您所在的位置: 上海有色 > 有色金属产品库 > 硅片分选机 > 硅片分选机百科

硅片分选机百科

磁选铁精矿浮选机分选生产工艺现状

2019-01-17 10:51:20

浮选机分选生产工艺为一粗一精两段浮选、粗选中矿泡沫再磨再选工艺流程,浮选药剂为十二胺。现行浮选机生产工艺流程见图2所示。磁选精矿经泵送至浮选给矿箱,配加十二胺捕集剂后給入搅拌桶,搅拌后的磁精矿给入粗选浮选机,粗选浮选精矿进入精选浮选机,精选浮选机底流产品成为最终精矿经泵送至过滤车间脱水。粗选刮出的泡沫中矿经泵送至一段浓缩磁选机,经一粗一扫浓缩抛尾后,精矿给入球磨机进行磨矿,磨矿产品经泵送至脱水槽,脱水槽精矿給入二段磁选机,二段磁选机精矿经泵返回浮选机给矿箱再选。精选浮选机刮出的中矿泡沫直接经泵返回浮选给矿箱进人粗选浮选机再选。一段扫选磷选机、脱水槽、二段磁选机的综合尾矿給入盘式回收磁选机,回收机精矿经泵送至一段浓缩磁选机,盘式回收磁进机尾矿成为最终尾矿。 现行分选工艺存在的主要问题: (1)选别段数多。除一粗一精两段浮选机外,还采用五段磁选加中矿再磨工序,使得整个工艺变得较 长。 (2)工艺管理难度较大。采用阳离于十一胺捕收剂,浮选泡沫黏,工艺顺行难度大,影响分选效果。 (3)浮选效率低,生产成本高。由于泡沫发黏、浮选尾矿品位较高、设备多、流程长等因素的影响,显著 增加了生产成本。

多晶硅片

2017-06-06 17:50:04

多晶硅片是制作太阳能电池的核心材料,产品被广泛应用于光伏发电、通讯、交通以及偏远地区居民的生产、生活供电等领域,还可以应用于太阳能灯、草坪灯和屋顶太阳能光伏发电等新的领域。  运用垂直梯度凝固技术和多线网切割技术加工而成,在晶体生长速率和退火,能有效保证晶体的晶向和结晶速度,从而确保多晶硅片的稳定性和高转化率。  一种用于生产太阳能电池的多晶硅片的制造方法,是将熔融的硅熔体注入到一个狭缝,硅熔体在狭缝的耐高温面上结晶,在狭缝空间的约束下,结晶成指定厚度的多晶硅片。它是一种使熔融状态的硅直接结晶成薄片硅的方法,因此可以提高硅材料的利用率,可以制造出200微米以下厚度的硅片,从而降低太阳能电池的成本。

废有色金属的化学分选、生物分选和人手分选

2019-03-14 09:02:01

一、化学分选    化学分选,又称为溶剂浸出法。将固体物料参加液体溶荆内,让固体物猜中的一种或几种有用金属溶解于液体溶剂中,以便下一步从溶液中提取有用金属。按浸出剂的不同,浸出办法又可分为水浸、酸浸、碱浸、盐浸和化浸等。    溶剂浸出法在固体废物收回运用有用元素中运用很广泛,如可用浸出物猜中的铬、铜、镍、锰等金属;从煤矸石中浸出结晶三、二氧化钛等。    在出产中,应根据物料组成、化学组成及结构等要素,选用浸出剂。浸出进程一般是在常温常压下进行的,但为了使浸出进程得到强化,也常常运用高温、高压浸出。二、生物分选    生物分选,又称细菌冶金,是运用某些微生物的生物催化作用,使矿石或固体废物中的金属溶解出来,然后可以较为容易地从溶液中提取所需求的金属。与普通的“采矿 - 选矿 - 火法冶炼”比较,具有如下几个特色:a 设备简略,操作方使;b 特别适合处理废矿、尾矿和炉渣;c 可归纳浸出,别离收回多种金属;d 现在仅铜、铀细菌冶炼比较老练,并且铜的收回需求很多铁来置换。三、人工手选    如今国内的实践出产中最广泛选用的办法是从传送带上进行人工手选。这种办法功率低,不能适应大规模再生运用体系。不过,仅靠机械设备设备分选,尽管速度快,但往往达不到十分抱负的作用,所以一般都选用机械结合人工分选的办法。这种办法在发达国家因人力本钱太高而行不通,但作为劳动力资源丰富的我国,仍是值得大力推广的。

多晶硅片功率

2017-06-06 17:50:13

我国是能源消耗大国,石油、煤炭等能源资源稀少,太阳能利用技术的研究有十分重要的意义。而多晶硅片是太阳能电池的主要材料的一种型号。当前,衡量各种太阳能电池组件电性能的主要指标是在标准测试条件下的额定输出功率。  由于光照变化,太阳能电池组件的输出功率也在不断变化,因此,在实际使用时,仅以额定输出功率衡量太阳能电池组件的电性能,不能完全反映其实际发电效能。对用户来说,更关心的是在户外条件下太阳能电池组件每瓦在一段时间内的比额定功率发电量,包括这段时间内所有户外光照情况下的发电量总和,它能较好反映太阳能电池组件在应用中的实际发电能力。由于地球上的纬度不同,日照和气候条件差别很大,而太阳能电池对日照条件非常敏感,因此,在某一地点得出的实验结论,在其他地点是否相同,尚需进一步验证。为了便于比较分析,本文针对地处北纬22.16°、东经114.1°深圳地区的非晶硅和单、多晶硅太阳能电池组件的比额定 功率发电量进行模拟,并对其结果进行了分析。  介绍和比较了非晶硅和单、多晶硅太阳能电池组件的优缺点。针对它们在并网光伏发电系统中的应用,采用PVsyst 软件对各种太阳能电池组件的比功率发电量进行模拟。结果表明,非晶硅太阳能薄膜电池板的比功率发电量大于单、多晶硅的比功率发电量。PVsyst 软件中图分类号:TM914.4 文献标识码:A 文章编号:1007-3175(2010)04-0030-03 几种太阳能电池组件比功率发电量的模拟与比较 31 电工电气 (2010 No.4) 生产技术成熟,是光伏 市场 上的主导产品。国际公认最高效率在AM1.5( 即大气质量1.5) 条件下为 24%,空间用高质量的效率在AM0( 即大气质量为0,日- 地平均距离为一个天文单位时,太阳的总辐射度和光谱分布) 条件下为13.5% ~18%,地面用大量生产的在AM1 条件下多在11% ~18%。大晶粒多晶硅太阳能电池的转换效率最高达18.6%。多晶硅 太阳能电池没有光致衰退效应,材料质量有所下降时也不会导致太阳能电池受影响,是国际上正掀起的前沿性研究热点。随硅元件使用的多少以及纯度的改变,单件功率不确定,同样面积的板块功率可以变化。薄膜晶体硅太阳能电池能够大大降低晶硅用量,但目前还处于研发阶段,尚未工业化。晶体硅片太阳能电池的优点是可在单位面积上获得较高的发电功率和稳定的发电性能。如果其中一小部分被遮挡,会产生孤岛效应,但由于其强光发电的特性,只有保障与阳光的合理角度才能达到应有的光电转换率,因此必须考虑安装角度问题,这使得可安装的总面积和平面布局都受到限制。

锰矿干选机

2019-01-17 09:44:12

干式磁选机是常用的铁矿设备和锰矿设备,主流的强磁选机选矿设备。干式磁选机是针对干燥的磁性矿物进行分选的磁力选矿机械,相对于湿式磁选机分选矿物时要使用液体作为稀释剂提高分选效率而言,干式磁选机则要求被分选的矿物干燥,颗粒之间可以自由移动、成独立的自由状态,否则会影响磁选效果,甚至会造成不可分选的后果。干式磁选机适用于粒度3mm以下的磁铁矿、磁黄铁矿、焙烧矿、钛铁矿等物料的湿式磁选,也用于煤、非金属矿、建材等物料的除铁作业。   锰矿干选机是对锰矿进行干选,预抛脉石杂石,富集提高锰矿品位,这一磁选流程中的标配设备。   锰矿作为常见的弱磁性金属矿,适合于强磁选。特别是对于脉石呈带状、浸染状分布的锰矿,以及采矿产品中含有基岩、围岩等废石较多的情况,在进行细碎的情况下,通过干式强磁选,能有效抛出非磁性脉石矿物集合体,从而得到经济价值较高的粗粒度富锰体产品,并较少后续作业的处理量,提升选矿生产能力。   我国锰矿绝大多数属于贫矿,必须进行选矿处理。但由于多数锰矿石属细粒或微细粒嵌布,并有相当数量的高磷矿、高铁矿和共(伴)生有益金属,因此给选矿加工带来很大难度。目前,我国常用的锰矿选矿方法为机械选(包括洗矿、筛分、重选和强磁选),其中以强磁选为主。   锰矿物属弱磁性矿物〔比磁化系数X=10×10-6~600×10-6cm3/g〕,在强磁场磁选机中可以得到回收,一般能提高锰品位4%~10%。 由于磁选的操作简单,易于控制,适应性强,可用于各种锰矿石选别,近年来已在锰矿选矿中占主导地位。各种新型的粗、中、细粒强磁机陆续研制成功。目前,国内锰矿应用最普遍的是中粒强磁选机,粗粒和细粒强磁选机也逐渐得到应用,微细粒强磁选机尚处于试验阶段。   锰矿干选机的性能特点:   ■ 使用钕铁硼磁性材料,有效分选区表面磁感应强度可达13000Gs   ■ 结构紧凑,可根据选矿工艺流程设计多段磁选串联(并联)为一体的机型,减少配套设施并节省场地   ■ 可根据不同选矿要求设计为皮带作业机型,能有效实现备选物料含有少量(≤2%)细粒级强磁性矿物及单质铁时的顺利排矿   ■ 毛刷卸矿装置,能实现有效卸矿

多晶硅片产能

2017-06-06 17:50:10

        江西赛维LDK太阳能高科技有限公司多晶硅片产能达到1000兆瓦,该公司成为全球产能最大的多晶硅制造企业后,进一步成为世界首个实际产能进入吉瓦(GW)俱乐部的光伏企业。  仅经过短短3年时间的发展,今天的赛维已经是全球最大的太阳能硅片供应商。在当前能源资源紧缺的形势下,发展光伏 产业 ,推动太阳能的广泛应用意义重大。    祝赛维LDK多晶硅片产能达到1000兆瓦,这不仅是赛维公司发展史上具有里程碑意义的大事、喜事,也是全市经济发展中的一大盛事,对于推动新余加快光伏 产业 发展,打造世界重要光伏 产业 基地具有十分重要的意义。     维公司多晶硅片产能达到1000兆瓦,这是公司广大员工励精图治、锐意进取、敢有作为、善于作为的结果,也是我市深入实施以新型工业化为核心的发展战略,举全市之力支持光伏 产业 发展所取得的重大成果。

多晶硅片项目

2017-06-06 17:50:10

       浙江昱辉阳光能源有限公司多晶厂第一台开方机调试成功,顺利将试生产的多晶硅锭进行了开方,这标志着公司多晶硅片项目已经进入试生产阶段。     公司从德国进口的多晶炉设备,能生产目前国内最大尺寸的多晶硅锭,单锭重量达400公斤以上。     公司采用了世界先进的顶底加热方式的长晶工艺。据技术人员介绍,这种工艺不仅可以实现高效、安全、环保、低耗能,而且生产出硅锭的晶粒尺寸大、杂质低,更有利于提高电池片的转换效率。     浙江昱辉董事长兼总经理李仙寿介绍说,此次调试成功表明,公司已经具备独立生产多晶硅片的能力。李仙寿表示,多晶硅片项目正式投产后,公司将形成月产1000万片硅片的能力。   

石墨浮选机,有色金属浮选机

2019-01-17 09:44:09

石墨矿介绍:中国石墨矿产资源丰富,总储量位于世界前列,晶质石墨储量也居世界领先地位,其质量好,产量高,是世界天然鳞片石墨和隐晶质石墨产量及出口的重要国家之一。我国石墨矿产地分布广泛而又相对集中,全国69%储量集中分布在黑龙江省,其次是山东、内蒙古。石墨是碳元素的结晶矿物之一,具有润滑性、化学稳定性、耐高温、导电、特殊的导热性和可塑性、涂敷性等优良性能,其应用领域十分广泛。石墨矿在冶金工业中主要用作耐火材料;在铸造业中用作铸模和防锈涂料;在电气工业中用于生产碳素电极、电极碳棒、电池。石墨浮选机:石墨矿浮选机由电动机三角代传动带动叶轮旋转,在浮选过程中,矿物的沉浮几乎与矿物密度无关。比如黄铜矿与石英,前者密度为4.2,后者为2.68,可是重矿物的黄铜矿很容易上浮,石英反而沉在底部。经研究发现矿物的可浮性与其对水圆盘给料机的亲和力大小有关,凡是与水亲和力大,容易被水润湿的矿物,难于附着在气泡上难浮。而与水亲和力小,不易被水润湿的矿物,容易上浮。因此可以说,浮选是以矿物被水润湿性不同为基础的选矿方法。一般把矿物易浮与难浮的性质称为矿物的可浮性。浮选就是利用矿物的可浮性的差异来分选矿物的。在现代浮选过程中,浮选药剂的应用尤其重要,因为经浮选药剂处理后,可以改变矿物的可浮性,使浮选机要浮的矿物能选择性地附着于气泡,从而达到选矿的目的。有色金属浮选机:SF浮选机适用于有色黑色金属的选别,还可用于非金属如:煤莹石、滑石的选别。浮选机由电动机三角代传动带动叶轮旋转,产生离心作用形成负压,一方面吸入充足的空气与矿浆混合,一方面搅拌矿浆与药物混合,同时细化泡沫,使矿物粘合泡沫之上,浮到矿浆面再形成矿化泡沫。调节闸板高度,控制液面,使有用泡沫被刮板刮出。

铜矿浮选机

2019-01-17 09:44:09

铜矿选矿总体工艺流程: 破碎系统采用三段一闭路破碎,磨矿系统采用一段闭路磨矿。 选别工艺为:粗选得到粗精矿再磨,一次扫选一次精选得到精矿浆和尾矿浆,尾矿浆经尾矿干排输送至尾矿库,精矿浆经浓缩过滤后输送至精矿仓储存。 原矿经矿车运送到原矿仓中储存,然后经由电振给矿机送入颚式破碎机中进行一段破碎,破碎产物经皮带运输机运送到圆锥破碎机中进行二段破碎,二段破碎产物由皮带运输机输送至自定中心振动筛,进行筛分,筛上产物经皮带运回到三段圆锥破碎机进行破碎,筛下产物则由皮带运输机输送至圆形矿仓储存。 圆矿仓中的矿经电振给矿机给入到球磨机中进行磨矿,磨矿产物送入水力旋流器中进行分级,分级机底流返回球磨机再磨,溢流则由管道输送到搅拌槽中进行搅拌,搅拌后矿浆进入浮选机进行浮选。 矿浆通过一次铜粗选后,所得尾矿则进行扫选,扫选精矿矿返回至铜粗选中再选,扫选尾矿矿浆由泵输送到浓缩旋流器进行浓缩,浓缩溢流被输送到高效浓密机中进行再次浓缩,浓密机溢流水返回再利用,底流则同浓缩旋流器底流输送到高效多频脱水筛中进行过滤,滤液水返回到尾矿矿浆,滤饼由皮带运输机输送至尾矿库。 铜粗选所得精矿进入球磨机中再磨,再磨后矿浆经过两次精选后,精矿矿浆输送到深锥多锥高效浓密机中进行浓缩,溢流水返回生产再利用,浓缩底流进入板式压滤机中进行过滤,滤饼由皮带运输机输送到精矿仓中储存。 具体的铜矿还要根据铜矿性质及矿量来最终决定你的工艺流程,详情可咨询鑫*海矿山机*械了解更具体的铜矿浮选工艺。由于铜矿的质量不同,结构不一样,其浮选工艺也不近相同。我们再来介绍下铜矿浮选的方法: 1、浸染状铜矿石的浮选:一般采用比较简单的流程,经一段磨矿,细度-200网目约占50%~70%,1次粗选,2~3次精选,1~2次扫选。如铜矿物浸染粒度比较细,可考虑采用阶段磨选流程。处理斑铜矿的选矿厂,大多采用粗精矿再磨—精选的阶段磨选流程,其实质是混合—优先浮选流程。先经一段粗磨、粗选、扫选,再将粗精矿再磨再精选得到高品位铜精矿和硫精矿。粗磨细度-200网目约占45%~50%,再磨细度-200网目约占90%~95%。    2、致密铜矿石的浮选:致密铜矿石由于黄铜矿和黄铁矿致密共生,黄铁矿往往被次生铜矿物活化,黄铁矿含量较高,难于抑制,分选困难。分选过程中要求同时得到铜精矿和硫精矿。通常选铜后的尾矿就是硫精矿。如果矿石中脉石含量超过20%~25%,为得到硫精矿还需再次分选。处理致密铜矿石,常采用两段磨矿或阶段磨矿,磨矿细度要求较细。药剂用量也较大,黄药用量100g/(t原矿)以上,石灰8~10kg(t原矿)以上。现在矿石的浮选工艺都在不断进步,铜矿的浮选技术也取得了较大的进步,但是如何进行高效的浮选加工,还需要进一步的努力。浮选设备分类:  (1)机械搅拌式。有离心叶轮,也有的是星形转子和棒形转子等类型.搅拌器在浮选槽内高速旋转,驱使矿浆流动,在叶轮腔内产生负压而吸入空气。  (2)充气机械搅拌式。除机械搅拌外,再补充向浮选糟内充入低压空气。  (3)充气式。靠压入空气进行搅拌并产生气泡,如浮选柱和泡沫分离装置等。  (4)气体析出式。用降低压力法或先加压后降至常压的万法,使矿浆中溶解的空气析出,形成微泡.  (5)压力溶气式。利用高压将充入的空气预溶于水,然后在常压下在浮选槽内析出,形成大量微泡。 目前,在我国金选矿厂最常用的浮选机是国产的机械搅拌式浮选机。

锰矿磁选机

2017-06-06 17:49:58

锰矿永磁辊带式强磁场高梯度磁选机,其它名称为干式强磁选机械设备,锰矿粉深加工提纯选矿机械设备,磁源系采用高性能永久磁性材料稀土钕铁硼,用高科技方法聚集组合而成,设备具有磁场强度高、梯度大、用电量少、性能稳定、适用性广等优点。该系列设备用于贫锰矿石的磁选,能一次性将粒度小于5毫米的贫锰矿富集、提高锰5-18个品位,很好地解决了历年来贫锰矿不能入炉冶炼、销售难的一大问题。锰矿石经磁选提纯后能产生相当可观的经济效益。锰矿磁选机是锰矿加工厂及矿山企业的最佳投资项目,投资回报率极高。锰矿磁选机还可用于褐铁矿、金红石 、铌钽矿等矿物的分选提纯。     锰矿一般分为氧化锰和碳酸锰,氧化锰一般是颗粒状的黑色矿物,硬度较小。而碳酸锰则是块状的黑色矿物,一般硬度较大。一般锰矿里含有的杂质为石英沙等其它杂质。一般选锰矿最好的办法是磁选法。一直以来,人们认为锰矿不会被磁所吸引,其实是因为所采用的磁场强度不够大。当磁场达到7000GS左右,锰矿就很明显地被磁所吸引。因此选锰最好的办法是磁选法,即采用锰矿磁选机。对于磁场强度最高可达13000GS的锰矿磁选机,选锰矿有着非常好的效果。    锰矿磁选机的原理:强磁选。锰矿物属弱磁性矿物〔比磁化系数X=10×10-6~600×10-6cm3/g〕,在磁场强度Ho=800~1600kA/m(10000~20000oe)的强磁场磁选机中可以得到回收,一般能提高锰品位4%~10%。由于磁选的操作简单,易于控制,适应性强,可用于各种锰矿石选别,近年来已在锰矿选矿中占主导地位。锰矿磁选机各种新型的粗、中、细粒强磁选机陆续研制成功。目前,国内锰矿应用最普遍的是中粒强磁选机,粗粒和细粒强磁选机也逐渐得到应用,微细粒强磁选机尚处于试验阶段。    更多关于锰矿磁选机的资讯,请登录上海有色网查询。 

钼矿柱式分选实例

2019-01-24 17:45:44

传统的钼矿分选工艺是采用浮选机流程,流程复杂,精选往往需要7~10次;而采用旋流-静态微泡浮选柱分选工艺流程(简称柱式分选),精选段只需要2~3次就可以达到理想的精矿指标,甚至可以不需要扫选环节就可以达到满意的回收率,大大简化了流程,提高了钼矿分选的效率。     目前采用柱式分选工艺已经进行了河南两个地方不同种类钼矿石的中试试验项目,均取得了满意的效果。     一、氧化矿钼矿分选试验     河南某矿钼矿石为强矽卡岩化的蛇纹石化辉钼矿矿石、绿泥石化辉钼矿矿石、强褐铁矿化氧化贫矿石。有用成分主要是氧化程度较高的辉钼矿,矿物嵌布以微细粒嵌布为主;脉石矿物中绿泥石、蛇纹石、滑石等易泥化的矿物较多。大量原生及次生矿泥影响了钼的回收率,因此该钼矿为国内外极难选钼矿。     该矿现有1100t/d处理量的选矿厂,分为2个系列。一系列为500t/d的处理量,采用1次粗选、3次扫选、10次精选的流程;二系列规模为600t/d,采用1次粗选、4次扫选、10次精选的流程。     上述流程存在的主要问题是:①钼金属回收率低,仅有40.00%~50.00%;②钼精矿品位低,钼精矿品位仅为15.00%~20.00%,达不到钼精矿最低国家质量标准。     2006年3月该矿与中国矿业大学合作,采用柱式分选工艺分别进行了-20μm粒级细泥浮选柱半工业分流试验,随后进行了粒级半工业分流试验和精选分流试验,取得了满意的试验效果;2007年8月该厂安装了3台工业浮选柱,经过调试试验,系统稳定运行。     细泥部分是入浮原矿分流了一部分进行水力旋流器分级,-20μm粒级部分进入柱分选系统,经1次粗选、2次精选获得精矿产品和尾矿;全粒级分选是直接从入浮原矿分流进入柱分选系统进行分选;精选部分是直接引入浮选机粗选精矿经3次精选获得最终钼精矿产品。     细泥和全粒级分选流程见图1,精选流程见图2。图1  细泥/全粒级分流试验流程图2  浮选柱精选分流试验流程     细泥部分半工业分流试验结果见表1,全粒级半工业分流试验结果见表2,精选分流试验结果见表3。 表1  细粒级矿石半工业分流试验结果  %班次浮选柱浮选机原矿精矿尾矿回收率原矿精矿尾矿回收率1 2 3 4 平均0.169 0.198 0.180 0.210 0.18927.40 29.60 27.45 28.38 29.210.070 0.082 0.078 0.083 0.07858.73 58.75 56.83 60.65 58.740.186 0.195 0.217 0.204 0.20122.17 18.58 18.83 17.96 19.390.09 0.121 0.117 0.102 0.10851.82 37.95 46.37 50.29 46.61     从表1看出,对于细粒级钼矿的分选,柱式分选比浮选机流程有明显的优势,精矿品位提高了8.82个百分点,回收率提高了12.13个百分点。由于该矿石的高氧化部分大部分赋存于细粒级中,所以将细粒级分级出来采用柱式分选是有良好效果的。 表2  全粒级矿石稳定性试验结果  %班次浮选柱浮选机原矿精矿尾矿回收率原矿精矿尾矿回收率1 2 3 4 5 平均0.195 0.184 0.197 0.195 0.191 0.19229.49 26.47 31.89 30.71 30.54 29.820.102 0.063 0.093 0.097 0.100 0.09147.86 65.92 52.95 50.41 47.80 52.770.186 0.212 0.194 0.190 0.188 0.19419.67 17.85 18.11 16.38 18.20 18.040.108 0.111 0.0984 0.108 0.104 0.10642.17 47.94 49.55 43.16 44.94 45.63     从表2看出,全粒级钼矿分选,与细闰级比较,柱式分选精矿变化不大,但是尾矿稍微偏高。主要原因是矿石粒度变粗,未完全解离的部分增加;但是比同条件下浮选机流程的分选结果要好,在入料性相当的情况下,柱式分选的精矿品位提高了11.78个百分点,回收率提高7.14个百分点。   表3  浮选柱精选分流试验结果班次粗精浮选柱浮选机精矿精尾回收率精矿精尾回收率1 2 3 平均1.73 2.03 1.86 1.8738.74 37.52 39.29 38.520.235 0.284 0.319 0.27986.94 86.67 83.53 85.7019.89 17.35 19.26 18.500.798 0.672 0.653 0.70856.25 69.59 67.17 64.61     从表3看出,与浮选机10次精选结果相比,同等入料条件下,柱式分选两段精选的效果更好。精矿品位可以提高到38.52%,比浮选机提高了20.02个百分点,精选回收率提高 21.09个百分点。     氧化矿钼矿的半工业分流试验结果表明,柱式分选对于高氧化率钼矿石有着比普通浮选机流程更为高效的分选效率。由于矿石氧化程度较高,在现有药剂制度条件下,精矿品位很难提高到40.00%以上,回收率也很难提高到65.00%以上。     二、脉石型钼矿分选试验     该矿钼矿石为石英脉型辉钼矿床,主要为花岗斑岩和安山玢岩结构。有用矿物为辉钼矿,主要伴生矿物有磁铁矿、黄铁矿和钛铁矿等;脉石矿物主要有石英、长石、云母、绿泥石等;矿石中的辉钼矿嵌布粒度细,与脉石矿物关系密切,容易被包裹其中,分离难度大;另外矿石含有大量的黄铁矿,极易和精矿同时浮出,也增加了分选难度。因此该矿石为难选辉钼矿。     该矿现有1座处理能力2000t/d选厂,粗选部分包括原来老厂的800t/d和扩建的1200t/d两个系统。800t、1200t粗磨粗选系列的粗精矿混合后,进入分级再磨和精选系统,粗精矿经过一段再磨,9次精选,1次扫选,最终钼粗矿品位可以达到45.00%左右,精选回收率73%左右。该系统存在的主要问题是:①作业环节复杂、精选次数多、流程过长,不利于系统稳定;②浮选效率较低(钼精矿品位45%左右)且不够稳定。为提高钼精矿的品位及精选环节的作业回收率,该矿委托中国矿业大学在2000t/d选矿厂进行了浮选柱精选增工业分流试验,取得了满意的分选效果。     精选半工业分流试验的入料为粗精矿经水旋流器分级后的溢流,经过3次柱式精选获得最终精矿产品。浮选柱精选系统半工业分流流程见图2,试验结果见表4。 表4  浮选柱精选分流试验结果  %班次浮选柱浮选机原矿精矿尾矿回收率原矿精矿尾矿回收率1 2 3 4 5 6 平均8.51 7.24 5.36 5.88 6.43 4.74 6.3652.61 53.06 50.23 51.65 53.87 49.59 51.840.672 0.613 0.557 0.542 0.571 0.539 0.58293.30 92.60 90.61 91.75 92.10 89.60 91.889.32 7.15 6.42 5.76 7.47 5.61 6.9648.07 46.38 45.43 45.89 46.96 45.35 46.351.658 1.620 1.451 1.479 1.502 0.951 1.44485.15 80.14 79.95 76.80 82.53 84.83 81.80     从表4看出,用柱式3次精选,可以使钼精矿品位提高到51.84%,比浮选机9次精选、1次扫选的精矿高5.49个百分点。根据钼矿国家标准,可以提高钼精矿产品档次;回收率提高到了91.88%,比浮选机流程回收率提高了 10.08个百分点。     上述数据结果体现出了柱式分选对该类钼矿石分选方面比浮选机流程具有明显的优势。

赤铁矿磁选机

2019-01-17 09:44:12

赤铁矿干式磁选机的应用范围较为广泛,该设备不仅对于常见的弱磁性矿物具有较好的选矿效果,例如:赤铁矿、褐铁矿、镜铁矿、菱铁矿、黑钨矿、锰矿、钽铌矿,还对多种非金属矿产,如白云石、长石、石英砂、萤石等的除铁除云母具有较明显的效果,可以很好地降低其中的含铁量,进而提升矿物的白度,提升矿物的经济价值。 赤铁矿磁选机工作原理  将0.1—8毫米的原矿送入上料斗,经过振动电机振动布料,出料量可通过手轮来进行精确调整。磁辊通过调速电机拖动,转速的快慢通过调速表来进行调节,可控制磁选机的产量和精矿品位。矿粒经输送带被送入上磁辊分选,由于赤铁矿的矿粒有磁性,立即被强磁场吸附在磁辊上,而脉石粒(杂石、砂土)由于没有磁性(磁性很弱),磁辊的强磁对它不产生吸力,随着磁辊的转动,矿粒一直被吸在磁辊上,而脉石粒在磁辊转到前端位置时被抛出掉在隔矿板的前面(通过改变隔矿板角度的大小可调整精矿的品位),矿粒继续被磁辊带到脱磁区时自动掉入一选集矿斗收集为精矿成品。由于上磁辊掉下的脉石中还夹带有一些磁性更弱的矿粒,它们将进入下磁辊继续进行磁选,磁选后的成品矿粒进入二选集矿斗收集为成品,被抛出的脉石经尾矿口排出,至此磁选工序结束。 赤铁矿干式磁选机的选矿优势:  1、磁系磁性材料全部使用优质钕铁硼,具有磁能积高、矫顽力强及磁通密度高的特点,有效分选面磁感应强度高;   2、采用优质导磁材料作为磁介质,并采用多层感应极设计,具有较高的梯度,适合于细粒级、微细粒级矿物的磁选;   3、有效工作面面积大,相对于小直径的传统机型提升分选带长度,保证弱磁性矿物回收率的同时适合粗粒矿物的选矿;   4、高效卸矿装置,能有效避免少量强磁性矿物在工作区的吸附堆积,适合于少量强磁性矿物矿石的选矿。

难选辉钼矿分选工艺

2019-01-24 17:45:44

该矿钼矿石为石英脉型辉钼矿床,主要为花岗斑岩和安山玢岩结构。有用矿物为辉钼矿,主要伴生矿物有磁铁矿、黄铁矿和钛铁矿等;脉石矿物主要有石英、长石、云母、绿泥石等;矿石中的辉钼矿嵌布粒度细,与脉石矿物关系密切,容易被包裹其中,分离难度大;另外矿石含有大量的黄铁矿,极易和精矿同时浮出,也增加了分选难度。因此该矿石为难选辉钼矿。     该矿现有1座处理能力2000t/d选厂,粗选部分包括原来老厂的800t/d和扩建的1200t/d两个系统。800t、1200t粗磨粗选系列的粗精矿混合后,进入分级再磨和精选系统,粗精矿经过一段再磨,9次精选,1次扫选,最终钼粗矿品位可以达到45.00%左右,精选回收率73%左右。该系统存在的主要问题是:①作业环节复杂、精选次数多、流程过长,不利于系统稳定;②浮选效率较低(钼精矿品位45%左右)且不够稳定。为提高钼精矿的品位及精选环节的作业回收率,该矿委托中国矿业大学在2000t/d选矿厂进行了浮选柱精选增工业分流试验,取得了满意的分选效果。     精选半工业分流试验的入料为粗精矿经水旋流器分级后的溢流,经过3次柱式精选获得最终精矿产品。浮选柱精选系统半工业分流流程见图1,试验结果见表1。图1  旋流-静态微泡柱分选原理 表1  浮选柱精选分流试验结果  %班次浮选柱浮选机原矿精矿尾矿回收率原矿精矿尾矿回收率1 2 3 4 5 6 平均8.51 7.24 5.36 5.88 6.43 4.74 6.3652.61 53.06 50.23 51.65 53.87 49.59 51.840.672 0.613 0.557 0.542 0.571 0.539 0.58293.30 92.60 90.61 91.75 92.10 89.60 91.889.32 7.15 6.42 5.76 7.47 5.61 6.9648.07 46.38 45.43 45.89 46.96 45.35 46.351.658 1.620 1.451 1.479 1.502 0.951 1.44485.15 80.14 79.95 76.80 82.53 84.83 81.80     从表1看出,用柱式3次精选,可以使钼精矿品位提高到51.84%,比浮选机9次精选、1次扫选的精矿高5.49个百分点。根据钼矿国家标准,可以提高钼精矿产品档次;回收率提高到了91.88%,比浮选机流程回收率提高了 10.08个百分点。     上述数据结果体现出了柱式分选对该类钼矿石分选方面比浮选机流程具有明显的优势。

长石除铁磁选机

2019-02-26 11:59:27

长石是常见的造岩矿藏,广泛呈现于各类岩浆岩和变质岩中,约占地壳总重量的50%。长石适当富集时,才构成工业矿藏。具宝石学含义的长石矿藏首要来自于伟晶岩。在低温水热作用或地表环境下,长石常转化为粘土矿藏。按成分,可将长石分为4类:钾长石、钠长石、钙长石和长石。在工业运用中最常见的就是钠长石和钾长石,这两种长石物料品种通过选矿提纯或者说除铁提纯后,多用于陶瓷等范畴,对其进行选矿加工的就是长石除铁磁选机。   长石除铁磁选机对长石物料类的加工,其首要意图就是除铁除杂,其间的杂质首要是含铁矿藏,其间三氧化二铁与钛铁是含铁杂质的首要成分,对其进行选矿提纯后,其制品长石类可以满意商场对陶瓷产品的白度要求。 长石除铁磁选机品种  1.干式磁选机——该种长石除铁磁选机较适应于较粗粒级铁矿藏嵌布的长石除铁作业,选矿不用水;   2.湿式磁选机——该种长石除铁磁选机品种关于那些长石中的含铁磁性矿藏,多以微细粒嵌布广泛涣散于长石矿藏中,构成磁性矿藏的包裹体进行除铁提纯作业较为有用。   以上两种长石除铁磁选机品种要详细说哪种更好,或许湿式磁选机对长石类矿藏进行细磨后的除铁作业作用更为显着,湿式长石除铁磁选机用来进行除铁作业时,通过两到三次磁选作业,在坚持较好磁选作业条件下,能将长石中的含铁量下降至0.1以下。当然,详细挑选哪种长石除铁磁选机品种,还要看用户加工的长石类矿藏散布情况。 长石除铁生产线工艺  一般长石中所含铁矿藏,都归于磁性矿藏,除少数的磁铁矿成分具有强磁性外,大部分三氧化二铁和钛铁矿成分具有弱磁性,因而整个长石除铁生产线工艺多运用磁选工艺来完结,除程基本上是“弱磁+强磁”的流程。

铅锌矿浮选机

2019-02-26 11:59:27

铅锌矿选矿出产线包含破碎工艺,磨矿工艺和浮选工艺三大流程,其间磨浮工艺流程比较复杂,出产要求比较高。破碎工艺比较简单,只需依据铅锌矿矿石性质特色装备一段、两段或许三段闭路破碎,确保铅锌矿石粒度。常用的破碎设备有粗碎鄂式破碎机、中碎圆锥破碎机、细碎短头圆锥破碎机等。 铅锌矿浮选机是铅锌矿选矿设备中的首要设备之一,有多种分类,机械拌和式浮选机和充气式浮选机是使用较多的,我国浮选设备同其他选矿设备相同,铅锌选矿厂曩昔很多选用A型系列的浮选机。该机型还习惯了大型化、自动化开展的需求。由此而来,新建选矿厂和老厂改造得以选用了多种新式浮选设备。厂间选矿设备怎么安置?还需依据厂房条件和选矿工艺来装备。 铅锌矿5种不同的浮选工艺包含优先浮选工艺、混合浮选工艺、等可浮选工艺、异步浮选工艺和分支串流浮选工艺,铅锌矿产资源是我国的优势矿产资源,合理开发利用好大中型铅锌资源是我国铅锌资源从资源优势向工业优势改变的要点,其间树立以采矿、选矿、冶金、化工、材料为一体归纳工业链变得十分要害,浮选工艺作为其间重要的一环更是重中之重,而浮选工艺中最重要的设备则是浮选机。浮选机浮选铅锌矿的办法:铅锌是人类从铅锌矿石中提炼出来的较早的金属之一。铅锌广泛用于电气工业、机械工业、军事工业、冶金工业、化学工业、轻工业和医药业等范畴。此外,铅金属在核工业、石油工业等部分也有较多的用处。在铅锌矿中铅工业矿藏有11种,锌工业矿藏有6种,以方铅矿、闪锌矿最为重要。方铅矿的化学式为PbS,晶体结构为等轴晶系,硫离子成立方最严密堆积,铅离子充填在一切的八面体空地中。新鲜的方铅矿表面具有疏水性,未氧化的方铅矿很易浮选,表面氧化后可浮性下降。黄药或黑药是方铅矿的典型的捕收剂,黄药在方铅矿表面发作化学吸附,白药和乙硫氮也是常用捕收剂,其间丁铵黑药对方铅矿有选择性捕收效果。重铬酸盐是方铅矿的有用按捺剂,但对被Cu2+活化的方铅矿,其按捺效果下降。被重铬酸盐按捺过的方铅矿,很难活化,要用或在酸性介质中,用氯化钠处理后才干活化。不能按捺它的浮选,对方铅矿的可浮性很灵敏,过量硫离子的存在可按捺方铅矿的浮选;二氧化硫、及其盐类、石灰、硫酸锌或与其它药剂合作能够按捺方铅矿的浮选。闪锌矿的化学式为ZnS,晶体结构为等轴晶系, Zn离子散布于晶胞之角顶及一切面的中心。S坐落晶胞所分红的八个小立方体中的四个小立方体的中心。浓度为4~6×10 -5 摩尔/升时对活化的闪锌矿有较强的按捺效果,浓度偏高时却使其杰出浮游。其效果机理为:浓度低时与闪锌矿表面活化膜及表面晶格离子反响生成的金属羟基化合物起按捺效果并使黄药脱附,浓度高时则在矿藏表面发作氧化复原反响生成很多元素硫。能够激烈的按捺闪锌矿,此外硫酸锌、硫代硫酸盐等都能够按捺闪锌矿的浮选。

矿石分选试验—铅锌硫浮选分离

2019-02-27 12:01:46

一、试验意图 1、了解硫化铅锌矿石浮选所用的浮选药剂. 2、了解铅锌浮选药剂的作用; 3、了解铅锌浮选试验操作进程;4、了解试验铅锌矿石浮选试验成果的处理办法。 二、试验原理 2.1常见的铅锌矿藏及其可浮性铅锌是人类从铅锌矿石中提炼出来的较早的金属之一。铅锌广泛用于电气工业、机械工业、军事工业、冶金工业、化学工业、轻工业和医药业等范畴。此外,铅金属在核工业、石油工业等部分也有较多的用处。在铅锌矿中铅工业矿藏有11种,锌工业矿藏有6种,以方铅矿、闪锌矿最为重要。方铅矿的化学式为PbS,晶体结构为等轴晶系,硫离子成立方最严密堆积,铅离子充填在一切的八面体空地中。新鲜的方铅矿表面具有疏水性,未氧化的方铅矿很易浮选,表面氧化后可浮性下降。黄药或黑药是方铅矿的典型的捕收剂,黄药在方铅矿表面发作化学吸附,白药和乙硫氮也是常用捕收剂,其间丁铵黑药对方铅矿有选择性捕收作用。重铬酸盐是方铅矿的有用按捺剂,但对被Cu2+活化的方铅矿,其按捺作用下降。被重铬酸盐按捺过的方铅矿,很难活化,要用或在酸性介质中,用氯化钠处理后才干活化。不能按捺它的浮选,对方铅矿的可浮性很灵敏,过量硫离子的存在可按捺方铅矿的浮选;二氧化硫、及其盐类、石灰、硫酸锌或与其它药剂协作可以按捺方铅矿的浮选。闪锌矿的化学式为ZnS,晶体结构为等轴晶系,Zn离子散布于晶胞之角顶及一切面的中心。S坐落晶胞所分红的八个小立方体中的四个小立方体的中心。浓度为4~6×10-5摩尔/升时对活化的闪锌矿有较强的按捺作用,浓度偏高时却使其杰出浮游。其作用机理为:浓度低时与闪锌矿表面活化膜及表面晶格离子反响生成的金属羟基化合物起按捺作用并使黄药脱附,浓度高时则在矿藏表面发作氧化复原反响生成许多元素硫。可以激烈的按捺闪锌矿,此外硫酸锌、硫代硫酸盐等都可以按捺闪锌矿的浮选。黄铁矿是地壳中散布最广的硫化物,构成于各种不同的地质条件下,与其他矿藏共生。彭明生等经过对黄铁矿的安稳性和其成分与电子结构的联系的研讨以为:黄铁矿能在多种安稳场中存在是因为Fe2+的电子构型t2g为低自旋,它进入硫离子组成的八面体场中获得了较大的晶体场安稳能及附加吸附能。因此,黄铁矿可构成并安稳于各种不同的地质条件下。除了黄铁矿的晶体结构、化学组成、表面结构等要素对其可浮性有影响之外,许多研讨也标明,黄铁矿的矿床成矿条件、矿石的构成特色、矿石的结构结构等要素也有影响。石透原对日本十三个不同矿床的黄铁矿的化学分析成果指出,各矿样的S/Fe比值大都在1.93~2.06范围内动摇,S/Fe比愈挨近理论值2,则黄铁矿可浮性愈好。陈说文等对八种不同产地的黄铁矿的可浮性进行了研讨,以为单纯用硫铁比来判别其可浮性有必定的局限性,黄铁矿的可浮性还与其半导体性质及化学组成有关。两者的联系为:S/Fe比高的黄铁矿为N型半导体,其温差电动势为负值,可浮性差,易被Na2S、Ca2+等离子按捺;S/Fe比挨近理论值2者既可能是P型也可能是N型半导体,在酸性介质中可浮性好,在碱性介质中可浮性差;S/Fe比值低的黄铁矿为P型半导体,温差电动势大,在碱性介质中可浮性好,难以被Na2S、Ca2+等按捺,但在酸性介质中可浮性差。短链黄药是黄铁矿的传统捕收剂,其疏水产品为双黄药。在黄药作用下,黄铁矿在pH小于6的酸性介质中易浮,但pH为6~7间有不同研讨标明其可浮性变差或更好浮。凌竞宏等研讨则标明这一现象和矿样处理方式有关。在碱性条件下,黄铁矿可浮性跟着pH值的升高而下降。黄铁矿的活化剂一般运用硫酸,此外也可用Na2CO3或CO2来活化。作用机理为:其一是下降溶液pH值,使黄铁矿表面Ca2+、Fe2+、Fe3+等离子构成络合物或难溶盐从黄铁矿表面脱附而进入溶液,康复黄铁矿的新鲜表面;其二是因为活化剂的存在使黄铁矿表面难以被氧化,然后被按捺的黄铁矿得以活化而上浮。当黄铁矿表面氧化较深时,可被Cu2+活化。其机理为Cu2+可替代黄铁矿晶格中的Fe2+使表面生成含铜硫化膜然后增强对黄药的吸附作用;但当黄铁矿吸附捕收剂或遭到石灰按捺较深时,则需在酸性介质中或经酸清洗后方可被CuSO4活化。2.2铅锌浮选捕收剂铅锌矿的常用捕收剂有: 1、黄药类这类药剂包含黄药、黄药酯等。其结构式如下:黄药的学名是烃基二硫代碳酸盐,通式为ROCSSMe,式中Me为碱金属离子。黄药是用醇、氢氧比钠(或)及制成的:ROH十NaOH=RONa十H2O RONa十CS2=ROCSSNa 所用质料醇中的烃基不同,可得到各种黄药,如C2H5—乙黄药;(CH3)2CH—异丙黄药等,黄药分为钠黄药和钾黄药。黄药是淡黄色粉剂,常因含有杂质而色彩较深,比重1.3—1.7。具有刺激性臭味,易溶于水,运用经常配成1%水溶液。为了避免黄药分化失效,常在碱性矿浆中运用。初级黄药比高档黄药分化快,例如,在1%的HCl溶液中,乙黄药彻底分化的均匀肘间为5一10分,丙黄药20一30分,丁黄药50—60分,戊黄药90分。因此,如有必要在酸性介质中进行浮选时应尽量运用高档黄药。黄药遇热简单分化,并且温度愈高,分化愈快。为了避免分化,要求将黄药贮存在密闭的容器中,避免与湿润空气和水触摸;留意防火,不庄曝晒;不宜长时刻寄存;制造黄药溶液不变停置过久,更不要用热水制造。黄药的捕收才能与其分子中非极性烃链长度、异构有关。烃链增长(即碳原子数增多)捕收才能增强,当烃链过长时,其选择性和溶解功能随之下降,因此,烃链过长反而会下降药剂的捕收作用。常用的黄药烃链中碳原子数是2—5个。2.硫氮类 硫氮类(铵基二硫代盐)它是(或)与、反响生成的化合物。乙硫氮是白色粉剂,因反响时有少数黄药发作,工业品常呈淡黄色。易溶于水,在酸性介质中简单分化。乙谎氮也能同重金属生成不溶性堆积,捕收才能较黄药强。它对方铅矿、黄铜矿的捕收才能强,对黄铁矿捕收才能校弱,选择性好,浮选速度较快,用处比黄药少。对硫化矿的粗粒这生体有较强的捕收比它用于铜铅硫比矿分选时,可以得到比黄药更好的分选作用。3.黑药类黑药是硫化矿的有用捕收剂,其捕收才能较黄药弱,同一金属离子的二烃基二硫代磷酸盐的溶解度积均较相应离子的大。黑药有起泡性。黑药和黄药相同,也是弱电解质,在水中解离(RO)2PSSH=(RO)2FSS-十H+但它比黄药安稳,在酸性矿浆中,不象黄药那样简单分化,黑药较难氧化,氧化后生成双黑药,在有cu2+、或黄铁矿、辉铜矿存在时,也能氧化成双黑药;双黑药也是一种较难溶于水的非离子型捕收剂,大多数为油状物,性质安稳,可作硫化矿的捕收剂,也适用于堆积金属的浮选。黑药有些毒性,选择性较黄药好,在酸性矿浆中不易分化,当有必要在酸性矿浆中浮选时,有时选用黑药。工业常用黑药有:25号黑药、丁铵黑药、胺黑药、环烷黑药。其间丁铵黑药(二丁基二硫代磷酸铵)为白色粉末,易溶于水,潮解后变黑,有必定起泡性,适用于铜、铅、锌、镍等硫化矿的浮选。弱碱性矿浆中对黄铁矿和磁黄铁矿的捕收才能较弱,对方铅矿的捕收才能较强。2.3铅锌浮选调整剂 调整剂按其在浮选进程中的作用可分为:按捺剂、活化剂、介质pH调理剂、矿泥分散剂、凝聚剂和续凝剂。调控剂包含各种无机化合物(如盐、碱和酸)、有机化合物。同一种药剂,在不同的浮选条件下,往往起不同的作用。 一、按捺剂 1.石灰石灰(CaO)有激烈的吸水性,与水作用生成消石灰Ca(0H)2。它难溶于水,是一种强碱,参加浮选矿浆中的反响如下:CaO十H2O=Ca(OH)2 Ca(OH)2=CaOH+十OH- CaOH+=Ca2+十0H-石灰常用于进步矿浆PH值,按捺硫化铁矿藏。在硫化铜、铅、锌矿石中,常伴生有硫化铁矿(黄铁矿、磁黄铁矿和白铁矿、硫砷铁矿(如毒砂),为了更优点浮选铜、铅、锌矿藏,常要加石灰按捺硫化铁矿藏。石灰对方铅矿,特别是表面略有氧化的方铅矿,有按捺作用。因此,从多金属硫化矿中浮选方铅矿时,常选用碳酸钠调理矿浆pH。假如因为黄铁矿含量较高,有必要用石灰调理矿浆pH时,应留意操控石灰的用量。石灰对起泡剂的起泡才能有影响,如松醉油类起袍剂的起泡才能,随PH的升高而增大,酚类起泡剂的起泡才能,则随pH的升高而下降。石灰自身又是一种凝聚剂,能使矿桨中微细颗粒凝聚。因此,当石灰用最适其时,浮选泡沫可坚持必定的粘度;当用量过大时,将促进微细矿粒凝聚,而使泡沫粘结胀大,影响浮选进程的正常进行。2.(NaCN、KCN)是铅锌分选时的有用按捺剂。首要是和,也有用的。是强碱弱酸生成的盐,它在矿浆个水解,生成HCN和CN- KCN=K+十CN- CN十H2O=HCN++OH-由上述平衡式看出,碱性矿浆中,CN—浓度进步,有利于按捺。如pH下降,构成HCN(氢酸)使按捺作用下降。因此,运用,有必要坚持矿浆的碱性。是剧毒的药剂,多年来一直在进行无或少按捺剂的研讨。 3.硫酸锌硫酸锌其纯品为白色晶体,易溶于水,是闪锌矿的按捺剂,一般在碱性矿浆中它才有按捺作用,矿浆pH愈高,其按捺作用愈显着。硫酸锌在水中发作下列反响:ZnSO4=Zn2+十SO42- Zn2+十2H20=Zn(OH)2十2H+ Zn(OH)2为**化合物,溶于酸生成盐Zn(OH)2十H2S04=ZnSO4十2H2O 在碱性介质中,得到HZnO2-和ZnO2-。它们吸附于矿藏增强了矿藏表面的亲水性。Zn〔OH)2十NaOH=NaHZnO2十H2O Zn(OH)2十2NaOH=Na2ZnO2十2H2O硫酸锌独自运用时,共按捺作用较差,一般与、、盐或硫代硫酸盐、碳酸钠等协作运用。 硫酸锌和联合运用,可加强对闪锌矿的按捺作用。 一般常用的份额为::硫酸锌=1:2—5。此刻,CN-和Zn2+构成胶体Zn(CN)2堆积。 4.、盐、S02气体等、盐、二氧化硫气体这类药剂包含二氧化硫(SO2)、(H2S03)、钠和硫代硫酸钠等。 二氧化硫溶于水生成:S02十H2O=H2S03二氧化硫在水中的溶解度随温度的升高而下降,18℃时,用水吸收,其间的浓度为1.2%;温度升高到30℃时,的浓度为0.6%。及其盐具有强复原性,故不安稳。可以和许多金属离子构成酸式盐、氢盐或正盐(盐),除碱金属正盐易溶于水外,其他金属的正盐均微溶于水。在水平分二步解离,溶液中H2SO3、HSO3-和SO32-的浓度,取决于溶液的pH值。运用盐浮选时,矿桨PH常操控在5—7的范围内。此刻,起按捺作用的首要是HSO3-。二氧化硫及(盐)首要用于按捺黄铁矿、闪锌矿。用溶解有二氧化硫的石灰构成的弱酸性矿桨(pH=5—7),或许运用二氧化硫与硫酸锌、硫酸亚铁、硫酸铁等联协作按捺剂。此刻方铅矿、黄铁矿、闪锌矿遭到按捺,被按捺的闪锌矿,用少数硫酸铜即可活化。还可以用硫代硫酸钠、焦钠替代盐),按捺闪锌矿和黄铁矿。关于被铜离子激烈活化的闪锌矿,只用盐其按捺作用较差。此刻,假如一起增加硫酸锌,或,则可以增强按捺作用。盐在矿浆中易于氧化失效,因此,其按捺作用有时刻性。为使进程安稳,一般选用分段增加的办法。5. 起泡剂起泡剂应是异极性的有机物质,极性基亲水,非极性基亲气,使起泡剂分子在空气与水的界面上发作定向摆放,大部分起泡剂是表面活性物质,可以激烈地下降水的表面张力。同一系列的有机表面活性剂表顶活性按“三分之一”的规则递加,此即所谓“特芳贝定则”。起泡剂应有恰当的溶解度。起泡剂的溶解度,对起泡功能及构成气泡的特性有很大的影响,如溶解度很高,则耗药量大,或敏捷发作许多泡沫,但不能耐久,当溶解度过低冰来不及溶解,随泡沫丢失,或起泡速度缓慢,连续时刻校长,难于操控。要点优先浮选 3、试验办法及过程 3.1 矿样性质及制备 3.2药剂及设备 3.3试验流程 3.4过程 4、试验成果分析与评论

铜铅硫化矿分选的研究

2019-02-19 09:09:04

经过吸附密度测定,研讨了水玻璃对方铅矿的按捺机理。水玻璃的按捺作用与它阻挠或下降捕收剂的吸附有关,它能彻底阻挠硫羰酯在方铅矿上的吸附,而不能彻底阻挠丁基黄药的吸附,标明捕收剂和按捺剂之间存在着弱-弱、强-强匹配现象。     一、前语     铜铅别离是杂乱硫化矿选矿的首要难题之一。用抑铜浮铅或重铬酸盐抑铅浮铜是出产实践中常用的两种典型的铜铅别离计划。但是,和重铬酸盐均为剧剂。跟着对环境保护的日益注重,它们的运用受到了约束,致使铜铅分选目标下降。因而,许多研讨者从寻觅无毒按捺剂、高选择性捕收剂和强化浮选进程的办法等方面对铜铅别离进行了研讨。     硫羰酯是一类硫化矿的高选择性捕收剂,在出产实践中已有开始运用。运用成果标明它具有选择性好、用量低和兼有起泡性等长处。虽然如此,现在硫羰酯仍首要运用于硫化铜矿与硫化铁矿的别离,在铜铅别离中,仅美国、加拿大和澳大利亚的少量选矿厂成功地运用了硫羰酯,且其间多数是将它和黄药等离子型药剂混合运用。据咱们分析,难以推广运用这类药剂的原因或许有下列三种:     (一)在处理杂乱硫化矿时,特别是处理含有多种金属细密共生的矿石时,即便运用这类药剂,要进行有用分选也有必要使角恰当的调整剂。硫羰酯的特性有别于黄药,假如把与黄药合作的调整剂不加研讨地直接同该类药剂合作运用,难以获得满足的结界。从国外成功运用硫羰酯别离铜铅和铜锌混合精矿的实践来看,硫羰酯一般与弱的按捺剂合作便用。美国蒙格芒特选矿厂,用Z-200作捕收剂别离铜铅混合精矿时,石灰就能有用地按捺方铅矿,加拿大纳尼维克选矿厂和布沦瑞克矿冶公司选矿厂均用糊精作为方铅矿的有用按捺剂,糊精用量仅40g/t左右。布卢希尔选矿厂用Z-200别离铜锌时单独用钠就可按捺闪锌矿。石灰、糊精和钠均为弱的按捺剂。     但是,用黄药作捕收剂时,以上按捺剂的作用都很差,只要在较高用量下才而显着的按捺作用。苏联西利阿诺夫选矿厂用黄药别离铜铅混合精矿时,用FeC13和Na2S2O3抑铅,FeCl3用量高达8kg/t,Na2S2O3用量高达2kg/t。广西河山铅锌矿用水玻璃合剂作按捺剂别离铜铅混合精矿时,合剂用量在12kg/t精矿以上。用黄药类离子型捕收剂时还未见到单独用石灰作方铅矿的按捺剂。以上现实标明捕收剂和按捺剂之间存在着必定的匹配联系。按竞赛吸附学说,按捺剂与金属离子化合物的溶度积和捕收剂与金属离子化合物的溶度积之比有必要适中,当它过大时,会引起捕收剂用量的增加或失效,过小时,按捺作用差。别的,假如捕收剂的捕收才干强,则它能发生强疏水性的矿藏表面,因而需要强的亲水性来平衡而使矿藏按捺,即要用强的按捺剂或大的按捺剂用量。写此相反,假如捕收剂的捕收才干弱,则一般只能发生弱疏水性的矿藏表面,因而只需弱的亲水性来平衡,和重铬酸盐是两类强按捺剂,它们与化学活性低的硫羰酯合作运用或许引起捕收剂用量的增加,乃至失效。羰甲基纤维素和水玻璃等弱的按捺剂与化学活性大的黄药类捕收剂合作运用,按捺作用比较差。假如将它们与硫羰酯合作运用,或许进步它们的按捺作用或下降其用量。这儿咱们选用强(捕收)-强(按捺)与弱一弱匹配这种用语来归纳这一思维。     (二)药剂之外的其它条件(如流程结构,拌和充气等)的相应合作。     (三)硫羰酯作用机理的研讨较少。机理不清楚,出产进程的操控具有必定的盲目性。     由此可见,要推广运用硫羰酯有必要寻觅与它合作的调整剂和工艺条件以及研讨其作用机理。     本文探究用弱的按捺剂一水玻璃与硫羰酯合作进行铜铅别离,研讨水玻璃的按捺机理,阐明捕收剂和按捺剂之间的匹配联系。     二、实验办法     (一)矿样     实验所用纯矿藏黄铜矿采自河北涞源铜矿,方铅矿采自水口山铅锌矿。粗粒级纯矿样分批瓷磨,湿筛,所需粒级(-200+400目)在真空枯燥箱中枯燥。枯燥后的试样存放于枯燥器中备用。矿藏纯度按首要元素含量核算,其纯度为:     黄铜矿   含铜31.26%   纯度90.29%     方铅矿   含铅84.64%   纯度97.74%     (二)药剂     所用捕收剂均为工业品。丁基黄药(BuX,butyl xanthate)为株洲选矿药剂厂产品,纯度约85%:乙基基硫逐异丙酯(Z-200,ethyl isopropyl thionocarbamate)为沈阳矿冶研讨所产品,纯度大于90%;二乙基塞二硫代腈乙酯(E105.diethyl Propyluitrite dithiocarbamate)为白银药剂厂产品,纯度约80%;丁基黄原酸腈乙酯(OS-43,butyl propyluitrite xanthic ester)为昆明冶金所产品,纯度较低,约60-80%。水玻璃(WG,Water glass)为工业品,模数为2.3。其它药剂均为分析纯试剂,起泡剂为正辛醇(OA,octyl alcoh ol)。实验均用一次蒸馏水。     (三)矿样的处理     实验之前矿样经超声波清洗5分钟。所用仪器为CQ50超声波清洗器。     (四)浮选实验     浮选实验在50m1挂槽式浮选机中进行。黄铜矿浮选每次用矿样2g。方铅矿浮选每次用矿样3g,人工混合矿别离用矿样4g(黄铜矿:方铅矿=1︰1)。蒸馏水50ml,浮选机叶轮转速1600转/分,刮泡4分钟。     (五)吸附密度测定     运用751型分光光度计测定矿浆浓液中捕收剂的剩余浓度,直接断定捕收剂在矿藏表面的吸附密度。测守时固液比(分量比)为6︰50,捕收剂的初始浓度为10mg/1。矿藏和药剂作用3小时。在作用进程顶用玻璃棒连续拌和矿浆、确保矿粒和药剂充沛作用。     三、实验成果及评论     (一)硫羰酯对黄铜矿和方铅矿的浮选活性     图1和2别离标明用BuX、Z-200、E105和OS-43四种药剂作捕收剂时,黄铜矿和方铅矿的上浮率与pH的联系。成果标明:    1、硫羰酯对黄铜矿的捕收才干略低于丁基黄药。当BuX,Z-200,OS-43和E105用量均为5mg/l时,黄铜矿的上浮率约别离为90%,85%,85%和75%;     2、硫羰酯对方铅矿的捕收才干远弱于丁基黄药。用丁基黄药作捕收剂时,方铅矿在实验的整个pH范围内均易浮,用量为5mg/l时,方铅矿的上浮率超越92%;用硫羰酯时,方铅矿仅在pH=9邻近具而弱的可浮性。在pH=9时,当Z-900,OS-43和E105的用量为5mg/l时,方铅矿的上浮率约别离为60%,62%和38%。     总归,硫羰酯的选择性高于丁基黄药。     (二)水玻璃对黄铜矿和方铅矿可浮性的影响     在增加及不增加铜离子时,水玻璃对方铅矿浮选行为的影响如图3和图4所示,对黄铜矿可浮性的影响如图5所示。图中所示成果标明:    1、与用丁基黄药作捕收剂时比较,用硫羰酯时水玻璃对方铅矿而强的按捺作用。用Z-200作捕收剂时,水玻璃在弱碱性条件下乙能而效地按捺方铅矿,而用丁基黄药时,当pH>11时水玻璃才干而效地按捺方铅矿,水玻璃在pH=6邻近对方铅矿产生极好的按捺作用;     2、铜离子的存在下降了水玻璃对方铅矿的按捺作用,此刻为了有用地抑掉方铅矿有必要进步矿浆pH;     3、不论是用丁基黄药仍是用Z-200作捕收剂,水玻璃对黄铜矿的可浮性基本上无影响。明显,用硫羰酯-水玻璃药方替代丁基黄药-水玻璃药方或许改进铜铅的别离作用。     (三)人工混合矿的别离     在单矿藏浮选研讨的基础上实验了铜铅人工混合矿的别离。分选目标按浮选泡沫产品的化验值核算。别离时水玻璃用量90mg/l,调浆3分钟。如图6所示的别离成果标明用Z-200别离铜铅的作用最佳,OS-43和E105次之,丁基黄药最差。为了更清楚地阐明各药剂的差异,用高登选择性指数i=εCu/εPb和黄铜矿的回收率标明分选作用。在pH=10.60时人工混合矿的分选指数如表1所示。表1  人工混合矿分选指数指数Z-200(5mg/l)OS-43(5mg/l)E105(5mg/l)BuX(5mg/l)εCu90.084.084.090.0i45.021.010.59.0     表中的数据标明各种药剂别离铜铅混合矿的选择性次序为:Z-200>OS-43>E105>BuX,估计Z-200-水玻璃是铜铅别离的杰出药方。假如用该药方成功地替代抑铜浮铅和重铬酸盐抑铅浮铜的两种常用的铜铅别离计划,则可望处理出产实践中药剂费用高,毒性大等问题。水玻璃具有来历广、制备简单、报价低和毒性小等长处。     (四)水玻璃对捕收剂在方铅矿上吸附的影响     为了评论水玻璃按捺方铅矿的机理,研讨了它对硫羰酯(Z-200)和丁基黄药吸附的影响,成果如图7,图8,图9和图10所示。图7和图8的成果标明,在有无铜离子存在的条件下Z-200在方铅矿上的吸附密度均较小,水玻璃能彻底阻挠它在方铅矿上的吸附,因而方铅矿彻底被按捺。但是,在相同条件下,水玻璃虽然下降了丁基黄药的吸附密度,但其咐附密度依然很大,特别是当铜离子存在时更是如此。因而,方铅矿不能彻底被按捺。这标明:     1、水玻璃按捺方铅矿与它在矿藏表面吸附而阻挠捕收剂吸附或下降其咐附密度有关。     2、用硫羰酯作捕收剂时水玻璃对方铅矿的按捺作用比用丁基黄药时好,是因为硫羰酯的活性比丁基黄药低,其咐附受水玻璃的影响大。即捕收剂和按捺剂的合理匹配存在着弱-弱、强-强匹配现象。    四、定论     (一)硫羰酯-水玻璃有或许是铜铅别离的杰出药方。     (二)用硫羰酯作捕收剂时,水玻璃对方铅矿有满足的按捺作用,而用丁基黄药作捕收剂时仅有细微的按捺性。     (三)水玻璃能彻底阻挠硫羰酯在方铅矿上的吸附,不能彻底阻挠丁基黄药的吸附,标明捕收剂和按捺剂之间存在着弱-弱、强-强匹配联系。

非金属矿分选提纯特点

2019-01-21 10:39:04

(1)非金属矿选矿的目的通常是为了获得具有某些物理化学特性的产品,而不是为获得矿物中某一种或几种有用元素。   (2)非金属矿选矿过程应尽可能保持有用矿物的晶体结构,以免影响它们的工业用途和使用价值。   (3)非金属矿选矿指标的计算一般以有用矿物的含量为依据,多以氧化物的形式表示其矿石的品位及有用矿物的回收率,而不是矿物中某种元素的含量。   (4)非金属矿选矿提纯不仅仅富集有用矿物,除去有害杂质,同时也粉磨分级出不同规格的系列产品。

铜钼分选新药剂研究

2019-02-19 12:00:26

铜钼分选新药剂研讨   向 平   刘建国   邓伟英   徐林坤   顾 愚      摘要:提出并研讨了用TS药剂抑铜浮钼的铜钼分选新工艺。该新工艺运用的按捺剂用量低,分选作用好,能够替代Na2S抑铜工艺,完成铜钼混合精矿的高效而经济的浮选别离。    关键词:TS;Na2S;铜钼分选      某矿是我国大型的铜出产基地,一起也是一个大型钼矿,该矿多年来按捺选用Na2S法从铜钼混合精矿中选钼,出产实践标明,该工艺存在药剂用量大(据统计1998年Na2S单耗高达70.24kg/t)、出产本钱高、车间环境污染严峻等问题。因为Na2S在矿浆中极易氧化失效,因而形成用量大、出产动摇频频、目标安稳性差、药剂运送、保管、制造和增加的工作量和劳动强度大。车间污染严峻。因而,该矿提出了寻求能大幅度下降药剂用量和选钼本钱的高效抑铜新药剂的新课题。    株洲选矿药剂厂针对铜钼分选研制开发了新式高效抑铜药剂TS,并展开了运用TS作铜按捺剂的铜钼分选新工艺研讨。研讨成果标明,TS铜钼分选新工艺运用的按捺剂用量低,取得的分选作用好,能够替代Na2S分选工艺,完成铜钼混合精矿高效而经济的浮选别离。   1  TS药剂      新式高效抑铜药剂TS是一种由具有多个亲固和亲水官能团的有机物组分A和另一种具有强还原性的无机盐组分B组成的复合型药剂,其主要特色如下:    (1)TS药剂在矿浆中选择性地吸附在黄铜和黄铁矿表面,使这些矿藏激烈亲水而被按捺。图1所示为Na2S和TS别离作按捺剂进行分段刮泡浮选实验取得的抑铜效能曲线图。有图可见,TS在矿浆中不会象Na2S在短时刻里抑铜作用就变差,4.8kg/t用量TS的有用抑铜时刻(约32min)超过了50kg/t用量Na2S的有用抑铜时刻(18min)。    (2)TS药剂的A组分有必定的气味和弱腐蚀型。对雌、雄昆明种小鼠的急性经口LD50别离为1470mg/kg·bw和1710mg/kg·bw,属低毒物。在空气中长时刻放置后,A组分易氧化,在环境中不会引起累积毒性。TS药剂的B组分无毒无味,在枯燥阴凉环境下储存功能安稳,但其水溶液易氧化失效。因而,TS应随配随用。   图1 TS和Na2S抑铜效能曲线 1—Na2S  20kg/t;2—Na2S  50kg/t;3—TS  4.8kg/t   2  实验矿样性质      实验矿样取自某矿选钼车间,为铜钼混合精矿,经化验含钼约0.47%,含铜约26.5%。钼矿藏主要为辉钼矿,铜矿藏主要为黄铜矿。另含有少数黄铁矿、辉铜矿、黝铜矿、砷黝铜矿和斑铜矿等金属矿藏及石英、云母等易浮脉石矿藏。试样粒度较细,一般为-74µm占90%以上。对试样进行粒级分析测定成果见表1。   表1  试样粒级分析及金属散布率测定成果/%粒级/µm产  率品   位金属散布率MoCuMoCu+200 -200+150 -150+74 -74+50 -50+38 -38 算计2.57 2.67 1.83 3.98 8.58 80.37 100.00.53 0.55 0.36 0.31 0.43 0.51 0.49426.76 26.83 24.15 23.70 24.43 27.29 26.822.75 2.97 1.32 2.49 7.53 82.94 100.02.56 2.67 1.65 3.52 7.82 81.78 100.0 [next] 3  TS选钼实验研讨   3.1 粗选段条件实验    结合现场选钼分两段进行的特色,先依照图2流程进行了粗选段TS用量、矿浆浓度、水玻璃用量和火油用量等系列条件实验。优化条件为:矿浆浓度28%,粗选TS用量5kg/t,精选TS用量0.45kg/t,水玻璃用量10kg/t。火油用量在200g/t以内改变对目标无影响。   图2 粗选段条件实验流程   3.2 粗选闭路流程实验    对优化条件别离进行了粗选段选用两次粗选、一次精选、一次扫选和两次粗选、两次精选、一次扫选流程的闭路流程实验,实验成果见表2。TS用量5.45kg/t,比较Na2S法Na2S在粗选段的用量45~50kg/t,TS用量仅为Na2S用量的1/8至1/9,但对含钼0.44%左右的铜钼混合精矿,经一次精选可取得粗精矿含钼11.66%,钼回收率86.69%,经两次精选可取得粗精矿含钼16.93%,钼回收率81.22%。   表2  TS选钼粗选段闭路实验成果/%流程结构产品称号产率品  位回收率MoCuMoCu两次粗选 一次精选 一次扫选原   矿 钼粗精矿 尾   矿100.0 3.24 96.760.436 11.66 0.06626.80 17.91 27.17100.0 86.69 13.31100.0 2.16 97.84两次粗选 两次精选 一次扫选原   矿 钼粗精矿 尾   矿100.0 2.12 97.880.442 16.93 0.08527.10 14.72 27.44100.0 81.22 18.78100.0 1.15 98.85   3.3 全流程闭路实验    模仿现场选钼流程,进行了粗选段为两次粗选、一次精选、一次扫选、粗精矿再磨至细度-38µm占90%,再进行五次精选的用TS分选铜钼的全流程闭路实验,实验成果见表3。TS总用量6.45kg/t,比较Na2S法Na2S总用量65~75kg/t,TS用量仅为Na2S用量的1/10至1/12.关于含钼0.47%左右的铜钼混合精矿,取得终究钼精矿含钼48.53%、含铜1.09%、钼回收率80.94%的优秀选别目标。   表3  全流程闭路实验成果/%产品称号产  率品   位回收率MoCuMoCu原  矿 钼精矿 铜精矿100.0 0.79 99.210.474 48.53 0.09127.23 1.09 27.41100.0 80.94 19.06100.0 0.03 99.97 [next] 4  现场运用   4.1 新鲜矿浆样实验室验证实验    在某矿选钼车间取铜钼混合精矿新鲜矿浆样,依照图3流程及条件进行TS与Na2S比照的粗选段实验室验证实验,实验成果见表4.实验标明,TS总用量4.5kg/t与Na2S总用量39.6kg/t取得附近的分选作用。   图3 新鲜矿浆样验证实验流程   表4  新鲜矿浆样验证实验成果/%按捺剂 及用量产  物产  率品  位回收率MoMoNa2S  39.6kg/t原  矿 精  矿 中  矿 精矿+中矿 尾  矿100.0 1.62 8.90 10.52 89.480.467 23.68 0.691 4.23 0.024100.0 82.21 13.81 95.39 4.61TS  4.5kg/t原  矿 精  矿 中  矿 精矿+中矿 尾  矿100.0 1.53 11.24 12.77 87.230.465 25.13 0.49 3.442 0.029100.0 82.71 11.85 94.56 5.44   4.2 粗选段工业运用调试目标    在某矿选钼车间展开的粗选段选钼作业用TS药剂替代Na2S的工业运用调试目标见表5。   表5  粗选段TS与Na2S比照工业运用调试目标/%按捺剂按捺剂单耗 /(kg·t-1)原矿档次粗精矿档次尾矿档次回收率MoCuMoCuMoCuMoCuTS Na2S6.21 500.315 0.32524.09 23.009.92 9.7815.79 16.700.040 0.04624.33 23.1887.68 86.171.82 2.08   5  结语      TS铜钼分选新工艺运用的TS按捺剂在矿浆中选择性地吸附在黄铜矿等矿藏表面上,使矿藏亲水而受按捺。与Na2S法比较,TS按捺剂的用量低,取得的分选作用好,毒性低,污染轻,运送、保管、制造和增加的工作量和劳动强度低。能够用TS替代Na2S完成铜钼混合精矿的高效而经济的浮选别离。

强磁性矿物的干式分选设备简介

2019-01-03 09:36:51

1 磁滚筒 对于粒度较大的磁铁矿矿石的分选, 目前最常用的分选设备是磁滚筒 ( 全磁系称之为磁滑轮 ), 根据磁源的不同,磁滚筒可分为电磁和永磁两种。电磁磁滚筒是在线圈上加载电流来产生磁场, 优点是磁场强度可以根据需要进行调节, 缺点是长时间工作时容易发热, 磁场强度不高,且消耗一定的电能,生产成本亦较高。永磁磁滚筒采用永磁材料作为磁源来产生磁场, 具有性能稳定、 结构简单、 运行成本低等优点,现已逐步取代电磁磁滚筒并得以广泛应用。随着高性能钕铁硼磁性材料的不断发展, 永磁磁滚筒的表面磁场强度已达到 600 mT 以上。 根据“多碎少磨”的原则要求, 磁滚筒主要用于低品位铁矿石的细碎或磨矿前的预选作业, 分离出矿石中混入的围岩和脉石, 提高入选矿石的品位, 减少入磨矿量,降低能耗。由于预选处于流程的前段,矿石的粒度比较大, 经过一段破碎之后最大粒径可达 3 50 mm 以上, 待处理的矿石量巨大,且需要较高的磁场强度和磁场深度才能够满足生产需要, 大型化和高场强是磁滚筒今后的发展方向。目前, 北京矿冶研究总院已研制出 CT - 1424规格的大型磁滚筒, 滚筒直径 1 _x0002_ 4 m, 适用皮带宽度为 2 m, 皮带表面磁场强度 350 mT , 处理能力 2000 t /h 以上,用于鞍钢大孤山铁矿排岩系统中回收铁矿石。在生产过程中, 采用该超大磁滚筒进 行抛尾, 矿石品位从 11 %提高到 2 6 % 左右,使原不能入选的矿石得到回收,极大地提高了资源的利用率。 贫磁铁矿的干式预选可用于破碎段的各个作业。由于磁滚筒对矿石粒度的适应性较好, 可将颚破后的大块矿石直接入选,也可对细碎分级后粒度较小的矿石进行分选。在实际应用中, 为了达到更好的分选效果, 可以在细碎后再采用磁滚筒抛尾一次, 使入磨前的矿石品位进一步提高。近些年来,随着磁滚筒的大规模应用, 有力地促进了贫磁铁矿选矿工艺的发展, 降低了选矿成本, 提高了企业的经济效益。 2.箱体式干选机 对于经过细碎之后粒度较粗的铁矿石, 既可以采用磁滚筒进行分选, 也可以采用箱体式干式磁选机进行分选。采用箱体式干选, 可以减少粉尘的污染,而且占地面积较小。该类型的磁选机分选时, 矿石经振动给料器直接送到磁选机的磁筒上, 磁性矿物被磁场吸引, 在筒体的转动下被带入底部的精矿斗得到回收,废石等弱磁性物在惯性力作用下被筒体抛离。 该机的磁系结构有两种形式, 一种是沿圆周方向 N、 S 极交替排列, 这样可以使矿物在分选过程中发生多次翻转, 减少其中脉石矿物的夹杂,有利于精矿品位的提高, 适用于精选段作业; 另一种磁系结构是沿轴向 N、 S 极交替排列, 这种结构可以避免矿物在分选时多次翻转, 减少了磁性矿物的流失,有利于提高磁性矿物的回收率, 适用于粗选段作业。采用干式磁选机对磁铁矿进行分选作业时, 根据矿物磁性和粒度的不同选用相应的磁场强度, 粗选抛尾时磁场强度一般在300 mT 左右, 精选时磁选机磁场多在 150 ~ 200 mT 之间。另外, 筒体转速对于分选效果有重要影响, 干式磁选机需配备变频调速器,针对不同性质的矿物, 通过调整磁筒的转速,可以对精矿的产率和品位进行调节。

黄铜矿与方铅矿的生物诱导分选

2019-02-21 12:00:34

一、概述     运用微生物和相关的胞外生物聚合体从方铅矿与闪锌矿或黄铁矿的二元混合物中选择性别离方铅矿已有文献报导。本研讨所用Paenibacillus poly-myxa菌(多黏芽胞杆菌,缩写为P.polymyxa菌)为革兰氏阳性细菌,嗜中性,周边生有鞭毛状异养生物,在许多矿床中生计。在P.polymyxa菌代谢的首要产品中除含有首要的生物聚合物,如胞外多糖和蛋白质之外,还含有有机酸,如草酸、和乙酸。     除要对用生物来历的聚合物微生物诱导分选黄铜矿和方铅矿进行研讨外,了解生物体自身对分选进程的影响也是需求的。已对细菌特效的亲合力和生物聚合物对附着行为的调整进行了研讨。但是,依然需求了解在矿藏和细菌界面上存在的生物聚合物以及其在附着进程中所起的效果。本文将断定黄铜矿和方铅矿对胞外生物聚合物,如胞外蛋白质(EBP)和胞外多糖(ECP)的亲合力。还研讨了与可浮性相关的表面疏水性与生物药剂吸附的改变联系。     二、质料和实验办法     (一)矿藏     样品收集自印度Indscer Fabriks的Almin-Rock,经过手选得到的高纯度黄铜矿和方铅矿样品。运用化学分析、X射线分析和矿藏学分析来断定样品的纯度。黄铜矿和方铅矿样品纯度别离为99.8%和99.7%。用瓷球磨机将上述样品细磨,再筛分红-105+74μm和-37μm粒级。-37μm粒级进一步球磨,经过沉降得到-5μm粒级。用Malvern Zetasizer粒度分析仪对样品进行粒度分析,其均匀粒度为3~5μm。该粒级用来进行吸赞同絮凝实验。运用BET氮吸附法测定样品的比表面积。经过上述办法得到的黄铜矿的比表面积为1.93m2/g。方铅矿为1.939m3/g。-105+74μm粒级用来进行浮选研讨。     (二)细菌培育     本研讨所用P.polymyxa菌株(编号为NCIM2639)由印度国家化学实验室中的国家工业微生物标本室取得。在实验室运用Bromfield培育基进行培育。运用来保持离子强度,运用硝酸和作为pH调整剂。实验中一切试剂均为分析纯级。实验中运用比电导率     (三)制备无细胞代谢产品     将在4℃下成长彻底的细菌(48h)经SorvallRC-5B型离心机(10000 r/min)离心15 min。倾析出上清液,用无菌的Millipore(孔径o.2μm)过滤除掉一切不可溶物质,一同除掉细菌细胞。细胞球运用二次蒸馏去离子水洗刷,然后再离心。上述进程重复两次,以得到纯洁的细胞球。     (四)从代谢产品中别离出蛋白质     经过48 h培育,取1LP. polymyxa菌培育液进行离心。上清液用Millipore(孔径0.2μm)滤纸过滤。在4℃衡定振动下,缓慢参加分析纯超细颗粒状硫酸按,浓度为90%(600.16g/L)。溶液在4℃下冷却12h。蛋白质沉积物溶解在1mol/L的三羟甲基基盐缓冲剂溶液(pH 7)中。在4℃下渗析18h。离心除掉在渗析时发作的沉积物。上清液冷冻,称重后在4℃下保存。     (五)从代谢产品中别离出胞外多糖(ECP )     取1L经48h培育液离心除掉细胞。含有ECP的上清液用无菌Millipore膜过滤。然后运用Virtis Freezemobile 12EL冷冻机在-80℃,真空下冻干至200mL。在室温下将脱水的固体物质溶解于10mL蒸馏的millipore高纯水中,并冷却l0℃以下。加人20 mL二次蒸馏的乙醇来沉积ECP,并将它与其它含有细菌的上清液别离出。重复上述乙醇沉积两到三次,然后进一步提纯多糖。该多糖溶液用二次蒸馏水透析。在透析之前,透析管在0.01mol/L EDTA和2%的碳酸氢钠溶液中水浴欢腾10~15min。透析之后,ECP在低温下(4℃)保藏。ECP的纯度选用-硫酸法侧定。     (六)吸附实验     将1g矿藏样品参加到放在250mL Erlenmeyer烧瓶中的已知pH和EBP浓度的100 mL10-3mol/L KNO3溶液中。在30℃和250 r/min下,运用Remi振动器振动15min。平衡之后,再次测定矿浆的pH。然后在200 r/min下离心5min,除掉粘附有EBP的矿藏颗粒。含有EBP的上清液用Whatman 42号滤纸进一步过滤,测定上清液中剩下的EBP浓度。选用相似的办法研讨细菌细胞和ECP在矿藏颗粒上的吸附行为。     (七)絮凝研讨     在絮凝研讨中将1g矿藏样品涣散于装在容积为100 mL的带有刻度的量筒中的100mL二次蒸馏去离子水中。将盖好塞子的量简上下倒置翻转10次,然后静置2min。运用移液管将90ml,上清液移出放入烧杯中。过滤上清液,烘干和称重,得到固体颗粒涣散的质量分数。以pH和时刻为变量进行实验。将含有1g的50 mL矿浆与50 mL蛋白质上清液或已知浓度的ECP加人100 mL带塞子的量筒中进行絮凝实验。在混合之前将矿浆和蛋白质的pH调整至同一数值。选择性絮凝实验用1∶1分量百分数的方铅矿和黄铜矿的二元混合物中进行。含有0.5g的50ml,添矿浆与50mL添细菌上清液一同参加带有刻度的量筒中。混合之前,将矿浆和细胞上清液的调到相同的pH。将带塞子的量筒翻转10次,静置2min(脱泥阶段)。涣散和沉降产品进行ICP光谱分析,以得到每种矿藏在两个产品中的质量分数。     (八)微量浮选实验     在中性pH下,将1g矿藏与100 mL添含有已知浓度EBP、ECP或细菌细胞的二次蒸馏去离子水放在锥形烧瓶中混合。将烧瓶在250 r/min振动器中孵化30min。效果之后将上清液除掉,别离得到矿藏颗粒.沉在底部的矿藏颗粒用Whatman42号滤纸过滤后用二次蒸馏去离子水洗刷,除掉矿藏表面上粘附的EBP,ECP或细胞。将调整后的矿藏转移至改进过的哈里蒙德浮选管中。通40 mL添/min氮气浮选3 min。别离沉降的和浮出的部分,别离烘干并称重。以异丙基黄原酸钾(PIPX)作为捕收剂,以研讨浮选行为。一同研讨了捕收剂和细菌试剂的增加次序对浮选的影响。将1g较度为-105+74μm矿藏(1∶1分量比)悬浮到200 mL添溶液中。浮选之前,将矿藏混合物与不同的细菌效果。用磁力拌和器将矿藏混合样品与已知pH的溶液混合15~20min.然后进行浮选实验研讨。浮出的矿藏用ICP测定,然后核算收回率。     (九)SEM分析     在10000 r/min下离心别离15 min后得到细菌细胞。将细胞球再次悬浮在二次蒸馏去离子水中。用经过氮气的水清洗矿藏颗粒两次.将0.5g矿藏悬浮在50mL添含有氮气的水中(NW)。将上述得到的矿藏颗粒与已知数量的细胞彼此效果。在锥形烧瓶中效果,然后转移至Eppendorf管中,在5000r/min下离心别离。参加5%的,刚好能够浸没矿藏样品,在100 r/min下拌和2h,然后与0.5%再拌和2h。再用35%的乙醇调理矿藏样品。用微量移液管取出0.5 mL添,取一滴放到有盖的玻片上,在干操器中干操15min,然后加一滴(50%)乙醇。干操15min。然后用70%和95%的乙醇重复上述进程。彻底干操后,用浓度依次为35%、50%、70%和95%的进行次序枯燥。将盖玻片保存在枯燥器中,直到进行SEM测验(不该超越12 h)。     三、成果与评论     (一)吸附研讨     首要建立了细菌细胞,EBP和ECP在方铅矿和黄铜矿表面上的吸附行为与效果时刻和pH的改变联系。成果如图1和2所示。图1为细菌细胞在黄铜矿和方铅矿上粘附的扫描电镜相片。由图能够看出,细菌细胞对两种矿藏的亲合力均比较大。经过测定不同组分在矿藏表面上吸附密度随时刻的改变得到了细菌细胞的吸附动力学曲线。在10-3mol/L KNO3,pH6.5~7下调查了吸附行为随时刻的改变。在吸附之前,细胞浓度为4×109个细胞/mL。图2,a标明,效果15 min后细菌细胞在黄铜矿上的吸附密度为1.5×109个细胞/m2,而方铅矿上为1×109个细胞/m2。这标明细菌细胞在矿藏上的吸附并没有选择性。文献标明,细胞壁含有多糖和蛋白质。因而,在EBP初始浓度为4mg/g矿藏时研讨了EBP的吸附行为。图2,a标明,效果15min后EBP在黄铜矿上的吸附密度为3 mg/m2,而方铅矿则低于1 mg/m2。相同在ECP初始浓度为10mg/g时,研讨了ECP的吸附行为。图2,a标明,效果15 min后,超越9 mg/m2ECP吸附在黄铜矿上,而在方铅矿上的吸附量低于8mg/m2。在与两种矿藏效果15min后,ECP便在矿藏表面上饱满。但是,EBP和ECP在黄铜矿和方铅矿上的吸附量没有细菌细胞在这两种矿藏表面上的吸附量那样大。图1  在黄铜矿(a)和方铅矿(b)上的P. polymyxa,菌细胞的SEM相片       图2,b为细菌细胞,EBP和ECP在矿藏上的吸附量随 pH的改变。在一切pH下,细菌细胞在黄银矿上的吸附密度都比在方铅矿上的大。在酸性规模内。黄铜矿上的吸附密度比如铅矿上的高。关于黄铜矿,随pH增加,细菌细胞吸附密度锐减。EBP在黄铜矿上的吸附密度在酸性pH规模内改变均匀,中性规模内为3 mg/m2;而关于方铅矿,在整个pH规模内,吸附量比较均匀,最大吸附密度为1mg/m2。ECP在黄铜矿上的吸附密度在pH为3~8时从4 mg/m2改变到8 mg/m2。关于方铅矿也调查到相似的行为。ECP在黄铜矿和方铅矿上在酸性pH规模内的吸附行为与碱性规模内的吸附行为相似。但是,EBP在酸性和碱性pH规模内涵黄铜矿上的吸附量比在方铅矿上的要大。图2  上图:在pH6.5~7时,P.polymyxa菌的细胞、ECP和EBP在黄铜矿 和方铅矿上的吸附密度随时刻改变(pH6.56.7); 下图:P. polymyxa菌的细胞、ECP和EBP在黄铜矿和方铅~矿上的   吸附密度随pH改变(效果15 min)   ■-细菌细胞+黄铜矿;●-细菌细胞+方铅矿;□-ECP+黄铜矿; ○-ECP+方铅矿;△-EBP+黄铜矿;△-EBP+方铅矿       (二)絮凝实验       断定了不同生物试剂和细菌细胞存鄙人,不一同间和pH时黄铜矿和方铅矿细粒的沉降行为.图3为黄铜矿和方铅矿随时刻改变的沉降行为。图3,a标明在pH为6.5~7时,在效果15min后,黄铜矿从没有细菌细胞时的沉降率30%增加至有细菌细胞时的90%。细菌细胞壁含有多糖和蛋白质。因而,研讨了在有EBP和ECP存在时矿藏的絮凝率随效果时刻的改变。在用EBP效果黄铜矿15min时絮凝率为95%;而有ECP存在时,则只要很少的黄铜矿发作絮凝。细菌细胞和EBP的效果促进很多的细粒黄铜矿絮凝,在只要ECP存在时,细粒黄铜矿的絮凝没有明显改变(图3,b和c)。15 min方铅矿的沉降率从没有细胞存在时的35%增加至有细胞存在时90%。但是,在EBP时,15 min方铅矿的沉降率降至20%以下,而不加任何药剂时的沉降率为30%。方铅矿与ECP效果后15min的絮凝率高于90%,而没有任何试剂时絮凝率为35%。细菌细胞和生物试剂的特效性归因于矿藏与细菌细胞壁上的特效官能团。在别离测验黄铜矿和方铅矿絮凝效果时,每一种矿藏都沉降15 min。与EBP效果时,黄铜矿的沉降速率(15 min内为95%)比如铅矿高沉降率(15min内为20%)高。与ECP彼此效果后,约30%的黄铜矿和高于90%的方铅矿在15 min内发作沉降。矿藏与细菌细胞、EBP和ECP在不同PH下的沉降行为如图4所示。图4,a标明,在没有任何药荆时,90%的黄铜矿在PH3时沉降,而在PH 9时沉降率削减至40%。在pH3~9且有细菌细胞和EBP存在时,大约90%的黄铜矿沉降。方铅矿在没有任何药剂和pH3时的沉降率为55%,pH9时沉降率为35%。 图3   黄铜矿和方铅矿在有细菌胞(上)、ESP(中) 和ECP(下)存在时的沉降与沉降时刻的联系     1-黄铜矿;2-方铅矿;3-黄铜矿+细菌细胞;4-方铅矿+细  菌细胞; 5-黄铜矿+EBP;6-方铅矿+EBP;7-黄铜矿+ECP; 8一方铅矿+ECP    图4 黄铜矿和方铅矿在有细菌细胞(上)、EBP(中) 和ECP(下)存在时的沉降与pH的联系     1-黄铜矿;2-方铅矿;3-黄铜矿+细菌细胞;4-方铅矿+细菌细胞; 5-黄铜矿+EBP;6-方铅矿+EBP;7-黄铜矿+ECP;8-方铅矿+ECP       但是,在有细菌细胞存在时,矿粒的沉降率增加。简直90%的方铅矿在与细菌细胞效果后发作沉降。图4,b标明,在没有药荆和pH3时黄桐矿的沉降率为90%,而在pH9时其沉降率下降至40%。在有EBP存在和pH3时,黄铜矿沉降率为92%,pH7沉降率为95%,pH9时沉降率降至65%;而在没有药剂和pH3时方铅矿的沉降率为55%,pH9沉降率为35%。但是,方铅矿在pH3规模沉降率为30%,在pH 9降至20%。这标明方铅矿在有EBP时得到涣散。图4,c标明,在没有任何药剂存在和pH3时黄铜矿的沉降率为90%,pH9时沉降率降至40%.但是,有ECP存在时,黄铜矿的沉降率很小,这标明ECP没有大的影响。没有任何药剂和pH 3时方铅矿的沉降率为55%,pH9时沉降率降至35%。但是,在有ECP存在时,方铅矿絮凝明显增加。在pH 3~9规模内95%以上方铅矿絮凝。       细菌细胞/生物试剂与矿藏构成的絮团是三维圆盘.絮状物的SEM相片标明,细菌细胞与矿藏混合在一同,而且彼此包裹。前期研讨成果标明,细胞表面安排对不同矿藏有特定的亲合力。因而,细菌细胞壁作为矿藏与细菌细胞的桥梁将它们衔接为三维结构.SEM絮团如图5和6所示。由细菌发作的生物试剂(EBP)相同也构成矿藏絮团。图5  矿藏与细菌细胞构成的絮团的SEM相片和示意图      图6  矿藏与胞外产品构成的絮团的SEM相片和示意图       (三)选择性絮凝研讨       对用细菌细胞,EBP和ECP从黄铜矿和方铅矿二元混合物中选择性别离方铅矿进行了实验。从表1成果能够看出,在有细菌细胞存在时能够别离出71.4%的方铅矿,在有EBP存在时,能够别离出92.3%的方铅矿。在pH 8.5~9时,有细菌细胞存在时能够别离出70.2%的方铅矿,在有EBP存在时,可别离出89.7%的方铅矿。   表1  在有细菌细胞(5×108个细胞/mL)和P. Polreyxa 菌的EBP (50mg/g)存在时,从黄铜矿和方铅矿混合物(质量比1∶1)中选择性絮凝黄铜矿脱泥段编号 (每段3min)不同pH时方铅矿去除(累积)/%6.5~78.5~9细胞EBP细胞EBP1 2 3 4 522.6 41.8 61.8 68.0 71.425.6 49.7 69.9 81.2 92.331.2 56.7 62.3 69.8 70.233.0 45.6 70.2 85.1 89.7       图4,c成果标明,ECP并不能明显影响黄铜矿的沉降率。相同调查了在与ECP效果后从黄铜矿和方铅矿二元混合物中别离方铅矿的状况。表2标明,在pH 6.5~7规模,可别离出87.2%黄铜矿,在pH 8~8.5规模可别离81%黄铜矿。   表2  在有从P. polymyxa,菌上清液中别离出的ECP(l00mg/g) 存在时,从黄铜矿和方铅矿(质量比1∶1)混合物中选择性絮凝黄铜矿脱泥段编号 (每段2min)不同pH时黄铜矿去除率(累积)/%6.5~78~8.51 2 3 4 540.1 62.3 71.9 82.3 87.235.0 59.7 68.7 79.6 81.0       (四)微量浮选实验       也研讨了与细菌细胞、EBP和ECP效果后的黄铜矿和方铅矿的浮选行为。断定了在有捕收剂,例如PIPX存在时与EBP和ECP效果后的矿藏浮选行为。从图7能够看出,与细菌细胞、EBP和ECP效果后,黄铜矿的浮选收回率为20%。但是,与EBP效果后,方铅矿表现出疏水行为。在pH3,方铅矿的浮选收回率由25%增至与EBP效果后的45%。在pH 6时浮选收回率为65%pH 9降至45%。但是,与细菌细胞和ECP效果后,方铅矿的收回率下降。图7  不同pH下与细菌细胞、ECP效果后的黄铜矿(上) 和方铅矿(下)的浮选收回率   □-不与药剂效果;●-与细菌细胞效果;▲-与EBP效果;▲-与ECP效果       (五)微量别离浮选实验       在研讨过经不同生物试剂处理过的单矿藏浮选行为之后,又研讨了用不同生物试剂从黄铜矿和方铅矿二元混合物中别离黄铜矿的可能性。为了进步别离功率,增加异丙基黄原酸钾(PIPX)。表3为选用细菌细胞,EBP和ECP时,选择性浮选别离实验成果。从表3能够看出,与细菌细胞效果后,经PIPX(1×10-3mol/L)调整后,混合物中黄铜矿的收回率为49.9%,方铅矿的收回率为44%。当PIPX浓度降至5×10-4mol/L时,黄铜矿的收回率为44.4%,方铅矿收回率为37.2%。但是,当混合物先与PIPX(1×10-3mil/L)效果,然后再与细菌细胞效果,则黄铜矿的收回率为48%,方铅矿的收回率为47.9%.当PIPX浓度降至5×10-4mol/L时,黄铜矿的收回率为39.2%,方铅矿的收回率为38.8%.当混合物先与EBP效果,然后与PIPX (5×10-4mol/L)调理,黄铜矿的收回率为29.1%,方铅矿为81.4%。但是,与ECP效果后,黄铜矿的浮选收回率为49.6%,方铅矿收回率为14.1%。   表3  在pH6~6.5,用PIPX为捕收剂,用细菌细胞、EBP和ECP处理后,黄铜矿和方铅矿的别离浮选成果实验条件细胞/生物 试剂浓度PIPX浓度 /mol·L-1黄铜矿 收回率/%方铅矿 收回率/%  先与细胞效果,然后用PIPX处理2×109个细胞/mL1×10-349.944  先与细包效果,然后用PIPX处理 5×10-444.437.2  先与PIPX效果,然后细胞处理2×109细胞/mL1×10-34847.9  先与PIPX效果,然后细胞处理 5×10-439.238.8  先与EBP效果,然后用PIPX处理50mg/g5×10-429.181.4  先与EBP效果,然后用PIPX处理100mg/g5×10-449.614.1       四、定论     由本实验成果可得到如下首要定论     (一)Paenibacillus polymyxa菌细胞能够激烈地吸附在黄铜矿和方铅矿表面上。     (二))但是,细菌胞外产品,如生物蛋白质和外胞多糖,在黄铜矿上的吸附量高于方铅矿。     (三)与细菌效果后黄铜矿和方铅矿的絮凝程度增强。与生物蛋白质效果后促进黄铜矿絮凝,但是外胞多糖可增强方铅矿的絮凝。     (四)在pH高于6时,生物蛋白质增强方铅矿的浮选。     (五)在天然pH下,经过操控生物蛋白质和外胞多糖的调理的生物诱导絮凝能够使方铅矿与黄铜矿有效地别离。相似地,先与生物蛋白质效果能够增强方铅矿从黄铜矿中的选择性浮选。

菱铁矿的特征及分选优劣势分析

2019-01-17 09:43:52

1.1 菱铁矿的矿石特征 菱铁矿,多数嵌布粒度微细(如果磁化焙烧,焙烧后因气体挥发磁铁矿晶格更细)、成分复杂、品位低,铁主要以碳酸铁的形式存在,理论品位48.2%,部分菱铁矿类质同象而为镁、锰菱铁矿,且赋存于赤(褐)铁矿和磁铁矿中,部分甚至褐铁矿化而致使理论品位通常在32%~48%之间,这样的铁品位很难被钢铁公司所接受。某些公司由于菱铁矿来源于自有矿山,为了不造成资源浪费,勉强将菱铁矿精矿配人铁精粉中使用,但在使用过程中发现配人量达到7%~8%就会明显影响烧结矿强度。因此菱铁矿必须通过磁化焙烧,然后用回收天然磁铁矿的方法回收。                                                            图1     菱铁矿矿石1.2菱、褐铁矿焙烧-分选的优劣势分析 众所周知,铁矿是一种附加值较低的产品,尽管这几年铁矿石需求量很大,铁矿价格较高,很多投资者将投资目光转到菱、褐铁矿领域,但由于其分选技术难度大,工艺流程长,选矿成本相对略高,没有成熟的可借鉴的大规模生产厂,很多投资者对投资开发菱、褐铁矿持观望态度。针对这一现象,总结多年菱铁矿选矿经验,对菱铁矿与磁、赤铁矿的选矿优劣势进行综合分析。 1.2.1菱、褐铁矿选矿劣势 1)投资大。 要达到与磁、赤铁矿选矿相同的技术指标,必须先对菱、褐铁矿进行磁化焙烧,焙烧后的原矿才能达到与原生磁铁矿相近的入选条件,这一段要增加焙烧系统的设备投资及焙烧成本。 2)焙烧矿矫顽力大。 人工磁铁矿与天然磁铁矿相比,有磁性弱、矫顽力强的缺点,这将导致两个问题:①对磁选设备要求较高,需要对磁选设备的磁场强度和磁系结构进行调整,如果采用常规的磁选设备,铁精矿品位及回收率均难以达到要求。②矫顽力强对阶段磨矿的实现造成不良影响,需要在脱磁器及分级方法上予以强化,才有可能达到天然磁铁矿的分级效果。 3)粒度变细影响分选。 菱铁矿焙烧粒度变细,导致铁矿物在弱磁选中容易流失,在进一步的浮选中恶化浮选过程,药剂耗量大。 4)毛细孔发达。 焙烧矿孔洞发育,导致毛细水含量高,即使采用陶瓷过滤机过滤,也很难将精矿水分含量控制在16%以下,这样势必增加运输成本,并影响球团烧结效果。

分析9种废塑料分选技术特性

2019-02-26 11:04:26

别离特性:将经过破坏的废旧塑料从上方投入风筛别离设备,使空气从横向或逆向吹过,运用不同塑料和杂质对气流的阻力和自重构成的合力之差将不同种塑料分隔,也使砂石等杂质从塑料中别离出来。 留意事项:留意别离物的巨细和形状 适用范围:适合于密度差较大的塑料之间的别离 风筛别离设备种类: 1、立式:一般为锯齿形或相似圆筒形设备,空气从其底部吹入,材料则浮在筒体的中部被别离出来。不同形状和不同风速的设备可将材料按种类分隔,较轻者由顶部送出重者则从底部排出。 2、横式:为一矩形容器,分有数个料斗,空气从侧向水平吹入,废料从上方投入,重者落入近处料斗,轻者被气流吹向较远处丢盔弃甲入料斗,各自从底部排出。 3.涡流式:空气吹入呈辐射状的涡流,废料从旁边面送入,构成涡流后,轻者从上方带出,重者则深化底部排出。 运用延伸:词别离设备还能够将立式与涡流式组合起来运用,连同破坏、磁选、振荡筛等构成风筛别离的组合系统。 废旧塑料静电别离 别离特性:先将废旧塑料枯燥,破坏成10平方毫米,最好是6平方毫米以下的小块;参加1*10^-6级的调节剂和表面活性剂等,以进步其磨擦带电性;强力拌和,使之磨擦带电,不同塑料发生相反电荷。 适用范围:经磨擦所发生的电荷差异越大,其别离作用越好,功率越高。该办法最适用于只要两种塑料构成的混合物的别离。只要聚氯乙烯易于从多种混合物中别离出来,因为聚氯乙烯相关于其他塑料总是带负电荷。 别离设备特性:此设备底部有两块挡板,可将不带电荷塑料粒子从头回来设备,进行别离。 废旧塑料密度别离 这是运用不同塑料具有不同密度将它们分类别离的办法,有静置别离和旋液别离两种办法。 静置别离 别离特性:运用不同密度的塑料在特定密度液体中的沉浮特性,使之别离。 适用范围:适用于别离密度距离较大的种类,而对密度附近者的别离则难以获得高纯度的别离物。 常见别离液:水、饱满食盐水溶液、58.4%的酒精溶液、55.4%的酒精溶液和氯化钙水溶液等。 留意事项:当水作密度别离液时,因塑料的最初和表面活性不同,有些会带着气泡浮在水面上,影响别离作用。此刻,需求运用表面活性剂进行预处理,使之充沛滋润 旋液别离 别离特性:运用水力旋流器和浮沉法能有用地将密度大于和小于1g/cm3的塑料别离。其厚度最好大于3mm,密度差为0.5g/cm3左右。若运用平底别离器,可别离密度大于1g/cm3的各种塑料。多级别离的作用更佳。 水力旋流器的别离过程:品德将废旧塑料破坏,然后清洗并进行预处理,将料斗中的料吸入贮糟,废料在槽内均匀涣散,并用离心泵定量定速地送入水力旋流器。密度小的塑料从上部排出,搜集,经振荡筛脱水即可。别离用水可循环运用。 废旧塑料人工分拣 别离特性:废旧塑料的别离挑选,最简略的办法就是人工分拣,虽然费时吃力且功率很低,是最原始的办法,但现在依然广泛运用,尤其是在进料传送带上关于一些易于被发现和拣出来的杂质。分工拣法最适合于分拣废纸、卡片、玻璃容器等物品。 分拣过程: 1、除掉金属和非金属杂质肉眼能看到的各种杂质 2、关于废旧塑料先进行制品分类,可分为农用薄膜、本性包装膜、杂色包装膜、泡沫塑料、凉鞋、拖鞋、鞋底、边角废料、包装用泡沫块、饮料瓶、各种包装容器等。 3、再按树脂种类进行分类,分出聚乙烯、聚、聚氯乙烯、聚笨乙烯、尼龙、聚酯和聚酯等。一般选用外观性状辨认和焚烧辨别。 4、再将现已分类的废旧塑料按色彩和质量分拣,色彩可分为黑、红、棕、蓝、绿、黄色和无色等,除掉污染严峻、发黑、烧焦等残次废旧塑料制品。 废旧塑料熔融别离 别离特性:运用塑料的不同熔融温度来别离。其办法是将混合废塑料置于传送带上,经过较低一级塑料熔融温度上的加热室,这种塑料熔融并附着在传送带上,用机械搜集;未熔融的塑料持续运转,经过较高一级塑料熔融温度上的加热室,以相同办法别离出塑料。 如此持续,最终剩余末被熔融的塑料,在传送带终端搜集起来。 废旧塑料温差别离 别离特性:运用各种塑料不同的脆化温度,将混合料进行有挑选性地脆化破坏,完成塑料别离。 适用范围:此办法最适用于聚氯乙烯与聚乙烯混合物的别离,因聚氯乙烯的脆化温度为-41℃,而聚乙烯的脆化温度在-100℃以下。此外,还能够用于聚氯乙烯和PET瓶的别离。 运用举例:别离聚氯乙烯与聚乙烯混合料:先将稠浊料投入冷却器中,冷却至-50℃,然后送入破坏机中破坏,因聚氯乙烯脆化而被破坏,再进行挑选,使与未破坏的聚乙烯别离。 废旧PE、PP、PET分拣 别离特性:将其先放入水池中,因为PET的密度最大,其相对密度在1.30--1.38,则PET将会下沉。然后,开端向池中倒入酒精,中和水的密度,将密度调到0.91,看到水中的PE下沉时,则已调好。 别离原理:运用密度法来别离PP、PE、PET混合物。PP的密度在0.89--0.91,PE的密度在0.91---0.965,PET密度在1.30---1.38。 废旧金属与塑料别离 金属捕集器 将破坏的废弃物经管道运送,在传送过程中运用金属捕集器将直径为0.75---1.2mm的金属碎屑别离出来。 静电别离器 将稠浊料破坏,投入静电别离器,运用金属与塑料的不同带电特性,可别离出铜、铝等金属。此法适用与金属填充复合材料,电缆料和镀金属塑料的处理。 溶解别离 将涂有塑料涂层的金属制件浸入含,非离子型表面活性剂,白腊和水的悬浮液中,使塑料涂层溶解别离。 脆化别离 使金属与塑料的稠浊废料冷却至塑料的脆化温度,然后破坏,再用风筛别离法使金属与塑性别离. 电缆外皮的剥离 电线、电缆的外皮材料主要有聚氯乙烯,聚乙烯(包含交联聚乙烯)和合成橡胶及天然橡胶,除上述静电别离法外,还有干法和温法两种办法可使塑料,橡胶与铜、铝芯线有用别离。 (1)干法别离:用远红外设备使电缆线内部均匀加热,再用人工剥离外皮. (2)湿法别离:将铝线浸渍在渗透剂(表面活性剂)溶液中,加热至70—90度后剥离外皮,然后,再用有机溶剂接连清洗数次,彻底除掉焦油即可。 废旧纸与塑料别离 纸与塑料的别离办法有热别离,湿别离和电动别离三种。 热分法别离特性:运用加热后改动塑料性完成纸塑别离的办法。分为热筒法和热气流法两种。 热筒法 别离设备由电加热镀铬料筒与内装的带刮刀的空心筒(转鼓)组成,刮刀与加热筒壁相接,二者逆向旋转,筒底部衔接一料槽。材料从投料参加,其间的塑料成分与热筒一旦触摸开端熔融,附着在筒壁上,用刮刀刮下,落入料槽中。 此法可将90%以上的塑料与纸分隔,已别离的塑料含纸量很小,可控制在1%以下。 热气流法 运用塑料薄膜遇热缩短,减小比面积的原理完成塑性薄膜与纸的别离。将薄膜与纸的混合物送至加热区,加热箱能够是一台农用谷物枯燥机,呈颗粒状,然后使其表面积减小,再将它与纸的混合物送入空气别离器,空气流将混合物中的纸带走,而热塑性塑料颗粒便落在别离器的底部。 此法简直能够把塑料与纸彻底分隔。 湿分法别离特性:将从干分法别离设备得到的轻质材料送入搅碎机,被搅碎的纸浆从分选板上的小孔中流出,留下的塑料则从一别离出口排出,然后送入脱水机脱水,再送入空气别离器中进行别离。 电动法别离特性:将纸与塑料的混合物由一台振荡喂料器送入别离机中,落入旋转的碾碎鼓,然后送到由电线电极与碾碎之间构成的电晕区,纸被吸向电极,而塑料依然贴在转鼓上,跟着鼓的滚动塑性落到它的底部搜集起来。 选用此法时湿度对别离成果有很大影响,混合物湿度为15%时,虽可使纸和塑料别离,但塑性仍会被很多的纸污染,当湿度进步至50%以上时,便可使塑性和纸彻底别离。

辉钼矿柱式分选工艺技术

2019-02-19 09:09:04

钼在地球上的蕴含量较少,属有色金属矿产。跟着近年来世界范围内钼产品报价的继续高位运转,国内各地对钼矿资源的开发和运用遍及升温。选用愈加高效的分选工艺,愈加有用合理地运用现有的有限钼矿资源就成了各钼矿厂商重视的热门。但国内钼矿厂商现在选用的均匀旧式的浮选设备和工艺,功率较低。     近年来微细粒浮选设备研讨取得了长足的前进,旋流-静态微泡浮选柱分选技能等在微细粒矿藏分选范畴的推行和运用范畴逐渐扩展。在全国各选煤厂的煤泥浮选中,浮选柱得到了成功的运用,在洁净煤和超低灰煤制备中也取得了重大打破;在金属矿分选范畴中正在得到广泛的运用,在进步精矿层次、进步产品层次和进步回收率方面显现出了比浮选机更为显着的优势。如能在资源有限的钼矿分选中得到广泛的推行和运用,无疑具有十分重要的含义。     一、旋流-静态微泡浮选柱简介     (一)旋流-静态微泡浮选柱的根本原理     旋流-静态微泡浮选柱主体结构包含柱别离段、旋流别离段、气泡发作与管浮选段3部分。其根本结构和原理见图1。图1  旋流-静态微泡柱分选原理 1-喷淋水管;2-柱体;3-气泡发作器;4-阀门;5-泵     整个浮选柱为一体,柱别离段坐落整个柱体上部,用于质料预选,并凭借其选择性优势得到高质量精矿;旋流别离段选用柱-锥相连的水介质旋流器结构,并与柱别离段递上、下结构的直通衔接。从旋流分选视点,柱别离段适当于扩大了的旋流器溢流管。在柱别离段的顶部,设置了喷淋水管和泡沫精矿搜集槽;给矿点坐落柱别离段中上部,终究尾矿由旋流别离段底口排出。气泡发作器与管浮选段直接相连成一体,独自安置在柱体体外;其出流沿切向方向与旋流别离段柱体相连,适当于旋流器的切线给料管。     这种浮选柱的原理优势首要有:①将浮选与重选办法相结合,构成归纳力场优势,进步了分选功率;②构成以重选、浮选为中心的多重循环强化分选链;③过饱和溶解气体分出及选用高效射流成泡办法构成微泡;④填料和筛板的混合充填办法,构成了柱体内的“静态”别离环境。     (二)旋流-静态微泡浮选柱的工业运用现状     现在,旋流-静态微泡浮选柱在煤炭分选方面已根本运用老练,系列柱分选设备已在国内外近200家选煤厂得到推行运用,并在此基础上开发了以浮选柱为中心的煤泥分选工艺。它不只完成了先进分选办法的结合,并使得浮选厂房下降一半,电耗显着下降,一起也在精煤灰分、精煤水分、可燃体回收率等首要技能目标方面取得打破性发展。     在“十五”国家重点科技攻关项目的推进下,柱分选设备在金属矿藏分选方面也不断取得打破。别离在柿竹园有色金属公司白钨粗选尾矿、东川高氧化率低层次铜矿、弓长岭矿业公司、内蒙齐华硫化铜矿、紫金湿法冶金浸渣、金川公司镍矿石、福建尤溪矿业公司铅锌浮选尾矿等不同金属矿石及沥青等非金属矿石进行了实验室浮选柱分选实验的基础上,在福建尤溪矿业公司、湖南柿竹园有色金属有限责任公司、云南金沙矿业公司、鞍钢集团弓长岭矿业公司以及齐华矿业集团进行了分流工业实验。现在,旋流-静态微泡浮选柱已在柿竹园有色金属公司萤石分选、白钨粗选、铜铅锌分选,内蒙齐华矿业公司铜硫别离及铜精选,弓长岭矿业公司磁铁矿反浮选,云铜集团玉浮矿业公司大红山铜矿选矿厂全流程铜分选,紫金集团新疆阿舍勒铜矿半优先浮选作业等多种矿石分选作业投入工业运转。     (三)旋流-静态微泡浮选柱的特色     与其他浮选设备比较,旋流-静态微泡浮选柱首要有如下特色:     1、分选精度高,流程简略。柿竹园萤石浮选选用1次粗选、3次精选流程,可安稳取得高层次合格萤石精矿;与浮选机1次粗选、2次扫选、9次精选、2次精扫的14段作业比较而言,流程结构大大简化;浮选柱1次分选合格尾矿,1次粗选精矿层次到达90.00%以上,适当于浮选机4~5段的选别作用。此外,柿竹园白钨粗选作业选用1次粗选,1次精选流程替代柿竹园有色金属公司白钨矿粗选1次粗选、2次扫选、3次精选流程,精矿层次比浮选机进步4~8个百分点,回收率进步3~5个百分点。     2、动力耗费低。在柿竹园的萤石分选及白钨粗选作业成果标明,运用浮选柱可比运用浮选机在浮选环节节省装机功率1/5以上。     3、体系运转安稳。设备操作保护便利,故障率低,进程运转安稳;首要易损件为气泡发作器,浮选柱在萤石分选及磁铁矿反浮选的运用标明,选用高标号氧化铝微晶陶瓷作为气泡发作器的内芯,气泡发作器可耐高硬度物料的磨蚀,经检测,1年的工业运转,主过流部件磨损率不到5%。     4、尾矿自动操控。选用压力传感器-数显仪-电控阀门闭路操控,可完成液面的安稳调控。一起留有长途操控接口,可完成集中操控。     二、国内钼矿的资源散布和矿石特性     现在已发现的钼矿藏有十几种,其间具有工业价值的首要是辉钼矿。     (一)钼矿床的散布     钼矿床分为4大类:斑岩钼矿床、矽卡岩型钼矿床、斑岩型铜钼矿床和其他钼矿床。我国钼资源矿床类型杂乱,但以斑岩型钼矿床为主,占到全国总储量的77.3%,矽卡岩型钼矿床占16.4%,其他类型钼矿床仅占到总储量的6.3%。单一矿石的钼储量占全国总储量的29.7%,其他则为铜钼型、钼钨型、钼铁型等共生矿床。但整体来说,小于0.10%层次的储量约占总储量的65%,而大于0.30%层次的富矿仅占总储量的1%左右。     国内钼矿资源首要有河南栾川的特大型触摸蜕变型钼钨矿床、陕西金堆城特大斑岩型钼矿床、辽宁杨家杖子大型触摸蜕变型钼矿床和吉林大黑山斑岩型钼矿床,钼储量占全国钼总储量的70%左右。     (二)钼矿石的特色     除少数当地(杨家杖子、兰家沟等地)的为单一的钼矿石外,国内大多数钼矿石为伴生钼矿石,首要有铜钼矿石、钨钼矿石、炭质铜钼矿石和铀钼矿石等。     辉钼矿的晶体结构类似于石墨,层间的分子力表现为非极性;沿S-Mo-S层间损坏而露出聘为的端面为极性键。研讨标明,辉钼矿的可浮选性取决于不同粒度的辉钼矿的面棱比,分子键裂面即{001}面占的份额越大,可浮性就越好;反之,过粗或过细的辉钼矿石因为{001}面份额减小而导致可浮性下降。别的,氧化的辉钼矿触摸下降、亲水力增强,然后导致可浮性下降,氧化程度越高,可浮性越差。     三、辉钼矿柱式分选实践     传统的钼矿分选工艺是选用浮选机流程,流程杂乱,精选往往需求7~10次;而选用旋流-静态微泡浮选柱分选工艺流程(简称柱式分选),精选段只需求2~3次就能够到达抱负的精矿目标,乃至能够不需求扫选环节就能够到达满足的回收率,大大简化了流程,进步了钼矿分选的功率。     现在选用柱式分选工艺现已进行了河南两个当地不同品种钼矿石的中试实验项目,均取得了满足的作用。     (一)氧化矿钼矿分选实验     河南某矿钼矿石为强矽卡岩化的蛇纹石化辉钼矿矿石、绿泥石化辉钼矿矿石、强褐铁矿化氧化贫矿石。有用成分首要是氧化程度较高的辉钼矿,矿藏嵌布以微细粒嵌布为主;脉石矿藏中绿泥石、蛇纹石、滑石等易泥化的矿藏较多。很多原生及次生矿泥影响了钼的回收率,因而该钼矿为国内外极难选钼矿。[next]     该矿现有1100t/d处理量的选矿厂,分为2个系列。一系列为500t/d的处理量,选用1次粗选、3次扫选、10次精选的流程;二系列规划为600t/d,选用1次粗选、4次扫选、10次精选的流程。     上述流程存在的首要问题是:①钼金属回收率低,仅有40.00%~50.00%;②钼精矿层次低,钼精矿层次仅为15.00%~20.00%,达不到钼精矿最低国家质量标准。     2006年3月该矿与我国矿业大学协作,选用柱式分选工艺别离进行了-20μm粒级细泥浮选柱半工业分流实验,随后进行了粒级半工业分流实验和精选分流实验,取得了满足的实验作用;2007年8月该厂安装了3台工业浮选柱,通过调试实验,体系安稳运转。     细泥部分是入浮原矿分流了一部分进行水力旋流器分级,-20μm粒级部分进入柱分选体系,经1次粗选、2次精选取得精矿产品和尾矿;全粒级分选是直接从入浮原矿分流进入柱分选体系进行分选;精选部分是直接引进浮选机粗选精矿经3次精选取得终究钼精矿产品。     细泥和全粒级分选流程见图2,精选流程见图3。  图2  细泥/全粒级分流实验流程   图3  浮选柱精选分流实验流程                                    细泥部分半工业分流实验成果见表1,全粒级半工业分流实验成果见表2,精选分流实验成果见表3。 表1  细粒级矿石半工业分流实验成果  %班次浮选柱浮选机原矿精矿尾矿回收率原矿精矿尾矿回收率1 2 3 4 均匀0.169 0.198 0.180 0.210 0.18927.40 29.60 27.45 28.38 29.210.070 0.082 0.078 0.083 0.07858.73 58.75 56.83 60.65 58.740.186 0.195 0.217 0.204 0.20122.17 18.58 18.83 17.96 19.390.09 0.121 0.117 0.102 0.10851.82 37.95 46.37 50.29 46.61     从表1看出,关于细粒级钼矿的分选,柱式分选比浮选机流程有显着的优势,精矿层次进步了8.82个百分点,回收率进步了12.13个百分点。因为该矿石的高氧化部分大部分赋存于细粒级中,所以将细粒级分级出来选用柱式分选是有杰出作用的。 表2  全粒级矿石安稳性实验成果  %班次浮选柱浮选机原矿精矿尾矿回收率原矿精矿尾矿回收率1 2 3 4 5 均匀0.195 0.184 0.197 0.195 0.191 0.19229.49 26.47 31.89 30.71 30.54 29.820.102 0.063 0.093 0.097 0.100 0.09147.86 65.92 52.95 50.41 47.80 52.770.186 0.212 0.194 0.190 0.188 0.19419.67 17.85 18.11 16.38 18.20 18.040.108 0.111 0.0984 0.108 0.104 0.10642.17 47.94 49.55 43.16 44.94 45.63     从表2看出,全粒级钼矿分选,与细闰级比较,柱式分选精矿改变不大,可是尾矿略微偏高。首要原因是矿石粒度变粗,未彻底解离的部分添加;可是比同条件下浮选机流程的分选成果要好,在入料性适当的情况下,柱式分选的精矿层次进步了11.78个百分点,回收率进步7.14个百分点。   表3  浮选柱精选分流实验成果班次粗精浮选柱浮选机精矿精尾回收率精矿精尾回收率1 2 3 均匀1.73 2.03 1.86 1.8738.74 37.52 39.29 38.520.235 0.284 0.319 0.27986.94 86.67 83.53 85.7019.89 17.35 19.26 18.500.798 0.672 0.653 0.70856.25 69.59 67.17 64.61     从表3看出,与浮选机10次精选成果比较,平等入料条件下,柱式分选两段精选的作用更好。精矿层次能够进步到38.52%,比浮选机进步了20.02个百分点,精选回收率进步 21.09个百分点。     氧化矿钼矿的半工业分流实验成果标明,柱式分选关于高氧化率钼矿石有着比普通浮选机流程更为高效的分选功率。因为矿石氧化程度较高,在现有药剂准则条件下,精矿层次很难进步到40.00%以上,回收率也很难进步到65.00%以上。     (二)脉石型钼矿分选实验     该矿钼矿石为石英脉型辉钼矿床,首要为花岗斑岩和安山玢岩结构。有用矿藏为辉钼矿,首要伴生矿藏有磁铁矿、黄铁矿和钛铁矿等;脉石矿藏首要有石英、长石、云母、绿泥石等;矿石中的辉钼矿嵌布粒度细,与脉石矿藏关系密切,简单被包裹其间,别离难度大;别的矿石含有很多的黄铁矿,极易和精矿一起浮出,也添加了分选难度。因而该矿石尴尬选辉钼矿。     该矿现有1座处理才能2000t/d选厂,粗选部分包含本来老厂的800t/d和扩建的1200t/d两个体系。800t、1200t粗磨粗选系列的粗精矿混合后,进入分级再磨和精选体系,粗精矿通过一段再磨,9次精选,1次扫选,终究钼粗矿层次能够到达45.00%左右,精选回收率73%左右。该体系存在的首要问题是:①作业环节杂乱、精选次数多、流程过长,不利于体系安稳;②浮选功率较低(钼精矿层次45%左右)且不行安稳。为进步钼精矿的层次及精选环节的作业回收率,该矿托付我国矿业大学在2000t/d选矿厂进行了浮选柱精选增工业分流实验,取得了满足的分选作用。     精选半工业分流实验的入料为粗精矿经水旋流器分级后的溢流,通过3次柱式精选取得终究精矿产品。浮选柱精选体系半工业分流流程见图2,实验成果见表4。 表4  浮选柱精选分流实验成果  %班次浮选柱浮选机原矿精矿尾矿回收率原矿精矿尾矿回收率1 2 3 4 5 6 均匀8.51 7.24 5.36 5.88 6.43 4.74 6.3652.61 53.06 50.23 51.65 53.87 49.59 51.840.672 0.613 0.557 0.542 0.571 0.539 0.58293.30 92.60 90.61 91.75 92.10 89.60 91.889.32 7.15 6.42 5.76 7.47 5.61 6.9648.07 46.38 45.43 45.89 46.96 45.35 46.351.658 1.620 1.451 1.479 1.502 0.951 1.44485.15 80.14 79.95 76.80 82.53 84.83 81.80     从表4看出,用柱式3次精选,能够使钼精矿层次进步到51.84%,比浮选机9次精选、1次扫选的精矿高5.49个百分点。依据钼矿国家标准,能够进步钼精矿产品层次;回收率进步到了91.88%,比浮选机流程回收率进步了 10.08个百分点。     上述数据成果表现出了柱式分选对该类钼矿石分选方面比浮选机流程具有显着的优势。

废有色金属的物理分选

2018-12-12 09:40:23

分选技术应用于农业、矿业、化学工业、垃圾分选等许多领域,其分选的基本原理是普遍适用的,大体上说,分选技术是以粒度、密度等颗粒物理性质差别为基础的分选方法为主,而以磁性、电性、光学性质差别为基础的分选方法为辅。  1 .物理分选  (1) 筛分 是利用筛子将粒度范围较宽的混合物按粒度大小分成若干不同级别的过程。主要与物料的粒度或体积有关,筛分时,通过筛孔的物料称为筛下产品,留在筛上的物料称为筛上产品。筛分一般适用于粗粒物料的分解。常用的筛分设备有棒条筛、振动筛、圆筒筛等。 根据筛分怍业所完成的任务不同,筛分可分为独立筛分、准备筛分、辅助筛分、选择筛分、脱水筛分等。在固体废物破碎车间,筛分主要作为辅助工序,其中破碎前进行的筛分称为预先筛分,对破碎作业后所得的产物进行的筛分称为检查筛分。  (2) 粉磨 在同体废物处理和利用中占有重要的地位。粉磨一般有 3 个目的:  (a) 对物料进行最后一段粉碎,使其中各种成分单体分离,为下一步分选创造条件;  (b) 对各种废物原料进行粉磨,同时起到把它们混合均匀的作用;  (c) 制造废物粉末,增加物料比表面积,为缩短物料化学反应时间创造条件。  磨机的种类很多,有球磨机、棒磨机、砾磨机、自磨机 ( 无介质磨 ) 等。  (3) 重力分选 是将物料加入活动或流动的介质中,由于颗粒密度的差异而导致运动速度或运动轨迹的不同,分选为不同密度产物的选矿方法。  重力分选过程中常用的介质有水、空气和悬浮液。目前,重液还仅限于实验室内应用。  重选方法可分为重介质选、跳汰选、摇床选和溜槽选。广义地讲,分级和洗矿也属于重选的范畴。  重选的优点是生产成本低,处理的物料粒度范围宽,对环境的污染少。(4) 浮选 是固体废物资源化技术中的重要工艺方法,主要用于分选出不易被重力分选所分离的细小固体颗粒。浮选的原理是利用矿物表面物理化学的特性,在一定条件下加入各种浮选剂 ( 起泡剂、捕收剂、抑制剂、介质调整剂等 ) ,并进行机械搅拌,使悬浮固体附在空气泡或浮选剂上,随着气泡等一起浮到水面上来,然后再加以回收。    (5) 磁流体分选 磁流体是指某种能够在磁场或者磁场与电场联合作用下磁化,呈现似加重现象,从而对颗粒具有磁浮力作用的稳定分散液。磁流体通常采用强电解质溶液、顺磁性溶液、磁性胶体悬浮液。似加重后的磁流体密度称为视在密度,视在密度高于介质密度原数倍。磁流体的视在密度可以通过改变外磁场强度、磁场梯度、电场强度任意调节。将固体废物置于磁流体中,通过调节磁流体的视在密度可对任意相对密度的物料进行有效地分选。         电场分选对于塑料、橡胶、纤维、废纸、合成皮革、树脂等与某种物料的分离,各种导体和绝缘体的分离,工厂废料如旧型砂、磨削废料、高炉石墨、煤渣和粉煤灰等的回收,都十分简便、有效。      (7) 拣选 是利用物料之间的光性、磁性、电性、放射性等拣选特性的差异,实现分选的一种新方法。拣选时,物料呈单层 ( 行 ) 排队,逐一受到检测器的检测,检测信号通过电子技术放大,驱动拣选执行结构,使目的物质从物料中分选出来。     拣选可用于从大量工业固体废物和城市垃圾中分拣出塑料、橡胶、金属及其制品等有用物质。     (8) 摩擦和弹道分选 是根据固体废物中各种混杂物质的摩擦系数和碰撞恢复系数的差异进行分选的一种新技术。其原理是,各件固体废物摩擦系数和碰撞恢复系数明显不同,但它们沿斜面运动受与斜面碰撞时,就会产生不同的运动速度和反弹运动轨迹,从而达到彼此分开的日的。例如,城市垃圾从一定高度投八可移动斜面筛网上端时,其中的碎砖瓦、碎玻璃等与斜面筛网弹性碰撞产生反跳,有机性垃圾和炉灰等近似塑性碰撞,不产生反跳,从而与砖瓦、玻璃、金属块等分离出来。     磁流体分选是一种重选和磁选联合作用的分选过程。物料在似加重介质中按密度差异分离,与重选相似;在磁场中按物料磁性差异分离,与磁选相似,因此既可以将磁性和非磁性物料分离,亦可以将非磁性物料按密度差异分离。      磁流体分选法在固体废物的处理和利用中占有特殊的地位,它不仅可分选各种工业废渣,而且可从城市垃圾中分造铝、铜、锌、铅等金属。例如,将经过筛分或风力分选及磁选后的富含铝的垃圾放人水池中,通过调整水溶液的密度,使铝浮出水面,而其他物质仍沉在池底。这是最常用的铝回收法。     (6) 电场分选 是在高压电场中利用人选物料之间电性差异进行分选的方法。一般物质大致可分为电的良导体、半导体和非导体,它们在高压电场中有着不同的运动轨迹。利用物质的这一特性即可将各种不同物质分离。

某钼铜硫化矿优先分选分离试验研究

2019-02-20 10:04:42

关于多金属硫化铜矿石,一般依据矿石组分特性别离选用混合浮选法、优先浮选法、部分混合浮选法,以及浮选和湿法冶金联合办法进行处理。从铜钼矿石中选矿收回钼,常用流程是铜钼混合浮选,进而铜钼别离和钼精矿的精选。本文以青海格尔木矽卡岩型钼铜多金属矿石为目标,进行了较为具体的工艺矿藏学研讨和铜钼优先分选别离浮选收回研讨。 一、矿石性质 岩矿判定成果表明,青海格尔木钼铜矿为半自形—他形晶粒结构,粒度较细,呈不均匀细脉浸染状结构,属触摸告知蜕变矽卡岩型矿石。矿石中铜矿藏首要有黄铜矿、斑铜矿、辉铜矿、蓝辉铜矿、孔雀石和铜蓝等,各种铜矿藏告知被告知包括被包括杂乱,黄铜矿与斑铜矿、斑铜矿与辉铜矿等构成广泛的极细(-0.001mm)的页片状溶出结构,单体粒度嵌布较细。钼的独立矿藏首要为辉钼矿。该矿石中铜、钼为首要收回元素,金、银等伴生有利组分可富集于铜精矿中,不用独自收回。其矿石多元素化学分析成果见表1,钼物相分析成果见表2,铜物相分析成果见表3,矿石中各矿藏相对含量见表4。依据矿石特色,首要混合粗选得到铜档次合格的铜钼混合精矿,再进行抑铜浮钼优先分选,取得铜精矿和钼精矿,在铜粗选阶段增加活化浮选,以加强收回氧化铜的单一浮选计划是处理该矿石切实可行的办法。 表1  原矿首要化学成分分析成果/%表2  原矿钼物相分析成果表3 原矿铜物相分析成果表4 原矿矿藏组成与含量二、实验成果及评论 (一)磨矿细度实验 适宜的磨矿细度是浮选作业的要害。由图1磨矿细度实验成果来看,细磨有利于铜、钼的收回,故磨矿细度断定为-0.074mm90%。(二)Na2S用量实验 Na2S对矿石活化的好坏是氧化铜浮选收回的要害。从图2Na2S用量实验成果来看,Na2S用量过少时,不能彻底活化氧化铜矿藏;用量过多时,过量的Na2S会对硫化铜矿藏有所按捺。跟着Na2S用量递加,铜收回率呈先增高后下降的趋势。辉钼矿天然可浮性好,在混合粗选阶段现已根本收回,Na2S用量对钼收回率影响不大。当Na2S用量为400g/t时,铜、钼收回率较高。(三)丁黄药用量实验 由图3丁黄药用量实验成果可知,跟着丁黄药用量的增加,铜收回率增高;当其用量超越600g/t时,铜收回率改变甚微,因此断定丁黄药的用量为600g/t。(四)混合精矿优先分选实验 目前国内铜钼别离与钼精矿的精选常用的首要办法有法和法。但法和法对黄铜矿的按捺作用较强,对辉铜矿及次生辉铜矿按捺作用不灵敏。并且选用作按捺剂,报价较贵,还形成环境污染。如无浮选能够完成铜钼别离,则不考虑用作铜矿藏的按捺剂。近年在日本、澳大利亚及加拿大等国在用H2SO3按捺硫化铜矿藏的实验研讨方面取得了经历,并证明H2SO3对硫化铜矿具有较强的选择性按捺作用。的按捺机理,一是加强了铜矿藏表面的亲水性;二是改变了硫化铜矿藏表面氧化复原电位,使之下降了可浮性。考虑到-0.074mm90%的细度现已使硫化铜矿藏集合体以及钼矿藏单体解离比较充沛,为铜钼别离分选发明了有利条件,因此混合精矿不再磨直接分选。实验选用H2SO3为铜矿藏的按捺剂,辅佐增加水玻璃(用量与H2SO3相同)按捺硅酸盐矿藏并涣散矿泥,先将以适量火油作捕收剂得到的一段混合粗选精矿进行10min的拌和脱药,再进行别离粗选以及钼粗精矿的两次精选。由图4实验成果表明:H2SO3能够有效地抑铜浮钼;当别离粗选、水玻璃用量大于200g/t时,钼收回率下降;当用量小于200g/t时,钼精矿档次达不到要求;而别离粗选、水玻璃用量为200g/t时,别离的归纳目标较好。(五)全流程归纳条件实验 按图5所示工艺流程及条件进行开路流程实验,其成果见表5。表5实验成果表明,全流程归纳条件开路实验可得到钼档次50.36%、收回率76.86%的钼精矿以及铜档次21.51%、收回率86.04%的铜精矿。铜精矿含Au5.32g/t、Ag873.1g/t,Au、Ag可在铜冶炼阳极泥中收回。尾矿中0.03%的钼,首要是氧化钼,可先用油酸得到低档次钼精矿后,再用水冶处理得到钼酸钙产品。表5  归纳条件开路流程三、定论 1、该钼铜多金属矿石归纳利用价值大,细磨有利于金属矿藏收回。 2、H2SO3抑铜浮钼作用显着,可为无浮选完成铜钼别离供给学习。 3、所拟定的工艺使铜、钼、金、银等得到充沛收回,且流程合理、工艺简略,目标先进。 参考文献: [1] 杨顺梁,林任英. 选矿常识问答[M].北京:冶金工业出版社,1999. [2]《选矿手册》编委会.选矿手册(8卷1分册) [M].北京:冶金工业出版社,1990. [3] 庄洪刚,解修谦.德兴铜矿资源归纳收回总述[J].中国矿业,2004 (论文集): 180~182. [4] 黄济存.铜钼别离及精选技能[J].有色金属(选矿部分),1988 (2):32~38. 作者单位 厦门紫金科技股份有限公司(鲁军) 紫金矿冶规划研讨院(孔晓薇)

硫化铜锌矿分选流程了解

2019-02-25 10:50:24

黄铜矿常呈细粒浸染或乳浊状固溶体存在于闪锌矿中,不易单体解离,即便达到了单体解离,这样细小的颗粒(常在0.005mm以下)别离也很困难;更遍及的是闪锌矿受矿石生铜矿藏(特别是次生硫化铜矿藏)中铜离子的活化,使闪锌矿不同程度地显示出类似于铜矿藏的可浮性;有的闪锌矿其可浮性比黄铜矿还好。因而硫化铜锌矿的分选是比较困难的。 硫化铜锌矿浮选办法 (1)硫化铜锌矿浮选的准则流程。常用的有优先浮选、半优先(易浮铜矿藏)混合(难浮铜和锌矿藏)别离浮选、部分混合浮选、等可浮选等几种,其间半优先混合别离浮选和等可浮选流程更能习惯铜或锌矿藏自身可浮性差异大的矿石。就磨浮段数来说,关于细密共生难以别离的铜锌矿石多选用混合精矿再磨、粗精矿再磨或中矿再磨的阶段磨浮流程。 (2)铜锌别离办法。铜锌混合精矿的别离是难度较大的一个课题。在别离之前都要用活性炭和等脱药,最好是脱药后脱水从头调浆再别离。 别离的流程计划有浮铜抑锌和浮锌抑铜两种,视矿石(或混合精矿)中铜锌含量份额、矿藏可浮性差异以及药剂来历和运用情况而定,特别是要根据取得的终究目标来决议。一般常用浮铜抑锌计划。 别离的计划有无法和有法两种。当铜矿藏主要为原生铜矿藏时,最广泛运用的无别离办法为石灰++硫酸锌,石灰+硫酸锌十二氧化硫(或钠)法,而石灰+法运用有限。当铜矿藏主要为次生硫化铜时,在苏打介质中能够铁3~6kg/t抑铜浮锌也能够将混合精矿氧化、加温矿浆以按捺次生铜矿藏浮锌。 铜精矿中降砷最常用的办法是添加精选次数,在精选中补加石灰、(或其盐),操控 pH6.5~7,屡次精选和按捺,使毒砂失掉(或下降)可浮性。 硫化铜锌矿石浮选中,不少现场力求选用选择性好的捕收剂,如:Z-200号、醚硫酯(捕收剂234)、JF-1、丁黄酯等药剂浮铜矿藏,既节约按捺剂,又能取得较好的分选目标。

废有色金属的预处理-分选

2019-01-24 11:10:22

废有色金属的预处理是指将有色金属废件和废料的状态变成能够进行有效的后续冶金加工的过程。这一过程包括:使各种废件和废料达到规定的外形尺寸和重量标准;将有色金属与黑色金属分离;去除非金属夹杂物、水分、油质等。对废有色金属进行精细和高质量的准备,使之适用于冶金工序,可以使有色金属损失减少到最低程度,使燃料、电力、熔剂的单位消耗降低,使冶金设备和运输工具得到有效的利用,并使劳动生产率及有色金属与合金产品的质量得到提高。     有色金属废件与废料的预处理包括下列主要工序:分选,切割,打包,压块,破碎,粉磨,磁选,干燥,除油等。特种再生原料(废蓄电池、废电动机、废电线、马口铁废料)的预处理,采用专门的生产线。     全苏再生有色金属科学研究设计院研究出废有色金属预处理的一般工艺流程(图1),该流程从有色金属废件与废料进入车间起,至成品发往用户厂为止。 分  选     对混杂的废有色金属进行预处理的目的,是将废件和废料分选成单一的金属和合金,除去其中的黑色金属和非金属物质。主要的分选方法有形态分选、机械分选、重介质分选、冶金分选。     形态分选是根据外观标志(颜色、断裂特征、硬度、比重、磁性等)和实物标志(零件名称),按照牌号,借助点滴分析法、光谱分析法和专用仪器,采用目视方法对废有色金属进行分选。     机械分选包括粒度分选(用筛子)和去除铁夹杂物的分选(用电磁选)等工序。废铅蓄电池以及其它处类再生原料的分选,采用重介质分选装置进行。     对带有铁镶嵌物的低质量废有色金属的冶金分选,在熔炉中进行。冶金分选是根据有色金属与钢的熔点差别大的原理。     对有色金属废件和废料的形态分选,则在拣选台、传送装置和传送线上进行。                        图1  废有色金属预处理的一般工艺流程    尺寸不超过250毫米的块状有色金属废料的分选,采用机械化拣选台(图2)。这种拣选台是一个带有固定环形边缘的旋转盘,出料槽固定在边缘上。受料仓装有链条,可以节制卸往拣选台的料量。装入受料仓的混杂料在拣选台旋转过程中沿环形工作台面均匀散布。分选后的物料顺出料槽卸入数个接料箱,每个接料箱只接受一种废有色金属。当落入木块料时,受料仓借助由电动装置传动的螺杆升起。受料仓的容积为1.9米3。除受料仓之外,拣选台还设有出料槽6个。拣选台的转速为0.03转/分,分选能力约20吨/小时,由3~5名手选工操作。  图2  废有色金属机械化拣选台 1-受料仓;2-支承棍;3-拣选台;4-活动挡板; 5-电动机;6-减速齿轮;7-活动式出料槽[next]     分选传送装置(图3)用来分选无碎屑夹杂的尺寸较大的废有色金属。板式分选传送装置同时还可以用于从受料仓卸料,用于形态分选并将选出的废有色金属送入容器。通过负荷限制器可以调节传送装置的分选能力,控制投入分选的废料的块度。限制器格栅的最大开度为500毫米。带宽800毫米的传送装置运行速度为1.25~3.75米/分,分选能力10.0吨/小时。图3  分选传送装置 1-传送装置;2-料仓;3-限制器;4-传动装置     全苏再生有色金属科学研究设计院研制出数种型号的分选生产线。此种分选线(图4)适用于分选带大量铁镶嵌物的大块废有色金属。板式给料机将物料由料仓送至带式分选传送装置,然后由эпP-12型悬吊式电磁吸铁器分选出铁夹杂物。选出的铁磁性物和带有铁磁性物和带有铁镶嵌物的零件卸入接料箱。下面是配有板式给料机的分选线的性能参数:分选能力(吨/小时) 10~15装料块度(毫米)最大400最佳300传送带宽(毫米) 1000传状带的运行速度(米/秒) 0.03~0.05料仓容积(米2) 5.7     带式传送装置的分选段长度L(米)用下式计算: L=Qa/qb           (9)  图4  废有色金属分选线 1-料仓;2-板式给料机;3-эпP-120型铁分选器; 4-带式分选传送装置;5-传动装置;6-接料箱 式中,Q-分选线上加工能力(吨/小时);q-手选工生产定额(吨/小时);a-每个手选工分管段的长度(a=2.5~3.0米);b=1-单边分选,b=2-双边分选。     粒度分选  当有必要从各种废件与废料中分选出细碎组分或者大块组分时,适宜用这一工序。在整个预处理流程中,原料的粒度分选既能起到主导作用,也能起到辅助作用,分选过程一般采用筛分机。     原料筛分有干、湿两种,湿式筛分适用于潮湿和细小的物料。如果分选的是粒度小于5毫米的筛下产品,则湿筛分往往要比干筛分的效率高。     再生有色冶金工业中使用的各种筛分机,有固定式格筛、滚筒筛和振动筛。在选用这些筛分机时,要考虑到被处理原料的特性以及对筛分产品的质量要求。[next]     固定筛适用于分选粒度大于50毫米的物料。这类固定筛有栅格式和水平式两种。当筛分块状物料时,筛分机倾角不得小于35°;当分选扁平形状的物料或潮湿碎块时,其倾角不得小于50°。栅格式筛分机的筛分效率不超过65%。所需筛分面积F(米2)可按下式计算: F=Q/2.4α           (10) 式中,Q-按原始原料计算的分选能力(吨/小时);α-筛条缝隙宽度(毫米)。     在选择栅格式筛分机的尺寸时应遵循以下规则:筛分机的宽度大于最大料块2倍,筛分机的长度至少是宽度的2倍。     滚筒筛是一个直径在2.7米以内有若干筛网(筛孔直径不一),串联或并排安装。图5是筛网成串联配置的滚筒筛。为了进行湿筛分,滚筒内安装了喷头。倾斜筛分机,即可将筛下产品卸出。固定在滚筒内表面上的叶片可以促使滚筒的物料移动。  图5  筛网成串联配置的滚筒筛 1-电动机;2-减速器;3-齿轮转动装置;4-滚筒;5-连接板     滚筒筛适用于筛分大块和中等块(块的尺寸不超过250毫米)的物料,能够制取粒度不小于25毫米的筛下产品。筛分效率为60~70%。滚筒倾斜角2~8°,转速11~15转/分。     振动筛广泛用于废有色金属的粒度分级。各种振动筛的结构和规格尺寸区别很大,分选能力以及原料与筛下产品的块度也极不相同。根据筛子摆动的方法,振动筛又分为惯性筛、自动平衡筛和共振筛。     在惯性筛上,有一个或两个替换筛网的箱体,装在弹簧吊架上或者金属架上。筛分机振动依靠不平衡转子轴的转动来完成。     自动平衡筛适用于选矿产品的脱水、悬浮物的分离和加重剂的洗涤。筛箱吊在弹簧支架或者板簧上,与筛分机刚性连接的是自动平衡振动器。筛分机依靠振动器轴的转动而摆动,振动器上轴上装有几个偏心固定的坠锤。筛分机倾斜度在8°以下。     共振筛适用于筛分块尺寸在300毫米以内的任何种类的废有色金属,还可用于块状废料与泥渣的脱水。这种筛分机是一个由箱体和固定框架组成的系统,箱体和框架用弹性连杆(板簧和弹簧支架)相连接。传动装置的连杆采用橡胶元件与箱体装配在一起。箱体的振动依靠橡胶元件弹性的周期变化力完成,橡胶元件的受迫振动频率接近于共振频率。这种类型的筛分机分选能力高,作业可靠性强,电耗低。     振动筛的分选能力Q(米3/小时)可按下式计算:Q=100-ε6α·0.95BL(11)7.5 式中,ε-筛分效率,为75~80%;α-筛眼尺寸(米);L-筛分机长度(米);B-筛分机宽度(米)。     所需筛分面积F(米2)用下式求出: F=103Q/qδ          (12)     式中,Q-振动筛分选能力(吨/小时);q-物料体重为2.6×103千克/米3时1平方米筛网的单位分选能力;δ-物料体重(千克/米3)。     电磁分选  适于电磁分选的物料有尺寸在450毫米以下的废屑和残材,炉渣,筛下产品,尘状废料,经过破碎的废电缆、废蓄电池、下脚料、冲压废料等。电磁分选的目的是从再生原料中选出铁磁性物体和带有大量铁镶嵌物的零件。     可采用各种不同的电磁分选机来处理有色金属废件与废料。这些电磁分选机的结构特点与用途各有不同。因此,在选用时要考虑到物料的粒度、要求达到的除铁率以及分选能力。     铁磁性夹杂物能否完全选出,取决于原料的粒度、层厚、堆积量和夹杂率,还取决于磁场强度和所分选的物料在磁场内的移动速度。     目前,在处理有色金属废件与废料时一般采用эпP型悬挂式电磁除铁器、шэ型电磁轮以及各种电磁分选机。悬挂式除铁器安装在带式传送装置的上方。电磁轮同时充当分选传送装置的驱动滚筒,装在卸料带内。     悬挂式分选机沿传送装置轴线纵向或者横向安装。含铁物体被电磁铁吸到卸料带上,然后被带至卸料端。从原料中分选磁性组分的过程是连续进行的。分选机传送带的卸料过程既可连续,也可根据带上磁性物料的堆积量间断进行。悬挂式分选机不能分选尺寸在5毫米以下、重量小于0.08千克的铁磁性零件。     эпP-120型电磁分选机(图6)有一条宽达1200毫米、运行速度达2米/秒的传送带。分选机安装在距离传送装置280~450毫米的上方。传送带上的磁场强度为100~150千安/米。所分选零件的重量不得超过20千克。  图6 эпP-120型分选机 1-支承滚筒;2-卸料带;3-电磁铁; 4-主动鼓;5-框架;6-张力鼓;7-传动装置     电磁轮适用于从散粒装或块状物料流中分选铁磁性夹杂物。传送带的最佳运行速度为1.25~2.0米/秒,与电磁轮的转速50~60转/分保持一致。所分选物料的粒度和传送带上的料层厚度不得超过150毫米。     连续动作的电磁分选机(图7)适合从粒度小于60毫米的物料中分选铁磁性夹杂物,并且能利用电磁系统的水冷却装置处理温度在110℃以下的原料。在磁场强度为140~150千安/米的情况下,此类电磁分选机的铁磁性夹杂物选出率为98~99%,其发选能力取决于原料的粒度和温度,在处理块状物料时要达30吨/小时,处理废屑和下脚料时可达20吨/小时,处理尘状产品时则可达8~10吨/小时。[next]  图7  эБC-2型电磁分选机 1-料仓;2-溜槽式给料机;3-振动器;4-滚筒;5-电磁系统;6-框架     为了对粒度在20毫米以下的有色金属废屑及块状废料进行处理,全苏再生有色金属科学研究设计院研制出包括磁选在内的工艺流水线(图8)     这种工艺流水线是用给料机将原料从容积为2.5米3的料仓送至带有两个筛网的C-388型自动平衡筛分机。筛分后得到粒度为+20,-20,+3,和-3毫米的物料。粒度为+20毫米的产品中包括:卷状废屑,废有色金属和废钢铁,非金属物质。在带式分选传送装置上将有色金属废件及块状废料同非金属物质分开,废钢铁的分选采用电磁轮。  图8  有色金属废屑的加工工艺流水线 1-框架;2-减速器;3-料仓;4-溜槽式给料机; 5-筛分机;6-下料管;7-磁选机;8-带式传送装置;9-电磁轮     对-20,+3毫米级的铝屑和-20毫米级的铜屑,可用具有活动磁场的磁选机(图9)处理,这种磁选机能够搅动被分选的废屑流,更好地分选出铁磁性夹杂物。[next]     这种工艺流水线能制取铁含量在0.08%以下的松散有色金属屑和有色金属含量在2%以下的黑色金属屑。流水线的分选能力为5米3小时。  图9  铜合金废屑加工装置示意图 1-料仓;2-振动给料机;3-ГB-06型筛分机; 4-ПБСЦ-63/50型分选机;5-带式传送装置;6-СЭ-3型分选机;7-接料箱     许多再生有色冶金企业广泛采用装有СЭ-3型和СЭ-4型电磁分选机的废铜屑分选装置。     СЭ-3型电磁分选机(图10)适用于分选粒度在20毫米以内、水分含量不超过4%、油质含量不超过0.5%的弱磁性和非磁性有色金属废料。物料经预除铁之后进入分选机的作用区。在强磁场作用下,弱磁性废料从原料中选出并卸入接料箱,非磁性物料由带式给料机送至另一容器。分选机分选铜基合金屑的能力为0.6~1.2千克/秒。  图10  СЭ-3型电磁分选机 1-卸料装置;2~5-卸料装置的传动器;6-框架;7-电磁铁悬挂装置;8-电磁铁     分选产品之间的相互掺杂不超过0.5%。СЭ-3型分选机距极面10毫米时磁场强度为130~450千安/米,其分选区磁场最大磁力为7.2×1013安2/米3,给料机带宽400毫米,带上屑层厚度不超过20毫米,线圈(绕组)加热允许温度为428°Κ。     处理含铜废料的ΚУΡС装置(图11),其中的设备之一就是СЭ-3型分选机。ΚУΡС装置已推广应用于全苏再生有色金属联合体的许多企业,它作业可靠性强,且能够保证产品的高质量,用这种产品即可炼制标准合金。先把原料装入容积为1.5米3的料仓,然后送到振动筛(1040振次/分)上,得到+20和-20毫米级产品。+20毫米产品(主要是切屑)被排除出处理流程。粒度为20毫米的物料则进入滚筒式磁选机预除铁,然后由带式给料机至СЭ-3型分选机的作用区内。分选出的产品卸入对应的接料箱。  图11  ΚУΡС型含铜废料综合处理装置 1-料仓;2-振动给料机;3-磁选机;4-电磁分选机; 5、8、11、12-料箱;6-振动筛;7-带式传送装置;9-带式给料机;10-卸料器     用ΚУΡС装置可以综合处理铜合金废置、有色金属掺率在2%以下的黑色金属废料以及铝铁、青铜、铁锰青铜(黄铜)、锰青铜(黄铜)、锡青铜或铅黄铜废料。该装置的分选能力为1.2千克/秒。     СЭ-4型分选机(图12)能够从混杂屑中除铁并且可以分选各种不同牌号的弱磁性和超导磁青铜、黄铜。由传送装置先把-20毫米粒度的原始废屑关入永久磁铁作用区,选出铁屑,再把弱磁性和非磁性废屑送至电磁铁,电磁铁产生的强磁场将弱磁性部分选出。这样,СЭ-4型分选机不用附加除铁设备即可将废屑分选成三种产品。这种分选机处理原始废屑的能力可达1.5千克/秒,其距极面20毫米的磁场强度不小于300千安/米,分选产品之间的相互掺杂率不大小0.2%。  图12  СЭ-4型电磁分选机 1-卸料器的传动装置;2-卸料器;3-磁靴;4-电磁铁;5-弧极;6-永久磁铁块     全苏再生有色金属研究设计院在СЭ-4型电磁分选机的基础上研制并推广了一种铜基合金废屑分装置(图13)。

浮选机浮选钛铁矿选矿技术

2019-02-22 15:05:31

给我们介绍下运用浮选机选别钛铁矿的发展状况,在用浮选机进行钛铁矿浮选之前,先要用浮选法分选出硫化矿藏,然后再浮选钛铁矿。硫化物浮选一般选用惯例的浮选药剂准则,即用黄药捕收剂,起泡济,硫酸PH调整剂,有的选厂还选用硫酸铜作为硫化矿藏浮选的活化剂。 关于钛铁矿浮选药剂的研讨比较多,钛铁矿常用的捕收剂为脂肪酸类,国外多用油酸及其盐类,如塔尔油皂或运用捕收剂与火油混合,近年来有人研穷运用羟基肟酸,乙烯,水扬羟肟酸等作为铁矿浮选捕收剂。 两种或多种药剂组合起来其选别效果往往优于其间任何一种药剂,这就是药剂的协同效应,近年来选用混合药剂浮选钛铁矿成为研讨的首要方向。用乙烯与松醇油4:1份额混合,经过浮选机来细粒钛铁矿,效果比较好,经一次粗选五次精选可取得含TiO247。22%,回收率74.58%的钛精矿。ZN118捕收剂是研发的一种钛铁矿捕收剂,浮选攀枝花细粒钛铁矿得到目标;给矿原矿档次21%,精矿档次47.5%以上,浮选作业回收率70%左右。现在,该厂已用ZN118捕收剂进行浮选钛铁矿的出产。 浮选机理:乙烯酸与钛铁矿的表面键合机理后以为,捕收剂为钛铁矿的效果,先经过其基团中的氧与钛铁矿表面具有未补偿健或弱补偿键的晶格阳离子生成四元环螯合物或难溶化物。 联合流程分选钛铁矿:重-磁-电-浮等选矿办法均可用于钛铁矿选矿富集,重选出产牢靠,成本低,适于处理粗粒级物料,而对细粒级物料选别较差,回收率低;细粒物料进入电选形成电选车间粉尘污染大,严峻危害工人的身心健康,粗钛精矿筛分分级,粗粒电选,细粒浮选新工艺,取得钛精矿档次47.74%,精选作业回收率78.13%的工业实验目标,比同期单一电选的精选作业回收率提高了3.46%,电选车间粉尘降低了55.73%。

磁选机在钢渣选矿中的应用

2019-01-17 10:51:27

钢渣是炼钢生产中产生一种工业废渣,是高炉炼钢时各种非钢熔出物冷却后形成的产品。钢渣的类型按成因有多种,其中转炉渣占绝大多数。钢渣一般呈灰色、褐色至灰白色,按照其成分及成因而存在差异。钢渣硬度较高(非膨胀矿渣)比重一般>3%,按照成因、成分特别是含铁量有较大的差别。钢渣易粗碎难磨。 钢渣的主要组成矿物是硅酸三钙、硅酸二钙、含钙镁橄榄石/辉石、铁酸二钙、锰/铁/镁氧化物固溶体、未产生反应的石灰等,钢渣由于入炉原料的不同存在一定的差别,另外冷却工艺对矿物相也有一定的影响,如水淬渣中存在大量的玻璃相。 钢渣中除含有部分可回收再利用的成分外,其物理化学性质适合于水泥、建筑等多个行业使用,这是需要对钢渣进行破碎、粉磨后才能进行利用,低磷高碱度(钙镁含量高)钢渣还能返回转炉作为萤石等炼钢辅料的替代品。 钢渣选矿主要是回收其中的有用含铁成分,包括大块铁、粒铁、较细的四氧化三铁三部分。由于上述有用成分均具强磁性,因此钢渣选矿最主要的工艺是磁选,国内从钢渣中选出的金属铁量一般在10%左右,武钢为8.5%。 钢渣在进行磁选作业时,工艺上又分为干式磁选和湿式磁选两大类,其中干式磁选主要回收其大块铁,湿式磁选回收粒铁及四氧化三铁。 进行干式磁选前,需要对钢渣进行破碎,作业设备多为颚式破碎机,每级破碎后,都使用磁滑轮进行预选,将不含铁或含铁较低的尾矿选出,再对粗精矿产品进行下一步作业。 含大块铁的钢渣是较为易选的,钢渣中的粒铁也较好选,使用较低磁场的磁选设备即能完成,在选矿流程中按照由粗到细,由强到弱的方式进行磁选即可。 含粒铁产品的选矿,由于其中所含粒铁粒度较粗,且较难磨细,因此在选矿时要特别注意磨矿作业时间,防止粗粒铁在磨矿系统中的不必要循环。 对于钢渣而言,选出粒铁后的钢渣,再从中回收铁精矿的价值将大大降低,虽然从物相上看,选出金属铁后的钢渣中仍含有一定数量的四氧化三铁及三氧化二铁,但由于钢渣物相组成复杂、这部分矿物嵌步粒度微细,且与脉石矿物嵌步关系复杂,从磨矿成本考虑,回收这部分铁的价值不大。当转炉渣用于水泥制造时,所含的铁为有用成分,可作为铁质校正原料使用,因此没有必要对其细磨后选矿。 以部分选出粒铁后的钢渣为例,在细磨至-200目=100%的条件下,使用磁场为1200Gs的弱磁磁选机进行选矿,仅能获得TFe含量超过40%的精矿产品,相对于较粗磨矿条件下的精矿指标差别不大。