钴渣生产电钴的实例
2019-03-04 11:11:26
电解钴是最重要的钴产品之一。国内电钴的出产质料,一般是铜、镍、铅、锌等冶炼进程产出的含钴副产品,如镍电解净化进程产出的钴渣、含钴黄铁矿烧渣等。
从含钴副产品中出产电钴的准则流程首要有两种,一是选用化学沉积法去除杂质,两段氧化沉积别离镍和钴,火法煅烧后复原熔炼得到粗钴,铸成阳极电解精粹;另一种是选用萃取除杂,萃取别离镍和钴,得到氯化钴溶液,不溶阳极电解。
金川集团公司是我国镍钴的首要出产基地,钴的年产量到达500t以上,目条件钴已构成两大出产体系,别离出产电钴和氧化钴,并产出钴盐等其他产品。出产质料为镍体系的钴渣和富钴锍。
电钴的出产以镍体系电解流净化所产钴渣为厚料,选用钴渣球磨浆化→复原溶解→黄钠铁矾除铗→除铜→二段沉钴→氢氧化钴反射炉烧结→电炉复原熔炼→可溶阳极电解工艺出产电解钴,别离钴后的硫酸镍回来镍出产体系。这是一个火法和湿法相结合的出产流程。出产工艺的流程图示于图1和图2。图1 从钴渣出产氢氧化钴的工艺流程图图2 从氢氧化钴出产电钴的工艺流程图
选用与此相似流程出产电解钴的其他供应商还有前沈阳冶炼厂、重庆冶炼厂等。
选用N235萃取净化和别离、不溶阳极电解工艺出产电解钴的首要供应商是成都电冶厂。
一、钴渣的复原浸出
镍电解体系净化产出的钴渣,首要元素组成列于表1。
表1 钴渣的首要金属元素的含量Co、Ni、Cu、Fe等金属在钴渣中首要以氧氧化物方式存在,在液固比为(3~4)∶1及机械或鼓风拌和条件下,用硫酸调pH=1.5~1.7,通入SO2复原溶解。但在初期未通入SO2之前,因Cl-被氧化而放出氧气,复原浸出期间Ni、Co和Cu呈二价离于进入溶液,在鼓空气拌和浸出时部分Fe氧化成三价。首要化学反响可表示为:在鼓空气拌和情况下,可发作亚铁离子的部分氧化,如:复原浸出液的成分列于表2。
表2 钴渣复原浸出液首要成分二、钴浸出液的净化
浸出液中首要杂质元素是铁和铜,非有必要的有铅、锌、锰、砷等。铁选用黄钠铁矾法除掉,铜用硫化沉积法除掉,其他杂质用水解沉积法除掉。
(一)黄钠铁矾除铁
黄钠铁矾除铁的基率原理是生成难溶盐。黄钠铁矾[Na2Fe6(SO4)4(OH)12]是一种淡黄色晶体沉积,具有杰出的过滤性和洗刷性,生成进程比较复杂,需求较严格操控生成条件,首要影响要素有碳酸钠溶液的浓度、温度和pH值、晶种的参加等。详细操控条件如下:
1、碳酸钠的浓度
7%~8%的浓度,且有必要均匀参加,常用办法是运用低压风使碱液呈雾状喷入铁矾生成槽内。碳酸钠浓度高时,易生成胶状氢氧化铁,形成渣含有价金属上升,且过滤困难:浓度过低则对整个体系的体积平衡晦气,下降溶液浓度。
2、温度、氧化和pH值
除铁前溶液需经氧化,使Fe2+氧化成Fe3+,氧化剂一般为NaClO3,氧化温度≥85℃,铁矾生成温度≥90℃时,呈颗粒状,具有杰出过滤功能;除铁前溶液的pH值操控在1.5~1.7,氧化时刻操控在1.5~2.0h,结尾pH值操控在2.5~3.0,除铁率可达99%,溶液中Fe≤0.05g∕L;终究pH值操控在4.0~4.5时,除铁后溶掖中Fe≤0.001g∕L。
3、晶种
湿铁矾渣作晶种参加,即在除铁压滤时,在反响罐底留必定渣量,可大大加速黄钠铁矾除铁速度。
洗后铁渣成分为:0.5%~1% Co,1%~3% Ni,0%~0.4% Cu,Fe≥24%。
(二)沉积除铜
除铜的根本原理是生成难溶的硫化铜沉积。除铜作业在机械拌和的珐琅釜中进行,用量为Cu2+∶Na2S=1∶5。先配成饱和溶液,常温下缓慢参加釜内,初始pH=2.0~3.0,终究pH=3.5~4.0,由于为碱性。除铜停留时刻约30min。溶液中的铜含量可降至0003g∕L以下,一同可除掉铅。除铜的缺陷是或许部分生成NiS和CoS沉积,形成铜渣含镍钴过高,且使溶液中带入钠离子。
三、氯化水免除砷、锑
氧化水免除砷、锑的首要原理,是运用铁水解产出的肢状Fe(OH)3具有较强吸附效果,使砷、锑等杂质一道沉积。因而,砷、锑从溶液中脱除的深度,在很大程度上取决于溶液中的含铁量,一般要求溶液中含铁量为砷、锑量的10~20倍。在水解沉积前参加氧化剂,如、次或,意图是使二价铁氧化为三价铁。
四、氧化水解别离钴
运用三价钴氢氧化物的低溶度积,使钴氧化水解沉积,是出产上别离溶液中镍和钴的常用办法。
在酸性溶液中,Co2+比Ni2+优先氧化,且Co(OH)3的溶度积及水解沉积的pH值显着低于Ni(OH)3,在强氧化剂效果下,Co2+被氧化而水解沉积。在氧化水解沉钴进程中,即便少置Ni2+氧化而生成Ni(OH)3沉积,也仍对Co2+具有氧化效果,发出发生Co(OH)3沉积的置换反响,Ni2+进入溶液。常用的强氧化剂为或次改。
水解沉积进程中有H+发生,有必要加碱进行中和。
在出产运用中,为了使钴和镍杰出别离,应遵照以下根本准则:
(一)参加过量氧化剂和碱,如用次为氧化制,应使NaCl∶Na2CO3=(1.1~1.2)∶1。
(二)操控恰当的析钴率,溶液含钴高时析钴率可高些。
(三)用二次沉钴替代一次沉钴,以取得较高纯度的氢氧化钴。
沉钴作业在空气拌和槽中完结。NaClO作氧化剂时,二次沉钴的工艺进程为:一次沉钴→压滤→滤渣用二次沉钴母液淘洗→复原溶解→二次沉钴→压滤,如图2所示。二次沉钴的根本技能参数见表3。
表3 二次沉钴的首要技能参数沉钴进程中,溶液用空气拌和均匀,氧化剂有必要用压缩空气雾化均匀喷洒在液面上。一次沉钴得到的氢氧化钴中,Co∕Ni≥10;二次沉钴得到的氢氧化钴中,Ca∕Ni≥350,Co∕Cu≥200,Co∕Fe≥100。假如要求出产1号电钴,Co∕Ni比须大于600。
五、粗钴阳极板的制备
二次沉钴得到的氢氧化钴含水约50%,配入少数石油焦,在反射炉中烧结成多孔氧化钴团块,然后与脱硫剂CaO、复原剂(石油焦)及造渣剂SiO2一同装入电炉,在高温下熔炼,插湿木进行复原和拌和,使氧化钴复原成金属钴,并脱去杂质,浇铸得到含钴超越95%的粗钴阳极板,用于钴的电解精粹。
反射炉煅烧的意图有3个:
(一)使氢氧化钴脱水、分化,转变为氧化钴,并烧结成多孔的团块;
(二)参加石油焦,使氧化钴半复原;
(三)脱除部分硫。
反射炉可用煤、煤气、液化、天然气或重油作燃料。金川公司用重油作燃料,选用低压喷嘴,具有能耗低、雾化好的特色。进料配比为石油焦∶水=100∶8,与氢氧化钴一同在拌和机内拌和均匀后参加炉内,炉温操控在1000~1100℃。
反射炉产出的氧化钴含钴76%左右,按要求配比:氧化钴∶石油焦∶石灰石=100∶(8~9)∶(5~7)配料后装入电炉,物料表面铺少数粗钴残极,以利于起弧熔炼。炉料熔化后,操控炉温在1550~1650℃,经造渣、扒渣操作,提温浇铸成阳极板。金川公司的阳极板规格为530mm×230mm×40mm。粗钴阳极板的化学成分为Co>95%、Ni<0.45%、Cu<0.65%、Fe<1%、Pb<0.003%、Zn<0.002%、S<0.6%、C<0.05%。
六、电解精粹
金川公司选用可溶阳极和阴极隔阂电解法出产电钴。出产运用12个电解槽,规格为2060mm×790mm×860mm,运用2个槽造液。电解液为氯化物体系,阴极新液的化学成分列于表4。
表4 钴电解新液的成分 (g∕L)钴电解时的首要技能条件如下:
阳极规格及片数: 500mm×230mm×40mm,每槽22块
同极中心距: 180mm
始极片规格及片数: 540mm×520mm,每槽10块
电解温度: 55~65℃
电流密度 300~400A∕m2
槽电压: 1.6~2.2V
电解液循环量: 16~220ml∕(min·袋)
阴阳极区液面差: 30~50mm
阴极周期: 3天
钴电解阳极液的成分:阳极液和造液一同进行净化除杂,然后作为阴极新液回来电解。首要除杂作业为除镍、除铜、除铅和除铁。净化除杂的首要工艺条件列于表5。
表5 电解钴阳极液除杂首要工艺条件净化渣压滤除掉,含钴铁渣回来与镍体系钴渣一同进行浆化、复原溶解。通过净化处理,溶液到达出产电钴的阴极液的要求,即:Co>100g∕L,Fe<0.001g∕L,Cu≤0.003g∕L,Pb≤0.0003g/L,Zn≤0.007g∕L。
锌渣
2017-06-06 17:49:59
锌渣是什么?锌渣主要是热镀锌厂镀锌过后遗留下来的有一点杂质的锌.锌渣的化学特性:浅灰色的细小粉末. 具强还原性. 通常含有少量氧化锌. 相对密度: 7.133(25℃) 熔点: 419.58℃ 沸点: 907℃ 在空气中发火点: 约500℃ 爆炸极限: 下限420克/米 最大爆炸压力: 34.3牛/厘米 气化潜热: 114.8千焦/摩尔 蒸气压: 133.3帕(487℃)。锌渣遇酸类、碱类、水、氟、氯、硫、硒、氧化剂等能引起燃烧或爆炸. 其粉尘与空气混合至一定比例时, 遇火星即会引起燃烧爆炸. 锌渣的处置方法:干砂、干粉;禁止用水和泡沫。目前国内的锌渣市场逐渐成熟,从一个侧面说明了我国正处于有色金属产业高峰期,各类有色金属都已经成为贸易商们的"主力军".锌渣要想"站稳脚根",还需要时间来检验.
镍电解净液钴渣提钴
2019-03-05 09:04:34
镍电解时,阳极中的镍与钴一同电化学溶解进入溶液,在阳极液净化除杂质时,溶液中钴以Co(OH)3方式沉积进入钴渣。钴渣含钴6%-7%,可用来出产氧化钴,也可产出金属钴。所用工艺由钴渣溶解、浸出液净化除杂质、镍钴别离以及制取氧化钴(或金属钴)四部分组成(见图)。 在65-75℃温度下,在硫酸溶液中,参加Na2SO3将Co3+还原成CO2+并溶解: 2Co(OH)3+Na2SO3+2H2SO4====2CoSO4+Na2SO4+5H2O 溶出液在95℃,参加NaClO3将Fe2+氧化水解沉积除掉。除铁液进萃取槽,用P204萃取剂除铜和剩下铁,除铜后液再以P507别离镍钴,含钴有机相用溶液反萃取得到含Co75g/L左右的COCl2溶液。此溶液既可以在不溶阳极电解槽中隔阂电解出产金属镍;也可以用草酸沉钴然后煅烧出产氧化钴粉。电解的技能条件是:电流密度400A/m2,槽电压3-4V,电解温度60℃,电流效率94%。
钴渣的还原浸出
2019-01-24 09:37:04
镍电解系统净化产出的钴渣,主要元素组成列于表1。
表1 钴渣的主要金属元素的含量Co、Ni、Cu、Fe等金属在钴渣中主要以氧氧化物形式存在,在液固比为(3~4)∶1及机械或鼓风搅拌条件下,用硫酸调pH=1.5~1.7,通入SO2还原溶解。但在初期未通入SO2之前,因Cl-被氧化而放出氧气,还原浸出期间Ni、Co和Cu呈二价离于进入溶液,在鼓空气搅拌浸出时部分Fe氧化成三价。主要化学反应可表示为:在鼓空气搅拌情况下,可发生亚铁离子的部分氧化,如:还原浸出液的成分列于表2。
表2 钴渣还原浸出液主要成分
钴渣制取氧化钴的生产实践
2019-03-05 12:01:05
氧化钴是钴基合金、硬质合金及珐琅,陶瓷颜料的重要原材料,国内现在年产1000多吨。氧化钴有三种不同方式:CoO、Co2O3、Co3O4,色彩和含钴量都不同。因为各厂的质料和出产条件不同,在浸出、净化和钴沉积上各有特色。
从镍体系钴渣出产氧化钴的典型出产工艺为金川公司流程,如图1所示。图1 金川公司用钴渣出产氧化钴的流程图
一、萃取除杂
黄钠铁矾除铁后液中的杂质总量仍还有约2g∕L,包含Cu、Fe、Ca、Mg、Pb、Zn、Mn等,为了得到合格的氧化钴产品,还必须进一步的净化。金川公司选用P204萃取工艺进行深度净化除杂。
P204主要成分为二-(2-乙基己基)磷酸,是一种烷基磷酸萃取剂,分子量323,无臭味,出厂规格为P204≥93%,密度0.9694~0.9700g∕cm3(25℃),黏度0.42cP(25℃),在水中溶解度0.012g∕L,10%碳酸钠溶液中溶解度为0.026g∕L,1moL硫酸溶液中溶解度为0.0017g∕L,平衡pH值时pKa=3.5,酸性杂质为0.3%~0.4%,水分为0.3%~0.4%,其分子结构式为:萃取除杂在25级聚氯乙烯混合弄清箱中进行,溶液中的Cu、Fe、Zn、Mn、Ca等杂质进入有机相中,别离用1.2mol∕L、2.5mol∕L和6mol∕L洗Co、洗Cu、洗Fe。萃余液送P507别离镍钴。
25级别离为10级萃取,5级洗钴,4级洗铜,4级洗铁,2级弄清。
混合室:0.52m×0.52m×l.20m
弄清室:0.52m×2.60m×1.20m
萃取箱拌和桨为钛质六叶桨,直径200mm,由5台5.5kW电动机带动,转速470~500r∕min。流量由高位槽操控,转子流量计丈量。
萃取操作的技术参数为:
萃取剂: 10% P204,90%磺化火油
皂化剂: 8~9mol∕L NaOH溶液
皂化率: 60%~65%
物料流比: 有机相∶料液∶洗钴液=0.6∶1.0∶0.06
皂化在φ2×2mPVC槽内进行。
反萃用的2.5mol∕L和6.0molL∕L溶掖内循环,别离降至0.1~0.2mol∕L或4~4.5mol∕L时更换新酸液。
除杂后液成分:二、萃钴
P507萃钴在34级萃取箱中进行,其间制锦皂5级,镍钴别离7级,洗镍5级,钴反萃6级,洗铁5级,弄清6级。萃取箱尺度、结构、拌和桨及转速等与萃取除杂相同。
萃钴操作的技术参数为:
萃取剂 25% P507,75%磺化火油
制镍皂溶液 35~40g/L硫酸镍溶液
制钠皂溶液 8~9mol∕L NaOH溶液
物科流比 有机相∶料液∶洗镍液∶反萃液=1.0∶0.7∶0.07∶0.15
皂化在φ2×2mPVC槽内进行。
洗镍用1.2mol∕L溶液,反萃钴用2.5mol∕L溶液,冼铣用6.0mol∕L溶液(内循环)。
三、草酸钴沉积
运用沉积剂草酸铵,由草酸溶液通入自行沉积制备。运用φ2m×2m不锈钢槽,在60℃下溶解工业草酸,真空抽滤除掉残渣,溶液在机械拌和条件下通入气,至pH=4.0~4.5时沉积结束,真空过滤得到草酸铵。
沉钴分两段进行,都在2m3珐琅釜内完结,操作条件见表1。
表1 两段沉钴技术参数四、煅烧制氧化钴
一段沉积草酸钴选用反转管电炉煅烧,电炉规格为φ0.5m×10m,转速0~2.07r∕min,倾角3°,总功率250kW,炉头温度700℃,炉中600℃,炉尾500℃。
二段沉积选用红外线炉煅烧热解,温度530℃。
硬质合金出产用的氧化钴要求松装比重在0.45~0.55g∕cm3之间,为此要求在沉钴过程中严格操控氯化钴的初始浓度、淀度及草酸铵的参加速度,以确保取得必定粒度的沉积;一起严格操控煅烧时的炉温,不致过烧或缺乏。
锌渣价格
2017-06-06 17:49:59
近期金属市场剧烈振荡,国内锌渣价格大幅下挫。小编认为,市场对欧元区债务问题蔓延的忧虑、国内信贷紧缩和政府可能出台更多的房地产调控措施是导致锌渣价格大幅下挫的主要原因。目前主导金属市场的主要因素还是在宏观面,在市场对欧元区债务问题、中国政府收紧信贷以及更多严厉的地产新政可能出台的忧虑没有大幅缓解的情况下,金属市场仍将面临较大的下行压力,锌渣价格未能企稳前,仍以空头思路对待。回到国内市场,信贷紧缩预期和政府可能出台更多地产新政的担忧导致国内市场空头氛围浓厚。五一假日期间,中国央行今年第三次提高存款准备金率,此举皆在控制信贷。从目前来看,市场对于央行紧缩信贷的预期还是比较强烈的,且市场普遍担心,5月以后可能已经进入央行加息的时间窗口。预期政府收紧信贷令金属市场承压。再看近期的房地产, 4月中旬的新“国十条”出台后,地方政府开始纷纷出台配套措施。以最新的北京地区新政为例,其比前期的国十条还要严厉。而近期市场也将迎来深圳和上海等地区地方政府出台的地产新政。由于市场担忧后续地方政府将出台更多严厉措施,金属市场也将在这种利空因素预期下面临压力。从目前来看,锌渣价格偏好受挫,金属市场人气仍偏空,加之目前市场本身供应过剩且现货充裕,因此锌渣价格短期来看仍面临较大压力。
废锌渣
2017-06-06 17:49:59
废锌渣是浅灰色的细小粉末.,强还原性. 通常含有少量氧化锌. 相对密度: 7.133(25℃) 熔点: 419.58℃ 沸点: 907℃ 在空气中发火点: 约500℃ 爆炸极限: 下限420克/米 最大爆炸压力: 34.3牛/厘米 气化潜热: 114.8千焦/摩尔 蒸气压: 133.3帕(487℃) .就目前的市场情况而言,废锌渣的成交较为清淡,用家可接受价位在13700-13800元/吨左右。而持货商因为国外进口成本增加和倒挂现象的影响,订货意欲也较低。目前废锌渣的走势比较稳定,不过调整期仍未结束,建议等待调整过后才逐步建仓。废锌渣方面,现在市场少有超价成交的现象,用家基本上是随订单采购为主,即使市场货源较紧,暂时也不打算大量备库存。目前锌市正在寻求方向突破,建议在方向未明之前不宜大量建仓。昨夜伦锌走势反复,涨跌互现,昨日中国公布经济数据对基本金属市场影响不大。今早沪锌继续在15000元以上震荡,从盘面上来看,市场对未来经济前景不十分明朗,因此目前市场普遍处于观望气氛为主。现货市场方面,今日废锌渣价格上涨50元/吨,市场观望气氛不减,等待方向指引。传统上每年的3-6月份为中国传统金属消费旺季,这一期间中国消费的提升往往成为金属价格上涨的动力所在。但今年3月,受中国紧缩政策预期及欧元区债务危机引发的美元走强等内外双重因素夹击,国内废锌渣等金属消费主要集中于前期囤积库存。生产商金属现货采购意愿略显清淡,基本金属价格呈现出旺季不旺走势。今年1-2月中国精锌产量同比增长16%至70.2万吨,虽然2月份因春节假期生产时间减少,但环比产量仍增加4%。1-2月废锌渣更是创下257万吨的高位,同比增幅达46%。国内产量大幅增长、进口量维持高位也对金属价格形成打压。随着中国经济发展不断提速、通货膨胀压力增大,人民币有望恢复渐进性升值可能,这将在短期内利好包括有色金属在内的大宗商品走势。之前仿佛已经箭在弦上的加息传闻也有所弱化,目前流动性依然宽松也有利多大宗商品。随着环保口号的提出,废锌渣已经受到越来越多的关注,各种关于废锌渣的咨询也是扑面而来
废锌渣价格
2017-06-06 17:49:59
从废锌渣价格变化来看,废锌渣的金融属性表现更加突出,市场突发性事件对价格影响较大。随着国家对房地产市场调控的深入,废锌渣价格未能独善其身摆脱利空阴影。从现货市场来看,由于废锌渣价格在4月期间表现为高位振荡,现货市场受制于沉重供应压力废锌渣价格上行乏力,上海地区和广东地区现货价格波动幅度在600—700元/吨以内。由于国家后期政策的不确定性较大,市场交投相对谨慎。有部分企业采用按需采购的方针。下游消费对废锌渣价格有较强吸引力。废锌渣价格受旺季支撑比较明显,冶炼企业及矿商在旺季来临之际都会加大生产力度,锌精矿月度产量在3—6月份均出现大幅增长,下游消费行业在旺季来临之际参与度较高。从往年价格变化规律来看,年内价格高点出现在5月和9月的概率最大。因此,锌市在5月份会受旺季支撑。从3月份开始,随着传统消费旺季的到来,铅锌冶炼行业投产力度加大,我国锌冶炼行业开工率达到85%以上,与此对应的结果就是我国3月精炼锌产量重回40万吨水平之上。3月国内精锌产量为42.1万吨,同比增加23.1%,1—3月份累计生产精炼锌117.2万吨,同比增长37.1%。冶炼厂的增产加大了市场供应压力,这也是锌价近期难有起色的重要原因。国际铅锌业研究小组公布的数据显示,全球1—2月份过剩精锌10.7万吨,而去年同期过剩19.9万吨。目前,伦敦金属交易所锌库存已到达54.3万吨,上海期货交易所锌库存达到了25.6万吨,仅全球显性库存就可供全球使用26.9天。因此,全球需要经过较长时间来实现去库存化。从技术上来看,废锌渣价格维持振荡格局已经持续将近2个月。通常,在一段区间停留时间越长,此区间越有效。因此,在经历充分的调整后,废锌渣价格下行空间有限,后期政府调控地产细则可能陆续出台,加上希腊债务危机导致的欧元区国家主权危机问题,都将成为废锌渣价格的主要风险点。
让锌渣不再废除
2019-03-13 11:30:39
四针状氧化锌晶须,不只姓名听起来非常偏僻,并且出产技能也适当杂乱,迄今全世界只要日本松下公司使用高纯锌为质料完成了工业化出产。 我国在热镀锌过程中,每年发生的20万吨锌渣,要么只能出产高耗高污染等级低产品,要么抛弃不必,听任“风吹雨打去”。 湖南冶金工作技能学院陈艺锋博士,在其导师、中南大学唐模塘教授的指导下,历经3年困难攻关,选用热镀锌渣为质料直接制备成功四针状氧化锌晶须,并投入规划工业出产,演绎了变废为宝循环经济的动听传奇。 所谓四针状氧化锌晶须,浅显讲就是一种复合材料添加剂。跟着人类社会科学技能的巨大进步,传统的铝、镁、钛等材料已很难满意现代工业开展的需求。所以,创造新材料或对传统材料改性晋级就提到了材料科学的议事日程上。四针状氧化锌晶须是1944年被发现的。因为其所具有的特性,在复合材料增强剂、涂料、导电材料、吸波材料、光电材料等范畴具有广泛的使用远景。比方使用它吸声吸波的特色而出产制作战机或的材料,就能到达“隐形”的意图。发挥它优秀的耐磨性,就可以使高档橡胶轮胎的使用寿命从2年延伸至5年。因而遭到世界冶金材料界的追捧。 在此范畴,日本松下电器公司的研制有目共睹。他们于上世纪80年代末开发,90年代初完成工业化出产。因为松下公司选用的是锌粉预氧化法,不只对原材料的纯度要求很高,并且晶须收得率很低,加之处理工艺过于冗杂,致使出产成本居高不下,每吨高达18万元人民币。二 据报道,全球40%%的锌产值用于钢铁工业的热镀锌。我国是世界榜首产锌大国和榜首钢铁大国,在热镀锌作业中,要发生很多铁含量、锌含量都很高的废渣。为了从废渣中提取锌,各地一般由手艺作坊式小厂商乃至是农人选用近似原始的蒸馏法处理,回收率低,耗能大,污染重,一些当地遍地开花,处处冒烟,形成严峻的环境问题。 2001年,陈艺锋将以热镀锌渣为质料直接制备四针状氧化锌晶须的研讨,作为自己博士论文的选题。他在汲取10多年来我国研讨成果的基础上,致力于探究氧化锌晶须的成长机理,找出其分级、涣散及改性的规则,研讨完成工业化技能与设备。寒来暑往,冬去春来。3年多的绞尽脑汁、煞费苦心,总算让陈艺锋找到并总结出一种彻底有别于日本松下锌粉预氧化的新技能,以及与之匹配的出产配备。不只使从热镀锌渣直接制备优质四针状氧化锌晶须成为实际,处理了以往处理废渣时发生的种种坏处,还可以全面满意工业化出产的要求,并且晶须收得率较日本技能有大幅进步,出产成本却只要他们的1/6! 陈艺锋博士介绍,现在他正以自己用热镀锌渣直接制备优质四针状氧化锌晶须技能,与上海米其林公司、株洲年代集团协作,将其首要使用于高档轮胎的出产中,变科技成果为实际出产力。由省科技厅掌管的科技成果鉴定将于下月举办,他满怀信心地预备迎候专家们最严厉的评定。
制酸烧渣综合回收铜钴实验
2019-02-18 15:19:33
德尔尼铜矿是20世纪六七十年代发现的大型铜钴矿床,现已建成日处理原矿石8kt,年处理240万t的采选联合体系,每年将有100多万t的尾矿进入尾矿库。德尔尼尾矿含铁40.7%、硫38.5%、铜0.35%、锌0.81%、金0.44g/t、银7.6g/t、钴11.3g/t。铁、硫含量高,有价金属含量丰厚,具有极为可观的开发利用价值。硫铁矿制酸烧渣经处理后可制得合格铁精粉外售,一起烧渣中含有Cu、Co、Au、Ag等有价金属元素,因而硫铁制酸烧渣作为二次资源,是一种很好的归纳利用质料。 一、试验物料硫精矿首要用于欢腾焙烧制酸,一起余热发电,焙烧温度一般控制在800~900℃。为模仿实践出产状况,欢腾焙烧试验温度控制在850℃,产出的烧渣为后续试验供给试样。
硫精矿含Au0.32g/t、Ag6.47g/t、其他多元素化学分析成果(%):Cu0.31、Co0.073、Zn0.29、TFe44.9、TS47.9、MgO 0.25、CaO1.11、SiO21.22。硫精矿粒度很细,其间-0.074mm占90.67%,-0.038mm占55.37,对过滤及焙烧除尘发生晦气影响。硫精矿堆密度2.35g/cm3。
硫精矿经850℃欢腾焙烧后,烧渣含Au 0.22g/t、Ag 6.22 g/t,其他多元素化学分析成果(%):Cu0.45、Co0.11、TFe63.4、TS1.42。可见,烧渣中Fe、S、Cu元素均未到达合格铁精粉的要求;Cu、Co元素均得到富集。烧渣堆密度1.30g/cm3。
二、试验进程及试验成果与评论
(一)酸浸试验
1、浸出时刻对浸出率的影响
酸浸条件:850℃欢腾炉烧渣,初始酸浓度100g/t,液固比2∶1,酸浸温度80℃,酸浸渣水洗4次,试验成果见表1。
表1 浸出时刻对浸出率的影响酸浸时刻渣计浸出率/%CuCoFe170. 1762. 001. 97274. 4464. 721. 42374. 4465. 621. 44478. 7062. 000. 98676. 4963. 701. 35
由表1可见,铜、钴浸出率跟着酸浸时刻增加而,当浸出时刻超越4h,铜、钴浸出率不再进步;考虑到实践出产状况,挑选酸浸时刻2h。
2、初始酸浓度对浸出率的影响
酸浸条件:850℃的欢腾炉烧渣,液固比2:1,酸浸时刻2h,酸浸温度80℃,酸浸渣水洗4次,试验成果见表2。
表2 初始酸浓度对浸出率的影响酸浸时刻渣计浸出率/%CuCoFe2057.2647.371. 544061.5350.090. 446070.0858.261. 698076.4963.701. 7510070.0857.351. 7112067.9457.351. 9016076.4965.521. 7520074.3662.791. 46
由表2可见,当酸浓度在20~80 g/L时,跟着酸浓度的增加,铜、钴浸出率升高,酸浓度80 g/L时,浸出率最高;再持续增加酸浓度对铜、钴浸出率影响很小。归纳考虑出产本钱、设备要求及后续工艺等要素影响,取初始酸浸浓度40 g/L。
3、还原剂对浸出率的影响
别离选用钠与二氧化硫气体作为还原剂。酸浸条件:850℃的欢腾炉烧渣,初始酸浓度100 g/,液固比2:1,酸浸温度80℃,酸浸渣水洗4次,酸浸时刻2h。试验成果:钠作为还原剂时铜和钴的浸出率别离为74.36%和64.61%;二氧化硫气体作为还原剂时铜和钴的浸出率别离为80.77%和71.87%。
与表2成果比较可见,参加还原剂对铜、钴浸出率均有进步,且二氧化硫气体作为还原剂的铜、钴浸出率进步更显着。考虑到工业实践状况,主张通入二氧化硫作为还原剂。
4、水洗次数对脱硫的影响
酸浸、过滤后,增加新水拌和、过滤,每次拌和时刻为10 min,液固比1.5∶1。分析酸浸渣中硫元素,试验成果见表3。
从表3可见,对未通入S02酸浸得到的酸浸渣,拌和水洗5次均可将硫降低到0.1%以下;对通入S02酸浸得到的酸浸渣,拌和水洗6次硫含量仍在0.4%左右;考虑到工业出产实践状况,可选用稠密洗刷——过滤洗刷——1~2次拌和水洗。
表3 水洗次数对脱硫的影响初始酸浓度
/(g·L-1)酸浸渣S
含量/%水洗次数200. 264次(未通S02)200.0715次(未通S02)400.214次(未通S02)400.0625次(未通S02)1000.264次(未通S02)1 000. 105次(未通S02)400.565次(通入S02)400.386次(通人S02)
5、循环酸浸对浸出率的影响
酸浸条件:850℃欢腾炉烧渣,初始酸浓度40g/L,液固比1.5∶1,酸浸温度80℃,酸浸时刻2h,未通入S02,将过滤后的40%酸浸液量回来浸出,一起补加硫酸及水,酸浸条件同上。酸浸渣水洗2次,试验成果见表4。
由表4可见,从酸浸渣元素分析来看,循环酸浸基本上不影响铜、钴、铁的浸出率;从酸浸液分析来看,循环酸浸可进步溶液中铜、钴浓度。
(二)归纳酸浸
依据酸浸试验得到的最佳工艺参数进行归纳酸浸,酸浸条件:初始酸浓度40 g/L,液固比1.5:1,酸浸温度8 0℃,酸浸时刻2h,通入S02,酸浸渣水洗7次。成果标明,渣计铜、钴浸出率别离到达了70.08%、60. 07%,而液计铜、钴浸出率仅50.67%、49.65%。原因为试验及化学分析等存在累积差错,这儿以渣计为准。
表4 循环酸浸对浸出的影响样品酸浸渣/%渣计浸出率/%酸浸液/(g·L-1)每吨烧渣耗酸量/tCuCoFeSCuCoFeCuCoFeH2So410.170.05165.691.0763.6753.722.991.260.35.4126.518.920.180.05464.630.8961.53514.562.040.57.9330.428.4
(三)调理PH
酸浸液中硫酸浓度20~30g/L,考虑到本钱及试剂特色,用石灰石调理PH= 1.5~2.0,然后过滤,过滤送人萃取。试验标明,石灰石用量大约为每立方酸浸液18kg。
(四)铜萃取试验
萃取齐选用选用Lix984N,稀释剂为火油。选用一段萃取,比较1:1,萃取剂浓度5%,拌和3~5min。成果标明,铜萃取率到达93.6%,钴、铁简直不被萃取。
负载有相机相选用180 g/L H2S04反萃,比较1:1,拌和3~5min。成果标明,铜反萃取率到达93.8%。
(五)化提金试验
取归纳样酸浸渣,液固比1.5∶1,用Ca(OH)2调理PH=10.5~11,活性炭用量20~30g/L,NaCN量别离为每吨酸浸渣3~10kg,浸出时刻24、48h。
成果标明,Au、Ag的浸出率别离仅为37.5%、26.7%。因为烧渣中金银含量过低,选用全泥化-炭浆法收回烧渣中金银经济上不可行。
(六)除铁、沉钴试验
除铁条件:80℃、石灰石调理PH5左右、参加H2O2氧化剂(或通人空气)、时刻2.5h。成果标明,除铁率>99.9%,石灰石消耗量每立方萃余液22kg。
用Na2C03沉钴,PH=8~8.5,80℃。成果标明,沉钴率>98.5%,Na2C03消耗量每立方萃余液3kg。
三、定论
(1)选用欢腾焙烧——酸浸——萃取——除铁沉钻工艺可得到合格的铁精粉(Fe>65%、S
(2)酸浸工艺参数:一段酸浸、初始酸浓度40g/L、酸浸温度80℃、浸出时刻2h、通入S02作为还原剂、酸浸渣拌和水洗7次。铜、钴渣计浸出率别离为70.08% .60.07%;
(3)铜萃取率93.6%,反萃率93.8%,萃余液除铁率>99.9%,沉钴率>9 8.5%;
(4)用全泥化——炭浆法收回烧渣中金银经济上不可行,Au、Ag化浸出率别离为37.5%、26.7%。
大洋多金属结核与富钴结壳浸出渣的纳米属性
2019-02-21 15:27:24
跟着陆地矿产资源的日趋干涸和人类对海洋资源知道的日益深化,大洋多金属矿产已成为21世纪引人注意图战略资源,我国自20世纪80年代开端,相继展开了大洋多金属结核与富钴结壳的资源勘查、采矿、加工与使用技术的研讨。
开发大洋多金属结核及富钴结壳的首要意图是提取其间的有价金属,如Co,Ni,Cu等,现在正在试验中的湿法提取工艺,会发作相当于原矿分量35%左右的固体残渣(浸出渣)。这些浸出渣若不能被使用,长时刻堆积将引起环境问题。
大洋多金属结核与富钴结壳资源现在没有进行大规模挖掘,其冶炼浸出渣或许发作的环境公害越来越受到重视,但对浸出渣功用与使用的研讨滞后。
本研讨以大洋多金属结核和富钴结壳浸出渣的开发使用为方针,展开了浸出渣化学成分、物相组成、物化功用的分析测验,发现浸出渣中含有很多纳米矿藏,具有较大的比表面积和表面活性,在环境保护范畴具有杰出的使用远景;研讨了稀土元素的赋存状况,以为轻稀土首要呈离子态被吸附在纳米颗粒表面,具有潜在开发价值。
一、样品与测验
多金属结核和富钴结壳均采自太平洋世界海域,多金属结核的粉末(粒径约为0.074mm者占86%)经浸工艺提取Ni,Co,Cu后的固体残渣称作浸渣(代号Nod,下同);富钴结壳的粉末(粒径约为0.074 mm者占77.8%)经酸浸工艺提取Ni,Co,Cu, Mn,Zn后的固体残渣称作酸浸渣(代号Cru,下同)。
对浸渣和酸浸渣别离进行了常量元素(湿化学分析法)、微量与稀土元素(中子活化法)含量分析。X射线粉晶衍射分析(DMAX-RC型)、差热分析(LCP-1型)及矿藏巨细和形状丈量(日立H8100透射电子显微镜,TEM);测定了比表面积(Autosorb-1型比表面仪)、密度(U1-1000型真密度仪)、pH值(PHS-3C型酸度计)及对饱满NaCl水蒸气及SO2气体的吸附率。
二、成果与评论
(一)矿藏组合与含量,根据X射线粉晶衍射(图1)和差热分析(图2)断定了浸出渣的矿藏组合,结合化学成分估算了它们的含量,成果为:Nod中菱锰矿含量约为50%,其次为石英、高岭石、长石(三者总含量约15%)。另据X射线衍射曲线20背底值在30左右升高的特征判别,Nod中还含有约35%的非晶态或结晶度很低的固体:Cru中半水石膏含量约为20%,针铁矿和石英含量都在10%左右,黄钾铁矾含量低于5%:非晶态或结晶度很低的固体含量约55%。与原矿比照发现,菱锰矿、半水石膏、黄钾铁矾和针铁矿是湿法冶炼进程中的重生矿藏,石英、高岭石、长石是原矿中的残留矿藏,能谱分析(表1)进一步证明Nod中有菱锰矿存在,并发现了菱铁矿。图1 浸渣与酸浸渣的X射线粉晶衍射图图2 浸渣与酸浸渣的差热分析图
表1 菱锰矿、菱铁矿与黄钾铁矾的化学成分(%)a)
a)由中国地质大学矿藏岩石材料国家专业试验室选用日立H8100透射电子显微镜的能谱仪(薄膜样品,无标样)分析
据X射线粉晶衍射特征峰核算,菱锰矿的晶胞参数为:a0=b0=0.48nm,c0=1.573nm,γ=120°,六方晶系;半水石膏的晶胞参数为:a0=1.206 nm,b0=1.272nm,c0=0.692nm,γ=90.19°,假斜方晶系,浸渣:114℃脱去H2O-,134℃脱去H2O+,508℃菱锰矿分化,798℃Mn2O3变为Mn3O4;酸浸渣:124℃脱去H2O-, 174℃半水石膏脱水,416℃黄钾铁矾脱水,634~656℃黄钾铁矾分化,1132℃ CaSO4部分分化。
(二)矿藏形状与粒度。TEM调查发现,Nod中菱锰矿多呈纤维束状(图3(a)),纤维束直径多在15~20nm,长100nm左右。Cru中半水石膏有粒状(图3(b))和纤维束状两种:前者粒径大多在12~15nm;后者纤维束直径在80nm左右,长400 nm左右。图3 菱锰矿和半水石膏的TEM相片
(三)密度与酸碱度。Nod和Cru粉末的实测真密度(8次丈量的均值)别离为3.065和2.827g/cm3。它们在水溶液中的pH值别离为8.94和3.38。
(四)比表面积与吸附。Nod和Cru的实测比表面积别离为109.56和252.8 m2/g。由图4可见,Nod对N2的等温吸附-脱附曲线仅在相对压力(P/P0)较低和较高时相交,特征与不具孔道结构的固体类似,与Nod不同,Cru的脱附曲线在P/P0约为0.52时呈现陡变,且很快与吸附曲线重合(图4),特征与具有2∶1型层状结构的蒙脱石类似。标明Cru中存在具有孔道结构的矿藏,但这种矿藏的孔体积较小,仅为1.23×10-2mL/g,由孔结构发作的内比表面积也只要30m2/g。这与石膏煅烧进程中失掉结构单元层中的部分水分子而留下的孔结构有关。图4 浸渣与酸浸渣对N2的吸附-脱附曲线
550℃枯燥处理2小时后的Nod,Cru和天然纯洁石膏粉末(粒径约为0.074mm者占85%以上),在30℃恒温密闭容器中对饱满NaCl水蒸气12小时的吸附率试验标明,颗粒细、比表面积大、具有微孔结构的Cru吸附量为12.90%;颗粒较粗、不具微孔结构的Nod,吸附率为10.64%;颗粒最粗的天然石膏吸附率只要3.00%。Nod和Cru粉末(室温,30分钟)对SO2气体的吸附量别离为2.47和2.25 cm3/g。Nod和Cru粉末对饱满NaCl水溶液蒸气及SO2较强的吸附才能与纳米颗粒存在很多原子配位显着缺乏、极易与其他原子和分子结合的表面原子有关。
由比表面积(Sw/m2·g-1)和密度(ρ/g·cm-3),按公式(d=6×103/ρ·Sw)核算了颗粒的均匀直径(d/nm,假定颗粒呈球形):Nod和Cru均匀颗粒直径别离为17.9和9.5 nm,与TEM丈量成果大致符合。
(五)稀土-微量元素与化学成分。Nod的稀土元素含量与深海堆积黏土(669.5μg/g)附近,但Cru的稀土元素含量比深海堆积粘土高1倍多(表2),特别是Cru的轻稀土元素含量(1391.6μg/g)已达到风化壳离子吸附型稀土矿的工业档次(1000μg/g),用浓度为1mol/L的MgCl3溶液对浸出渣中稀土元素的提取试验(每克浸出渣加15mL MgCl3溶液,室温下拌和20分钟,过滤后测清液中稀土元素含量)发现,Sm,Eu,Tb,Yb等元素可交换率都在80%以上(表3),标明它们首要呈离子态被吸附在纳米颗粒表面。此外,两个样品的∑FeO含量较高(表4);Cru的P2O5显着富集,有害元素As和U含量较高(表5)。
表2 浸渣和酸浸渣的稀土元素含量(μg/g)a)
a)中国科学院高能物理研讨所选用中子活化法测定
表3 浸渣和酸浸渣中可交换态稀土元素含量(μg/g)及可交换率(%)a)
a)中国地质大学(北京)电感耦合等离子体质谱仪试验室选用ICP-HEX-MS质谱仪分析
表4 浸渣和酸浸渣的化学成分(%)a)
a)中国地质大学(北京)化学分析室选用湿化学分析法测定
表5 浸渣和酸浸渣的微量元素含量(μg/g)a)
a)中国科学院高能物理研讨所选用中子活化法测定
(六)纳米矿藏构成机制。浸进程中,多金属结核中的锰矿藏(镁锰矿、水羟锰矿、钠水锰矿等)在CO和Cu+的效果下发作复原反响,Mn4+被复原为Mn2+,并与溶液中的CO32-结合构成MnCO3(菱锰矿)。酸浸工艺中,富钴结壳中的锰(铁)矿藏、碳酸盐等在H2SO4和SO2效果下被分化,发作的Ca2+和Fe3+,K+离子又别离与SO42-结合,构成CaSO4·2H2O(石膏)和K2O·3Fe2O3·4SO4·6H2O(黄钾铁矾)。上述进程中,溶液中的CO32-和SO42-发挥了沉淀剂的效果,对纳米颗粒的构成具有积极意义。
纳米颗粒的构成是与原矿中矿藏的分化同步发作的,且整个进程是在较短时刻(浸工艺90~120分钟;酸浸工艺30分钟)、较低温度(浸工艺50℃;酸浸工艺30℃)、沉淀剂浓度不断改变和拌和的动态条件下进行的,这有利于晶核的很多构成,但无益于晶体的快速长大,是操控纳米级矿藏构成的动力学要素。
反响进程中发作的石膏在110℃烘干时失掉3/2结晶水变为半水石膏,构成平行于(010)面的开口毛细孔,并奉献1.23×10-2mL/g孔体积和30m2/g的内比表面积。
三、定论
大洋多金属结核经浸提取Co,Ni,Cu后的固体残渣(浸渣)以及富钴结壳经酸浸提取Co,Ni,Cu,Zn,Mn后的固体残渣(酸浸渣)都含有很多纳米矿藏,因此具有较大的比表面积和表面活性,对饱满NaCl水蒸气,N2,SO2以及金属阳离子等具有较强的吸附才能,是环境保护范畴具有潜在使用价值的纳米吸附材料,酸浸渣具有较高的∑FeO,P2O5和离子吸附态稀土元素含量,有望成为纳米功用材料的质料。
钴、镍萃取分离原理与方法
2019-01-31 11:05:59
现在,钴镍冶金质料已由曾经的硫化钴镍矿逐渐转为钴镍杂料、钴镍氧化矿(含钴、镍红土矿)等,处理工艺由传统的火法造锍、湿法别离相结合转为浸出、净化全湿法流程。钴镍质料来历纷歧,浸出液成分杂乱,沉积、离子交换工艺难以完成钻、镍及钴镍与钙、镁等其他杂质离子的别离。溶剂萃取法有挑选性好、金属收回率高、传质速度快等长处,特别依据离子性质差异及萃取理论研制的新萃取剂及萃取系统,更优化了萃取作用。所以,从根本上找出钴、镍性质的差异,分析现有钴、镍别离工艺原理,对新萃取剂和萃取工艺的开发有指导意义。
一、钴、镍性质差异
钴镍原子序数相邻,同为第四周期第Ⅷ族元素,仅外层d电子数不同,这种性质上的差异可用于萃取法别离。
(一)晶体场配位理论分析钴镍性质差异
1、钴镍轨迹简并
钴、镍比较常见的配位数为4和6。配位数为6时,配体呈八面体型。由于配体之间的方位不同,5个轨迹简并为2组,电子与配体顶头挨近的dz2、dx2-y2作用激烈,能量较高,为6Dq;而别的的dxy、dyz、dzx轨迹作用力弱得多,能量较低,为-4Dq。配位数为4时,配体能够构成平面四方形或正四面体构型。萃取剂的分子量较大,分子间存在较大的空间位阻,所以一般为正四面体构型。相同,四面体场亦发作简并,可是与八面体场完全相反,dxy、dyz、dzx轨迹能量较高,为1.78Dq,而dz2、dx2-y2的轨迹能量较低,为-2. 67Dq。
2、钴镍轨迹电子排布
电子在轨迹的排布遵从能量(CFSE)最低准则,其间成对的电子还需求战胜能量为P或P’的成对能。按这个规矩,电子排布与对应能量巨细如表1。
表1 钴镍离子不同配位数时对应的能量能够看出:6配位正八面体的安稳性大于4配位正四面体的安稳性。Ni(Ⅱ)的6配位八面体的安稳性远大于四配位四面体的安稳性,而Co(Ⅱ)的6配位八面体的安稳性仅略强于四配位四面体的安稳性,所以,溶液中Ni(Ⅱ)仅有6配位存在,而Co(Ⅱ)的6配位或4配位都能够存在。
(二)价键理论
价键理论是L.Pauling等于20世纪30年代提出的杂化轨迹理论在配位化学中的使用。按此理论,在构成共价键时,能级相差不远的各轨迹能够构成杂化轨迹,而原子轨迹杂化后可使成键才能增强,因而使生成的“分子”更安稳。构成配位键时,若中心离子供给的轨迹都是最外层轨迹,则构成的络离子称为外轨络离子;若中心离子供给部分次外层轨迹,则构成的络离子称为内轨络离子。
价键理论以为:中心离子与配位原子的电负性相差较大时,倾向于生成外轨型络离子;相差较小时,则倾向于生成内轨型络离子。一般来说,与电负性较大的配位原子,如F、O合作时,常构成外轨型络离子;与电负性较小的配位原子P、As等合作时则构成内轨型络离子;而与N、Cl等合作时,则即有或许构成外轨型络离子也有或许构成内轨型络离子。
Co(Ⅱ)、Ni(Ⅱ)生成外轨型络离子时,假如为4配位,则为sp3杂化,四面体构型;假如是6配位,则为sp3d2杂化,八面体构型。所以,Co(Ⅱ)生成内轨型络离子时,易被氧化为Co(Ⅲ),而Ni(Ⅱ)较安稳,难于氧化。
由上述配位理论可知:1)钴以外轨型配位时,溶液中安稳存在的为Co(Ⅱ);以内轨型配位时,溶液中安稳存在的为Co(Ⅲ);2)不管哪种配位,溶液中Ni(Ⅱ)的安稳性高于Ni(Ⅲ)的安稳性;3)Co(Ⅱ)与电负性较大的配位原子结合易构成四配位合作物,安稳性高于Ni(Ⅱ)的合作物;4)Ni(Ⅱ)与电负性较小的配位原子结合易构成六配位合作物,安稳性高于Co(Ⅱ)对应的合作物。
二、钴、镍的萃取别离
(一)钴、镍的磷(膦)类萃取别离
溶剂萃取法是钴、镍别离的重要办法之一,其别离作用好,金属收率高,对料液适应性强,进程易于自动操控。跟着新萃取剂、萃取系统的开发和萃取理论的逐渐完善,溶剂萃取法在钴镍湿法冶金中的使用越来越广泛。
由晶体场配位理论可知,溶液中Ni(Ⅱ)为6配位时较安稳,而Co(Ⅱ)为4或6配位时安稳性挨近,能够一起存在,在必定条件下还能够彼此转化。现在,广泛选用磷类萃取剂别离钴、镍就是使用此原理。
现在,使用于钴、镍别离的磷(膦)类萃取剂首要有P204、P507和Cyanex272,它们在萃取钴、镍时有较大差异。据报道,用P204、P507、Cyanex272萃取钴、镍时,半萃pH差值别离为0.53、1.43和1.93。明显,萃取别离钴、镍的才能逐渐增强。这种差异缘于3种萃取剂的萃取才能和空间结构,见表2。
表2 3种磷(膦)类萃取剂的比较pka表明萃取剂结合金属离子才能的强弱。明显,P204与金属离子结合才能最强。有机磷(膦)类萃取剂结构通式中的R-P-R’键角可用来衡量空间位阻的巨细。在生成八面体构型的配位化合物时,∠RPR’越大,不同磷酸替代基之间的空间位阻越大,越不利于八面体构型的构成。所以,当萃取剂结合才能下降、而空间位阻增大时,八面体构型难于构成,则其他小分子,如水分子易于参加配位。而四面体构型中,2个有机磷一起配坐落一个中心离子,4个O处于互为笔直的平面中,配体之间作用强度较低,∠RPR’对四面体构型影响不大。
有机磷类萃取别离钴、镍的总反应式可表明为:在萃取剂大大过量条件下,M为Co时,n=2;M为Ni时,n=3。饱满萃取时,不管钴、镍,n=1。钴的萃合物包含四面体和八面体2种构型,而镍仅有八面体构型。四面体萃合物含水量低于八面体萃合物的含水量,有较高的亲油性,所以钴优先进入有机相。
从P204、P507到Cyanex272,酸性逐渐削弱,空间位阻逐渐增大。镍的萃合物一向要坚持八面体构型,而萃取剂与镍构成6配位的难度增大,所以镍的分配比下降。可是,钴萃合物能够转变为四面体构型,补偿了由于萃取剂酸性削弱和空间位阻增大对分配比减小的影响。镍的分配比减小,而钴的分配比根本不变,钴、镍别离作用越来越好。所以,用具有较弱萃取结合强度、较大空间位阻的萃取剂能够较好地完成钴、镍别离。
(二)Co(Ⅱ)的4配位阴离子挑选性合作
电负性较大的配离子配位才能较弱,优先构成外轨型4配位sp3杂化。又由于Co(Ⅱ)优先Ni(Ⅱ)构成4配位,所以挑选一种电负性适宜的配离子,操控适宜的浓度,可优先与Co(Ⅱ)合作,加大钴、镍的萃取别离。
1、SCN-的挑选性合作
SCN-的电负性较大,必定浓度下,与Co2+构成安稳的四面体阴离子合作物Co(SCN)42-,而简直不与Ni2+构成安稳合作物。所以,在该系统中,钴以络阴离子方式存在,镍以水合阳离子方式存在,用MIBK、胺类、季铵盐类萃取剂能够挑选性地从含镍溶液中萃取钴:季铵盐萃取钴的容量与有机相中SCN-的浓度成正比,适用于从低浓度钴溶液中萃取钴。但负载有机相中的钴需用NH3-NH4 HCO3溶液反萃取,而反萃取液中的钴、需求专门的设备收回,生产本钱较大。
2、Cl-的挑选性合作
当Cl-质量浓度为200~250 g/L时,90%左右的Co(Ⅱ)以CoCl42-方式存在,Cu2+、Fe3+、Zn2+等金属离子也构成合作阴离子CuCl42-、FeCl4-、ZnCl42-,而Ni2+仍然以水合阳离子[Ni(H2O)62+]方式存在。选用胺(铵)类萃取剂能够将合作阴离子萃取,完成与镍的别离。
该工艺别离作用好,萃取剂报价低廉,与硫化钴、镍矿氯化浸出联接顺畅,20世纪60~70年代树立的镍、钴厂多选用该系统。比较有代表性的有:加拿大鹰桥公司在挪威克里斯蒂安松的镍厂,使用叔胺从氯化物系统中别离钴、镍;国内的成都电冶厂、福州冶炼厂等都选用氯化物系统以N235萃取别离钴、镍。
(三)钴氧化为内轨络离子
依据价键理论,当Co(Ⅱ)、Ni(Ⅱ)与电负性较低的配离子结合时,Co(Ⅱ)简单氧化,生成十分安稳的内轨型Co(Ⅲ)配离子,而该离子假如亲油则生成安稳的萃合物被优先萃取,假如亲水则不被萃取。
1、-铵系统
NH3能够与Co(Ⅱ)构成外轨型合作物Co(NH3)62+,由于1个3d电子跃迁到5s轨迹,该合作物很简单被氧化成愈加安稳的内轨型合作物Co(NH3)63+,见表3。
表3 钴、镍合作物的安稳常数(18~25℃,i=0.1)在-铵系统中,操控的浓度和溶液电位即可确保溶液中的钴、镍别离以Co(NH3)63+和Ni(NH3)62+方式存在。由于Co(NH3)63+的安稳常数为Ni(NH3)62+的1026.13倍,所以挑选一种与镍合作才能比NH3强的螯合萃取剂就能够替代Ni(NH3)62+中的NH3而挑选性萃取镍。
1987年,澳大利亚的昆士兰公司选用汉高公司的LIX84-I萃取剂直接从空气氧化后的含钴、镍的性溶液中挑选性萃取镍,然后选用硫酸盐溶液反萃取,得到的硫酸镍溶液通过电积得到高品质阴极镍。溶液中剩下的钴用H2S沉积得到CoS产品。
2、螯合萃取系统
用螯合萃取剂萃取钴、镍时,易呈现钴中毒现象,由于构成的Co2+螯合物很简单被氧化成Co3+螯合物。Co3+螯合物十分安稳,难于被酸直接反萃取,需求在复原条件下反萃取。但由于反萃取需求很多复原剂,并且Co3+对萃取剂有必定的分化作用,所以该办法没有得到大规模使用。
(四)Ni(Ⅱ)的6配位协同萃取
镍的6配位萃合物的安稳性和疏水性较高,但空间位阻较大,所以在萃取进程中需求参加某些替代结合水的协萃剂。
1、酸性萃取剂与非螯合肟类协同萃取
南非矿藏工艺协会研讨发现,在烷基磷酸类(DEH-PA)中参加非螯合性2-乙基己基肟(EHO)对镍有很大的协萃作用,可是对钴的影响要小得多。协萃机理为:EHO供给孤对电子的才能强于H2O或DEHPA,能够轻易地将它们替代,使镍到达安稳的6配位构型。环烷酸与异十三醛肟相同也有很强的协萃效应,使镍的pH0.5左移2.8,钴的pH0.5左移1.8,钴、镍的半萃pH值扩大到1.2,能够将钴、镍完全分隔。酸性萃取剂与非螯合性萃取剂协同萃取钴、镍,萃取速率快,不存在钴被氧化问题。
2、酸性萃取剂与螯合肟类协同萃取
磷酸类、羧酸类、磺酸类萃取剂中参加必定量的LIX63,对钴、镍的萃取有较强的协同作用,并且酸性萃取剂的酸性越强,E-pH线左移越多,协同作用就越强。该系统的不足之处在于镍的萃取、反萃取速率较慢,反萃取需求必定的酸度,而LIX63在强酸性条件下会降解。这2个问题一向没有得到本质上的处理,所以20世纪90年代后期,该系统仍未得到使用。然后开发的抗降解烷基甲基胺与DNNS协同萃取系统显现了优异的功能,仅仅本钱较高而未完成产业化。
澳大利亚开发出了羧酸萃取剂与螯合肟类萃取剂协同萃取工艺:选用酸性很弱的羧酸萃取剂与羟肟类萃取剂协同萃取,下降了羟肟降解速率;操控萃取剂浓度,可加速萃取和反萃取速率;萃取进程没有呈现钴中毒现象。但不足之处是钴、镍别离系数不算很大,别离进程需求较多级数的洗刷。萃取镍时,LIX63为萃取剂,羧酸为协萃剂;萃取钴时,羧酸为萃取剂,LIX63为协萃剂。
三、结束语
跟着优质钴镍硫化矿资源的逐渐干涸,钴镍氧化矿的开发使用越来越受注重,加压酸浸、硫酸堆浸技能已成为钴、镍湿法冶金的干流技能,所以亟需开发能直接从较高酸度系统中萃取钴镍的工艺(DSX),并且最好对钙、镁等有抑萃作用。首要研讨方向为:1)开发新的萃取剂,特别是螯合萃取剂,这或许是未来直接从含钙镁溶液中萃取钴、镍的首选萃取剂;2)开发新的萃取系统,跟着萃取理论,特别是协萃理论的开展,研讨萃取剂的协同作用,使到达较好的别离作用;3)开发新的萃取设备,某些钴、镍萃取进程的热力学数值很好,可是动力学速率慢,需求新的萃取设备强化萃取进程。
钴渣的综合回收生产工艺探讨
2018-12-10 14:18:49
钴渣的综合回收生产工艺探讨.pdf
从铜钴合金及含钴废料中提取钴的研究现状与展望
2019-02-21 10:13:28
国际钴资源比较丰富,2005年国际钴储量为700万t,储量根底为1300万t。国际钴储量会集散布于刚果(金)、澳大利亚、古巴、赞比亚、新喀里多尼亚、俄罗斯和加拿大等,储量总和约占国际总储量的95%以上。我国钴资源贫乏,钴档次均匀仅0.02%,单个高的为0.05%~0.而刚果(金)和赞比亚的铜钴矿,钴档次为0.1%~0.5%,高的到达2%~3%。因为钴矿档次偏低,矿石组成杂乱,所以收回工艺比较杂乱,出产本钱高,钴收回率低口]。近年来,我国镍、铜、钴的消费大幅增加,但受矿产资源条件限制,我国铜、钴矿石的出产增加缓慢,铜、钴矿产品进口量逐渐上升,供求矛盾日益突出。
铜钴合金是现在刚果(金)钴铜矿石深加工产品的首要方式之一,也是我国往后从非洲进口的首要钴质料之一,因而,研讨从铜钴合金或含钴废猜中收回钴、铜有着重要意义。
一、从含钴废料及铜钴合金中提取钴的办法
钴废料品种许多,首要有废高温合金、废硬质合金、废磁性合金、废可伐合金、废催化剂和废二次电池材料等。钴废料成分比较杂乱,一般含有铜、锌、锰、镍、镉等有价金属。
铜钴合金有2种,一种是在铜冶炼进程中经转炉吹炼得到的转炉渣再经电炉复原熔炼水淬而得到的合金,其间含Cu、Co、Fe、Mn、Si等元(现在,作为钴质料的铜钴合金许多从刚果(金)、赞比亚、扎伊尔输入),另一种是熔炼氧化钴矿和8%,钴精矿的富铜产品。在电炉内,用焦炭复原氧化钴矿产出2种合金,密度较大的为红合金(铜质量分数约为89%,钴质量分数4%~15%),较轻的为铜钴合金(铜质量分数约15%,钴质量分数约42%,铁质量分数约34%)。2种铜钴合金中其他元素含量均较低。
(一)火法工艺
依据含钴质猜中各元素与氧的亲和力的巨细,可选用火法别离有关元素。有关元素对氧亲和力的巨细次序为Al>Si>V>Mo>Cr>C>P>Fe>Co>Ni>Cu,因而,将钴含量低的物料在电弧炉中高温熔化,再鼓风吹炼造渣,使与氧亲和力比Co大的杂质不同程度地氧化而进入炉渣,一起取得含Ni和Co的镍阳极。镍阳极经隔阂电解得电镍,钴进入阳极液。此办法适合于处理含镍、钴的合金废料。
彭忠东,等选用造渣熔炼-浸出工艺处理Cu-Co-Fe合金,在1300℃下增加l0% CaCO3造渣焙烧,然后用硫酸溶液恒温90℃拌和浸出5h,钴浸出率为95%;而削减CaCO3用量一半,时增加5%Na2SO3,在相同温度下造渣焙烧后,用浓硫酸浸出,钴浸出率可进步到97%。火法工艺比较繁琐。
(二)湿法工艺
1、浸出
关于富钴合金,可选用酸法浸出口、氧化浸出、电化学溶解法和微生物浸出法浸出。
(1)酸法浸出。用硫酸、硝酸、均可将钴合金中的金属转入溶液,化学反响为:当有氧存在时,金属铜和其他生动金属与酸反响生成金属离子,进入溶液:当硫酸初始浓度为6 mol/L,浸出温度为100℃,浸出时刻为6 h,液固体积质量比为5∶1时,钴、镍浸出率别离到达95.37%和96.73%。
(2)氧化浸出。在用稀硫酸浸出时,往溶液中通入可强化浸出进程。进步金属浸出率,但简略溢出,构成环境污染,并且在各种物料氯化浸出液中都含有3~5 g/L的钴需求收回。
(3)电化学溶解法。以硫酸介质作电解液,合金作阳极、铜板作阴极,当电流通过期,阳极中的金属和金属硫化物按下式反响,钴转入溶液:(4)微生物浸出法。微生物浸出是运用某些微生物或其代谢产品对某些矿藏进行氧化、复原、溶解、吸附等,使钴转入溶液。微生物浸出法适用于处理贫矿、尾矿、炉渣等,其出资少,金属提取率高,无污染。选用氧化亚铁硫杆菌浸出首要矿藏为水钴锰矿(钴质量分数0.0054%)的矿石,在pH=2.5、铁总质量浓度3g/L、m(Fe3+)/m(Fe2+)=1∶1、液固体积质量比4∶1、温度26℃条件下,钴、锰浸出率别离是88.6%和67.2%。再针对菌浸出液含锰高的特色,用Na2CO3调pH至4左右沉积铁,选用沉积钴即可较好地别离钴锰,终究得到硫酸钴溶液。
2、从含钴溶液中除铁(锰)
钴浸出液中含有铁、锰等金属离子,一般选用氧化中和法、黄钠铁矾法、针铁矿法等去除。
(1)氧化中和法。调整溶液pH并增加C12、NaClO3、HNO3等强氧化剂,将铁、锰等贱价子氧化成高价态离子,使构成沉积。化学反响为:(2)黄钠铁矾法。黄钠铁矾法是使三价铁从含有K+、Na+、NH4+等离子的硫酸盐溶液中以淡黄色的结晶化合物,即M2Fe6(SO4)4(OH)12构成沉积(M表明K+、Na+、NH4+、Pb(I)、Ag+、H2O+等)。此法适用于从含有硫酸根离子的溶液中净化除铁。
(3)针铁矿法。将溶液pH调至2.0左右,参加复原剂将其间的Fe3+复原为Fe2+,然后缓慢参加氧化剂,坚持必定的pH,使Fe2+渐渐氧化成Fe3+,构成针铁矿沉积。所构成的针铁矿为棕色针状晶体,其组成为α-FeOOH,属斜方晶系,溶解度很小。并且不带结晶水,过滤功能杰出。
3、溶液的净化及镍、钴别离
(1)萃取法。溶剂萃取法因为具有高选择性、直收率高、流程简略、操作接连、易于完成自动化等长处,已成为提取钴的首要办法。萃取剂的品种许多,我国前期用于镍、钴别离的萃取剂是P204,后改用P507。但P204关于从硫酸镍中去除钙、铁、铜等杂质元素的作用均优于P507,因而二者可合作运用,前者用于除杂,后者用于。镍、钴别离,作用很好。P204和P507的一起缺是三价铁的反萃取比较困难,加拿大鹰桥公司和法国勒阿弗尔厂都选用TBP(磷酸三丁酯)萃取除铁工艺。5709是核工业北京化工冶金研讨院研讨组成的膦类萃取剂。其功能与P507类似,但其对钙的适应才能优于P507,并且有必定的萃取铅的才能,报价低于P507。是一种功能优秀的萃取剂。
在介质中,可选用N235萃取FeCl3,用P204萃取除杂、P507萃取别离钴、镍,得到镍、钴溶液既能够出产相应的盐或化合物,也能够出产电镍和电钴。
在协同萃取研讨中。毗啶羧酸酯和烷基是最有期望的萃取钴的萃取剂。实验证明,以Versatiel0+10%+C12+脂肪为萃取剂,在镍、钴和其他金属混合系统中,可显着改进镍、钴的萃取选择性。
(2)液。文献介绍,以P507为流体的Span-80表面活性剂膜。在pH为4.2~5.3围内,能够从含钴、镍的工业废水中提取别离钴、镍。别离作用较好。文献介绍,用EDTA、NH4F和巯基丁二酸等掩蔽搅扰离子,以HDTHP、L113B、液体白腊、磺化火油和内相为2.5mol/L HCl的水溶液等液膜别离黄铁矿、烟灰、炉渣和含钴废催化剂中的钴,钴提取率均在9l%以上。
4、脱硅
因为合金中含有许多硅,酸性条件下氧化浸出时,许多硅会进入溶液,构成硅酸。当硅酸含量到达必守时则构成硅胶。硅胶一旦构成,即对出产构成严重影响,使溶液无法过滤,乃至导致整个出产中止。现在的惯例做法是将钴、铜等有价金属转入溶液,将硅等杂质留在浸出渣中;别的一种做法是在强碱性溶液中,钴、铜、镍等金属以氢氧化物方式彻底沉积,硅则以硅酸钠方式进入溶液,完成金属与硅的别离。将别离得到的金属氢氧化物用酸溶解,则溶液中简直不含硅。这种办法的缺陷是本钱较高,不引荐直接选用。
二、湿法提钴实例
金川有色金属公司从钴渣中提取钴,选用的工艺流程为:酸浸一黄钠铁矾法除铁一P204萃取除杂一P507萃取别离钴、镍一草酸沉积钴一出产氧化钴粉。
成都电冶厂选用的流程是以N235从镍净化渣浸出液中萃取钴,以离子交换法去除杂质,电积法收回金属钴。日本住友公司从钴镍矿浸出液中收回钴时,选用中和沉积法除铁、锰,除铜、锌,叔碳一元羧酸别离镍、钴,再转化为氯化物的工艺流程。
文献介绍的工艺流程为:中和除铁一浸别离锰一蒸馏别离钴、镍,镍呈碱式碳酸镍方式沉积,过滤、洗刷、枯燥后经煅烧成氧化镍,最后用复原为金属镍;钴以氢氧化钴方式沉积收回。镍、钴收回率可达95%~96%。
文献针对某含铜、锌、锰、镍等元素的难处理含钴废料,选用“复原浸出-化学除杂-P204深度除杂-P507萃取别离镍、钴”准则流出产草酸钴,钴收回率为95.61%。
文献介绍了从镍电解阳极液净化除钴渣载中提取氧化钴的新工艺。除钴渣通过硫酸复原溶解,黄钠铁矾法除铁,P204萃取除杂并萃取别离钴、镍,除钙镁.草酸铵沉积钴,煅烧等进程,钴总收回率不低于92%,镍总收回率不低于95%。
文献介绍了从钴质量分数9.44%的Co-Mn废催化剂废猜中提取氧化钴的工艺流程。将废料用酸溶解后。参加过量,在pH=10下使Mn2+在10%作用下生成MnO(OH)2沉积,而Co2+生成Co(NH3)42+配离子。为进一步除掉溶液中的微量Mn,在pH=3的缓冲系统中,以Na2S作沉积剂,沉积CoS,而MnS在此条件下简直不沉积。终究的CoS沉积中Mn质量分数小于0.6%,其他杂质质量分数均小于0.5%,钴收回率到达92%以上。将CoS用硝酸在70~80℃下回流溶解、过滤,滤液于80℃下加草酸沉积钴,焙烧得到氧化钴。
文献依据锂离子二次电池正极材料-铝钴膜质料的性质,提出了在硫酸、系统中分化LiCoO2,其反响为:收回钴的工艺流程为:碱浸酸溶净化沉钴。钴再以草酸钴方式收回,钴的直接收回率为95.7%。
谌可颂选用硝酸加硫酸溶解抛弃渣中的Cu、Ni、Co等有价金属,Cu、Ni浸出率达99%c上,Co浸出率达87%。浸出液选用铁粉置换法收回别离铜、黄钠铁矾法除铁、NaF法除钙镁、P204深度除杂及P507别离镍、钴,Cu、Ni、Co收回率均超越94%。
乌干达第一个生物氧化提取工厂-Kasese公司已于1999年投产,处理质料为含80%黄铁矿的精矿。第1级氧化后,第2级氧化选用中等嗜铁氧化菌种,整个进程钴收回率达92%。
北京矿冶研讨总院冶金室研讨了浸出铜钴合金、电溶脱铜、TBP萃取除铁,结果表明,铜收回率高,钴丢失少。
南边冶金学院廖春发等研讨了从铜铁钴合金渣中提取氧化钴的工艺流程,断定了合金熔炼除硅,电解造液,除铁、铜等杂质的工艺条件,将合金熔炼可有用除掉其间的硅;电解造液不只到达了溶解合金的意图,并且具有净化除铜作用,铜能以海绵铜方式收回,纯度为92.5%,收率在99%以上。
关于从铜钴合金中浸出钴,现在国外多选用硫酸加压浸出工艺或电溶工艺。芬兰的OMG公司是国际上最早处理铜钴合金的钴出产公司,其详细处理工艺不详;另一家处理铜钴合金的公司是赞比亚的谦比西钴冶炼厂,选用硫酸加压浸出工艺,产出CuSO4,CoSO4溶液。因为加产值小、对设备要求严苛,故选用的供应商少。
三、展望
传统火法工艺取得镍阳极,镍阳极经电解得到阴极镍,钴在阳极液中通过镍、钴别离得到氯化钴盐。电解时,铜离子比镍离子优先得到电子,故此法不能处理铜含量高的物料;选用一般的酸法工艺处理时,钴浸出率不高;运用液,钴的提取率只要91%;而选用微生物浸出法浸出含钴废料时浸出速度较慢,钴浸出率最高只能到达96%。假如选用氧化剂加低酸(酸浓度小于2mol/L)浸出,则能大大进步浸出速度,浸出率也得到确保。
处理锌钴渣的一种新方法
2019-03-05 09:04:34
本发明触及一种从锌钴渣中提取活性氧化锌或其它锌制品的办法,是处理锌钴渣的一种新办法,其特征在于:将锌~钴渣10份在加温40℃~90℃条件下拌和进行浸,加锌粉1~2份除杂、过滤(或用胴肟类萃取剂萃取法除掉铜、钴杂质),然后将纯洁的锌-液蒸、再过滤,之后在400℃~700℃条件下煅烧,得到纯度为99%以上的活性氧化锌。也能够将纯洁的锌-液回来至湿法炼锌(黄铁矾除铁)体系。本发明的办法工艺简略、设备防腐要求低,好操作,除杂简单,耗费低,金属回收率高。
熔析渣、炭渣与铝渣的处理
2019-01-08 09:52:48
这三种渣往往合并处理,先在回转窑中焙烧脱砷,然后在反射炉或电炉中还原熔炼提取锡;低锡渣再送入烟化炉硫化挥发富集锡。 铝渣因含锡很高,有时单独处理。先在熔析炉加热提取部分锡,再将热残渣加入反射炉与锡精矿一起熔炼。处理铝渣须注意炉渣含Al2O3量不能太高并控制硅酸度低于1,以免渣含锡升高。 焙烧脱砷后的这类浮渣与高铅的锡精矿一起熔炼,可得到较好效果。例如,炉料中加入40%~50%浮渣,控制硅酸度为1.1~1.3时,在反射炉中熔炼,锡的直收率达85%以上,炉床能力1t/ (m2·d)。 曾试验用真空蒸馏法处理炭渣。试验结果表明:对含砷10%~20%的炭渣,当蒸馏温度为900~1100℃,真空度13.3~66.5Pa,蒸馏60~120min,砷的挥发率约90%,锡的挥发率约3%,脱砷后的炭渣含1%~2%As,含Sn95%以上,即为粗锡。
钴
2018-04-19 17:41:48
钴是灰色硬质金属,它的居里点(失去磁性的临界温度点)为1150℃,熔点为1495℃,沸点为2900℃,具有磁性和耐高温性。在300℃以上发生氧化作用,极细粉末状钴会自动燃烧。钴能溶于稀酸,在浓硝酸中会形成氧化薄膜而被钝化;在加热时能与氧、硫、氯、发生剧烈反应。
关于锌灰、锌渣的提炼回收技术
2019-03-13 10:03:59
在曩昔,许多供应商把热镀锌所发生的锌灰、锌渣直接卖掉,因那时锌价相对较低,所占本钱份额不高,故无人去作过细的收回作业。但在锌价飞涨的今日,耗锌量所占生产本钱现已大于80%,怎么下降锌耗关于镀锌厂来说就必须说到议事日程上来了,不然,轻则影响经济效益,重则关系到厂商的存亡。 当时,一些镀锌厂一边叫着要节能、降耗,一边又对锌渣和锌灰作很多糟蹋。锌渣是一种锌铁合金的固溶体,一般含锌量约在92%~97%,锌灰中的含锌量也应超越80%。怎么把锌从这些副产品中提炼出来,是一项非常重要的作业。这项作业一直都有人在做,一般都用如下几种办法: 一、 蒸馏法:即把副产品(灰、渣)放入密封的容器中加热,使锌还原成锌蒸气,再经过冷凝得到纯锌; 二、 电解法:即把副产品参加硫酸中使其转化成硫酸锌,再运用电解过程中阴极吸附的原理得到纯锌; 三、 转化法:即经过不同工艺直接转化成氧化锌、氯化锌。 鑫岳公司在此基础上又规划出了另一简单易行的办法来对其进行处理,作用显着,出资少、见效快,特别适用于热镀锌厂进行处理,办法如下: 运用专用的工业陶瓷锅装入灰、渣后加上掩盖剂加温至620℃,坚持2个小时,参加抗氧化剂,再参加除铁专用合金。该种合金参加后要用钟罩压入底部,把温度提升到720℃,坚持1个小时后,运用真空抽锌机,抽出提出的锌液,清出残渣。这种办法能够在锌渣中收回80%以上纯锌,锌灰则可收回40~60%的纯锌,纯锌收回今后的残存灰渣能够卖掉,也能够直接在该工业陶瓷锅中对小工件进行镀锌(温度控制在560~620℃),后处理选用离心法或爆破法,均可得到满足的镀层。 在收回锌的过程中,除铁专用合金的增加量约为15~18%(合金报价与0#锌报价相同),掩盖剂为氯化纳和的混合物。 鑫岳公司研发的此种收回办法,在一些镀锌厂中已运用并得到充沛验证,镀锌厂的归纳锌耗大幅下降,从而为镀锌供应商发明了更大的赢利空间。.
钴常识
2019-03-14 10:38:21
钴是灰色硬质金属,它的居里点(失掉磁性的临界温度点)为1150℃,熔点为1495℃,沸点为2900℃,具有磁性和耐高温性。在300℃以上发作氧化效果,极细粉末状钴会主动焚烧。钴能溶于稀酸,在浓硝酸中会构成氧化薄膜而被钝化;在加热时能与氧、硫、氯、发作剧烈反响。 自然界中已知含钴矿藏有近百种,大多伴生于镍、铜、铁、铅、锌等矿床中,常见的用于提取钴的矿藏有辉砷钴矿、砷钴矿、硫钴矿、硫镍钴矿、含钴黄铁矿、硫铜钴矿、钴华、方硫镍钴矿等。钴矿藏的赋存状况杂乱,矿石档次低,所以提取工艺比较杂乱且收回率低。一般先用火法将砷钴精矿、含钴硫化镍精矿、铜钴矿、钴硫精矿中的钴富集或转化为可溶性状况,然后再用湿法使钴进一步富集和提纯,最终得到钴化合物或金属钴。 金属钴首要用于制作合金。钴基合金是钴和铬、钨、铁、镍中的一种或几种制成的合金的总称。含钴工具钢能够显著地进步钢的耐磨性和切削性能,含钴50%以上的司太立特硬质合金即便加热到1000℃也不会失掉其原有的硬度。航空航天技术中运用最广泛的合金是镍基合金,也能够运用钴基合金。含钛和铝的镍基合金强度高是因为构成组成为NiAl(Ti)的相强化剂,当运转温度高时,相强化剂颗粒就转入固溶体,这时合金很快失掉强度。钴基合金的耐热性是因为构成了难熔的碳化物,这些碳化物不易转为固体溶体,分散活动性小,温度在1038℃以上时,钴基合金的优越性就显现无遗,它可用于制作高效率的高温发动机。在航空涡轮机的结构材料运用含20%-27%铬的钴基合金,能够不要维护覆层就能使材料达高抗氧化性。钴是磁化一次就能坚持磁性的少量金属之一,在热效果下失掉磁性的温度叫居里点,铁的居里点为769℃,镍为358℃,钴可达1150℃。含有60%钴的磁性钢比一般磁性钢的矫顽磁力进步2.5倍。在振荡下,一般磁性钢失掉差不多1/3的磁性,而钴钢仅失掉2%-3.5%的磁性。因此钴在磁性材料上的优势就很显着。钴在电镀、玻璃、染色、医药医疗等方面也有广泛运用。 我国钴矿资源首要散布在甘肃、山东、云南、河北、青海和山西,其保有储量占全国保有储量的百分比依次为30.5%、10.4%、8.5%、7.3%、7.1%、6%,这六个省的储量之和占全国总储量的70%,其他30%的储量散布在新疆、四川、湖北、西藏、海南、安徽等省区。我国已探明的钴矿床绝大多数是伴生矿,档次较低,钴首要作为副产品加以收回。依据对全国钴储量大于1000吨的50多个矿床的统计分析得知,钴的均匀档次仅为0.02%,因此出产过程中金属收回率低,工艺杂乱,出产成本高。可利用的钴资源首要伴生在铜镍矿床中,其钴资源探明储量占全国总储量的50%左右。已开发的铜镍矿床有甘肃金川的白家嘴子、吉林磐石的红旗岭、新疆的喀拉通克等矿,甘肃金川为我国首要钴出产地。可利用的钴资源其次伴生在铜铁矿床中,现在现已开发的有山西中条山铜矿、湖北大冶铁矿、山东金岭铁矿、四川拉拉厂铜矿和海南石碌铁铜矿等。因为受资源条件约束,国内钴产值增加缓慢,不能满意国内市场需求,需经过进口补偿缺乏。
金属钴
2018-04-19 17:42:10
自然界中已知含钴矿物有近百种,大多伴生于镍、铜、铁、铅、锌等矿床中,常见的用于提取钴的矿物有辉砷钴矿、砷钴矿、硫钴矿、硫镍钴矿、含钴黄铁矿、硫铜钴矿、钴华、方硫镍钴矿等。钴矿物的赋存状态复杂,矿石品位低,所以提取工艺比较复杂且回收率低。一般先用火法将砷钴精矿、含钴硫化镍精矿、铜钴矿、钴硫精矿中的钴富集或转化为可溶性状态,然后再用湿法使钴进一步富集和提纯,最后得到钴化合物或金属钴。 金属钴主要用于制造合金。钴基合金是钴和铬、钨、铁、镍中的一种或几种制成的合金的总称。含钴工具钢可以显著地提高钢的耐磨性和切削性能,含钴50%以上的司太立特硬质合金即使加热到1000℃也不会失去其原有的硬度。航空航天技术中应用最广泛的合金是镍基合金,也可以使用钴基合金。含钛和铝的镍基合金强度高是因为形成组成为NiAl(Ti)的相强化剂,当运行温度高时,相强化剂颗粒就转入固溶体,这时合金很快失去强度。钴基合金的耐热性是因为形成了难熔的碳化物,这些碳化物不易转为固体溶体,扩散活动性小,温度在1038℃以上时,钴基合金的优越性就显示无遗,它可用于制造高效率的高温发动机。在航空涡轮机的结构材料使用含20%-27%铬的钴基合金,可以不要保护覆层就能使材料达高抗氧化性。钴是磁化一次就能保持磁性的少数金属之一,在热作用下失去磁性的温度叫居里点,铁的居里点为769℃,镍为358℃,钴可达1150℃。含有60%钴的磁性钢比一般磁性钢的矫顽磁力提高2.5倍。在振动下,一般磁性钢失去差不多1/3的磁性,而钴钢仅失去2%-3.5%的磁性。因而钴在磁性材料上的优势就很明显。钴在电镀、玻璃、染色、医药医疗等方面也有广泛应用。 我国钴矿资源主要分布在甘肃、山东、云南、河北、青海和山西,其保有储量占全国保有储量的百分比依次为30.5%、10.4%、8.5%、7.3%、7.1%、6%,这六个省的储量之和占全国总储量的70%,其余30%的储量分布在新疆、四川、湖北、西藏、海南、安徽等省区。我国已探明的钴矿床绝大多数是伴生矿,品位较低,钴主要作为副产品加以回收。根据对全国钴储量大于1000吨的50多个矿床的统计分析得知,钴的平均品位仅为0.02%,因而生产过程中金属回收率低,工艺复杂,生产成本高。可利用的钴资源主要伴生在铜镍矿床中,其钴资源探明储量占全国总储量的50%左右。已开发的铜镍矿床有甘肃金川的白家嘴子、吉林磐石的红旗岭、新疆的喀拉通克等矿,甘肃金川为我国主要钴生产地。可利用的钴资源其次伴生在铜铁矿床中,目前已经开发的有山西中条山铜矿、湖北大冶铁矿、山东金岭铁矿、四川拉拉厂铜矿和海南石碌铁铜矿等。由于受资源条件限制,国内钴产量增长缓慢,不能满足国内市场需求,需通过进口弥补不足
翻渣的湿法冶金研究现状与发展前景
2019-03-07 10:03:00
镍矿选用湿法冶炼,具有流程短、金属收回率高、环保、出产进程较易完成接连化和自动化等长处,被认为是无污染的清洁工艺。但国内外湿法处理镍矿的现状阐明,其工艺还有待进一步研讨开发。
镍作为一种特殊的功用材料,在国民经济中取得广泛的运用。如作为许多磁性物料的首要成分,电池职业中用于镍-氢电池,化学工业中广泛用作催化剂,在火箭技能中,超纯镍或镍合金用作高温结构材料。特别值得指出,纯镍还用在雷达、电视、原子工业、远距离操控等现代新技能中。
可是,我国镍资源实际上处于缺少状况。要坚持国民经济快速、健康、继续安稳的开展,有必要使镍的增长速度与经济的增长速度坚持同步。因而,从各个方面开掘潜力,充分运用镍物料(如冶金选矿废渣、进步镍的收回率等),对缓解我国镍资源的缺少将起到必定的效果[1]。
近年来,关于湿法冶金技能代替火法冶金评论越来越剧烈,湿法冶金作为一种正在老练的技能,越来越遭到同行的注重,尤其是从低档次的矿产资源中提取贵金属,能得到很高的收回率。现在世界上大约90%的镍依然靠火法出产,并在很长一段时间内无法代替,而湿法技能运用比较广泛的是出产高档次的金属[2]。究其原因,首要是湿法冶炼技能出资大、本钱高、受矿石影响大等,很难在短期内完成大面积的推广运用。所以经济、高效、绿色的湿法冶金技能成为广阔研讨者研讨的要点,以期处理现有的缺乏,完成广泛的工业化出产,为国家发起的绿色、节省经济作出贡献。
镍矿湿法冶炼的办法
1.浸法(RRAL法)
浸法——即镍矿经枯燥和复原焙烧后进行多段常压浸出,RRAL工艺由Caron教授创造,又称为Caron流程,适合于处理含镁较高(MgO>10%),含镍1%左右的硅酸盐型红土矿,根本流程是复原焙烧——浸。复原焙烧的意图是使硅酸镍和氧化镍最大程度地复原成金属,一同操控复原条件,使Fe复原成Fe3O4。焙砂中的镍、钴选用性溶液浸出,浸出渣中的铁能够经过磁选收回。其代表性的工厂是美国建造的古巴尼加罗镍厂。浸法处理镍矿,其产品能够是镍盐。
浸法处理工艺不适合处理含铜和含钴高的镍矿以及硅镁镍烧结镍、镍粉、镍块等。新喀里多尼亚的镍矿,只适合于处理表层的红土矿,这就极大地约束了浸工艺的开展。此外,浸工艺镍钴收回率偏低,全流程镍收回率仅为75%-80%,钴约为40%-50%。到现在为止,世界上只要四家工厂选用浸法处理氧化镍矿,并且都是在上世纪70年代曾经建造的,三十多年来没有一家新建工厂选用浸工艺。该办法还有一些缺陷:(1)它不能经济地处理含铜高的镍矿;(2)进程中溶解的部分贵金属不能收回;(3)氢是一种较贵的复原剂,在反响进程中不能充分运用;(4)进程反响速度慢,溶液中的金属离子浓度低,设备巨大。
2.酸浸法(HPAL法)
酸浸法——即在value="250" unitname="℃">250℃value="270"unitname="℃">-270℃,4-5MPa的高温高压条件下,用稀硫酸将镍、钴等有价金属和铁、铝矿藏一同溶解,在随后的反响中,操控必定的pH值等条件,使铁、铝和硅等杂质元素水解进入渣中,镍、钴选择性进入溶液,从溶液中选用溶剂萃取、硫化沉积等技能收回。酸浸法工艺处理镍矿的工业出产始于上世纪50年代,其时代表性的工厂是古巴毛阿镍冶炼厂,它也是由美国规划建造的[3]。酸浸工艺适合于处理低镁含量的镍矿,矿石中镁含量过高会添加酸的耗费,进步操作本钱,对工艺进程也会带来影响。假设矿石中的钴含量高,更适合选用酸浸工艺,不只钻的浸出率比浸工艺高,并且因为钴的价值比镍高,使酸浸工艺的单位出产本钱大幅度下降。尽管高压酸浸镍浸出率可达90%以上[4],但因为酸浸工艺也遭到矿石条件的限制,现在世界上选用酸浸法处理氧化镍矿的工厂只要三家,且因为高温高压的处理条件对设备要求严苛,工作均不非常正常。整体而言,酸浸工艺开展尚不老练。
3.氧压浸出法
选用的工艺是含镍2%的磁黄铁矿精矿,以含氧80%的富氧空气进行加压浸出,再用硫化沉积法使溶解的镍、钴沉积,用浮选法别离选出镍精矿和元素硫,镍精矿送火法处理。
4.氯化漫出法
氯化浸出是经过氯化使镍矿中的镍、钴、铜等呈氯化物形状的进程。因为氯和氯化物化学活性极高,生成的氯化物溶解度大,因而在常温下,氯化浸出就能到达在其它介质中有必要加温、加压才干到达的技能指标。依据浸出剂的品种不同,高镍锍化浸出分为浸出和浸出两种。鹰桥公司是最早将氯化浸出用于高镍锍处理的工厂,20世纪60年代,该公司研制成功浸出高镍锍的新工艺,在挪威克里斯蒂安松建了一个年产镍6800吨的工业实验厂,于1968年投入出产。1977年,鹰桥公司研制成功浸出高镍锍的工艺,现已在工业上运用[5]。1978年投产的法国镍冶金公司勒阿弗尔镍精粹厂选用了相似的工艺流程,我国研讨单位对氯化浸出工艺也曾进行过必定规划的实验研讨。
国外镍矿湿法冶金开展现状
关于镍矿的处理,镍、铜别离和精粹一直是镍冶炼工艺中的关键问题。在镍冶金开展的前期阶段,一般选用分层熔炼法、优先漫出法处理镍矿。 缓冷选矿别离高镍锍和硫化镍阳极电解是20世纪60年代镍冶炼技能的重大开展。世界上选用这项技能的工厂较多,首要有加拿大世界镍公司的汤普森厂、科尔博恩港镍精粹厂、日本的志村和别子两个精粹厂[6]。与传统的镍电解精粹比较,该工艺具有流程简略、根本建造出资较低的长处。
从20世纪70年代至今,国外高镍锍镍铜别离的湿法提取工艺取得了巨大开展,即选择性浸出法。其次,气化冶金的羰基法也取得成功。选用选择性浸出工艺的供应商,比较闻名的有芬兰奥托昆普公司哈贾伐尔塔厂选用的硫酸选择性浸出法,加拿大鹰桥公司选用的氯化浸出法和加拿大舍利特高尔顿公司选用的加压浸法[7]。这些办法中,以硫酸选择性浸出法开展较快,多个镍精粹厂已运用该工艺进行工业出产,例如南非英帕公司斯林镍炼厂、津巴布韦宾都拉冶炼厂,美国阿麦克斯镍精粹公司镍港精粹厂和津巴布韦加图马冶炼厂[8]。
国内镍矿湿法冶金开展现状
我国古代已有大量出产运用铜-镍合金(白铜)、锌-镍合金(锌白铜)。1953年上海冶炼厂成功地用直火蒸腾法从铜电解废液中制得硫酸镍,接着又进行了从粗硫酸镍中提取金属镍的实验。1954年出产出电镍value="75"unitname="千克">75千克,然后揭开了我国镍湿法冶金的前奏。1959年,上海冶炼厂开端用古巴进口的氧化镍出产电解镍,初期规划为年产电镍400吨,1973年到达年产电镍2500吨的出产能力。跟着20世纪50、60年代四川会理镍矿、金川镍矿、吉林磐石镍矿以及20世纪80年代新疆喀拉通克镍铜矿的相继挖掘,镍的湿法冶炼得到了蓬勃开展。先后建成了成都电冶厂、重庆冶炼厂、金川有色金属公司、阜康冶炼厂等一批厂商,产值也大幅度添加,电镍总的年出产能力已超越5万吨[9]。
我国镍工业的出产,现在选用的首要湿法处理工艺有:镍的硫化物阳极隔阂电解、金属镍阳极电解和硫酸选择性浸出、电积工艺等。镍的硫化物阳极隔阂电解工艺仍是我国现在最首要的电解镍出产工艺。运用该法出产的电解镍约占全国镍总产值的90%,首要供应商有金川有色金属公司、成都电冶厂和重庆冶炼厂等。这些工厂的电解出产流程根本共同,一般包含隔阂电解和溶液净化这两大工序,各工厂在这两大工序上只稍有差异。如几个出产供应商都运用硫酸-氯化物混合系统的电解质,经过三段化学沉积法进行溶液净化。但金川公司自80年代初,开端运用高电流密度和高pH值电解工艺,溶液净化除铜进程选用参加镍精矿和阳极泥的置换法,一同又研讨了活性NiS除铜的新工艺[10];成都电冶厂的电流强度操控在5500安左右,选用的是H2S除铜工艺。上海冶炼厂曾运用金属镍阳极电解工艺出产电解镍,运用进口杂镍、进口氧化镍、镍磷铁等出产粗镍阳极板,其间以运用进口氧化镍出产电解镍工艺较为老练。阳极是用氧化镍以石油焦作复原剂在电弧炉内复原成的金属镍浇铸而成的,其阴极进程和镍的硫化物电解完全相同,所运用的电解质也是硫酸盐氯化物混合电解液[11]。各厂所选用的详细工艺流程及工艺条件都不相同,这一方面与各厂的质料成分及产品形状要求不同有关,另一方面也阐明镍的湿法冶金工艺还有待进一步研讨开发。
展望
从环保视点考虑,湿法冶金工艺不会形成含硫气体的排放[12]。从经济视点考虑,运用湿法冶金工艺在处理一些杂乱矿,如钼镍矿、镍钿矿的进程中,矿的丢失较小并且在冶炼进程中的能耗也较小[13]。从工艺上考虑,在处理低档次杂乱矿方面,湿法工艺更为经济有用。运用湿法工艺能够完成选择性浸出有价金属,然后到达与杂质元素的有用别离,有利于进一步从溶液中收回有价元素[14]。信任跟着科技的开展,镍矿的湿法冶金技能将会得到更大的开展与运用。
钴镍
2017-06-06 17:50:12
钴镍钴镍作为战略资源在工业中的地位大大提高,在硬质合金、功能陶瓷、催化剂、军工
行业
、高能电池方面应用广泛,有工业味精之称。钴镍的生产以湿法冶金为主。钴镍在工业中的作用是相当重要的,在现代工业中,钴镍是不可替代的资。,主要分为以下四个步骤。 一、浸出。作为湿法冶金的第一步,浸出率的高低直接决定效率以及效益。原矿经过破碎、筛选、富集以及其他处理以后,将矿物里面的有价
金属
转移到溶液中的过程。在钴镍生产中浸出主要有酸性浸出、氯化浸出、氨浸出以及高压氧浸等等。主要用到的辅料有浓硫酸、浓盐酸、氯气,二氧化硫、氨水、空气、氯酸钠、双氧水、二氧化锰、亚硫酸钠等等。一般钴镍矿主要有硫化矿以及氧化矿,特别是硫化矿多半生有其他
金属
,所以在浸出时不仅要考虑钴镍的浸出,还要考虑其他有价
金属
的综合回收利用。 二、除杂。除杂是钴镍冶金中产品保障的重要过程。 对于一些大量的杂质离子,比如铁离子、铝离子,主要考虑化学除杂法,直接加碳酸钠或者氢氧化钠调节pH在3.5-4.0,由于二价铁沉淀pH比较高,所以一般会加氧化剂使得二价铁氧化成三价铁,对于除铁还有黄铁钠矾法。对于铅镉铜一般会采用硫化钠除杂,一般调节pH在1.8-2.0左右。当然由于考虑到综合回收,可以先用其他萃取剂在较低pH捞铜后再除其他杂质。对于锰、锌、少量的铁铝锰铬,可以用萃取法除去。常见的萃取剂有P204、P507、cyanex272。 三、前驱体的合成。萃取生产合格的钴镍溶液,需用沉淀剂生产前驱体,主要的前驱体是碳酸盐、草酸盐。如若生产晶体,如硫酸镍晶体、硫酸钴晶体等,则不需要这一,直接浓缩蒸发结晶。一般合成前驱体采用对加方式,控制一定的过程pH以及终点pH,反应温度,反应时间等。控制一定的形貌,粒径等。 四、还原。如果直接选用高压氢还原,则不需要合成这一步。如果用高温氢还原,则把前驱体破碎后,在还原炉中控制一定的温度和气流量,然后破碎,真空包装。钴镍
金属
广泛应用于电池、硬质合金、不锈钢、石油化工、汽车制造、机械工具等
行业
,钴镍粉体是现代工业不可缺少的
金属
材料。我国是贫钴国家,已探明的钴资源可开采储量是4.09万吨,仅占世界钴资源的1.03%,而钴资源的消耗却达到12000吨/年以上,占全球消耗量的25%;同时我国也是镍资源缺乏的国家,已探明的镍资源储量为232万吨,占世界的3.56%,而我国年消耗量约25万吨,每年缺口在10万吨以上。我国每年的锂离子、镍氢、镍镉等废电池超过30万吨,废旧电池保有量已超过100万吨,急需发展废旧电池的资源化利用技术。在锂离子、镍氢、镍镉等废电池中,存在丰富的钴、镍
金属
,是重要的可再生钴、镍资源。利用废旧电池生产出满足高端产品应用要求的钴、镍粉末,可形成资源回收利用的良性循环。
含钴黄铁矿提钴
2019-03-05 09:04:34
因为Co原子占有FeS中Fe的晶格,构成类质同相,所以选矿别离富集钴困难,浮选产出的钴硫精矿含钴不超越0.5%。为从贫钴硫精矿中提取钴,先氧化焙烧将S氧化成气体SO2除掉,一起将钴转变成水溶或酸溶形状,再用酸浸出钴,并与很多的铁渣别离。我国使用的焙烧工艺有三种:硫酸化焙烧、氧化焙烧一烧渣硫酸化焙烧和氧化焙烧一烧渣化焙烧。焙烧设备均选用欢腾焙烧炉。 氧化焙烧一烧渣硫酸化焙烧是一种两段法工艺。钴硫精矿硫酸化动力学研讨标明,该焙烧进程是分段完结的,开端是脱硫氧化反响,当焙砂含S降到2%-3%时,钴才开端很多硫酸化。因而分段焙烧既提高了S的利用率和设备生产能力,又有利于钴的硫酸化和收回。 1.氧化焙烧 在欢腾焙烧炉中于840-860℃温度下焙烧钴硫精矿。当精矿成分为(%):Co 0.3-0.4、Fe 35-45、S 30-35时,可得到含Co 0.4%、Fe 45%、S 1.8%的焙砂和SO2浓度8%-10%的烟气。 2.硫酸化焙烧 焙砂配入含钴黄铁矿,使混合料含硫到达10%以上,一起参加3% Na2SO4,将铁酸盐中钴转变为CaSO4。酸化焙烧条件为:床能率5-6t/(m2·d),钴浸出率75%-80%。浸出液通过净化、沉积、缎烧等工序,即可得到产品氧化钴。
含钴铜镍硫化矿提钴
2019-03-05 09:04:34
我国钴产值的40%来自铜镍硫化矿的归纳收回。金川有色金属公司占去从铜镍硫化矿中收回钴产值的80%。金川公司原矿含钴一般为0.05%,主要以硫化物形状存在于镍黄铁矿中,选矿时进入硫化镍精矿。此种精矿在电炉熔炼过程中,有85%的钴进入产品低镍锍,转炉吹炼时又一次分流,钴量的1/3进入高镍锍,其他2/3散布于转炉渣中。因转炉吹炼前、中、后期氧化程度的不同,中后期转炉渣含钴可达前期渣的2倍,均为0.4%-0.7%。此中后期转炉渣不回来电炉处理,而是作为提钴质料送炼钴体系。镍高锍中的钴在电解时与镍一道进入阳极液,可采用将Co2+氧化成Co3+,然后调pH使之水解成Co(OH)3沉积从溶液中分出。过滤后所得钴渣含Co 10%、Ni 30%、Fe 2%-4%、SiO2 4%-9%,可用来出产氧化钴、钴盐和电解钴。
镍电解液净化除钴的原理与方法
2019-02-13 10:12:44
镍电解液中的杂制裁元素钴,其性质与镍附近,而金属镍中含必定量的钴对镍的性质并无太大的影响,因而,世界各国在核算金属镍的档次时,大多是把钴视同镍相同兼并起核算的。可是因为钴是一种比镍更贵重的稀疏金属,应尽或许独自收回作为产品。为了进步钴的收回率,一般在镍冶金中先将钴富集起业,为下一步提钴发明条件。
在镍电解系统中,除钴办法一般有中和水解法、溶剂萃取法及“黑镍”氧化水免除钴法等。
1、中和水解法除钴的基本原理
如前所述,在镍电解液中的杂质往往多以贱价存在,例如Fe2+、Co2+、Ni2+等离子,用简略水解的办法是不能将它们别离的,而必须将其氧化成高价离子而进行氧化水解净化。
Fe2+和Cu2+被氧化成三价的氧化复原电位为:
可见,中和水解法除Co的基本原理与除Fe尽管相似,但Co2+较Fe2+难氧化,而Co3+比Fe3+又难水解沉积,因而除Co比除Fe要困难,需要比空气更强的氧化剂,沉积PH值也较高。当选用氯化物电解质或氯化物-硫酸盐混合电解质时,常用作氧化剂。当选用纯硫酸盐系统为电解质,则常用黑镍(NiOOH)氧化除钴。
2、氧化中和水解法除钴
是一种强氧化剂,它比空气重2.5倍。氯在水中的溶解度很小,跟着温度的升高,其溶解度更小,例如,在25℃时,100g水溶解氯0.6411g;在80℃时,溶解氯仅0.2226g。
在湿法冶金中,氯和氧(空气)都常作为氧化剂运用,它们的氧化复原电位分别为:
可见的氧化性较氧气强,运用钴和镍的氧化复原电位和水解PH的差异,可运用将Co2+优先氧化成Co3+,并使Co3+水解生成难溶的Co(OH)3沉积,到达除钴意图,其反响式为:
2CoSO4+Cl2+6H2O=2Co(OH)3↓+2H2SO4+2HCl
为了促进反响向右进行,加碳酸镍(或Na2CO3)中和水解反响所发作的酸:
2HoSO4+2HCl+3NiCO3=2NiSO4+NiCl2+3H2O+3CO2↑
归纳上述丙个反响,则除钴守程总的反响为:
2CoSO4+Cl2+3NiCo3+3H2O=2Co(OH)3↓+2NISO4+2NiCl2+3CO2↑
在除钴的一起,残留在溶液中的铁也会发作相似反响:
2FeSO4+Cl2+3NiCo3+3H2O=2Fe(OH)3↓+2NiSO4+NiCl2+3Co2↑
在除钴后期,当P进步到4.5~5.0时,溶液中的其他杂质铜、锌、铅等也会水解沉积:[next]
ZnSO4+2H2O=Zn(OH)2↓+H2SO4
CuSO4+2H2O=Cu(OH)2↓+H2SO4
PbCl2+2H2O=Pb(OH)2↓+2HCl
此外,部他铅还会被氧化成嗀氧化铅沉积分出:
PbCl2+2H2O+Cl2=PbO2↓+4HCl
在除钴进程中,尽管Ni2+的氧化复原电位比Co2+略高,但因为溶液中Ni2+的浓度远远大于Co2+的浓度,所以在Co2+水解的一起,部分Ni2+也相应地会发作与Co2+相相似的反响:
2NiSo4+Cl2+3NiCo3+3H2O=2Ni(OH)3↓+2NiSO4+NiCl2+3CO2↑
因而会构成镍的丢失,使钴渣含镍量升高,但又因为下列反响:
Ni(OH)3+CoSO4=Co(OH)3↓+NiSO4
在必定程度上能削减镍的丢失。
影响除钴功率的要素较多,主要有通办法、进程PH值的操控以及和剂的运用。
镍电液中钴含量较低,一般为0.1~0.3g/L,所以用气态氯通入溶液中氧化钴时,的运用率较低。因而,在溶液中的涣散度必将影响除钴功率,在溶液中涣散愈好,则钴氧化得愈彻底。故挑选适合的通氯办法具有重要意义。通氯办法有以下几种:
(1)球室反响
此法是让和溶液经过文丘里管混合后当即进入球室再进行反响,球室体积依据流量巨细而定,为经过喷嘴的溶液充沛触摸发明了条件。
(2)缸体闭路循环
在缸体外侧独自设一台泵和一条管路,与缸体内溶液构成一闭路循环系统,从泵的出口处通入.泵的出管伸入到反响液面以下,通时将泵开动,使缸内溶液经过循环管不停地闭路循环,使与溶液得以充沛混合。
(3)管道反响
加长入中和除钴槽之间的管道,依据流量核算可加长至80~100m,使和溶液在这一段管道中进行充沛 混合,以进步的运用率,某厂正是选用此种办法,作用杰出。
在除钴进程中,高速好PH对高除钴功率也很重要。除钴前液P睛般操控为4.5~5.0,其意图在于中和其反响所发作的酸,使尽或许被溶液多吸收,使贱价钴被氧化彻底。净化前液假如PH过低,将影响的吸收,呈现溶液通不进的现象。通后的溶液,其PH一般维持在3.5~4.0。反响终了时,为了使Cu、Pb、Zn等杂质进一步发作水解,应尽量防止会集参加中和剂,以防溶液因部分PH过高而构成镍的丢失。
除钴是净化的最终一道工序,为了确保电解液的净化质量,溶液自管道反响器出来后,又进入4个串联的75m3的帕秋卡或空气拌和槽中持续反响。下表为净化除钴技能操作条件。下表 氧化中和水解净化除钴技能操作条件项目单位技能条件反响温度℃60~70通氯前溶液PH值 4.5~5.0氧化复原电位mV1050~1100除钴结尾PH值 4.5~5.0除钴后液含钴g/L产品牌号为Ni9990电镍时Co≤0.02
Cu≤0.003
Fe≤0.004
Zn≤0.00035
Pb≤0.0003
产品牌号为Ni9999电镍时Co≤0.001
Cu≤0.0003
Fe≤0.0003
zn≤0.0003
Pb≤0.00007
从硬锌和锌渣中回收锗
2019-02-20 11:03:19
一、概述
韶关冶炼厂进厂质料含锗约0.0048%,选用I.S.P.工艺出产锌和铅金属时,质猜中约55%的锗进入粗锌中。粗锌中的锗在精馏过程中,约40%进入铅塔硬锌,40%入B吨塔硬锌,其他大多在鼓风炉的锌渣中。
硬锌选用蒸馏法得锌粉和锗渣。锌渣选用浸出-丹宁沉锗得锗精矿(中浸液经处理得七水硫酸锌)。
含锗产品用浸出-蒸馏法制取,最终将其水解成二氧化锗。二氧化锗经复原可得金属锗。
由铅锌精矿至金属锗总收回率达33%~55%。
硬锌处理工艺流程见图1,锌渣处理工艺流程见图2,二氧化锗和金属锗出产工艺流程见图3。
图1 硬锌处理工艺流程
图2 锌渣处理工艺流程
图3 二氧化锗出产流程
二、质料
(一)硬锌成分
硬锌是以锌、铅为主体的多元合金,含有少数Fe、As、Ge等元素。硬锌成分见表1。
表1 硬锌成分,%称号ZnPbAsFeCuGeCd铅塔硬锌80~908~100.4~1.00.7~1.00.140.17~0.46微B号塔硬锌74~8010~151.0~2.52.0~3.01.5~3.00.5~1.0微
(二)锌渣成分
锌渣用于出产硫酸锌并收回锗。其成分(%)为:Ge0.088,Zn76.70,Pb2.57,As0.299,Fe0.22。
三、技能操作条件
硬锌选用隔焰炉和工频感应电炉处理。这两种炉子、丹宁锗出产及二氧化锗出产的技能操作条件如下:
(一)隔焰炉
燃烧室温度1350~1450℃煤气预热温度>750℃蒸腾室温度890~920℃熔化炉780~840℃锌粉冷凝温度≤300℃废气(换热室出口)<450℃处理量800~1200kg/(炉·8h)
(二)工频感应电炉
炉温<1200℃炉顶温度950~1000℃电压380V电流<260A冷却器温度350~400℃冷却水出口温度<55℃冷却水进口压力>19.6×104Pa投料量700kg/炉电炉炉时15~20h
(三)丹宁沉锗
栲胶∶锗(35~40)∶1(浸出液含锗0.10~0.25g/L)
始酸pH值 2.5~3.0
温度 60℃
拌和时刻 5min
(四)丹宁锗焙烧
温度 约550℃
时刻 3~5h/盘
气氛 能充沛氧化
(五)二氧化锗出产
浸出-蒸馏
液固比 8∶1
始酸pH值 1
FeCl3参加量 物料量的0.1~0.3倍
拌和速度 80r/min
通氯量 50kg料通氯3kg
浸出温度 60~70℃
蒸馏最高温度 115℃
蒸馏残液 含CaCl2300g/L,HCl2~2.5g/L
残液中和
初温 60℃
终温 <90℃
终酸pH值 4.5~5.0
水解
投入量 1600ml/桶
∶水 1∶6.5(体积)
参加速度 20~30ml/min
水解槽温度 <0℃
烘干温度 140~160℃
烘干时刻 6~8h
四、产品产率及成分
(一)隔焰炉
日处理量 2.4~3.6t/(炉·d)
日产锌粉量 1.4~2.2t/(炉·d)
含锗粗铅 Zn15%,Pb70%,Ge1.2%。约占硬锌量的20%
锌渣 Zn75%,Pb8%。用于出产硫酸锌
(二)工频电炉
锌粉产值 500kg/(台·d),产率约70%
产锗渣含锗 3.0~4.0kg/(台·d),产率约7.5%
粗铅 Pb>75%,Zn1.8%,Ge<1.1%,产率约12%
高砷锗渣成分 Zn4.62%,Pb21.8%,As12.4%,Fe10.93%
(三)粗二氧化锗出产
丹宁锗粗矿 Ge<5% As<1%(湿渣:Ge<2% As<0.2% H2O<80%)
粗二氧化锗 白色粉末Ge≥65% As<1.0%
五、首要技能经济指标
隔焰炉 (2.7m2,3.55m2)
锌收回率 95.5%
锌直收率 75.5%
煤气单耗 3800m3/t硬锌
水单耗 120t/t硬锌
工频电炉(190kW/380V)
锌收回率 95.0%
锌直收率 83%
锗收回率 95%
锗直收率 75%
硬锌单耗 1.181t/t锌粉
粗二氧化锗出产
锌渣中锌收回率 92%
锌渣中锗收回率 50.5%
高砷锗渣中锗收回率 90.25%(至GeO2)
六、首要设备实例
韶冶锗车间首要设备为两座隔焰炉,面积分别为2.7m2和3.55m2,1台190kW/380V的工频感应电炉;其他均为湿法车间的小型设备。
钴知识
2019-03-08 09:05:26
钴是灰色硬质金属,它的居里点(失掉磁性的临界温度点)为1150℃,熔点为1495℃,沸点为2900℃,具有磁性和耐高温性。在300℃以上发作氧化效果,极细粉末状钴会主动焚烧。钴能溶于稀酸,在浓硝酸中会构成氧化薄膜而被钝化;在加热时能与氧、硫、氯、发作剧烈反响。
自然界中已知含钴矿藏有近百种,大多伴生于镍、铜、铁、铅、锌等矿床中,常见的用于提取钴的矿藏有辉砷钴矿、砷钴矿、硫钴矿、硫镍钴矿、含钴黄铁矿、硫铜钴矿、钴华、方硫镍钴矿等。钴矿藏的赋存状况杂乱,矿石档次低,所以提取工艺比较杂乱且收回率低。一般先用火法将砷钴精矿、含钴硫化镍精矿、铜钴矿、钴硫精矿中的钴富集或转化为可溶性状况,然后再用湿法使钴进一步富集和提纯,最终得到钴化合物或金属钴。
金属钴首要用于制作合金。钴基合金是钴和铬、钨、铁、镍中的一种或几种制成的合金的总称。含钴工具钢能够显著地进步钢的耐磨性和切削性能,含钴50%以上的司太立特硬质合金即便加热到1000℃也不会失掉其原有的硬度。航空航天技术中运用最广泛的合金是镍基合金,也能够运用钴基合金。含钛和铝的镍基合金强度高是因为构成组成为NiAl(Ti)的相强化剂,当运转温度高时,相强化剂颗粒就转入固溶体,这时合金很快失掉强度。钴基合金的耐热性是因为构成了难熔的碳化物,这些碳化物不易转为固体溶体,分散活动性小,温度在1038℃以上时,钴基合金的优越性就显现无遗,它可用于制作高效率的高温发动机。在航空涡轮机的结构材料运用含20%-27%铬的钴基合金,能够不要维护覆层就能使材料达高抗氧化性。钴是磁化一次就能坚持磁性的少量金属之一,在热效果下失掉磁性的温度叫居里点,铁的居里点为769℃,镍为358℃,钴可达1150℃。含有60%钴的磁性钢比一般磁性钢的矫顽磁力进步2.5倍。在振荡下,一般磁性钢失掉差不多1/3的磁性,而钴钢仅失掉2%-3.5%的磁性。因此钴在磁性材料上的优势就很显着。钴在电镀、玻璃、染色、医药医疗等方面也有广泛运用。
我国钴矿资源首要散布在甘肃、山东、云南、河北、青海和山西,其保有储量占全国保有储量的百分比依次为30.5%、10.4%、8.5%、7.3%、7.1%、6%,这六个省的储量之和占全国总储量的70%,其他30%的储量散布在新疆、四川、湖北、西藏、海南、安徽等省区。我国已探明的钴矿床绝大多数是伴生矿,档次较低,钴首要作为副产品加以收回。依据对全国钴储量大于1000吨的50多个矿床的统计分析得知,钴的均匀档次仅为0.02%,因此出产过程中金属收回率低,工艺杂乱,出产成本高。可利用的钴资源首要伴生在铜镍矿床中,其钴资源探明储量占全国总储量的50%左右。已开发的铜镍矿床有甘肃金川的白家嘴子、吉林磐石的红旗岭、新疆的喀拉通克等矿,甘肃金川为我国首要钴出产地。可利用的钴资源其次伴生在铜铁矿床中,现在现已开发的有山西中条山铜矿、湖北大冶铁矿、山东金岭铁矿、四川拉拉厂铜矿和海南石碌铁铜矿等。因为受资源条件约束,国内钴产值增加缓慢,不能满意国内市场需求,需经过进口补偿缺乏。
废镍渣
2017-06-06 17:49:54
废镍渣有铁磁性和延展性,能导电和导热。常温下,镍在潮湿空气中表面形成致密的氧化膜,不但能阻止继续被氧化,而且能耐碱、盐溶液的腐蚀。块状镍不会燃烧,细镍丝可燃,特制的细小多孔镍粒在空气中会自燃。加热时,镍与氧、硫、氯、溴发生剧烈反应。细粉末状的金属镍在加热时可吸收相当量的氢气。镍能缓慢地溶于稀盐酸、稀硫酸、稀硝酸,但在发烟硝酸中表面钝化。镍的氧化态为-1、+1、+2、+3、+4 ,简单化合物中以+2价最稳定,+3价镍盐为氧化剂。镍的氧化物有NiO和Ni2O3。氢氧化镍〔Ni(OH)2〕为强碱,微溶于水,易溶于酸。硫酸镍(NiSO4)能与碱金属硫酸盐形成矾 Ni(SO4)2o6H2O(MI为碱金属离子)。+2价镍离子能形成配位化合物。在加压下,镍与一氧化碳能形成四羰基镍〔Ni(CO)4〕,加热后它又会分解成金属镍和一氧化碳。废镍渣银白色金属,密度8.9克/厘米3。熔点1455℃,沸点2730℃。化合价2和3。质坚硬,具有磁性和良好的可塑性。有好的耐腐蚀性,在空气中不被氧化,又耐强碱。在稀酸中可缓慢溶解,释放出氢气而产生绿色的正二价镍离子Ni2+;对氧化剂溶液包括硝酸在内,均不发生反应。镍是一个中等强度的还原剂。镍不溶于水,二价镍可能是主要生物类型,在生物体内能与很多物质络合、螯合或结合。废镍渣大量用于制造合金。在钢中加入镍,可以提高机械强度。如钢中含镍量从2.94%增加到了7.04%时,抗拉强度便由52.2公斤/毫米2增加到72.8公斤/毫米3。镍钢用来制造机器承受较大压力、承受冲击和往复负荷部分的零件,如涡轮叶片、曲轴、连杆等。含镍36%、含碳0.3-0.5%的镍钢,它的膨胀系数非常小,几乎不热胀冷缩,用来制造多种精密机械,精确量规等。含镍46%、含碳0.15%的高镍钢,叫“类铂”,因为它的膨胀系数与铂、玻璃相似,这种高镍钢可熔焊到玻璃中。在灯泡生产上很重要,可作铂丝的代用品。一些精密的透镜框,也用这种类铂钢做,透镜不会因热胀冷缩而从框中掉下来。由67.5%镍、16%铁、15%铬、1.5%锰组成的合金,具有很大的电阻,用来制造各种变阻器与电热器。
钨钴合金
2017-06-06 17:50:12
钨钴合金钨钴合金又称碳化钨-钴硬质合金。碳化钨和
金属
钴组成的硬质合金。按钴含量,可分为高钴(20%~30%)、中钴(10%~15%)和低钴(3%~8%)三类。这类
金属
陶瓷可按通常特种陶瓷配料、成型等工艺制造,惟有烧成应根据坯料性质及成品质量采用控制烧结气氛为真空或还原气氛,一般在碳管电炉、通氢钼丝电炉、高频真空炉内进行。中国生产的这类硬质合金的牌号有YG2,YG3,YG3X,YG4C……等。字母“YG”表示“WC-Co”,“G”后面的数字表示Co的含量,“X”表示细晶粒,“C”表示粗晶粒。钨是属于
有色金属
,也是重要的战略
金属
,钨矿在古代被称为“重石”。1781年由瑞典化学家卡尔.威廉.舍耶尔发现白钨矿,并提取出新的元素酸-钨酸,1783年被西班牙人德普尔亚发现黑钨矿也从中提取出钨酸,同年,用碳还原三氧化钨第一次得到了钨粉,并命名该元素。钨在地壳中的含量为0.001%。已发现的含钨矿物有20种。钨矿床一般伴随着花岗质岩浆的活动而形成。经过冶炼后的钨是银白色有光泽的
金属
,熔点极高,硬度很大。钨钴合金镀层的外观接近铬镀层,且镀液分散能力及覆盖能力好.在此研究了钨酸钠、硫酸钴、添加剂、电流密度及pH值对镀层钨含量及性能的影响.钨钴合金具有很好的耐蚀、耐热和耐磨性能,应用前景好. 售价70000元/千克 W含量83.36%,Co含量9.56%,C含量5.44%,硬度HRA为87。钨钴合金可用作刀具可加工铸铁、
有色金属
、非
金属
、耐热合金、钛合金和不锈钢等,还可作引伸模具、耐磨零件、冲压模具和钻头等。钨钴合金陶瓷通常抗弯强度和断裂韧性随钴含量的增加而提高,而硬度下降。钨钴合金具有较高的抗弯强度、抗压强度、冲击韧性、弹性模量和较小的热膨胀系数,是硬质合金中使用最广泛的一类。用作刀具可加工铸铁、
有色金属
、非
金属
、耐热合金、钛合金和不锈钢等,还可作引伸模具、耐磨零件、冲压模具和钻头等。钨和钴为主要成份的一种合金,多用于矿山开采的钎头制作。
铍钴铜
2017-06-06 17:50:12
铍钴铜铍钴铜的物理指标:硬度: >260HV,导电率:>52%IACS,软化温度:520℃,同时铍钴铜具有许多优秀的特性,在许多方面都具有很独特的性质。电阻焊电极: 铍钴铜力学性能比铬铜材料和铬锆铜材料要高,但导电率和热导性低于铬铜和铬锆铜,这类材料在作为焊和缝焊电极时,用于焊接高温下仍保持特性高强度的特性的不锈钢、高温合金等,因为焊接这类材料时需要施加较高的电极压力,要求电极材料的强度也较高。这类材料可以作为点焊不锈钢和耐热钢的电极、受力电极电极握杆、轴和电极臂, 也可以作成缝焊不锈钢和耐热钢的电极轮轴和衬套,模具、或是镶嵌电极。铍钴铜具有许多优良的特性。各种耐磨内套(如结晶器用内套以及机械设备中的耐磨内套)以及高强度电工引线等。高热传导性 ,优良的抗腐蚀性,优良的抛光性 ,优良的抗磨性 ,优良的抗粘着性 ,优良的机械加工性,高强度和高硬度,极优良的焊接性。铍钴铜广泛用于制造注塑模或钢模中的镶件和模芯。用作塑胶模具中的镶件时,可有效地降低热集中区的温度,简化或者省去冷却水道设计。铍钴铜现有出厂的规格包括;经锻轧成型的圆材和扁材,挤压成型的管材,经机械切削加工的芯棒(Core Pins),铸锭和各类铸造型材。铍钴铜的极优良热传导性比模具钢材优越约3~4倍。此特性可确保塑胶制品快速及均匀地冷却,减少制品的变形,外形细节不清晰及类似的缺陷,在多数情况下可显著地缩短产品的生产周期。铍钴铜的用途:铍钴铜可广泛地采用在需要快速均匀冷却的模具、模芯、嵌入件,特别是高的热传导性,抗腐蚀性及良好抛光性的要求。吹塑模:夹断部,劲圈和把手部位镶件。注塑模:模具、模芯、电视机外壳角落的镶件。注塑:喷咀和热流道系统的汇流腔。