您所在的位置: 上海有色 > 有色金属产品库 > 江西铝杆厂

江西铝杆厂

抱歉!您想要的信息未找到。

江西铝杆厂百科

更多

江西地区的废铜回收价格,江西最新废铜行情

2018-08-07 20:14:49

由于海关和天气原因,导致进口铜入市有所延后,市场供应偏紧,铜市上涨,废铜跟涨,而江西地区的价格变化不大,对比前一日,江西的废铜价格基本持平,比如二号铜、1号废铜和黄杂铜,下面来看江西具体的价格行情:名称材质价格区间单位涨跌地区发布日期备注二号铜92-93%40400-40700元/吨0江西地区8月7日不含税1#废铜含铜97%44200-44400元/吨0江西地区8月7日不含税黄杂铜进口25600-25800元/吨0江西地区8月7日不含税破碎黄铜含铁<4%32800-33000元/吨0江西地区8月7日不含税1#光亮铜线1#44000-44200元/吨0江西地区8月7日不含税更多江西地区的最新废铜价格,请进入 废铜价格专区 。

江西废铝价格

2017-09-29 17:07:00

9月28日江西废铝价格市场行情,废铝价格,江西废铝价格9月28日江西废铝价格市场行情: 破碎熟铝价格10950-11150元/吨,对比前一交易日价格持平 , 破碎生铝价格12350-12550元/吨,对比前一交易日价格持平 , 进口干净6063旧料价格12300-12600元/吨,对比前一交易日价格持平

电工圆铝杆产品型号

2018-12-28 15:58:41

产品型号、状态和直经 Product model, Condition and Diameter  品种 Variety型号 Model状态 Condition直经.mm Diameter(mm)纯铝电工圆铝杆 Pure Aluminum Electrical Round Aluminum RodAO9.0-20.0A2,A4,A6,A8H112稀土铝电工圆铝杆RARE Earth Aluminum Electrical Round Aluminum RodRE-AORE-A2,RE-A4,RE-A8H112

电工圆铝杆(9.5mm)

2019-01-02 09:41:17

电工圆铝杆(9.5mm) lectric Al Rod(9.5mm) (价格为含税价)  由干净铝组成,不包含铁,绝缘部分和任何其他异物的非合金铝电线,纯度98%。

江西某钨矿选矿工艺研究

2019-01-21 18:04:47

江西某钨矿为典型的原生石英-钨铋多金属矿石类型,赣南地区有较多同类钨矿石的选别实践,一般采用阶段分选、强化分级工艺,充分体现“能收早收,该丢早丢”思想。该矿石能否适用同类型矿石的原则流程,有待对其进行工艺矿物学分析和流程试验。 一、矿石工艺矿物学特征 (一)矿石化学成分及矿物组成 矿石化学多元素分析结果见表1。 表1  矿石化学多元素分析结果    %可见,矿石中WO3含量较高,是主要回收的组分;选矿中可综合回收的组分有Bi,Cu,Mo,Sn。 矿石中主要金属矿物有黑钨矿、白钨矿等,其它金属矿物有黄铁矿、辉钼矿、闪锌矿、黄铜矿、辉铋矿等;脉石矿物主要为石英,其次为少量长石、白云母、萤石、磷灰石、绿泥石、方解石等。矿脉中富含钨铋等多金属矿,矿石未风化,属原生石英一钨铋多金属矿石类型。 (二)矿石的结构与构造 矿石结构主要有自形晶结构、半自形晶结构和它形晶结构,还有交代残余结构、溶蚀结构、包含结构和交代结构等。矿石构造有交叉构造、对称条带状构造、角砾状构造、复脉构造和梳状构造等。 (三)主要矿物嵌布特征 1、黑钨矿嵌布特征。褐黑色,条痕棕褐色,金属光泽,密度大。产于早期石英脉,多呈叶片状及板状集合体产出,垂直或斜交脉壁生长,少数为粒状或小块状杂乱分布,个别呈“钨砂包”出现。多与白钨矿共生,并被白钨矿或黄铁矿包围、穿插、交待和熔蚀。黑钨矿嵌布粒度总体较粗,68.32%以上的黑钨矿分布在1.6~0.2mm粒级中,属粗粒级范围。 2、白钨矿嵌布特征。浅黄-灰白色,具金刚或松脂光泽,一般为他形粒状或小块状,零星分布,有时被方解石、绿泥石交代。 3、黄铁矿嵌布特征。浅黄铜色,条痕黑色,强金属光泽,一般为块状或粒状集合体产出,有被闪锌矿交代或溶蚀等现象。 4、辉钼矿嵌布特征。铅灰色,金属光泽,硬度小,污手,薄片有挠性,具油脂感,多呈磷片状集合体或细小颗粒状分布,多见于含钨石英脉中,在花岗岩区脉侧蚀变云英岩中也可见及,一般单独产出较多,偶尔也见到与白云母共生。 5、黄铜矿嵌布特征。铜黄色,条痕绿黑色,金属光泽,硬度小于黄铁矿,常呈他形块状或粒状集合体出现;主要产于含钨石英脉中,常与黄铁矿、闪锌矿、辉铋矿共生,有时交代或穿插黄铁矿、闪锌矿。 6、辉铋矿嵌布特征。铅灰色,条痕灰黑色,金属光泽,密度大,硬度小;常为块状或纤维状集合体产出,在晶洞中有时见有针状或毛发状。常与黑钨矿、黄铁矿、闪锌矿、黄铜矿等共生,与黄铜矿相互交代或穿插,因此不易辨别它们的结晶先后。 7、石英嵌布特征。为灰白-乳白色、强油脂光泽,断面为贝壳状,性脆、块状构造。 8、长石嵌布特征。灰白-浅肉红色,具有玻璃光泽,呈板状或块状产出,表面常有高岭粉末。 9、白云母嵌布特征。为白-灰白色,玻璃光泽,呈细小片状产出。 (四)黑钨矿单体解离度测定 将矿石破碎到-2 mm后进行黑钨矿单体解离度测定,结果见表2。 表2  黑钨矿单体解离度测定结果从表2可以看出,黑钨矿的单体解离度较好,全样可达到79.03%。 二、选矿工艺流程试验研究 (一)选矿工艺方案的选择 该黑钨-石英脉型钨矿石中金属矿物种类繁多,主要有用成分为WO3,其它元素含量均较低;钨矿物嵌布粒度较粗;脉石矿物主要为石英。总体上该矿石属于简单易选矿石类型。 该矿石的选矿试验研究借鉴了赣南同类矿石的处理经验,拟采用先分级、再跳汰+摇床粗选、钨粗精矿再浮选脱硫、磁选实现黑钨矿与白钨矿和锡石的分离,最终获得高品质钨精矿的联合工艺流程。 (二)跳汰入选粒度研究 选用跳汰机对粗粒级有用矿物进行了早收研究,首先进行了12~0mm,6~0mm 2个入选粒度的优选试验,结果见表3。 表3  跳汰入选粒度优选试验结果由表3可见:6~0 mm入选比12~0 mm入选在WO3回收率相差不大的情况下,WO3品位高出3倍以上,因此确定跳汰重选入选粒度为6~0mm。 (三)分级跳汰重选试验 为提高选矿效率,对跳汰的工况进行了优化,即改全粒级入选为分粒级段入选,试验流程见图1,试验结果见表4。图1  分粒级跳汰重选试验流程 表4  跳汰分粒级入选试验结果    %由表4可以看出,跳汰分粒级入选,粗精矿品位和回收率分别达到31.38%和31.74%,较6~0mm全粒级入选的粗精矿品位和回收率分别提高18.14和11.23个百分点,表明该矿石分粒级选别的效率明显高于全粒级选别的效率;此外,该重选尾矿WO3品位和回收率分别高达0.35%和68.26%,大部分WO3没有得到回收。因此该流程的精、尾矿均需进一步进行磨选。 (四)跳汰尾矿摇床重选试验 对跳汰分级选别尾矿进行了全粒级摇床选别试验,结果见表5。 表5  跳汰分级选别尾矿全粒级摇床选别试验结果%由表5及矿石工艺矿物学特点可以看出,摇床也必须进行分级选别。试验流程见图2,试验结果见表6。 由表6可以看出,跳汰粗选尾矿采用分级摇床重选-一次摇床中矿再摇选的流程,可以获得产率0.83%、WO3品位31.85%、回收率51.83%的综合摇床精矿;最终总的钨粗精矿产率1.46%、WO3品位31.07%、回收率88.97%;尾矿WO3品位已降至0.04%,没有进一步深选的必要,但粗精矿需进一步精选,以提高精矿晶质。 对试验过程的分析表明:各粒级摇精WO3品位在30.58%~33.14%之间,这一结果充分表明分粒级选别具有高效性、准确性的特征。图2  跳汰、摇床分粒级选别试验流程 表6  跳汰、摇床分粒级选别试验结果    %(五)重选粗精矿分级台浮和浮选脱硫试验 因矿石中含有少量的硫化矿,硫化矿密度与钨矿物密度差异较小,重选难以去除这部分硫化矿,而如不去除该部分硫化矿又难以得到高质量钨精矿,为此,对重选粗精矿进行了分粒级台浮和浮选脱硫试验,试验流程见图3,试验结果见表7。图3  重选粗精矿分级台浮和浮选脱硫试验流程 表7  重选粗精矿分级台浮和浮选脱硫试验结果    %试验条件∕(g∕t)产品名称产率品位作业回收率WO3SBiWO3SBi台浮丁黄药40, 浮选丁黄药30、 2#油21, 各扫选用量 均为粗选的1∕3跳汰精矿4.8455.541.200.038.730.970.12台浮精矿9.2856.761.100.0417.121.710.31钨粗精矿14.1256.341.130.0425.852.680.43硫化矿10.460.0335.248.150.0161.7871.66浮硫尾矿75.4230.262.810.4474.1436.5427.91重选粗精矿100.0030.785.961.19100.00100.00100.00台浮丁黄药70, 浮选丁黄药50、 2#油21, 各扫选用量 均为粗选的1∕3跳汰精矿4.7157.041.190.028.710.940.08台浮精矿9.0858.261.150.0517.161.760.38钨粗精矿13.7957.841.160.0425.872.700.51硫化矿15.030.0331.457.210.0179.1991.71浮硫尾矿71.1832.111.520.1374.1218.117.83重选粗精矿100.0030.845.971.18100.00100.00100.00 由表7可见,随丁黄药用量的增大,硫化矿中铋和硫的品位都有所下降,但回收率均明显升高;而随丁黄药用量的增大,所得到的钨粗精矿WO3品位和回收率却相差不大。当台浮丁黄药70g/t,浮选丁黄药50g/t、2#油21g/t时,得到的钨精矿WO3品位达到57.84%,作业回收率达到25.87%;得到的硫化矿含硫铋分别为31.45%和7.21%,作业回收率分别为79.19%和91.71%,对原矿回收率分别为4.67%和12.76%。因此选取台浮丁黄药70g/t,浮选丁黄药50g/t,2#油21g/t作为后续试验条件。 (六)浮选脱硫尾矿摇床重选选钨试验 由于浮硫尾矿中钨含量较高,为此进行了浮硫尾矿摇床重选试验,同样将浮硫尾矿分为两个级别进行摇床重选,试验流程见图4,试验结果见表8。图4  浮硫尾矿摇床重选选钨试验流程 表8  浮硫尾矿摇床重选选钨试验结果    %由表8可以看出,浮选脱硫后的尾矿采用分粒级摇床重选-摇床中矿再摇选的流程,可以获得作业产率50.94%、WO3品位56.68%、作业回收率90.27%的综合摇精;尾矿WO3品位已降至6.34%,作业回收率也降至9.73%。因此该尾矿进一步深选意义不大,但钨总的粗精矿品位仅为56.95%,需进一步精选,以提高精矿品质。 对试验过程的分析表明:各摇精WO3品位在56.13%~57.25%之间,这一结果充分表明分粒级选别具有高效性、准确性的特征。 (七)钨综合粗精矿强磁精选条件试验 原矿经前面一系列处理后可得到WO3品位56%以上的钨综合粗精矿,但其质量还达不到高品级钨精矿要求,这是因为原矿中含有少量锡石等重矿物,这些矿物的密度与钨矿物差异较小,重选工艺达不到与钨矿物分离的目的。考虑到本研究对象以黑钨矿为主,而且黑钨矿与锡石在磁性上有一定差异,因此进行了钨综合粗精矿强磁精选条件试验,背景磁感应强度为1.1T。 由于磁选入选的钨粗精矿粒度范围较宽,容易产生夹带现象,为此进行了钨综合粗精矿不同分级方案下的磁选条件试验,试验流程见图5,试验结果见表9。 表9  重选粗精矿分粒级磁选条件试验结果  %由表9可以看出,将钨综合粗精矿分成4~0.83,0.83~0.2, 0.2~0mm 3个级别进行强磁精选,无论是精矿品位还是回收率都较高,因此分级粒度适当下移有利于提高综合精矿品位,但61.63%的WO3品位仍达不到高品质钨精矿的要求。为此将钨综合粗精矿强磁精选的背景磁感应强度降低约20%进行精选,并增加一次原磁场强度下的精扫选作业,试验结果表明,最终可获得含WO3 64.21%、作业回收率89.48%、对原矿回收率达76.80%的钨精矿,得到了较好的试验结果。图5  钨综合粗精矿分粒级磁选条件试验流程 (八)全开路流程试验 为验证条件试验的可重复性,对前面的阶段流程进行了全流程开路试验。 结果表明,采用条件试验所确定的条件,最终得到钨精矿的品位为64.27%,回收率为77.65%;得到的硫化矿中含铋7.58%、硫35.00%,铋回收率13.77%、硫回收率5.40%。因此,按(跳汰+摇床)分级粗选-浮选脱硫-强磁精选工艺流程处理该矿石是行之有效的。 三、结语 (一)该钨矿晶体粗大,单体解离容易,其他有害组分较少,属简单易选的矿石。 (二)根据该钨矿工艺矿物学特性制定的(跳汰+摇床)分级粗选-浮选脱硫-强磁精选联合流程,适合处理该黑钨-石英脉型钨矿石,在原矿含WO3 0.51%时,得到的钨精矿含WO3 64.27%、WO3回收率77.65%;硫化矿含铋7.58%、含硫35.00%,对应回收率铋13.77%、硫5.40%。

江西离子吸附型稀土矿

2019-01-30 10:26:21

一、概况       江西离子吸附型稀土矿主要分布在该省的龙南、寻乌等地区。地质勘探工作已查明:龙南地区为离子吸附型重稀土矿;寻乌地区为离子吸附型轻稀土矿。1971年以来,龙南、寻乌等地区先后建成了七个矿点,采取化学选矿法从中提取和生产混合稀土。随着国内外对中、重稀土需要量的增加,促进了离子吸附型稀土矿生产的迅速发展。目前,从江西离子吸附型稀土矿中提取的稀土年产量,按氧化物计已占全国稀土总产量的15%~20%。       二、矿石性质       江西龙南、寻乌地区的离子吸附型稀土矿,系含稀土的花岗岩或火山岩经多年的风化而形成,矿体覆盖浅,矿石较松散,颗粒很细,可以无需爆破直接开采。稀土主要以离子形式吸附在高岭土等粘土矿物上,矿石中的稀土品位为0.088%~0.2%。这类矿床具有以下特点:       (一)稀土元素在矿石中80%~90%属离子吸附相,少部分稀土元素呈单矿物或类质同象矿物形态存在。       (二) 稀土元素大多数以离子形态吸附在高岭土等粘土矿物上,这些粘土矿物以埃洛石、高岭土、水云母为主。       (三)吸附在粘土矿物上的稀土阳离子不溶于水或乙醇,但在强电解质(如NaCl、(NH4)2SO4 、NH3Cl、NH4AC等)溶液中能发生离子交换并进入溶液和具有可逆反应。       离子吸附型稀土矿的上述特性,决定着可以用简单的化学选矿方法从这类矿石中有效地回收其稀土资源。       三、工艺流程及指标       (一)氯化钠法       用NaCl从离子吸附型矿石中提取稀土,是目前处理这种类型矿石的主要化学选矿方法之一。从采场运来的矿石,送进一个长方形水泥池中浸泡,浸出液通过池底的过滤层从排出口排出,浸渣用人工清除,浸出液在饱和的草酸溶液中沉淀,经过滤,滤液经石灰中和井补加食盐返回再用;滤饼即为稀土草酸盐,经灼烧、水洗、再灼烧得混合稀土氧化物。用NaCl处理离子吸附型稀土矿的化学选矿工艺示于图1。    图1  用NaCl处理离子吸附型稀土矿的化学选矿工艺       该工艺目前存在的主要问题是:浸渣含NaCl高,造成土壤盐化。       (二)硫酸铵法       用(NH4)2SO4从离子吸附型矿石中提取稀土,是最近几年研究成功的一种方法。与NaCl法不同之处在于:用1%~2%的 (NH4)2SO4溶液浸泡矿石,随后用草酸沉淀而获得稀土草酸盐,再经一次灼烧即可获得含REO>90%的混合稀土氧化物,滤液经补加硫酸铵返回再用。与NaCl法相比,其浸渣不会造成土壤盐化问题。用(NH4)2SO4处理离子吸附型稀土矿的化学选矿工艺示于图2。    图2  用(NH4)2SO4处理离子吸附型稀土矿的化学选矿工艺       (三)生产指标       1981年龙南和寻乌矿的生产指标列于表1从所列的指标可以看出:这两个矿的生产指标还比较低,稀土总回收率只有60%~65%。因此,合理的化学选矿工艺及采、选设备还有待进一步开发。   表1  1981年江西离子吸附型稀土矿的生产指标项  目龙南(重稀土)矿项  目寻乌(轻稀土)矿中、小矿大  矿浸出率,%81.0889.78浸出率,%80~89萃取稀土收率,%95灼烧水洗收率,%70.0072.00萃取分组收率,%94沉淀灼烧收率,%94稀土总收率,%52~5659.47稀土总收率,%65

电工铝杆用高效排杂净化熔剂介绍

2019-01-08 13:40:18

电工铝杆用高效排杂净化熔剂介绍福州大学机械工程系傅高升博士等研制的DJ-1熔剂是电工铝圆杆的一种高效排杂净化熔剂,当配以熔体过滤时,净化效果会显著提高,除杂率及气孔降低率分别可达83.6%及91.2%,并能改善气、杂存在形态,从而能显著材料的力学性能特别是塑性。晶粒细化剂在以该熔剂处理后的熔体中形核效果大为提高,改善材料的力学性能与降低电阻率。

锡线厂

2017-06-06 17:49:50

锡线厂是相关于锡的厂商,下文中我们将会有相关的介绍。锡线特点: 1. 润湿性好,焊接效果佳,可快速焊接,焊点光亮; 2. 锡线内助焊剂分布均匀,热性能稳定,焊接时不会发生飞溅; 3. 焊接时烟雾少,气味很轻,焊接后的残留物极少; 4. 用自动卷线机卷装,走线平均,表面光滑。举一个公司作为参考,例如:瑞乐信焊锡位于深圳市龙岗区坂田街道,是专业生产高品质锡线厂家。公司的锡线品质稳定,是众多电子生产厂商的优先选择。供应的锡线型号有:1.63/37;2.60/40;3.55/55;4.50/50;5.45/55;6.40/60;7.35/65;8.30/70;9.25/75可选线径有:0.5mm;0.6mm;0.8mm;1.0mm;1.2mm;1.5mm;1.8mm;2.0mm等。包装规格有:750克/卷;800克/卷;900克/卷;1000克/卷。可选松香含量(助剂含量)有:1.6%-2.8%,根据客户要求订做,欢迎来电来函咨询订购。网站www.relosun.com市场部QQ:1103177154 想更多的了解锡线厂的内容,你可以登陆上海有色网进行查看和寻找。

江西省漂塘钨矿大龙山选矿厂

2019-02-13 10:12:44

(一)概略    该矿坐落江西省大余县漂塘填镜内。    1955年大龙山矿区由民窿收归公营,建立大龙山分场后,才建成50吨/日选矿厂。于1963年又扩建为125吨/日,至今选矿厂出产才能可达200吨/日。首要收回钨、钼。钨粗精矿送赣州精选厂。    该矿为平窿开辟,采矿办法为浅孔溜矿法。矿体埋藏条件较好,围岩与矿石较安定。    用电来自赣南电力网和矿山自备柴油发电站。由漂塘总降压变电所用6千伏线路送至选矿厂变电所,(装有560和180千伏安变压器各一台)经降压后送至选矿厂各工段。选矿厂装机容量为817.3瓦。    用水取自溪间流水,枯水时节由坑内水、回水等进行弥补。    (二)工艺流程    1.原矿性质    大龙山矿区属高温热液石英脉钨钼矿床。金属矿藏以黑钨矿为主,次为辉钼矿,以及少数辉铋矿、天然铋、黄铁矿、黄铜矿、锡石等,黑钨矿系粗粒不均匀嵌布,板状结晶,有时呈块状结晶,首要产于石英脉中,有时亦产于围岩与矿脉接触面。单体别离一般在10毫米左右,到0.1毫已根本单体别离。辉钼矿系粗细不均匀嵌布,呈鳞片状,大部分以片关、块状、星点状散布,方解石多见于晶洞中。    围岩占出窿矿石的75~80%,大多数系矽化变质岩,其次为少数的千枚岩和板岩,围岩含钨为0.005~0.015出窿原矿含钨为0.201%。原矿假比重为1.6~1.8,含水2~3%,含泥3~4%。    该厂为重选——浮选——重选联合流程。    粗选工段:包含扒栏手选、洗矿、脱泥、手选、光电选、人工复选、破碎等作业(详见下图1)。1972年废石选出率达67.8%,收回率达95.5%,富矿比为2.96。 [next]     选别工段:    (1)重选:选用一段棒磨、三级跳汰、四级枱洗、选出钨粗精矿。    (2)浮选:重选尾矿再磨后,经一次粗选、六次精选、二次扫选的浮选作业得到钼精矿。浮选尾矿经粗、扫选枱洗收回细粒级钨。    原生矿泥和次生矿泥兼并后,经一次粗选、六次精选、二次扫选的浮选作业选出钼精矿,其尾矿经粗、扫选枱洗选出钨粗精矿。其工艺流程见下图2。    原矿含钼较高(1973年平均为0.057%),钨呈粗粒不均匀嵌布,选用重选——浮选——重选的准则流程是较适合的,既使钼获得了较好的目标(档次为46%钼,收回率为80%),又强化了钨的选别,使钨粗精矿收回率达90.8%。    选用人工手选和光电选矿机相结合强化废石选出作业,使废石选出率达67.8%,废石档次也较低(含WO30.02%以下),大大地进步了钨的当选档次(富矿比为3.96),有利于进步钨的选别目标。    该厂细泥选别,其作业收回率仅达38.1%,有待进一步研讨改善。[next]    (三)选矿厂首要及其他设备操作条件(表1~表8) [next][next]续上表[next]     (四)改造作用    1.光电选矿机的运用    1)原理    出窿原矿经洗矿、分级后,进光电选矿的机械排队运送组织,矿粒一颗一颗地自在下降,经过光的照耀和光敏元件的查看,因为白色含矿脉石和深色围岩表面色彩不同,对光的反射强弱也不同,凭借光敏元件将光信号的改变转化为电信号的改变,再经晶体管扩大器将电信号扩大而吸动继电器,推进执行组织动作,到达脉石与围岩别离的目地。矿石运送分选进程见暗示下图3。    2)选别流程及作用    选别粒级为-38+16毫米,脉石产品、废石产品加少数人工进行复选(因光敏元件质量较差等,影响分选作用)。光电选别工艺流程见下图4。 [next]     光电选矿与人工手选相类似的条件下,其选别作用和目标与手选根本相同。便光电选矿可节约手选人数约40%左右,一起可进步劳动出产率、改善劳动条件,对出产起了必定推定作用,该矿现有两个选矿厂均已推行运用。几年来的出产实践也暴露了一些不足之处,如现在所用几种机械排队设备、单机处理才能、光导管质量等还有待进一步改善进步。光电选矿的选别目标见表9。    2.环氧树脂摇床    该厂一年多来,运用本矿试制的环氧树脂摇床作用杰出。其首要长处:    1)制造时刻较短3/2,本钱较摇床低;    2)摇床来复条为胶接,不必铁钉,避免了因钉眼等渗水形成摇床面的易腐烂现象,然后可延长摇床运用寿命;    3)耐磨,运用一年多来,只观察到极小磨损痕迹。现在该厂正在进一步判定,以便更能契合选矿要求。

江西某铁尾矿综合回收铁试验研究

2019-01-24 09:37:09

江西省某地蕴藏着丰富的铁矿资源,目前的铁矿就有300多万吨,近100多万吨为开采原矿,另外还有十多公里长的此类铁矿矿带,且适于露天开采。由于长期以来只采用筛分洗矿工艺回收块矿,因此大量铁资源流失到尾矿,对该尾矿进行综合利用,不仅具有很高的开发价值,而且符合我国目前资源状况以及政府提倡的循环经济产业政策。       一、矿石性质       (一)矿物主要组成及特征       矿石中矿物组成相对简单,主要的金属矿物有褐铁矿、赤铁矿、磁铁矿、软锰矿、黄铁矿、闪锌矿、方铅矿、铜蓝、孔雀石等;脉石矿物有蛋白石(玉髓)、石英、长石、黏土矿物、绿泥石、方解石、水云母(绢云母)、透闪石等。       1、氧化铁矿物       铁主要赋存于褐铁矿及赤铁矿中,以褐铁矿占绝对优势。粒度细小,多在0.04mm以下,试样中广泛分布,除了单体颗粒外,还常呈黏附态附着于其它矿物表面。       2、硫化物       试样中的硫化物主要是黄铁矿,多呈氧化残余包裹于赤铁矿、褐铁矿中,单体少见,粒度多在0.04mm以下。       3、硬锰矿、软锰矿       多与褐铁矿、赤铁矿混杂,镜下不易辨识,粒度多在0.01~0.05mm。       4、石英、蛋白石       石英相对较少,主要是蛋白石,呈隐晶质细颗粒,多被褐铁矿污染。       5、角闪石等硅酸盐矿物       含量很少,呈针柱状或粒状,部分颗粒表面有褐铁矿黏附。       6、高岭石等黏土矿物       粒度极细微,多在0.02mm以下,呈尘埃状分散分布,或与褐铁矿混杂,呈絮泥状颗粒。       (二)化学组成   表1  原矿多元素分析结果元  素 质量分数Cu 0.37Pb 1.76Zn 1.27As 0.07S 0.054TFe 37.16元  素 质量分数SiO2 9.0Al2O3 5.86CaO 0.23MgO 0.259Co 0.10P 0.069       原矿多元素分析结果表明,矿石主要的化学成分是铁、SiO2和Al2O3,有价成分主要为铁、铅、锌、铜和钴。       二、还原磁化焙烧试验研究       (一)褐铁矿转化为磁铁矿的主要原理       在高温条件下,采用煤作为还原剂,将褐铁矿转化为磁铁矿。化学反应为:   Fe2O3·nH2O—Fe2O3+nH2O   (1) 3Fe2O3+CO—2Fe3O4++CO2   (2)       其转化过程主要为:       1、褐铁矿在高温条件下失去结晶水,转化三氧化二铁;       2、三氧化二铁在还原气氛中还原成四氧化三铁。还原反应过程是一个多相反应过程。固相同气相(还原气体)发生反应。磁化焙烧反应作用分为三个阶段进行:       (1)扩散、吸附。由于气体的对流或分子扩散作用,还原气体分子被矿石表面吸附。       (2)化学反应。被吸附的还原气体和矿石的氧原子相互作用进行化学反应。       (3)化学产物的脱附。反应生成的气体产物脱离矿石表面,沿着相反的方向扩散到气相中去。       在焙烧过程中,新生成的还原物先形成一个外壳,包围着未被还原的部分,反应逐步向内进行,反应速度由还原物和还原产物的界面所控制。       使Fe2O3转化为Fe3O4的过程是按下列方式进行的。用还原剂脱掉αFe2O3矿粒外层的氧,则使氧化铁结晶格子局 部变形,致使αFe2O3转化为含有一定数量的细孔的γFe2O3,并形成尖晶石型立方晶格的γFe2O3外层。在矿粒表面上继续脱氧将造成铁离子过剩,过剩的铁离子则充填在缺位结点上。外层的所有点充满就变成磁铁矿,这些磁铁矿有着与γFe2O3相同的晶格。这样由外层向内层扩散,这个过程一直向矿粒中心的赤铁矿进行,到赤铁矿全部消失为止。       (二)磁化焙烧温度试验       将原矿与煤粉混匀后放入磁环焙烧炉中,升温至设置温度,恒温2h,改变磁化焙烧温度,900℃,950℃,1000℃,1050℃,产品自然冷却后磨矿85%-74μm,然后用磁选管进行磁选作业,磁场强度为87.55kA/m,试验结果见图1,本次试验采用无烟煤。煤粉比例为矿样重量的20%。依据试验结果知,950~1000℃为最佳温度。  图1  磁化焙烧温度试验结果 1-铁品位;2-铁回收率;下同       (三)煤的种类及用量试验       将无烟煤与褐煤进行对比试验,磁化焙烧温度为950℃,焙烧2h,煤粉的比例分别为8%、15%、20%,结果表明,在相同条件下,褐煤效果明显优于无烟煤;对同一种煤,随着煤粉用量的降低,铁精矿全铁含量降低;另外采用无烟煤,磁化焙烧矿的全铁含量和原矿没有差别,而采用褐煤时,磁化焙烧矿的全铁含量比原矿提高了近10%,磁化焙烧后矿样的重量也减少了20%。综合考虑成本,选用褐煤,煤粉用量为原矿的15%~20%为宜。试验结果见图2。  图2  煤的用量试验结果       (四)磁化焙烧时间条件试验       确定焙烧温度在950℃,煤的比例分别为20%,改变磁化焙烧时间,分别为1h,1.5h,2h,3h。产品自然冷却后磨矿85%-74μm,然后用磁选管进行磁选作业,磁场强度为87.55kA/m,试验结果见图3。  图3  磁化焙烧时间条件试验结果       (五)磁场强度试验       确定磁化焙烧温度为950℃,煤的用量依然为20%,恒温磁化焙烧2h的产品进行磁场强度条件试验。产品自然冷却后磨至85%-74μm,给到磁选作业,改变磁场分别为71.63kA/m、87.55kA/m、103.46kA/m。试验结果见图4,综合技术经济指标考虑,磁选作业的磁场强度以87.55kA/m为最佳。  图4  磁场强度试验结果       (六)磨矿细度条件试验       焙烧产品直接分选时铁矿物与脉石矿物分离效果差,在分选前需要磨矿。其他条件不变,分别对不磨(-74μm为68%)及磨矿细度分别为-74μm80%、85%、90%、98%的磁化焙烧产品进行了磁选试验,试验表明,随着磨矿产品中-74μm粒级的增加,铁精矿产率有所下降,全铁含量随之提高,当-74μm含量大于85%后,变化速度趋缓。所以以-74μm占85%为佳。试验结果见图5。  图5  磨矿细度条件试验结果       (七)流程试验       根据上述试验结果,确定最佳条件见表2,根据最佳条件试验进行了流程试验,数质量流程图见图6。   表2  焙烧—磁选工艺条件作  业工艺条件还原焙烧煤粉比例/% 焙烧温度/℃ 焙烧时间/h15~20 950~1000 2磁选磨矿细度/%-74μm 磁场强度/(kA/m-1)85 87.55  图6  磁化焙烧-磁选数质量流程       三、结论       (一)以褐铁矿为主要矿物的铁矿石属难选矿物,对这种矿石磁化焙烧—磁选是技术指标最佳的选矿方法,可以兼顾品位和回收率。       (二)此褐铁矿通过磁化焙烧—磁选工艺流程的分选,可获得产率51.46%、全铁含量64.83%、全铁回收率78.88%的铁精矿。各项指标均达到要求。而且磁化焙烧—磁选工艺具有工艺合理、可靠、适应性强、易于在生产中实施的特点。       (三)从经济方面考虑,磁化焙烧成本高,只有当地有廉价的煤炭资源时才可以考虑。一般情况下则的采用联合流程,如:弱磁选—强磁选—正浮选、分级—重选—浮选等,这些流程虽然比较复杂,但是运营成本都远低于磁化焙烧。