铅精矿价格
2017-06-06 17:49:58
铅精矿价格是很多铅精矿企业关注的重点。 2010年7月12日讯,现货铅精矿价格今报14700-14900元/吨,上涨50元/吨。美股与欧元的反弹给伦敦金属市场带来不少乐观情绪,伦铅连续7日持稳,涨势虽微,但昨日已收高至1800美元以上。国内现货市场买气回温,部分贸易商报价持平,另一些贸易商则适当调高50元/吨左右出货。伦铅小幅攀升,但国内铅精矿价格上行压力较大,下游主动接货意愿依然较低,云南铅寡淡交投于14700-14750;品牌铅在14800。隔夜伦铅以1755开盘,最高1805美元/吨,最低1754,截至收盘报1775美元/吨,涨1%。LME总持仓96551手,增加290手。LME库存减少275吨,昨日报18.93万吨。 现货市场某铅贸易商说:“因为最近希望能多出点货,我们铅精矿价格还是持平在14700元/吨,和昨天一样。最近云南铅、金沙铅都有在出,每逢周末,成交量基本都会多少增加一些,今天出了170吨左右,还算不错。”但也有贸易商告诉我们:“前一阵我们这里的成交情况很好,很多老客户都选择了那时来采购。也许正因如此,这几天的成交量就减少了不少。今天云南铅铅精矿价格14750元/吨,也有一些厂家认为价格高了点,选择持币观望。” 宏观面:美国供应管理协会(ISM)周二公布,6月非制造业指数为53.8,预估为55.0,5月为55.4,数据令人失望,尽管读数在50以上。美国近日公布的经济数据表现疲弱明显拖累美元走势,昨日美元兑欧元下跌 至 6 周低点,美元兑日元也下跌至 7 个月以来的低点。美元走弱支持基本金属大幅反弹,但毕竟投资人担心全球经济增长前景,在需求没有好转,精铅仍供应过剩的背景下,伦铅最终冲高回落。 中国目前是全球第一大铅生产国,国内2009年达到273.5万吨,占全球产量约34%;此外,中国也是出口大国,2009年精炼铅出口量高达537092吨,同比增长18%。分析师则认为,国内铅精矿短缺量并不大,只是冶炼/精炼阶段存在盈利性瓶颈;减产只能在近期内使市场短缺。目前国内铅精矿供应明显增长。根据国家统计局提供的数据,国内前5个月精炼铅产量为109.27万吨,同比增长6.7%,5月份产量同比增长14.6%,铅精矿产量为28.45万吨,同比增长10.1%,5月份同比增长22.2%。 更多关于铅精矿价格的资讯,请登录上海有色网查询。
铅精矿价格
2017-06-06 17:49:53
由于目前铅精矿被广泛地运用在各行各业,所以铅精矿价格也备受业内人士的关注。我们上海有色网是一家关于有色金属方面资讯的网站,我们希望您在关注铅精矿价格的同时也能多去我们的网站了解相关铅精矿价格的信息。铅是人类从铅锌矿石中提炼出来的较早的金属之一。它是最软的重金属,也是比重大的金属之一,具蓝灰色,硬度1.5,比重11.34,熔点327.4℃,沸点1750℃,展性良好,易与其他金属(如锌、锡、锑、砷等)制成合金。锌从铅锌矿石中提炼出来的金属较晚,是古代7种有色金属(铜、锡、铅、金、银、汞、锌)中最后的一种。锌金属具蓝白色,硬度2.0,熔点419.5℃,沸点911℃,加热至100~150℃时,具有良好压性,压延后比重7.19。锌能与多种有色金属制成合金或含锌合金,其中最主要的是锌与铜、锡、铅等组成的黄铜等,还可与铝、镁、铜等组成压铸合金。 铅精矿用途广泛,用于电气工业、机械工业、军事工业、冶金工业、化学工业、轻工业和医药业等领域。此外,铅金属在核工业、石油工业等部门也有较多的用途。以上是我们网站为各位用户简单地介绍有关铅精矿价格以及基本信息,希望您还能多多关注我们上海有色网的其他金属,我们能够为您提供最新的实时金属价格。
世界铅精矿的生产
2018-12-10 09:46:12
1970-2009年,世界铅精矿长期增长率为0.3%,2000-2009年年均递增2.2%,2009年为385.1万吨。西方国家铅精矿产量长期处于下降趋势,中国是世界铅精矿增长的主要力量。 世界铅精矿的主要生产国有中国、澳大利亚、美国、秘鲁和墨西哥,2009年上述国家铅精矿产量在世界总产量中占到77%。
世界主要铅精矿生产企业有道朗公司(Doe Run)、必和必拓(BHP Billiton)、超达(Xstrata)、泰克资源公司(Teck Resources)等。2009年,世界前10家生产企业铅精矿产量在世界总产量中占到33.6%。世界主要铅矿山有美国的韦伯纳姆矿(Viburnum)铅锌矿、澳大利亚的坎宁顿(Cannington) 银铅锌矿和伊萨山(MountIsa) 铅锌矿、加拿大的红狗铅锌矿(Red Dog)等。2009年,世界前10大矿山的铅精矿产量在世界总产量中占到26.9%。
世界精铅的生产
世界精铅生产主要集中在亚洲、欧洲和美洲三大地区,2009年,这三大地区的精铅产量达到847.8万吨,占全球总产量的96.1%;其中亚洲占比达到55.5%。
二十世纪八十年代以前,世界精铅产量在西方产量的增长推动下上扬。1960-1980年间,世界精铅产量的年度增幅为2.7%,其中西方国家精铅产量增幅达到2.6%。九十年代以后,中国铅冶炼产能的迅速扩张,引导中国精铅产量迅猛增长,成为世界精铅产量增长的主力军; 同期,西方国家精铅产量维持在500万吨下方。1990-2009年间,世界精铅产量年度增幅为2.5%,其中西方国家的产量增幅仅为0.2%,而中国达到了13.5%。
亚洲在精铅生产方面与美洲、欧洲明显不同,前者以原生铅为主,而后两者以再生铅为主。2009年,亚洲再生铅产量占其总产量的比例为41.2%,低于世界平均水平的56.4%,欧洲、美洲再生铅产量在总产量中所占比重分别高达76.4%和81.2%。
分国别来看,精铅生产主要集中在中国和美国,2009年上述两国精铅产量为494.5万吨,占全球总量的56.1%。但两国的生产方式截然不同,中国以原生铅为主,美国以再生铅为主。2009年中国精铅产量为370.8万吨,其中再生铅为123.3万吨,所占比重为33.2%。美国2009年精铅产量为123.7万吨,其中再生铅所占比重高达91.4%。 (miki)
铅精矿质量标准
2019-01-21 09:41:32
铅精矿质量标准品级Pb质量分子数不小于 %杂质质量分子数不大于 %CuZnAsMgOAl2O3一级品701.240.21.02.0二级品651.550.31.52.5三级品552.060.41.53.0四级品452.570.62.04.0注:铅精矿中金、银为有价元素,应报分析数据;其他类型铅精矿的杂质要求由供需双方商定
铅精矿的化学成分
2018-12-19 09:49:46
铅精矿是由主金属铅(Pb)、硫(S)和伴生元素Zn、Cu、Fe、As、Sb、Bi、Sn、Au、Ag以及脉石氧化物SiO2、CaO、MgO、A12O3等组成。为了保证冶金产品质量和获得较高的生产效率,避免有害杂质的影响,使生产能够顺利进行。
铅冶炼工艺对铅精矿的要求
2018-09-20 09:53:10
1、主金属含量不宜过低,通常要求大于40%。含量过低,对整个铅冶炼工艺来讲,单位物料产出的金属铅量减少,从而降低了生产效率。2、杂质铜含量不宜过高,通常要求小于1.5%。铜过高,烧结块中铜含量会相应升高,在鼓风炉还原熔炼过程中,所产生的锍量增加:一则使溶于锍中的主金属铅损失增加,二则易洗刷鼓风炉水套,缩短了水套使用寿命,并易造成冲炮等安全事故。另外,含铜太高,也易造成粗铅和电铅中铜含量超标。3、锌的硫化物和氧化物均有熔点高、粘度大的特点,特别是硫化锌。如含锌过高,则在熔炼时,这些锌的化合物进入熔渣和铅锍,会使它们熔点升高,粘度增大,密度差变小,分离困难。甚至因饱和在铅锍和熔渣之间析出形成横隔膜,严重影响鼓风炉炉况,妨碍熔体分离,故锌含量不宜过高,一般要小于5%。4、砷、锑等杂质含量也有严格的要求,通常要求As+Sb小于1.2%,如过高,则经配料烧结后,在鼓风炉中形成黄渣的量会增加,而且金属铅的流失量会相应增大,更严重的是会造成粗铅、阳极铅含砷、锑过高;此外在电解精炼过程中,使铅溶解速度变慢,并且阳极泥难以洗刷干净。这样既影响电流效率,又影响生产效率。 另外,MgO、Al2O3等杂质会影响鼓风炉渣型,故一般要求MgO<2%,Al2O3<4%。
高银含铜金精矿氰化技术
2019-02-11 14:05:38
浙江遂昌金矿挖掘贫硫化物石英脉型金矿,原矿中金含量9.7g/t,银含量高达242.96g/t,矿藏组成比较复杂,但仍归于易选矿石,金以中细颗粒居多。首要赋存于金银矿和银金矿中,需求细磨才干使金银矿藏单体解离。自1986年建成300t/d采选规划以来,靠单一浮选工艺,曩昔金精矿出售给富春江冶炼厂。为了完成就地产金,削减精矿运送丢失,加速资金周转,进步厂商效益,1989年建成化车间并投入出产。该矿金精矿化学组成见表1。
表1 浙江遂昌金矿金糟矿化学组成元素Au(g/t)Ag(g/t)CuPbZnFe含量(%)98.722984.770.370.612.00530.27元素SMnSiO2Al2O3CaOMgO含量(%)33.370.3323.856.890.4760.182
该矿在建厂前曾进行专门实验,但成果收支预料。众所周知,化法收回银一般收回率不高,而这次实验银收回率高达95.15%;其次精矿磨矿粒度到达-320目占77.60%金浸出率最高,过磨反而下降;要使银在化溶液中溶解,生成银络合物,有必要坚持较高的浓度,根浓度坚持在0.08%左右,耗量高达8.1kg/t。
在实验研讨基础上建成两浸两洗、锌粉置换、酸化法污水处理、金泥火法冶炼工艺流程,经多年出产实践其金银化收回率别离达97.15%与90.26%。取得极佳作用。其首要特色为:(1)高浓度根浸出加适度磨矿,即一320目占75%左右,一浸作业根浓度操控在0.08%~0.10%之间,二浸作业操控在0.06%-0.08%上下;(2)选用主动立式压滤机过滤浸渣,化尾渣即为硫精矿,含硫30%~35%就近出售给化工厂制酸;(3)该矿地处江南水乡,人口稠密,水系兴旺,若选用普通圆筒型过滤机,其滤饼含水将高达20%,硫精矿外运需求通过几个村庄。车箱密封不严必定散落,将会对环境形成严峻污染,但选用主动立式压滤机后滤饼水份降至8%~10%。呈干饼情况,契合环保要求。
一般以为。金精含铜档次大于1%时采纳化工艺是不经济的,首要原因是铜矿藏会很多耗费。然后影响金的浸出率;一起,因为铜矿藏在浸出过程中很多被溶解而使铜无法得到有用收回。铜矿藏在溶液中的溶解度见表2。但是。广东高要河台金矿在金精中却很好处理了这个问题。该矿挖掘含金蚀变糜棱岩型矿床,表8铜矿藏在0.099% NaCN溶液中的溶解度矿石中含铜档次0.2%~0.3%。矿石浮选后得金精矿,1998年前悉数销往冶炼厂。因为冶炼厂压水份、压档次与延迟返还货款以及长途运送和损耗等原因。厂商经营情况一向被迫。为了改动这种相貌并完成就地产金于1998年展开金精矿化项目技术改造,含铜精矿多元素分析见表3。其间氧化铜相对含量仅9.01%,其他为硫化物,在惯例化浸出实验中即运用碱作了预处理。耗量仍l2kg/t。金浸出率96%,比较抱负。为了下降耗量。该矿工程技术人员作了深化探究与研讨,通过多年尽力采纳某种特殊办法,使耗量降至8kg/t。
表2 铜矿藏在0.099% NaCN溶液中的溶解度矿藏称号分子式铜溶解率(%)23℃45℃金属铜
蓝铜矿
赤铜矿
硅孔雀石
辉铜矿
黄铜矿
斑铜矿
孔雀石
硫砷铜矿
黝铜矿Cu
2CuCO3·Cu(OH)2
Cu2O
CuSiO3
Cu2S
CuFeS
FeS·2Cu2S·CuS
CuCO3·Cu(OH)2
3CuS·As2S5
4Cu2S·SB2S390.0
94.5
85.5
11.8
90.2
5.6
70.0
90.2
65.8
21.9100.0
100.0
100.0
15.7
100.0
8.2
100.0
100.0
75.1
13.7
表3 河台金矿金精矿多元素分析成果元素Au(g/t)Ag(g/t)CuPbZnFeS含量(%)96.034.04.70.0380.1020.2114.08元素NiMgOAl2O3CaOSiOCaOC含量(%)0.0490.020.898.9544.920.660.34 为了持续下降耗量并进行改造,原化流程为增加浸出时刻采纳边磨边浸。将化贫液回来再磨作业,浸渣尾矿档次偏高,改造时采纳如下办法:一撤销边磨边浸流程,贫液不再回来再磨作业,而回来浸出矿浆中;二是磨前增加石灰,将矿浆操控pH=9左右;三是进步再磨细度,使-400目占90%以上,依然采纳二浸二洗流程,耗量由8.01kg/t降至4.59kg/t的正常水平。金浸出率再进步1.27%。达98.43%。该矿金精矿化工艺为这类金矿闯出一条新路。 但是,含铜金精矿处理办法按含铜量凹凸区分,基本规律是铜含量越高金浸出率越低,惯例化答应含铜量在1%以下;含铜在1%~6%时,即要采纳特殊办法才干到达惯例目标;含铜大于6%时,如长白山一带的小西南岔、珲春金铜矿以及长江中下游的鸡冠嘴、鸡笼山、桃花嘴等金矿,其铜档次较高,金精矿销往冶炼厂。其间如鸡冠嘴金矿原矿档次金2.74 g/t、铜1.595%、铁40.82%、硫l6.53%。还伴生有Ag、Mo、Se、Ni等元素。但珲春金铜矿的金精矿化浸出实验,铜档次达l2.5%,惯例化时金浸出率仅43.64%。但脱药后选用一混合液炭浸法,可使金浸出率进步至93.43%。是否建厂出产则不详。
冶炼工艺对铅精矿质量的要求
2018-12-19 09:49:46
1)主金属含量不宜过低,通常要求大于40%。含量过低,对整个铅冶炼工艺来讲,单位物料产出的金属铅量减少,从而降低了生产效率。 (2)杂质铜含量不宜过高,通常要求小于1.5%。铜过高,烧结块中铜含量会相应升高,在鼓风炉还原熔炼过程中,所产生的锍量增加:一则使溶于锍中的主金属铅损失增加,二则易洗刷鼓风炉水套,缩短了水套使用寿命,并易造成冲炮等安全事故。另外,含铜太高,也易造成粗铅和电铅中铜含量超标。 (3)锌的硫化物和氧化物均有熔点高、粘度大的特点,特别是硫化锌。如含锌过高,则在熔炼时,这些锌的化合物进入熔渣和铅锍,会使它们熔点升高,粘度增大,密度差变小,分离困难。甚至因饱和在铅锍和熔渣之间析出形成横隔膜,严重影响鼓风炉炉况,妨碍熔体分离,故锌含量不宜过高,一般要小于5%。 (4)砷、锑等杂质含量也有严格的要求,通常要求As+Sb小于1.2%,如过高,则经配料烧结后,在鼓风炉中形成黄渣的量会增加,而且金属铅的流失量会相应增大,更严重的是会造成粗铅、阳极铅含砷、锑过高;此外在电解精炼过程中,使铅溶解速度变慢,并且阳极泥难以洗刷干净。这样既影响电流效率,又影响生产效率。 另外,MgO、Al2O3等杂质会影响鼓风炉渣型,故一般要求MgO<2%,Al2O3<4%。
含铜金精矿选择性浸金研究
2019-02-20 10:04:42
一、导言
关于金以非包裹方式存在的含铜金矿石,直接化浸出能够到达较高的金浸出率,可是因为铜的存在,使耗量大大增加,从而使直接化办法变得不经济。金的高浸出率与金收回经济性是此类金矿石浸出研讨上应处理的要点问题。挑选性浸金办法,因为其保证金有较高浸出率的一起,又下降了铜对浸出的搅扰,值得深化研讨。
针对不同的意图,挑选性浸金的办法较多,除了传统的分步浸出外,浸出、硫代硫酸盐和法得到了深化研讨和使用。和硫代硫酸盐作为的代替品,从“无毒提金”视点,在近几十年现已得到广泛研讨。在酸性溶液中,以Fe3+为氧化剂,因其较快的浸出动力学速度(比化快5倍)而倍受青睐[1,2]。硫代硫酸盐办法除了无毒外,取得最大的成功是对碳质金矿石的浸出,成功处理了“劫金”的难题[3~5]。一起,很多学者在研讨中发现浸金和硫代硫酸盐浸金办法还能够下降金矿石中铜、砷、锌和镍等金属杂质的搅扰,可是,很显着这并不是和硫代硫酸盐浸金办法研讨的要点内容。法自从20世纪90年代被提出,至今也未对浸出机理、Cu+和的效果构成共同的观念。这反映了该系统固有的杂乱性。关于含铜金矿石,与化法比较,系统浸金的一切研讨成果都标明,该办法能有用下降耗量,进步或坚持较高的金浸出率[6,7]。笔者用4种挑选性浸金办法,即法、硫代硫酸盐法、分步浸取法和法,对山西某地含铜金精矿进行了浸出实验,并对效果较好的法进行了中试,开始断定了该金精矿的浸取工艺。
二、矿石性质
实验精矿样品取自山西某金矿的浮选厂。该矿床属中温热液金矿床,矿石类型为原生矿石。矿石中金属矿藏首要为黄铁矿、黄铜矿、闪锌矿和方铅矿,脉石矿藏首要为石英、长石和方解石。矿石中金矿藏有天然金和银金矿。金矿藏粒径呈次显微金,形状杂乱多样,有粒状、片状、树枝状和细脉状等,首要以裂隙金和晶隙金的方式产于黄铁矿、黄铜矿和石英中。试样的光谱分析成果见表1,首要元素分析成果见表2。试样的天然粒级为:大于200目占20%,200~320目占26.5%,小于320目占53.5%。
表1试样的光谱分析成果表2精矿中首要元素含量试样的直接化浸出实验成果标明,金的浸出率较高,但耗量高达130kg/t。该成果与矿石性质共同,即金以裂隙金或晶隙金的方式存在使精矿具有杰出的化可浸性,但较高的含铜量,形成高的耗费。直接化浸金的实验条件及成果见表3。
表3直接化实验条件及成果三、实验室实验
(一)实验办法
针对该金精矿具有较高化浸出率和较高的耗这一特征,对浸金的工艺计划进行了实验挑选,包含浸出、硫代硫酸盐浸出、分步浸出和法浸出等4种计划。
国内外很多学者对浸出、硫代硫酸盐浸出和法浸出的影响要素现已进行过深化的研讨。
浸出中,影响金浸出率的首要要素为浸出时刻、浓度、Fe3+浓度和硫酸浓度[1,2,8~11]:用量8~12kg/t(质量分数1%左右)、硫酸质量浓度20g/L(0.15mol/L)、Fe3+质量分数为0.3%~0.4%时,金的浸出率较高;浸出时刻在4h今后,金的浸出率不再持续升高。
硫代硫酸盐浸出中首要影响要素是温度、pH、S2O2
浓度、Cu2+浓度、NH3浓度。浸出温度的最佳规划是35~50℃。其实对温度的要求,首要考虑办法的经济性和工艺的可行性问题。很多研讨者对工艺可到达的温度规划进行实验研讨。该办法浸出的pH规划极窄,仅在pH9~10之间。在硫代硫酸盐浸出系统中,Cu2+和NH3对金的溶解有显着的加快效果。别的,在SO2-4存在的条件下,SO2-3适量增加能够显着地下降S2O2-3的耗费量,起到安稳S2O2-3的效果。视矿石性质不同,硫代硫酸盐浸出的最佳条件一般为[3~5,12~15]:温度40~50℃,pH9~10,S2O2-3浓度0.4~018mol/L,SO2-3浓度0.25~0.5mol/L,SO2-4浓度011~0.2mol/L,Cu2+浓度0.01~0.04mol/L,浓度0.5~1.0mol/L。
法浸出中最首要的影响要素是比。不同学者研讨时选用的不同最佳比,表现了系统浸金机理所固有的杂乱性,比的规划从1∶1~4∶1。的浓度应视浸出系统中铜的溶解状况而定[6~7,16]:一般来讲,为了使和铜以安稳的Cu(NH3)2+4方式存在,NH3与Cu2+抱负的配比是4∶1;能够使Cu(NH3)2+4安稳的pH规划为8~10.5,该pH规划也是浸出系统中最佳的pH规划。
综上所述,结合本次实验样品的性质,首要进行了浸出、硫代硫酸盐浸出和法浸出的条件实验。对浸出,进行了质量分数(0.5%和1.0%)、Fe3+质量分数(0.3%和0.5%)等4组条件实验。对硫代硫酸盐浸出,进行了温度(23℃、40℃和60℃)、pH(pH8、pH8.5和pH9)、S2O2-3浓度(0.25mol/L、0.5mol/L和1.0mol/L)、Cu2+浓度(0.02mol/L和0.04mol/L)、SO2-4浓度(0.05mol/L和0.1mol/L)等12组条件实验。对法浸出,进行了比(2∶1和3∶1)、加铜与不加铜、参加类型(NH4HCO3,NH3·H2O,NH4Cl)、浸出时刻(12h、24h和48h)、矿石粒度(原粒度和95%小于320目)等14组条件实验。以金的浸出率为优化标准,断定的浸出、硫代硫酸盐浸出和法的最佳浸出条件实验成果见表4、表5、表6。
表4浸出条件表5硫代硫酸盐浸出条件表6 系统浸出条件分步浸取选用了焙烧—硫酸浸铜—化浸金的实验计划。在马弗炉中通过600℃的焙烧,用20g/L的硫酸进行了浸铜预处理,浸铜渣进行了惯例拌和化浸金。
一切浸出实验选用可调式电动拌和器,在1L烧杯中拌和浸出。拌和实验样品质量均为100g,液固比为3∶1。除硫代硫酸盐浸金在40℃的水浴中进行外,其他均在室温下进行。拌和浸出完毕后,将矿浆过滤,对滤渣和浸出液进行相关分析测定。
(二)分析办法
实验触及的首要分析办法如下:Au,Ag,Cu分析选用原子吸收法。CS(CN2)2分析用氧化复原滴定法。CN-分析用二硫腙滴定法。pH值用pH试纸和pH计测定。氧化复原电位用电位仪测定。
室内实验中基准试剂用基准纯,NaCN为工业品(含量98%),其他试剂均用分析纯。扩展实验中浸出试剂均为工业品。
四、果与评论
(一)浸出系统中金的浸出效果
在、硫代硫酸盐、分步浸出和法浸出中金的浸出率见表7。
表7 不同挑选性浸出计划中的金浸出率从优化的浸出条件和浸出成果能够看出:浸金中,浸出时刻短,速度快,但浸出目标低,金的浸出率仅为77%左右,并且耗量大,使该工艺在经济上不可行,别的,酸性的浸出环境给工艺带来困难;硫代硫酸盐浸金进程中需求Cu2+,而铜金矿、浸出时能够供给部分的Cu2+,并且浸金速度快,只需5h就能够到达较高的浸出率,但该办法有较高的温度要求,浸出条件严苛(pH规划及试剂增加量要求严厉),浸出系统杂乱,试剂耗费量大;在分步浸取中,试样通过焙烧后,硫酸浸铜能够预先除掉48%左右的铜,使化浸金的耗量大大下降,仅为6kg/t,但焙烧使原本
易浸的天然金包裹,变得难浸,金的浸出率仅为8154%;系统对金的浸出有较好的挑选性,在耗为14.7kg/t时,金的浸出率达90.23%,并且试剂廉价,而同在耗为14.7kg/t时,直接化金的浸出率为49.33%,法比直接化金的浸出率进步了40%左右。
(二不同浸出系统的影响
直接化中,铜的溶解率到达55.84%,因而单一的化对铜没有挑选性。
浸出中,铜的溶解率为6.0%,这对系统浸金没有直接影响,从理论上也是如此。别的,从理论上分析,铜的浸出对溶液中Fe3+有必定的耗费,但对转化进程(氧化为二硫甲脒)不会有影响,这从铜、铁和在酸性溶中标准电极电位能够看出(见表8)。因而,铜对系统浸出的影响较小。
表8 酸性溶液中有关电对的标准电极电位(298.15K)铜对硫代硫酸盐浸出的影响非常杂乱。在实验条件下(参加Cu2+量0.02mol/L),试样中的铜有4.4%的溶解(相当在溶液中弥补了0.005mol/L的Cu2+)。假如参加Cu2+浓度为0.04mol/L,则会呈现铜的沉积(相对试样中的铜含量沉积了4.57%,即相关于下降溶液中Cu2+浓度0.017mol/L)。因而,在最佳实验条件下铜的浓度应为0.025mol/L左右,铜比为1∶32,显着铜比并不是理论上的1∶4,而是小得多。硫代硫酸盐浸出中,Cu2+参加了浸金反响,起到使S2O2-3安稳的效果。因为铜在硫代硫酸盐浸出中是浸出剂,因而,该办法对铜的挑选性表现在对含铜矿石中铜的使用。
在系统中,通过条件实验不需求参加铜就能够完成金的浸出(成果未列出)。这首要是因为在浸出进程中试样中有8.8%的铜溶解(相当于溶液中增加了Cu2+0.01mol/L),现已满意了浸出系统的需求。假如别的参加Cu2+,金的浸出率反而会下降。许多研讨标明,在系统中铜比在1∶4~1∶6为宜,以便使Cu(NH3)2+4安稳的存在。但本次研讨中,铜比为1∶9,可能是过量的的存在并不阻碍系统的浸金功能,这值得进一步研讨。和硫代硫酸盐浸出具有相似性,在系统中,铜也是作为浸出剂被使用。
综上所述,在4种挑选性浸金办法中,法浸金不仅能到达抱负的浸出目标,完成挑选性浸金,并且工艺简略,经济合理。
五、扩展实验
根据室内实验成果,对法浸出进行了扩展实验。扩展实验在机械浸出槽中进行,浸出槽体积1.5m3,试样质量365kg。浸出矿浆用压滤机固液别离后,浸出液中的金选用活性炭吸附收回。实验条件及成果见表9。
表9 扩展实验的条件和成果扩展实验的成果与实验室实验成果根本挨近,说明晰浸出条件的合理性。之后进行了5t精矿规划的连续生产,金浸出率安稳在90%左右。
六、结语
关于金以非包裹方式存在的含铜金矿石而言,与法、硫代硫酸盐法、分步浸取法等挑选性浸金办法比较,法具有浸出率高、试剂廉价、工艺简略等显着的长处。其与直接化比较,下降了耗量,进步了金的浸出率,是含铜金矿石收回金的有用办法。
[参考文献]
[1] G Deschênes, E Ghali. Leaching of gold from a chalcopyrite con2centrate by thiourea [J]. Hydrometallurgy, 1988, 20(2):179 -202.
[2] J S J Van Deventer, M A Reuter, L Lorenzen, et al. Galvanic inter2actions during the dissolution of gold in cyanide and thiourea solu2tions[J]. Minerals Engineering, 1990,3(6):589 - 597.
[3] Gamini Senanayake. Review of rate constants for thiosulphate leac2hing of gold from ores, concentrates and flat surfaces: Effect of hostminerals and pH [J]. Minerals Engineering, 2007, 20(1):1 -15.
[4] D M穆尔. 用硫代硫酸盐代替作为提金工艺中的一种浸出剂[J]:问题与妨碍. 国外金属矿选矿, 2005(3):5 - 12.
[5] 姜涛,许时,陈荩. 硫代硫酸盐提金理论研讨: 金溶解动力学[J]. 黄金, 1992,13(1):35 - 40.
[6] SVukcevic. The mechanism of gold extraction and copper p recip ita2tion from low grade ores in cyanide ammonia systems[J]. Mineralsengineering, 1997,10 (3):309 - 326.
[7] M I Jeffrey, L Linda, P L Breuer, et al. A kinetic and electrochem2ical study of the ammonia cyanide p rocess for leaching gold in solu2tions containing copper[J]. Minerals Engineering, 2002, 15(12):1 173 - 1 180.
[8] N GÊnen, E KÊrpe, M E Y1 ld1 r1m, et al. Leaching and CILp rocesses in gold recovery from refractory ore with thiourea solutions[J]. Minerals Engineering,2007, 20(6): 559 - 565.
[ 9 ] M Tanriverdi, H Mordogan, B I · ipekoglu. Leaching of Ovacik goldore with cyanide, thiourea and thiosulphate[J]. Minerals Engineer2ing, 2005, 18(3):363 - 365.
[10] J Li, J DMiller. Reaction kinetics for gold dissolution in acid thio2urea solution using formamidine disulfide as oxidant [J]. Hydro2metallurgy, 2002, 63(3):215 - 223.
[11] 董岁明,姚坡,李绍卿. 某难浸金精矿法浸金实验研讨[J]. 黄金,2006,27(3) .
[12] Gamini Senanayake. Gold leaching by thiosulphate solutions: acritical review on copper(II)- thiosulphate - oxygen interactions
[J]. Minerals Engineering, 2005, 18(10): 995 - 1 009.[13] J A Heath, M I Jeffrey, H G Zhang, et al. Anaerobic thiosulfateleaching: Development of in situ gold leaching systems[J]. Miner2als Engineering, 2008, 21(6): 424 - 433.
[14] Andrew C Grosse, Greg W Dicinoski, Matthew J Shaw, et al.Leaching and recovery of gold using ammoniacal thiosulfate leachliquors (a review)[J]. Hydrometallurgy, 2003, 69(1): 1 - 21.
[15] D M Muir, MG Aylmore. Thiosulfate as an alternative lixiviant tocyanide for gold ores [J]. Developments in Mineral Processing,2005, 15: 541 - 560.
[16] S Vukcevic. The mechanism of gold extraction and copper p recip i2tation from low grade ores in cyanide ammonia systems[J]. Miner2als Engineering, 1997, 10(3): 309 – 326.
作者单位:
长安大学环境科学与工程学院(程东会)
中国地质大学(北京)动力学院(李国斌)
陕西省地矿局堆浸技能中心(张小燕、王立群、赵芳玲)
某含铜金精矿氰化浸出提金试验研究
2019-02-20 10:04:42
对含铜硫化矿中金的收回,因为铜对化进程有严峻影响,大都选矿厂选用铜硫分选工艺别离得出含铜金精矿和含金硫精矿后,将硫精矿中的金用化法予以提取,而含铜金精矿则送往冶炼厂火法处理,不能实现就地产金,这样就严峻影响了黄金矿山的经济效益。因而,怎么有效地对含铜金精矿进行浸出,是金铜矿山迫切需要处理的重要课题。
一、质料性质
实验所用矿样为辽宁某金矿的含铜金精矿,其首要金属矿藏为黄铜矿、磁黄铁矿、黄铁矿,有少数闪锌矿、方铅矿、天然金等,偶见辉铜矿、斑铜矿、铜蓝、褐铁矿等。在矿石中还有少数的孔雀石及蓝铜矿。脉石矿藏首要为绿泥石,次为绢云母、高岭土、斜长石,有少数的石英、角闪石、黑云母。因为矿受激烈的蚀变作用,其间的斜长石大部分变为绢云母,因而矿泥中脉石矿藏以绢云母为主。试样的首要化学成分及金在矿藏中的赋存状况别离如表1和表2所示。
表1 某浮选金精矿的首要元素分析%表2 金在矿藏中的赋存状况%由表1可知,该金精矿中铜的含量很高,是首要的伴生元素,也是影响金浸出的首要元素。
二、实验成果与评论
(一)惯例化浸出实验
首要对实验金精矿进行了惯例的化浸出实验,最佳实验条件为:磨矿细度-50μm占85%,液固比3∶1,CaO用量4kg/t,NaCN用量8kg/t,浸出时刻40h。实验成果见表3。
表3 惯例化浸出实验成果由表3实验成果能够看出,在最佳条件下,惯例化浸出的金浸出率仅达43.11%,阐明铜对化浸出有很大影响。
铜矿藏对化浸出的影响机理如下。
1、可溶铜与反响耗费很多的和氧。除氧化铜极易溶解于溶液之外,各种硫化铜矿藏都有不同程度的溶解度,如辉铜矿、斑铜矿和硫砷铜矿在室温下溶解度就超越65%,最难溶的黄铜矿也有6%的溶解度[1]。矿石中溶出的Cu2+使矿浆中游离的氧化为和酸盐,Cu2+变为Cu+;Cu+又与CN-生成化亚铜络合物,导致耗费很多的,其首要化学反响为
2Cu2++7CN-+2OH-→2Cu(CN)2-3+CNO-+H2O
从该反响式能够知道,Cu2+与CN-的摩尔比为1∶3.5,按此核算,理论上的耗量是铜量的2.70倍,即矿石中每浸出1g铜,就要耗费2.70g的。
铜矿藏在溶液中溶解不光耗费,还要耗费溶液中的氧,如辉铜矿的溶解反响为2Cu2S+4NaCN+2H2O+O2→Cu2(CN)2+Cu2(CNS)2+4NaOH
2、可溶铜的存在会下降金的浸出率。金在化进程中的溶解式为可见,溶液中氧浓度和游离的CN-是金溶解的必要条件,首要金被O2氧化为Au+,Au+再与CN-作用生成Au(CN)-
2,使金得以溶解。而处理含铜物料
时,因为铜的溶解耗费了溶液中的根离子和氧,使溶液中的根离子活度下降,特别是溶液中所溶解的少数氧被耗费后,构成溶液中严峻缺氧,导致金的浸出速率及浸出率的下降。
(二)脱药后化浸出实验
为了断定浮选药剂对化浸出的影响,对试样进行了脱药后的化浸出比照实验。脱药办法是将精矿再磨,然后参加解吸剂X2P拌和30min。脱药试料的化浸出条件同惯例化浸出实验,实验成果见表4。
表4 脱药后浸出实验成果将表4实验成果与表3比照,能够看出,金精矿脱药后,金的浸出率进步了7.11个百分点,阐明金精矿脱药后可改进化浸出进程。实践上,理论研讨已发现,黄药在金的载体矿藏黄铜矿、黄铁矿、磁黄铁矿等表面上易构成双黄药,在方铅矿、斑铜矿、辉铜矿等表面上易生成金属黄酸盐,在铜蓝的表面上既有双黄药又有金属黄酸盐[2],这样就使金的表面钝化,阻挠了金与的触摸,然后下降了金的化浸出率。经脱药后,除掉了矿藏表面上新生成的物质,故有助于进步金的浸出率。
(三)-混合液浸出实验
脱药后的化浸出,尽管金的浸出率有所进步,但因为金精矿中铜的影响,浸出率仍不抱负,仅到达了50.22%。为了进一步进步该矿石中金的浸出率,选用-混合液来作浸出剂,其长处是:
(1)可按捺铜对化的晦气影响。NH3可与Cu2+生成铜络离子Cu(NH3)2+4,这样,溶液中NH3的参加下降了Cu2+的活性,并在必定程度上阻挠了由Cu2+引起的的降解作用。溶液中因为存在Cu(NH3)2+4的原因,使Cu(CN)-2经过氧化作用呈CuCN的方式从溶液中沉积出来。当pH>9.5时,因为NH3与CN-的质子化作用,使Cu2+生成Cu(OH)2沉积。
(2)-混合液有利于金的浸出。在-混合液中,CN-作为化剂、Cu(NH3)2+4作为氧化剂使金溶解,其反响方程式为(3)-混合液可下降的耗费。当浸出液中的浓度超越0.1mol/L时,溶液中的铜络离子会逐步被铜络离子替代,这样,因为非络合剂NH3的参加,能替代或部分替代贱金属络合物中的,使溶液中游离的添加。
综上所述,在Cu2+-CN――NH3浸出系统中,的参加减少了溶液中的Cu2+,按捺了铜对化的影响,使溶液中生成了新的化剂Cu(CN)2-3或Cu(CN)3-4,然后添加了氧化剂Cu(NH3)2+4,又能使溶液中游离的浓度添加,因而,有利于进步金的浸出率,并可下降的耗费。
1、用量实验
对脱药后的含铜金精矿试样按磨矿细度-50μm占85%、矿浆液固比3∶1、CaO用量4kg/t(pH=10.5~11.0)、NaCN用量8kg/t、浸出时刻40h的固定条件,改动用量进行化浸出,实验成果如图1所示。图1 NH3用量实验成果
1-Au;2-Cu
从图1能够看出,的参加极大地改进了浸出作用,金的浸出率随用量的添加而进步,并在用量为5.92kg/t到达最高点;持续添加用量,金的浸出率反而下降。因而,的适合用量为5.92kg/t。
2、NaCN用量实验
在上述化条件下,坚持必定的浓度,即NH3为5.92kg/t,改动用量进行实验,实验成果如图2所示。图2 NaCN用量实验成果
1-Au;2-Cu
从图2能够看出,在-混合液中,坚持用量不变的情况下,添加NaCN用量即CN-浓度,金的浸出率开端有所进步,而后又开端下降。这是因为添加[CN-]后,NH3与CN-的浓度之比较低,使NH3对铜的按捺作用削弱,相对地添加了铜的溶解,然后构成其对化浸出的影响作用增强了。图1和图2阐明晰NH3和NaCN用量之间有一个最佳比值为5.92∶8,在该比值下,金的化浸出率可进步到90.67%,恣意进步NH3或NaCN的用量,反而达不到这样较抱负的作用。
(四)-混合液炭浸实验
在上述实验基础上,进行了-混合液炭浆实验,实验成果见表5。
表5 -混合液炭浆实验成果从表5实验成果能够看出,炭浸较直接浸出,浸出率可进步2.80个百分点。这是因为活性炭及时地吸附已溶金,下降溶液中的Au(CN)2-浓度,加快金的溶解速度,然后进步了金的浸出率。
三、定论
(1)脱药有利于进步含铜金精矿的金浸出率,主张在实践生产中先脱药后再用-混合液进行化浸出。
(2)在处理含铜金精矿时,一方面可按捺铜的影响,另一方面可下降耗费,可极大地进步金的浸出率。在化浸出进程中,应坚持NH3与CN-的适合浓度比,方能最大极限地进步金的浸出率。
(3)用-混合液对所研讨的含铜金精矿进行炭浸,目标优于用-混合液直接浸出,故主张生产中能够考虑选用炭浆法,用-混合液作浸出剂。
参考文献
[1]蔡殿忱,徐志明.金矿石化学处理工艺学.沈阳:东北大学出版社,1996
[2]丘继存.选矿学.北京:冶金工业出版社, 1997
作者单位
东北大学(周世杰、王成功、张淑敏)
活龙矿业有限责任公司东(吕长)
含高铜、铅金精矿氰化浸出试验研究方案
2019-02-20 10:04:42
针对剧毒的特色,研讨如何用物理方法或化学方法进行强化浸出,削减的用量,进步金的浸出率对进步厂商的经济效益十分重要。现在胶东某矿由于处理部分含高铜、铅的金精矿而导致的用量急剧升高,虽然选用浸出,但由于的蒸发性较强,形成车间的工作环境恶化,并且其利用率也低。为此针对铜铅高的特色进行了试验,采取了碱浸预处理,并在浸出傍边参加合适此类矿石的两种药剂替代液;不光能够强化金银的浸出,并且能够下降的用量。
一、矿石性质
试验选用的矿石为某金矿3个矿区含铅铜矿按必定份额混合的精矿样,该精矿含有黄铁矿、方铅矿、黄铜矿、磁黄铁矿、白铅矿及部分次生铜等金属矿藏,脉石矿藏为石英、绢云母和伊利石,含金矿藏为银金矿、金银矿,金的颗粒较细,以细粒、微细粒为主,铜矿藏中次生铜占全铜的30%~50%。次生铅即可浸出部分占10%~30%。混合精矿中首要化学成分如表1。
表1 混合精矿首要化学元素成分含量元素Au/g·t-1Ag/g·t-1Cu/%Pb/%Zn/%Fe/%As/%档次49.79245.431.294.171.236.370.34
二、试验及成果分析
针对铜铅的影响和现场的出产实际情况,拟定了进行先碱浸预处理,除去部分有害杂质,如铁、铜、铅、硫等;第二是在浸出作业中参加强化剂与铜络合,削减的耗用量,加速进步金银浸出,一起替代原有的易蒸发影响操作环境的助浸剂。
(一)充气碱浸。在浸出前加石灰,pH≥11的条件下参加空气进行碱浸,时刻为2h,可除去部分有害杂质、显着削减的用量,别的次生铅在强碱条件下可生成偏铅酸盐而进入溶液傍边,通过压滤脱水排出工艺流程,然后削减其对后续化作业的影响,试验成果如表2。
表2 充气碱浸后化浸出试验成果试验原矿档次
/ g·t-1渣档次
/ g·t-1浸出率
/%NaCN单耗
/ g·t-1补白1#
2#49.79
49.791.52
1.4996.92
97.0110.9
9.1不碱浸
碱浸
从上述成果来看,碱浸可显着下降的用量,在化浸出率根本挨近的情况下,单耗下降1.8kg/t。
(二)由于铜、铅在化浸出中耗费很多的[CN-]和O2,本着削弱铜、铅的影响,挑选了5种药剂,并对5种药剂进行归纳试验,终究断定2种药剂组合是用作化浸出的助浸剂,各试验成果如表3。
表3 各种药剂合作后化浸出试验成果药剂称号Na2CO3CaO六偏磷酸钠AA+BB惯例浸出用量/ g·t-1
浸渣档次/ g·t-1
Au浸出率/%2.5
1.39
97.210.5
1.4
97.190.8
1.5
96.990.48
1.41
97.170.3+1
1.29
97.411.0
1.35
97.29
1.51
96.92
注:以上试验皆在碱浸条件下进行
综上所述,各种药剂皆可改进浸出,但A和B剂协同作用可显着改进此类矿石的浸出,浸出率可进步0.49%。
(三)A+B一起作用对用量的影响如表4。
表4 惯例浸出与参加A和B剂后的化浸出试验成果条件NaCN单耗
/kg·t-1[CN-]浓度
/mol·L-1渣档次
/g·t-1惯例浸出
参加A和B浸出9.1
7.80.70×10-2~0.75×10-2
0.60×10-2~0.65×10-21.51
1.29
从表中成果来看,参加A和B两种助浸剂可显着削减的用量。由于整个浸出[CN-]浓度都可在较低的情况下进行,因此可节约NaCN的耗用量。
(四)通过两个月的出产运用比较,所得试验成果见表5。
表5 惯例浸出与化浸出试验成果条件NaCN单耗
/kg·t-1[CN-]浓度
/mol·L-1渣档次
Au/g·t-1惯例浸出(4月)
参加A和B剂浸出(5月)9.16
7.060.70×10-2~0.75×10-2
0.60×10-2~0.65×10-21.21
1.09
综上所述,运用A+B组合可显着进步化浸出作业作用,在必定程度上可替代原出产傍边的运用,一是按捺Cu的浸出;二是下降铜铅浸出后对金化的影响;三是下降浸出作业中的浓度。一个多月的出产实践证明化浸出作业中的根浓度可下降0.10%,可节约NaCN的耗量2.1kg/t,渣档次可下降0.12g/t。
三、效益核算
(一)A药剂的单价为每千克3.1元,B药剂的单价为每千克2.8元,并且这两种药剂易于购买,按试验用量核算,药剂费用为每吨3.1×0.3+2.8=3.73元,而节约的NaCN量为2.1kg/t,其费用为每吨6.98×2.1=14.658元,则每吨矿可节约费用为14.658-3.73=10.928元。
(二)因浓度下降带来的效益为外排硫精矿的水分为15%,其液固比为0.18,吨矿外带的水量为0.18t,其浓度下降0.10%,相当于下降1kg/t,即吨矿少外带的量为0.18kg/t,削减的的费用为每吨1.256元。
(三)由于浓度下降削减的蒸发量无法精确核算,暂不核算。
按年处理5万吨精矿核算则年可创效益为(10.928+1.256)×5=60.92万元
四、定论
对含磁黄铁矿、次生铜和铅的精矿在浸出前选用充气碱浸的方法能够节约可观的NaCN用量。
关于含铜、铅相对较高的金精矿,关于惯例化作业来讲参加A和B组合络合剂可显着地改进此类矿石的浸出作用,进步浸出率,一起可下降NaCN的用量2.1kg/t,发生相当可观的经济效益。
什么菜含铜
2019-03-06 11:05:28
一些富含铜的食物,如虾、牡蛎、海蜇、鱼、蛋黄、肝、西红柿、豆类及果仁等。食物要嚼碎,以利于铜的吸收,不吃或少吃制作过精的食物。一起,在饭后不要当即服用维生素C,因维生素C会阻碍铜的吸收。含铜元素较多的食物有猪肉、猪肝、芝麻、黄豆、菠菜、荠菜、茄子、小麦、稻米、牛奶等,适量吃些这些食物可弥补铜元素。猪肝含铜量最高,每1000克含铜25毫克,每天吃100克猪肝即可到达需求1)铜参加造血进程,影响了铁的吸收、运送和使用。铜促进铁进入,加快血红蛋白组成。没有铜,铁就不能传递,铁不能结合在血红蛋白里,红细胞也就不能老练。食物中含锌、铜、、银过多时,可阻碍铜的吸收。锰适量时可改进铜的使用和吸收。2)胶原蛋白是人体含量最多的一种蛋白质,是人体结缔组织的首要组成部分,是骨骼的中心物质。胶原蛋白质像是几根细绳子相同扭成一束,成为胶原纤维。胶原纤维构成时,有必要在胶原蛋白分子内部或分子之间交联起来,才干坚韧有力,强硬耐拉。此种交联反响有必要由一种叫做赖酸氧化酶的催化反响才干完结。此酶是一种含铜的金属酶,有必要具有充沛的铜才干起作用。进入老年期后,假如食物中缺少铜,就会呈现骨质疏松、牙齿掉落、伤筋损骨等症状。人体血清中的铜简直80%都存在于铜蓝蛋白中。铜蓝蛋白是一种含铜的氧化酶,它能氧化体内的酚类、脂类和维生素C,并能使二价铁变为三价铁,使之便于在体内运送,并担任细胞色素的再生,然后确保细胞内发生满足的能量。上年纪的人假如缺铜,会导致细胞能量直销缺少,呈现精力缺少、步履不稳、运动失调及思想愚钝等症状。
金矿含砷及其精矿处理方案
2019-02-25 09:35:32
原生金-砷矿石含有1~2%到10~12%的砷黄铁矿。在其他硫化物中,实际上常常有黄铁矿,有时还有磁黄铁矿。在很少情况下,矿藏中不含微粒金。这类矿石能够用化法或许先浮选然后对浮选精矿进行化的办法处理。矿石中大部分金常常呈微粒涣散状包裹在硫化物中。对这类矿石能够进行混合浮选,选出金-砷精矿或许金-砷-黄铁矿精矿。精矿进行焙烧,焙烧渣用化法处理或送冶炼厂冶炼。在焙烧进程中得到含砷的产品。可是,现在对这类产品的需求量不大。假如混合浮选后不能得到抛弃尾矿,那么可对浮选尾矿进行化或许对原矿进行化,而含金硫化物则用浮选法从化尾矿中收回。
浮选金-砷矿石时,有必要对已知的办法进行实验,即分段浮选,矿砂和矿泥别离浮选、在苏打介质中进行浮选等,以便改进金-砷矿石浮选进程的各项目标。浮选砷黄铁矿时,有必要往矿浆中加氧。磨矿进程中构成的碎铁可作为氧的吸收剂。当存在苏打灰时,铁的氧化和吸收氧进行得较慢。所以,在拟定浮选条件时,应当对磨矿机中增加的苏审察(耗量为1~2公斤/吨)进行实验,以便使磨矿机排矿中pH值到达10~10.2,然后在浮选时使其降到8.5~8.8。以硫酸铜作为活化剂是很有利的,其用量为100~200。克/吨。这种药剂应加在扫选中。在单个情况下,金和砷的收回率会跟着矿浆同捕收剂拌和时刻的增加(达20~30分钟)而进步。
有时,选用优先浮选分选出含金的黄铁矿精矿和砷精矿,或许单-的金-黄铁矿精矿是适宜的。假如黄铁矿精矿和砷精矿中的金是用不同办法进行收回或许需得到高晶位的砷精矿时,独自选出黄铁矿精矿和砷精矿是合算的。在下列情况下能够只选出单-的金-黄铁矿精矿:
当浮选尾矿符合抛弃金档次的要求,而砷又无工业价值时;
浮选尾矿中的金与黄铁矿精矿中的金不相同,它能够用化法收回时。
运用石灰或许在石灰介质顶用空气进行氧化,用软锰矿和按捺砷黄铁矿,可使黄铁矿与砷黄铁矿别离。在许多情况下,氧化剂的作用取决于氧化剂运用准则的拟定和遵守得怎么。氧化剂的用量过大,与矿浆触摸时刻过长都会引起砷黄铁矿的活化。
浮选泥质矿石和含碳矿石时的困难很大。矿泥中一般有含碳物质、各种页岩和碳酸盐。在浮选硫化物时,这些组分会进入精矿中,然后进步了精矿的产率和下降精矿质量。此外,矿泥能吸收浮选药剂并阻止硫化物的浮选。为了研讨泥质矿石,首要有必要断定矿石中的含金性并依据其质量能够实验下列办法:
矿石及其加工产品(粗选尾矿、中间产品、扫选精矿)的脱泥。假如有必要,别离后的矿泥应进行吸附化处理;
运用不同药剂(KMLI,IIAA,染料,淀粉等)按捺粗选、扫选或精选作业中的矿泥浮游;
浮选并用药剂处理矿砂部分。
含微粒浸染金的砷黄铁矿精矿和黄铁矿-砷黄铁矿精矿的工业运用问题,现在还未取得处理。因为对砷的各种化合物的需求量有限和这些化合物的毒性大,所以这个问题很难处理。
砷是火法冶金进程中的有害组分,所以送到冶炼厂中的精矿;对其间砷的含量有严厉的约束。
国外出产实践中,遍及选用对金-砷精矿进行焙烧,然后用化法处理焙砂。选用这一办法时,需求细心地从气相中捕收砷,假如砷产品的销路欠安时,还需求花贵重费用将其储存或埋藏起来。最好是选用两段焙烧:I段焙烧的温度为500~580C,并给入少数的空气,Ⅱ段焙烧温度为600~620并给入很多空气。只要这样,焙烧时才干不致生成易熔化合物,且能得到孔隙性杰出的焙砂。焙砂中的砷档次不该超越1~1.5%。假如在较高的温度下和给入过量的空气条件下进行一段焙烧,那将会因生成不易蒸发的盐(例如铁FeAsO4)而进步焙砂中的砷档次。盐会掩盖金的表面,阻止金在化进程中的溶解。对含有雄黄(AsS)和雌黄(As2S3)的物料进行焙烧时,在很大程度上会生成铁。在温度为600~620℃下进行的第二段焙烧大都为氯化焙烧或许氧化-氯化焙烧。在大都情况下;经过这种焙烧可使包裹在黄铁矿或砷黄铁矿中的金较充沛地露出出来。
对含碳的金-砷精矿进行焙烧时,最好分两段进行:在温度为500~600℃以及空气给入量缺乏的条件下进行第-段焙烧,在温度为650~700℃以及给入过量空气下进行第二段焙烧。第-段焙烧应该将砷烧到焙砂中的含量低于1%,而第二段焙烧应将活性碳和硫烧尽。为了使活性碳烧尽,不只需求给入过量的空气以及适当高的温度,并且还需求适当长的时刻。在欢腾焙烧炉中焙烧时,焙烧进程进行的较快,并且焙烧得较彻底充沛。为了在焙烧炉中完成不必燃料的自燃焙烧,精矿的含硫量应为22~24%。
假如焙烧渣送去熔炼,那么就能够进行一段焙烧。砷在这种焙烧渣中的含量容许到达2%。
对金砷精矿或许焙烧后的焙砂进行化处理时,又有其不同的特色。对精矿进行化时,应该预先用碱处理,分段化,用低浓度氧化钙的化溶液进行浸出等。假如原矿或其精矿中含有砷的简略硫化物(雌黄或雄黄),那么在化时有必要用处理含锑矿石及其精矿的办法来进行实验。焙烧后的焙砂,一般需求用水冲刷,然后进行化并使化溶液中NaCN的浓度保持在0.08%以上。经过冲刷能大大下降和石灰的耗量。关于含有难以收回金的焙砂可用两段或许三段化来处理,必要时还能够用碱进行中间处理。碱能溶解砷的氧化物(特别是铁),并能使包裹在这些化合物中的金露出出来。处理焙砂时,需求NaOH的浓度为6~8%的碱溶液。并将矿浆加热到80~90%℃,处理时刻为2~3小时。然后使物料脱水,最终进行化并对液相中的金进行查验分析。往溶液中增加氢氧化物或氧化钙,就能使含Na3AsO4的碱溶液得以再生。砷呈钙方式沉积下来,溶液再用NaOH增浓。
先进行不彻底氧化焙烧,然后进行氯化蒸发是从金-砷精矿中收回金的-种可行办法。氯化蒸发实验的条件如下:焙砂中的含硫量为3.5~4%,NaCl耗量为焙砂分量的7.5~10%,氯化蒸发的温度为1000℃。在这些条件下,约有96~98%的金转入蒸发物中而被收回。
分化金-砷精矿的压热-碱浸办法值得进一步研讨。在温度为100℃,气相中的氧分压为10大气压的条件下,用150~180克/升NaOH溶液对精矿进行2小时的压热处理,就能确保+分彻底地使硫化物分化,使98~99%的砷和硫进入液相。冲刷后浸出渣中的金可用化法(不增加石灰)加以收回。压热分化能够在水介质中,借助于在50大气压下使空气中的氧经过压热浸出器来完成。在这些条件下,砷被氧化并生成铁和硫酸。
细菌浸出是使金-神精矿被氧化的很有发展前途的办法。选用这-办法能适当彻底地使金露出出来。细菌浸出后所得到的砷化合物(主要是盐和亚钙)难溶于水中,并且其毒性很小。这是选用焙烧工艺和火法冶炼时生成的砷化合物所无法比拟的。
为了使砷黄铁矿氧化,主张选用人工培育的铁硫杆菌,其在原始溶液中的浓度为106-107细胞/毫升。细菌浸出的实验是在静态条件下进行的,有必要测定下列主要参数的最佳值:原始细菌溶液的pH值;三价铁的浓度,原始矿浆中的液固比细菌浸出的时刻。
这些参数的原始数值是:pH值;1.8~2;Fe3+的浓度为3~4克/升,液固比=30~50,时刻为300~400小时。然后使细菌适应于详细的条件,溶液进行中间脱砷(增加石灰乳使pH值到达3~3.5),并依照顺流的工艺流程安排细菌浸出实验,力求缩短细菌浸出的时刻和在较稠的矿浆中完成这-办法。关于某些金-砷精矿来说,砷黄铁矿开端氧化的最佳条件是:液固比二5:1,浸出时刻为120~150小时。在砷黄铁矿被氧化的一起,部分黄铁矿(约30~40%)也被氧化。
细菌浸出后的浸出渣需用水洗刷,然后对浸出渣进行化。除了化法之外,还能够用法、水氯化法等进行实验。
为了从黄铁矿和砷黄铁矿中露出出金,还有-些比较新的办法(如机械化学法和电化学法)应引起注重。
部分氧化的矿石中所含的砷有-部分是呈臭葱石和其他氧化矿藏状况存在的。这种矿石中的金被臭葱石薄膜所掩盖,因而难以进行浮选和化。臭葱石可用脂肪酸捕收剂进行浮选。
为了从部分氧化矿石中收回金和砷,可用包含下列作业的流程进行实验:
用巯基捕收浮选金和硫化物,其精矿进行焙烧,焙砂加以化;浮选尾矿用NaOH溶液处理,以便浸出砷和除去金粒表面上的薄膜;残渣用化法处理;用石灰或高浓度NaOH溶液从碱性溶液中沉积砷。石灰能沉积,一起还能使NaOH再生。再生后的NaOH能够循环运用。
铅精矿与富铅渣交互反应的还原熔炼技术
2019-01-07 17:38:09
传统烧结-鼓风炉熔炼工艺中,按硫化铅精矿中硫的质量分数为12%~24%计算,每冶炼1t粗铅有0.6~1.1t的SO2排空。
新的炼铅技术的共同特点是将焙烧与熔炼结合为一个过程,实现铅精矿直接处理,充分利用硫化铅氧化放出的大量热将炉料迅速熔化,产出液态铅和熔渣。直接炼铅仍需要将冶金过程分为氧化和还原两个阶段,在氧化段充分氧化获得低硫铅,在还原段充分还原产出低铅炉渣。本实验探讨熔池熔炼还原段,利用铅精矿和富铅渣之间的交互反应,考察还原段的终渣含铅量、铅回收率(按渣计)、烟气烟尘率、粗铅产率等各工艺指标的影响因素及条件。对其反应机理进行了初步的探讨。
一、试验理论基础
铅精矿和富铅渣之间的主要交互反应如下:
PbS+2PbO→3Pb+SO2(1)
PbS+PbSO4→2Pb+2SO2 (2)
这两个反应在一般高温1000℃时,△G已经很负了。随着温度的升高,△G越来越负,说明从热力学角度来说,交互反应很容易发生。渣中铅化合物的溶化温度低,其熔体的流动牲好,而且与SiO2结合的Pb0挥发性要比纯Pb0小。PbS溶化后流动性大;PbSO4在800℃便开始分解,至950℃以上分解进行的很快。反应式(1)在860℃时的平衡压力达101325Pa;反应式(2)在723℃时的平衡分压为98000Pa。即在较低温度下,两个反应可以剧烈的向右进行。从动力学角度看,熔渣的熔点一般为1200℃左右,试验温度只要能高于渣熔点,则在渣熔融状态下,各种化合物之间接触良好,反应能很好的进行。
二、试验原料及方法
(一)试验原料
本试验所用原料为某厂艾萨炉出来的富铅渣和铅精矿。铅精矿为黑色粉末,粒度小于1mm。化学成分(%):Pb 45.44、Zn 6.46、Fe 8.82、SiO25.34、CaO 1.57、MgO 0.48、Al2O3 1.00、S 17.86、Cu 2.43、Ag 0.266。定性物相分析结果表明:铅精矿主要含PbS、ZnS、FeS、SiO2、FeS2、PbSO4。
富铅渣为浅粉色块状,化学成分(%):Pb53.97、Zn 6.46、Fe 8.64、SiO2 8.31、CaO 3.07、MgO 0.75、Al203 1.78、S 0.17、Cu 0.73、Ag0.0197,堆密度3.05 g/cm3。XRD分析表明:铅物相以PbZnSiO4、PbO、Pb存在。其中PbZnSi04在高温下发生如下反应分解成PbO:
PbZnSiO4→PbO+ZnO+SiO2
故本试验可将富铅渣中的Pb看做以Pb0形式存在,并以此进行配料计算,确定各种料的加入量。
试验所用熔剂为:石灰石(CaO 51.2%,MgO3.17%);石英砂(SiO2 93.83%)。
(二)试验方法
根据可能发生的交互反应方程式,先计算出富铅渣和铅精矿所需的理论量,再以富铅渣与铅精矿中FeO成分含量的总和为渣型选择的计算基础,然后根据选定的渣型计算所需各溶剂的质量。将富铅渣、铅精矿、石灰石、石英砂分别先经破碎,磨细后,再充分混合均匀,加水湿润后制团,最后烘干12h以上。每次称2kg左右的混合料加人高15cm,内径14 cm的碳化硅坩埚中,从电炉底部进料。用一个Pt/Pt-13%Rh型热电偶检测炉内试验样料的温度,通人高纯氩气排除炉内空气并起轻微的搅拌作用;通过调节电炉的程序参数,设定好每次试验反应温度和时间;反应结束后,观察形成的铅渣表面现象,判断是否产生了泡沫渣,再称量铅渣和粗铅,并分析各主要成分含量。由于试验条件有限,未能检测SO2浓度和烟尘率,本试验将烟气烟尘率看做一个技术指标,计算式为:
烟气烟尘率=(加入坩埚的炉料总量-反应后粗铅和铅渣的量)÷加入坩埚的炉料总量
三、试验结果及讨论
(一)渣型对终渣含铅量和烟尘率的影响
炼铅炉渣是个非常复杂的高温熔体体系,它由SiO2、FeO、CaO、MgO、Al2O3、ZnO等多种氧化物组成,并且它们之间可相互结合形成化合物、固熔体、共晶混合物。为了讨论渣型与结晶相的关系,将多元系简化为三元系:FeO-CaO-SiO2。将渣中该三相的成分换算为100%,再查看FeO-CaO-SiO2三元系相图,根据图中渣温度1 100~1 300℃区域,选择试验3个成分含量。A Perillo提供了维斯麦港基夫赛特法炼铅厂的投产与生产指标,炉渣的化学成分:FeO39%,SiO2 38%,CaO 23%。
试验条件:固定温度1250℃,时间5h,配料比1.0。试验编号分别为(1)-FeO 40%,SiO2 35%,CaO 25%;(2)-FeO 37.5%,SiO2 37.5%,CaO25%;(3)-FeO 35%,SiO2 40%,CaO 25%;(4)-FeO 35%,SiO2 37.5%,CaO 27.5%;(5)-FeO35%,SiO2 35%,CaO 30%。
试验结果表明CaO含量保持为25%,相应的SiO2含量减小时,试验(1),(2),(3)的渣含铅分别为3.48%,4.76%,5.87%;烟气烟尘率分别为36.9%,32.6%,28.1%。FeO含量固定为35%时,相应的SiO2含量减小时,试验(3),(4),(5)的渣含铅分别为5.87%,1.41%,3. 86%;烟气烟尘率分别为28.1%,42.25%,35.6%。
根据熔渣结构的离子理论,适当增加碱性氧化物有利降低炉渣黏度。但碱性氧化物过高时可能生成各种高熔点化合物,使炉渣难熔,渣黏度升高。对于FeO-CaO-SiO2三元系炉渣,但CaO含量超过30%时,黏度将随CaO含量的增加而迅速加大。SiO2/Fe过大,黏度高,排放困难,提高Ca0/SiO2,可降低渣的黏度。从试验结果数据可看出:当炉渣组成为FeO 35%、SiO2 37. 5%、CaO 27. 5%时,烟气烟尘率为42.25%,渣含铅1.41%为最低。
(二)配料比对终渣含铅量和烟尘率的影响
渣型FeO 35%,SiO2 37.5%,CaO 27.5%,保温时间定为3h,温度为1250℃的条件下。以100 g富铅渣为计算基础,理论需要消耗铅精矿71.297g,试验中铅精矿用量分别为理论量的0.9、0.95、1.0、1.05、1.1、1.15和1.2倍。
从图1可看出,在其他条件不变的情况下,随配料比增加,渣含铅呈先减小后增大的趋势,在配料比为1.0有最小值;烟气烟尘率呈先增大后减小的趋势,与渣含铅趋势相反,即渣含铅低时则烟气烟尘率高。鉴于两者的矛盾关系,折中取定试验条件,故此后试验定配料比为 1.1,此条件下渣含铅2.61%,烟气烟尘率33.63%,能基本满足工业上对工艺指标的要求。图1 配料比对终渣含铅和烟尘率的影响
(三)反应温度对终渣含铅和烟尘率的影响
为减少烟尘量,必须严格控制炉内温度。如果能抑制铅及化合物的挥发,烟尘中氧化锌含量就会提高,就可以进入氧化锌系统进行处理。从沸点和平衡蒸气压分析,锌的挥发要比铅容易得多。如果试验中还原温度真正控制在1150~1200℃,Pb和PbO的蒸气压都只有1.3~6.7kPa,铅的挥发率不会如此高。
渣型FeO 35%,SiO2 37.5%,CaO 27.5%,保温时间5h,配料比1.1。试验结果见图2。图2 反应温度对降低终渣含铅量,烟气烟尘率的影响
从图2可看出,其它试验条件不变时,渣含铅随温度的升高而降低,在1250℃有最小值,1300℃时反而渣含铅比其高。观察1300℃的试验现象,渣孔(从粗铅到渣表面)多,推测温度较高于渣熔点时,渣熔体流动性大,反应产生的气体更容易从渣孔隙跑出液面,同时使得渣中的铅及其化合物未能很好的沉降分离,所以渣含铅偏高;烟气烟尘率随温度升高而逐渐增大,1300℃时,烟气烟尘率高达48.82%。烟气烟尘率太高,对后续的收尘系统是个负担,会导致生产成本增加,严重时,会造成烟尘积压。综合考虑后选定温度为1250℃。
(四)反应时间对终渣含铅量和烟尘率的影响
渣型FeO 35%,SiO2 37.5%,CaO 27.5%,温度1250℃,配料比1.1。试验结果见图3。图3 反应时间对终渣含铅量和烟尘率的影响
从图3可以看出,随着反应时间的延长,交互反应进行得越彻底,渣、铅分离沉降时间长,分离效果更好,则渣含铅逐渐减少;而烟气烟尘率逐渐增加。反应时间短,能缩短排渣周期时间,能提高床能率。试验时间为3h条件下,渣含铅2.61%,烟气烟尘率33.63%。
(五)反应温度对粗铅产率和渣产率的影响
渣型FeO 35%,SiO2 37.5%,CaO 27.5%,时间3h,配料比1.1。试验结果见图4。图4 反应温度对粗铅产率和渣产率的影响
从图4可看出,随反应温度的升高,各种化合物和金属的挥发量增多,粗铅产率从27.23%降至14.62%,产渣率也逐渐减小。故反应温度不易过高,折中选择1250℃为较好,此条件下,粗铅产率22.76%,产渣率43.61%。
(六)反应时间对粗铅产率和渣产率的影响
固定渣型FeO 35%,SiO2 37.5%,CaO 27.5%,温度1250℃,配料比1.1。反应时间对粗铅产率(占点炉料)和渣产率的影响结果见图5。图5 反应时间对粗铅产率和渣产率的影响
从图5可以看出:(1)随着反应时间的增加,粗铅产率从19.23%升至25.83%。时间长有利于渣铅沉降分离,同时能让其它各种金属化合物有足够时间发生还原反应,再以金属状态进入粗铅;(2)渣产率逐渐减少。时间长,渣中易挥发的化合物及被产出的气体气泡带走的物质则更多的进入烟气烟尘中,增加了收尘负荷。时间为3h时,粗铅产率22.76%,渣产率43.61%。
(七)其它反应效果的比较及分析
不同试验条件下,反应后,其它各成分含量变化不大。粗铅中的铅含量95.01%~96.12%;Ag含量0.28%~0.36%;S含量0.11%~0.19%;铜含量0.31%~0.56%。铅渣其它成分含量:S含量1.89%~2.37%;Zn含量2.47%~6.33%。且呈现渣含铅低,则含Zn亦低的试验现象。推测在相同工艺条件下,原料中铅化合物和锌化合物与其它物质之间发生的反应机理相似,故两者在铅渣和烟尘中呈正比例含量关系。随着反应时间的延长和反应温度的提高,各种化合物逐渐分解,易挥发物更多的进人烟尘,渣中较难挥发物SiO2、FeO、CaO的含量都有稍微增加的趋势。在渣含铅
四、结论
在熔池熔炼还原段采用铅精矿和富铅渣的交互反应可满足工业实践的各项经济技术指标。最优工艺条件:渣型三主要组成含量折算为FeO 35%,SiO2 37.5%,CaO 27.5%,温度1250℃,时间3h,配料比1.1。在此条件下可得到渣含铅2.61%,铅的回收率(以渣计98.21%,脱硫率91.5%,烟气烟尘率33.63%,粗铅产率22.76%,渣产率43.61%。
铅精矿在鼓风炉熔炼之前的准备工作
2018-12-19 09:49:38
铅精矿在被鼓风炉熔炼之前必须把铅精矿在熔炼前进行预备作业即烧结焙烧,其目的:(1)除去铅精矿中的硫,如含砷及锑较多也须将其除去;(2)将细料烧结成块。 因此,在焙烧过程中,除进行氧化反应外,还必须使细料结块。这种同时完成两个任务的焙烧法,称为烧结焙烧或简称为烧结,而呈块状的焙烧产物称为烧结块或烧结矿。当用鼓风炉还原熔炼法处理块状富氧化铅矿时,不需要进行烧结焙烧,只要将矿石破碎至一定的块度,就可送往鼓风炉直接熔炼。如果要进行处理的不是块矿而是细碎的氧化铅精矿,仍须先行烧结或制团,然后才加入鼓风炉熔炼。铅精矿的烧结焙烧是强化的氧化过程,即将炉料装入烧结机中,在强制地鼓入或吸入大量空气的条件下,加热到800-1000℃,使之着火并继续燃烧,其中金属硫化物便发生氧化,生成各种金属氧化物和硫酸盐。
光纤是否含铜?
2018-12-12 13:51:05
光纤不含铜。光纤是玻璃。光纤里走的是光,不是电,不需要铜。光线在光纤内穿过。光线碰到光纤与空气(或其他物质)界面时,光线会反回到玻璃中,所以光线能随光纤形状的弯曲沿玻璃物质传播。
电解铜含铜量
2017-06-06 17:49:56
电解铜含铜量不同,将电解铜分为几个不同的型号。在国际上,电解铜含铜量都具有非常详细的规定,以便于我们的日常使用和交易。电解铜现如今已经成为人们日常生活中继铝之后应用最为广泛的金属,在人们的日常生活中和工业生产中起到了不可替代的作用。 电解铜含铜量的不同,可将电解铜分为:1#电解铜、2#电解铜等。 1#电解铜是标准阴极铜。根据国标GB/T467-1997标准阴极铜规定,铜加银含量不小于99.95%。2#电解铜规定,铜的含量不少于93-95%。 电解铜即是所谓的“再生铜”,这种铜的内部所含杂质最多,价格自然最廉,因此许多便宜的动力线,或是音响用线均由此种“电解铜”制成。一般用在音响上的线材,都会经过精练的手续。也由于“电解铜”未经过这个过程,所以会含有许多不明杂质,如果用在音响线上,会因每批铜材所含电解铜含铜量不同,而产生不可控制的声音走向。 铜具有优良的抗海洋生物附着能力,在舰船建造和海洋工程中被广泛的应用,包覆铜镍合金的船壳可以提高船速,减少燃料消耗。根据电解铜含铜量不同,电解铜的作用也是不同的。铜对环境是友善的,各种细菌在铜制品表面不能存活,铜的许多有机化合物,是人类和植物生长所不可缺少的微量元素,因此铜制品在建筑行业中广泛应用,在供给人类饮用水的输送管路中,明显优于其它路材料,铜在PH值大于6.5的水质中将有腐蚀现象发生,Cl-1、SO4-2、CO3-2离子浓度越高、温度越高,电解铜含铜量越少,铜的腐蚀将加剧,主要腐蚀类型有点腐蚀、溃蚀、应力腐蚀等。 更多关于电解铜含铜量的资讯,请登录上海有色网查询。
含铜金矿选矿技术
2019-02-21 10:13:28
杂乱多金属硫化矿型金矿是我国重要的黄金资源,我国产金基地山东、河南等省贮藏很多这类矿石,长江中下游地区的江西、安徽、湖南等铜基地的铜矿中遍及伴生金。这类矿石首要有硫化物及贫硫化物型或金—黄铁矿型、金—铜—黄铁矿型、金—石英—多金属型等。金除与黄铁矿亲近共生外,大多和铜、铅等矿藏亲近共生。这种金矿提金处理时发作的问题与矿石中金的赋存状况和载体矿藏有直接关系。而金—铜硫化矿型金矿是首要的类型,也是常见的难处理矿石。这类矿石直接化浸出,一般浸出率较低,且耗费很多的。其难浸的首要原因为:一是杂乱多金属硫化矿型金矿矿藏中的铜、铁、锑、锰、镍等金属硫化物在浸液中易与空气中的氧发作化学反响,耗费很多的氧气和碱。一起,这些金属离子又能与根离子发作化学反响,如铜与根离子能依据与溶液中铜的浓度比生成多种铜的络合物如:Cu(CN)、Cu(CN)2-、Cu(CN)32-、Cu(CN)43-,耗费很多的根离子。二是铜等贱金属硫化矿在浸液中溶解不只耗费氧气和根离子,其氧化产品能够在金粒表面构成钝化膜,或与根反响生成不溶的化合物掩盖在金粒上,并下降浸液的电位,使金的化速度下降或化不能进行。三是杂乱多金属硫化矿型金矿矿藏中的铜、铁、锑、锰、镍、铅等金属离子,一般都能与根离子构成络离子,进入溶液中的铜络离子等对金的锌粉置换、离子交换、溶剂淬取及活性碳吸附均有不良影响。因而,这类矿石需经预处理脱去铜、铁、锑等金属后再用或其它浸出剂浸出。现在预处理办法首要有焙烧氧化法、细菌氧化法、加压氧化法、化学氧化法等。
本文以纯硫化铜矿藏为研讨目标,在添加氯盐的酸性系统中,展开了加温、加压预氧化浸出除铜研讨,意图是为实践含铜难处理金矿的工业运用和难以经选矿富集的低档次硫化铜矿石的湿法处理工业运用供给理论依据。
一、试样、药剂及研讨办法
(一)试样
结晶无缺的黄铜矿取自某铜矿山,经手艺挑选得纯矿藏,将黄铜矿矿藏经锤碎、磨矿和筛分用蒸馏水重复清洗,凉干后贮瓶备用。经化验,样品含铜33.25%,纯度为95%以上。
(二)首要药剂及仪器
实验所选用的首要药剂浓硫酸、氯化钠和氧气均由国内化学药剂厂出产,其间浓硫酸、氯化钠为分析纯,氧化为工业纯。实验中所运用的首要仪器设备衬钛FCN型2L高压釜用于加压预氧化,XL—30W/TMD型扫描电镜、EDAX型能谱仪用于浸出渣表面结构分析,miniflex型和X衍射仪用于浸出渣物相分析,80TDE型超声波清洗器用于清洗浸出渣表面。
(三)研讨办法
氧化预处理实验在FCH型2L衬钛高压釜中进行。矿石在磨机中磨到适宜粒度后,在烧杯中按实验条件调浆后,参加高压釜中。依据实验条件要求,调整好拌和速度,及时补加氧气,调理好高压釜氧气分压,坚持高压釜压力平衡,一起坚持好釜内温度。加压氧化处理后,在多用真空过滤机中过滤,液体送化验,渣洗刷枯燥后,部分制样送化验分析,部分用于测验。物相分析运用miniflex型和X射线衍射仪。
二、实验及成果
(一)浸出进程首要要素对预氧化浸出黄铜矿中铜、铁的影响
加压预氧化浸出进程中,氧分压、温度、开端硫酸浓度、开端氯化钠浓度等首要工艺参数对预氧化浸出黄铜矿中铜、铁发作重要影响。图1为-45μm粒级占80%,浸出温度110℃,初始H2SO4浓度0.37mol/L,初始NaCl浓度0.68mol/L,液固比20∶1,浸出时刻80min,拌和速度750r/min的预氧化条件下,氧气分压对铜、铁氧化浸出率的影响。图1成果标明,跟着氧分压的添加,铜的浸出率也跟着添加,而铁的浸出随氧气分压的进步而下降。因而,相应地进步氧气分压有利于氧化预处理作用。但高的氧气压力晦气于工业出产,一起下降氧气压力也是研讨的意图,氧气压力为0.45Mpa时,铜的浸出率已达到84.68%,进步到0.55MPa时,铜的浸出率才进步到85.01%,因而选用氧气压力为0.45MPa较适宜。图1 氧分压对预氧化浸出黄铜矿中铜、铁的影响
图2为矿样-45μm粒级占80%,氧分压0.45MPa,初始H2SO4浓度0.37mol/L,初始NaCl浓度0.68mol/L,液固比20∶1,浸出时刻80min,拌和速度750r/min的条件下温度对黄铜矿中铜、铁氧化浸出率的影响。图2成果标明,温度对黄铜矿中铜、铁的浸出率影响较大。90℃到110℃范围内,跟着温度的进步,铜浸出率急速升高,铁的浸出首先升后降。110℃到120℃,跟着温度的升高,铜的浸出率上升较小,铁的浸出率显着下降。考虑119℃正是单质硫的熔点,挨近硫的熔点晦气于黄铜矿的浸出,以及预处理后的化,因而,选用110℃是适宜的。图2 温度对预氧化浸出黄铜矿中铜、铁的影响
图3为温度110℃,-45μm料级占80%,氧分压为0.45MPa,初始NaCl浓度0.68mol/L,液固比20∶1,浸出时刻80min,拌和速度750r/min条件下,开端酸度对黄铜矿中铜、铁浸出率的影响。图3成果能够看出,硫酸用量小于0.37mol/L,铜的浸出率随酸度的添加而添加,硫酸用量大于0.37mol/L,铜的浸出率随酸度的添加而有所下降。当H2SO4用量低于0.55mol/L时,铁的浸出率随酸度添加而明显添加,但当H2SO4用量高于0.55mol/L时,铁的浸出开端下降。可见,最佳H2SO4开端浓度为0.37mol/L。图3 硫酸用量对预氧化浸出黄铜矿中铜、铁的影响
图4为温度110℃,-45μm粒级占80%,氧分压为0.45MPa,初始H2SO4浓度为0.37mol/L,液固比20∶1,浸出时刻80min,拌和速度750r/min条件下,NaCl浓度对黄铜矿中铜铁浸出率的影响。图4成果标明,当NaCl用量较低时,铜的浸出率极低。跟着NaCl浓度增大,铜的浸出率敏捷添加,而铁的浸出率急速下降后又有少数的上升,可见NaCl对黄铜矿浸出影响较杂乱。但当氯化钠的浓度高出0.68mol/L时,对铜、铁的浸出影响不在。因而,NaCl开端浓度确定为0.68mol/L较适宜。图4 NaCl浓度对预氧化浸出黄铜矿中铜、铁影响
(二)某多金属硫化矿型含铜金矿加压预氧化浸出实验
在单要素条件实验的基础上对含铜20%、含金20g/t左右的某多金属硫化矿型含铜金矿进行了加压预氧化浸出实验。浸出条件为含铜金矿100g,-45μm粒级占85%,液固比5∶1,开端硫酸浓度0.55mol/L,氯化钠浓度0.68mol/L,浸出时刻2.5h,温度110℃,实验成果如表1所示。表1成果标明,氧分压达0.45MPa时,可使金浸出率达96.35%以上。
表1 某多金属硫化矿型含铜金矿加压预氧化浸出实验成果氧气分压/MPa浸出渣Cu含量/%浸出渣Fe含量/%Cu浸出率/%Fe浸出率/%Au浸出率/%0.551.3027.9793.3033.6297.430.452.6427.7487.8031.9896.35
三、黄铜矿预氧化浸出化学反响进程
对不同条件下预氧化浸出液进行了化学分析,成果标明:在实验温度90~120℃范围内,低温文氧化浸出初期矿藏中Fe首要氧化成Fe2+,少数Fe3+存在于浸出液体中;高温时和氧化浸出后期,Fe则首要以三价铁的矾类沉积于浸渣中,部分Fe3+和少数的Fe2+存在于浸出液体中。铜以Cu2+和CuCl2-存在于浸出液中,浸出系统电位高时,溶液中铜氧化的终究产品为Cu2+。因而,能够以为加温加压氯性系统氧化浸出纯黄铜矿的浸出液中终究产品为Cu2+、Fe3+离子及其与氯离子构成的各种生成物。在不同条件下预氧化浸出液化学分析的基础上,进行了不同条件下预氧化浸出渣X衍射分析,其成果如图5~7所示。图5为纯黄铜矿的X衍射图,图6和图7为温度110℃,氧气分压0.45MPa,初始硫酸浓度0.55mol/L,氯化钠浓度0.68mol/L的条件下纯黄铜矿预氧化10min和80min的X衍射图,从图中可看出,在较低温度或较短时刻内,渣中首要是未反响的黄铜矿,跟着氧化进一步深化,渣中硫含量逐步升高,一起铁的矾类沉积也随反响进程而添加。图6标明,预氧化10min时,浸出的铁离子现已开端以三价铁的黄钠铁矾沉积于浸出渣中;图7阐明,跟着氧化时刻的延伸,浸出的深化,黄钠铁矾的沉积量增大。一起跟着pH的进步,开端有草黄铁矾沉积生成。阐明随氧化时刻的延伸,预氧化越彻底。黄铜矿在氧化进程中,首先是铁优先从黄铜矿晶格中别离出来,并生成许多中间产品,如Cu9Fe9S16、Cu39S28、CuCl等。氧化进程中有Cu9Fe9S16、Cu39S28及黄钠铁矾和草黄铁矾生成,而黄钠铁矾和草黄铁矾为沉铁终究产品。因而,能够以为在加温加压下氯性系统中氧化浸出黄铜矿的总反响为:
4CuFeS2+10H2SO4+5O2=
4CuSO4+2Fe2(SO4)3+8So+10H2O
三价铁进一步反响生成黄钠铁矾,分子通式为Nax(H2O)1-x[Fe3(SO4)2(OH)6]。图5 纯黄铜矿X衍射图图6 氧化10min的浸出渣的X衍射图图7 氧化80min的浸出渣的X衍射图(淘洗去很多单质硫后的渣)
在选用低温低压氯性系统预氧化浸出黄铜矿的工艺中,元素硫是期望生成的反响产品,元素硫的构成使氧气耗费最小。可是生成的元素硫不能对金发作包裹,不然将对化浸出金晦气。实验标明,在氧化温度小于110℃的氯性系统中,当硫酸浓度小于0.55mol/L时,黄铜矿中的硫氧化产品根本上是单质硫,见图7。核算标明,除未彻底氧化的铜硫化合物外,氧化为硫酸的硫简直为0,这与一些文献所标明的在120℃的氧化系统内硫化矿的氧化产品首要是单质硫的成果是根本共同的。单质硫很涣散,不会与其他固体渣相互聚会,用水略微淘洗就很简单别离。从浸出渣中单质硫的扫描电镜图8中可明晰见到单质硫的产状,细微的单质硫颗粒相互聚会为几十微米左右的小颗粒,表面有许多小孔,呈现为松懈的结构。图8 浸出渣中单质硫SEM图
四、定论
(一)加温加压酸性系统加氯盐氧化浸出纯黄铜矿实验先后调查了氧气分压、开端酸度、开端NaCl浓度及温度对铜、铁氧化浸出的影响。成果标明,硫酸浓度、氯化钠浓度、温度和氧气压力是影响黄铜矿浸出的重要要素,适宜的硫酸浓度、氯化钠浓度、氯化钠浓度、温度和氧气压力有利于黄铜矿的预氧化浸出。但各要素对铁浸出的影响较杂乱。
(二)在温度110℃、氧气分压0.45MPa、氧化时刻2.5h、矿藏粒度-44μm占85%、开端酸度0.55mol/L、开端NaCl浓度0.68mol/L的条件下,对实践含铜金矿的加温、加压预氧化浸出获得了铜96.35%的预氧化浸出率,阐明选用该工艺能氧化硫化矿并去除铜等金属,该工艺对杂乱多金属硫化矿型含铜金矿进行预氧化处理技术上是可行的。
(三)不同条件下预氧化浸出渣X衍射分析及浸出渣中单质硫的扫描电镜分析成果标明,在适宜的预氧化条件下,随氧化时刻的延伸,黄铜矿预氧化越彻底。预氧化渣构成的单质硫呈现为松懈的结构。
什么是菜含铜
2018-05-11 20:14:01
一些富含铜的食物,如虾、牡蛎、海蜇、鱼、蛋黄、肝、西红柿、豆类及果仁等。食物要嚼碎,以利于铜的吸收,不吃或少吃制作过精的食物。同时,在饭后不要立即服用维生素C,因维生素C会妨碍铜的吸收。 含铜元素较多的食物有猪肉、猪肝、芝麻、黄豆、菠菜、荠菜、茄子、小麦、稻米、牛奶等,适量吃些这些食物可补充铜元素。 猪肝含铜量最高,每1000克含铜25毫克,每天吃100克猪肝即可达到需求 1)铜参与造血过程,影响了铁的吸收、运输和利用。铜促进铁进入,加速血红蛋白合成。没有铜,铁就不能传递,铁不能结合在血红蛋白里,红细胞也就不能成熟。食物中含锌、铜、银过多时,可妨碍铜的吸收。锰适量时可改善铜的利用和吸收。 2)胶原蛋白是人体含量最多的一种蛋白质,是人体结缔组织的主要组成部分,是骨骼的核心物质。胶原蛋白质像是几根细绳子一样扭成一束,成为胶原纤维。 胶原纤维形成时,必须在胶原蛋白分子内部或分子之间交联起来,才能坚韧有力,强硬耐拉。此种交联反应必须由一种叫做赖酸氧化酶的催化反应才能完成。此酶是一种含铜的金属酶,必须具备充分的铜才能起作用。进入老年期后,如果食物中缺乏铜,就会出现骨质疏松、牙齿脱落、伤筋损骨等症状。 人体血清中的铜几乎80%都存在于铜蓝蛋白中。铜蓝蛋白是一种含铜的氧化酶,它能氧化体内的酚类、脂类和维生素C,并能使二价铁变为三价铁,使之便于在体内运输,并负责细胞色素的再生,从而保证细胞内产生足够的能量。上年纪的人如果缺铜,会导致细胞能量供应不足,出现精力缺乏、步履不稳、运动失调及思维迟钝等症状
含铜金精矿氰化提金和氰渣浮铜试验研究与生产实践
2019-02-19 10:03:20
广东高要河台金矿系蚀变糜棱岩型矿床先后挖掘高村、云西两个矿区。1998年之前,选用单一浮选工艺流程出产含铜量达3%~6%的金精矿,尔后建成化冶炼厂可直接出产国标制品金,已在上海黄金交易所上市。
含金矿石由一系列含金硅化千糜岩、硅化糜棱岩、硅化糜棱岩化片岩等组成。矿石中金属含量较低。首要有黄铁矿、磁黄铁矿、黄铜矿、天然金及银金矿,其次含有少量闪锌矿、方铅矿与毒砂(其含量仅占2.27%),别的有石英、绢云母、方解石等非金属矿藏。矿石多元素分析成果见表1。矿石中金矿藏粒度较细,首要以微细粒金产出,其间-37+lO 占56.32%,-lO 占36.80%;中粒级含量较低,其间-74+37 仅占2.35%,+74 占4.53%。天然金的形状首要为尖角粒状,其次有浑圆粒状、板片状、针绒状,少量为角粒、长角状等。
表1 矿石多元素分析成果/%成分AuAgCuPbZnFeSAs含量4.50g/t5.39g/t0.2370.0160.0193.530.990.003成分SbBiMgOAl2O3SiO2CaOTiO2C含量0.00020.0011.4613.3670.381.242.280.27
天然金首要呈粒问金嵌布在各种矿藏中,磁黄铁矿与脉石间粒占61.53%,其次为包裹金,脉石、磁黄铁矿与黄铜矿包裹占23.84%,脉石裂隙金仅占14.63%。
一、含铜金精矿化实验研讨
(一)条件实验
化实验物料是出产流程的金精矿,金档次90g/t以上,铜档次达3.00%左右,进行条件实验。依据化提金的工艺参数,别离就氧化钙的用量或pH值、预处理时刻、用量、矿浆浓度、磨矿细度、化浸出时刻对化金浸出率的联系等进行了研讨。研讨成果阐明,化提金的最佳工艺条件是:氧化钙用量10~15kg/t或pHl1~12、用量15kg/t、矿浆浓度33%、化浸出时刻24h、磨矿细度-41 占90%以上,化浸出率到达96%以上。
(二)归纳条件实验
依据选定的最佳实验工艺条件,研讨了归纳最佳工艺条件对化提金的相互联系或对化提金的影响。成果表明,所断定的化最佳工艺条件适合于河台金矿出产终究金精矿化,所获得的化目标也很好,能完成就地产金。渣金档次为3.00g/t以下,金浸出率能够到达97%以上,可是的用量仍到达15/t;一起渣中铜档次仍达3.28%,有较高的经济价值。
以上研讨能够得出如下定论,含铜金精矿化提金的一大妨碍是精矿中含溶铜矿藏及其它硫化物,所以耗量高,即便选用了碱处理,耗费量仍到达15/t。但金精矿化提金目标不错,金浸出率达97%以上,一起,也阐明磨矿粒度越细化浸出目标越好。依据以上实验条件,怎么进一步下降的耗费,下降铜在化浸出中的不良影响,下降渣档次,收回渣中的铜,是完成就地产金的要害。
二、下降耗费,进步化金浸出率实验
托付长春黄金研讨院进行的金精矿化提金实验研讨,成果表明,因为金精矿中含铜量达3.00%以上,耗费很多的,一起渣档次仍偏高。为此,河台金矿于1996年建立金精矿化浸出攻关实验小组。经过一个多月的攻关实验,选用报价较为廉价的特殊添加剂A来下降铜对化浸出的影响,获得了突破性发展,并获得成功,使的耗费降至4~6kg/t,金化浸出率达97.57%以上,渣档次在2.40g/t以下。最佳归纳实验条件:预处理时刻5h,pH11~12,磨矿细度90%~41 ;矿浆浓度33%,浸出时刻24h,用量6kg/t,添加剂A6kg/t左右,实验成果见表2。
表2 选用添加剂A下降实验成果项目浸出原矿金档次/(g·t-1)浸出原矿铜档次/%浸渣金档次/(g·t-1)浸渣铜档次/%金浸出率/%铜浸出率/%目标93.453.702.253.4797.596.22
从表2实验成果可知,选用添加剂A下降铜及其它矿藏对化浸出的影响是成功的。不只下降了的耗费,而且金浸出率到达97.59%,目标抱负,完全能够完成就地产金。
三、出产实践
河台金矿化车间于1997年开端建造,1998年正式投产。投产初期规划出产能力为日处理金精矿50t,后扩建成100t的化车间。化工艺流程为:预处理+金精矿脱水+贫液调浆+两次浸出两次洗刷+锌粉置换+金泥冶炼+渣浮铜。我矿是上海黄金交易所第一批合格精粹厂商,注册的“金鼎”牌黄金质量达99.995%以上,并经过了ISO9000-2000质量体系认证,已于2002年10月30日在上海黄金交易所上市。化车间从1998年投产以来,金浸出率达98%以上,的耗费为4~5kg/t,添加剂A的耗量为5~6kg/t,获得了杰出的经济效益和社会效益。近5年来化浸出目标见表3。表3成果表明,投产第一年,金的浸出率达97.78%,渣档次1.55g/t。
跟着办理工作的加强和工人操作技能的进步,工艺优化及技能完善,化浸出目标越来越好,到2002年1~9月,渣档次降至1.00g/t,金浸出率进步到98.98%,比投产的第一年,金浸出率添加1.2%。含铜金精矿化提金工艺技能达国内领先水平,并经过我国黄金协会安排的技能鉴定。
表3 近年化浸出目标计算年份浸出原矿量/t浸出原矿含金/(g·t-1)浸渣金档次/(g·t-1)金浸出率/%单耗/(kg·t-1)1998(5~12)
1999
2000
2001
2002(1~9)11532.85
17104.80
17709.01
16015.48
13004.3369.92
83.48
78.00
90.06
98.391.55
2.37
1.38
1.16
1.0097.78
97.16
98.23
98.71
98.987.80
8.01
4.45
4.64
4.38
四、化尾渣收回铜
河台金矿浮选精矿中所含铜大部分以黄铜矿状况存在,具有可浮性,因而选用浮选法加以收回。化尾渣多元素分析和首要收回意图矿藏铜矿藏的物相分析成果见表4、表5。化厂投产初期,因为存在多方面的原因,化浸渣中所含的有按捺浮选铜的效果,浮铜工艺不成熟,经验不足,形成浮铜工艺不正常,使很多含有铜或银的渣排到尾矿库中,形成较大的经济损失。所以怎么赶快康复浮铜工艺的正常出产,发明价值,显得非常重要。经过对化尾渣的矿石性质分析及小型实验研讨,决议选用浮选工艺收回渣中的铜矿藏及剩下金银矿藏。因为浮选精矿化要求的磨矿细度为-37grn占90%,此条件下铜矿藏的单体解离状况见表6。
表4 化尾渣多元素分析成果/%元素CuFeSAl2O3SiO2CPbZnAuAg含量2.515.3613.484.4245.60.650.310.232.68g/t30.00g/t
表5 化尾渣铜矿藏物相分析成果/%物相称号铜/氧化铜铜/次生硫化铜铜/原生硫化铜全铜含量/%0.0090.0560.1760.241相对含量/%3.7323.2473.02100.0
表6 铜矿藏单体解离度测定成果/%铜矿藏存在状况单体铜矿藏铜矿藏与脉石连生铜矿藏与黄铁矿连生铜矿藏与磁黄铁矿连生脉石包裹铜矿藏算计含量/%48.626.41.57.216.3100
从表6可看出,渣中铜矿藏的单体解离度不高,仅为48.6%,这将影响浮选铜精矿的档次。为此,要到达在满意铜精矿档次的前提下,最大极限进步收回率的意图,出产中要求必须加强磨矿作业的办理。采纳下降旋流器给矿浓度,安稳其给矿量和给矿浓度,增大旋流器的工作压力,进步旋流器的分级功率,使磨矿细度到达-37占95%以上。严格控制浮选作业条件,以完成在确保铜精矿档次的前提下获得较高的收回率。
因为渣中根的含量较高,可到达2~4g/L,一起滤饼的水分为16%~22%,如此高的根浓度将对铜矿藏发生较强的影响,不利于浮铜作业。为此在调浆时参加添加剂B,消除剩余根对浮铜作业的影响,另一方面参加选铜药剂C 90g/t,选铜药剂D 40g/t,获得较好的选铜目标,当渣铜档次达3.00%以上时,铜精矿档次达18%以上,获得了较好的经济效益,一起因为参加了添加剂B,消除了大部分的根,也有利于环保。
出产浮铜工艺流程为一次粗选、两次精选、两次扫选,作业条件为处理矿量50t/d,磨矿细度-38 88.5%以上,滤饼水分17%~22%,矿浆浓度27%,矿浆流量120L/min,粗选加药:浮铜药剂B 60g/t,药剂C 25g/t,松醇油30g/t;扫选加药剂B 30g/t,药剂C 15g/t。历年来浮铜出产目标见表7。
从出产实践能够看出,跟着工艺流程的不断完善,工人操作水平的进步,浮铜目标越来越好;另一方面,因为加强了浮铜工艺流程的现场技能办理工作,浮铜工艺流程也越来越安稳,有利于浮铜目标的安稳和进步。
表7 近年浮铜出产目标/%年份渣铜档次铜精矿档次尾渣铜档次铜收回率1999
2000
2001
2002(1~10)4.64
2.93
3.23
3.5718.16
16.91
19.35
20.172.27
0.95
0.83
0.8758.49
71.50
77.48
78.87
六、结语
(一)河台金矿挖掘含金蚀变糜棱型矿床,金的粒度较细,且大部分为微细粒金与裂隙金,金矿石中铜的含量达0.28%以上,金精矿含铜达3%以上,属难选冶矿石,可是选用特殊药剂A下降铜对化提金的影响,能获得杰出的化目标。
(二)因为加强技能办理与员工训练,进步工人操作技能,执行各项规章制度,而且工程技能人员加强日常现场办理,及时处理出产中呈现的问题,才是安稳工艺和进步技能目标的要害。
(三)因为选用了选铜药剂B、C、D,渣中的铜和剩余的金、银得到进一步的收回,进步了厂商的经济效益。含铜金精矿直接化提金,渣收回铜和剩余的金、银新工艺,对同类型黄金矿山,极具推广应用价值。含铜金精矿化提金、渣浮铜的连续性出产工艺,经我国黄金协会2002年安排的技能鉴定以为,该工艺技能属国内领先水平,是国内仅有一家此类厂商。
电解铅、粗铅、还原铅、再生铅、铅精矿的区别
2018-12-19 09:49:44
1号电解铅 :Pb含量不小于99.994% ;
2号铅: Pb含量不小于99.99%;
粗铅: 硫化铅矿氧化脱硫-去渣-粗铅.粗铅Pb纯度在96%-98%;
还原铅:以废铅做原料,重新回炉冶炼而得,PB含量通常在96%~98%左右,也可做为生产电解铅的原料。 再生铅:蓄电池用铅量在铅的消费中占很大比例,因此废旧蓄电池是再生铅的主要原料。有的国家再生铅量占总产铅量的一半以上。 再生铅主要用火法生产。例如,处理废蓄电池时,通常配以8~15%的碎焦,5~10%的铁屑和适量的石灰、苏打等熔剂,在反射炉或其他炉中熔炼成粗铅。
铅精矿:矿石经过经济合理的选矿流程选别后,其主要有用组分富集,成为精矿,它是选矿厂的最终产品。精矿中主要有用组分的含量称精矿品位。精矿品位有的以重量百分比(如铜、铜、锌等)表示,有的以重量比(如金矿以克/吨)表示。它是反映精矿质量的指标,也是制定选矿工艺流程的一项参数。
含钴铜镍硫化精矿的冶炼流程
2019-03-04 11:11:26
钴常以少数伴生在镍、铜、锌、铅的硫化矿中,尤其是铜、镍硫化矿中较为遍及。一般硫化镍矿中Ni∶Co=100∶(2~5),氧化镍矿中Ni∶Co=100∶(1~30)。从含钴的铜镍硫化精矿冶炼流程中收回钻的准则流程见图1。图1 含钴的铜镍硫化精矿冶炼的准则流程
从上述流程看出:镍的高压氢复原、电解、常压或高压羰基法都可归纳收回钴,其收回率只要精矿中含钻量的25%~40%,因为在造锍熔炼中,钴的硫化物随渣的丢失百分率略大于镍,当回来转炉渣时,因为钴主要以氧化物和硅酸盐形状存在,故熔炼中钴的渣丢失急增。某些镍冶金厂的转炉渣专门以金属化锍贫化处理,从而使钴的收回率达75%~85%。详细情况见图2。图2 从转炉渣提钴的准则流程
高冰镍精粹的各种办法尽管都可以收回其间的钴,但以羰基法和常压溶浸法中钴的收回率较高。
铜钼混合精矿铜钼混合精矿分离技术流程了解
2019-02-25 09:35:32
铜钼混合精矿别离有两种计划:一是抑铜浮钼,是最主要的选矿办法。二是抑钼浮铜。后一办法只要少量选厂选用,并用糊精按捺辉钼矿。
浮钼抑铜进行铜钼别离的按捺剂计划有:
(1)法;
(2)+蒸汽加温法;
(3)单一法;
(4)+法;
(5)诺克斯药剂(或它与合用)法;
(6)铁及亚铁法;
(7)次或法;
(8)硫基乙醇等有机按捺剂法。
铜钼别离:、、砷或磷诺克斯药剂按捺以黄铜矿、斑铜矿为主的铜矿藏较有用;硫化铵、铁及亚铁、氧化剂、次氯酸盐及按捺次生硫化铜矿藏较有用。巯基乙醇等有机按捺剂是新研发的无毒高效钼的伴生硫化物按捺剂,正在推行之中。为了改进铜钼别离作用常选用的办法有:
(1)浓缩脱药。混合精矿别离之前,先进行浓缩脱药,除掉进入混合精矿中的过剩药剂,确保搅拌和粗选在适合的浓度下进行。
(2)蒸汽加温。国外一些铜钼选厂在铜钼别离前,对铜钼混合精矿进行蒸汽加温(85~90℃),有时还参加适量石灰(0.8~1.2kg/t精矿),鼓入氧气或空气。其意图是经过解吸和分化损坏混合精矿表面的捕收剂膜。不少国家把+加温(蒸吹)法视为铜钼精矿别离的最佳计划,此法是在运用硫化物按捺铜矿藏的一起,沿浮选作业线用蒸汽直接加温(60~75℃)矿浆,这样不只加快了捕收剂的解吸和分化,还减缓了硫化物的氧化,大大地下降了硫化物用量,改进了别离目标。
(3)分段增加。法是铜钼别离最常用的办法,它能够按捺非钼的一切金属硫化矿藏,其用量动摇规模很大,可在2~30kg/t内动摇。选用分段增加较有利,常将一部分溶液增加到拌和槽中,而另一部分以固体方式放在粗选和精选的泡沫槽中,运用溶解时宣布的热量使矿浆温度升高,以增强其按捺作用。
(4)用氮气浮选。铜钼别离浮选中运用的按捺剂,如、钠、诺克斯药剂中的或易氧化而失掉按捺作用。因为铜钼别离循环,精选次数多(6~8次),作业线长,这些药剂因氧化而增大耗量更为杰出。为了防止药剂氧化、下降用量,铜钼选厂用氮气替代空气作充气介质进行铜钼别离浮选取得了明显的经济作用,可使诺克斯药剂用量下降50%~70%。
含钽铌—独居石粗精矿的分选
2019-01-25 10:19:06
具有工业价值的钽和铌矿物主要有钽铁矿、铌铁矿、黄绿石、褐钇铌矿、黑稀金矿、钛铌钙铈矿等。钽铌矿石类型大概分为钽铁矿—铌铁矿矿石、黄绿石矿石和其他含钽铌矿
矿石。
钽铌矿粗选主要是重选法,粗精矿除含有钽铌矿物、锆石外,还含有磁铁矿、钛铁矿、独居石、石英、云母、石榴石、电气石和褐铁矿等多种矿物,组成复杂,分选困难,常常需要采用磁选、重选、浮游重选、浮选、电选、化学处理等方法的组合。
钽铁矿的比磁化率为2.4×10-8m3/kg,铌铁矿为2.5×10-8m3/kg,褐钇铌矿为5.8×10-8m3/kg。鉴于铁含量的大小对磁选效果有很大影响,因此,在磁选前,一般先用酸作短时间(5~15min)处理,清除矿物表面铁质,提高磁选的选择性。
下图是广西里松褐钇铌矿粗精矿的精选流程。精选采用磁选—重选—浮游重选组合流程。粗精矿先经过烘干,然后给入单盘磁选机选出铁屑,其他进入三盘磁选机,利用各种矿物磁性的差异,严格控制操作参数,将矿物分成钛铁矿—褐钇铌矿组、褐钇铌矿—独居石组、独居石—褐钇铌矿组和锆石组。前三组物料先经酸洗然后采用摇床—磁选或磁选,选出的磁性物料用油酸、碳酸钠、硅酸钠浮出独居石,槽内产品即为褐钇铌矿。后一组采用摇床—磁选—摇床分选出褐钇铌矿和锆石精矿。指标为:褐钇铌矿精矿Nb2O5)品位35.72%,精矿回收率87.62%;独居石精矿(TR2O3+ThO2)品位65.23%;锆石精矿(ZrO2)品位60.48%;同时还回收了钛铁矿。
广西里松褐钇铌矿粗精矿的精选流程
电解铅、粗铅、还原铅、再生铅以及铅精矿的区别
2018-10-15 09:42:39
1号电解铅 :Pb含量不小于99.994% ;2号铅: Pb含量不小于99.99%;粗铅: 硫化铅矿氧化脱硫-去渣-粗铅.粗铅Pb纯度在96%-98%;还原铅:以废铅做原料,重新回炉冶炼而得,PB含量通常在96%~98%左右,也可做为生产电解铅的原料。 再生铅:蓄电池用铅量在铅的消费中占很大比例,因此废旧蓄电池是再生铅的主要原料。有的国家再生铅量占总产铅量的一半以上。 再生铅主要用火法生产。例如,处理废蓄电池时,通常配以8~15%的碎焦,5~10%的铁屑和适量的石灰、苏打等熔剂,在反射炉或其他炉中熔炼成粗铅。铅精矿:矿石经过经济合理的选矿流程选别后,其主要有用组分富集,成为精矿,它是选矿厂的最终产品。精矿中主要有用组分的含量称精矿品位。精矿品位有的以重量百分比(如铜、铜、锌等)表示,有的以重量比(如金矿以克/吨)表示。它是反映精矿质量的指标,也是制定选矿工艺流程的一项参数。
含铜尾矿的浸取实例
2019-01-21 18:04:24
许多矿山历年积存的尾矿多含有一定量有回收价值的铜,而且,浮选尾矿中的铜多是在氧化矿物中,许多矿山已经在利用这些资源,下面是两家公司的尾矿浸取的实际情况。
一、迈阿密铜公司
美国亚利桑那州迈阿密(Miami)铜公司从1911年开采以来堆积了大约3450万t尾矿,早期的尾矿含铜高达0.723%,晚期则仅为0.114%。大约50%小于28μm(560目),但也有许多大块矿石夹杂在其中。尾矿实际上是浆状的,含固体约80%,液体的pH值为4.5,已经含有一定量的铜。他们在尾矿堆积区钻了147个孔,取样分析,用所得的数据建立了一个包括整个尾矿坝的颗粒大小、总含铜量、氧化铜含量及堆密度的数学模型。用它可以估计铜的总吨数、品位和粒径分布等。在此基础上建立了一个小型试验厂,经多年试验,最终在1987年决定建立生产厂。
他们采用两台压力为15.8MPa的水力喷射泵每小时可采矿453t,矿浆中含固体32.4%,经筛子将大于1.6 mm的矿块筛去。矿浆进入一个搅拌槽,加酸调至pH=1.5,仅停留数分钟,而后进入一直径为l00m的浓密机继续进行浸取。溢流以190L/s的速度进入一澄清器,加絮凝剂澄清后,上清液含铜0.6~1g/L,送往萃取。底流加萃余液重新浆化,再进入第二个直径为50m的小浓密机中进行二段浸取。二次浸取的浸出液与其他溶液一起用于水力采矿。总浸取率为 54%,酸耗约5t/t(Cu)。底流浆化后以2m/s的速度通过聚乙烯管道送到7.3km之外的一个露天矿坑,沉降后,水返回使用。这个矿坑围岩十分致密,而且低于地下水位,计划填埋至地下水位即停止。
二、恩昌加联合铜业公司
利用尾矿最著名的要算赞比亚恩昌加联合铜业公司(NMCC ),他们早在70年代就利用尾矿建起年产7万t铜的浸取-萃取厂(现已达82000t/a)。每天处理45000t尾矿,一半是选矿厂的新尾矿,一半是积存的老尾矿。尾矿平均含0.86%可溶铜,粒度55%小于75μm,主要为孔雀石。浸取设备是15个(原为6个)直径10.6 m、高18m的空气搅拌槽和7个ф76m×3m的浓密机。浸取液流速50m3/min,固体含量35%~50%。在浸取槽中的停留时间是2h,浓密机中8h。富浸取液含铜约5g/L,硫酸<0.5g/L。萃余液铜为1g/L,补充酸至12~14g/L,可用作浸取液。铜总回收率63%,耗酸约3t/t(Cu)。美国阿拉马克斯公司的双峰厂(Anamax Twin Butts)采用机械搅拌槽,浸出时矿浆浓度50%。
生物法处理含铜电镀废水
2018-05-10 18:20:47
生物法处理含铜电镀废水 生物法处理含铜废水最大的特点是在运行过程中微生物能不断地增殖,生物质去除铜离子的量随生物质量的增加而增加。生物法在应用上具有很多优点,如综合处理能力较强,使废水中的铜、六价铬、镍、锌、隔、铅等有害金属离子得到有效的去除;处理方法简便实用;过程控制简单;污泥量少,二次污染明显减少。然而生物法处理含铜废水存在着功能菌繁殖速度和反应速率慢,处理水难以回用的缺点
高铜金精矿提取金铜工艺研究
2019-02-21 11:21:37
我国具有丰厚的铜金矿石,一般选用浮选法产出金铜精矿再进行冶炼。含铜1%~6%的金精矿,选用惯例的焙烧-酸浸-化工艺,铜金的回收率都能到达很抱负的成果;但关于含铜大于10%高铜金精矿,选用该惯例工艺,酸浸率只要93%左右,酸浸渣中仍含有很多铜。将形成2方面的影响:一是铜回收率低,经济效益差;二是铜是影响金化浸出的有害元素,它的存在不光使金的浸出率下降,并且还会大大地添加耗费。因而,该类精矿根本上是外售其他冶炼厂配矿用,既添加了金属丢失,又添加运费,还形成资金的积压。针对上述情况,对该惯例工艺流程进行改善,提出新的流程以能满意高铜金精矿提取金铜的要求。
一、试验
(一)试验质料
试验质料来自东北某矿山的浮选高铜金精矿,粒度-0.044mm占93.34%。含金25.27g/t、银71.66g/t,其他成分(%):Fe 37.2、Cu 12.51、S 28.62、Ca 1.07、Al 2.4、Mn 0.026、Si 6.61、Mg 0.13、As 0.02、Pb 0.022、Zn 0.12、其他11.272。矿样中80%以上为黄铜矿,其次为黄铁矿(10%~15%),再次为铜蓝、磁黄铁矿等。
(二)试验进程
铜金精矿的焙烧试验在8kW马弗炉内进行,铂铑热电偶测温,可控硅电源控温。酸浸试验在置于恒温电加热水浴的玻璃反响釜中进行,用JJ-1型精细电动拌和器拌和。化浸出在化滚瓶上进行。
二、试验成果与评论
(一)焙烧温度试验
取铜金精矿置于刚玉盘内,于马弗炉中在不同温度下焙烧2h。将得到的焙砂进行酸浸:初始酸浓度3g/L,液固比4∶1,酸浸时刻2h,酸浸温度80℃。将酸浸渣洗刷后,置于滚瓶中,在常温下化浸出。浸出条件∶液固比L/S=2,矿浆pH=10.5,NaCN用量8kg/t,浸出36h。试验成果见表1。
表1 不同温度焙烧试验成果
从表1可知,600℃焙砂浸出铜的浸出率最高,这阐明,在此温度下,含铜金精矿硫酸化作用最好,发生的可溶性硫酸盐和易浸氧化物比率最高。跟着温度的升高,硫酸化比率下降,温度到达650℃以上时,会有很多铁酸铜生成,形成铜的浸出率急剧下降。
从表1可知,浸铜渣化浸出,可得到较高的金回收率,且比较安稳,都在98.5%以上。其间600℃的浸出率到达99.03%,阐明此铜金精矿焙烧后,焙砂中的金为易浸金。
在600℃时铜和金的浸出率均比较高,因而,选定焙烧温度为600℃。
(二)焙砂酸浸试验
从表1可知,一段酸浸渣中含铜在1%以上,含铜较高,致使浸出渣浸金时,NaCN耗费过多,一起铜的回收率偏低。在焙烧温度600℃下,对焙砂采纳二段凹凸酸浸出流程调查铜的浸出率。因为一段酸浸的浸出率在93%左右,并且比较安稳,因而,首要调查二段浸出的条件来进步铜的浸出率。固定一段浸出条件,别离调查液固比、温度、时刻和浸出酸浓对铜的二段浸出率的影响。经过上述一系列条件试验,得到的优化条件如下:一段浸出条件:3g/LH2SO4,L/S=4,T=80℃,t=90min;二段浸出条件:150g/L H2SO4,L/S=2,T=80℃,t=90min,进行归纳试验,试验成果标明:在优化试验条件下,铜的均匀浸出率为98.22%。
为了能进一步进步铜浸出率,对浸渣进行了工艺矿藏学分析。显微镜及扫描电镜调查标明,浸渣中的铜首要以剩余硫化铜的方式存在,首要是焙烧前部分包裹于黄铁矿、石英等矿藏中的黄铜矿,在焙烧进程中氧化不完全或未氧化所造成的。在工业生产上,假如欢腾焙烧操控的好,铜的回收率还会再进步。因而,进步铜浸出率的要害仍是在于焙烧工序,在焙烧进程确保铜硫酸化完全,防止部分过热、氧化不完全现象。
(三)铁、钙和镁等杂质离子的浸出
浸出进程中,硫酸不只与铜的矿藏反响将其浸出,并且硫酸也与矿石中的碱性脉石、铁作用,此也为影响铜浸出率的重要因素,一起铁离子的浸出对后续的电积工序也有影响,改动酸浓度调查铁、钙和镁等杂质离子的浸出。
操控液固比L/S=2∶1,浸出温度80℃,浸出时刻90min,改动浸出硫酸浓度,调查铁、钙和镁浸出,试验成果见表2。
表2 硫酸浓度对Fe、Ca、Mg浸出的影响由表2可知,跟着硫酸测验的增大,Fe、Mg的浸出率明显进步;Ca的浸出率略有下降,这是因为跟着硫酸浓度的升高,硫酸钙的溶解度减小,导致硫酸钙沉积在浸渣中。在优化条件下,硫酸浓度为150g/L时,溶液中铁离子的浓度为18.75g/L,因为电积进程要求铁的浓度小于3g/L,因而,在二段浸出后添加中和除铁才干进入铜萃取电积工段。
(四)酸浸渣化试验
浸渣振磨后,置于化滚瓶中。在常温下化浸出,浸出L/S=2,矿浆pH=10.5,参加NaCN,浸出36h,浸出结束后,过滤、洗刷浸出残渣,枯燥。化成果见表3。
表3 用量对Au、Ag浸出率的影响
由表3可知,金的浸出率随用量的增大,根本安稳,用量到达6kg/t时,金的浸出率到达99.14%;与焙烧温度下的化试验比照,焙砂酸浸渣中的铜的削减,有利于进步金的回收率。银的浸出率跟着用量的增大逐步进步,但全体浸出率偏低。工艺矿藏学分析成果标明,化渣中银的各物相的份额别离为(%):水溶银0.01、氯化银0.04、0.37、金属银0.56、硫化银10.38、铁矿藏包裹银34.48、其它矿藏(SiO2)包裹银54.17。可知,因为很多氧化铁杂质和SiO2的存在,对银起了“包裹”作用,在化浸出进程中,阻止了CN-与Ag的充沛触摸,从而使这部分银难以浸出。
三、引荐工艺流程
依据上述试验成果,引荐选用图1的准则流程来处理高铜金精矿。图1 高铜金精矿提取金铜准则工艺流程图
四、定论
(一)600℃焙烧时,含铜金精矿硫酸化作用最好,焙砂浸出所得铜浸出率最高;铜金精矿焙烧后,焙砂中的金为易浸金;
(二)二段酸浸条件下,一段浸出操控条件:3g/LH2SO4,浸出矿浆液固比4∶1,浸出温度80℃,浸出时刻90min;二段浸出操控条件:150g/L H2SO4,浸出矿浆液固比2∶1,浸出温度80℃,浸出时刻90min,铜的均匀浸出率为98.22%;
(三)焙烧工序是进一步进步铜的浸出率的要害,只要在焙烧进程确保铜硫酸化完全,防止部分过热、氧化不完全现象,才干进一步的进步铜的浸出率;
(四)金的浸出率随用量的增大而进步,根本安稳,用量到达6kg/t时,化36h,金的浸出率达99.14%;银的浸出率跟着用量的增大逐步进步,但全体浸出率偏低;
(五)酸浸渣中铜的削减有利于进步金的回收率,一起削减的耗费。
金矿石含砷及其精矿的处理方法
2019-02-26 16:24:38
原生金-砷矿石含有1~2%到10~12%的砷黄铁矿。在其他硫化物中,实际上常常有黄铁矿,有时还有磁黄铁矿。在很少情况下,矿藏中不含微粒金。这类矿石能够用化法或许先浮选然后对浮选精矿进行化的办法处理。矿石中大部分金常常呈微粒涣散状包裹在硫化物中。对这类矿石能够进行混合浮选,选出金-砷精矿或许金-砷-黄铁矿精矿。精矿进行焙烧,焙烧渣用化法处理或送冶炼厂冶炼。在焙烧进程中得到含砷的产品。可是,现在对这类产品的需求量不大。假如混合浮选后不能得到抛弃尾矿,那么可对浮选尾矿进行化或许对原矿进行化,而含金硫化物则用浮选法从化尾矿中收回。
浮选金-砷矿石时,有必要对已知的办法进行实验,即分段浮选,矿砂和矿泥别离浮选、在苏打介质中进行浮选等,以便改进金-砷矿石浮选进程的各项目标。浮选砷黄铁矿时,有必要往矿浆中加氧。磨矿进程中构成的碎铁可作为氧的吸收剂。当存在苏打灰时,铁的氧化和吸收氧进行得较慢。所以,在拟定浮选条件时,应当对磨矿机中增加的苏审察(耗量为1~2公斤/吨)进行实验,以便使磨矿机排矿中pH值到达10~10.2,然后在浮选时使其降到8.5~8.8。以硫酸铜作为活化剂是很有利的,其用量为100~200。克/吨。这种药剂应加在扫选中。在单个情况下,金和砷的收回率会跟着矿浆同捕收剂拌和时刻的增加(达20~30分钟)而进步。
有时,选用优先浮选分选出含金的黄铁矿精矿和砷精矿,或许单-的金-黄铁矿精矿是适宜的。假如黄铁矿精矿和砷精矿中的金是用不同办法进行收回或许需得到高晶位的砷精矿时,独自选出黄铁矿精矿和砷精矿是合算的。在下列情况下能够只选出单-的金-黄铁矿精矿:
当浮选尾矿符合抛弃金档次的要求,而砷又无工业价值时;
浮选尾矿中的金与黄铁矿精矿中的金不相同,它能够用化法收回时。
运用石灰或许在石灰介质顶用空气进行氧化,用软锰矿和按捺砷黄铁矿,可使黄铁矿与砷黄铁矿别离。在许多情况下,氧化剂的作用取决于氧化剂运用准则的拟定和遵守得怎么。氧化剂的用量过大,与矿浆触摸时刻过长都会引起砷黄铁矿的活化。
浮选泥质矿石和含碳矿石时的困难很大。矿泥中一般有含碳物质、各种页岩和碳酸盐。在浮选硫化物时,这些组分会进入精矿中,然后进步了精矿的产率和下降精矿质量。此外,矿泥能吸收浮选药剂并阻止硫化物的浮选。为了研讨泥质矿石,首要有必要断定矿石中的含金性并依据其质量能够实验下列办法:
矿石及其加工产品(粗选尾矿、中间产品、扫选精矿)的脱泥。假如有必要,别离后的矿泥应进行吸附化处理;
运用不同药剂(KMLI,IIAA,染料,淀粉等)按捺粗选、扫选或精选作业中的矿泥浮游;
浮选并用药剂处理矿砂部分。
含微粒浸染金的砷黄铁矿精矿和黄铁矿-砷黄铁矿精矿的工业运用问题,现在还未取得处理。因为对砷的各种化合物的需求量有限和这些化合物的毒性大,所以这个问题很难处理。
砷是火法冶金进程中的有害组分,所以送到冶炼厂中的精矿;对其间砷的含量有严厉的约束。
国外出产实践中,遍及选用对金-砷精矿进行焙烧,然后用化法处理焙砂。选用这一办法时,需求细心地从气相中捕收砷,假如砷产品的销路欠安时,还需求花贵重费用将其储存或埋藏起来。最好是选用两段焙烧:I段焙烧的温度为500~5800C,并给入少数的空气,Ⅱ段焙烧温度为600~620Y3并给入很多空气。只要这样,焙烧时才干不致生成易熔化合物,且能得到孔隙性杰出的焙砂。陪砂中的砷档次不该超越1~1.5%。假如在较高的温度下和给入过量的空气条件下进行一段焙烧,那将会因生成不易蒸发的盐(例如铁FeAsO4)而进步焙砂中的砷档次。盐会掩盖金的表面,阻止金在化进程中的溶解。对含有雄黄(AsS)和雌黄(As2S3)的物料进行焙烧时,在很大程度上会生成铁。在温度为600~620℃下进行的第二段焙烧大都为氯化焙烧或许氧化-氯化焙烧。在大都情况下;经过这种焙烧可使包裹在黄铁矿或砷黄铁矿中的金较充沛地露出出来。
对含碳的金-砷精矿进行焙烧时,最好分两段进行:在温度为500~600℃以及空气给入量缺乏的条件下进行第-段焙烧,在温度为650~700℃以及给入过量空气下进行第二段焙烧。第-段焙烧应该将砷烧到焙砂中的含量低于1%,而第二段焙烧应将活性碳和硫烧尽。为了使活性碳烧尽,不只需求给入过量的空气以及适当高的温度,并且还需求适当长的时刻。在欢腾焙烧炉中焙烧时,焙烧进程进行的较快,并且焙烧得较彻底充沛。为了在焙烧炉中完成不必燃料的自燃焙烧,精矿的含硫量应为22~24%。
假如焙烧渣送去熔炼,那么就能够进行一段焙烧。砷在这种焙烧渣中的含量容许到达2%。
对金-砷精矿或许焙烧后的焙砂进行化处理时,又有其不同的特色。对精矿进行化时,应该预先用碱处理,分段化,用低浓度氧化钙的化溶液进行浸出等。假如原矿或其精矿中含有砷的简略硫化物(雌黄或雄黄),那么在化时有必要用处理含锑矿石及其精矿的办法来进行实验。焙烧后的焙砂,一般需求用水冲刷,然后进行化并使化溶液中NaCN的浓度保持在0.08%以上。经过冲刷能大大下降和石灰的耗量。关于含有难以收回金的焙砂可用两段或许三段化来处理,必要时还能够用碱进行中间处理。碱能溶解砷的氧化物(特别是铁),并能使包裹在这些化合物中的金露出出来。处理焙砂时,需求NaOH的浓度为6~8%的碱溶液。并将矿浆加热到80~90%℃,处理时刻为2~3小时。然后使物料脱水,最终进行化并对液相中的金进行查验分析。往溶液中增加氢氧化物或氧化钙,就能使含Na3AsO4的碱溶液得以再生。砷呈钙方式沉积下来,溶液再用NaOH增浓。
先进行不彻底氧化焙烧,然后进行氯化蒸发是从金-砷精矿中收回金的-种可行办法。氯化蒸发实验的条件如下:焙砂中的含硫量为3.5~4%,NaCl耗量为焙砂分量的7.5~10%,氯化蒸发的温度为1000℃。在这些条件下,约有96~98%的金转入蒸发物中而被收回。
分化金-砷精矿的压热-碱浸办法值得进一步研讨。在温度为100℃,气相中的氧分压为10大气压的条件下,用150~180克/升NaOH溶液对精矿进行2小时的压热处理,就能确保+分彻底地使硫化物分化,使98~99%的砷和硫进入液相。冲刷后浸出渣中的金可用化法(不增加石灰)加以收回。压热分化能够在水介质中,借助于在50大气压下使空气中的氧经过压热浸出器来完成。在这些条件下,砷被氧化并生成铁和硫酸。
细菌浸出是使金-砷精矿被氧化的很有发展前途的办法。选用这-办法能适当彻底地使金露出出来。细菌浸出后所得到的砷化合物(主要是盐和亚钙)难溶于水中,并且其毒性很小。这是选用焙烧工艺和火法冶炼时生成的砷化合物所无法比拟的。
为了使砷黄铁矿氧化,主张选用人工培育的铁硫杆菌,其在原始溶液中的浓度为106-107细胞/毫升。细菌浸出的实验是在静态条件下进行的,有必要测定下列主要参数的最佳值:
原始细菌溶液的pH值;
三价铁的浓度,
原始矿浆中的液固比
细菌浸出的时刻。
这些参数的原始数值是:pH值;1.8~2;Fe3+的浓度为3~4克/升,液固比=30~50,时刻为300~400小时。然后使细菌适应于详细的条件,溶液进行中间脱砷(增加石灰乳使pH值到达3~3.5),并依照顺流的工艺流程安排细菌浸出实验,力求缩短细菌浸出的时刻和在较稠的矿浆中完成这-办法。关于某些金-砷精矿来说,砷黄铁矿开端氧化的最佳条件是:液固比二5:1,浸出时刻为120~150小时。在砷黄铁矿被氧化的一起,部分黄铁矿(约30~40%)也被氧化。
细菌浸出后的浸出渣需用水洗刷,然后对浸出渣进行化。除了化法之外,还能够用法、水氯化法等进行实验。
为了从黄铁矿和砷黄铁矿中露出出金,还有-些比较新的办法(如机械化学法和电化学法)应引起注重。
部分氧化的矿石中所含的砷有-部分是呈臭葱石和其他氧化矿藏状况存在的。这种矿石中的金被臭葱石薄膜所掩盖,因而难以进行浮选和化。臭葱石可用脂肪酸捕收剂进行浮选。
为了从部分氧化矿石中收回金和砷,可用包含下列作业的流程进行实验:
用巯基捕收浮选金和硫化物,其精矿进行焙烧,焙砂加以化;
浮选尾矿用NaOH溶液处理,以便浸出砷和除去金粒表面上的薄膜;
残渣用化法处理;
用石灰或高浓度NaOH溶液从碱性溶液中沉积砷。石灰能沉积,一起还能使NaOH再生。再生后的NaOH能够循环运用。
金矿石含砷及其精矿解决办法
2019-02-25 15:59:39
原生金-砷矿石含有1~2%到10~12%的砷黄铁矿。在其他硫化物中,实际上常常有黄铁矿,有时还有磁黄铁矿。在很少情况下,矿藏中不含微粒金。这类矿石能够用化法或许先浮选然后对浮选精矿进行化的办法处理。矿石中大部分金常常呈微粒涣散状包裹在硫化物中。对这类矿石能够进行混合浮选,选出金-砷精矿或许金-砷-黄铁矿精矿。精矿进行焙烧,焙烧渣用化法处理或送冶炼厂冶炼。在焙烧进程中得到含砷的产品。可是,现在对这类产品的需求量不大。假设混合浮选后不能得到抛弃尾矿,那么可对浮选尾矿进行化或许对原矿进行化,而含金硫化物则用浮选法从化尾矿中收回。
浮选金-砷矿石时,必需对已知的办法进行实验,即分段浮选,矿砂和矿泥别离浮选、在苏打介质中进行浮选等,以便改进金-砷矿石浮选进程的各项目标。浮选砷黄铁矿时,必需往矿浆中加氧。磨矿进程中构成的碎铁可作为氧的吸收剂。当存在苏打灰时,铁的氧化和吸收氧进行得较慢。所以,在拟定浮选条件时,应当对磨矿机中增加的苏审察(耗量为1~2公斤/吨)进行实验,以便使磨矿机排矿中pH值达到10~10.2,然后在浮选时使其降到8.5~8.8。以硫酸铜作为活化剂是很有利的,其用量为100~200。克/吨。这种药剂应加在扫选中。在单个情况下,金和砷的收回率会跟着矿浆同捕收剂拌和时刻的增加(达20~30分钟)而前进。
有时,选用优先浮选分选出含金的黄铁矿精矿和砷精矿,或许单-的金-黄铁矿精矿是适宜的。假设黄铁矿精矿和砷精矿中的金是用不同办法进行收回或许需得到高晶位的砷精矿时,独自选出黄铁矿精矿和砷精矿是合算的。在下列情况下能够只选出单-的金-黄铁矿精矿:
当浮选尾矿符合抛弃金档次的要求,而砷又无工业价值时;
浮选尾矿中的金与黄铁矿精矿中的金不相同,它能够用化法收回时。
运用石灰或许在石灰介质顶用空气进行氧化,用软锰矿和克制砷黄铁矿,可使黄铁矿与砷黄铁矿别离。在许多情况下,氧化剂的作用取决于氧化剂运用轨制的拟定和遵守得怎么。氧化剂的用量过大,与矿浆触摸时刻过长都会引起砷黄铁矿的活化。
浮选泥质矿石和含碳矿石时的难题很大。矿泥中一般有含碳物质、各种页岩和碳酸盐。在浮选硫化物时,这些组分会进入精矿中,然后前进了精矿的产率和下降精矿质量。此外,矿泥能吸收浮选药剂并阻止硫化物的浮选。为了研讨泥质矿石,首要必需断定矿石中的含金性并依据其质量能够实验下列办法:
矿石及其加工产品(粗选尾矿、中间产品、扫选精矿)的脱泥。假设有必要,别离后的矿泥应进行吸附化处理;
运用不同药剂(KMLI,IIAA,染料,淀粉等)克制粗选、扫选或精选功课中的矿泥浮游;
浮选并用药剂处理矿砂部分。
含微粒浸染金的砷黄铁矿精矿和黄铁矿-砷黄铁矿精矿的工业运用标题,现在还未取得处理。由于对砷的各种化合物的需求量有限和这些化合物的毒性大,所以这个标题很难处理。
砷是火法冶金进程中的有害组分,所以送到冶炼厂中的精矿;对其间砷的含量有严厉的约束。
国外出产实践中,遍及选用对金-砷精矿进行焙烧,然后用化法处理焙砂。选用这一办法时,需求细心地从气相中捕收砷,假设砷产品的销路欠安时,还需求花贵重费用将其储存或埋藏起来。最好是选用两段焙烧:I段焙烧的温度为500~5800C,并给入少数的空气,Ⅱ段焙烧温度为600~620Y3并给入很多空气。只要这样,焙烧时才干不致天然生成易熔化合物,且能得到孔隙性杰出的焙砂。陪砂中的砷档次不该超越1~1.5%。假设在较高的温度下和给入过量的空气条件下进行一段焙烧,那将会因天然生成不易蒸发的盐(例如铁FeAsO4)而前进焙砂中的砷档次。盐会笼盖金的表面,阻止金在化进程中的溶解。对含有雄黄(AsS)和雌黄(As2S3)的物料进行焙烧时,在很大程度上会天然生成铁。在温度为600~620℃下进行的第二段焙烧大都为氯化焙烧或许氧化-氯化焙烧。在大都情况下;经过这种焙烧可使包裹在黄铁矿或砷黄铁矿中的金较充沛地露出出来。
对含碳的金-砷精矿进行焙烧时,最好分两段进行:在温度为500~600℃以及空气给入量缺乏的条件下进行第-段焙烧,在温度为650~700℃以及给入过量空气下进行第二段焙烧。第-段焙烧应该将砷烧到焙砂中的含量低于1%,而第二段焙烧应将活性碳和硫烧尽。为了使活性碳烧尽,不只需求给入过量的空气以及相等高的温度,并且还需求相等长的时刻。在欢腾焙烧炉中焙烧时,焙烧进程进行的较快,并且焙烧得较彻底充沛。为了在焙烧炉中完成不必燃料的自燃焙烧,精矿的含硫量应为22~24%。
假设焙烧渣送去熔炼,那么就能够进行一段焙烧。砷在这种焙烧渣中的含量容许到达2%。
对金砷精矿或许焙烧后的焙砂进行化处理时,又有其不同的特色。对精矿进行化时,应该预先用碱处理,分段化,用低浓度氧化钙的化溶液进行浸出等。假设原矿或其精矿中含有砷的俭朴硫化物(雌黄或雄黄),那么在化时必需用处理含锑矿石及其精矿的办法来进行实验。焙烧后的焙砂,一般需求用水冲刷,然后进行化并使化溶液中NaCN的浓度保持在0.08%以上。经过冲刷能大大下降和石灰的耗量。关于含有难以收回金的焙砂可用两段或许三段化来处理,必要时还能够用碱进行中间处理。碱能溶解砷的氧化物(特别是铁),并能使包裹在这些化合物中的金露出出来。处理焙砂时,需求NaOH的浓度为6~8%的碱溶液。并将矿浆加热到80~90%℃,处理时刻为2~3小时。然后使物料脱水,最终进行化并对液相中的金进行检修分析。往溶液中增加氢氧化物或氧化钙,就能使含Na3AsO4的碱溶液得以再生。砷呈钙方式沉积下来,溶液再用NaOH增浓。
进步前辈行不彻底氧化焙烧,然后进行氯化蒸发是从金-砷精矿中收回金的-种可行方法。氯化蒸发实验的条件如下:焙砂中的含硫量为3.5~4%,NaCl耗量为焙砂分量的7.5~10%,氯化蒸发的温度为1000℃。在这些条件下,约有96~98%的金转入蒸发物中而被收回。
分化金-砷精矿的压热-碱浸办法值得进一步研讨。在温度为100℃,气相中的氧分压为10大气压的条件下,用150~180克/升NaOH溶液对精矿进行2小时的压热处理,就能确保+分彻底地使硫化物分化,使98~99%的砷和硫进入液相。冲刷后浸出渣中的金可用化法(不增加石灰)加以收回。压热分化能够在水介质中,借助于在50大气压下使空气中的氧经过压热浸出器来完成。在这些前提下,砷被氧化并天然生成铁和硫酸。
细菌浸出是使金-神精矿被氧化的很有发展前途的办法。选用这-办法能相等彻底地使金露出出来。细菌浸出后所得到的砷化合物(主要是盐和亚钙)难溶于水中,并且其毒性很小。这是选用焙烧工艺和火法冶炼时天然生成的砷化合物所无法比较的。
为了使砷黄铁矿氧化,主张选用人工培育的铁硫杆菌,其在原始溶液中的浓度为106-107细胞/毫升。细菌浸出的实验是在静态条件下进行的,必需测定下列主要参数的最佳值:原始细菌溶液的pH值;三价铁的浓度,原始矿浆中的液固比细菌浸出的时刻。
这些参数的原始数值是:pH值;1.8~2;Fe3+的浓度为3~4克/升,液固比=30~50,时刻为300~400小时。然后使细菌适应于具体的条件,溶液进行中间脱砷(增加石灰乳使pH值到达3~3.5),并依照顺流的工艺流程安排细菌浸出实验,力求缩短细菌浸出的时刻和在较稠的矿浆中完成这-办法。关于某些金-砷精矿来说,砷黄铁矿开端氧化的最佳条件是:液固比二5:1,浸出时刻为120~150小时。在砷黄铁矿被氧化的一起,部分黄铁矿(约30~40%)也被氧化。
细菌浸出后的浸出渣需用水洗刷,然后对浸出渣进行化。除了化法之外,还能够用法、水氯化法等进行实验。
为了从黄铁矿和砷黄铁矿中露出出金,还有-些比较新的办法(如机械化学法和电化学法)应引起正视。
部分氧化的矿石中所含的砷有-部分是呈臭葱石和其他氧化矿藏状况存在的。这种矿石中的金被臭葱石薄膜所笼盖,因而难以进行浮选和化。臭葱石可用脂肪酸捕收剂进行浮选。
为了从部分氧化矿石中收回金和砷,可用包含下列功课的流程进行实验:
用巯基捕收浮选金和硫化物,其精矿进行焙烧,焙砂加以化;浮选尾矿用NaOH溶液处理,以便浸出砷和除去金粒表面上的薄膜;残渣用化法处理;用石灰或高浓度NaOH溶液从碱性溶液中沉积砷。石灰能沉积,一起还能使NaOH再生。再生后的NaOH能够轮回运用。