铅精矿价格
2017-06-06 17:49:58
铅精矿价格是很多铅精矿企业关注的重点。 2010年7月12日讯,现货铅精矿价格今报14700-14900元/吨,上涨50元/吨。美股与欧元的反弹给伦敦金属市场带来不少乐观情绪,伦铅连续7日持稳,涨势虽微,但昨日已收高至1800美元以上。国内现货市场买气回温,部分贸易商报价持平,另一些贸易商则适当调高50元/吨左右出货。伦铅小幅攀升,但国内铅精矿价格上行压力较大,下游主动接货意愿依然较低,云南铅寡淡交投于14700-14750;品牌铅在14800。隔夜伦铅以1755开盘,最高1805美元/吨,最低1754,截至收盘报1775美元/吨,涨1%。LME总持仓96551手,增加290手。LME库存减少275吨,昨日报18.93万吨。 现货市场某铅贸易商说:“因为最近希望能多出点货,我们铅精矿价格还是持平在14700元/吨,和昨天一样。最近云南铅、金沙铅都有在出,每逢周末,成交量基本都会多少增加一些,今天出了170吨左右,还算不错。”但也有贸易商告诉我们:“前一阵我们这里的成交情况很好,很多老客户都选择了那时来采购。也许正因如此,这几天的成交量就减少了不少。今天云南铅铅精矿价格14750元/吨,也有一些厂家认为价格高了点,选择持币观望。” 宏观面:美国供应管理协会(ISM)周二公布,6月非制造业指数为53.8,预估为55.0,5月为55.4,数据令人失望,尽管读数在50以上。美国近日公布的经济数据表现疲弱明显拖累美元走势,昨日美元兑欧元下跌 至 6 周低点,美元兑日元也下跌至 7 个月以来的低点。美元走弱支持基本金属大幅反弹,但毕竟投资人担心全球经济增长前景,在需求没有好转,精铅仍供应过剩的背景下,伦铅最终冲高回落。 中国目前是全球第一大铅生产国,国内2009年达到273.5万吨,占全球产量约34%;此外,中国也是出口大国,2009年精炼铅出口量高达537092吨,同比增长18%。分析师则认为,国内铅精矿短缺量并不大,只是冶炼/精炼阶段存在盈利性瓶颈;减产只能在近期内使市场短缺。目前国内铅精矿供应明显增长。根据国家统计局提供的数据,国内前5个月精炼铅产量为109.27万吨,同比增长6.7%,5月份产量同比增长14.6%,铅精矿产量为28.45万吨,同比增长10.1%,5月份同比增长22.2%。 更多关于铅精矿价格的资讯,请登录上海有色网查询。
铅精矿价格
2017-06-06 17:49:53
由于目前铅精矿被广泛地运用在各行各业,所以铅精矿价格也备受业内人士的关注。我们上海有色网是一家关于有色金属方面资讯的网站,我们希望您在关注铅精矿价格的同时也能多去我们的网站了解相关铅精矿价格的信息。铅是人类从铅锌矿石中提炼出来的较早的金属之一。它是最软的重金属,也是比重大的金属之一,具蓝灰色,硬度1.5,比重11.34,熔点327.4℃,沸点1750℃,展性良好,易与其他金属(如锌、锡、锑、砷等)制成合金。锌从铅锌矿石中提炼出来的金属较晚,是古代7种有色金属(铜、锡、铅、金、银、汞、锌)中最后的一种。锌金属具蓝白色,硬度2.0,熔点419.5℃,沸点911℃,加热至100~150℃时,具有良好压性,压延后比重7.19。锌能与多种有色金属制成合金或含锌合金,其中最主要的是锌与铜、锡、铅等组成的黄铜等,还可与铝、镁、铜等组成压铸合金。 铅精矿用途广泛,用于电气工业、机械工业、军事工业、冶金工业、化学工业、轻工业和医药业等领域。此外,铅金属在核工业、石油工业等部门也有较多的用途。以上是我们网站为各位用户简单地介绍有关铅精矿价格以及基本信息,希望您还能多多关注我们上海有色网的其他金属,我们能够为您提供最新的实时金属价格。
世界铅精矿的生产
2018-12-10 09:46:12
1970-2009年,世界铅精矿长期增长率为0.3%,2000-2009年年均递增2.2%,2009年为385.1万吨。西方国家铅精矿产量长期处于下降趋势,中国是世界铅精矿增长的主要力量。 世界铅精矿的主要生产国有中国、澳大利亚、美国、秘鲁和墨西哥,2009年上述国家铅精矿产量在世界总产量中占到77%。
世界主要铅精矿生产企业有道朗公司(Doe Run)、必和必拓(BHP Billiton)、超达(Xstrata)、泰克资源公司(Teck Resources)等。2009年,世界前10家生产企业铅精矿产量在世界总产量中占到33.6%。世界主要铅矿山有美国的韦伯纳姆矿(Viburnum)铅锌矿、澳大利亚的坎宁顿(Cannington) 银铅锌矿和伊萨山(MountIsa) 铅锌矿、加拿大的红狗铅锌矿(Red Dog)等。2009年,世界前10大矿山的铅精矿产量在世界总产量中占到26.9%。
世界精铅的生产
世界精铅生产主要集中在亚洲、欧洲和美洲三大地区,2009年,这三大地区的精铅产量达到847.8万吨,占全球总产量的96.1%;其中亚洲占比达到55.5%。
二十世纪八十年代以前,世界精铅产量在西方产量的增长推动下上扬。1960-1980年间,世界精铅产量的年度增幅为2.7%,其中西方国家精铅产量增幅达到2.6%。九十年代以后,中国铅冶炼产能的迅速扩张,引导中国精铅产量迅猛增长,成为世界精铅产量增长的主力军; 同期,西方国家精铅产量维持在500万吨下方。1990-2009年间,世界精铅产量年度增幅为2.5%,其中西方国家的产量增幅仅为0.2%,而中国达到了13.5%。
亚洲在精铅生产方面与美洲、欧洲明显不同,前者以原生铅为主,而后两者以再生铅为主。2009年,亚洲再生铅产量占其总产量的比例为41.2%,低于世界平均水平的56.4%,欧洲、美洲再生铅产量在总产量中所占比重分别高达76.4%和81.2%。
分国别来看,精铅生产主要集中在中国和美国,2009年上述两国精铅产量为494.5万吨,占全球总量的56.1%。但两国的生产方式截然不同,中国以原生铅为主,美国以再生铅为主。2009年中国精铅产量为370.8万吨,其中再生铅为123.3万吨,所占比重为33.2%。美国2009年精铅产量为123.7万吨,其中再生铅所占比重高达91.4%。 (miki)
铅精矿质量标准
2019-01-21 09:41:32
铅精矿质量标准品级Pb质量分子数不小于 %杂质质量分子数不大于 %CuZnAsMgOAl2O3一级品701.240.21.02.0二级品651.550.31.52.5三级品552.060.41.53.0四级品452.570.62.04.0注:铅精矿中金、银为有价元素,应报分析数据;其他类型铅精矿的杂质要求由供需双方商定
铅精矿的化学成分
2018-12-19 09:49:46
铅精矿是由主金属铅(Pb)、硫(S)和伴生元素Zn、Cu、Fe、As、Sb、Bi、Sn、Au、Ag以及脉石氧化物SiO2、CaO、MgO、A12O3等组成。为了保证冶金产品质量和获得较高的生产效率,避免有害杂质的影响,使生产能够顺利进行。
铅冶炼工艺对铅精矿的要求
2018-09-20 09:53:10
1、主金属含量不宜过低,通常要求大于40%。含量过低,对整个铅冶炼工艺来讲,单位物料产出的金属铅量减少,从而降低了生产效率。2、杂质铜含量不宜过高,通常要求小于1.5%。铜过高,烧结块中铜含量会相应升高,在鼓风炉还原熔炼过程中,所产生的锍量增加:一则使溶于锍中的主金属铅损失增加,二则易洗刷鼓风炉水套,缩短了水套使用寿命,并易造成冲炮等安全事故。另外,含铜太高,也易造成粗铅和电铅中铜含量超标。3、锌的硫化物和氧化物均有熔点高、粘度大的特点,特别是硫化锌。如含锌过高,则在熔炼时,这些锌的化合物进入熔渣和铅锍,会使它们熔点升高,粘度增大,密度差变小,分离困难。甚至因饱和在铅锍和熔渣之间析出形成横隔膜,严重影响鼓风炉炉况,妨碍熔体分离,故锌含量不宜过高,一般要小于5%。4、砷、锑等杂质含量也有严格的要求,通常要求As+Sb小于1.2%,如过高,则经配料烧结后,在鼓风炉中形成黄渣的量会增加,而且金属铅的流失量会相应增大,更严重的是会造成粗铅、阳极铅含砷、锑过高;此外在电解精炼过程中,使铅溶解速度变慢,并且阳极泥难以洗刷干净。这样既影响电流效率,又影响生产效率。 另外,MgO、Al2O3等杂质会影响鼓风炉渣型,故一般要求MgO<2%,Al2O3<4%。
冶炼工艺对铅精矿质量的要求
2018-12-19 09:49:46
1)主金属含量不宜过低,通常要求大于40%。含量过低,对整个铅冶炼工艺来讲,单位物料产出的金属铅量减少,从而降低了生产效率。 (2)杂质铜含量不宜过高,通常要求小于1.5%。铜过高,烧结块中铜含量会相应升高,在鼓风炉还原熔炼过程中,所产生的锍量增加:一则使溶于锍中的主金属铅损失增加,二则易洗刷鼓风炉水套,缩短了水套使用寿命,并易造成冲炮等安全事故。另外,含铜太高,也易造成粗铅和电铅中铜含量超标。 (3)锌的硫化物和氧化物均有熔点高、粘度大的特点,特别是硫化锌。如含锌过高,则在熔炼时,这些锌的化合物进入熔渣和铅锍,会使它们熔点升高,粘度增大,密度差变小,分离困难。甚至因饱和在铅锍和熔渣之间析出形成横隔膜,严重影响鼓风炉炉况,妨碍熔体分离,故锌含量不宜过高,一般要小于5%。 (4)砷、锑等杂质含量也有严格的要求,通常要求As+Sb小于1.2%,如过高,则经配料烧结后,在鼓风炉中形成黄渣的量会增加,而且金属铅的流失量会相应增大,更严重的是会造成粗铅、阳极铅含砷、锑过高;此外在电解精炼过程中,使铅溶解速度变慢,并且阳极泥难以洗刷干净。这样既影响电流效率,又影响生产效率。 另外,MgO、Al2O3等杂质会影响鼓风炉渣型,故一般要求MgO<2%,Al2O3<4%。
金矿含砷及其精矿处理方案
2019-02-25 09:35:32
原生金-砷矿石含有1~2%到10~12%的砷黄铁矿。在其他硫化物中,实际上常常有黄铁矿,有时还有磁黄铁矿。在很少情况下,矿藏中不含微粒金。这类矿石能够用化法或许先浮选然后对浮选精矿进行化的办法处理。矿石中大部分金常常呈微粒涣散状包裹在硫化物中。对这类矿石能够进行混合浮选,选出金-砷精矿或许金-砷-黄铁矿精矿。精矿进行焙烧,焙烧渣用化法处理或送冶炼厂冶炼。在焙烧进程中得到含砷的产品。可是,现在对这类产品的需求量不大。假如混合浮选后不能得到抛弃尾矿,那么可对浮选尾矿进行化或许对原矿进行化,而含金硫化物则用浮选法从化尾矿中收回。
浮选金-砷矿石时,有必要对已知的办法进行实验,即分段浮选,矿砂和矿泥别离浮选、在苏打介质中进行浮选等,以便改进金-砷矿石浮选进程的各项目标。浮选砷黄铁矿时,有必要往矿浆中加氧。磨矿进程中构成的碎铁可作为氧的吸收剂。当存在苏打灰时,铁的氧化和吸收氧进行得较慢。所以,在拟定浮选条件时,应当对磨矿机中增加的苏审察(耗量为1~2公斤/吨)进行实验,以便使磨矿机排矿中pH值到达10~10.2,然后在浮选时使其降到8.5~8.8。以硫酸铜作为活化剂是很有利的,其用量为100~200。克/吨。这种药剂应加在扫选中。在单个情况下,金和砷的收回率会跟着矿浆同捕收剂拌和时刻的增加(达20~30分钟)而进步。
有时,选用优先浮选分选出含金的黄铁矿精矿和砷精矿,或许单-的金-黄铁矿精矿是适宜的。假如黄铁矿精矿和砷精矿中的金是用不同办法进行收回或许需得到高晶位的砷精矿时,独自选出黄铁矿精矿和砷精矿是合算的。在下列情况下能够只选出单-的金-黄铁矿精矿:
当浮选尾矿符合抛弃金档次的要求,而砷又无工业价值时;
浮选尾矿中的金与黄铁矿精矿中的金不相同,它能够用化法收回时。
运用石灰或许在石灰介质顶用空气进行氧化,用软锰矿和按捺砷黄铁矿,可使黄铁矿与砷黄铁矿别离。在许多情况下,氧化剂的作用取决于氧化剂运用准则的拟定和遵守得怎么。氧化剂的用量过大,与矿浆触摸时刻过长都会引起砷黄铁矿的活化。
浮选泥质矿石和含碳矿石时的困难很大。矿泥中一般有含碳物质、各种页岩和碳酸盐。在浮选硫化物时,这些组分会进入精矿中,然后进步了精矿的产率和下降精矿质量。此外,矿泥能吸收浮选药剂并阻止硫化物的浮选。为了研讨泥质矿石,首要有必要断定矿石中的含金性并依据其质量能够实验下列办法:
矿石及其加工产品(粗选尾矿、中间产品、扫选精矿)的脱泥。假如有必要,别离后的矿泥应进行吸附化处理;
运用不同药剂(KMLI,IIAA,染料,淀粉等)按捺粗选、扫选或精选作业中的矿泥浮游;
浮选并用药剂处理矿砂部分。
含微粒浸染金的砷黄铁矿精矿和黄铁矿-砷黄铁矿精矿的工业运用问题,现在还未取得处理。因为对砷的各种化合物的需求量有限和这些化合物的毒性大,所以这个问题很难处理。
砷是火法冶金进程中的有害组分,所以送到冶炼厂中的精矿;对其间砷的含量有严厉的约束。
国外出产实践中,遍及选用对金-砷精矿进行焙烧,然后用化法处理焙砂。选用这一办法时,需求细心地从气相中捕收砷,假如砷产品的销路欠安时,还需求花贵重费用将其储存或埋藏起来。最好是选用两段焙烧:I段焙烧的温度为500~580C,并给入少数的空气,Ⅱ段焙烧温度为600~620并给入很多空气。只要这样,焙烧时才干不致生成易熔化合物,且能得到孔隙性杰出的焙砂。焙砂中的砷档次不该超越1~1.5%。假如在较高的温度下和给入过量的空气条件下进行一段焙烧,那将会因生成不易蒸发的盐(例如铁FeAsO4)而进步焙砂中的砷档次。盐会掩盖金的表面,阻止金在化进程中的溶解。对含有雄黄(AsS)和雌黄(As2S3)的物料进行焙烧时,在很大程度上会生成铁。在温度为600~620℃下进行的第二段焙烧大都为氯化焙烧或许氧化-氯化焙烧。在大都情况下;经过这种焙烧可使包裹在黄铁矿或砷黄铁矿中的金较充沛地露出出来。
对含碳的金-砷精矿进行焙烧时,最好分两段进行:在温度为500~600℃以及空气给入量缺乏的条件下进行第-段焙烧,在温度为650~700℃以及给入过量空气下进行第二段焙烧。第-段焙烧应该将砷烧到焙砂中的含量低于1%,而第二段焙烧应将活性碳和硫烧尽。为了使活性碳烧尽,不只需求给入过量的空气以及适当高的温度,并且还需求适当长的时刻。在欢腾焙烧炉中焙烧时,焙烧进程进行的较快,并且焙烧得较彻底充沛。为了在焙烧炉中完成不必燃料的自燃焙烧,精矿的含硫量应为22~24%。
假如焙烧渣送去熔炼,那么就能够进行一段焙烧。砷在这种焙烧渣中的含量容许到达2%。
对金砷精矿或许焙烧后的焙砂进行化处理时,又有其不同的特色。对精矿进行化时,应该预先用碱处理,分段化,用低浓度氧化钙的化溶液进行浸出等。假如原矿或其精矿中含有砷的简略硫化物(雌黄或雄黄),那么在化时有必要用处理含锑矿石及其精矿的办法来进行实验。焙烧后的焙砂,一般需求用水冲刷,然后进行化并使化溶液中NaCN的浓度保持在0.08%以上。经过冲刷能大大下降和石灰的耗量。关于含有难以收回金的焙砂可用两段或许三段化来处理,必要时还能够用碱进行中间处理。碱能溶解砷的氧化物(特别是铁),并能使包裹在这些化合物中的金露出出来。处理焙砂时,需求NaOH的浓度为6~8%的碱溶液。并将矿浆加热到80~90%℃,处理时刻为2~3小时。然后使物料脱水,最终进行化并对液相中的金进行查验分析。往溶液中增加氢氧化物或氧化钙,就能使含Na3AsO4的碱溶液得以再生。砷呈钙方式沉积下来,溶液再用NaOH增浓。
先进行不彻底氧化焙烧,然后进行氯化蒸发是从金-砷精矿中收回金的-种可行办法。氯化蒸发实验的条件如下:焙砂中的含硫量为3.5~4%,NaCl耗量为焙砂分量的7.5~10%,氯化蒸发的温度为1000℃。在这些条件下,约有96~98%的金转入蒸发物中而被收回。
分化金-砷精矿的压热-碱浸办法值得进一步研讨。在温度为100℃,气相中的氧分压为10大气压的条件下,用150~180克/升NaOH溶液对精矿进行2小时的压热处理,就能确保+分彻底地使硫化物分化,使98~99%的砷和硫进入液相。冲刷后浸出渣中的金可用化法(不增加石灰)加以收回。压热分化能够在水介质中,借助于在50大气压下使空气中的氧经过压热浸出器来完成。在这些条件下,砷被氧化并生成铁和硫酸。
细菌浸出是使金-神精矿被氧化的很有发展前途的办法。选用这-办法能适当彻底地使金露出出来。细菌浸出后所得到的砷化合物(主要是盐和亚钙)难溶于水中,并且其毒性很小。这是选用焙烧工艺和火法冶炼时生成的砷化合物所无法比拟的。
为了使砷黄铁矿氧化,主张选用人工培育的铁硫杆菌,其在原始溶液中的浓度为106-107细胞/毫升。细菌浸出的实验是在静态条件下进行的,有必要测定下列主要参数的最佳值:原始细菌溶液的pH值;三价铁的浓度,原始矿浆中的液固比细菌浸出的时刻。
这些参数的原始数值是:pH值;1.8~2;Fe3+的浓度为3~4克/升,液固比=30~50,时刻为300~400小时。然后使细菌适应于详细的条件,溶液进行中间脱砷(增加石灰乳使pH值到达3~3.5),并依照顺流的工艺流程安排细菌浸出实验,力求缩短细菌浸出的时刻和在较稠的矿浆中完成这-办法。关于某些金-砷精矿来说,砷黄铁矿开端氧化的最佳条件是:液固比二5:1,浸出时刻为120~150小时。在砷黄铁矿被氧化的一起,部分黄铁矿(约30~40%)也被氧化。
细菌浸出后的浸出渣需用水洗刷,然后对浸出渣进行化。除了化法之外,还能够用法、水氯化法等进行实验。
为了从黄铁矿和砷黄铁矿中露出出金,还有-些比较新的办法(如机械化学法和电化学法)应引起注重。
部分氧化的矿石中所含的砷有-部分是呈臭葱石和其他氧化矿藏状况存在的。这种矿石中的金被臭葱石薄膜所掩盖,因而难以进行浮选和化。臭葱石可用脂肪酸捕收剂进行浮选。
为了从部分氧化矿石中收回金和砷,可用包含下列作业的流程进行实验:
用巯基捕收浮选金和硫化物,其精矿进行焙烧,焙砂加以化;浮选尾矿用NaOH溶液处理,以便浸出砷和除去金粒表面上的薄膜;残渣用化法处理;用石灰或高浓度NaOH溶液从碱性溶液中沉积砷。石灰能沉积,一起还能使NaOH再生。再生后的NaOH能够循环运用。
铅精矿与富铅渣交互反应的还原熔炼技术
2019-01-07 17:38:09
传统烧结-鼓风炉熔炼工艺中,按硫化铅精矿中硫的质量分数为12%~24%计算,每冶炼1t粗铅有0.6~1.1t的SO2排空。
新的炼铅技术的共同特点是将焙烧与熔炼结合为一个过程,实现铅精矿直接处理,充分利用硫化铅氧化放出的大量热将炉料迅速熔化,产出液态铅和熔渣。直接炼铅仍需要将冶金过程分为氧化和还原两个阶段,在氧化段充分氧化获得低硫铅,在还原段充分还原产出低铅炉渣。本实验探讨熔池熔炼还原段,利用铅精矿和富铅渣之间的交互反应,考察还原段的终渣含铅量、铅回收率(按渣计)、烟气烟尘率、粗铅产率等各工艺指标的影响因素及条件。对其反应机理进行了初步的探讨。
一、试验理论基础
铅精矿和富铅渣之间的主要交互反应如下:
PbS+2PbO→3Pb+SO2(1)
PbS+PbSO4→2Pb+2SO2 (2)
这两个反应在一般高温1000℃时,△G已经很负了。随着温度的升高,△G越来越负,说明从热力学角度来说,交互反应很容易发生。渣中铅化合物的溶化温度低,其熔体的流动牲好,而且与SiO2结合的Pb0挥发性要比纯Pb0小。PbS溶化后流动性大;PbSO4在800℃便开始分解,至950℃以上分解进行的很快。反应式(1)在860℃时的平衡压力达101325Pa;反应式(2)在723℃时的平衡分压为98000Pa。即在较低温度下,两个反应可以剧烈的向右进行。从动力学角度看,熔渣的熔点一般为1200℃左右,试验温度只要能高于渣熔点,则在渣熔融状态下,各种化合物之间接触良好,反应能很好的进行。
二、试验原料及方法
(一)试验原料
本试验所用原料为某厂艾萨炉出来的富铅渣和铅精矿。铅精矿为黑色粉末,粒度小于1mm。化学成分(%):Pb 45.44、Zn 6.46、Fe 8.82、SiO25.34、CaO 1.57、MgO 0.48、Al2O3 1.00、S 17.86、Cu 2.43、Ag 0.266。定性物相分析结果表明:铅精矿主要含PbS、ZnS、FeS、SiO2、FeS2、PbSO4。
富铅渣为浅粉色块状,化学成分(%):Pb53.97、Zn 6.46、Fe 8.64、SiO2 8.31、CaO 3.07、MgO 0.75、Al203 1.78、S 0.17、Cu 0.73、Ag0.0197,堆密度3.05 g/cm3。XRD分析表明:铅物相以PbZnSiO4、PbO、Pb存在。其中PbZnSi04在高温下发生如下反应分解成PbO:
PbZnSiO4→PbO+ZnO+SiO2
故本试验可将富铅渣中的Pb看做以Pb0形式存在,并以此进行配料计算,确定各种料的加入量。
试验所用熔剂为:石灰石(CaO 51.2%,MgO3.17%);石英砂(SiO2 93.83%)。
(二)试验方法
根据可能发生的交互反应方程式,先计算出富铅渣和铅精矿所需的理论量,再以富铅渣与铅精矿中FeO成分含量的总和为渣型选择的计算基础,然后根据选定的渣型计算所需各溶剂的质量。将富铅渣、铅精矿、石灰石、石英砂分别先经破碎,磨细后,再充分混合均匀,加水湿润后制团,最后烘干12h以上。每次称2kg左右的混合料加人高15cm,内径14 cm的碳化硅坩埚中,从电炉底部进料。用一个Pt/Pt-13%Rh型热电偶检测炉内试验样料的温度,通人高纯氩气排除炉内空气并起轻微的搅拌作用;通过调节电炉的程序参数,设定好每次试验反应温度和时间;反应结束后,观察形成的铅渣表面现象,判断是否产生了泡沫渣,再称量铅渣和粗铅,并分析各主要成分含量。由于试验条件有限,未能检测SO2浓度和烟尘率,本试验将烟气烟尘率看做一个技术指标,计算式为:
烟气烟尘率=(加入坩埚的炉料总量-反应后粗铅和铅渣的量)÷加入坩埚的炉料总量
三、试验结果及讨论
(一)渣型对终渣含铅量和烟尘率的影响
炼铅炉渣是个非常复杂的高温熔体体系,它由SiO2、FeO、CaO、MgO、Al2O3、ZnO等多种氧化物组成,并且它们之间可相互结合形成化合物、固熔体、共晶混合物。为了讨论渣型与结晶相的关系,将多元系简化为三元系:FeO-CaO-SiO2。将渣中该三相的成分换算为100%,再查看FeO-CaO-SiO2三元系相图,根据图中渣温度1 100~1 300℃区域,选择试验3个成分含量。A Perillo提供了维斯麦港基夫赛特法炼铅厂的投产与生产指标,炉渣的化学成分:FeO39%,SiO2 38%,CaO 23%。
试验条件:固定温度1250℃,时间5h,配料比1.0。试验编号分别为(1)-FeO 40%,SiO2 35%,CaO 25%;(2)-FeO 37.5%,SiO2 37.5%,CaO25%;(3)-FeO 35%,SiO2 40%,CaO 25%;(4)-FeO 35%,SiO2 37.5%,CaO 27.5%;(5)-FeO35%,SiO2 35%,CaO 30%。
试验结果表明CaO含量保持为25%,相应的SiO2含量减小时,试验(1),(2),(3)的渣含铅分别为3.48%,4.76%,5.87%;烟气烟尘率分别为36.9%,32.6%,28.1%。FeO含量固定为35%时,相应的SiO2含量减小时,试验(3),(4),(5)的渣含铅分别为5.87%,1.41%,3. 86%;烟气烟尘率分别为28.1%,42.25%,35.6%。
根据熔渣结构的离子理论,适当增加碱性氧化物有利降低炉渣黏度。但碱性氧化物过高时可能生成各种高熔点化合物,使炉渣难熔,渣黏度升高。对于FeO-CaO-SiO2三元系炉渣,但CaO含量超过30%时,黏度将随CaO含量的增加而迅速加大。SiO2/Fe过大,黏度高,排放困难,提高Ca0/SiO2,可降低渣的黏度。从试验结果数据可看出:当炉渣组成为FeO 35%、SiO2 37. 5%、CaO 27. 5%时,烟气烟尘率为42.25%,渣含铅1.41%为最低。
(二)配料比对终渣含铅量和烟尘率的影响
渣型FeO 35%,SiO2 37.5%,CaO 27.5%,保温时间定为3h,温度为1250℃的条件下。以100 g富铅渣为计算基础,理论需要消耗铅精矿71.297g,试验中铅精矿用量分别为理论量的0.9、0.95、1.0、1.05、1.1、1.15和1.2倍。
从图1可看出,在其他条件不变的情况下,随配料比增加,渣含铅呈先减小后增大的趋势,在配料比为1.0有最小值;烟气烟尘率呈先增大后减小的趋势,与渣含铅趋势相反,即渣含铅低时则烟气烟尘率高。鉴于两者的矛盾关系,折中取定试验条件,故此后试验定配料比为 1.1,此条件下渣含铅2.61%,烟气烟尘率33.63%,能基本满足工业上对工艺指标的要求。图1 配料比对终渣含铅和烟尘率的影响
(三)反应温度对终渣含铅和烟尘率的影响
为减少烟尘量,必须严格控制炉内温度。如果能抑制铅及化合物的挥发,烟尘中氧化锌含量就会提高,就可以进入氧化锌系统进行处理。从沸点和平衡蒸气压分析,锌的挥发要比铅容易得多。如果试验中还原温度真正控制在1150~1200℃,Pb和PbO的蒸气压都只有1.3~6.7kPa,铅的挥发率不会如此高。
渣型FeO 35%,SiO2 37.5%,CaO 27.5%,保温时间5h,配料比1.1。试验结果见图2。图2 反应温度对降低终渣含铅量,烟气烟尘率的影响
从图2可看出,其它试验条件不变时,渣含铅随温度的升高而降低,在1250℃有最小值,1300℃时反而渣含铅比其高。观察1300℃的试验现象,渣孔(从粗铅到渣表面)多,推测温度较高于渣熔点时,渣熔体流动性大,反应产生的气体更容易从渣孔隙跑出液面,同时使得渣中的铅及其化合物未能很好的沉降分离,所以渣含铅偏高;烟气烟尘率随温度升高而逐渐增大,1300℃时,烟气烟尘率高达48.82%。烟气烟尘率太高,对后续的收尘系统是个负担,会导致生产成本增加,严重时,会造成烟尘积压。综合考虑后选定温度为1250℃。
(四)反应时间对终渣含铅量和烟尘率的影响
渣型FeO 35%,SiO2 37.5%,CaO 27.5%,温度1250℃,配料比1.1。试验结果见图3。图3 反应时间对终渣含铅量和烟尘率的影响
从图3可以看出,随着反应时间的延长,交互反应进行得越彻底,渣、铅分离沉降时间长,分离效果更好,则渣含铅逐渐减少;而烟气烟尘率逐渐增加。反应时间短,能缩短排渣周期时间,能提高床能率。试验时间为3h条件下,渣含铅2.61%,烟气烟尘率33.63%。
(五)反应温度对粗铅产率和渣产率的影响
渣型FeO 35%,SiO2 37.5%,CaO 27.5%,时间3h,配料比1.1。试验结果见图4。图4 反应温度对粗铅产率和渣产率的影响
从图4可看出,随反应温度的升高,各种化合物和金属的挥发量增多,粗铅产率从27.23%降至14.62%,产渣率也逐渐减小。故反应温度不易过高,折中选择1250℃为较好,此条件下,粗铅产率22.76%,产渣率43.61%。
(六)反应时间对粗铅产率和渣产率的影响
固定渣型FeO 35%,SiO2 37.5%,CaO 27.5%,温度1250℃,配料比1.1。反应时间对粗铅产率(占点炉料)和渣产率的影响结果见图5。图5 反应时间对粗铅产率和渣产率的影响
从图5可以看出:(1)随着反应时间的增加,粗铅产率从19.23%升至25.83%。时间长有利于渣铅沉降分离,同时能让其它各种金属化合物有足够时间发生还原反应,再以金属状态进入粗铅;(2)渣产率逐渐减少。时间长,渣中易挥发的化合物及被产出的气体气泡带走的物质则更多的进入烟气烟尘中,增加了收尘负荷。时间为3h时,粗铅产率22.76%,渣产率43.61%。
(七)其它反应效果的比较及分析
不同试验条件下,反应后,其它各成分含量变化不大。粗铅中的铅含量95.01%~96.12%;Ag含量0.28%~0.36%;S含量0.11%~0.19%;铜含量0.31%~0.56%。铅渣其它成分含量:S含量1.89%~2.37%;Zn含量2.47%~6.33%。且呈现渣含铅低,则含Zn亦低的试验现象。推测在相同工艺条件下,原料中铅化合物和锌化合物与其它物质之间发生的反应机理相似,故两者在铅渣和烟尘中呈正比例含量关系。随着反应时间的延长和反应温度的提高,各种化合物逐渐分解,易挥发物更多的进人烟尘,渣中较难挥发物SiO2、FeO、CaO的含量都有稍微增加的趋势。在渣含铅
四、结论
在熔池熔炼还原段采用铅精矿和富铅渣的交互反应可满足工业实践的各项经济技术指标。最优工艺条件:渣型三主要组成含量折算为FeO 35%,SiO2 37.5%,CaO 27.5%,温度1250℃,时间3h,配料比1.1。在此条件下可得到渣含铅2.61%,铅的回收率(以渣计98.21%,脱硫率91.5%,烟气烟尘率33.63%,粗铅产率22.76%,渣产率43.61%。
铅精矿在鼓风炉熔炼之前的准备工作
2018-12-19 09:49:38
铅精矿在被鼓风炉熔炼之前必须把铅精矿在熔炼前进行预备作业即烧结焙烧,其目的:(1)除去铅精矿中的硫,如含砷及锑较多也须将其除去;(2)将细料烧结成块。 因此,在焙烧过程中,除进行氧化反应外,还必须使细料结块。这种同时完成两个任务的焙烧法,称为烧结焙烧或简称为烧结,而呈块状的焙烧产物称为烧结块或烧结矿。当用鼓风炉还原熔炼法处理块状富氧化铅矿时,不需要进行烧结焙烧,只要将矿石破碎至一定的块度,就可送往鼓风炉直接熔炼。如果要进行处理的不是块矿而是细碎的氧化铅精矿,仍须先行烧结或制团,然后才加入鼓风炉熔炼。铅精矿的烧结焙烧是强化的氧化过程,即将炉料装入烧结机中,在强制地鼓入或吸入大量空气的条件下,加热到800-1000℃,使之着火并继续燃烧,其中金属硫化物便发生氧化,生成各种金属氧化物和硫酸盐。