您所在的位置: 上海有色 > 有色金属产品库 > 洗矿铅精矿 > 洗矿铅精矿百科

洗矿铅精矿百科

铅精矿价格

2017-06-06 17:49:58

铅精矿价格是很多铅精矿企业关注的重点。    2010年7月12日讯,现货铅精矿价格今报14700-14900元/吨,上涨50元/吨。美股与欧元的反弹给伦敦金属市场带来不少乐观情绪,伦铅连续7日持稳,涨势虽微,但昨日已收高至1800美元以上。国内现货市场买气回温,部分贸易商报价持平,另一些贸易商则适当调高50元/吨左右出货。伦铅小幅攀升,但国内铅精矿价格上行压力较大,下游主动接货意愿依然较低,云南铅寡淡交投于14700-14750;品牌铅在14800。隔夜伦铅以1755开盘,最高1805美元/吨,最低1754,截至收盘报1775美元/吨,涨1%。LME总持仓96551手,增加290手。LME库存减少275吨,昨日报18.93万吨。    现货市场某铅贸易商说:“因为最近希望能多出点货,我们铅精矿价格还是持平在14700元/吨,和昨天一样。最近云南铅、金沙铅都有在出,每逢周末,成交量基本都会多少增加一些,今天出了170吨左右,还算不错。”但也有贸易商告诉我们:“前一阵我们这里的成交情况很好,很多老客户都选择了那时来采购。也许正因如此,这几天的成交量就减少了不少。今天云南铅铅精矿价格14750元/吨,也有一些厂家认为价格高了点,选择持币观望。”     宏观面:美国供应管理协会(ISM)周二公布,6月非制造业指数为53.8,预估为55.0,5月为55.4,数据令人失望,尽管读数在50以上。美国近日公布的经济数据表现疲弱明显拖累美元走势,昨日美元兑欧元下跌   至 6 周低点,美元兑日元也下跌至 7 个月以来的低点。美元走弱支持基本金属大幅反弹,但毕竟投资人担心全球经济增长前景,在需求没有好转,精铅仍供应过剩的背景下,伦铅最终冲高回落。      中国目前是全球第一大铅生产国,国内2009年达到273.5万吨,占全球产量约34%;此外,中国也是出口大国,2009年精炼铅出口量高达537092吨,同比增长18%。分析师则认为,国内铅精矿短缺量并不大,只是冶炼/精炼阶段存在盈利性瓶颈;减产只能在近期内使市场短缺。目前国内铅精矿供应明显增长。根据国家统计局提供的数据,国内前5个月精炼铅产量为109.27万吨,同比增长6.7%,5月份产量同比增长14.6%,铅精矿产量为28.45万吨,同比增长10.1%,5月份同比增长22.2%。    更多关于铅精矿价格的资讯,请登录上海有色网查询。

铅精矿价格

2017-06-06 17:49:53

由于目前铅精矿被广泛地运用在各行各业,所以铅精矿价格也备受业内人士的关注。我们上海有色网是一家关于有色金属方面资讯的网站,我们希望您在关注铅精矿价格的同时也能多去我们的网站了解相关铅精矿价格的信息。铅是人类从铅锌矿石中提炼出来的较早的金属之一。它是最软的重金属,也是比重大的金属之一,具蓝灰色,硬度1.5,比重11.34,熔点327.4℃,沸点1750℃,展性良好,易与其他金属(如锌、锡、锑、砷等)制成合金。锌从铅锌矿石中提炼出来的金属较晚,是古代7种有色金属(铜、锡、铅、金、银、汞、锌)中最后的一种。锌金属具蓝白色,硬度2.0,熔点419.5℃,沸点911℃,加热至100~150℃时,具有良好压性,压延后比重7.19。锌能与多种有色金属制成合金或含锌合金,其中最主要的是锌与铜、锡、铅等组成的黄铜等,还可与铝、镁、铜等组成压铸合金。  铅精矿用途广泛,用于电气工业、机械工业、军事工业、冶金工业、化学工业、轻工业和医药业等领域。此外,铅金属在核工业、石油工业等部门也有较多的用途。以上是我们网站为各位用户简单地介绍有关铅精矿价格以及基本信息,希望您还能多多关注我们上海有色网的其他金属,我们能够为您提供最新的实时金属价格。

世界铅精矿的生产

2018-12-10 09:46:12

1970-2009年,世界铅精矿长期增长率为0.3%,2000-2009年年均递增2.2%,2009年为385.1万吨。西方国家铅精矿产量长期处于下降趋势,中国是世界铅精矿增长的主要力量。  世界铅精矿的主要生产国有中国、澳大利亚、美国、秘鲁和墨西哥,2009年上述国家铅精矿产量在世界总产量中占到77%。   世界主要铅精矿生产企业有道朗公司(Doe Run)、必和必拓(BHP Billiton)、超达(Xstrata)、泰克资源公司(Teck Resources)等。2009年,世界前10家生产企业铅精矿产量在世界总产量中占到33.6%。世界主要铅矿山有美国的韦伯纳姆矿(Viburnum)铅锌矿、澳大利亚的坎宁顿(Cannington) 银铅锌矿和伊萨山(MountIsa) 铅锌矿、加拿大的红狗铅锌矿(Red Dog)等。2009年,世界前10大矿山的铅精矿产量在世界总产量中占到26.9%。   世界精铅的生产   世界精铅生产主要集中在亚洲、欧洲和美洲三大地区,2009年,这三大地区的精铅产量达到847.8万吨,占全球总产量的96.1%;其中亚洲占比达到55.5%。   二十世纪八十年代以前,世界精铅产量在西方产量的增长推动下上扬。1960-1980年间,世界精铅产量的年度增幅为2.7%,其中西方国家精铅产量增幅达到2.6%。九十年代以后,中国铅冶炼产能的迅速扩张,引导中国精铅产量迅猛增长,成为世界精铅产量增长的主力军; 同期,西方国家精铅产量维持在500万吨下方。1990-2009年间,世界精铅产量年度增幅为2.5%,其中西方国家的产量增幅仅为0.2%,而中国达到了13.5%。   亚洲在精铅生产方面与美洲、欧洲明显不同,前者以原生铅为主,而后两者以再生铅为主。2009年,亚洲再生铅产量占其总产量的比例为41.2%,低于世界平均水平的56.4%,欧洲、美洲再生铅产量在总产量中所占比重分别高达76.4%和81.2%。   分国别来看,精铅生产主要集中在中国和美国,2009年上述两国精铅产量为494.5万吨,占全球总量的56.1%。但两国的生产方式截然不同,中国以原生铅为主,美国以再生铅为主。2009年中国精铅产量为370.8万吨,其中再生铅为123.3万吨,所占比重为33.2%。美国2009年精铅产量为123.7万吨,其中再生铅所占比重高达91.4%。  (miki)

铅精矿质量标准

2019-01-21 09:41:32

铅精矿质量标准品级Pb质量分子数不小于 %杂质质量分子数不大于 %CuZnAsMgOAl2O3一级品701.240.21.02.0二级品651.550.31.52.5三级品552.060.41.53.0四级品452.570.62.04.0注:铅精矿中金、银为有价元素,应报分析数据;其他类型铅精矿的杂质要求由供需双方商定

锰矿石的洗矿(二)

2019-01-25 15:49:28

1990年大新锰矿新建30万t/a选矿厂,采用1600mmx7630mm松式洗矿机进行洗矿作业,现场测试洗矿技术指标见表9。洗矿机溢流与分级机溢流,产品粒度组成见表10。表9              大新锰矿洗矿动技术指标名称处理量(t/台时)产率/%品位/%锰分配率/%注MnSiO2原矿56.6710027.7932.44100原矿实际耗水量0.63~0.55m3/t洗净矿41.7473.6632.1827.8485.29吨原矿设计耗水量1.54m3/t溢流14.9326.3415.5145.3114.71 分级机返砂1.011.7931.3427.292.02 分级机溢流13.9224.5514.3646.6212.69 表10          洗矿机溢流与分级机溢流产品粒度组成粒度/mm产率/%品位/%分配率/%洗矿溢流分级溢流MnSiO2MnSiO2    洗矿溢流分级溢流洗矿溢流分级溢流洗矿溢流分级溢流洗矿溢流分级溢流>50.02 14.78   0.02   3~50.05 17.29   0.05   1~32.761.6220.3818.7 44.33.652.11 1.540.5~19.486.9525.1723.3 37.215.4911.29 5.550.3~0.57.846.7227.4325.6 34.213.9611.96 4.930.15~0.37.247.6527.6626.9 31.413.914.32 5.170.1~0.153.934.0826.1925.9 33.16.687.35 2.90.074~0.14.224.4524.1124 34.36.67.44 3.28<0.07463.9668.539.559.54 52.139.6545.53 76.63合计10010015.4114.4 46.6100100 100[next]      洗矿作业的式业试验、初步设计、生产流程查定的技术经济指标汇总对比见表11,洗矿数质量流程见图1。[next]     (三)浅海沉积型碳酸盐锰矿床,后经氧化淋滤富集作用而成堆积型氧化锰矿床    该矿床主要含锰矿物为硬锰矿、锰土、水锰矿;脉石矿物有石灰石、硅质岩碎屑、粘土矿物和少量碳酸盐。代表矿山为湖南东汀桥锰矿。该矿采用1070mmx4600mm槽式洗矿机进行两段洗矿,目的是加强粗颗粒矿的擦洗、磨剥作用,提高净矿品位。两段洗矿数质量流程见图2,产品粒度筛析见表12。[next]     (四)浅海相原生沉积含锰灰岩,地表经氧化次生富集生成,锰帽型偏锰酸矿床    矿体产于泥盆系榴江组中部及底部,均由原生含锰灰岩经次生氧化,裂隙淋积和破碎-残积生成,属风化型氧化锰-偏锰酸矿床。主要矿物为偏锰酸矿、少量硬锰矿、软锰矿及褐锰矿。脉石矿物主要为方解石、石英。矿石硬度低,体重轻,含水大(44.6%),呈泥质结构,俗称松软锰矿石。广西木圭锰矿系典型代表。    因矿石体轻质软含水大,因此给洗矿工艺增加很大困难,科研部门曾分别提出“自磨解洗”及“剪切洗矿”等新洗矿理论,但仍未能在工业上实施。简单的洗矿方法,实质上亦能取得可行的效果,曾先后用圆筒洗矿机、螺旋分级机和塔式洗矿机进行试验,矿泥的综合指标基本是一致的(表13).洗矿产品的粒度筛析见表14。试验说明,只要分离出-0.15mm粒级的产品,粗粒级产品质量也能达到用户要求。表13                 五种不同洗矿方法所得综合矿泥指标对比洗矿方式及洗矿时间综合矿泥指标产率/%品位/%分配率/% MnFeMnFe1、圆筒洗矿机,预先脱泥再洗3min52.5514.939.333.451.32、圆筒洗矿机,加水玻璃,预先脱泥洗3min52.1214.749.2932.5751.493、圆筒洗矿机、预浮,预先脱泥再洗3min51.7514.919.333.0450.74、螺旋分级机,先脱泥,再洗3次52.5514.989.3433.1650.955、塔式洗矿机,预先脱泥,洗60min52.1715.189.533.0350.67表14                      洗矿产品各料级累计粒级/m产率/%品位/%分配率/%部分累计部分累计部分累计    MnFeMnFeMnFeMnFe50~135.775.7736.747.7536.747.759.034.699.034.6913~612.8318.633.599.4934.578.9518.3512.7827.3817.76~311.5430.1432.4710.1533.769.4115.9512.2943.3329.763~18.0138.1532.5610.433.519.6111.18.7554.4338.511~0.159.347.4530.7210.4332.969.7712.1710.1866.648.690.15~0.07424.1371.3815.769.5127.169.6816.1924.0982.9772.78<0.07428.4210014.229.1223.489.5217.2127.22100100合计100 23.489.52  100100     [next]    四、国外锰矿石洗矿简介    (1)乌克兰的尼笠波尔矿区,该矿区主要是氧化锰矿石,含泥较多,而且较粘,属难洗矿石,综合洗矿指标见表15。表15                    尼科波尔矿综合洗矿指标产品产率/%锰品位/%锰回收率/%注净矿49.839.871.1洗一吨原矿不耗电5.2KW·h,水12.4m3溢流50.215.828.9原矿10027.8100     (2)格鲁吉亚的恰图拉锰矿区,该矿区主要是碳酸锰矿石和原生氧化矿石。采用1880mmx7000槽式洗矿机处理氧化锰矿石,其综合洗矿指标见表16。表16                         恰图拉锰矿综合洗矿指标产品产率/%锰品位/%锰回收率/%注净矿76.928.887.81880mm×7000mm槽式洗矿机转11r/min,每吨矿石用水量2~3m3,生产能力63t/h溢流23.11312.2原矿10025.2100     目前国外大多数厂家已采用塔式洗矿机代替槽式洗矿机,可显著降低洗矿过程中的磨擦作用,从而减少因洗矿而生成的矿泥量和锰金属的损失。    (3)巴西的塞腊、多钠维奥选矿厂,该选厂的主要矿物为软锰矿、隐钾锰矿及少量黑锰矿,其次为针铁矿、水化硅酸锰和粘土等。原矿破碎到95mm以下,给入2743mmx5486mm圆筒洗矿机进行洗矿,将泥土洗净,大于8mm的为商品矿,小于8mm的粉矿送往选矿厂处理。    (4)加蓬的莫安达锰矿,该矿的矿石类型为氧化矿,主要锰矿物有软锰矿、黝锰矿、硬锰矿、黑锰矿等。该矿石含锰品位很高,原矿经破碎到125mm以下,送入ф3.5mx8.5m圆筒洗矿机洗矿,一面给矿,一面给水,利用磨擦和水的冲洗作用将泥土洗净,净矿再送去筛分分级成产品。    (5)澳大利亚的格鲁特岛锰矿选矿厂,该矿为沉积氧化锰矿床,矿体基本上由锰矿石、石英砂和高岭土组成,中间夹有粘土层。主要矿物为隐钾锰矿和软锰矿,其次为硬锰矿,还有水锰矿、褐锰矿、铿硬锰矿等,废石为石英砂和粘土,因此,必须洗矿。原矿破碎到小于75mm,然后分为两个级别-75~6mm和-6~0.5mm,分别用ф2.7mx4.9m圆筒洗矿机进行擦洗。圆筒转速14r/min,矿浆浓度为70%,物料在圆筒内的擦洗时间为2~3min,擦洗的作用在于除去矿粒表面的粘土和其他覆盖物,并将粘土球和软红土颗粒散碎,以便清除。

铅精矿的化学成分

2018-12-19 09:49:46

铅精矿是由主金属铅(Pb)、硫(S)和伴生元素Zn、Cu、Fe、As、Sb、Bi、Sn、Au、Ag以及脉石氧化物SiO2、CaO、MgO、A12O3等组成。为了保证冶金产品质量和获得较高的生产效率,避免有害杂质的影响,使生产能够顺利进行。

铅冶炼工艺对铅精矿的要求

2018-09-20 09:53:10

1、主金属含量不宜过低,通常要求大于40%。含量过低,对整个铅冶炼工艺来讲,单位物料产出的金属铅量减少,从而降低了生产效率。2、杂质铜含量不宜过高,通常要求小于1.5%。铜过高,烧结块中铜含量会相应升高,在鼓风炉还原熔炼过程中,所产生的锍量增加:一则使溶于锍中的主金属铅损失增加,二则易洗刷鼓风炉水套,缩短了水套使用寿命,并易造成冲炮等安全事故。另外,含铜太高,也易造成粗铅和电铅中铜含量超标。3、锌的硫化物和氧化物均有熔点高、粘度大的特点,特别是硫化锌。如含锌过高,则在熔炼时,这些锌的化合物进入熔渣和铅锍,会使它们熔点升高,粘度增大,密度差变小,分离困难。甚至因饱和在铅锍和熔渣之间析出形成横隔膜,严重影响鼓风炉炉况,妨碍熔体分离,故锌含量不宜过高,一般要小于5%。4、砷、锑等杂质含量也有严格的要求,通常要求As+Sb小于1.2%,如过高,则经配料烧结后,在鼓风炉中形成黄渣的量会增加,而且金属铅的流失量会相应增大,更严重的是会造成粗铅、阳极铅含砷、锑过高;此外在电解精炼过程中,使铅溶解速度变慢,并且阳极泥难以洗刷干净。这样既影响电流效率,又影响生产效率。 另外,MgO、Al2O3等杂质会影响鼓风炉渣型,故一般要求MgO<2%,Al2O3<4%。

锰矿石的洗矿(一)

2019-01-25 15:49:28

洗矿是通过水的冲刷和机械搅拌作用,使粘土碎裂和分散,把粘土从矿石中分离,形成悬浮矿浆排出,因此它是解离和分离矿石成分的两个作业,属于按粒度分离物料的过程。锰矿石、铁矿石、石灰石,尤其是经风化、淋滤、搬运、富集于第三系-第四系氧化带形成的残积、淋滤、堆积、锰帽等锰矿床,洗矿更是必不可少的作业。    一、锰矿石可洗性的评定    评定矿石可洗性,常用有以下四种作业方法。    (一)根据泥土的粘聚力分类    粘聚力可依据工程地质学粘土剪切试验来测定,依据粘聚系数的大小,可分为不同的等级。泥土的粘聚系数分类见表1。表1                   泥土的粘聚系数分类前苏联分类法广西分类法可洗性分类洗矿方法等级土壤种类<0.01mm粒度含量/%等级泥土种类粘聚系数/(t·m2)1砂<5Ⅰ松砂、泥<0.2易洗矿石筛上冲洗2腐植土10~5Ⅱ普通砂泥<0.53尘土和淤泥粘状砂 Ⅲ半硬砂<2中等可洗矿槽式洗矿机一次洗4砂质矿泥20~105砂质粘土50~20Ⅳ半硬胶泥<6难洗矿槽式洗矿机二次洗6粘土>50Ⅴ硬胶泥<10     (二)根据粘土的可塑性系数分类    塑性是表示粘土经润湿后,受压力作用变形而不碎裂,压力解除后并继续保持其形状的性质。粘土只能在一定含水率范围内才具有塑性。含水量减少到一定限度时,粘土开始被压碎时称为塑性下限,含水率增加到一定限度,粘土开始具有流动性时称为塑性上限,上下限含水率之差称为塑性指数。    可根据下列公式计算出粘土的塑性指数:                                K=W上限—W下限    式中  K——塑性指数;          W上限——粘土塑性上限,即粘土开始流动的含水量,%;          W下限——粘土逆性下限,即点土开始压碎时的含水量,%;    根据粘土的塑性指数值与用槽式洗矿机所需洗矿时间而将矿石可洗性分为三类(见表2)。表2                      粘土塑性系数分类序号塑性名称泥土名称可洗性等级泥土中小于10mm粒级含量/%擦洗时间/min用槽式洗矿机洗矿次数1>120粘土难洗矿石>50>622>5砂质粘土中等可洗矿石50~103~613<5粘土质砂易洗矿石<10<3筛上冲洗 [next]    (三)根据分散一吨矿石所需电能来评定矿石可洗性    前苏联E·B·尼夫斯基根据用于分散单位矿石电能消耗来评定矿石可洗性,一般可为三类(见表3)表3       按分散一吨矿石所消耗的电能的可洗性分类序号可洗性等级 需电量/(KW·h·t-1)1难洗矿石0.5~1.02中等可洗性矿石0.25~0.53易洗矿石<0.25     由于洗矿作业的洗矿机中机械作用比浸温泡散作用要大,因此,以一种机械作用所耗电能用作评定基础比较准确。    (四)根据泥土的泡散性来分类    泥土的泡散性又称浸温性,就是土样放在水中后全部分散成单独的颗粒所需时间,亦称泡散速度,这只对以泡散作用为重机械作用极小的塔式洗矿机较适用,因实践应用很少,目前还缺乏统一标准。    二、洗矿机械设备    洗矿过程的效率视物料的物理性质、水的冲洗能力、机械作用强度和洗矿时间而定。除原矿性质是不可变外,后者均由机械设备性能来确定。    (一)圆筒洗矿筛    该洗矿筛用铣孔或编织成圆筒形筛网构成,安放在支架上用滚子来传动,其倾角为5°~7°,在某些情况下,为得到较细粒的产品,有时也采用两层或三层筒面的同心圆筒筛。    为了加强对被洗物料的机械作用和增加在筒内的停留时间,有时还安设细钢条、角铁、螺旋板和横环形板等,为便于冲洗物料,在筒内安装压力喷洗水管。    对某些易洗矿石,也可在平面震动筛面上加喷洗水管来达到洗矿的目的。    (二)圆筒擦洗机    该机为封闭的圆筒,借助齿轮或经磨擦滚在托滚上旋转。岩石在旋转筒内的碎散作用主要靠磨剥作用,冲击成分很少。    (三)洗矿机    槽式洗矿机是由一个倾斜槽体和一根或两根装有叶片的搅拌轴和传动装置组成。传动装置是由电动机、三角皮带轮、开式分配齿轮组成,传动装置使装有叶片的轴转动,叶片是倾斜地装在轴上,两根轴的转动方向相反,从而达到将物料向中央提升。当轴转动时,它就沿着洗矿机的长轴方向把矿石收集在一起,并使它们沿着槽底斜面向上移动到排矿口。原矿应从距溢流堰一米处给入槽内,水用导管同矿石一同给入槽内,同时并装在螺旋叶片间的喷水管从上面喷水以洗涤运动中已被磨剥过的矿石,已被洗出的粘土为矿浆,经由溢流堰排出。    槽式洗矿机的洗矿效率,取决于槽的倾斜角、螺旋叶片的倾斜角、螺旋叶片的转动次数和给水量。槽式洗矿机的设备性能列于表4。表4               槽式洗矿机的设备性能设备规格/mm最大给矿粒度/mm原矿处理量/(t·h-1)螺旋转数/(r·min-1)传动功率/KW设备重量/t生产厂宽长160076307545~50234016.8沈阳矿山机械 厂107046005020~252274南宁治矿厂、八一锰矿82534505010~15 5.52.25  [next]    三、锰矿石洗矿的工业实践    根据我国矿床的成因条件,可划分成四种类型,即沉积型矿床、沉积变质型矿床、风化堆积型矿床、热液型矿床。但必须洗矿处理的只有风化堆积型矿床及沉积型矿床的风化变质部分。下面分别介绍我国几个主要锰矿山的洗矿实践。    (一)风化型次生堆积氧化锰矿床    主要代表矿山为广西八一锰矿,其他如广西天等锰矿、广西平乐锰矿均属同一类型,它由原生沉积贫碳酸锰矿经风化、搬运、堆积而成。原生锰矿物成了土状、脉状褐色的偏锰酸矿和胶状半金属光泽的硬锰矿,并遗留网格形及蜂窝状大小不一的空洞,在矿石表面和空洞中充填了黄色胶状的泥质物。锰矿物呈非晶质不定型胶状或细小隐晶质集合体出现。氧化锰矿的矿物成分主要为偏锰酸矿、硬锰矿,此外还有少量的软锰矿、赤铁矿、褐铁矿。脉石矿物主要为风化残留物石英、绢云母、泥质物等。矿层顶底板为第四纪黄土和风化硅质页岩。    八一锰矿从1963年开始使用1070mmx4600mm槽式洗矿机进行洗矿作业。原矿采用水力冲采后用砂泵直接输送入洗矿机进行一段洗矿,由于矿石绎过高压冲刷,又经砂泵输送,最后入洗矿机擦洗,因此,洗矿效果良好,洗矿指标见表5,各产物的粒度组成见表6。表5                    八一锰矿洗矿指标名称产率/%锰品位/%锰回收率/%产量/(t·h-1)浓度/%注原矿10010.051002.1624.01 净矿5018.893.5910.0817.18(水份)洗矿机安装倾角13°溢流501.296.4110.0813.26      表6                 八一锰矿洗矿产品粒度组成粒度/mm产率/%锰品位/%锰分配率/%原矿净矿 溢流原矿净矿 溢流原矿净矿 溢流>532.7969.92一20.3518.18一66.3767.58一5~3.24.2910.51一21.4322.05一9.1512.34一3.2~26.0311.420.5721.1221.6912.8612.6413.195.422~14.576.062.4815.1317.778.626.875.7416.591~0.52.320.422.687.8512.196.971.80.2714.50.5~0.151.671.293.816.1511.13.8710.7411.40.15~0.0981.170.075.083.6712.863.320.40.049.150.098~0.0760.350.012.53.059.971.60.10.053.1<0.07646.810.382.880.365.940.621.670.0539.84合计10010010010.518.811.29100100100 [next]    (二)浅海相沉积碳酸锰矿床    矿层赋存于上泥盆统榴江组泥灰岩钙质泥岩等与硅质灰岩、硅质岩过度相内,靠地表的部分因氧化作用而形成氧化锰矿层,俗称锰帽。主要矿物为软锰矿、硬锰矿,偏锰酸矿并混杂有经风化后产生的相当数量的硅质、泥质物。大新锰矿的氧化锰矿段为典型代表。    该矿采用1070mmx4600mm槽式洗矿机一段洗矿,溢流再采用螺旋分级机回收细颗粒,洗矿机的安装倾角为13°,台时处理量17.36t,单位原矿耗水量1.12m3。洗矿指标见表7,产品粒度组成见表8。表7              大新锰矿洗矿指标品名产率/%锰品位/%锰回收率/%原矿10025.64100净矿70.9730.3283.92溢流29.0314.216.08表8                      大新锰矿洗矿产品粒度组成粒度/mm产率/%锰品位/%锰分配率/%原矿净矿溢流原矿净矿溢流原矿净矿溢流>5028.5612.43 24.6926.31 27.510.78 50~2018.4724.33 27.5128.03 19.6822.79 20~525.0543.24 29.2431.1 28.5944.85 5~2.54.345.63 31.4633.22 5.336.17 2.5~2 6.15  33.87  6.87 2~16.843.112.5432.2734.6925.78.613.564.591~0.43.743.243.7131.8235.46264.643.796.780.4~0.20.851.18.5926.3336.6426.11.021.3315.740.2~0.10.790.258.6428.1634.9526.70.870.2916.210.1~0.0740.270.053.5129.2432.4725.40.310.056.26<0.07411.090.4773.018.0120.769.833.450.3250.42合计10010010025.6430.3214.2100100100

锰矿的洗矿和筛分工艺

2019-01-18 11:39:42

锰矿的洗矿和筛分工艺:洗矿是利用水力冲洗或附加机械擦洗使矿石与泥质分离。常用设备有洗矿筛、圆筒洗矿机和槽式洗矿机。洗矿作业常与筛分伴随,如在振动筛上直接冲水清洗或将洗矿机获得的矿砂(净矿)送振动筛筛分。筛分可作为独立作业,分出不同粒度和品位的产品供给不同用途使用。

冶炼工艺对铅精矿质量的要求

2018-12-19 09:49:46

1)主金属含量不宜过低,通常要求大于40%。含量过低,对整个铅冶炼工艺来讲,单位物料产出的金属铅量减少,从而降低了生产效率。  (2)杂质铜含量不宜过高,通常要求小于1.5%。铜过高,烧结块中铜含量会相应升高,在鼓风炉还原熔炼过程中,所产生的锍量增加:一则使溶于锍中的主金属铅损失增加,二则易洗刷鼓风炉水套,缩短了水套使用寿命,并易造成冲炮等安全事故。另外,含铜太高,也易造成粗铅和电铅中铜含量超标。  (3)锌的硫化物和氧化物均有熔点高、粘度大的特点,特别是硫化锌。如含锌过高,则在熔炼时,这些锌的化合物进入熔渣和铅锍,会使它们熔点升高,粘度增大,密度差变小,分离困难。甚至因饱和在铅锍和熔渣之间析出形成横隔膜,严重影响鼓风炉炉况,妨碍熔体分离,故锌含量不宜过高,一般要小于5%。  (4)砷、锑等杂质含量也有严格的要求,通常要求As+Sb小于1.2%,如过高,则经配料烧结后,在鼓风炉中形成黄渣的量会增加,而且金属铅的流失量会相应增大,更严重的是会造成粗铅、阳极铅含砷、锑过高;此外在电解精炼过程中,使铅溶解速度变慢,并且阳极泥难以洗刷干净。这样既影响电流效率,又影响生产效率。  另外,MgO、Al2O3等杂质会影响鼓风炉渣型,故一般要求MgO<2%,Al2O3<4%。

砂金矿选别之洗矿作业

2019-01-17 09:44:05

一般砂金矿床均含有较高的风化钻土,它将含金矿砂包裹起来,形成胶结块或泥浆体。这种胶结泥团如不碎散,将在筛分过程随废石一起排除,造成金的损失。此外,胶泥还能胶结在砾石或卵石.七,如不碎散洁洗,也要在筛分过程中造成金的损失. 用水浸泡、冲洗并辅以机械搅动将被胶结的矿砂解离出来,并使砾石、砂与钻土相分离,且洗净砾石上所猫附的猫土和金粒,这个过程即为洗矿。洗矿作业包括碎散、筛分和脱泥三项工序,它是砂金矿选别前非常重要的必备作业.这一作业之所以重要,是因为它不但使泥砂碎散分离,并使猫附在砾石表面的金粒也脱离掉,而且能筛分出大量不含金的砾石,直接丢弃;一般产率可达给矿的40写-50纬,减少选矿的处理量,提高了金的人选品位,同时脱去了绝大部分矿泥。改善了砂金矿的选别性能,有利于提高砂金矿的选别回收指标。 在砂金选别中,脱泥与剔除大块砾石一样,也是一项十分重要的准备作业。在砂金中小于0.1mm的物料一般不含金或含金甚微,例如,辉春金矿的砂金中小于0.1mm的金只占。.15%,而同粒级矿泥却占原矿砂的13. 77%。这种小于0. l mm的金俗称漂浮金,在选别过程中很难回收.但相同粒级的矿泥却对选别过程,特别是机械选别过程起到很大的千扰作用。所以,在砂金矿选厂内,总是设法将小于0. 1mm的矿泥预先脱除。生产上常用的脱泥设备有各种规格的脱泥斗。而溜梢选金允许的物料粒级宽,且处理量大,因而溜槽选别之前多不脱泥。 根据国内外资料介绍和生产实践经验,并结合砂金矿的可洗性特点,一般选用振动筛、圆筒筛、水力冲洗板筛等设备来完成洗矿、碎散、筛分作业。 筛分作业能排除20%-40%的废石,甚至高达50%的废石(砾石、卵石),是砂金选矿不可缺少的作业。合理筛分参数的确定必须依据原矿砂中金的粒度组成的测定资料.目前我国砂金矿选择的筛孔一般为10—-20mm,如用固定溜槽作粗选设备时筛孔可大些,但不能超过60mm.固定选厂的筛分设备多为格筛、振动筛,采金船则用圆简筛。筛上冲水不但能提高筛分效率,还能进一步碎散矿泥,所以砂金矿的筛分作业多为水筛。水筛的冲洗水量应根据洗矿要求确定,并满足下段选别作业对浓度的要求。

锰矿选矿流程中的洗矿作业工艺设计

2019-01-17 09:44:01

锰矿选别作业流程中的一项重要工作就是洗矿作业。这部分的工艺直接关系到精矿的品位,所以在锰矿选矿过程中的设计较为重要。我们对锰矿选矿的洗矿作业做出了全面的分析介绍,希望对选矿厂的作业有所帮助。 洗矿是原矿在水力、机械力和自摩擦作用下,使粘土碎裂和分散,把粘土从矿石中分离,从而提高矿石品位的方法。影响洗矿效果的因素主要有物料的物理性质、水的冲洗能力和机械作用强度及洗矿时间等。常用的锰矿选矿的洗矿设备有圆筒洗矿筛、圆筛擦洗机、槽式洗矿机、振动筛、螺旋分级机等。银锰矿一般含泥量较多,通过洗矿能较高的提高银锰矿的品位,氧化锰矿石一采用擦洗较强的双螺旋槽式洗矿机进行一次或多次洗矿。 原矿加水或水采矿浆用砂泵送入双螺旋槽式洗矿机,经洗矿后,溢流到尾矿坝,返砂为洗净矿。湖南东乡桥锰矿,是一种风化堆积氧化型锰矿石,原矿品位仅4.44%,经两次洗矿可以得到合格洗净矿。块矿品位26.75%,粉矿品位23.07,合计产率14.10%,品位24.64%,回收率78.28%,充分说明了洗矿的富集作用,洗净的块矿均可作成品出售。 近年来,国内外对选锰设备工艺中的洗矿作业都非常重视。各类锰矿选矿厂中都设有洗矿作业设备,并由一次洗矿发展为二次或三次洗矿。广西等锰矿选矿厂将设计的一次洗矿改造为二次洗矿,并对洗矿溢流中的锰进行回收,不仅降低了物耗,而且每年增加回收粉矿约8000t,提高金属回收率约为5%,经济效益显著。洗矿对含泥量较多的矿石很有实际意义,它除去了大量的泥性杂质,罗好的提高金属品位且流程简单,但洗矿适用性有其局限性,一般只作为处理矿石的预处理工艺。因为洗矿机的类型有很多,所以在选择时一定要注意区分。

堆积型铝土矿洗矿厂址与配矿方案研究

2019-01-30 10:26:21

我国既是铝土矿资源丰富的大国,也是需铝量较多的国家之一。目前,铝已成为我国仅次于钢铁的第二主要金属,占有色金饱和总产量的40%以上。堆积型铝土矿是我国华南地区生产金属铝的主要来源,其矿石在冶炼前一般须先关往洗矿厂进行洗矿和配矿,以保证矿石具有较合适而稳定的铝硅比(Al2O3品位与SiO2品位的比值)。随着开采的不断进行,一些堆积型铝土矿山面临着资源接替,如何综合规划已探明的新资源和即将开采完的老资源,实现采场与洗矿厂的合理匹配,从而达到尽可能多地利用低品位矿石,延长矿山服务年限的目的,成为这些矿山企业急需解决的难题。本研究运用现代物流规划、运筹学和系统工程思想,将洗矿厂厂址与配矿方案从宏观上统一起来,建立了混合整数的优化模型,并在某实际堆积型铝土矿山进行了成功应用。       一、问题的抽象       设某堆积型铝土矿有n个开采单元,第i个开采单元的保有原矿石量为Ci,矿山的服务年限为N;m个备选洗矿厂位置,第j个位置记为Xj,在此建洗矿厂的费用为Fj,洗矿厂建成后的原矿年处理能力为qj,每年由第i个开采单元运来的原矿量为Cij,相应的洗后净矿石的量为C′ij(净出矿率为hi)、Al2O3和SiO2的品位为Aj和Sj,来自所有开采单元的净矿石在该洗矿厂的配矿堆场经过破碎、配矿后送往冶炼厂的成品矿年产量为Pj、铝硅比在K1与K2之间;各洗矿厂合计每年处理的原矿石总量为Q1,洗矿后的净矿石总量为Q2;第i个开采单元与Xj间的距离为Dij,Xj与冶炼厂间的距离为Dj;卡车的单位运输成本为a。铝土矿产品的产出过程如图1所示。图1  堆积型铝土矿产品产出过程       现在的问题是:应该修建哪些洗矿厂以及如何合理安排各个采场和洗矿厂的年产计划,才能在保证送往冶炼厂的铝土矿产品的铝硅比达到设计要求的前提下,使建厂投资和运输费用最小。       二、洗矿厂址和配矿方案综合优化数学模型       如前所述,研究的核心是在保证配矿产品的铝硅比达到设计标准的前提下,确定合适的洗矿厂个数和位置,从而达到洗矿厂建厂投资和和平运输费用最小的目的。       从采场采出的原矿石价值很低,如果洗矿厂离采场太远,将导致原矿石在洗矿厂的运费过高而使洗矿厂的产品丧失增值空间,因此,须对第i个开采单元与备选洗矿厂位置Xj间的距离Dij加以限制,并将Xj设置为取决于Dij的开关变量,当Dij不超限时Xj中选而赋值为1,当Dij超限时Xj落选而赋值为0,以解决洗矿厂的个数和位置问题;另外,可以通过对配矿后矿石的铝硅比实行上、下限约束,合理搭配贫富矿石,使贫矿石得到最大限度的利用,同时确保从各个配矿堆场输出的矿石均满足冶炼厂对铝硅比的要求。       根据第1节的假设和以上思路,可以得出某堆积型铝土矿山在服务期内建洗矿厂和生产运输的总费用为相应的约束条件为:       (一)第i个开采单元在矿山服务期内采出的原矿总量          (二)第i个开采单元到第j个备选洗矿厂的卡车运输距离                        Dij≤L,       (三)第j个备选洗矿厂位置的赋值   Xj=1(中选)或0(落选)(j=1,2,…,m),       (四)第j个洗矿厂年处理原矿量    (五)第j个洗矿厂对来自第i个开采单元的原矿进行洗矿的净出矿率   hi=(C′ij/Cij)×100%,       (六)第j个洗矿厂的配矿堆场送往冶炼厂的成品矿年产量    (七)第j个洗矿厂的配矿堆场配出成品矿的铝硅比    (八)m个洗矿厂年处理矿石总量    (九)m个配矿场年处理矿石总量    如此,按洗矿厂建厂投资和生产运输费用最小原则,即可建立堆积型铝土矿洗矿厂厂址和配矿方案的综合优化数学模型为    三、应用实例       某实际堆积型铝土矿共有42个开采单元、3个备选洗矿厂。各开采单元的存矿量及与各备选洗矿厂间的距离如表1所示,各备选洗矿厂的设计处理能力和建厂费用如表2所示。   表1  各开采单元存矿量及与备选洗矿厂间的距离                                    开采单 无序号保有原矿量/万t洗后总净矿量/万t洗后矿品位/%到备选洗矿厂运距/(10-3km)Al2O3SiO2到X1到X2到X31 2 ┆ 424.6740 67.1659 ┆ 8.74591.86960 26.86636 ┆ 3.4983686.26 84.28 ┆ 81.089.20 11.28 ┆ 14.654350.180 3492.979 ┆ 9570.0247865.217 7008.016 ┆ 6532.3961504.898 8598.146 ┆ 5084.180合计2750.29501100.11800   表2  备选洗矿厂设计年处理能力和建厂费用备选洗矿厂位置X1X2X3年处理能力qj/万t 建厂费用Fj/万元90 20000105 2130095 20950       该矿山设计服务年限为11a,洗矿厂处理原矿石的任务总量Q1为250万t/a、产出洗后矿的任务总量Q2为100万t/a、配矿产品的综合铝硅比为10±0.5,卡车的单位运输成本a为1.2万元/(万t·km),卡车从开采单元到洗矿厂的单次运输距离上限L为11km,位于X1、X2、X3处的3个备选洗矿厂到冶炼厂的距离分别为34.7km、34.8km、3km,要求确定洗矿厂的个数和位置,并合理安排各开采单元和洗矿厂的年生产计划,使洗矿厂建厂投资和生产运输费用最小,同时保证各洗矿厂配矿产品的铝硅比达到设计要求。       将已知条件代入堆积型铝土矿洗矿厂厂址和配矿方案综合优化数学模型,运用Dash Optimization  软件编程求解,结果如表3所示。   表3  计算结果变量名值变量名值变量名值变量名值minF Q1 Q2 X1 X2 X3 C(1,1) C(2,1) C(3,1) C(4,1) C(5,1) C(6,1)875357 250 100 1 0 0 0.4249 6.106 8.6785 6.7920 12.5719 4.415.3C(7,1) C(8,1) C(9,1) C(10,1) C(11,1) C(12,1) C(13,1) C(14,1) C(15,1) C(16,1) C(17,1) C(18,1)13.9644 3.5108 6.5542 16.3778 7.0202 7.8822 24.3702 6.1299 10.6006 10.5779 3.1672 5.8375C(19,1) C(20,1) C(21,1) C(22,1) C(23,1) C(24,1) C(25,1) C(26,1) C(27,1) C(28,1) C(29,1) C(30,1)3.7922 4.1683 21.7519 1.8961 2.0356 1.4621 2.9068 0.1910 0.0351 0.0937 0.9400 5.1418C(31,1) C(32,1) C(33,1) C(34,1) C(35,1) C(36,1) C(37,1) C(38,1) C(39,1) C(40,1) C(41,1) C(42,1)0.6911 4.9106 8.6051 9.5356 3.8387 0.2523 2.3108 18.7689 0.1109 0.7848 0.7951 0.6911     注:C(i,1)表示Cil。       由表3可知:在矿山整个服务期间,只需要建立位于X1处的1个洗矿厂即可,建厂和生产运输总费用为875357万元;第i个开采单元运往该洗矿厂的计划年原矿量为C(i,1);该洗矿厂用于配矿的洗后矿计划年产出量为100万t。此方案已经在某实际堆积型铝土矿的前期生产中得到了成功应用。       四、结论       对于一些面临资源接替的堆积型铝土矿山而言,在确保配矿产品的铝硅比满足设计要求的前提下,尽可能地延长矿山服务年限和获得最大的经济效益是其共同目标。本研究借助于现代物流规划、运筹学等理论,结合矿山生产实践经验,建立了堆积型铝土矿洗矿厂厂址和配矿方案的综合优化数学模型,达到了如下目的:       (一)在资源储量及分布已知的情况下,确定了洗矿厂的位置和个数,实现了采场与洗矿厂之间的合理匹配。       (二)通过对不同品位的矿石进行合理调配,既实现了贫富矿兼采,降低了生产成本,延长了矿山服务年限,又保证了配矿产品的铝硅比满足要求。       (三)本模型的约束条件较为普遍,矿山企业可以根据实际生产情况灵活调整年作业计划,从而达到费用最省的目的。       (四)通过对约束条件进地增减,本模型的应用范围可以扩展。

铅精矿与富铅渣交互反应的还原熔炼技术

2019-01-07 17:38:09

传统烧结-鼓风炉熔炼工艺中,按硫化铅精矿中硫的质量分数为12%~24%计算,每冶炼1t粗铅有0.6~1.1t的SO2排空。     新的炼铅技术的共同特点是将焙烧与熔炼结合为一个过程,实现铅精矿直接处理,充分利用硫化铅氧化放出的大量热将炉料迅速熔化,产出液态铅和熔渣。直接炼铅仍需要将冶金过程分为氧化和还原两个阶段,在氧化段充分氧化获得低硫铅,在还原段充分还原产出低铅炉渣。本实验探讨熔池熔炼还原段,利用铅精矿和富铅渣之间的交互反应,考察还原段的终渣含铅量、铅回收率(按渣计)、烟气烟尘率、粗铅产率等各工艺指标的影响因素及条件。对其反应机理进行了初步的探讨。     一、试验理论基础     铅精矿和富铅渣之间的主要交互反应如下: PbS+2PbO→3Pb+SO2(1) PbS+PbSO4→2Pb+2SO2 (2)     这两个反应在一般高温1000℃时,△G已经很负了。随着温度的升高,△G越来越负,说明从热力学角度来说,交互反应很容易发生。渣中铅化合物的溶化温度低,其熔体的流动牲好,而且与SiO2结合的Pb0挥发性要比纯Pb0小。PbS溶化后流动性大;PbSO4在800℃便开始分解,至950℃以上分解进行的很快。反应式(1)在860℃时的平衡压力达101325Pa;反应式(2)在723℃时的平衡分压为98000Pa。即在较低温度下,两个反应可以剧烈的向右进行。从动力学角度看,熔渣的熔点一般为1200℃左右,试验温度只要能高于渣熔点,则在渣熔融状态下,各种化合物之间接触良好,反应能很好的进行。     二、试验原料及方法     (一)试验原料     本试验所用原料为某厂艾萨炉出来的富铅渣和铅精矿。铅精矿为黑色粉末,粒度小于1mm。化学成分(%):Pb 45.44、Zn 6.46、Fe 8.82、SiO25.34、CaO 1.57、MgO 0.48、Al2O3 1.00、S 17.86、Cu 2.43、Ag 0.266。定性物相分析结果表明:铅精矿主要含PbS、ZnS、FeS、SiO2、FeS2、PbSO4。     富铅渣为浅粉色块状,化学成分(%):Pb53.97、Zn 6.46、Fe 8.64、SiO2 8.31、CaO 3.07、MgO 0.75、Al203 1.78、S 0.17、Cu 0.73、Ag0.0197,堆密度3.05 g/cm3。XRD分析表明:铅物相以PbZnSiO4、PbO、Pb存在。其中PbZnSi04在高温下发生如下反应分解成PbO: PbZnSiO4→PbO+ZnO+SiO2     故本试验可将富铅渣中的Pb看做以Pb0形式存在,并以此进行配料计算,确定各种料的加入量。     试验所用熔剂为:石灰石(CaO 51.2%,MgO3.17%);石英砂(SiO2 93.83%)。     (二)试验方法     根据可能发生的交互反应方程式,先计算出富铅渣和铅精矿所需的理论量,再以富铅渣与铅精矿中FeO成分含量的总和为渣型选择的计算基础,然后根据选定的渣型计算所需各溶剂的质量。将富铅渣、铅精矿、石灰石、石英砂分别先经破碎,磨细后,再充分混合均匀,加水湿润后制团,最后烘干12h以上。每次称2kg左右的混合料加人高15cm,内径14 cm的碳化硅坩埚中,从电炉底部进料。用一个Pt/Pt-13%Rh型热电偶检测炉内试验样料的温度,通人高纯氩气排除炉内空气并起轻微的搅拌作用;通过调节电炉的程序参数,设定好每次试验反应温度和时间;反应结束后,观察形成的铅渣表面现象,判断是否产生了泡沫渣,再称量铅渣和粗铅,并分析各主要成分含量。由于试验条件有限,未能检测SO2浓度和烟尘率,本试验将烟气烟尘率看做一个技术指标,计算式为:     烟气烟尘率=(加入坩埚的炉料总量-反应后粗铅和铅渣的量)÷加入坩埚的炉料总量     三、试验结果及讨论     (一)渣型对终渣含铅量和烟尘率的影响     炼铅炉渣是个非常复杂的高温熔体体系,它由SiO2、FeO、CaO、MgO、Al2O3、ZnO等多种氧化物组成,并且它们之间可相互结合形成化合物、固熔体、共晶混合物。为了讨论渣型与结晶相的关系,将多元系简化为三元系:FeO-CaO-SiO2。将渣中该三相的成分换算为100%,再查看FeO-CaO-SiO2三元系相图,根据图中渣温度1 100~1 300℃区域,选择试验3个成分含量。A Perillo提供了维斯麦港基夫赛特法炼铅厂的投产与生产指标,炉渣的化学成分:FeO39%,SiO2 38%,CaO 23%。     试验条件:固定温度1250℃,时间5h,配料比1.0。试验编号分别为(1)-FeO 40%,SiO2 35%,CaO 25%;(2)-FeO 37.5%,SiO2 37.5%,CaO25%;(3)-FeO 35%,SiO2 40%,CaO 25%;(4)-FeO 35%,SiO2 37.5%,CaO 27.5%;(5)-FeO35%,SiO2 35%,CaO 30%。     试验结果表明CaO含量保持为25%,相应的SiO2含量减小时,试验(1),(2),(3)的渣含铅分别为3.48%,4.76%,5.87%;烟气烟尘率分别为36.9%,32.6%,28.1%。FeO含量固定为35%时,相应的SiO2含量减小时,试验(3),(4),(5)的渣含铅分别为5.87%,1.41%,3. 86%;烟气烟尘率分别为28.1%,42.25%,35.6%。     根据熔渣结构的离子理论,适当增加碱性氧化物有利降低炉渣黏度。但碱性氧化物过高时可能生成各种高熔点化合物,使炉渣难熔,渣黏度升高。对于FeO-CaO-SiO2三元系炉渣,但CaO含量超过30%时,黏度将随CaO含量的增加而迅速加大。SiO2/Fe过大,黏度高,排放困难,提高Ca0/SiO2,可降低渣的黏度。从试验结果数据可看出:当炉渣组成为FeO 35%、SiO2 37. 5%、CaO 27. 5%时,烟气烟尘率为42.25%,渣含铅1.41%为最低。     (二)配料比对终渣含铅量和烟尘率的影响     渣型FeO 35%,SiO2 37.5%,CaO 27.5%,保温时间定为3h,温度为1250℃的条件下。以100 g富铅渣为计算基础,理论需要消耗铅精矿71.297g,试验中铅精矿用量分别为理论量的0.9、0.95、1.0、1.05、1.1、1.15和1.2倍。     从图1可看出,在其他条件不变的情况下,随配料比增加,渣含铅呈先减小后增大的趋势,在配料比为1.0有最小值;烟气烟尘率呈先增大后减小的趋势,与渣含铅趋势相反,即渣含铅低时则烟气烟尘率高。鉴于两者的矛盾关系,折中取定试验条件,故此后试验定配料比为 1.1,此条件下渣含铅2.61%,烟气烟尘率33.63%,能基本满足工业上对工艺指标的要求。图1  配料比对终渣含铅和烟尘率的影响     (三)反应温度对终渣含铅和烟尘率的影响     为减少烟尘量,必须严格控制炉内温度。如果能抑制铅及化合物的挥发,烟尘中氧化锌含量就会提高,就可以进入氧化锌系统进行处理。从沸点和平衡蒸气压分析,锌的挥发要比铅容易得多。如果试验中还原温度真正控制在1150~1200℃,Pb和PbO的蒸气压都只有1.3~6.7kPa,铅的挥发率不会如此高。     渣型FeO 35%,SiO2 37.5%,CaO 27.5%,保温时间5h,配料比1.1。试验结果见图2。图2  反应温度对降低终渣含铅量,烟气烟尘率的影响     从图2可看出,其它试验条件不变时,渣含铅随温度的升高而降低,在1250℃有最小值,1300℃时反而渣含铅比其高。观察1300℃的试验现象,渣孔(从粗铅到渣表面)多,推测温度较高于渣熔点时,渣熔体流动性大,反应产生的气体更容易从渣孔隙跑出液面,同时使得渣中的铅及其化合物未能很好的沉降分离,所以渣含铅偏高;烟气烟尘率随温度升高而逐渐增大,1300℃时,烟气烟尘率高达48.82%。烟气烟尘率太高,对后续的收尘系统是个负担,会导致生产成本增加,严重时,会造成烟尘积压。综合考虑后选定温度为1250℃。     (四)反应时间对终渣含铅量和烟尘率的影响     渣型FeO 35%,SiO2 37.5%,CaO 27.5%,温度1250℃,配料比1.1。试验结果见图3。图3  反应时间对终渣含铅量和烟尘率的影响     从图3可以看出,随着反应时间的延长,交互反应进行得越彻底,渣、铅分离沉降时间长,分离效果更好,则渣含铅逐渐减少;而烟气烟尘率逐渐增加。反应时间短,能缩短排渣周期时间,能提高床能率。试验时间为3h条件下,渣含铅2.61%,烟气烟尘率33.63%。     (五)反应温度对粗铅产率和渣产率的影响     渣型FeO 35%,SiO2 37.5%,CaO 27.5%,时间3h,配料比1.1。试验结果见图4。图4  反应温度对粗铅产率和渣产率的影响     从图4可看出,随反应温度的升高,各种化合物和金属的挥发量增多,粗铅产率从27.23%降至14.62%,产渣率也逐渐减小。故反应温度不易过高,折中选择1250℃为较好,此条件下,粗铅产率22.76%,产渣率43.61%。     (六)反应时间对粗铅产率和渣产率的影响     固定渣型FeO 35%,SiO2 37.5%,CaO 27.5%,温度1250℃,配料比1.1。反应时间对粗铅产率(占点炉料)和渣产率的影响结果见图5。图5  反应时间对粗铅产率和渣产率的影响     从图5可以看出:(1)随着反应时间的增加,粗铅产率从19.23%升至25.83%。时间长有利于渣铅沉降分离,同时能让其它各种金属化合物有足够时间发生还原反应,再以金属状态进入粗铅;(2)渣产率逐渐减少。时间长,渣中易挥发的化合物及被产出的气体气泡带走的物质则更多的进入烟气烟尘中,增加了收尘负荷。时间为3h时,粗铅产率22.76%,渣产率43.61%。     (七)其它反应效果的比较及分析     不同试验条件下,反应后,其它各成分含量变化不大。粗铅中的铅含量95.01%~96.12%;Ag含量0.28%~0.36%;S含量0.11%~0.19%;铜含量0.31%~0.56%。铅渣其它成分含量:S含量1.89%~2.37%;Zn含量2.47%~6.33%。且呈现渣含铅低,则含Zn亦低的试验现象。推测在相同工艺条件下,原料中铅化合物和锌化合物与其它物质之间发生的反应机理相似,故两者在铅渣和烟尘中呈正比例含量关系。随着反应时间的延长和反应温度的提高,各种化合物逐渐分解,易挥发物更多的进人烟尘,渣中较难挥发物SiO2、FeO、CaO的含量都有稍微增加的趋势。在渣含铅     四、结论     在熔池熔炼还原段采用铅精矿和富铅渣的交互反应可满足工业实践的各项经济技术指标。最优工艺条件:渣型三主要组成含量折算为FeO 35%,SiO2 37.5%,CaO 27.5%,温度1250℃,时间3h,配料比1.1。在此条件下可得到渣含铅2.61%,铅的回收率(以渣计98.21%,脱硫率91.5%,烟气烟尘率33.63%,粗铅产率22.76%,渣产率43.61%。

铅精矿在鼓风炉熔炼之前的准备工作

2018-12-19 09:49:38

铅精矿在被鼓风炉熔炼之前必须把铅精矿在熔炼前进行预备作业即烧结焙烧,其目的:(1)除去铅精矿中的硫,如含砷及锑较多也须将其除去;(2)将细料烧结成块。     因此,在焙烧过程中,除进行氧化反应外,还必须使细料结块。这种同时完成两个任务的焙烧法,称为烧结焙烧或简称为烧结,而呈块状的焙烧产物称为烧结块或烧结矿。当用鼓风炉还原熔炼法处理块状富氧化铅矿时,不需要进行烧结焙烧,只要将矿石破碎至一定的块度,就可送往鼓风炉直接熔炼。如果要进行处理的不是块矿而是细碎的氧化铅精矿,仍须先行烧结或制团,然后才加入鼓风炉熔炼。铅精矿的烧结焙烧是强化的氧化过程,即将炉料装入烧结机中,在强制地鼓入或吸入大量空气的条件下,加热到800-1000℃,使之着火并继续燃烧,其中金属硫化物便发生氧化,生成各种金属氧化物和硫酸盐。

大新锰矿洗矿厂

2019-01-25 13:37:59

(1)矿石性质:该矿属泥盆纪沉积的碳酸锰矿床,近地表部分受氧化作用形成氧化锰矿石。氧化锰矿赋存于三个矿层中,主要锰矿物为软锰矿、硬锰矿、偏锰酸矿;主要锰矿物为软锰矿、硬锰矿、偏锰酸矿;主要铁矿物为褐铁矿、赤铁矿;脉石矿物主要有石英、高岭石、水云母。常见的矿物结构主要为微粒、隐晶质结构,其次为细粒、泥质、胶体及残余等结构。矿石构造主要以块状、斑块状、条带状、粉末状、页片状、豆状等形态构成,其次为空洞状、网格状等构造。 [next]    (2)工艺流程:该矿现为小规模露天开采,采出的氧化矿含锰品位一般为26%左右,经洗矿处理后锰品位提高到30%左右。该矿为了进一步扩大规模、提高产品质量所进行的洗矿工业试验工艺流程见上图。1070×4600mm槽式洗矿机处理矿石量为17.4t/(台.h),处理原矿耗水量为1.12m3/t,洗矿工业试验指标见下表。 大新锰矿洗矿厂氧化锰矿工业试验指标产物名称产率化学成分,%MnP锰回收率%洗矿后提高Mn,% %    TFeMn备   注净块矿(+20mm)17.5131.047.310.10939.424.250.003520.764.871984年试验指标净块矿(20~7mm)19.6730.128.280.12128.263.640.00422.643.95小  计37.1830.557.720.11533.73.960.003843.44.38净粉矿(7~1mm)28.2933.598.630.13524.663.890.00436.317.42净粉矿( -1mm)5.0729.149.060.14229.273.220.00495.652.97小  计33.3632.918.70..13625.353.780.004141.966.74净矿合计70.5431.67     85.365.5废    石1.21.17     0.05 洗    泥28.2613.519.110.13253.02  14.59 原    矿10026.178.420.13533.73.120.0052100

从选矿厂洗矿水中回收镍金属的工艺探索

2019-01-24 09:36:25

吉林吉恩镍业股份有限公司地处吉林省磐石市红旗岭镇,是集采、选、冶、化于一体的中型有色企业。历经几十年的发展,目前选矿厂日处理矿石1500t。原矿中的主要金属硫化物为磁黄铁矿、镍黄铁矿、黄铜矿和少量黄铁矿。另外,矿石中还含有大量的易泥化的次生富镁硅酸盐脉石矿物,如滑石、纤闪石、绿泥石、蛇纹石和黑云母等,脉石矿物中一般都含有0.1%的镍。原矿石主要为斜方辉岩.苏长岩含矿,由于自变作用和热液作用,其斜方辉石等矿物大部分经纤闪石化、滑石化、绿泥厂化、绢石化等变成纤闪石(透闪石)滑石、绿泥石和绢石等,蚀变较强是极易泥化的富含镁硅酸盐矿物,而主要含镍矿物镍黄铁矿和含镍磁黄铁矿又是性脆易泥化、易氧化的富含铁硫化矿物。因此,原矿石是在磨矿浮选过程中极易泥化和氧化的硫化铜镍矿石,由于矿泥具有质点小、比表面积大、表面键力不饱和等特性,能造成三大恶果:即选矿回收率低、精矿质量差、耗药量大。矿泥造成上述危害的原因主要是在镍黄铁矿、含镍磁黄铁矿表面形成矿泥覆盖层,影响有用矿物对捕收剂的吸附,使浮选受到抑制。按含泥量8%计算,日产生洗矿矿泥120t,富含大量可回收镍矿物。 自1976年起,选矿厂洗矿水资源回收工艺历经5次技改均效果不佳。2008年伊始,公司生产部会同选矿厂自行试验、设计了螺旋流槽脱泥-精矿再磨浮选[1~3]的洗矿水资源回收工艺,自从2008年6月试车运行半年来,洗矿水资源回收技术指标较好,有效地解决了这一困扰选矿厂多年的难题。 一、技改前原洗矿水回收工艺简介 红旗岭铜镍硫化矿磁黄铁矿含量高、脉石矿物易泥化、原生矿泥含量大,选矿厂碎矿工段采用三段一闭路流程,矿石破碎至-16mm后进入图1所示的流程,选别作业采用图1所示的浮选流程,浮选机为6A浮选机。自生产运行以来,发现存在如下问题:①由于原矿性质方面的原因,洗矿水中含泥量过大。②受碎矿工段间断开车的影响,洗矿水矿浆浓度极不稳定,现场考察中最低曾仅有8%~9%。③受碎矿工段间断开车的影响,洗矿水矿浆量忽多忽少,很不稳定。图1  原洗矿水处理工艺流程 由于以上3点主要因素极大地影响了选别作业效果,使洗矿水进入浮选后,技术指标极不稳定,镍精矿金属回收率偏低。表1为洗矿水改造前随机取样得到的各班的洗矿水技术指标。 表1  2007年改造前洗矿水指标情况从表1中可看出,现场洗矿水作业的指标极不稳定,指标波动频繁。尽管原矿品位基本相近,但镍金属回收率指标较低,金属损失严重,并且浮选指标波动频繁,没有明显规律。 二、技改后洗矿水回收工艺状况 针对现场金属损失严重、产品指标波动频繁等问题,经选矿试验室相关试验论证后,初步确定采用如图2的工艺流程。将洗矿水矿浆通过φ2l9mm管路自流方式进入9台BL-1500B型螺旋溜槽(北京矿冶研究总院研制)进行一段脱泥脱水,一段精矿进入3台BL-1500B螺旋溜槽进行二段脱泥,脱泥脱水后的最终精矿采用砂泵输送至单独的储矿仓储矿,目的是储存足够的矿浆以备碎矿停车时为浮选作业连续稳定生产提供原料,精矿待沥干水分后进入球磨机再磨,然后进入单独浮选系统,而浮选尾矿同重选矿泥一并进入1#尾矿泵站。试运行以来,洗矿水资源回收工艺运转尚可。该流程工艺简单,易于操作,有效地避免了洗矿水含泥量大、浓度过低及受碎矿车间间断性开车等问题的影响。图2  改造后的洗矿水处理工艺流程 (一)改造后洗矿水资源选别指标 技改后洗矿水处理工艺包括两个部分,用螺旋溜槽进行的重选作业和用GF系列浮选机进行的浮选作业,因此洗矿水资源回收工艺的技术指标应该由这两部分组成。 1、螺旋溜槽脱泥脱水工艺指标 由于洗矿水来自碎矿车间洗矿下来的矿泥,其矿浆量受洗矿水压、矿石含泥量、矿石粒度影响,造成洗矿水矿浆流量不均,时断时续,跟班采样所得试样与实际情况有较大出人。螺旋溜槽脱泥脱水精矿指标见表2所示,时间指2008年6月。其中,6月4日三班镍回收率出现负值和6月11日二班镍回收率大于100%,均不合理,故不具有代表性,可不予采用。 表2  技改后螺旋溜槽脱泥脱水指标经过实测确定,在螺旋溜槽脱泥脱水工艺的实际产率情况下,其镍金属回收率大约在60%~70%左右。 2、洗矿水再磨浮选工艺指标经过脱泥脱水的洗矿水矿浆经过再磨后,在矿石表面磨出了新鲜的表面并有效的避免了大颗粒矿石难以选别的问题,由于储矿仓储矿使其独立运行不依赖碎矿车间,使选别指标较好,指标情况见表3所示。 表3  2008年6月闻技改后洗矿水浮选指标3、洗矿水资源回收工艺综合指标选择改造后 洗矿水工艺螺旋溜槽脱泥脱水工艺回收率为70%,再磨浮选工艺平均回收率为75%,则改造后洗矿水作业的综合回收率为52.5%。 (二)技改后存在的问题 通过考察,发现实际试运行生产期间,洗矿水镍金属综合回收率仅为52.5%,远远低于试验得出的镍回收率技术指标(80%)。经考察,发现主要存在以下几个问题:①洗矿水中含有很多微细矿泥,微细矿泥难以重选分离的一个重要原因是表面力增强,矿物密度差的作用被削弱。研究表明,矿粒表面的动电位对颗粒的沉降分层有重要影响。利用这一自然特性借助药剂改变颗粒表面的性质,或者使之选择性团聚后进行重选分离。这是一个研究方向。受现场条件所限,暂不考虑,待条件成熟时再行考虑。②由于螺旋溜槽脱泥脱水工艺受碎矿车间洗矿水水压、矿石含泥量、矿石粒度影响,造成洗矿水矿浆量不稳定、时断时续,分选效果不理想,以至大量目的矿物随矿泥进入尾矿造成损失。③重选精矿脱泥再磨后,仍然含有一定量的洗矿矿泥,且精矿粒度分布不均,-0.074mm粒级含量仅占40%~50%,目的矿物镍单体解离度远远不能满足浮选要求,导致洗矿水浮选阶段镍金属回收率只在75%上下。 (三)改进措施 基于上述洗矿水处理工艺运行中存在的几个问题,考虑采取如下措施: 1、对洗矿水各个产品进行筛分,发现螺旋溜槽粗精矿产品与精矿产品产率、回收率相近,指标见表4。 表4  螺旋溜槽精矿与粗精矿粒级分布由表4可见,螺旋溜槽粗精矿产品与精矿产品产率、回收率相近。因此建议将螺旋溜槽二段脱泥脱水工艺的3台BL-1500B螺旋溜槽并入一段粗选作业,以改善洗矿水矿浆流量不稳定问题。将螺旋溜槽脱泥脱水工艺精选工艺取消,将3台BL-1500B型螺旋溜槽并人粗选作业。 2、通过现场考察,发现重选精矿经脱泥脱水再磨后,-0.074mm粒级含量仅占40%~50%。因此考虑对其进行第二段磨矿试验探索。试验样取自MQY1200×2400球磨机溢流,未磨、再磨浮选对比情况见表5。 表5  脱泥脱水精矿未磨、再磨浮选对比由表5可见,重选精矿再磨浮选后,各项技术指标大幅提高,取得满意的结果。遂考虑将经过螺旋溜槽脱泥脱水后的精矿磨矿后引入大系统3号球磨机处的2FG-24螺旋分级机当中,实现大颗粒进入大系统一段磨矿机进行再磨,合格粒级则随大系统矿浆进入下一作业,从而进入大系统浮选。由于洗矿水脱泥脱水后的精矿矿浆量较小,利用大系统的缓冲作用使这部分镍资源得到有效回收,尾矿品位在正常范围内波动,没有对大系统产生负面影响。同时将原脱泥脱水后抛弃的尾矿改人现洗矿水GF型浮选机,尽可能的回收重选尾矿中损失的镍矿物。 (四)工艺再次改进后的技术指标 工艺改进后,原GF型洗矿水浮选机改作选别洗矿水脱泥脱水后的含泥尾矿,其浮选指标见表6。 表6  工艺再次改进后含泥尾矿浮选指标因螺旋溜槽脱泥脱水后的精矿并入到大系统后没有对大系统指标产生负面影响,故选择洗矿水资源在大系统中的回收率为80%,螺旋溜槽脱泥脱水工艺因取消精选作业回收率略有提高,其回收率为70%~75%,含泥尾矿浮选的回收率为29.8%,则工艺改进后的综合回收率为64.94%,尚与试验室试验的结果有一定差距,相信随着时间的推移,生产逐步正常后,技术指标将有所改善。 (五)改进前后对比 改造前后洗矿水资源回收技术指标对比情况见表7。吉恩镍业选矿厂年平均处理矿量36万t,每天产生洗矿水矿量占每天处理量的8%,原矿镍品位为1%,镍价按2008年7月的每吨电解镍16万元计,选矿厂镍金属计价为电解镍的60%。从表7可见,洗矿水技术改进后的技术指标提高明显,效益显著。 表7  改造前后洗矿水资源指标对比镍价按2008年7月的每吨电解镍16万元计,选矿厂镍金属计价为电解镍的60%。从表7可见,洗矿水技术改进后的技术指标提高明显,效益显著。 三、结语 1、较之改造前洗矿水3%~4%的镍精矿品位、45%左右的镍金属回收率,经洗矿水工艺改造后,取得了与主流程相近的5%~7%的镍精矿品位、64.94%的镍金属回收率。按可比原矿折算后,镍金属综合回收率可提高接近0.5%,效果显著。 2、采用螺旋溜槽脱泥.精矿再磨浮选的洗矿水资源回收工艺对吉恩镍业股份有限公司洗矿水资源回收工艺技改的新途径,避免了以往技改工艺的种种弊端。洗矿水资源的镍金属回收率得到明显提高,有效解决了多年来的矿泥资源金属流失问题,效果显著,可显著提高公司资源利用率,提高经济效益。 3、生产试运行结果表明,此次技术改造科学合理、切实可行,能够达到较理想的矿泥资源回收效果。 4、此次洗矿水资源回收工艺改造尚存在微细矿泥中镍金属回收率不高的问题,有待今后考虑相应措施(如考虑使用对下一阶段浮选没有影响的药剂对微细矿泥表明改性、以提高重选技术指标;延长浮选时间等)予以解决。 参考文献 [1] 孙玉波.重力选矿[M].北京:冶金工业出版社,1991. [2] 谢广元.选矿学[M].徐州:中国矿业大学出版社,2001. [3] 王淀佐、邱冠周、胡岳华.资源加工学[M].北京:科学出版社,2005.

电解铅、粗铅、还原铅、再生铅、铅精矿的区别

2018-12-19 09:49:44

1号电解铅 :Pb含量不小于99.994% ; 2号铅: Pb含量不小于99.99%; 粗铅:  硫化铅矿氧化脱硫-去渣-粗铅.粗铅Pb纯度在96%-98%; 还原铅:以废铅做原料,重新回炉冶炼而得,PB含量通常在96%~98%左右,也可做为生产电解铅的原料。   再生铅:蓄电池用铅量在铅的消费中占很大比例,因此废旧蓄电池是再生铅的主要原料。有的国家再生铅量占总产铅量的一半以上。 再生铅主要用火法生产。例如,处理废蓄电池时,通常配以8~15%的碎焦,5~10%的铁屑和适量的石灰、苏打等熔剂,在反射炉或其他炉中熔炼成粗铅。 铅精矿:矿石经过经济合理的选矿流程选别后,其主要有用组分富集,成为精矿,它是选矿厂的最终产品。精矿中主要有用组分的含量称精矿品位。精矿品位有的以重量百分比(如铜、铜、锌等)表示,有的以重量比(如金矿以克/吨)表示。它是反映精矿质量的指标,也是制定选矿工艺流程的一项参数。

电解铅、粗铅、还原铅、再生铅以及铅精矿的区别

2018-10-15 09:42:39

1号电解铅 :Pb含量不小于99.994% ;2号铅: Pb含量不小于99.99%;粗铅: 硫化铅矿氧化脱硫-去渣-粗铅.粗铅Pb纯度在96%-98%;还原铅:以废铅做原料,重新回炉冶炼而得,PB含量通常在96%~98%左右,也可做为生产电解铅的原料。 再生铅:蓄电池用铅量在铅的消费中占很大比例,因此废旧蓄电池是再生铅的主要原料。有的国家再生铅量占总产铅量的一半以上。 再生铅主要用火法生产。例如,处理废蓄电池时,通常配以8~15%的碎焦,5~10%的铁屑和适量的石灰、苏打等熔剂,在反射炉或其他炉中熔炼成粗铅。铅精矿:矿石经过经济合理的选矿流程选别后,其主要有用组分富集,成为精矿,它是选矿厂的最终产品。精矿中主要有用组分的含量称精矿品位。精矿品位有的以重量百分比(如铜、铜、锌等)表示,有的以重量比(如金矿以克/吨)表示。它是反映精矿质量的指标,也是制定选矿工艺流程的一项参数。

连城锰矿洗矿-手选-跳汰-细粒强磁选联合工艺流程

2019-01-29 10:09:24

连城锰矿贫氧化锰矿洗选工艺流程

木圭锰矿松软锰矿洗矿厂

2019-01-25 13:37:59

(1)矿石性质:该矿的松软锰矿是由浅海相原生沉积的含锰灰岩经地表氧化次生富集而成,属锰帽型矿床。矿石中主要锰矿物为偏锰酸矿,并含少量硬锰矿或软锰矿及粉末状褐铁矿;脉石矿物主要为石英及少量的粘土矿物。矿石呈红褐色或褐黑色泥质、薄层状结构,硬度低,密度小,含水率高达44.6%。矿石中的偏锰酸矿与泥质物混在一起,泥质物特别集中于偏锰酸矿的孔隙中;矿层中的硬锰矿或软锰矿,仅局部性地分布于矿层面及裂隙间;粉末状褐铁矿呈不规则的斑状散布于矿层中。该矿区和8号矿体矿石的多元素分析及物理性质分别见下两表。 松软锰矿多元素分析矿区项目名称元            素,%MnMnO2FePSiO2Al2O3CaOMgO烧损全最  高33.38 15.410.38263.68    矿最  低10.785.860.02825.42区平  均20.99.430.09136.738号矿体坡顶矿23.7334.289.640.03134.475.110.81微9.91坡中混合矿22.2232.259.780.05534.735.890.69微9.07坡底矿23.8934.98.40.05136.83.420.790.449.28 松软锰矿物理性质项目矿石密度t/m3矿石含水率%矿石安息角(°)矿石普氏硬度顶板泥质页岩普氏硬度底板风化含锰硅质灰岩普氏硬度含量1.5444.632.08244[next]    (2)工艺流程:该矿于1978年进行的工业试验是筛洗-分级工艺流程。试验过程是将露天采出的原矿缷至原矿池,经水稀释后用平桂型泵扬送至振动筛筛洗,筛上产物为净块矿,筛下产物进分级机,返砂为净粉矿,溢流为尾矿,测定的技术指标(详见技术指标表)。该矿于1986年又建成一座年处理原矿12万t(湿矿)的工业试验厂,采用自磨碎解-筛洗-强磁选的工艺流程,所采用的具有选择性解离作用的自磨碎解机是一种新型洗矿设备。矿石经湿式碎解后,通过筛洗可获得净矿产品及含锰品位为16%左右的尾泥,尾泥经强磁选又可回收锰精矿。其洗选工艺流程见下图,试验和生产工艺指标及净矿产品多元素分析与含水率测定分别见下表。    该矿洗矿工艺流程简单,但净矿含水率高达58.6~71%,需在露天放置十数天后才能将含水率降低到50%左右。 [next] 净矿多元素分析与含水率测定矿样元         素,  %净矿含水率%MnMnO2FeSiO2Al2O3CaOMgOP烧损坡项矿净矿28.2341.379.9627.573.510.7微0.03110.4258.6坡中混合矿净矿32.0946.8910.8419.374.520.650.120.05911.8571坡底矿净矿33.5448.969.3620.032.750.810.50.05811.92

常用铝合金转换的洗炉制度

2019-01-15 09:51:37

上熔次生产的合金 下熔次生产下述合金前必须洗炉 根据具体情况选择是否洗炉1×××系(1100除外) 所有合金不洗炉  1100 1A99、1A97、1A93、1A90、1A85、1A50、5A66、7A01  2A02、2A04、2A06、2A10、2A11、2B11、2A12、2B12、2A17、2A25、2014、2214、2017、2024、2124 1×××系、2A13、2A16、2B16、2A20、2A21、2011、2618、2219、3×××系、4×××系、5×××系、6101、6101A 6005、6005A、6351、6060、6063、6063A、6181、6082、7A01、7A05、7A19、7A52、7003、7005、7020、8A06、8011、8079 2A01、2A70、2B70、2A80、2A90、2117、2118、6061、60702A13 1×××系、2A16、6005、2A20、2219、3×××系、4×××系、5×××系、6101、6101A、6005、6005A、6351、6060、6063、6181、6082、7A01 7A05、7A19、7A52、7003、7005、7020、8A06、8011、8079 20112A16、2B16、2219 1×××系、2A13、2A20、2A21、2011、2618、3×××系、4×××系、5×××系、6101、6101A、6005、6351、6060、6063、6181、7A01、7A05、7A19、7A33、7A52、7003、7005、7020、7475、8A06、8011、8079 2A70、2B70、2A80、2A90、6061、6070、7A092A70、2B70 除2A80、2A90、2618、4A11、4032外的所有合金  2A80、2A90 除2618、4A11、4032外的所有合金 2A703A21、3003、3103 1×××系、2A13、2A20、2A21、2011、2618、4A01、4004、4032、4043、5A33、5A66、5052、6101、6101A、6005、6005A、6060、6063、7A01、7050、7475、8A06 2A70、2A80、2A90、5082、6061、6063A、7A09、80113004、3104 1×××系、2A13、2A16、2B16、2A20、2A21、2011、2618、3A21、3003、4A01、4A13、4A17、4004、4032、4043、5A33、5A66、5052、6101、6101A、6005、6005A、6060、6063、7A01、7A33、7050、7475、8A06、80112A70、2A80、2A90、3103、5082、6061、6063A、7A09、4A11、4032 其他所有合金 2A80、2A904A01、4A13、4A17 除4A11、4004、4032、4043、4047外的所有合金 2A14、2A50、2B50、2A80、2A90、2014、2214、5A03、6A02、6B02、6101、6005、6060、6061、6063、6070、6082、80114004 除4A11、4032、4043A外的所有合金 2A14、2A50、2B50、2A80、2A90、2014、2214、4047、6A02、6B02、6351、60825×××系6063 1×××系、2A16、2B16、2A20、2011、2219、3A21、3003、4A01、4A13、4A17、4043、5A66、7A01、8A06、8011  2A14、2A50、2B50、6A02、6B02、6061、6070 1×××系、2A02、2A04、2A10、2A13、2A16、2B16、2A17、2A20、2A21、2A25、2011、2219、2124、3A21、3003、4A01、4A13、4A17、4043、5A66、6101、6101A、7050、7075、7475、8A06、8011 2A12、2A70、2B707A01 除2A11、2A12、2A13、2A14、2A50、2B50、2A70、2A80、2A90、2011、5A33、7×××系外的所有合金 2014、2214、2017、2024、2124、3004、4A11、4032、5A01、5A30、5005、5082、5182、5083、5086、6061、60707×××系 7A01及其他所有合金 5A33

湘潭锰矿碳酸锰矿洗矿厂

2019-01-25 13:37:59

(1)矿石性质:该矿属轻微变质浅海相沉积碳酸锰矿床。主要含锰矿物为菱锰矿,其次为锰方解石、钙菱锰矿。主要脉石矿物为碳质粘土、石英、玉髓、铁白云石-白云石、含锰方解石、高岭土、方解石、重晶石及黄铁矿等。碳酸锰矿主要有条带状、致密块状、假鮞粒状、碎裂状、层状、破碎状及部分互层状构造。矿石的结构为隐晶质胶结结构和细粒结构,前者以菱锰矿为主,后者常以锰方解石为主。有用矿物颗粒极为细小,一般小于0.02mm;脉石矿物石英和铁白云石一般为0.004~0.0066mm的微粒,单独或成连晶状嵌布在菱锰矿假鮞粒或连生体之间。此外,方解石、铁白云石、石英等往往单独或相互构成细脉穿切菱锰矿集合体。矿石性脆。矿体底板为黑页岩,矿体顶板为叶片状黑页岩,很不稳定,开采时废石混入率为7~13%.该矿红旗井矿区原矿多元素分析及粒度组成与品位分析分别见下两表: 红旗井碳酸锰原矿多元素分析元素MnFeSiO2Al2O3CaOMgOPS烧损含量,%22.12.318.583.88.613.350.1561.4327 红旗井坑采碳酸锰原矿粒度组成与品位分析粒度,mm150150~100100~5050~3030~55~33~11.0~0.50.5~0.20.2~0.074-0.074合计产率,%部分0.842.7510.739.4341.4411.4715.424.192.580.910.24100累计0.843.5914.3223.7565.1976.6692.0896.2798.8599.76100 含Mn品位,%22.920.821.822.1521.5620.721.421.3520.116.3311.6521.41    (2)工艺流程:红旗井碳酸锰矿洗矿的主要设备和工艺指标见工艺流程下图。洗矿溢流尾矿粒度组成及其品位见下表。井下采出的矿石经洗矿处理后,一般可洗出产率10%左右的矿泥(小于0.074mm87%左右),洗后净矿再经手选可提高含锰品位1.5~2.0%左右,锰回收率94~95%左右。洗矿原矿消耗水量为1.5 ~1.7m3/t。采用反击式破碎机处理解理发育的锰矿石效果尚好,但反击板和锤头磨损很快,锤头120h更换一次。[next] 红旗井碳酸锰矿洗矿溢流尾矿粒度与其品位分析粒度,mm0.5~0.20.2~0.10.1~0.074-0.074合计备  注产率,%0.855.696.6486.82100溢流浓度3.6%含Mn品位,%18.520.1518.3510.3511.52

提高白云鄂博氧化矿铁精矿品位的试验研究

2019-01-21 18:04:49

贯彻“高炉精料”,节能减排,是21世纪钢铁工业发展的主流。为顺应这一发展趋势,提高炼铁技术经济指标,包头钢铁公司在“十一五”规划中对选矿厂提出更高要求,要求选矿厂氧化矿铁精矿品位达到68%。为此,寻求合理的选别方法及工艺流程,实现氧化矿铁精矿品位达到68%是非常重要而且是急需解决的难题。 本项目在对现工艺进行全面分析与研究的基础上,首先对氧化矿弱磁精反浮选精矿、强磁选精矿进行工艺矿物学研究,然后进行不同选别方法及不同选别流程组合的试验研究,最终确定对于磁性强的弱磁精反浮选精矿采用电磁螺旋柱-细筛-再磨-弱磁选工艺,对于磁性弱的强磁精采用细筛-反、正浮选工艺。试验指标先进,氧化矿铁精矿品位达到68.18%,回收率68.73%,而且采用新工艺后,最终铁精矿K2O+Na2O,SiO2等杂质含量都有明显降低,有效地提高了铁精矿质量,改善了白云鄂博矿冶金性能,为实现精料方针、提高高炉利用系数、冶炼获取更大经济效益提供了原料保证。 一、氧化矿生产现状及原料性质 白云鄂博矿氧化矿由于其矿石铁品位低、矿物成分复杂、共生关系密切、嵌布粒度细而不均、有用矿物和脉石矿物可选性差异小、矿石类型多等特点,是举世闻名的难选矿。氧化矿现生产工艺采用的是弱磁选-强磁选-反、正浮选工艺。目前,由于弱磁性铁矿物与含铁硅酸盐矿物未得到有效分离,氧化矿铁精矿品位在65%左右,与公司要求(氧化矿铁精矿品位达到68%)的水平相距甚远。现生产工艺见图1。图1  氧化矿弱磁选-强磁选-反、正浮选工艺流程 试验期间,氧化矿TFe 29. 4%,FeO 8.8%,K2O+Na2O 0.78%,SiO2 11.54%,F 8.29%,铁矿物以磁铁矿-赤铁矿物为主(占39.89%),磁性铁含量较高占71.43%,脉石矿物以萤石、闪石、辉石、白云石、方解石等为主,是选矿厂正常生产所用氧化矿。氧化矿多元素化学分析、铁物相分析、矿物组成分析结果分别见表1,表2和表3。 表1  氧化矿多元素化学分析结果    %表2  氧化矿铁物相分析结果    %表3  氧化矿矿物组成分析结果    %二、试验研究内容及试验流程的确定 (一)对现氧化矿工艺流程中弱磁精反浮选精矿、强磁精进行工艺矿物学研究,对两种产品的矿物组成、铁物相及单体解离度进行测定。 (二)对弱磁精反浮选精矿采用电磁螺旋柱-细筛-再磨-弱磁选工艺进行试验研究。 (三)对强磁选精矿采用细筛工艺进行试验研究。 (四)筛下产品进行浮选的可行性试验研究。 最终确定氧化矿弱磁精反浮选精矿采用电磁螺旋柱-细筛-再磨-弱磁选、强磁精采用细筛-反、正浮新工艺,试验流程见图2。图2  氧化矿采用新工艺试验流程 三、试验结果及讨论 氧化矿弱磁精反浮选精矿采用螺旋柱-细筛-再磨-弱磁选工艺及强磁精采用细筛-反、正浮新工艺试验数质量流程见图3,试验指标与原流程指标对比见表4。精矿多元素化学分析、矿物组成分析结果分别见表5和表6。图3  氧化矿采用新工艺试验数质量流程 表4  氧化矿采用新工艺与原工艺指标对比  %表5  精矿多元素化学分析结果    % 表6  精矿矿物组成定量分析结果  % 从表4可见,在原矿TFe 29.56%,FeO 8.33%的条件下,与原工艺相比,氧化矿采用新工艺,铁精矿品位由64. 39%提高到68.18%,提高3.79个百分点,回收率由72. 33%降至68. 73%,降低3.6个百分点。 最终精矿由筛下产品、细磨后的弱磁精矿及正浮选精矿组成,由产品多元素分析、矿物组成定量分析可得,新工艺最终铁精矿不仅铁品位显著提升,达到68.18%,而且K2O+Na2O,SiO2,F,P等杂质含量都有明显降低,铁精矿中硅酸盐含量降低,有效地提高了铁精矿质量,为“精料”方针的实现奠定了基础。 四、试验流程合理性分析 (一)氧化矿弱磁精反浮选精矿电磁螺旋柱-细筛-再磨-弱磁选工艺流程 1、对氧化矿弱磁精反浮选精矿(TFe 66%左右)采用电磁-细筛-再磨-弱磁选联合流程,利用物料在电磁螺旋柱中连续不断的磁聚合-分散,实现-机多次精选,将弱磁精反浮选精矿品位提高,然后再采用MVS型高频振网筛通过提高筛下产品的单体解离度而进一步提质,分选出铁品位大于69%的合格精矿。 2、对于筛上和螺旋柱溢流连生体含量高、粒度相对较粗的中间产品,采用细磨再选工艺,确定适宜的磨矿细度-200目占92.50%,使铁矿物充分解离,然后通过弱磁选获得品位大于68%的弱磁选精矿。筛下产品和弱磁选精矿合并为最终铁精矿,铁品位达到68%以上。 (二)强磁精采用细筛-反、正浮选工艺流程 1、对含铁硅酸盐矿物含量较高的强磁选精矿采用细筛工艺,通过选择合理筛孔,有效提高筛下产品的单体解离度,进而提高铁精矿品位;同时直接将20%左右的脉石矿物抛掉,改善反浮选入选条件,降低浮选成本。 2、对于筛下产品首先采用在碱性介质中进行反浮选,将萤石、碳酸盐或磷酸盐等矿物去除,然后在酸性介质中进行正浮选(1次粗选、2次精选),进一步将铁矿物与含铁硅酸盐矿物分离,使反浮选-正浮选精矿品位达到TFe 64.50%左右。 五、实施效果 这一试验的成功使包钢选矿厂氧化矿选矿技术指标达到国内氧化矿选矿先进水平,而且该项目的成功对冶炼具有较大的经济效益和社会效益。铁精矿质量的提高,改善了铁原料的冶金性能,为降低炼铁成本,提高高炉利用系数,促进冶炼系统的发展作出突出贡献。 六、结论 (一)试验期间,氧化矿TFe 29.4%,FeO 8.8%,K2O+Na2O 0.78%,SiO2 11.54%,F 8.29%,铁矿物以磁铁矿-赤铁矿物为主,占39.89%,磁性铁含量较高占71.43%;脉石矿物主要以萤石、闪石、辉石、白云石、方解石等为主。该矿石是选矿厂正常生产所用氧化矿。 (二)氧化矿采用电磁螺旋柱-细筛-再磨-弱磁选及强磁精细筛-反、正浮新工艺,达到提质降杂的目的。采用新工艺后,在氧化矿铁品位TFe 29.56%,FeO 8.33%的条件下,铁精矿品位由64.39%提高到68.18%,提高3.79个百分点,铁精矿中K2O+Na2O,SiO2,F,P等主要有害杂质明显降低,为冶炼提供优质原料,为高炉利用系数的提高奠定基础。 (三)工艺技术路线合理可行,指标先进,工业操作性强,易于工业实施。 (四)该项目的成功使包钢选矿厂氧化矿选矿技术指标达到国内氧化矿选矿先进水平,为氧化矿的技术改造提供了技术依据。

硫化矿酸浸—高杂质含黄铜精矿的酸浸

2019-02-15 14:21:01

在高温氧化酸浸时,砷、锑、秘等金属与铁一同沉积。在高温酸浸一种黑黝铜矿为主的精矿时,样品成分为:Cu 26.5%、Sb 13.2%、 As 6.8%、Fe 2.0%、Zn 2.9%、S 19.4% 、Ag 0.27%,事前参加硫酸亚铁,使Fe/(As+Sb)=1.5/1(mol )。在220℃和600kPa的氧分压下,铜和锌的浸取率别离到达95.4%和95.0%。渣用氯化物溶液浸取银,浸出率到达95.4%[1]。    除了生成铁                        Fe2(S04)3+2H3As04 ==== 2FeAs04+3H2S04铁离子和根还生成碱式盐        2Fe2(S04)3+2H3As04+(2+n)H20 ==== 2Fe2(As04)(S04)OH·nH20+4H2S04    常见的含砷、锑铜矿除了黑黝铜矿(Cu12Sb4S13),还有硫砷铜矿(Cu3AsS4)、砷黝铜矿(Cu12As4S13)。高压浸取一种含(%):Cu 22.6、Sb 0.5、As 8.6、Fe 18.0、S 35.4、Ag 61g/t、Au 844g/t的精矿。在200℃经3h浸取或220℃下浸取1h,硫的氧化率到达99%,简直悉数的锑及多于94%的砷沉积到渣中。铜的浸取率在95%~98%,是因为溶解的铜又生成了一种含有Fe—Cu—As—S—0的沉积。进步浸取温度,生成的不稳定硫酸盐沉积量增大,在化时耗费更多的石灰。220℃的渣化浸金时耗费石灰达130kg/t,而200℃的浸取渣仅耗费50kg/t。金的化回收率在87%~96%之间。银的回收率很低,是因为构成银的黄铁矾盐的原因。

国内、外锰矿石洗、选指标有哪些

2019-01-29 10:09:51

国内、外锰矿石洗、选指标见下表1:   表1  国内锰矿石洗、选指标序 号厂矿名称规模 万t/d矿床类型及矿物组分洗、选工艺流程简介产品名称洗、选指标,%备注αβεγ洗、洗后提高锰品位1 桂南锰矿  锰帽型氧化锰矿石。锰矿物有硬锰矿、软锰矿、偏锰酸矿。脉石矿物为硅质、泥质物 一段槽式机洗矿原矿31.55     净块矿(+5mm) 38.8272.7559.137.27净粉矿(-5mm) 36.9312.0210.275.382 木圭锰矿  锰帽型松软锰矿石。锰矿物有偏锰酸矿及少量硬锰矿和软锰矿。脉石矿物主要有方解石 筛洗、螺旋分级机洗矿原矿19.17     1978年工艺试验指标净块矿(30~10mm) 31.0747.029.0011.90净粉矿(10~0.15mm) 25.9825.6118.906.813 大新锰矿  氧化锰矿石。锰矿物有软锰矿、硬锰矿偏锰酸矿。脉石矿物有石英、高岭石、水云母 两段螺旋分级机洗矿原矿26.17     1985年生产厂工业试验指标净块矿(+7mm) 30.5543.4037.184.38净粉矿(-7mm) 32.9241.9633.366.754 湘潭锰矿  碳酸锰矿石。锰矿物主要为菱锰矿、钙菱锰矿。脉石矿物以碳质粘土为主,其次为石英、玉髓、高岭石等 筛洗、螺旋分级机洗矿原矿21.9     净块矿(+13mm) 22.2863.2562.440.38净粉矿(-0.5mm) 22.9833.1031.541.08 氧化锰矿石。锰矿物主要为软锰矿、硬锰矿、偏锰酸矿。脉石矿物有石英、粘土等 重选(跳汰、摇床)原矿32.1    精矿 41.0275.2058.858.925 八一锰矿  堆积氧化锰洗后的净粉矿,以硬锰矿、软锰矿为主。脉石为粘土、石英 电磁感应辊强磁机一次粗选原矿24.12     采用CS-1型强磁选机选别。1984年生产指标精矿 28.4791.9677.914.356 靖西锰矿3.5 氧化锰矿石。金属矿物以软锰矿、硬锰矿为主,其它有褐铁矿、赤铁矿、针铁矿。脉石矿物有石英、高岭石、水云母等 重选、强磁选、重选原矿38.31     1985年生产指标精矿:二级放电锰 45.9266.3455.357.61三级放电锰 37.5114.6714.98-0.80冶金锰 26.019.9814.67-12.30精矿合计 41.0190.9985.002.707 遵义锰矿  氧化锰矿石 重选(跳汰、摇床)原矿28.29     1986年对2号矿样的工业试验结果。药剂消耗量(以原矿计)㎏/t 2号油 0.222 丁黄药 0.623 磺酸钠 2.294 水玻璃 0.998 合计 4.127锰精矿 34.8048.0939.1013.82中矿 25.544.0948.916.32 碳酸锰矿石。锰矿物以菱锰矿、钙菱锰矿为主,其次为锰方解石。脉石矿物有石英、玉髓、碳44.36质、粘土等 弱磁选、强磁选、浮选原矿19.27   9.14Ⅰ级锰精矿 33.0932.4718.91 Ⅲ级锰精矿 25.5941.5931.32 锰精矿合计 28.4174.0650.23 硫精矿含S27.2%   5.41 尾矿 10.1023.2544.36 8 桃江锰矿  碳酸锰矿石。以锰方解石为主,其次有锰白云石、钙菱锰矿。脉石矿物以石英为主 感应辊强磁选机一次粗选原矿17.67     1980年6月至1982年6月平均指标锰精矿 20.6686.8774.302.999 松桃锰矿  氧化锰矿石经重选后的尾矿 ShP-700型强磁机一次粗选松2号矿25.2338.2457.6938.0613.01 1986年8月生产调试指标松5号矿30.5941.6847.4334.8111.09 碳锰矿碎粉矿 设备同上,一粗一扫松6号矿25.6430.9168.6956.985.2710 连城锰矿  风化淋滤型贫氧化锰矿 洗矿-跳汰-强磁选原矿20.6     1986年生产调试指标锰精矿 41.5382.0340.6920.08       国外锰矿石洗、选指标见表2:   表2  国外锰矿石洗、选指标序 号国别、厂矿名称规模 万t/d矿石类型洗、选方法洗、选指标,%α (Mn)β (Mn)εγ提高品位 (Mn)1 [南非]戈帕尼锰矿选矿厂4.5 二氧化锰 洗矿,螺旋选矿MnO2 20.0MnO2 40.0  50.0 MnO2 20.02 [巴西]塞拉多纳维奥选矿厂  氧化锰矿石 洗矿、重介质和螺旋洗矿43.345.479.075.352.103 [苏]尼科波尔矿区波格丹洛夫选矿厂240 氧化锰矿石 洗矿、跳汰、强磁、浮选30.8242.2875.2154.8211.464 [苏]恰图拉矿区别洛克希德选矿厂28 氧化锰矿石洗矿、跳汰29.7035.3072.9061.334.605 [苏]尼科波尔矿区波科罗夫选矿厂600 碳酸锰矿石 洗矿、强磁、浮选17.4928.6086.9553.1711.116 [苏]恰图拉矿区达尔科维奇选矿厂  碳酸锰矿石 洗矿、重介质、跳汰21.0026.0074.4060.095.007 [苏]大托克马克矿区选矿厂250 碳酸锰矿石 自磨、强磁、高梯度磁选17.4830.9782.3346.4713.498 [日]稻仓石选矿厂4 碳酸锰矿石 强磁选23.0028.3095.0077.215.309 [日]大江锰矿选矿厂10 碳酸锰矿石 浮选7.1629.0067.5016.6721.8410 [日]上国锰矿选矿厂6 碳酸锰矿石 重介质、浮选、强磁选19.2627.8072.4850.228.54

铝材除油洗白剂的日常管理维护

2018-12-26 10:38:45

A、按建浴浓度配制槽液,充分搅拌溶解即可使用(配槽时将桶内液体摇匀倒出)。   B、随着处理工件数量的增加,使用时间延长和工件带走槽液等原因,槽液的有效成分和液面会有所下降,如果表面油污不多及槽液不是太脏,可以及时补充OY-123铝材除油洗白剂;如果槽液比较脏,而且有一定的油污,建议槽液全部更换。   C、如果都采用本品进行油污及氧化皮的清洁时,建议配置两个同样的OY-123铝材清洗槽,一个作为除油用,一个作为洗白用,这样可以解决单槽出现的严重污染问题。删除

中高温浸矿菌结合对高砷铜精矿的浸出研究

2019-02-21 11:21:37

高砷铜精矿首要指砷超越2%的铜精矿。铜砷别离是选冶范畴的一大难题。现在国内外关于细菌脱砷的研讨,首要会集在高砷金精矿。高砷铜精矿的细菌浸出研讨较少。以砷黝铜矿为主的铜精矿,含砷量较高,砷铜比一般为1∶3~5,铜精矿中含砷可高达6%~8%。本实验研讨的含砷矿样以砷黝铜矿为主。温健康等人对我国某含砷低档次硫化铜矿浮选精矿进行了中温浸矿菌浸出实验研讨,该浮选精矿铜矿藏首要为次生硫化铜矿,极少量的黄铜矿和斑铜矿,首要含砷矿藏为硫砷铜矿,As 0.79%、Cu 17.98%、铜浸出率可到达85.52%。周硪等人对云南某铜矿的高砷硫化铜精矿进行了中温浸矿菌浸出实验,该精矿含砷2.5%、铜11.48%、原生硫化铜矿占总铜含量的62.3%,次生硫化铜矿占总铜含量的35.7%,浸出时刻10d,铜浸出率30%。从上述实验能够看出,中温浸矿菌对以次生硫化铜矿为主的高砷铜精矿较以原生硫化铜矿为主的高砷铜精矿的浸出效果好。 近20年,国外对原生硫化铜矿的细菌浸出进行了很多的研讨。研讨标明,嗜热嗜酸菌(又叫高温菌)对原生硫化铜矿的浸出率是中温浸矿菌的数倍(5倍以上)。国外展开了黄铜矿精矿的嗜热嗜酸菌生物浸出研讨。如澳大利亚BacT ech/MinTech塔斯梅尼亚矿用中等嗜热嗜酸菌浸出黄铜矿精矿,温度48℃,处理量5 kg/d,铜的浸出率到达96.4%。国内昆明冶金研讨院也完成了用嗜热嗜酸菌浸出低档次黄铜矿的研讨,并获得突破性效果。从云南某温泉区收集的水样中别离出严厉无机化能自养型嗜热嗜酸菌,并将其用于以黄铜矿为主的低档次硫化铜矿的生物浸出,与中温硫杆菌比较,在相同的实验条件下(浸出温度在外),嗜热嗜酸菌对总铜的浸出率到达97%,是中温浸矿菌浸出率32. 43%的3倍。以浸渣中残留黄铜矿计,嗜热嗜酸菌对黄铜矿的浸出率为97.05%,是中温浸矿菌浸出率15.43%的6倍。嗜热嗜酸菌对黄铜矿的浸出有特效,但未见其对高砷铜精矿的研讨报导。本文首要研讨嗜热嗜酸菌对高砷铜精矿的生物浸出。 一、两段法浸出实验原理 根据中温硫杆菌和嗜热嗜酸菌各自的生理生化特征,选用两段浸出的办法处理高砷铜精矿。榜首段:一方面运用中温硫杆菌(最佳成长温度:30℃左右)对砷有较强耐受力的特色,在高砷环境中能发挥较强的氧化浸出效果,浸出铜精矿中的大部分砷,此刻砷首要以As3+存在。进一步氧化使As3+转化成As5+,恰当调理pH,As5+与浸出液中的过量Fe3+反响构成安稳的铁(臭葱石)沉积,然后下降浸出液中砷含量,以减轻对第二段高温菌的毒性;另一方面运用中温浸矿菌对次生硫化铜矿有较强的氧化浸出才干的特色,浸出高砷铜精矿的易浸矿藏。第二段:运用高温浸矿菌(最佳成长温度:65℃)对难浸的原生硫化铜矿氧化浸出才干强的特色,在较短时刻内使难浸的原生硫化铜矿大部分氧化浸出,Cu2+进入溶液。固液别离即可脱砷。 二、实验材料及办法 (一)矿样与菌种 实验矿样:取自云南某选矿厂的浮选铜精矿,其化学多元素及铜物相分析成果如表1、表2所示。 表1  高砷铜精矿化学多元素分析(质量分数)/%1)铜精矿As含量随不同批次矿样而有改变,改变起伏为3.0%~8.0%,上表所列成分为本实验矿样,若砷含量高或低于上表所列,则采纳配矿的办法使其安稳在4.39%左右;2)单位为g/t。 表2  高砷铜精矿铜物相分析从表2可知,该铜精矿是氧硫混合矿,氧化率挨近50%。硫化铜矿以原生硫化铜矿为主。X衍射分析标明,原生硫化铜矿以砷黝铜矿为主,约60%~70%,黄铜矿约30%~40%。 实验菌种:选用实验室长时刻驯化、挑选和诱变等手法选育出的耐高砷中温浸矿菌和高温浸矿菌。 (二)分析检测办法 物相分析:用X射线衍射仪、日本岛津EPMA-1600电子探针等办法进行矿样细菌浸出前后的物相分析。 化学元素分析:选用原子吸收光谱法或碘量法测定铜,可溶性铁离子(Fe2+和Fe3+)浓度选用重滴定法。 pH测定:选用精细pH计或精细pH试纸检测。 (三)拌和浸出实验办法 称取矿粉若干,按1∶10(w/v)份额参加培育基,用1∶1硫酸溶液调理pH至2.0左右,待pH值安稳后按10%份额接入菌种液,称重定重,30℃(中温浸矿菌)或65℃(高温浸矿菌)水浴中进行拌和浸出实验。无菌酸浸对照加0.2%硫酸。浸出过程中操控pH值1.5~2.0左右,每天3次守时用适温自来水弥补蒸发水到定重。守时取上清液分析进入溶液中的铜、铁等。浸出周期为10d。取样量用基本培育基补加,实验完毕后过滤,浸渣用1%稀洗刷数次后烘干称重,对浸渣中残留铜、砷等进行含量和物相分析。 三、实验成果与评论 (一)中、高温浸矿菌独自或组合运用对浸出效果的影响 高温浸矿菌对原生硫化铜矿一黄铜矿的浸出速率较快,浸出率较高。高温菌对以砷黝铜矿为主的原生硫化铜矿的浸出效果还未见报导。本实验在浸出周期的不一起段运用不同的浸矿菌种或其组合,研讨中温菌、高温菌别离运用和其组合运用对高砷铜精矿的氧化浸出特性。 建立高温菌组、中高温菌组和中温菌组。高温菌组:整个浸出周期(10 d)均运用高温浸矿菌;中高温菌组一两段法浸出:浸出实验前期(1~6d)运用中温菌,后期(7~10d)运用高温菌;中温菌组:整个浸出周期(10d)均运用中温浸矿菌。浸出成果见图1。图1  不同浸矿时段运用不同浸矿菌种对浸出效果的影响 从图1可知:两段法浸出即实验前期运用中温浸矿菌,后期运用高温浸矿菌的中高温菌组,铜浸出率最高。浸出周期别离只运用高温浸矿菌或仅运用中温浸矿菌,二者的浸出效果均不如两段法浸出的中高温浸矿菌组。两段法菌种组合浸出10 d,总铜浸出率90.01%,而中温菌组78.13%,高温菌组为55.16%。仅用中温菌,浸出6d总铜浸出率可达70%,随后浸出率上升变缓,持续延伸浸出时刻到10d,浸出率仍未见明显提高,仅上升8.13%。但中温菌浸渣在两段法浸出的后期,转入高温浸矿体系后,总铜浸出率有较大程度的升高,上升约20%左右。对中温菌组的菌浸渣进行X衍射分析,渣内铜矿藏首要为砷黝铜矿,其次为黄铜矿,中温浸矿菌对砷黝铜矿和黄铜矿等原生硫化铜矿的浸出效果差,铜浸出率别离为17.48%和14.2%,对原生硫化铜矿的总浸出率算计为16.26%。如表3所示。 表3  浸渣原生硫化铜矿藏相分析/%从表3高温菌浸渣X衍射分析成果可知,渣内仍首要残留砷黝铜矿及极少量的黄铜矿,但二者的含量却大大少于高温菌浸出前。阐明高温菌在两段法浸出后期对砷黝铜矿和黄铜矿等原生硫化铜矿确有较强的氧化浸出才干;高温菌对黄铜矿的浸出率可达78.45%,是中温浸矿菌14.2%的5.5倍以上;对砷黝铜矿的浸出率为33.42%,是中温浸矿菌17.48%的2倍左右;对原生硫化铜矿的总浸出率算计为50.24%,约为中温浸矿菌16.26%的3倍。但高温菌对砷黝铜矿的氧化浸出效果较黄铜矿差。从图1可知,仅用高温菌浸出的高温菌组,细菌成长的延滞期较长,其浸出速率和浸出率远远不如中温菌组和中高温菌组。阐明高温菌组的浸出体系从一开端就不利于其发挥较强的氧化浸出效果。矿浆中的高砷可能是高温菌成长繁衍和氧化活性高效发挥的按捺要素之一。经电子探针分析可知:浸渣中砷首要以铁的方式存在。 据材料介绍:只要在浓酸溶液中才存在As3+离子。因为生物氧化均是在较强酸性环境中进行(pH 1.5~2.0),因此,在砷的生物氧化过程中,As3+的发生和存在是不可避免的。在生物氧化中,不同的细菌对砷的耐受才干是不同的。有人研讨以为,氧化亚铁硫杆菌和氧化硫硫杆菌等中温浸矿菌在5g/L亚盐和40g/L盐的条件下,其成长受按捺。当溶液中As3+的浓度为30 mmol/L(2. 25g/L)时,对中等嗜热细菌是首要的毒源。中温菌对As3+的耐受力较高温菌强。本实验成果也从一方面证明了上述观念,因为在相同的实验条件下,高温菌组的总铜浸出率远远低于中温菌组。 (二)Fe3+的增加对细菌浸出的影响 从上述研讨可知:As3+、As5+对中高温浸矿菌均有很大的毒性,As3+对细菌的按捺才干远大于As5+,高温菌对As3+、As5+的耐受力较中温浸矿菌差。而研讨发现,生物氧化过程中,砷首要还是以As3+的状况进入溶液,且其在生物氧化过程中很安稳,需强氧化剂才干将其氧化为As5+。因此生物氧化过程中为了削减As3+对细菌尤其是对两段法浸出后期高温浸矿菌的毒害,有必要加速As3+→As5+的氧化,As5+再经过与浸出液中Fe3+反响生成铁沉积入渣。据研讨,生物氧化过程中,Fe3+、Fe/As摩尔比等,都会影响到As3+的氧化。 Fe3+是一种氧化剂,具有很强的氧化性。在必定条件下,Fe3+能够将浸出液中As3+氧化成As5+。只要As5+才干与溶液中Fe3+反响生成铁沉积。反响方程式如下:在两段法浸出前期的中温浸矿体系中,经过补加不同浓度的Fe3+,一方面研讨Fe3+对中温浸矿菌浸出高砷铜精矿的影响,另一方面研讨最佳Fe3+增加量。 在3个实验组中的中温浸矿体系中别离增加2.0、7.5、15g/L的Fe3+,以Fe2(SO4)3的方式增加;建立不增加Fe3+对照组。2.0 g/L的Fe3+的增加量计算根据:以没有增加Fe3+的浸出液中{(Fe3++Fe2+)+增加Fe3+}摩尔浓度÷( As3++As5+)摩尔浓度=3~6。实验成果如图2所示。图2  Fe3+的增加量对中温浸矿菌浸出的影响 从图2可知,中温浸矿体系中增加Fe3+能加速中温浸矿菌的浸出速率。但增加的Fe3+的浓度越高,细菌浸出速率反而越低。实验标明以2.0g/L的Fe3+的增加量为最佳。浸出体系中Fe3+的浓度越高,浸出率反而越低的机理现在还不清楚。 (三)黄铁矿精矿的增加对细菌浸出的影响 在生物氧化浸出液中砷离子首要是生成铁(FeAsO4)沉积,因此溶液中过量的Fe3+存在是沉积反响进行的首要条件。浸出液中,因为各种矿藏的氧化速度不同,各种离子( Fe2+、Fe3+、As3+、As5+)的浓度也各不相同,对铁生成的影响也较大,为保证砷离子沉积彻底,一般溶液中Fe/As摩尔比以3~6为好。从Fe3+的增加对中温浸矿菌浸出的影响研讨成果可知,在浸出液中增加适量的Fe3+对中温浸矿菌浸出速率确有促进效果。但从生产成本考虑,在浸出体系中很多增加Fe3+不太实际,若运用细菌能氧化浸出黄铁矿生成Fe2+、Fe3+的特性,经过增加黄铁矿来弥补Fe3+,以到达浸出液中存在过量Fe3+的意图。 下述实验首要研讨在中温浸矿体系中增加黄铁矿对中温浸矿菌浸出的影响及黄铁矿的最佳增加量。 实验分两个过程:①黄铁矿精矿细菌培育液的制备。实验组在2.5%、5.0%( w/v)黄铁矿精矿600 mL矿浆中别离接种10%( w/v)中温浸矿菌,在30℃的水浴中拌和培育7d。②中温浸矿菌浸矿实验。在各自的细菌培育液中别离增加高砷铜精矿实验矿样60g,开端浸出实验。对照组不增加黄铁矿精矿细菌培育液。实验成果如图3所示。 从图3可知:增加必定量的黄铁矿精矿能提高中温浸矿菌的浸出速率,原因是黄铁矿精矿细菌培育液中含有很多的Fe3+、Fe2+,能够弥补浸出体系需求的Fe3+。黄铁矿精矿增加量以2.5%为宜。图3  增加黄铁矿精矿对中温浸矿菌浸出的影响 四、结语 (一)在中高温浸矿菌结合的两段法浸出的条件下,能呈现较快的浸出速率和较高的浸出率,浸出10 d总铜浸出率可到达90. 01%。对浸渣原生硫化铜矿藏相分析可知:高温菌对黄铜矿的浸出率可达78. 45%,是中温浸矿菌14. 2%的5.5倍以上;高温菌对砷黝铜矿的浸出率为33.42%,大约是中温浸矿菌17.48%的2倍;对原生硫化铜矿的总浸出率算计为50.24%,是中温浸矿菌16.26%的3倍。但高温菌对砷黝铜矿的氧化浸出效果较黄铜矿差;两段法对高效生物浸出高砷铜精矿是比较适合的,在必定程度上能保证高温菌对砷黝铜矿和黄铜矿等原生硫化铜矿发挥较强的氧化浸出效果。中温浸矿菌尽管对原生硫化铜矿的氧化浸出才干较高温浸矿菌差,但对As3+和As5+的耐受力较高温菌强。两段法即浸出前期运用中温菌,运用了中温菌对砷有较强耐受力的特色,一起浸出易浸的硫化矿;浸出后期运用高温菌,则运用了高温菌对原生硫化铜矿有较强浸出效果的特色。二者合作运用将是往后生物冶金研讨和产业化推行的要点。 (二)在两段法浸出前期增加适量Fe3+或黄铁矿精矿均能加速中温浸矿菌的浸出速率,前者以2.0 g/LFe3+的增加量为最佳,后者以2.5%的增加量即可,但要以细菌培育液的方式增加。

稀土精矿

2017-06-06 17:50:12

在稀土精矿的生产上存在两大问题,严重影响了包头稀土 产业 的可持续发展。  第一个是稀土精矿品位,产品单一,处理工艺也比较单一,稀土选矿厂生产的大部分是50%REO的精矿,处理工艺也是单一的浓硫酸焙烧工艺,给地区环境造成较大影响,黄河附近的稀土冶炼企业威胁黄河水源,处于半停产和全体等待迁徙的境地。如果稀土精矿品位提高到55%或60%以上,则从工艺上进行改变,就可从根本上改进和解决稀土冶炼企业的三废对环境带来的不利影响,因此改变稀土精矿产品结构,生产高品位稀土精矿是一项紧急和迫切的任务。  第二个是稀土回收率太低,目前,用包头资源生产稀土精矿的选矿厂回收率不高,大部分选矿厂实际回收率都不超过60%,有的还要低,远远低于四川和美国同类选矿厂的水平,因此,提高包头资源稀土精矿回收率就更具有特殊的意义。其一是集中回收稀土矿物,使铁精矿的质量和回收率得到提高。由于铁精矿中的磷、氟严重影响了钢铁冶炼,铁的选矿回收率往往也是受到稀土矿物、萤石矿物等的影响,提高稀土精矿回收率对解决包头资源的全面综合利用具有重要的意义;其二是钍的回收利用得到保证,因为包头资源中的钍主要集于稀土矿物中,或者说绝大部分钍与稀土共生于稀土矿物中,要回收钍必须从稀土冶炼过程中回收,稀土回收率提高了,钍的回收率也提高了。而钍被认为是解决未来核能发电的长期核燃料来源,因此,提高稀土精矿回收率对钍的回收利用也具重要意义。其三是对放射性钍元素的环境影响也有很大的积极帮助,钍集中回收和利用,避免了放射性钍元素的扩散并避免对其他产品、空气、水源等造成污染和影响。在进行工业生产试验,本试验的目的就是既要提高稀土精矿品位,又要同时提高回收率。用不同工艺生产稀土精矿品位53%和59%的产品,回收率分别达到84%和90%以上,而且由于精矿品位和回收率的大幅提高,产品档次提高,生产效率提高,使选矿的经济效益大幅增长。这次提高稀土精矿品位和回收率的试验是在选矿闭路串级理论的基础上进行的,而这一理论又是在稀土萃取串级理论的基础上完成的,根据这一理论,对某一种选矿体系,可以通过计算和设计来达到我们人为要想达到的技术指标,这一理论的应用已经得到实验的证实,如能推广应用,对提高矿产品的质量和回收率是很有意义的,对矿产资源的节约利用和发展循环经济也将具有重要的意义。更多有关稀土精矿的内容请查阅上海 有色 网

锌精矿

2017-07-04 14:27:16

锌是微量元素的一种,在人体内的含量以及每天所需摄入量都很少,但对机体的性发育、性功能、生殖细胞的生成却能起到举足轻重的作用,故有&ldquo;生命的火花&rdquo;与&ldquo;婚姻和谐素&rdquo;之称。人体正常含锌量为2-3克。绝大部分组织中都有极微量的锌分布,其中肝脏、肌肉和骨骼中含量较高。锌是体内数十种酶的主要成分。锌缺乏时全身各系统都会受到不良影响。尤其对青春期性腺成熟的影响更为直接。概况锌精矿一般是由铅锌矿或含锌矿石经破碎、球磨、泡沫浮选等工艺而生产出的达到国家标准的含锌量较高的矿石。锌 是一种常用有色金属,是古代铜、锡、铅、金、银、汞、锌等7种有色金属中提炼最晚的一种,金属锌具蓝白色,硬度2.0,熔点419.5℃,沸点911℃,加热至100~150℃时,具有良好压性,压延后比重7.19。锌能与多种有色金属制成合金,其中最主要的是锌与铜、锡、铅等组成的黄铜等,还可与铝、镁、铜等组成压铸合金。锌主要用于钢铁、冶金、机械、电气、化工、轻工、军事和医药等领域。锌精矿是生产金属锌、锌化合物等的主要原料。金属锌主要是生产铜合金、铅合金、镁合金 、 铅锌合金及锌化合物用于钢铁、冶金、机械、电气、化工、轻工、军事和医药等领域。市场行情由于全球锌精矿增产,特别是中国矿山扩产带来供应增加,2012年全球锌精矿供应首次由短缺转为过剩,过剩数额36.99万吨,受此影响,锌精矿加工费逐渐回升,行业利润格局出现向冶炼环节转移倾向,中国产业洞察网《锌精矿行业当前现状及未来趋势发展预测报告》数据显示2013年全球锌精矿加工费已敲定210.5美元/吨,增幅为10.2%,中国锌精矿加工费从2012年的4247元/吨,上升到了5060元/吨,增幅19.1%。矿产商在TC上的让利有利于提振生产企业热情,中国产业洞察网分析师调研,今年1月中国冶炼企业开工率73.41%,较去年相比维持高位,2月份受春节假期影响开工率略低,但仍能维持在70%上方。资源锌的单一锌矿较少,锌矿资源主要是铅锌矿。中国铅锌矿资源比较丰富,全国除上海、天津、香港外,均有铅锌矿产出。产地有700多处,保有铅总储量3572万吨,居世界第4位;锌储量9384万吨,居世界第4位。从省际比较来看,云南铅储量占全国总储量17%,位居全国榜首;广东、内蒙古、甘肃、江西、湖南、四川次之,探明储量均在200万吨以上。全国锌储量以云南为最,占全国21.8%;内蒙古次之,占13.5%;其他如甘肃、广东、广西、湖南等省(区)的锌矿资源也较丰富,均在600万吨以上。铅锌矿主要分布在滇西兰坪地区、滇川地区、南岭地区、秦岭-祁连山地区以及内蒙古狼山-渣尔泰地区。从矿床类型来看,有与花岗岩有关的花岗岩型(广东连平)、夕卡岩型(湖南水口山)、斑岩型(云南姚安)矿床,有与海相火山有关的矿床(青海锡铁山),有产于陆相火山岩中的矿床(江西冷水坑和浙江五部铅锌矿),有产于海相碳酸盐(广东凡口)、泥岩-碎屑岩系中的铅锌矿(甘肃西成铅锌矿),有产于海相或陆相砂岩和砾岩中的铅锌矿(云南金顶)等。铅锌矿成矿时代从太古宙到新生代皆有,以古生代铅锌矿资源力量丰富。生产工艺与质量指标锌精矿的选矿工艺一般是由铅锌矿或含锌矿石经破碎、球磨、泡沫浮选等工艺,生产出达到国家标准的锌精矿,锌精矿的主要成份根据产品等级规定,锌含量为40--55%。质量指标等 级Zn(%)Cu(%)Pb(%)Fe(%1≧55≦0.8≦1.0≦6.02≧53≦0.8≦1.0≦6.03≧50≦1.0≦1.5≦8.04≧48≦1.0≦1.5≦12.05≧45≦1.5≦2.0≦12.06≧43≦1.5≦2.0≦12.07≧40≦2.0≦2.5≦14.08≧40≦2.0≦2.8≦18.0