您所在的位置: 上海有色 > 有色金属产品库 > 云南废铜

云南废铜

抱歉!您想要的信息未找到。

云南废铜百科

更多

典型矿区——云南惠民铁矿

2018-12-11 16:09:25

矿区位于思茅专区澜沧县。矿床属于海相火山-沉积型铁矿床。    矿床产于新元古界澜沧群惠民组。惠民组以中-基性火山岩和铁矿层为主,其次有少量石英片岩、方解石片岩、大理岩等,地层厚600~800m。上覆西定组碎屑岩,下伏地层为勐满组。矿区总体为一北西—南东向长条状复式向斜构造。区内共有铁矿体34个,其中Ⅳ、Ⅱ2、Ⅱ1为主要矿体,占总储量73.3%。Ⅳ号矿体长7000m,宽1100m,厚30.3m;Ⅱ2矿体长4000m,宽1900m,厚31.5m;Ⅱ1矿体长6000m,宽2000m,厚36m。矿体呈似层状、层状。    矿石物质成分复杂,含铁矿物有菱铁矿、褐铁矿、磁铁矿、鳞绿泥石、黑硬绿泥石、铁蛇纹石和黄铁矿等。还有少量锰铝榴石、钛铁矿、赤铁矿和白铁矿,共生矿物有石英(玉髓)、胶磷矿、磷灰石、方解石和长石等。    矿石主要构造有条纹条带状、块状、角砾状、浸染状和流纹状等。    矿石自然类型可分为:褐铁矿矿石、菱铁矿矿石、菱铁矿磁铁矿混合矿矿石、绿泥菱铁矿矿石、硅质菱铁矿矿石和铁蛇纹菱铁矿矿石。    该矿床累计探明铁矿石储量(D级)112681万t,其中,褐铁矿石22671万t,菱铁矿石49297万t,混合矿石40713万t。    矿石品位:褐铁矿石TFe 40%,P 0.17%~1.43%,S 0.01%~0.61%。菱铁矿石TFe 25%~35%,P 2.8%~0.2%,S 0.4%~20%。磁铁矿石TFe 45%~50%,P 1.3%~0.4%,均属含硫磷较高的自溶性矿石。    该矿尚未开发利用。

云南某金矿矿石浸出试验研究

2019-02-20 10:04:42

一、导言 滇东南是我国微细粒浸染型金矿床的会集散布区之一。微细浸染型金矿矿石性质杂乱, 工艺类型特殊, 历年来先后有多家科研规划单位进行过选冶实验研讨工作, 取得了一些研讨成果, 但仍有一些技能问题需求研讨处理。 本次实验以云南省者桑金矿为研讨目标, 进行浸出实验研讨, 为公司出产供给参阅。 二、矿石特征 该矿石类型为氧化型矿石, 其赋存矿藏岩石为蚀变的粉砂泥岩或粉砂岩及少数的基性脉岩类。矿石结构为胶状结构和告知假象结构。首要金属矿藏为褐铁矿、黄铁矿、黄铜矿、毒砂、磁黄铁矿、磁赤铁矿、黝铜矿。矿石化学组成分析标明金是首要收回有用成分, 金档次为0.70g/t。矿石中砷含量0.28%, 绢云母等粘土矿藏约占47%。金首要包裹在褐铁矿等氧化矿藏中, 又因为该矿石中存在很多的铁染粘土矿藏(绢云母为主, 其晶体呈层状格架), 其内也会吸附必定量的超显微金。 对破碎至小于40mm的矿样进行筛分分析, 首要调查了七个粒级的产率和金散布状况。较粗粒级的金档次较高, 可见金的嵌布粒度不细, 矿石浸出时无需细磨见表1。 表1  -40mm矿石筛分分析成果粒度/mm产率/%金档次/g·t-1金散布率/%单个累计单个累计+10.033.2533.250.5628.1828.18-10.0+5.016.2949.550.8420.5948.72-5.0+1.014.0163.560.9419.9468.71-1.0+0.2810.4574.010.8012.6881.38-0.28+0.1542.5376.540.552.1083.48-0.154+0.0762.8179.350.361.5285.00-0.07620.65100.000.4815.00100.00算计--0.66-- 三、化浸出实验研讨 (一)归纳样制备。将32袋单样烘干, 破碎至-40mm, 缩分出1/8制成化验样, 分析各袋样品金档次。根据金档次和实验要求, 配限制240kg归纳样。要求配矿核算档次与归纳试样屡次化验均匀档次0.70g/t相吻合。 (二)可浸性实验。为了解矿石中金的可浸性, 并为柱浸实验供给工艺参数, 对矿石进行了化浸出实验研讨。首要调查了NaCN和碱耗量及金浸出率等目标。 化浸出固定条件:给矿100g/次, 粒度-1mm, 矿浆浓度40%, NaCN初始浓度为0.4%。, 工业石灰调理pH值10~11, 摇瓶化18h。实验成果可知, 矿石中金渣计浸出率为87.14%,NaCN耗量261.2g/t, 工业石灰用量5kg/t。该矿石较简单浸出。(三)柱浸实验。将破碎至必定粒度的矿石装入柱中, 用NaOH制造的溶液调理矿石的pH, 待渗出液pH值调至10~11时, 制造pH值≥2、浓度约为0.4‰的NaCN溶液, 调理溶液喷淋速度, 实验操控喷淋强度约8~12L/m2·h1, 喷淋一段时刻对浸出液计量, 取样测NaCN浓度并分析金档次。浸出完毕后, 用必定量水洗刷各柱浸渣, 洗水计量, 取样测NaCN浓度并分析金档次。最终取出浸渣, 烘干、缩分、取样, 分析浸渣中金档次。柱浸实验条件和成果别离见表2。 表2  柱浸实验条件矿石粒度/mm矿石分量/kg制粒水泥用量/kg·-1柱高/cm-4081.7-~175堆比重/g·cm-3饱满含水率/L·t-1喷淋强度/L·m-2·h-1初始喷淋液NaCN浓度/‰1.65202.388.5~10.5~0.4 从实验成果可知,通过25天浸出,渣计浸出率达80.0%,尾渣金档次降至0.14g/t。 (四)其它浸出办法探究实验。为了能进一步进步浸出率,进行了加助浸剂浸出、酸性浸出和尾渣再次浸出实验。 1、增加助浸剂的氛化浸出实验。浸出固定条件:给矿100g/次, 粒度-1mm, 矿浆浓度40%, NaCN初始浓度为1.0‰, 石灰调理值pH值10~11, 摇瓶化18h。化浸出实验成果标明参加H2O2、CaO2、NH4Cl等助浸剂, 金的渣计浸出率没有显着进步。 2、浸出。浸出条件:给矿100g/次, 矿石粒度-1mm,矿浆浓度40%, 用量10kg/t,Fe2(SO4)39kg/t, 硫酸调理pH值1~2。实验成果标明选用酸性浸出, 金浸出率不如直接化浸出率高。 3、尾渣再浸。因为柱浸浸出液金浓度和尾渣金档次还比较高, 通过对柱浸的尾渣再次浸出, 以调查若延伸柱浸时刻,浸出率进步的可能性。 将柱浸尾渣缩分一部分破碎至-5mm, 取必定量的未破碎和破碎至-5mm的柱浸尾渣, 置于有机槽内, 用0.4‰的NaCN溶液静置浸出两天, 浸出实验成果标明柱浸尾渣通过两天的槽浸浸出, -40mm和-50mm尾渣相对原矿的液计浸出率别离达6.57%和5.03%。可见若延伸柱浸时刻, 对金浸出率的进步有必定的协助, 可是浸出周期延伸, 会加大浸出液量, 下降溶液金浓度。 四、定论 1、对破碎至-1mm归纳样进行可浸性实验, 矿浆浓度40%,NaCN初始浓度0.4‰, NaCN耗量261.2g/t, 石灰调理p   H值10~11, 工业石灰用量5kg/t, 摇瓶化18h, 渣计金浸出率为87.17%, 金档次降至0.09g/t。 2、破碎至-40mm归纳试样通过25天柱浸浸出, NaCN耗量171.7g/t, 金渣计浸出率为80.0%, 尾渣金档次降至0.14g/t。 3、其它助浸剂浸出、硫脉浸出以及延伸柱浸时刻等浸出办法, 对金浸出未有显着作用。 4、上述实验成果标明, 在惯例的化浸出条件下, 该归纳样较简单浸出。本次实验为者桑金矿的浸出供给技能根据。 参阅文献: 1、马晶,马继武,2001.煎茶岭金矿及其选冶实验研讨[J].黄金科学技能.10(2):35-39. 2、蔡世军,赵志新, 赵安龙.2003.老柞山金矿富砷、铜金矿石的氛化浸出研讨与实践[J].黄金.24(5):38-40. 3、周中定.2003.微细拉浸染型金矿石选金实验研讨[J].黄金.24(6):43-45. 4、谭海明.2005我国南边某金矿体矿石浸出实验研讨[J].中国矿业.14(2):38-42. (作者简介李桦, 紫金矿业集团股份有限公司, 高级工程师)

云南某地金矿选矿工艺试验研究

2019-02-20 10:04:42

一、前语 滇西北金矿原选用的是全泥化法及堆浸法提取金,因为该矿含有铁、铅、锌、砷和硫等元素,及其他纤细杂乱难浸金矿藏[1],导致浸出作用较差。并且为剧毒化学品,浸出进程对当地环境形成恶劣的影响。为了处理该区域提金法形成的环境污染问题,针对该区域金矿石和特色,选用加拿大Falcon离心选矿机对金进行富集,原矿含金7.7g/t,金精矿含金高达514.03g/t,尾矿含金0.36g/t,金收回率为95.4%,获得了满足的实验目标,为下一步工业上使用无选别工艺处理该区域金矿供给了根据。 二、矿石性质 实验矿样取至矿山范围内多处挖掘点,然后混组成实验用矿样,归纳样金档次为7.7g/t。 (一)首要矿藏特征 矿石中金属矿藏有褐(赤)铁矿、磁铁矿、菱铁矿、铅铁矾、菱锌矿、水锌矿、硅锌矿、异极矿,少数白铅矿、方铅矿、黄铁矿、天然金、银金矿和天然银等。脉石矿藏首要为方解石、白云石、石英和黏土矿藏等。 (二)原矿多元素分析 原矿多元素分析成果见表1所示。 表1  原矿多元素分析成果(三)金的矿藏特征及赋存状况 1、金的形状及嵌布特征 矿石中的金物相分析成果见表2。矿石中的金首要以天然金方式存在。 表2  原矿金的物相分析成果天然金为金黄色或带白彩的黄色,反射色为亮黄色,表面有麻点(氧化铁表膜),具均质性,有延展性,形状多样,以不规则粒状或核晶为主,次有丝状、棒状、树枝状等[2]。矿石中金的粒度分析成果表明,该矿天然金粒度较细,粒径最大0.15mm,一般0.01~0.06mm,首要为中细粒金,尚有<0.01mm的微粒金。 2、天然金的嵌布特征 经重砂别离和显微镜下调查得到金的嵌布特征(见表3)。从该表能够看出,天然金首要为中细粒可见金,嵌布在褐铁矿、磁赤铁矿、铅铁矾、黄铁矿(假象)、石英等矿藏颗粒间及裂隙中,为粒间金和裂隙金,次为微粒金,首要呈微粒嵌布或包裹于褐铁矿及磁铁矿集合体中,粒径<0.01mm。 表3  原矿金的嵌布特性3、金的赋存状况 金的赋存状况见表4。金首要产于褐铁矿、磁铁矿、黄铁矿中,占总量的79169%,这说明金与上述矿藏关系密切,这些矿藏是金的首要载体矿藏。在铅、锌矿藏中金含量占20.32%,是金的非必须载体,脉石矿藏中Au的含量较少。 表4  原矿中各种矿藏含金量和金的散布率三、选矿实验 (一)重选实验 该矿石中的金首要以天然金方式存在,天然金密度大,能够用重选办法收回。可是矿石判定成果表明,天然金以细粒状况存在,惯例重选作用欠好,凭借离心力场能够强化细粒矿藏的重选进程。咱们选用加拿大Falcon离心选矿机对矿石进行重选实验。Falcon离心选矿机规划简略,可发生重力加速度150~300倍的离心加速度,报价低,操作简略,修理和保养费用低,无环境污染,出产成本低,适用面广,能够处理Au、Ag、Sn、W、Ta、Pt、Pd、Nb等宝贵金属。该设备分选质料的细度由高至150~300G的重力所决议,它可有效地收回-011mm等级有用矿藏。矿样磨至80%-0.074mm后,用Falcon离心选矿机进行一次粗选和一次精选,其实验流程见图1,实验成果如表5所示。从表中数据能够看出,Falcon离心选矿机选别该金矿富集比大,金的收回率高。图1  重选实验流程 表5  重选实验成果第二个重选实验原矿磨矿细度仍为80%第二个重选实验原矿磨矿细度仍为80%-0.074mm,选矿流程为两次粗选,一次精选,精选尾矿回来粗选1。流程图见图2,实验成果见表6。图2  重选闭路实验流程图 表6  重选闭路实验成果(二)化拌和浸出实验 在实验室中,原矿磨矿至75%~90%-0.074mm,然后选用拌和浸出办法进行化浸出。浸出时刻为48h,浸出成果见表7。 表7  拌和化浸出实验成果从表7能够看出,化浸出作用较差,在磨矿细度为80%~90%-0.074mm时,金的浸出率根本相同,首要原因归属矿石本身要素,一方面是天然金难以化浸出,另一方面大部分金被其他矿藏所包裹[3],不利于浸出。 四、结语 归纳比照Falcon离心选矿机重选实验及化拌和浸出实验成果,不管从金的收回率仍是出产对环境形成的影响,重选流程显示出较大的优势。其选别工艺流程较为简略,并且出产上操控便利,加拿大出产的离心选矿机报价较贵,出资大,但出产成本低。最重要的是为完成该区域无选别供给了出产条件,对减轻环境污染有利。 参考文献 [1] 张卯均.选矿手册第八卷第三分册[M].北京:冶金工业出版社,1990,204. [2] 张守范.矿藏学[M].北京:商务印书馆,1956年3月第一版,徐天允,徐正春.金的化与冶炼[M].沈阳:沈阳黄金专科学校,1985 年11月. 作者单位 中国地质大学 (张爱萍) 云南国土资源职业学院(方泽明)

废铜

2017-06-06 17:49:57

废铜,我国进口废杂铜主要来自美、日、德、俄,其中美国高居榜首,而美国对废杂铜的管理又有严格的规定。以美国的分类标准作为典型加以介绍。美国的废杂铜依据纯度进行分类。美国废杂金属再生研究所甚至把铜及其合金细分为53类。  美国通常把含Cu量大于99%的铜材叫做1号铜,1号铜可以直接重熔和使用,不要求进一步加工;把铜含量最低为94.5%的铜叫2号铜,这种废杂铜在以金属铜的形态使用之前,通常一定要重熔。其它常见的分类等级还包括加铅黄铜、黄铜与低锌黄铜、弹壳黄铜、汽车散热片、高铜黄铜(红色黄铜),以及应用十分广泛的高速切削黄铜,其车屑直接再生,以同成分合金的形式用于重新加工黄铜产品。对制造厂家而言,其主要优点就是大幅度降低净金属消耗的成本。废杂铜也用于生产铜的化学制品,但不易获得定量数据。废铜按其来源有两类。  一类是新废铜,它是铜工业生产过程中产生的废料。冶金厂的叫"本厂废铜"("home scrap")或"周转废铜"("runaround")。铜加工厂产生的废铜屑及直接返回供应厂的叫做"工业废杂铜"、"现货废杂铜"("prompt")或新废杂铜。  另一类是旧废铜,它是使用后被废弃的物品,如从旧建筑物及运输系统抛弃或拆卸的叫旧废杂铜。铜和铜基材料,不论处于裸露状态,还是被包在最终产品里,在产品寿命周期的各个阶段都可回收再生。一般来说,用于再生的废铜中新废铜占一半以上。而全部废杂铜经再加工后有大约1/3以精铜的形式返回市场,另2/3以非精炼铜或铜合金的形式重新使用。直接应用废杂铜的前提是严格的分类堆放及严格的分拣。直接应用废杂铜具有简化工艺、设备简单、回收率高、能耗少、成本低、污染轻等优点。直接应用废杂铜的多少,大体上反映了一个国家铜的再生水平。相比之下,我国废杂铜的直接使用率较低,每年约为20万t,仅占废杂铜总回收量的30%~40%,并且黄铜加工材的生产多由乡镇企业运作,大大降低了经济效益,并在能耗、环保方面带来后患。  我国目前还没有废铜方面的标准, 但随着我国工业化速度的加快,废杂有色金属的回收、贸易以及再生利用产业所面临的社会经济环境已发生了重大变化,不仅废杂有色金属的品种构成变化较大,而且大量的国外废杂有色金属以及各类可利用的废料涌入国门,给我国有色金属的生产提供了丰富的原料来源,同时也对再生有色金属的生产加工提出了新的要求。因此,我国也在加紧废旧金属标准的制定工作。中国有色金属工业协会再生金属分会牵头组织的《铜及铜合金废料废件分类和技术条件》已经列入国家技术标准修订计划中。新的废杂有色金属分类标准将参照美国废杂有色金属的分类标准和欧洲的分类技术标准,结合我国再生有色金属行业的实际情况进行修订,使之更加有利于企业和管理部门的贯彻实施。标准的修订工作预计2002年底完成。  废铜怎样分类    总体来说废铜的分类是含纯铜的含量来分的,         光亮铜(Cu>99%)         #1铜(Cu 97%)         #2铜(95%-96%)         马达铜(92~94%):一般是电机里的马达上的铜。         紫杂铜(79-81%)   H59黄杂铜 。黄铜用+H表示;(黄)表示如H80、H70,H68 H59等。   其实他们都叫紫铜,不过市场交易比较多的那种叫做紫杂铜,铜含量在80%左右,还有黄铜也交易的比较多的废金属品种,一般的黄铜是59黄铜就是含纯铜59%的,其余的成分以锌为主,这种铜也叫做黄杂铜. 

锡尾矿中回收锡实例(云南云龙锡矿)

2019-02-27 08:59:29

云南云龙锡矿所处理的矿石为锡石-石英脉硫化矿,尾矿矿藏组分较简略,以石英为主。其次为褐铁矿、黄铁矿、电气石、少数的锡石、毒砂、黄铜矿等。尾矿含锡档次0.45%,全锡中氧化锡中锡占96.26%,硫化锡中锡占3.74%,铁3.71%,其他含量较低,锌0.051%、铜0.08%、锰0.068%,影响精矿质量的硫、砷含量较高,硫1.88%、砷0.1%。 1992年云龙锡矿在原生矿资源已目趋干涸的情况下,开端在100t/d老选厂处理老尾矿,为了在短期内取得更好的社会效益和经济效益,又提出在选厂基础上改扩建为200t/d,选用重选-浮选流程,于1994年4月正式出产,在出产过程中为断地改善工艺流程,终究断定的出产工艺见图1。图1 云龙锡矿尾矿选矿出产流程 为习惯出产,其间筛分所用筛面前半部分为0.8mm,后半部分为1mm。分泥斗为φ2500mm分泥斗,使用该工艺可取得含锡56.266%、含硫0.742%、含砷0.223%、锡收回率68.3%的锡精矿和含硫47.48%、含锡0.233%、含砷4.63%的硫精矿。 云锡公司有28个尾矿库、35座尾矿坝,现有累计尾矿1亿多吨,含锡达20多万吨,还有伴生的铅、锌、铟、铋、铜、铁、砷等。公司有一个50t/d实验车间和两个选矿工段专门处理老尾矿。1971年到1985年间再选处理尾矿112万t,收回了锡1286t,选出铜精矿含铜443t。 栗木锡矿用重-浮硫程从老尾矿中收回锡。该矿积存尾矿650多万t,尾矿中首要含锡、钨、铌、钽及硅质和长石等矿藏。再选流程包含重选、硫化矿浮选和锡石浮选。经重选后得到的精矿含SnO226.84%、WO39.6%、Ta2O52.7%、Nb2O52.04%,重选收回率SnO32.99%、WO324.05%、Ta2O542.47%、Nb2O524.77%。硫化矿藏浮选流程为一次粗选、二次扫选,精矿档次Cu10.8%、SnS26.57%,收回率Cu78%、硫化物52.66%。硫化矿藏经按捺砷浮铜产出含Cu>20%、Sn>18%、As 东坡矿野鸡尾选厂建有300t/d规划的重选车间,从尾矿中收回锡石。尾砂含Sn0。2%~0.25%,精矿档次Sn42.93、收回率18.66%,每年收回精矿锡量40~50t。 大义山矿1982年建成日处理70~100t选矿厂,从可使用的3.3万t老尾矿(含Sn0.297%)中1年收回锡精矿31t,档次为55%~61%,收回率34%~35%。 国外,英国、加拿大和玻利维亚展开从含锡老尾矿中再选锡的作业。英国巴特莱公司用摇床和横流皮带溜槽再选锡尾矿,从含锡0.75%的尾矿取得含锡分别为30.22%、5.53%和4.49%的精矿、中矿和尾矿。英国罗斯克选厂选别含锡0.3%~0.4%的老尾矿取得含锡30%的锡精矿。加拿大苏里望选厂从浮选锡的尾矿,用重-磁联合流程选出含锡60%、收回率38%~43%的锡精矿。玻利维亚一个选厂再选含锡0.3%的老尾矿和新尾矿,产出含锡20、收回率50%~55%的锡精矿。

废铜

2017-06-06 17:49:56

  废铜,其实他们都叫紫铜,不过市场交易比较多的那种叫做紫杂铜,铜含量在80%左右,还有黄铜也交易的比较多的废金属品种,一般的黄铜是59黄铜就是含纯铜59%的,其余的成分以锌为主,这种铜也叫做黄杂铜. 一类是新废铜,它是铜工业生产过程中产生的废料。冶金厂的叫"本厂废铜"("home scrap")或"周转废铜"("runaround")。铜加工厂产生的废铜屑及直接返回供应厂的叫做"工业废杂铜"、"现货废杂铜"("prompt")或新废杂铜。  另一类是旧废铜,它是使用后被废弃的物品,如从旧建筑物及运输系统抛弃或拆卸的叫旧废杂铜。铜和铜基材料,不论处于裸露状态,还是被包在最终产品里,在产品寿命周期的各个阶段都可回收再生。一般来说,用于再生的废铜中新废铜占一半以上。而全部废杂铜经再加工后有大约1/3以精铜的形式返回市场,另2/3以非精炼铜或铜合金的形式重新使用。直接应用废杂铜的前提是严格的分类堆放及严格的分拣。直接应用废杂铜具有简化工艺、设备简单、回收率高、能耗少、成本低、污染轻等优点。直接应用废杂铜的多少,大体上反映了一个国家铜的再生水平。相比之下,我国废杂铜的直接使用率较低,每年约为20万t,仅占废杂铜总回收量的30%~40%,并且黄铜加工材的生产多由乡镇企业运作,大大降低了经济效益,并在能耗、环保方面带来后患。 我国进口废杂铜主要来自美、日、德、俄,其中美国高居榜首,而美国对废杂铜的管理又有严格的规定。以美国的分类标准作为典型加以介绍。美国的废杂铜依据纯度进行分类。美国废杂金属再生研究所甚至把铜及其合金细分为53类。 美国通常把含Cu量大于99%的铜材叫做1号铜,1号铜可以直接重熔和使用,不要求进一步加工;把铜含量最低为94.5%的铜叫2号铜,这种废杂铜在以金属铜的形态使用之前,通常一定要重熔。其它常见的分类等级还包括加铅黄铜、黄铜与低锌黄铜、弹壳黄铜、汽车散热片、高铜黄铜(红色黄铜),以及应用十分广泛的高速切削黄铜,其车屑直接再生,以同成分合金的形式用于重新加工黄铜产品。对制造厂家而言,其主要优点就是大幅度降低净金属消耗的成本。废杂铜也用于生产铜的化学制品,但不易获得定量数据。

废铜

2017-06-06 17:49:53

废铜对于每个人都不是很陌生,生活中到处都是,我记得小的时间和其他小伙伴一起去检废铜,然后卖掉,然后我们一起买个冰棍,然后高高兴兴的玩耍,真是怀念。废铜按其来源有两类。一类是新废铜,它是铜工业生产过程中产生的废料。冶金厂的叫"本厂废铜"("home scrap")或"周转废铜"("runaround")。铜加工厂产生的废铜屑及直接返回供应厂的叫做"工业废杂铜"、"现货废杂铜"("prompt")或新废杂铜。   另一类是旧废铜,它是使用后被废弃的物品,如从旧建筑物及运输系统抛弃或拆卸的叫旧废杂铜。铜和铜基材料,不论处于裸露状态,还是被包在最终产品里,在产品寿命周期的各个阶段都可回收再生。一般来说,用于再生的废铜中新废铜占一半以上。而全部废杂铜经再加工后有大约1/3以精铜的形式返回市场,另2/3以非精炼铜或铜合金的形式重新使用。直接应用废杂铜的前提是严格的分类堆放及严格的分拣。直接应用废杂铜具有简化工艺、设备简单、回收率高、能耗少、成本低、污染轻等优点。直接应用废杂铜的多少,大体上反映了一个国家铜的再生水平。相比之下,我国废杂铜的直接使用率较低,每年约为20万t,仅占废杂铜总回收量的30%~40%,并且黄铜加工材的生产多由乡镇企业运作,大大降低了经济效益,并在能耗、环保方面带来后患。   我国进口废杂铜主要来自美、日、德、俄,其中美国高居榜首,而美国对废杂铜的管理又有严格的规定。以美国的分类标准作为典型加以介绍。美国的废杂铜依据纯度进行分类。美国废杂金属再生研究所甚至把铜及其合金细分为53类。   美国通常把含Cu量大于99%的铜材叫做1号铜,1号铜可以直接重熔和使用,不要求进一步加工;把铜含量最低为94.5%的铜叫2号铜,这种废杂铜在以金属铜的形态使用之前,通常一定要重熔。其它常见的分类等级还包括加铅黄铜、黄铜与低锌黄铜、弹壳黄铜、汽车散热片、高铜黄铜(红色黄铜),以及应用十分广泛的高速切削黄铜,其车屑直接再生,以同成分合金的形式用于重新加工黄铜产品。对制造厂家而言,其主要优点就是大幅度降低净金属消耗的成本。废杂铜也用于生产铜的化学制品,但不易获得定量数据。   我国目前还没有废铜方面的标准, 但随着我国工业化速度的加快,废杂有色金属的回收、贸易以及再生利用产业所面临的社会经济环境已发生了重大变化,不仅废杂有色金属的品种构成变化较大,而且大量的国外废杂有色金属以及各类可利用的废料涌入国门,给我国有色金属的生产提供了丰富的原料来源,同时也对再生有色金属的生产加工提出了新的要求。因此,我国也在加紧废旧金属标准的制定工作。中国有色金属工业协会再生金属分会牵头组织的《铜及铜合金废料废件分类和技术条件》已经列入国家技术标准修订计划中。新的废杂有色金属分类标准将参照美国废杂有色金属的分类标准和欧洲的分类技术标准,结合我国再生有色金属行业的实际情况进行修订,使之更加有利于企业和管理部门的贯彻实施。标准的修订工作预计2002年底完成。   废铜怎样分类    总体来说废铜的分类是含纯铜的含量来分的,    其实废铜都叫紫铜,不过市场交易比较多的那种叫做紫杂铜,铜含量在80%左右,还有黄铜也交易的比较多的废金属品种,一般的黄铜是59黄铜就是含纯铜59%的,其余的成分以锌为主,这种铜也叫做黄杂铜。  

废铜

2017-06-06 17:49:58

废铜,其实他们都叫紫铜,不过市场交易比较多的那种叫做紫杂铜,铜含量在80%左右,还有黄铜也交易的比较多的废金属品种,一般的黄铜是59黄铜就是含纯铜59%的,其余的成分以锌为主,这种铜也叫做黄杂铜.废铜按其来源有两类。   一类是新废铜,它是铜工业生产过程中产生的废料。冶金厂的叫"本厂废铜"("home scrap")或"周转废铜"("runaround")。铜加工厂产生的废铜屑及直接返回供应厂的叫做"工业废杂铜"、"现货废杂铜"("prompt")或新废杂铜。   另一类是旧废铜,它是使用后被废弃的物品,如从旧建筑物及运输系统抛弃或拆卸的叫旧废杂铜。铜和铜基材料,不论处于裸露状态,还是被包在最终产品里,在产品寿命周期的各个阶段都可回收再生。一般来说,用于再生的废铜中新废铜占一半以上。而全部废杂铜经再加工后有大约1/3以精铜的形式返回市场,另2/3以非精炼铜或铜合金的形式重新使用。直接应用废杂铜的前提是严格的分类堆放及严格的分拣。直接应用废杂铜具有简化工艺、设备简单、回收率高、能耗少、成本低、污染轻等优点。直接应用废杂铜的多少,大体上反映了一个国家铜的再生水平。相比之下,我国废杂铜的直接使用率较低,每年约为20万t,仅占废杂铜总回收量的30%~40%,并且黄铜加工材的生产多由乡镇企业运作,大大降低了经济效益,并在能耗、环保方面带来后患。   我国进口废杂铜主要来自美、日、德、俄,其中美国高居榜首,而美国对废杂铜的管理又有严格的规定。以美国的分类标准作为典型加以介绍。美国的废杂铜依据纯度进行分类。美国废杂金属再生研究所甚至把铜及其合金细分为53类。      我国目前还没有废铜方面的标准, 但随着我国工业化速度的加快,废杂有色金属的回收、贸易以及再生利用产业所面临的社会经济环境已发生了重大变化,不仅废杂有色金属的品种构成变化较大,而且大量的国外废杂有色金属以及各类可利用的废料涌入国门,给我国有色金属的生产提供了丰富的原料来源,同时也对再生有色金属的生产加工提出了新的要求。因此,我国也在加紧废旧金属标准的制定工作。中国有色金属工业协会再生金属分会牵头组织的《铜及铜合金废料废件分类和技术条件》已经列入国家技术标准修订计划中。新的废杂有色金属分类标准将参照美国废杂有色金属的分类标准和欧洲的分类技术标准,结合我国再生有色金属行业的实际情况进行修订,使之更加有利于企业和管理部门的贯彻实施。标准的修订工作预计2002年底完成。   废铜怎样分类    总体来说废铜的分类是含纯铜的含量来分的,   光亮铜(Cu>99%)   #1铜(Cu 97%)   #2铜(95%-96%)   马达铜(92~94%):一般是电机里的马达上的铜。   紫杂铜(79-81%)   H59黄杂铜 。黄铜用+H表示;(黄)表示如H80、H70,H68 H59等。   美国通常把含Cu量大于99%的铜材叫做1号铜,1号铜可以直接重熔和使用,不要求进一步加工;把铜含量最低为94.5%的铜叫2号铜,这种废杂铜在以金属铜的形态使用之前,通常一定要重熔。其它常见的分类等级还包括加铅黄铜、黄铜与低锌黄铜、弹壳黄铜、汽车散热片、高铜黄铜(红色黄铜),以及应用十分广泛的高速切削黄铜,其车屑直接再生,以同成分合金的形式用于重新加工黄铜产品。对制造厂家而言,其主要优点就是大幅度降低净金属消耗的成本。废杂铜也用于生产铜的化学制品,但不易获得定量数据。

废铜

2017-06-06 17:49:55

废铜,废铜按其来源有两类。   一类是新废铜,它是铜工业生产过程中产生的废料。冶金厂的叫"本厂废铜"("home scrap")或"周转废铜"("runaround")。铜加工厂产生的废铜屑及直接返回供应厂的叫做"工业废杂铜"、"现货废杂铜"("prompt")或新废杂铜。   另一类是旧废铜,它是使用后被废弃的物品,如从旧建筑物及运输系统抛弃或拆卸的叫旧废杂铜。铜和铜基材料,不论处于裸露状态,还是被包在最终产品里,在产品寿命周期的各个阶段都可回收再生。一般来说,用于再生的废铜中新废铜占一半以上。而全部废杂铜经再加工后有大约1/3以精铜的形式返回市场,另2/3以非精炼铜或铜合金的形式重新使用。直接应用废杂铜的前提是严格的分类堆放及严格的分拣。直接应用废杂铜具有简化工艺、设备简单、回收率高、能耗少、成本低、污染轻等优点。直接应用废杂铜的多少,大体上反映了一个国家铜的再生水平。相比之下,我国废杂铜的直接使用率较低,每年约为20万t,仅占废杂铜总回收量的30%~40%,并且黄铜加工材的生产多由乡镇企业运作,大大降低了经济效益,并在能耗、环保方面带来后患。   我国进口废杂铜主要来自美、日、德、俄,其中美国高居榜首,而美国对废杂铜的管理又有严格的规定。以美国的分类标准作为典型加以介绍。美国的废杂铜依据纯度进行分类。美国废杂金属再生研究所甚至把铜及其合金细分为53类。   美国通常把含Cu量大于99%的铜材叫做1号铜,1号铜可以直接重熔和使用,不要求进一步加工;把铜含量最低为94.5%的铜叫2号铜,这种废杂铜在以金属铜的形态使用之前,通常一定要重熔。其它常见的分类等级还包括加铅黄铜、黄铜与低锌黄铜、弹壳黄铜、汽车散热片、高铜黄铜(红色黄铜),以及应用十分广泛的高速切削黄铜,其车屑直接再生,以同成分合金的形式用于重新加工黄铜产品。对制造厂家而言,其主要优点就是大幅度降低净金属消耗的成本。废杂铜也用于生产铜的化学制品,但不易获得定量数据。   我国目前还没有废铜方面的标准, 但随着我国工业化速度的加快,废杂有色金属的回收、贸易以及再生利用产业所面临的社会经济环境已发生了重大变化,不仅废杂有色金属的品种构成变化较大,而且大量的国外废杂有色金属以及各类可利用的废料涌入国门,给我国有色金属的生产提供了丰富的原料来源,同时也对再生有色金属的生产加工提出了新的要求。因此,我国也在加紧废旧金属标准的制定工作。中国有色金属工业协会再生金属分会牵头组织的《铜及铜合金废料废件分类和技术条件》已经列入国家技术标准修订计划中。新的废杂有色金属分类标准将参照美国废杂有色金属的分类标准和欧洲的分类技术标准,结合我国再生有色金属行业的实际情况进行修订,使之更加有利于企业和管理部门的贯彻实施。标准的修订工作预计2002年底完成。   总体来说废铜的分类是含纯铜的含量来分的,   光亮铜(Cu>99%)   #1铜(Cu 97%)   #2铜(95%-96%)   马达铜(92~94%):一般是电机里的马达上的铜。   紫杂铜(79-81%)   H59黄杂铜 。黄铜用+H表示;(黄)表示如H80、H70,H68 H59等。   其实他们都叫紫铜,不过市场交易比较多的那种叫做紫杂铜,铜含量在80%左右,还有黄铜也交易的比较多的废金属品种,一般的黄铜是59黄铜就是含纯铜59%的,其余的成分以锌为主,这种铜也叫做黄杂铜.

云南镇沅金矿石浮选试验报告

2019-02-21 12:00:34

1 前语 受云南黄金矿业有限责任公司托付,某黄金研讨院对云南镇沅分公司含金矿石进行选矿实验研讨。意图是经过对该金矿石的工艺矿藏学研讨和选矿流程实验,断定原矿选矿技能条件和工艺参数,为选矿工艺流程的挑选和规划供给科学牢靠的根据。 本研讨报告的内容首要是原矿工艺矿藏学研讨、原矿浮选流程实验研讨。 对镇沅含金矿石的工艺矿藏学研讨标明:该矿石工艺类型为贫硫化物碳质微细粒浸染型难处理金矿石。矿石中有价元素为金,档次为5.38g/t。该矿石中金矿藏粒度微细,镜下可见最大金粒为8.5微米,93.84%的金矿藏小于5微米,其间大都呈次显微金。该矿石中金矿藏与金属硫化物联系十分亲近,硫化物中金占86.26%,脉石中金占7.58%,游离金仅占6.16%,硫化物粒度也较细,有73.1%的硫化物粒度小于0.037mm,晦气于金的露出与解离,在原矿磨至-0.074mm占95%时,仍有10.5%的硫化物与脉石连生,5.1%的硫化物被脉石包裹。矿石中有机碳含量为0.70%,有机碳有很强的劫金才能,惯例化,磨矿粒度为-0.074mm占90%时,金浸出率仅为0.74%。 浮选实验研讨成果标明:原矿选用阶段磨浮流程,一段磨矿粒度为-0.074mm占60%,二段磨矿粒度为-0.074mm占90%,金浮选回收率为90.52%,精矿金档次为47.87g/t,浮选尾矿档次为0.57g/t,浮选闭路实验成果见表1。 表1  浮选闭路实验成果产品 称号产率 (%)档次(%)回收率(%)Au(g/t)AsSAuAsS金精矿10.2147.870.7518.7490.5289.5090.26尾  矿89.790.570.010.239.4810.509.74原  矿100.005.400.0862.12100.00100.00100.002 试样的采纳与制备 2.1 试样的采纳 本次实验样品的采纳及代表性由托付方担任。矿样于2005年3月7日抵达我院。 托付方供给的各点矿样状况如表2。 表2  托付方供给的各矿点档次及分量矿点取样档次(g/t)分析档次(g/t)矿样分量(kg)101E-113.053.04500102W-14.432.99512102NM-10.000.701200103E-117.1011.07290104E-14.505.091023104E-28.8011.083301753上盘-0.902431713-18线-2.34500老王寨-3.687002.2 试样的制备 将矿样分点按图1流程破碎后,将各点矿样充沛混匀、缩分,取样进行化学分析,按托付方要求,原矿档次要求在5.0—5.5g/t范围内,各点矿样分析档次及配矿成果见表3。 表3  各点矿样分析档次及配矿成果矿点配矿份额(%)分析档次(g/t)配矿分量(kg)102W-1202.99500103E-11011.07250104E-1405.091000104E-21011.082501753上盘100.90250老王寨103.68250算计100—2500核算档次(g/t)5.31化验档次(g/t)5.38图1  试样制备流程     3 矿石工艺矿藏学研讨      3.1  原矿多元素分析 表4  多元素分析成果元素Au(g/t)Ag(g/t)CuPbZnFeS含量(%)5.382.550.020.010.013.852.03元素CAsSbCaOMgOAl2O3SiO2含量(%)4.140.080.196.523.969.8568.05    3.2 原矿碳物相分析 表5  原矿碳物相分析成果相别C/碳酸盐C/有机碳C/石墨碳全碳含量(%)2.880.700.564.14相对含量(%)69.5616.9113.53100.00    3.3 原矿硫物相分析 表6  原矿硫物相分析成果硫物相S/硫酸盐S/硫化物S/元素硫全硫含量(%)0.191.780.062.03相对含量(%)9.3687.682.96100.00    3.4 原矿筛分分析表7  原矿(-0.074mm占94.11%)筛分分析成果产品粒级 (mm)产率(%)金档次(g/t)金散布率(%)+0.152.926.833.83-0.15+0.0742.973.672.09-0.074+0.04517.792.669.09-0.04576.325.8084.99算计100.005.21100.00    从原矿筛分分析成果看,大大都金矿藏散布在-0.045mm粒级以下,占金总含量的84.99%,阐明金载体矿藏及金矿藏颗粒比较细微。     3.5矿石矿藏组成及含量     镜下所见金属矿藏较少,占3.84%,首要为黄铁矿、白铁矿,少数的辉锑矿、毒砂、褐铁矿,偶见有黄铜矿、闪锌矿、方铅矿、赤铁矿、磁铁矿等。非金属矿藏有石英、绢云母、方解石、白云石等,少数的长石、泥质、石墨碳质、粘土矿藏、绿泥石等,其相对含量检测成果见表8。 表8  矿石矿藏相对含量丈量成果金属矿藏相对含量 (%)非金属矿藏相对含量 (%)黄铁矿、白铁矿3.35石英、绢云母、长石等72.26辉锑矿0.19泥质、石墨碳质、粘土矿藏3.80毒  砂0.09方解石、白云石20.1黄铜矿、方铅矿、闪锌矿0.09褐铁矿0.12合  计3.84合  计96.16总  计100.00    3.6 首要金属矿藏嵌布粒度     该矿石中的金属矿藏首要为黄铁矿(含白铁矿),少数的辉锑矿、褐铁矿,很少的毒砂,金属硫化物与金联系亲近,因而对硫化物粒度进行检测,金属硫化物粒度丈量成果见表9。 表9  硫化物粒度检测成果粒径区间(mm)>0.0740.074—0.0530.053—0.0370.037—0.01算计相对含量(%)12.34.210.449.323.8100.0经过表9能够看到金属硫化物粒度细微,粒度小于0.037mm占73.1%,镜下所见到辉锑矿粒度相对较粗,多在0.037—0.074mm区间,而毒砂粒度细微,一般多在0.01mm左右,晦气于硫化物在磨矿过程中的单体解离。 3.7 首要矿藏的嵌布特征 黄铁矿(含白铁矿):是该矿石中最首要的金属硫化物,占矿石含量的3.35%,首要呈它形粒状与胶状集合体,黄铁矿周边集合微粒毒砂,呈草莓状,黄铁矿粒度较细,多在0.01—0.053mm区间,呈浸染状,星散散布在脉石粒间,结晶程度低,多为胶状黄铁矿(因而光片磨光度欠好),还有的黄铁矿具有再生增大特征,与其它金属矿藏连晶不亲近,该矿石中的黄铁矿在镜下检测过程中没有发现金矿藏,对原矿选用挑选性溶金实验标明,硫化物含金占86.26%,阐明金矿藏与硫化物联系十分亲近,硫化物中金是镜下难以分辩的微粒金和次显微金。 辉锑矿:在该矿石中含量少,仅占矿石含量的0.19%,首要呈它形粒状、长条状、放射状集合体,嵌布在脉石粒间,与其它矿藏联系不亲近,粒度相对较粗,多在0.037—0.074mm区间,镜下没有发现金与辉锑矿有联系。 毒砂:在矿石中含量很少,仅占矿石含量的0.09%,所见毒砂多呈自形—半自形粒状、毒砂粒度微细,大大都在0.01mm左右,星散嵌布在脉石粒间或微裂隙中,少数在黄铁矿周边构成连晶呈草莓状。 褐铁矿:在矿石中含量很少,占矿石含量的0.12%,是在上盘样品中见到,有的光片中呈氧化铁染色,可见部分黄铁矿已被子褐铁矿告知,呈告知残留结构。褐铁矿粒度多在0.037mm左右。 石墨:在该矿石中含量很少,仅占矿石含量的0.56%,绝大大都是在上盘样品中见到,首要散布在结构发育部位,有的光片呈乌煤色,石墨为片状、长条状,嵌布在矿藏粒间,其粒度多在0.01—0.037mm区间。 3.8 矿石的结构结构 3.8.1 矿石结构 自形—半自形—它形粒状结构:毒砂呈自形—半自形,其它金属矿藏基本上为它形粒状结构。 胶状结构:有部分黄铁矿呈细的浑圆的胶状结构,有的集合成集合体。 告知结构:首要在上盘光片中见有褐铁矿告知黄铁矿。 包括结构:微细粒硫化物、金矿藏在脉石中呈包括结构。 3.8.2 矿石结构 浸染状结构:首要金属矿藏在矿石中呈此结构。 脉状结构:有的石英或方解石呈脉状产出。 角砾状结构:矿石呈碎裂或角砾而被硅质或碳质胶结。 3.9 金矿藏工艺特征 3.9.1 金矿藏品种 经过镜下对光片及团矿片的检测,该矿石中的金矿藏首要为天然金,少数为银金矿。 3.9.2 金矿藏形状 金矿藏因为其粒度细微,形状简略,多呈角粒状、浑圆状、麦粒状等。其成果见表10。表10  金矿藏形状特征丈量成果形状特征角粒状浑圆状麦粒状长角粒状算计相对含量(%)39.832.119.58.6100.0 3.9.3 金矿藏粒度特征 该矿石中金的粒度微细,在光片及团矿片中镜下所见最大金粒为8.5微米,其它多在2—5微米,在很多的镜检过程中没有发现硫化物中金,而挑选性溶金分析硫化物含金占金总量的86.26%,因而这部分金为惯例镜下难以分辩的金,为微粒金和次显微金。具体成果见表11。 表11  金矿藏粒度丈量分析成果粒径区间 (mm)>0.010.01—0.005算计相对含量 (%)微6.1693.84 (其间绝大大都为次显微金)100.0     从表11中能够看到金绝大大都都小于5微米,特别是硫化物中大都为次显微金,用机械磨矿很难使金矿藏单体解离。     3.9.4 金矿藏赋存状况     该矿石中在镜下所见金多赋存在脉石粒间,少数在脉石中,所见最大金粒为8.5微米,金矿藏粒度多在2—5微米,所见金粒数量少,因而难以供给金赋存状况数据。对-0.074mm占90%粒度原矿选用挑选性溶金办法,来检测该矿石中金的赋存状况,其成果见表12。 表12  金的赋存状况赋存状况单体露出金硫化物中金碳酸盐中金硅酸盐中金算计相对含量 (%)6.1686.261.366.22100.03.10 矿石工艺类型 该矿石硫化物含量为3.72%,含锑0.19%,含有机碳0.70%、石墨碳0.56%。金矿藏粒度多为微细粒与不行见金,矿石工艺类型属贫硫化物碳质微细粒浸染型难处理金矿石。3.11 矿石可磨度测定 将-2mm原矿筛去-0.15mm粒级后,每份500克,用标准球磨机进行磨矿,时刻别离为5′、10′、15′、20′,磨矿后筛分成果见表13。 表13  可磨度测定成果可磨度测定曲线见图2。 可磨度系数K=T0/T=354/330=1.07 式中:T0——标准矿石磨至-0.074mm占65%所需时刻(秒);       T——镇沅金矿石磨至-0.074mm占65%所需时刻(秒)。       K=1.07,镇沅金矿石磨至-0.074mm占65%时,比标准矿石易磨。 可磨度系数K′=T0′/T′=810/762=1.06 式中:T0′——标准矿石磨至-0.074mm占90%所需时刻(秒);       T′——镇沅金矿石磨至-0.074mm占90%所需时刻(秒)。       K′=1.06,镇沅金矿石磨至-0.074mm占90%时,比标准矿石易磨。图2  可磨度曲线      3.12 矿石工艺矿藏学研讨小结     (1)该矿石中金属硫化物含量为3.72%,金的粒度为微细粒及次显微金,含有0.70%的有机碳,矿石的工艺类型为贫硫化物碳质微细粒浸染型难处理金矿石。 (2)该矿石中金粒微细,镜下可见最大金粒为8.5微米,占93.84%的金小于5微米,其间大都呈次显微金。 (3)该矿石中金与金属硫化物联系十分亲近,硫化物中金占86.26%,脉石中金占7.58%,游离金仅占6.16%,硫化物粒度也比较细微,小于0.037mm的硫化物占73.1%,晦气于硫化物在磨矿过程中的单体解离。 (4)矿石中有机碳含量为0.70%,含量较高,具有极强的劫金才能,对湿法就地产金工艺会发生晦气影响。 4 浮选实验 4.1 流程探究实验 4.1.1 一段磨浮流程实验 4.1.1.1 –0.074mm占85%粒度的一段磨浮流程实验 实验流程及条件如图3,实验成果见表14。图3 一段磨浮实验流程(1) 表14  一段磨浮实验(1)成果-0.074mm含量(%)产品称号产率(%)金档次(g/t)金回收率(%)85金精矿17.2518.7763.87中  矿17.054.1914.10尾  矿65.701.722.03原  矿100.005.07100.00    4.1.1.2 –0.074mm占90%粒度的一段磨浮流程实验     实验流程及条件如图4,实验成果见表15。图4 一段磨浮实验流程(2) 表15  一段磨浮实验(2)成果-0.074mm含量(%)产品称号产率(%)金档次(g/t)金回收率(%)90金精矿10.7732.5769.58中  矿123.954.0619.29中  矿29.081.232.21尾  矿56.200.808.92原  矿100.005.04100.00    4.1.2 泥砂分选流程实验     实验流程及条件如图5,实验成果见表16。图5  泥砂分选流程 表16  泥砂分选实验成果-0.074mm含量(%)产品称号产率(%)金档次(g/t)金回收率(%)一段65% 二段95%精矿18.4243.9271.58精矿20.8852.138.88中矿10.483.166.42泥23.741.56.89尾矿56.480.576.23原矿100.005.17100.00    4.1.3 阶段磨浮流程Ⅰ实验     实验流程及条件如图6,实验成果见表17。图6  阶段磨浮流程Ⅰ 表17  阶段磨浮Ⅰ实验成果-0.074mm含量(%)产品称号产率(%)金档次(g/t)金回收率(%)一段65% 二段90%精矿17.7020.5173.11中矿118.812.7310.34中矿210.784.6910.18尾矿52.710.606.37原矿100.004.97100.00     4.1.4 阶段磨浮流程Ⅱ实验     实验流程及条件如图7,实验成果见表18。图7 阶段磨浮流程Ⅱ 表18  阶段磨浮Ⅱ实验成果-0.074mm含量(%)产品称号产率(%)金档次(g/t)金回收率(%)一段65% 二段95%精矿17.7446.4367.00精矿27.013.016.97精尾13.742.05.12中矿16.962.066.51尾矿54.860.434.40原矿100.005.36100.00由以上探究流程实验成果得知,阶段磨浮流程的回收率优于一段磨浮流程。一起探究了泥砂分选流程,因为矿泥含金档次为1.5g/t 且仍占有6.89%的回收率,不能直接抛尾,所以终究断定选用阶段磨矿浮选流程。 4.2 磨矿粒度实验 4.2.1 一段磨矿粒度实验 实验流程及条件如图8,实验成果见表19。图8  一段磨矿粒度实验流程 表19  一段磨矿粒度实验成果-0.074mm含量(%)产品称号产率(%)金档次(g/t)金回收率(%)60精矿17.0723.2975.81尾  矿82.931.5324.19原  矿100.005.24100.0065精矿16.1923.1772.47尾  矿83.811.7027.53原  矿100.005.18100.0070精矿17.0523.8976.24尾  矿82.951.5323.76原  矿100.005.34100.00    一段磨矿粒度为-0.074mm占60%时,目标比较抱负。    4.2.2 二段磨矿粒度实验     实验流程及条件如图9,实验成果见表20。 图9  二段磨矿粒度实验流程 表20  二段磨矿粒度实验成果-0.074mm含量(%)产品称号产率(%)金档次(g/t)金回收率(%)85精矿122.5518.5680.49精矿27.968.6413.22尾  矿69.490.476.29原  矿100.005.20100.0090精矿122.8918.4979.11精矿28.819.8216.17尾  矿68.300.374.72原  矿100.005.35100.0095精矿122.3418.7479.44精矿29.868.7216.31尾  矿67.800.334.25原  矿100.005.21100.00二段磨矿粒度为-0.074mm占90%时,目标比较抱负。 4.3 调整剂品种实验 实验流程及条件如图10,实验成果见表21。 图10  调整剂品种实验流程 表21  调整剂品种实验成果调整剂 品种调整剂 用量(g/t)产品称号产率(%)金档次(g/t)金回收率(%)Na2CO3800精矿1.95101.036.29精尾6.0717.6919.79中矿20.829.1635.14尾  矿71.160.678.78原  矿100.005.43100.00Na2SiO3800精矿2.2585.8035.82精尾3.4814.419.30中矿19.547.3826.76尾  矿74.732.0328.12原  矿100.005.39100.00CaO500精矿3.5151.634.04精尾7.2616.4622.46中矿19.179.5134.27尾  矿70.060.709.23原  矿100.005.32100.00CuSO4200精矿3.1872.3242.43精尾4.5415.0612.61中矿23.498.0334.80尾  矿68.790.8010.16原  矿100.005.42100.00 由实验成果可知,选用Na2CO3作为介质PH调整剂其目标较好。别的,选用CuSO4作为活化剂,浮选回收率未改进。 4.4 调整剂用量实验 实验流程及条件如图11,实验成果见表22。图11  调整剂用量实验流程 表22  调整剂用量实验成果Na2CO3 用量(g/t)产品称号产率(%)金档次(g/t)金回收率(%)400精矿8.4636.1055.58中矿19.649.5040.27尾  矿71.900.8010.47原  矿100.005.49100.00600精矿10.6233.8065.54中矿17.648.2626.60尾  矿71.740.607.86原  矿100.005.48100.00800精矿8.0237.9556.06中矿20.829.1635.15尾  矿71.160.678.79原  矿100.005.43100.001000精矿9.5932.0759.46中矿17.948.8630.73尾  矿72.470.709.81原  矿100.005.17100.00 由以上成果断定Na2CO3用量为600 g/t。 4.5 捕收剂品种实验 实验流程及条件如图12,实验成果见表23。图12  捕收剂品种实验流程 表23  捕收剂品种实验成果捕收剂品种及 用量(g/t)产品称号产率(%)金档次(g/t)金回收率(%)丁铵黑药 100精  矿15.907.7523.18中  矿25.0214.4367.92尾  矿59.080.808.90原  矿100.005.32100.00丁铵黑药50 丁黄药 100精  矿10.6233.8065.54中  矿17.648.2626.60尾  矿71.740.607.86原  矿100.005.39100.00BK301 100精  矿11.136.6513.79中  矿25.6615.9176.08尾  矿63.210.8610.13原  矿100.005.37100.00烷-1 60 丁铵黑药 50 丁黄药 100 P-1 60精  矿9.2538.9468.60中  矿20.726.0323.80尾  矿70.030.577.60原  矿100.005.25100.00 选用新式药剂烷-1及P-1实验成果与选用丁铵黑药与丁黄药组合没有太大差异,因而仍选用丁铵黑药与丁黄药组合作为捕收剂。 4.6 捕收剂用量实验 实验流程及条件如图13,实验成果见表24。图13  捕收剂用量实验流程 表24  捕收剂用量实验成果粗选捕收剂 用量(g/t)产品称号产率(%)金档次(g/t)金回收率(%)丁铵黑药40 丁黄药80精矿5.9538.5043.45中矿21.1312.4048.25尾  矿72.920.608.30原  矿100.005.27100.00丁铵黑药50 丁黄药100精矿10.6233.8065.54中矿17.648.2626.60尾  矿71.740.607.86原  矿100.005.39100.00丁铵黑药70 丁黄药140精矿12.7230.6271.01中矿19.076.5522.77尾  矿68.210.506.22原  矿100.005.49100.00丁铵黑药80 丁黄药160精矿14.9226.3673.03中矿19.905.7621.28尾  矿65.180.475.69原  矿100.005.39100.00 丁铵黑药总量为180g/t,丁黄药总量为360g/t时浮选目标较好。粗选作业用量为丁铵黑药70g/t及丁黄药140g/t,各次扫选作业折半。 4.7 浮选时刻实验   实验流程及条件如图14,实验成果见表25。图14  浮选时刻实验流程 表25  浮选时刻实验成果时刻(分)产品称号产率(%)金档次(g/t)金回收率(%)单个累计单个正累计负累计单个正累计负累计单个正累计44精矿16.156.15100.0036.3036.305.2542.5042.5026精矿21.747.8993.8526.5034.143.228.7851.2828精矿31.179.0692.1123.2032.732.785.1756.45210精矿40.9710.0390.9420.4031.532.523.7760.22212精矿50.9210.9589.9721.4030.682.323.7563.97214中矿13.5914.5489.0516.1027.082.1311.0074.97216中矿22.016.5485.4610.3025.051.543.9278.89218中矿31.4918.0383.468.1023.651.332.3081.19220中矿42.7520.7881.975.9221.311.213.1084.29222中矿52.0522.8379.224.9219.831.041.9286.21224中矿61.5424.3777.174.4918.860.941.3287.53226中矿71.6626.0375.634.2017.930.871.3388.86228中矿81.6627.6973.973.2417.050.791.0289.88230中矿91.3829.0772.312.8716.380.730.7590.63232中矿101.2330.3070.932.7915.820.690.6591.28234中矿111.1331.4369.702.5415.350.660.5591.83236中矿121.0332.4668.572.3414.930.650.4692.29尾矿67.54100.067.540.605.250.607.71100.0原矿100.05.25100.0从浮选时刻实验成果可知,该矿石浮游速度缓慢,前12分钟浮选回收率仅为63.97%,从负累计档次可看出,浮选尾矿下降速度较缓慢,浮选30分钟后回收率上升也很缓慢,故断定浮选时刻为30分钟即可。 4.8 归纳条件实验 归纳条件实验选用条件实验所断定的最佳参数,进行了一段磨浮与阶段磨浮流程的实验。 4.8.1 阶段磨浮流程归纳条件实验 实验流程及条件如图15,实验成果见表26。图15  阶段磨浮归纳条件实验流程 表26  阶段磨浮归纳条件实验成果产品称号产率(%)金档次(g/t)金回收率(%)单个累计单个累计单个累计精矿10.78—114.57—17.05—1精尾40.651.4381.0399.3210.0527.101精尾30.922.3557.0382.7710.0137.111精尾21.563.9132.4362.689.6546.761精尾14.077.989.9035.767.6954.45精矿20.45—116.70—10.0264.472精尾40.300.7566.4996.623.8168.282精尾30.471.2230.1070.992.7070.982精尾31.502.727.0435.722.0273.002精尾14.387.102.2515.071.8874.88中矿17.08—12.10—16.3591.23中矿24.89—2.35—2.1993.42中矿34.80—1.50—1.3794.79尾矿68.15—0.40—5.21100.00原矿100.005.24100.00    从实验成果可知,一段浮选二次精选、二段浮选二次精选即可。     4.8.2 一段磨浮流程归纳条件实验     实验流程及条件如图16,实验成果见表27。图16  一段磨浮归纳条件实验流程表27  一段磨浮归纳条件实验成果产品称号产率(%)金档次(g/t)金回收率(%)精矿2.9796.0854.35精尾Ⅰ7.283.334.62精尾Ⅱ1.954.171.55精尾Ⅲ1.2111.842.73精尾Ⅳ1.7937.0812.64中矿18.626.1910.16中矿24.723.993.59中矿33.692.631.85尾矿67.770.668.51原矿100.005.25100.00从实验成果能够看出阶段磨浮流程的目标略好于一段磨浮流程。为了进一步比照两种流程,又别离进行了阶段磨浮及一段磨浮的闭路实验。 4.9  一段磨浮流程闭路实验 4.9.1 两次精选作业的一段磨浮流程闭路实验 实验流程及条件如图17,数质量流程如图18,实验成果见表28。图17  两次精选的一段磨浮闭路流程图18  两次精选的一段磨浮数质量流程表28  闭路实验成果产品称号产率(%)金档次(g/t)金回收率(%)精矿9.7847.5687.15尾矿90.220.7612.85原矿100.005.34100.00    4.9.2 四次精选作业的一段磨浮流程闭路实验     实验流程及条件如图19,数质量流程如图20,实验成果见表29。图19  四次精选的一段磨浮闭路流程图20  四次精选的一段磨浮数质量流程表29  闭路实验成果产品称号产率(%)金档次(g/t)金回收率(%)精矿7.3362.4886.18尾矿92.670.7913.82原矿100.005.31100.00    4.10阶段磨浮流程闭路实验     4.10.1 两次精选作业的阶段磨浮流程闭路实验     实验流程及条件如图21,数质量流程如图22,实验成果见表30。图21  两次精选的阶段磨浮闭路流程图22  两次精选的阶段磨浮数质量流程表30  浮选闭路实验成果产品 称号产率 (%)档次(%)回收率(%)Au(g/t)AsSAuAsS金精矿10.2147.870.7518.7490.5289.5090.26尾  矿89.790.570.010.239.4810.509.74原  矿100.005.400.0862.12100.00100.00100.00     4.10.2 四次精选作业的阶段磨浮流程闭路实验     实验流程及条件如图23,数质量流程如图24,实验成果见表31。图23  四次精选的阶段磨浮闭路流程图24  四次精选的阶段磨浮数质量流程 表31  闭路实验成果产品称号产率(%)金档次(g/t)金回收率(%)精矿7.5263.5989.60尾矿92.480.6010.40原矿100.005.34100.00    5 浮选实验产品考察     5.1 原矿-0.074mm占85%、90%、95%硫化物单体解离度考察     对该产品首要是经过磨制团矿片,镜下进行金属硫化物单体解离度考察,在镜下检测过程中,因为富连体在浮选过程中简单进入精矿样品,在检测计算过程中视为单体硫化物,丈量成果见表32。 表32  原矿硫化物单体解离度考察成果连生联系单体 (富连体)硫化物与 脉石脉石包裹算计相对含量 (%)-0.074mm占85%79.614.06.4100.0-0.074mm占90%82.811.75.5100.0-0.074mm占95%84.410.55.1100.0    经过表32中硫化物单体解离度考察成果能够看到,大大都硫化物呈单体和富连体,而纯脉石包裹硫化物别离占6.4%、5.5%、5.1%,硫化物解离特征无显着差异。     5.2 –0.074mm占90%粒度原矿金的赋存状况考察     对该粒度的样品进行消除有机碳和挑选性溶金办法进行考察,其成果见表33。 表33  金的赋存状况分析成果赋存状况单体可浸金硫化物中金脉石中金算计相对含量 (%)6.1686.267.58100.0    5.3 浮选尾矿硫化物丢失状况及金矿藏丢失状况考察     对金档次为0.57g/t的闭路浮选尾矿进行考察,经过磨制团矿片经镜下检测,样品基本上见不到硫化物颗粒,偶然只见到小于3微米以下的硫化物包裹体,选别作用较好。丢失于尾矿中的硫化物绝大大都为脉石包裹硫化物,丢失于尾矿中的金矿藏绝大大都为脉石包裹金。其硫化物赋存状况检测成果见表34,金的赋存状况见表35。 表34  浮选尾矿硫化物丢失状况考察连生联系硫化物单体与脉石连生脉石包裹算计相对含量 (%)2.64.193.3100.0表35  浮选尾矿金的赋存状况考察赋存状况单体露出金硫化物中金脉石中金 ,算计相对含量 (%)1.121.4397.45100.0     5.4 金精矿多元素分析 表36  多元素分析成果元素Au(g/t)Ag(g/t)SFeCaOMgOAl2O3含量(%)47.8710.5018.7423.654.013.4210.49元素SiO2AsCCuPbZnSb含量(%)21.810.755.210.0510.0250.0741.40     注:金精矿为阶段磨浮二次精选作业闭路实验精矿。    5.5 精矿碳物相分析 表37  精矿碳物相分析相别C/碳酸盐C/有机碳C/石墨C总含量(%)1.291.762.165.21相对含量(%)24.7633.7841.46100.00    5.6 精矿硫物相分析 表38  精矿硫物相分析相别S/硫酸盐S/硫化物S/天然硫S总含量(%)0.2118.280.2518.74相对含量(%)1.1297.551.33100.00    5.7浮选精矿产品考察     对浮选精矿进行磨制团矿片,经镜下进行硫化物单体解离度考察,其成果见表39,金的赋存状况见表40。 表39  精矿硫化物单体解离度考察连生联系单体与脉石连生脉石包裹算计相对含量 (%)92.16.51.4100.0表40  精矿金的赋存状况考察赋存状况单体露出金硫化物中金脉石中金算计相对含量(%)12.1584.743.11100.0    5.8 沉降实验     (1)原矿-0.074mm占90%沉降速度测定。     对原矿进行浓度为15%、20%沉降实验,成果见表41,沉降曲线见图25。 表41  原矿-0.074mm占90%沉降速度实验成果沉降时刻弄清区高度(mm)小时分浓度:15%浓度:20%515810301520582830864140112545013667115679120190103140217125223914823026817832802093302832254286229430288232529023562942408297243930024624312266沉降总高度(mm)392362 图25  原矿沉降速度曲线    (2)原矿-0.074mm占60%沉降速度测定。     对原矿进行浓度为25%、30%沉降实验,成果见表42,沉降曲线见图26。 表42  原矿-0.074mm占60%沉降速度实验成果20沉降时刻弄清区高度(mm)小时分浓度:25%浓度:30%5141110251620462530653340844150102501119631 1557614017587219610423020212932061343302081384211142430213145521514862191528225159922616224231179沉降总高度(mm)392362图26  原矿沉降速度曲线     (3)浮选精矿沉降速度测定。     选用图十九浮选闭路实验精矿,矿浆浓度10%、15%,沉降实验成果见表43,沉降曲线见图27。 表43  浮选精矿沉降速度实验成果沉降时刻弄清区高度(mm)小时分浓度:10%浓度:15%512111110193159152882152029124530293265129427313029427422942753294276529427624294276沉降总高度(mm)325325图27 精矿沉降速度曲线     (4)浮选尾矿沉降速度测定。      选用图二十三浮选闭路实验尾矿,矿浆浓度15%、20%,沉降实验成果见表44,沉降曲线见图28。 表44  浮选尾矿沉降速度实验成果沉降时刻弄清区高度(mm)小时分浓度:15%浓度:20%5851015102029193041274053355065441765212098681401198421409923017112332031493302181724222177522818462321877235190823919492431981026122224262222沉降总高度(mm)341321图28  尾矿沉降速度曲线 6 引荐准则工艺流程及技能条件 工艺参数及流程结构: 一段磨矿:-0.074mm占60% 一段浮选:一次粗选、一次扫选、二次精选 二段磨矿:-0.074mm占90% 一段浮选:一次粗选、二次扫选、二次精选技能条件:药剂条件 作业Na2CO3 (g/t)丁铵黑药 (g/t)丁基黄药 (g/t)2#油 (g/t)浮选时刻 (min)一段磨矿粗选60050100405扫选3570205二段磨矿粗选3004080408扫选Ⅰ2040206扫选Ⅱ2040206算计90016533014030图29  引荐浮选工艺流程    7 结语     (1)云南镇沅矿石中金矿藏及其载体矿藏粒度微细,晦气于金矿藏的露出与解离,需要在较细的磨矿粒度条件下进行浮选。     (2)浮选实验研讨标明,该矿石选用阶段磨浮流程成果好于一段磨浮流程,在原矿粒度为90%-0.074mm时,一段磨浮尾矿档次为0.76g/t,浮选回收率为87.15%,阶段磨浮尾矿档次为0.57g/t,浮选回收率为90.52%。因而断定选用阶段磨浮流程进行浮选。     (3)因为矿石中含有一定量的含泥碳质矿藏,影响矿石矿化速度,因而矿石浮游速度缓慢,需要在较高药剂浓度下长时刻浮选。     (4)闭路实验浮选尾矿档次0.57g/t,经产品考察,丢失于尾矿中的硫化物93.3%为脉石包裹,丢失于尾矿中的金97.45%为脉石中金。