定控制在115-130MPa,退火后铝合金线延伸率需稳定在25-30%,铝合金应为61.8%-63.5%,相对纯铝杆抗蠕变、抗腐蚀能力应有显著提高,应符合国家标准GB/T 3954-2014 并通过国家权威检测部门检测合格。
低氧铜杆和无氧铜杆性能的区别
2018-12-03 13:41:39
铜杆是电缆行业的主要原料,生产的方式主要有两种 - 连铸连轧法和上引连铸法连铸连轧低氧铜杆的生产方法较多,其特点是金属在竖炉中融化后,铜液通过保温炉,溜槽,中间包,从浇管进入封闭的模腔内,采用较大的冷却强度进行冷却,形成铸坯,然后进行多道次轧制,生产的低氧铜杆为热加工组织,原来的铸造组织已经破碎,含氧量一般为200〜400ppm的之间。无氧铜杆国内基本全部采用上引连铸法生产,金属在感应电炉中融化后通过石墨模进行上引连续铸造,之后进行冷轧或冷加工,生产的无氧铜杆为铸造组织,含氧量一般在20ppm的以下。由于制造工艺的不同,所以在组织结构,氧含量分布,杂质的形式及分布等诸多方面有较大差别。一,拉制性能铜杆的拉制性能跟很多因素有关,如杂质的含量,氧含量及分布,工艺控制等。下面分别从以上1.熔化方式对S等杂质的影响连铸连轧生产铜杆主要是通过气体的燃烧使铜杆熔化,在燃烧的过程中,通过氧化和挥发作用,可一定程度减少部分杂质进入铜液,因此连铸连轧法对原料要求相对低一些。上引连铸生产无氧铜杆,由于是用感应电炉熔化,电解铜表面的“铜绿”,“铜豆“基本都熔入到铜液中。其中熔入的S对无氧铜杆塑性影响极大,会增加拉丝断线率。铸造过程中杂质的进入在生产过程中,连铸连轧工艺需通过保温炉,溜槽,中间包转运铜液,相对容易造成耐火材料的剥落,在轧制过程中需要通过轧辊,造成铁质的脱落,会给铜杆造成外部夹杂。而热轧中皮上和皮下氧化物的轧入,会给低氧杆的拉丝造成不利的影响。上引连铸法生产工艺流程较短,铜液是通过联体炉内潜流式完成,对耐火材料的冲击不大,结晶是通过石墨模内进行,所以过程中可能产生的污染源较少,杂质进入的机会较少.O,S,P是与铜会生产化合物的元素。在熔态铜中,氧可以溶解一部分,但当铜冷凝时,氧几乎不溶解于铜中。熔态时所溶解的氧,以铜=氧化亚铜共晶体析出,分布在晶粒晶界处。铜 - 氧化亚铜共晶体的出现,显着降低了铜的塑性。硫可以溶解在熔体的铜中,但在室温下,其溶解度几乎降低到零,它以硫化亚的形式出现在晶粒晶界处,会显着降低铜的塑性。3。氧在低氧铜杆和无氧铜杆中分布形式及其影响氧含量对低氧铜杆的拉线性能有着明显的影响。当氧含量增加到最佳值时,铜杆的断线率最低。这是因为氧在与大部分杂质反应的过程中都起到了清除器的作用。适度的氧还有利于去除铜液中的氢,生成水蒸气溢出,减少气孔的形成。最佳的氧含量为拉线工艺提供了最好的条件。低氧铜杆氧化物的分布:在连续浇铸中凝固的最初阶段,散热速率和均匀冷却是决定铜杆氧化物分布的主要因素。不均匀冷却会引起铜杆内部结构本质上的差异,但后续的热加工,柱状晶通常会遭到破坏,使氧化亚铜颗粒细微化和均匀分布。氧化物颗粒聚集而产生的典型情况是中心爆裂。除氧化物颗粒分布的影响外,具有较小氧化物颗粒的铜杆显示出较好的拉线特性,较大的Cu2O颗粒容易造成应力集中点而断裂。无氧铜含氧量超标,铜杆变脆,延伸率下降,拉伸式样端口显暗红色,结晶组织疏松。当氧含量超出为8ppm时,工艺性能变差,表现为铸造及拉伸过程中断杆及断线率极具增高这是由于氧能与铜生成氧化亚铜脆性相,形成铜 - 。氧化亚铜共晶体,以网状组织分布在境界上这种脆性相硬度高,在冷变形时将会与铜机体脱离,导致铜杆的机械性能下降,在后续加工中容易造成断裂现象。氧含量高还能导致无氧铜杆导电率下降。因此,必须严格控制上引连铸工艺及产品质量。氢的影响在上引连铸中,氧含量控制较低,氧化物的副作用呗**降低,但氢的影响成为较显着的问题。吸气后熔体中存在平衡反应:H2O(g)= [O] +2 [H];气体及疏松是在结晶的过程中,氢从过饱和的溶液中分出并聚集而形成的。在结晶前分出的氢又可还原氧化亚铜而生成水气泡。由于上引铸造的特点是铜液自上而下的结晶,形成的液**形状近似锥型。铜液结晶前析出的气体在上浮过程中被堵在凝固组织内,结晶时在铸杆内形成气孔。上引的含气量少时,分出的氢存在于晶界处,形成疏松;含气量多时,则聚集成气孔。氢来源于上引生产过程中的各个工艺环节,如原料电解铜的“铜绿”,辅料木炭**,气候环境**,石墨结晶器未干燥等。因此,熔化炉中的铜液表面应覆盖经烘烤的木炭,电解铜应尽量去除“铜“,”铜豆“”耳朵“,对提高无氧铜杆质量非常重要。在连铸连轧工艺中,往往采用适度控制氧含量来控制氢.Cu2O + H2 = 2Cu + H2O由于铜液在铸造过程中是自下而上结晶,铜液中的氧和氢所产生的水蒸气很容易上浮跑出,铜液中的氢大部分能被有效去除,因而对铜杆的影响较小。二,表面质量在生产电磁线等产品的过程中,对铜杆的表面质量也需提出要求。需要拉制后的铜丝表面无毛刺,铜粉少,无油污。并通过扭转试验测量表面铜粉的质量和扭转后观察铜杆的复原情况来判定其好坏。在连铸连轧过程中,从铸造到轧制前,温度高,完全暴露于空气中,使铸坯表面形成较厚的氧化层,在轧制过程中,随着轧辊的转动,氧化物颗粒轧入铜线表面。由于氧化亚铜是高熔点脆性化合物,对于轧入较深的氧化亚铜,当成条状的聚集物遇模具拉伸时,就会铜杆外表面产生毛刺,给后续的涂漆造成麻烦。而上引连铸工艺制造的无氧铜杆,由于铸造和冷却完全与氧隔绝,后续亦无热轧过程,铜杆表面无轧入表面的氧化物,质量较好,拉制后铜粉少,上述问题较少存在。无氧铜杆也分进口设备做的和国产设备做的,但目前进口产品已无明显优势,铜杆产品出来后区别不是很大,只要铜板选的好,生产控制比较稳定,国产设备也能产出可拉伸0.05的铜杆。进口设备一般是芬兰奥托昆普的设备,国产设备最好的应该是上海的海军厂的了,生产时间最长,军工企业,质量可靠。低氧铜杆进口设备国际主要有两种,一种是美国南线设备,英文是SOUTHWIRE,国内厂家是南京华新,江西铜业,另一种是德国CONTIROD设备,国内厂家是常州金源,天津大无缝。无氧及低氧杆从含氧量上容易区别,无氧铜是含氧量在10-20个PPM以下,但目前有的厂家只能做到50个PPM以下。低氧铜杆在200-400个PPM,好的杆子一般含氧量控制在250个PPM左右,无氧杆一般采取的是上引法,低氧杆是连铸连轧,两种产品相对而言低氧杆对漆包线性能更适适些,如柔软性,回弹角,绕线性能。但低氧杆对拉丝条件相对要苛刻些,同样拉伸0.2的细丝,如果伸线条件不好,普通的无氧杆可拉而好的低氧杆就断线,但如果放在好的伸条件,同样的杆子,低氧杆说不定就能拉到双零五,而普通无氧杆最多只能拉伸到0.1而已,当然做的最细的如双零二却非得依靠进口的无氧铜杆了。目前有企业尝试用剥皮的方式来处理低氧杆来伸0.03线。但有关这方面的内容我还不是很清楚。音响线一般反而喜欢用无氧杆,这和无氧杆是单晶铜,低氧杆是多晶铜有关。低氧铜杆和无氧铜杆由于制造方法的不同,致使存在差别,具有各自的特点。一,关于氧的吸入和脱去以及它的存在状态生产铜杆的阴极铜的含氧量一般在10-50ppm,在常温下氧在铜中的固溶度约2ppm的。低氧铜杆的含氧量一般在200(175)-400(450)ppm时,因此氧的进入是在铜的液态下吸入的,而上引法无氧铜杆则相反,氧在液态铜下保持相当时间后,被还原而脱去,通常这种杆的含氧量都在10- 50PPM以下,最低可达1-2ppm,从组织上看,低氧铜中的氧,以氧化铜状态,存在于晶粒边界附近,这对低氧铜杆而言可以说是常见的但对无氧铜杆则很少见。氧化铜以夹杂形式在晶界出现对材料的韧性产生负面影响。而无氧铜中的氧很低,所以这种铜的组织是均匀的单相组织对韧性有利。在无氧铜杆中的多孔性是不常见的,而在低氧铜杆中则常见的一种缺陷。二,热轧组织和铸造组织的区别低氧铜杆由于经过热轧,所以其组织属热加工组织,原来的铸造组织已经破碎,在8mm的杆时已有再结晶的形式出现,而无氧铜杆属铸造组织,晶粒粗大,这是为什么,无氧铜的再结晶温度较高,需要较高退火温度的固有原因。这是因为,再结晶发生在晶粒边界附近,无氧铜杆组织晶粒粗大,晶粒尺寸甚至能达几个毫米,因而晶粒边界少,即使通过拉制变形,但晶粒边界相对低氧铜杆还是较少,所以需要较高的退火功率对无氧铜成功的退火要求是:由杆经拉制,但尚未铸造组织的线时的第一次退火,其退火功率应比同样情况的低氧铜高10--15% 。经继续拉制,在以后阶段的退火功率应留有足够的余量和对低氧铜和无氧铜切实区别执行不同的退火工艺,以保证在制品和成品导线的柔软性。三,夹杂,氧含量波动,表面氧化物和可能存在的热轧缺陷的差别无氧铜杆的可拉性在所有线径里与低氧铜杆相比都是优越的,除上述组织原因外,无氧铜杆夹杂少,含氧量稳定,无热轧可能产生的缺陷,杆表氧化物厚度可达≤15A。在连铸连轧生产过程中如果工艺不稳定,对氧监控不严,含氧量不稳定将直接影响杆的性能。如果杆的表面氧化物能在后工序的连续清洗中得以弥补外,但比较麻烦的是有相当多的氧化物存在于“皮下”,对拉线断线影响更直接,故而在拉制微细线,超微细线时,为了减少断线,有时要对铜杆采取不得已的办法 - 剥皮,甚至二次剥皮的原因所在,目的要除去皮下氧化物。四,低氧铜杆和无氧铜杆的韧性有差别两者都可以拉到0.015毫米,但在低温超导线中的低温级无氧铜,其细丝间的间距只有0.001毫米。五,从制杆的原材料到制线的经济性有差别。制造无氧铜杆要求质量较高的原材料。一般,拉制直径> 1mm的铜线时,低氧铜杆的优点比较明显,而无氧铜杆显得更为优越的是拉制直径<0.5mm的铜线。六,低氧铜杆的制线工艺与无氧铜杆的有所不同。低氧铜杆的制线工艺不能照搬到无氧铜杆的制线工艺上来,至少两者的退火工艺是不同的。因为线的柔软性深受材料成份和制杆,制线和退火工艺的影响,不能简单地说低氧铜或无氧铜谁软件硬。附:低氧铜杆和无氧铜杆简介1.低氧铜杆低氧铜杆是什么铜杆?低氧铜杆生产工艺是什么?低氧铜杆简介有哪些?首先看看低氧铜杆定义:以铜为原料经过连铸方轧生产出来含氧量200(175)~400(450)ppm之间铜杆材。简单介绍了低氧铜杆定义,接下来就来介绍低氧铜杆简介相关内容吧。低氧铜杆简介 - 低氧铜杆工艺程:低氧铜杆采用连铸连轧工艺进行生产,其工艺流程为:电解铜→竖炉→保温炉→浇铸机→连轧机→清洗→收杆机→成品(ф8mm)电解铜连续加料,经竖炉连续熔化后放出铜水,经浇铸机铸成大截面的梯形锭,进入轧机进行热轧,轧成ф8铜杆坯料。工艺缺陷:(1)竖炉:A。由于竖炉体积小,电解铜边加入边熔化,熔化铜水没有条件进行充分还原..B。整个熔化过程及出铜水过程,不能隔氧,所以含氧量非常高..C。熔铜燃料一般都为气体,气体燃烧过程中,会直接影响铜液化学成分理处,影响较大有硫和氢等。(2)浇铸机:浇铸机结晶轮将铜液成为固体过程中,无法进行隔氧,所以浇铸过程中进行第二次大量吸氧。(3)温度控制:A。铜液温度,由于轧制量大,又受到多种因素制约,该温度不太容易控制.B。进轧机铸锭温度,该温度要求控制在850℃左右,上下偏差越大,对铜杆质量影响越大,而此温度很难控制.C。出轧机铜杆温度,该温度要求控制在600℃,也是上下偏差越大,对铜杆质量影响越大,由于受到前道工序制约,此温度也很难控制.D。整个过程中有很多环节,而某个环节稍出现些问题,都会影响温度控制。(4)其它:A。由于存在以上一些缺陷,会造成铜杆质量不稳定,所以标准规定:连铸连轧低氧铜杆出厂前,必须要做扭转试验。但有生产厂根本不做,或不按规定批量做(每批不应超过60吨),或扭转不合格批量照样出厂.B。含氧高,会影响拉线工序,铜线越拉越硬,中间要增加退火。含氧量高,还会影响导电性能.C。为解决工艺缺陷,需尽可能提高机组性能,所以机组价格昴贵。如美国南线公司年产2.4万吨〜4万吨机组,价格为690万美元,德国克虏勃公司更贵。而用户自己配套设施也要几十万仍至上百万美元。工艺优点:(1)产量(2)铜杆卸线采用梅花式,便于拉线机放线。(3)收线重量大,一般每盘可达4吨。低氧铜杆简介 - 铜杆生产工艺方法:1,浸涂成型法:能生产大长度光亮无氧铜杆,导电率为101~102%IACS,含氧量20ppm以下,铜杆圈重3.5~10吨。浸涂成型利用冷铜杆吸热能力,用一根较细冷纯铜芯(或称种子杆),垂直通过一只能保持一定液位高低铜水池,使铜水与该移动种子杆表面铜熔合在一起,并逐步凝固结合成较粗铸造状态铜杆,然后经冷却,热轧,冷却,绕制成圈,整个过程封闭,有惰性气体保护下进行.2,上引冷轧法:能生产大长度光亮无氧铜杆,导电率为101~101。6%IACS,含氧量10ppm以下,铜杆圈重2吨。它是利用一种管式铜套(即石墨结晶器)其下端伸入并浸没在熔化铜液面下,上端与真空泵连通,开始时将结晶器内空气抽出,真空作用下,使管内产生负压,铜液徐徐吸引向上,并在引升器附近很快凝固成光亮铸锭。然后经冷轧或冷拉成杆。上引法生产铜杆含氧量10ppm以下,表面光亮.3,连铸连轧法:能生产大长度光亮低氧铜杆,导电率为101~102%IACS,含氧量200~300ppm,铜杆圈重达5吨.4,回线轧制法:生产短长度有氧化皮黑铜杆,导电率为99.5~100.5%IACS,含氧量200~500ppm,铜杆圈重只有86~136公斤。 (因受船形铜锭重量限制)低氧铜杆简介 - 低氧铜杆牌号及特性:低氧铜杆牌号有三种,T1,T2,T3,低氧铜杆都为热轧,所以为软杆,代号为R.(1),T1:用高纯电解铜为原料(含铜量大于99.9975%)生产低氧铜杆。(2)),T2:用1#电解铜为原料(含铜量大于99.95%)生产低氧铜杆。(3),T3:用2#电解铜为原料(含铜量大于99.90%)生产低氧铜杆。因高纯电解铜和2#电解铜市场上很少,一般都用1#电解铜为原料,所以一般低氧铜杆牌号为:T2R。低氧铜杆简介 - 低氧铜杆化学成分表:2.无氧铜杆由于生产铜杆的工艺不同,所生产的铜杆中的含氧量及外观就不同。上引生产的铜杆,工艺得当氧含量在20ppm以下,叫无氧铜杆;连铸连轧生产的铜杆是在保护条件下的热轧,氧含量在200-500ppm范围内,但有时也高达700ppm以上,一般情况下,此种方法生产的铜外表光亮,俗称光亮杆。无氧铜杆是不含氧也不含任何脱氧剂残留物的纯铜。但实际上还是含有非常微量氧和一些杂质。按标准规定,氧的含量不大于0.02%,杂质总含量不大于0.05%,铜的纯度大于99.95%。一般用电解铜生产,电阻率于低氧铜杆,因此在生产对电阻要求比较苛刻的产品中,无氧铜杆比较经济;制造无氧铜杆要求质量较高的原材料;无氧铜杆显得更为优越的是拉制直径<0。用于生产铜扁线.3mm的无氧铜杆用于拉丝,生产电线铜芯,漆包线。主要应用于电线电缆和电机。根据含氧量和杂质含量,无氧铜杆又分为TU1和TU2铜杆.TU1无氧铜杆纯度达到99.99%,氧含量不大于0.001%; TU2无氧铜纯度达到99.95%,氧含量不大于0.002%。参考资料: GB / T 3952-2008电工用铜线坯国家标准无氧铜杆液压冷却机液压冷焊机其原理:冷压焊接是在集中压力负荷作用下,使需要连接的两接触表面积扩大,从而使得焊接表面上的原始的阻碍焊接的氧化保护膜破裂,高压负载又使暴露的纯净金属物质紧密接触,产生原子之间的结合。液压冷焊机优点:冷压焊接无须加热,不需要任何填充剂或焊剂,是环保产品。接头没有热影响区和软化区,因此接头的机械强度,电气性能和耐腐蚀性都很好,节约能源,干净,快速。焊接点组织结构不变,弯曲,延伸及内部的导通量优于母体。一经焊上,接头牢固可靠,强度高于母体,无假焊,也不会有拉断的情况。实现一次焊接只需半分钟。