您所在的位置: 上海有色 > 有色金属产品库 > 高铁锰矿 > 高铁锰矿百科

高铁锰矿百科

高岭土高梯度磁选除铁

2019-01-21 09:41:24

高岭土高梯度磁选除铁:高岭土中的染色杂质(如赤铁矿等)具有弱磁性,因而可以利用高梯度磁选机将其除去.美国利用PEM-84型湿式高梯度磁选机,可使高岭土原矿中的Fe2O3由0.9%降至0.6%,Ti2O3由1.8%~2.0%降至0.8%.这种高梯度磁选机用无缝管钢毛作介质,场强为1.5~2.0T时,需耗电270~500kw.我国对湖南酸陵、耒阳、泊罗、衡岭土进行了湿法消费者研究[3-6],都取患有精良的试验结果,条码,分外是用振动高梯度磁选脱除高岭土中的铁钛取患了无比好的试验指标.对湖南耒阳高岭土用我CLY500型振动高梯度磁选机与投资移民美国PEM - 84的高梯度磁选机比拟试验结果看,从降铁、钛杂质含量,提高白度来看,中国的高梯度磁选机机能优于美国留学中介.由于有些高岭土矿中部份铁杂质以硅酸盐情势存在,磁性无比弱,而钛以金红石的情势存在,则磁选法子很难见效,因此流程中通常配以浮选,选择性絮凝等其他功课,以进步产物的质量.比年来,超导磁选机已乐成地应用于高岭土分选,不但能耗减少,并且场强可以大大提高,高岭土精矿的质量也更高.Eriez超导磁选机具备敏捷升磁的特色,可在60s内到达最高计划场强(5T),而消磁时间短,这就大大收缩了负载循环时期从磁体中冲刷磁性杂质所需的时间.其能耗低,比通例磁选机淘汰80%摆布,处置惩罚量大,可达100t/h以上.英国留学试验过一种往复螺旋管超导磁系,其计划雷同于通例的罐形磁滤器,所差别的是它在事情循环时期仍将超导磁体保存在激磁状态,而无须开关节制,并可连续作业.德国洪堡香港公司注册计划的3048mm、超导高梯度磁选机,布局简略,操纵及维护费用低,同时具备较好的不乱性.

稀土高铁铝合金电缆

2018-12-29 11:29:12

稀土高铁铝合金电缆,其导电性、柔韧性、延伸性、抗蠕变性等方面均优于铜芯电缆。与铜芯电缆相比,稀土高铁铝合金电缆价格要便宜30%左右,施工更加简便。综合折算,一个工程至少可以节约40%的电缆总成本。    在国内,欣意稀土高铁铝合金电缆已经成功应用到上千个工程项目中,获得了国家住房和城乡建设部、国家消防总局、国家电网、中国铁路等方面的权威认证和推广使用。

高铁铝土矿的选矿技术

2019-01-29 10:09:51

根据铁矿含量及种类或嵌布特点,其除铁方法也不相同。常用的方法有磁选、焙烧磁选、浮磁过滤、载流浮选除铁等等。     国外某铝土矿,原矿含Al2O3为38.5%、SiO2为8.5%、Fe2O3为24.4%,铝硅比为4.5。采用洗矿-磁选-浮选联合流程选别可获得满意结果。其铝土矿精矿含Al2O351.2%、SiO25.7%,铝硅比达9.0,铝回收率为48.9%,该物料可用为拜耳法生产的原料。尚可获得含Al2O337%、SiO213.6%,铝回收率36.9%的次精矿。而磁性部分经磁选可获得含Fe50.1%的铁精矿。     我国阳泉铝矾土是高铝矾土基地之一,所产矿石为一水硬铝石-高岭石型。原矿含Al2O363%~65%、SiO215%~16%、Fe2O31.37%~1.44%、TiO22.82%,采用浮-磁联合流程进行了小型和半工业试验,取得了较好结果。其精矿含Al2O374%~75%(折合熟料为86.5%),含Fe2O3<1%,含杂质及Al2O3品位均达到了原冶金部的部颁标准,适用于宝钢对高铝矾土的产品要求;而选别后的尾矿仍可作为二级乙铝矾土的原料。     中南工业大学对广西平果那豆矿石,原矿含Al2O356.17%、SiO25.90%、Fe2O319.64%,铝硅比9.52。采用原矿直接磁选,可使Fe2O3的含量下降到8.59%~6.97%,铝精矿回收率82.62%~78.25%,铝硅比相应提高到11.63~11.06。

高铝铁矿的铝铁分离工艺

2019-01-24 09:36:29

高铝褐铁矿是一类典型的复杂难处理铁矿石,在我国广西以及毗邻的东南亚国家等均有较大储量,因其Al2O3含量较高,若直接作为炼铁原料,会导致炉渣流动性变差、脱硫能力下降、焦比升高、高炉操作困难。但褐铁矿储量丰富,价格相对低廉,仍是一种比较重要的铁矿资源。 为有效降低褐铁矿中Al2O3的含量,国内外就高铝铁矿的铝铁分离开展研究,已基本形成3种典型工艺: 1)先选别,后冶炼,即先采用物理选矿方法选出高品位的铝精矿和铁精矿,然后从各自的精矿中提取铝和铁。这种方法适用于处理结构简单的含铝铁矿石,对于铝铁嵌布关系复杂,单体解离性能差的矿石作用不明显; 2)先铝后铁,郎拜耳法溶出铝一赤泥回收铁工艺,该工艺要求矿中有效氧化铝(AAl2O3)/活性氧化硅(RSiO2)高,同时赤泥回收铁的经济效益难以保证; 3)先铁后铝,即高炉或者电炉冶炼-炉渣浸出提铝工艺,该工艺可有效实现铝铁分离,但存在能耗高、造渣困难、炉渣溶出困难等问题。 由此可见,由于高铝褐铁矿石内矿物嵌布关系复杂,目前又缺少系统地研究,因而尚未得到合理有效利用,基本属于呆滞矿产资源。

异型铜材2016助力高铁飞速发展

2019-03-06 11:05:28

异型铜材2016助力高铁飞速发展

闪速熔炼直接产出低铁高镍锍

2019-01-08 09:52:44

1995年哈贾伐瓦尔塔冶炼厂奥托昆普研究中心共同开发了闪速炉直接生产低铁高镍锍新工艺。基于闪速炉反应塔中形成的不续氧化物熔滴,如氧化铜等在熔池中与一些残余硫化物,如FeS及汪量硫化镍等继续反应生成镍锍和炉渣,由于硫量少,形成了金属化的高镍锍和SO2:                                 2NiO+FeS=[2Ni,Fe]锍+SO2                                 2Cu2+FeS=[4Cu,Fe]锍+SO2                                 4Cu2O+Ni3S2=[8Cu,3Ni]锍+2SO2                                 2NiO+Ni3SO2=7[Ni]锍+2SO2    镍锍含铁很少,基本上95%以上的铁进入渣,其中Fe3O4全部入渣,即Fe3O4=(Fe3O4)渣。    残余未反应的硫化物溶解于镍锍中:                                 Ni3S2=[Ni3S2]锍                                 Cu2S=[Cu2S]锍                                 FeS=[FeS]锍    镍以NiO形态溶入闪速熔炼渣中,经还原贫化进入锍中。                                (NiO)渣+C(CO)=[Ni]锍+CO(CO2)                                 (Fe3O4)+C渣(CO)=3(FeO)渣+CO(CO2)                                 (FeO)+C(CO)渣=[Fe]锍+CO(CO2)    深度还原高氧化态炉渣出带来另一后果,即产生大量的(CO+CO2)气体,引起电炉渣鼓泡,为此要控制好电炉温度、焦炭加入时以及冷料加入量。下表中列举了第一年的前8个月操作数据的平均数与老工艺比。   奥托昆普公司哈贾伐瓦尔塔镍厂新、老工艺作业数据的比较物料名称NuCuFeSSiO2MgOCO2SO2                      老       工        艺闪 速 炉硫化镍精矿1022827135  镍     锍40131825————  炉     渣20.6400.5279  烟     气      1223电 炉镍     锍4512308    炉     渣0.20.3400.430     新工艺(高镍锍闪速熔炼)闪 速 炉硫化镍精矿151303085  镍     锍655421——   炉     渣40.5400.2278  烟     气      1330电 炉镍     锍506307——   炉     渣0.30.2420.3318.5         新工艺取消了传统的转炉吹炼,无转炉渣返回贫化处理,产出连续的SO2气流,改善了硫酸厂的操作;取消了吊车动输,减少了废气、灰尘的逸出,改善了工厂的民事卫生状况;熔炼炉渣还原贫化后弃渣达到含Ni0.3%、含Cu 0.2%的水平,减少了内部循环,提高了金属回收率。

高磷锰矿脱磷技术研究现状与展望

2019-02-18 15:19:33

锰及其化合物应用于国民经济的各个领域。钢铁工业用锰量占90%一95%,首要作为炼铁和炼钢进程中的脱氧剂和脱硫剂,以及用来制作合金。 跟着我国钢铁工业出产的开展和锰系产品出口的添加,锰矿石的消费量也逐步添加,进口矿石所占的比重越来越大,2002年进口锰矿石初次打破 200万t,占我国总锰矿石消费量的45.81%,如按锰金属量计算,因为进口矿石档次高于国产锰矿石,进口矿的锰金属已超越 了国内锰金属量耗费总量 的50%,国内矿石直销的缺口越来越大。因而,在充分运用国外资源的一起,加速国内锰矿资源的勘查力度、进步勘查深度、大力研讨锰矿加工及除杂(磷、硫)技能显得十分必要。 我国锰矿石中磷的含量较高,P/Mn平均在0.01左右,而冶金用锰矿石要求 P/Mn 我国高磷贫碳酸锰矿石首要散布在湘、黔、川3省接壤地带,包含湖南花垣锰矿、贵州松桃锰矿、四川秀山锰矿等,总储量约为 1亿 t,这类型锰矿含 P0.24% 左右 ,Mn 18%一19%,P/Mn为 0.01左右。 磷是钢铁冶炼进程中的首要有害元素之一。冶 金用锰矿石中含磷量过高会直接影响钢铁的品种与 质量。结合高磷锰矿石的归纳运用,研讨经济有用的脱磷技能是很重要的课题。 一、高磷锰矿石脱磷技能现状国内外针对不同的矿石性质,进行了较为深化的锰矿石脱磷工艺研讨。首要办法有:强磁选一反浮选、强磁选一焙烧、强磁选一黑锰矿、复原一浸、微生物脱磷。 (一)强磁选一反浮选反浮选仍然是 现在最首要的锰矿石脱磷办法。为了下降反浮选本钱或进一步下降含磷量,磁选一反浮选联合脱磷已显现出优势。锰矿反浮选脱磷中一般用氧化石腊皂为捕收 剂,以NaOH、Na2SiO3、Na2CO3为调整剂,淀粉为抑 制剂。一起,添加运用 GY—l药剂,GY—l是在 DC一854药剂基础上改制的一种高效、无毒、无腐蚀、运用方便的阴离子表面活性剂,在反浮选中不只具有杰出的选择性涣散作用,并且对改进产品质量具有显着成效。鄂西某地的高磷菱锰矿 P/Mn为0.046,经脱泥、强磁选、1次反浮粗选脱磷和 3次泡沫再选分级脱磷,可取得 P/Mn为 0.002,锰档次为78.87%的终究锰精矿目标。 (二)强磁选一焙烧湘潭锰矿属低铁高磷贫碳酸锰矿床,其含磷矿藏为胶磷矿,赋存于粘土类矿藏中。碳酸锰为弱磁性矿藏,粘土类矿藏为非磁性矿藏,运用其磁性差异选用强磁选选别,然后焙烧,可到达富锰降磷作用。湘潭锰矿进行了强磁选接连实验。原矿含 Mn21.95%,粒度 7~10 mm。经 1次粗选和1次精选,取得锰精矿 I含 Mn 27.70%,收回率为 38.5%;锰精矿 Ⅱ含 Mn 23.7%,收回率为 55.94%,总收回率可达 94.44%。磁选锰矿经焙烧后,精矿 I含 Mn42.6%,P/Mn为 0.003 9;精矿 Ⅱ含 Mn 35.03%,P/Mn为 0.0049。(三)强磁选一黑锰矿 湖南花垣锰矿是我国大型碳酸锰矿,其特色是低锰、高磷,矿藏嵌布粒度很细,是一种难选的锰矿石。该锰矿选用了强磁选一黑锰矿法来进行脱磷强磁选一黑锰矿脱磷工艺中,矿石破碎到必定粒度后经粗粒和细粒强磁选机分级选后,脱水进行欢腾焙烧,焙烧产品给入接连浸出机脱磷,终究固液别离得到终究精矿。 该工艺特色在于当选粒度粗、磁选抛尾作用好焙烧温度均匀、焙烧黑锰矿转化率高、酸浸逗留时间短、作业简略。研讨标明接连扩展实验到达了与小型实验相同的成果,归纳精矿产率40.85%,精矿锰档次为 40.15%,锰 收回率达 82.071%,磷锰 比为0.003 7。 (四)炉外脱磷炉外脱磷法系将含磷高的锰矿原矿或烧结矿在电炉内炼制成硅锰合金,将火热的合金放至炉外铁水包内,再向其参加脱磷剂,经振动反响而到达脱除合金中的磷。花垣锰矿曾进行过炉外脱磷实验,脱磷率到达76.84%。长沙冶金研讨院用含磷较高的烧结矿炼制成含 0.91%的硅锰合金。经脱磷处理后,合金含磷降至0.19%。该工艺运用了余热,产品本钱添加不多而取得优质的硅猛合金,值得推广应用。(五)复原焙烧一浸该法处理低档次锰矿石在国外已有几十年的前史,20世纪 50年代美国锰化学公司和比利时的Sedema公司建立了处理锰矿石的浸厂,将浸法提锰产品作为出产化学二氧化锰的质料,取得了较好的作用。我国自20世纪 80年代开端了浸法提锰的实验研讨,1983年,贵州遵义铁合金科研所提出了用复原焙烧一浸法处理贵州松桃高磷锰矿的计划。1984年,湖南省冶金材料研讨所也报道了用浸法 处理花垣高磷锰矿石的开始实验成果。贵州松桃高磷锰矿运用复原焙烧一浸法脱磷,其工艺进程包含矿石的碎磨,焙烧,浸出,固液别离,从浸出液中收回锰,以及溶剂的再生循环运用等工序。锰的浸出率为73.2%~89.6%,产品含锰70%~72%,产品含磷小于0.02% 。 (六)微生物脱磷生物技能是开展速度较快的新兴产业之一。生物技能以其低能耗、无污染等特色逐步显现其强壮的优势。在自然界,60多种元素的散布与微生物有关,微生物参加了 S、Fe、C、N、P、Cu、Si、Mn等多种元素的涣散一氧化一复原。微生物法处理废水 ,除掉其间的磷已获成功,这标明微生物有脱磷才能。近年来,运用微生物处理矿产资源的研讨十分活泼。现已发现很多种细菌、真菌、放线菌都具有脱磷作用。它们首要经过代谢产酸下降系统的 pH值,使磷矿藏溶解而进入液相。一起,代谢产酸还会与 Ca2+、Mg2+、Al3+等离子构成络合物,然后促进磷矿藏的溶解。研讨标明,有的细菌具有过量摄磷的特性,这也是微生物脱磷的机理之一。微生物脱磷的国内外研讨进展见表1。二、高磷锰矿石脱磷技能展望现代工业技能的开展,有必要遵从资源归纳运用程度高、环境污染程度低、契合建造节约型社会的科学开展观。对高磷锰矿石脱磷技能的研讨,应当在有用的脱磷技能上,特别注重进步锰的收回率,下降工艺进程中的能耗和用水量,下降各种化学试剂的耗费,尽或许完成工艺进程的无害化,不形成环境污染。已有的研讨中,反浮选耗水量大,磨矿进程耗费很多动力,一起要运用多种浮选药剂,强磁选一焙烧要求矿藏有较好的单体解离,对固熔体矿藏分选作用差。强磁选一黑锰矿法工艺流程长,操作冗杂。炉外脱磷工艺需在高温下进行脱磷,操作不方便。综观高磷锰矿石脱磷的研讨成果,与现代工艺要求比较切合的看来是复原焙烧一浸法与微生物脱磷技能。比较而言,微生物脱磷技能更具优势,值得深化研讨与注重。微生物脱磷技能的研讨应注重以下几个方面: (一)挑选脱磷微生物时,以其是否具有产酸代谢和积累磷的生化特征为标准打开。进行矿石脱磷时,促进这两个进程的进行是强化脱磷作用的要害; (二)脱磷微生物的品种繁复,分化机制不尽相同且较杂乱,虽有一些研讨,但没有深化,脱磷机理需求进一步清晰;(三)脱磷微生物的遗传稳定性差,应着眼于寻觅稳定性好的微生物。关于一些具有优秀性状的脱磷微生物要不断进行挑选和复壮,以进步其脱磷才能;(四)要使脱磷微生物更好地习惯高磷贫碳酸锰矿石所供给的环境,如增强微生物抗氟离子和或许存在的重金属离子的才能,进步其数量和活性;(五)脱磷微生物大多属异养菌,寻觅廉价的有机碳源(如碳水化合物)能够进步该技能经济性。

锰矿

2017-06-06 17:49:58

锰矿物的利用历史十分悠久,据文献记载,世界上利用锰矿物最早的国家有埃及、古罗马、印度和中国。我国利用锰矿物的历史可追溯到距今约4500~7000年前后新石器时代的仰韶文化(彩陶文化)时期。由于软锰矿呈土状,它的颜色呈黑色,极易染手,在古人看来,这是一种奇妙的陶器着色颜料。    中国锰矿资源的分布:中国锰矿资源较多,分布广泛,在全国21个省(区)均有产出;有探明储量的矿区213处,总保有储量矿石5.66亿吨,居世界第3位。中国富锰矿较少,在保有储量中仅占6.4%。从地区分布看,以广西、湖南为最丰富,占全国总储量的55%;贵州、云南、辽宁、四川等地次之。从矿床成因类型来看,以沉积型锰矿为主,如广西下雷锰矿、贵州遵义锰矿、湖南湘潭锰矿、辽宁瓦房子锰矿、江西乐平锰矿等;其次为火山-沉积矿床,如新疆莫托沙拉铁锰矿床;受变质矿床,如四川虎牙锰矿等;热液改造锰矿床,如湖南玛璃山锰矿;表生锰矿床,如广西钦州锰矿。从成矿时代来看,自元古宙至第四纪均有锰矿形成,以震旦纪和泥盆组为最重要。     锰矿一般分为氧化锰和碳酸锰,氧化锰一般是颗粒状的黑色矿物,硬度较小。而碳酸锰则是块状的黑色矿物,一般硬度较大。一般锰矿里含有的杂质为石英沙等其它杂质。一般选锰矿最好的办法是磁选法。一直以来,人们认为锰矿不会被磁所吸引,其实是因为所采用的磁场强度不够大。当磁场达到7000GS左右,锰矿就很明显地被磁所吸引。因此选锰最好的办法是磁选法,即采用锰矿磁选机。    锰在地球岩石圈中以及硅酸盐相的陨石中表现有强烈的亲石性质,但在岩石圈上部则有强烈的亲氧性质,锰与铁在岩石圈中以及陨石中虽有许多相似的化学性质,但锰并不亲铁。锰矿在自然界中已知的含锰矿物约有150多种,分别属氧化物类、碳酸盐类、硅酸盐类、硫化物类、硼酸盐类、钨酸盐类、磷酸盐类等。但含锰量较高的矿物则不多。    更多关于锰矿的资讯,请登录上海有色网查询。

锰矿

2017-06-06 17:49:58

    锰在地球岩石圈中以及硅酸盐相的陨石中表现有强烈的亲石性质,但在岩石圈上部则有强烈的亲氧性质,锰与铁在岩石圈中以及陨石中虽有许多相似的化学性质,但锰并不亲铁。锰矿在自然界中已知的含锰矿物约有150多种,分别属氧化物类、碳酸盐类、硅酸盐类、硫化物类、硼酸盐类、钨酸盐类、磷酸盐类等。但含锰量较高的矿物则不多。    中国锰矿开拓方法有:露天开采、露天水力开采和地下开采三种。    1、露天水力开采    露天水力开采虽属露天开采范畴,但差别较大。该方法始于1963年投产的广西八一锰矿。随后在广西平乐、荔浦锰矿和湖南东湘桥、半边月等锰矿推广应用。当前露天水力开采量约占全国锰矿开采量的10%左右。露天水力开采的基本特征是:利用水头压力和同一水流依次完成冲采、运输、洗选和尾矿排放等连续性生产工艺。因此,它适用于水源充足的风化型锰矿床。    据1995年《中国锰矿志》记载,湖南东湘桥、半边月和广西平乐二塘、荔浦太平等锰矿或采区,在其下部有一种粘性大、塑性很强的胶质粘土层,无论用水枪还是其他机械都难以回采。由长沙黑色冶金矿山设计院和东湘桥锰矿共同试验采用“爆破风化预先松动水采法”获得成功。经多年的生产实践,取得了较好的技术经济效果。该法包括穿孔、爆破、风化、水化和冲采5个步骤:首先采用冲击钻穿孔,孔深一般1.5~2.5m,炮孔呈梅花形布置,然后装药爆破,爆堆隆起,再自然风化即风吹、日晒3~6d后,在爆堆上均匀喷洒适量水,矿土便开始分离,再过1~2d即可冲采。露天水力开采具有工艺简单、采矿效率高,劳动条件好,基建投资省等优点,适合于具有一定坡度和水源充足的矿山采用。其缺点是剥离和水采洗矿,造成大量的尾泥浆,需占用面积大的尾泥库,同时水、电消耗多,只能因地制宜。    2、露天开采    目前,风化堆积型氧化锰矿大部分是露天开采,其开采量占全国开采量的60%以上。主要矿山有湖南玛瑙山锰矿;广西下雷(浅部)、木圭、土湖锰矿;云南建水、斗南(浅部)锰矿;福建连城锰矿;广东小带、新榕锰矿等等。这些矿山生产流程基本相同,但装备水平相差甚大,重点矿山装备水平较高,如下雷锰矿采、装、运全部实现机械化生产,打眼采用潜孔钻穿孔,柴油铲铲装,汽车运输矿岩。但大多数地方中小矿山采、装、运还处于半机械化或土法生产,手工操作。    更多关于锰矿的资讯,请登录上海有色网查询。

采用烧结法处理高铁赤泥回收氧化铝

2019-02-28 10:19:46

使用氧化铝热力学数据库,对高铁赤泥炉料烧成过程中的相关化学反响进行热力学核算,并在此基础上,研讨烧成温度、烧成时刻、炉料配比等烧成工艺条件对高铁赤泥炉料烧成作用的影响。研讨结果表明:赤泥炉料的配钙量能够在较宽的规模内改变,并且在烧成过程中或许生成不溶盐类,导致熟猜中氧化铝的溶出率下降:延伸烧成时刻和添加配料铁酸钠含量均有利于烧结:高铁赤泥炉料的较佳配料是: 熟猜中Na=O·Fe203质量分数为10O/~12%,钙铁摩尔比为1.o~1.2:烧成工艺条件是:温度为l 000- 1 050℃,烧成时刻为30--40 min。在较佳配料和烧成工艺条件下,当熟猜中氧化铝含量为15%左右时,熟猜中AI203收回率可达85~/o~90%。     在我国湖南、广西和山西等地有必定储量的高铁中等档次铝土矿,这种矿石适合选用拜耳一烧结串联法来处理出产氧化铝。即先使用简略、经济的拜耳法收回矿石中大部分Al2O3,拜耳法所发生的高铁赤泥再选用烧结法处理,进一步收回其间的Al2O3,收回铝后的富铁渣可用做炼铁的质料。但迄今为止,用烧结法处理拜耳法高铁赤泥仍存在技能难题。尽管人们对拜耳法厂高铁赤泥的综合使用方面展开了很多的研讨,如用酸浸出赤泥制备聚合铁、聚硅酸铁和聚硅酸铁铝等无机高效絮凝剂,用高铁赤泥煤基直接焙烧复原收回金属铁[删以及用赤泥出产水泥等,但这些研讨大都尚处于试验或半工业试验阶段,且首要着眼于收回其间的铁和其他稀有金属,而对选用烧结法处理拜耳法高铁赤泥收回其间氧化铝的研讨甚少。赤泥烧结块的特点是铁酸钠和铁酸钙的含量高,而铝酸钠的含量很低,倾向于构成易熔共晶体。对这样的炉料,其烧成温度规模较窄,熔化温度不高,形成烧成困难。一起,若选用传统的苏打一石灰炉料烧结时会生成难溶的含Al2O3和Na20的三元化合物,下降碱和氧化铝的收回率。所以,高铁赤泥炉料烧成时需求配入更多的石灰,使炉猜中一部分氧化铁与石灰结组成铁酸钙(2CaO-Fe2O3或CaO·Fe2O3),别的的氧化铁与苏打生成铁酸钠。本文作者使用氧化铝热力学数据库,对高铁赤泥炉料烧成过程中相关反响进行了热力学核算,经过试验研讨烧成温度、烧成时刻、炉料配比等对高铁赤泥炉料烧成后所得熟猜中氧化铝溶出率的影响,以期取得选用烧结法从高铁赤泥中收回氧化铝的较佳工艺条件。

高铁泥化氧化铅锌矿的浮选试验研究

2019-02-20 11:59:20

一、前语     跟着硫化铅锌矿资源的逐步干涸,许多较低档次的氧化铅锌资源也作为开发的目标;众所周知,氧化矿是由原生硫化矿通过天然的氧化以及地表水的淋滤进程所构成的产品,矿石中除了铅、锌氧化矿藏外,还含有较多的碳酸盐矿藏、石英及硅酸盐矿藏和易泥化的褐铁矿、针铁矿等铁矿藏。因为矿石中含有较多的易泥化的褐铁矿,构成很多的矿泥,对其浮选技术目标形成严峻的影响。本文针对广西某地的含铁高、泥化严峻的氧化铅锌矿,在不脱泥的条件下进行了浮选实验研讨,取得较好的选别效果,为低档次氧化铅锌资源的收回供给参阅依据。     二、矿石性质     矿石中首要有用矿藏为白铅矿、菱锌矿、少数铅钒、异极矿及微量的黄铜矿等,脉石矿藏首要为黄铁矿、褐铁矿、赤铁矿、方解石、白云石等,首要矿藏铅、锌联系杂乱、风化、铁化、泥化严峻,而又多呈细脉浸染状,铅锌档次别离3.54%、5.86%,氧化率高,硫首要是以黄铁矿方式存在。物相分析氧化铅首要是白铅矿,还有少数的铅钒,氧化锌矿则为菱锌矿及少数异极矿,试样多元素分析见表1。 表1  试样多元素分析元素SiO2TiO2ZrO2LiSrMnSnAs含量/%12.70.10.30.060.1元素MgOV2O5MoNiBePbSSb含量1.30.020.010.053.542.60.03元素WO3CaOBaCoCrZnCuFe2O3含量/%0.73.20.015.860.0226.6     三、实验计划挑选     适合的工艺流程是进步选别效果的条件,而挑选工艺流程的依据是矿石性质,针对该矿石的特色进行了前期探究实验,实验成果表明选用浮选的办法可以收回矿石中的铅锌,脱泥浮选并不能有用改进浮选目标,相反丢失了很多微细颗粒的铅锌矿,下降了收回率。因为含铁比较高,选用硫化-黄药法难以取得比较好的目标,但在不脱泥的情况下选用硫化-胺法浮选可取得比较好的目标。归纳比较后断定选用硫化-胺法对该矿石进行浮选实验。浮选流程如图1所示。图1  浮选实验流程图     四、实验成果与分析     (一)涣散剂的影响     因为该矿石泥化比较严峻,褐铁矿含量较高,需求参加涣散剂对矿浆进行涣散,消除矿泥的影响。在矿浆pH=9,用量2kg/t,硫酸锌与钠用量以1:1份额500g/t,混合胺80g/t条件下调查了六偏磷酸钠用量对铅矿浮选目标的影响。由表2成果可见参加六偏磷酸钠可以进步铅矿档次和铅的收回率,跟着六偏磷酸钠用量的增大,铅精矿档次不断增加,但铅收回率开端下降,阐明在必定用量下六偏磷酸钠具有比较好的涣散效果,可以明显进步铅矿浮选目标,但用量过大时,六偏磷酸钠对铅矿有必定的按捺效果,依据浮选现象和化验成果分析,这首要是因为部分铅矿和褐铁矿共生亲近,六偏磷酸钠用量过大导致和褐铁矿共生的铅矿遭到按捺。 表2  六偏磷酸钠用量对铅矿浮选目标的影响六偏磷酸钠用量,g/t0100300500铅精矿档次,%10.2411.6514.6416.59铅收回率,%62.8665.4268.1762.57    (二)的用量与分析     氧化铅表面的硫化好坏是决议其浮选效果的要害,用量小的情况下,难以取得抱负的硫化效果,硫化用量过大又会对铅矿产生按捺效果,然后下降铅的收回率。本研讨选用图1(下同)流程调查了用量对浮选目标的影响,其间六偏磷酸钠用量300g/t,混合胺用量为100g/t,按捺剂硫酸锌500g/t、钠500g/t,2号油60g/t。浮选实验成果见表3。 表3  用量对钼铅矿浮选目标的影响用量,kg/t1.52.02.53.0.3.54.0矿浆pH值6.07.08.09.010.011.0铅精矿档次,%10.3212.2513.6715.5313.9612.63铅收回率,%50.5355.7663.068.562.556.9     由表3中硫化用量与矿浆pH的数据可见,可以明显进步铅矿的浮选,跟着用量的增加,铅精矿的档次和收回率均增加,当用量到达3kg/t时,铅精矿档次到达15.53%,收回率到达68.5%;再增加用量钼精矿档次和收回率下降,当用量到达4kg/t时,铅精矿档次仅有12.63%,收回率56.9%。这首要是因为用量过大,一方面按捺了胺在铅矿表面的吸附,另一方面矿浆黏度增大,泡沫带泥较多,然后下降了精矿档次。从归纳目标来看适合用量为3kg/t。     (三)按捺剂的用量与分析     在六偏磷酸钠300g/t,3.0kg/t,混合胺用量为100g/t条件下,首要调查了硫酸与钠用量以1:1份额对粗铅精矿锌含量的影响,浮选实验成果见表4。 表4  硫酸锌+钠用量对铅矿浮选目标的影响硫酸锌/钠,g/t400500600700800900矿浆pH值6.07.08.09.010.011.0锌档次,%11.358.257. 766.536.165.83锌收回率,%20.5117.3612.0510.259.859.79     由表4硫酸锌与钠与pH数据可见,当硫酸锌与钠用量逐步增大时,铅粗矿中锌的含量与档次逐步下降,但当用量增加到700g/t时,锌的收回率与档次下降不明显,这首要是因为浮选进程中含泥太多机械搀杂所造成的,因而,硫酸锌与钠适合量700g/t。     (四)捕收剂的挑选与分析     在六偏磷酸钠300g/t,3.0kg/t,硫酸锌与钠700g/t,捕收剂用量为100g/t条件下,调查了各种胺类捕收剂对铅、锌浮选目标的影响。实验成果见图表5。 表5  不同捕收剂对铅矿浮选目标的影响捕收剂称号十二胺十六胺十八胺混合胺铅收回率65.8763.3262.7669.43锌收回率14.6515.7416.8311.23     由表5可以看出,不同品种的胺捕收剂都能完成对铅的有用捕收,但混合胺对铅的挑选性捕收较好,故挑选混合胺作为铅的捕收剂,用量为100g/t。     (五)活化剂的用量与分析     断定铅矿浮选药剂目标,在丁基黄药200g/t,2#油60g/t条件下,调查了不同用量的硫酸铜对氧化锌的浮选目标的影响,浮选实验成果如表6。 表6  不同活化剂对铅矿浮选目标的影响硫酸铜用量g/t150250350450锌档次19. 7817. 2313.3511. 34锌收回率61.6567.7468.8569.27     由表6可见,跟着硫酸铜用量的增加,锌档次逐步下降,但收回率增加,但当硫酸铜用量增加参与350克/吨时,锌收回率增加不明显,故硫酸铜用量断定为350克/吨。     依据以上实验成果断定了铅锌矿浮选工艺参数为:调矿浆pH到9、六偏磷酸钠300g/t,3kg/t,硫酸铜350g/t,丁基黄药用量200g/t,2号油60g/t进行了小型闭路实验,实验流程为一粗一扫三次精选,在铅、锌给矿档次为3.54%和5.86条件下,取得了铅档次45.23%,收回率73.51%,锌档次40.56%,,收回率为76.21的浮选目标。     五、定论    选用硫化-胺法可以有用完成高铁泥化氧化铅锌矿的浮选收回,需求恰当用量才干取得比较好的硫化效果,混合胺对铅矿具有比较好的捕收才能和挑选性,适量的六偏磷酸钠具有较好的涣散效果,可以明显改进铅矿浮选效果,硫酸锌+钠是锌的杰出按捺剂,硫酸铜的增加可以起到活化锌矿的效果,进步锌的浮选目标。

高铝褐铁矿选矿中铝铁分离实验焙烧温度

2019-01-18 09:30:05

高铝褐铁矿选矿中铝与铁嵌布关系复杂,结构紧密,采用常规选矿方法不能有效分离铝铁。众所周知,钠盐焙烧能在一定温度和气氛条件下,使难溶目的组分矿物转变为可溶性的相应钠盐,所得焙砂再用水、稀酸或稀碱进行浸出,日的组分转入溶液,从而使某些组分得以富集。选矿设备厂家对此研究主要是采用钠盐焙烧使铝与钠发生反应转变为钠盐,破坏褐铁矿中铝铁的紧密结构,再通过浸出的方法分离铝铁。影响铝铁分离效果的因素主要为焙烧温度、焙烧时间和铺盐用量。 焙烧温度 选矿设备专家研究发现在Na2CO3质量配比为9%,焙烧时间为15min时,焙烧温度对铁精矿TFe和Al2O3含量的影响。焙烧温度为750~1000℃时,随着焙烧温度的升高,铁精矿中Al2O3含量逐渐下降,铁晶位逐渐上升;当焙烧温度为1000℃时,Al2O3含量降为1.89%,铁品位提高到60.95%,铝铁分离效果较好。但焙烧温度继续升高时,Al2O3含量升高,铝铁分离效果变差。研究表明:适宜的焙烧温度为950~1000℃。

锰矿选矿——锰矿石冶炼

2019-01-21 09:41:24

锰矿石冶炼产品主要有高碳锰铁、中低碳锰铁、锰硅合金以及金属锰等,通称为锰质合金或锰系合金。 高碳锰铁。我国主要采用高炉生产。50年代尚未形成专门厂家生产高炉锰铁(高碳锰铁),而是一些钢铁厂自炼自销,生产量很小。从1958年后,湘潭锰矿先后建起6.5m3、33m3高炉专炼锰铁,60年代以后,新余、阳泉、马钢三厂、重钢四厂等转产高炉锰铁,进入80年代,高炉锰铁发展更快。高炉锰铁产量由1981年的20万t增至1995年40万t。 电炉生产的产品包括碳素锰铁、中低碳锰铁、锰硅合金、金属锰四类。我国电炉生产最早的是吉林铁合金厂,于1956年建成投产,最大电炉容量为12500kVA;60年代初,湖南、遵义、上海等铁合金厂相继建成投产,这些厂都可生产碳素锰铁、中低碳锰铁和锰硅合金;遵义铁合金厂还用电硅热法生产金属锰。据冶金工业部1995年《全国铁合金主要技术经济指标》记载,1994年全国15家重点铁合金厂中有11家生产锰系合金产品。这些重点铁合金厂经过不断发展、扩大,为满足钢铁工业生产作出了重要贡献。 80年代以来,地方中小型铁合金企业发展迅速。据资料统计,地方中小企业铁合金产量占全国比重由1980年的32.39%,上升到1989年的54.01%,到1996年已达69.85%,企业数已达1000家以上。这些中小企业大多数是采用1800kVA的小电炉,设备落后,产品质量比较差。 电炉锰铁与锰硅合金生产所用设备基本相同,都是采用矿热电炉,电炉变压器容量一般为1800~12500kVA。湖南、遵义铁合金厂分别从德国引进3000kVA和31500kVA锰硅电炉,现已投产。 我国电炉高碳锰铁的生产,一般多采用熔剂法生产工艺。锰硅合金的生产,一般都采用有渣法生产工艺。 中低碳锰铁的生产,主要有电炉法、吹氧法和摇包法3种。摇包法包括在摇包中直接生产中低碳锰铁和摇包-电炉法生产中低碳锰铁。摇包-电炉法工艺比较先进、生产稳定可靠、技术经济效果好,目前上海、遵义等铁合金厂都采用此法。 金属锰生产方法有火法冶炼和湿法冶炼。火法冶炼金属锰,我国始于1959年,由遵义铁合金厂首次用电硅热法试制成功,一直独家生产至今。生产工艺采用三步法,第一步用锰矿石炼成富锰渣;第二步用富锰渣炼制高硅硅锰合金,第三步用富锰渣为原料,高硅硅锰作还原剂及石灰作熔剂,即电硅热法制成金属锰。湿法冶炼主要是电解法,常称电解金属锰。我国于1956年由上海901厂建成第一家电解锰生产厂,到90年代初已有大小电解金属锰厂50余家,年总生产能力达4万余t。生产工艺流程大致分硫酸锰溶液制备、电解、后处理3个生产工序。后处理是电解完成后包括产品纯化、水洗、烘干、剥离、包装等系列操作。最终获得合格电解金属锰产品,含Mn99.70%~99.95%。

铁矾法从富铟高铁硫化锌精矿加压浸出液中沉铟研究

2019-02-18 15:19:33

锢的收回办法主要有氧化造渣法、电解富集法、离子交换法、硫酸化焙烧法、热酸浸出铁矾法、热酸浸出针铁矿法等。铁矾法除铁在国内外现已得到广泛应用。但用于从富铟高铁加压浸出液中沉铟的报导很少。本文企图找到一种从富铟高铁加压浸出液中沉铟的工艺办法。既能更好的富集铟,一起又能使铁于主体金属锌得到别离,下降生产本钱的工艺。一、试验 (一)铁钒的构成及沉铟原理 铁矾类化合物的构成是在较高的温度和有碱金属离子或NH4+存在的条件下,从弱酸性硫酸盐溶液中缓慢的构成不易溶解的合作物及结晶的碱式硫酸钾(钠、铵)等复盐化合物。此沉积物十分安稳,溶解度很低,易于沉降过滤和洗刷。反响机理如下:3Fe2(S04)3+lOH20+2NH3·H20=(NH4)2Fe6 (S04)4 (OH)12+5H2S04由反响式可知,为使反响进行彻底,需中和水解生成的硫酸,本文所用中和剂为分析纯ZnO。 铁矾类化合物除具有较强的吸附功能外,其晶体化学方位,如K+ 、Fe3+、S042-的方位均会构成广泛的类质同象,然后可使In以吸附或置换的办法进入铁矾类化合物。 关于In与铁矾的相互作用机理,本文以为可能发作了如下反响: In2(S04)3+36H2O+9Fe2(S04)3=3In2/3Fe6(S04)4(OH)12+18H2S04In3+替代了Na+、K+、NH4+的方位,然后进入铁矾,生成沉积。 (二)试验质料及试剂 试验质料为富铟高铁碗化锌精矿加压浸出液,其成分为( g/L):In O.045~0.14、Fe10~15、Fe3+4.6~6.O、H2S0440~50、CuO.4-0.5、PbO.7~1.0、As O.4~0.5、CdO.3~0.40试验试剂为分析纯硫酸铁、氧化锌、、硫酸钾等。 (三)试验过程 在一个用水浴锅恒温的玻璃反响器中,用适量的H2O2将浸出液中的Fe2+氧化成Fe3+。溶液用电动拌和器不断拌和,拌和速度40r/min,溶液pH用酸度计测定,升到所需的温度后,开端计时。因为反响中H+浓度不断升高,因而需求不断参加ZnO进行中和,此刻要注意操控缓慢的中和速度。为研讨在不同的In3+,Fe3+初始浓度下,铁矾法对沉铟的影响,还需求对浸出液进行浓缩、稀释或参加一定量的In3+、Fe3+。 二、成果与评论 (一)铁铟摩尔比对黄钾铁矾沉In的影响     铁铟摩尔比是影响铟沉积率的一个重要条件。铁铟摩尔比过低,浸出液中铟不能彻底被沉积下来;反之,铁铟摩尔比过高,则增加了后处理量,导致本钱升高。固定条件:pH=1.75,温度96~98℃,时刻3h,增加黄钾铁矾晶种,试验成果如图1所示。图1  铁/铟摩尔比对铗矾沉In的影响 Fig.1  Effect of Fe/In mole ratio on indium    precipitation rate 从图1可看出:铟沉积率跟着铁铟摩尔比的进步呈上升趋势,当铁铟摩尔比到达1 40时,铟沉积率的上升趋势开端变得陡峭,铁铟摩尔比到达200时改变已不显着。因而,最佳的铁铟摩尔比为200。此刻,铟的沉积率可到达98%以上。 (二) 溶液中铁沉积率与铟沉积率的联系 固定条件:pH=1.75,温度96~98℃,时刻3h,铁浓度4.8g/L,铁铟摩尔比200,增加黄钾铁矾晶种,试验成果如图2所示。图2  铁沉积率与铟沉积率的联系 Fig.2   Relationship between indium and iron precipitation rate 从图2可知:铟沉积率随溶液中铁沉积率的升高出现出显着的上升的趋势。且溶液中的铟初始浓度越低,铟的沉积作用越好,当溶液中铟的初始浓度为0.045g/L时,铟沉积作用最好,铟沉积率到达95%以上。 (三)结尾pH对黄钾铁矾沉铟的影响 溶液pH是生成黄钾铁矾的一个显着影响要素,并且与平衡铁离子浓度有关,溶液中平衡Fe3+浓度越低,黄钾铁矾生成的pH规模越大。本试验所用Fe3+浓度为4.8g/L,并增加晶种。选定条件:温度96~98℃,时刻3h,铁铟摩尔比200,增加黄钾铁矾晶种,试验成果如图3所示。图3  结尾pH对黄钾铁矾沉铟的影响 Fig.3  Effect of pH value on indium precipitation rate 从图3可知:跟着溶液结尾pH的升高,铟和铁的沉积率均显着升高。当溶液pH=1.75时,铟沉积作用最佳,铟沉积率到达98%以上,铁沉积率到达95%以上。持续增大pH,铟和铁的沉积率并没有什么显着改变。由铁的水解平衡p H可知,当溶液中铁的浓度为4.0~5.6g/L时,其开端沉积的pH规模为1.867 ~1.914。充沛阐明,溶液中的Fe3+并没有发作水解而生成Fe(OH)3沉积。此工艺条件下的沉积渣的XRD分析成果也标明,此沉积物为黄钾铁矾,并有较好的结晶度,没有发现Fe(OH)3。 (四)反响时刻对铟沉积的影响 反响时刻的延伸可使溶液中Fe3+充沛参如反响生成铁矾,进而可确保溶液中In3+充沛被生成的铁矾吸附或发作置换反响。选定条件:pH=1.75,温度96~98℃,浸出液中Fe3+的浓度4.8g/L,铁铟摩尔比200,增加黄钾铁矾晶种,试验成果如图4所示。    图4  反响时刻对铟沉积率的影响 Fig.4  Effect of reaction time on indium  precipitation rate 从图4可看出,不管是否增加铁矾晶种,In沉积率均随反响时刻增加而升高。增加铁矾晶种后,铁矾的构成速率显着快于不增加铁矾晶种。增加晶种后,反响3h时,In的沉积率就现已到达98%以上。3h今后曲线趋于陡峭,In沉积率无显着改变,反响到达化学平衡。而未增加晶种反响时刻在3h时,In沉积率仅为80%左右。但跟着反响时刻的延伸终究两者的In沉积率简直适当,阐明增加与不增加铁矾晶种对In沉积率无显着的影响,影响的铁矾生成速率。 (五)反响温度对铟沉积率的影响 在pH=.75,反响时刻3h,铁铟摩尔比200,增加铁矾晶种的条件下的试验成果见图5。图5  反响温度对铟沉积率的影响 Fig.5  Effect of reaction temperature on  indium precipitation rate 由图5可知,反响温度对铁和铟的沉积率影响很大,铟铁的沉积率随温度升高而出现上升趋。当温度低于92℃时,铟铁的沉积率均较低,并且沉积的结晶欠好,过滤功能变差。因而,铁矾沉铟过程中,温度应操控在92℃以上。当温度在98℃左右时,铟的沉积率可到达97%以上。 (六) 黄钾铁矾法与黄铵铁矾法的比较 为调查铁矾法中,黄钾铁矾法与黄铵铁矾对铟的沉积率的差异,做以下试验。固定条件:PH=1.73~1.75,Fe3+初始浓度4.8g/L,铁铟摩尔比200,反响温度96~98℃。两种铁矾办法中均增加对应的铁矾晶种,晶种参加量为铁矾量的1.5倍。试验成果见表1。表1  黄钾铁矾与黄铵铁矾对铟的沉积作用 Table l  Effect on indium precipitation rate by Jarosite and Ammonium jarosite 从表1可看出,在选定工艺条件下,在相同的反响时刻内,黄钾铁矾法铟铁的沉积率现已沉积速率均高于黄铵铁矾法。黄钾铁矾法到达化学平衡反响时刻为3h,而黄铵铁矾法为6h。当到达平衡时,黄钾铁矾法的沉铟率为97.4%,黄铵铁矾法为94.23%,标明黄钾铁矾法比黄铵铁矾法具有更大的沉铟才能。 三、定论 (1)当pH=l.73~1.75,温度96~98℃,铁铟摩尔比大于200,厦应时刻3h,增加晶种为理论生成铁矾量的1.5倍时,使用黄钾铁矾法从富铟高铁锌精矿加压浸出液中富集铟在技术上是可行的,铟沉积率98%左右; (2)沉积化合物为黄钾铁矾和黄铵铁矾,没有Fe(OH)3生成,反响机理是:In3+替代Na+、K+、NH4+的方位,然后进入铁矾,生成沉积; (3)黄钾铁矾法比黄铵铁矾法更具有沉铟的才能,且沉铟用时刻较短为3h左右。

锰矿价格

2017-06-06 17:49:59

锰矿价格是很多锰矿投资人士、很多锰矿企业关注的焦点,及时掌握锰矿的价格信息、交易状况、市场供求关系、行情走势等,是在锰矿投资交易中获得成功的关键。      2010年8月18日讯,目前港口锰矿价格市场运作不愠不火,价格未见明显波动。今日,云南某高碳锰铁贸易商透露,65#高磷高碳锰铁价格上涨明显,由于最近一两周厂家提高出厂价格100-200元/吨,而经销商市场报价也相应提高到了7000-7100元/吨。该市场人士认为,虽然高碳锰铁报价上涨了,但是对于贸易商来说只是“水涨船高”,中间利润依然微薄。四川某高碳锰铁厂家表示,本周高碳锰铁价格基本持稳,65#高碳锰铁一组磷出厂含税报价7600元/吨,由于钢厂价格依然低迷,新一轮市场需求还未开始,因此短期内高碳锰铁市场锰矿价格不会出现太大变化。    昨夜伦镍维持盘整,小幅上涨160美元,至21560美元。不锈钢行情暂无变动,200系不锈钢依旧维持平稳。今日电解锰价格料平稳为主,市场报价料仍表现坚挺,但成交价格或出现进一步的下行趋势。以近期市场为例,吉首地区报价多集中在15400元/吨左右,但商家表示,熟人拿货还是比较容易的,现在仍有部分厂家坚持压货不出,加上停产较多,市场价格很容易被炒起来。今日产地指导成交价格15300-15400元/吨。     进口锰矿方面:上周,先是南非阿斯曼和澳大利亚BHP先后下调对华锰矿装船价格,然后是中钢炉料调涨主流锰矿3元/吨度。使得市场上锰矿价格再度出现混乱,并且近日澳矿、巴西矿、南非矿等主流锰矿价格表现坚挺。锰系合金方面,国内硅锰市场有小幅上涨,但成交清淡。今硅锰6517主流报价在7500-7700元/吨,硅锰6014实际成交价格广西在6500-6550元/吨。    更多关于锰矿价格的资讯,请登录上海有色网查询

锰矿行情

2017-06-06 17:49:58

2010年8月13日锰矿行情:    今日锰矿价格料继续虚涨,下游需求仅维持前期基本水品,但是市场实际现货却十分紧张。今锰矿少量成交在15300-15400元/吨,厂家报价持坚,下游不锈钢企业及贸易商观望为主。    上周调跌锰矿价格,使得现货市场锰矿行情再度呈现下跌趋势。但是目前港口矿商出货价格并未出现明显的下跌,反而是各地的硅锰合金价格都有100-200的涨幅。以贵州为例,由于关停128家企业,现货供应马上开始紧张。并且有消息称,贵州电费调整已经在调研中,目前贵州地区生产用电价格为0.41-0.42元/千瓦时,调整目标电价初步订在0.48元/千瓦时,即生产1吨硅锰6517成本增加240元左右。因此不少贵州地区厂家均惜售现货,暂停销售,待电价确定后定价销售。但无论电价上涨是否确定,西南地区短期锰矿行情上行已成定局。    日前,目前进口锰矿贸易商从国外进口较多,目前已经有一批货已经到港,另有一批在月底到港,但是市场消耗却比较慢,库存持续增多,锰矿行情持续低位运行。今日电解锰现货依旧紧张,厂家坚持虚涨,价格居高不下,但成交情况不佳,借机炒作的锰矿行情上行动力也明显不足,市场报价已经趋于平稳,实际出货已经有所放松。仍建议观望,暂不推荐大量囤货。目前吉首、秀山地区现货十分紧张,报价已上行至15300-15400元/吨,实际成交价格集中在15200-15300元/吨左右,但成交数量十分稀少。    而上周BHP也公布了8月的锰矿价格,品位为43%的小粒度锰矿报价在6.4美元/吨度(CIF中国主港),相比7月份的8.35美元/吨度,降幅为23.35%;44%的锰块矿装船价格在7.2美元/吨度,相比7月份的8.7美元/吨度,降幅为17.24%;品位为48%的锰矿装船价格为7.5 美元/吨度,环比上月的9.4美元/吨度,降幅为20.21%,但国内锰矿目前降幅不大,部分优质矿种甚至有提价打算,但销售仍无太大起色。    更多关于锰矿行情的资讯,请登录上海有色网查询。

软锰矿

2017-06-06 17:49:58

软锰矿化学成分为MnO2,晶体属四方晶系金红石型结构的氧化物矿物。与正交(斜方)晶系的拉锰矿成同质二象(见同质多象)。发育良好的晶体呈柱状,称为黝锰矿,但罕见。通常呈块状或肾状,有时并具放射纤维状构造;也呈土状;还常呈树枝状见于岩石裂隙面上,习称假化石。通常为铁黑色,条痕也为铁黑色。金属光泽。摩斯硬度1~2,摸之污手。比重4.75。但黝锰矿呈钢灰色,摩斯硬度高达6~6.5,比重为5.1,并显示完全的柱面解理。软锰矿是最普通的锰矿物,也是锰的重要的矿石矿物。在强烈氧化条件下形成。除呈矿巢或矿层产于残留粘土中外,主要在沼泽中以及湖底、海底和洋底形成沉积矿床。前苏联、加蓬、巴西、澳大利亚等国以及中国湖南、广西、辽宁、四川等地锰矿床中均有大量软锰矿产出。软锰矿含锰63.19%,主要用来提炼锰,也用作氧化剂和玻璃去色剂等。    二氧化锰用于干电池、玻璃和陶瓷的着色剂、制锰等。天然存在的二氧化锰是软锰矿。它是强氧化剂,不能与有机物或其他还原性物质如硫、硫化物、磷化物等一起加热或摩擦。二氧化锰可用于制造干电池和涂料;在搪瓷、玻璃釉药、陶瓷等方面做黑色或紫色颜料;在橡胶工业中用作催化剂;加在含铁玻璃中可去掉绿色;还可制锰化合物。软锰矿一种重要的无机盐工业产品。黑色或灰黑色晶体或无定形粉末。不溶于水,高温下与碳反应生成金属锰。是两性物质,具有良好的吸附性能和较强的氧化能力。    随着现代工业的快速发展,工业废气排放量也越来越大,其中SO2对大气的污染已经危及环境的生态平衡和经济的可持续发展。国内外研究开发了许多烟气脱硫技术,美国和法国多采用抛弃法,而我国国土资源宝贵,大多采用吸收法。目前采用的“石灰乳吸收法”和“钠碱法”,其投资和运行费用高,且脱硫副产品的价格低,经济效益不明显。因此,进一步开发低成本、能回收高价值副产品的脱硫技术成为当务之急。软锰矿浆是一种很好的SO2吸收剂,近几年来,我们进行了软锰矿浆吸收SO2废气的实验研究,“软锰矿浆吸收法”可以较好地解决SO2废气对环境的污染问题,而且副产品硫酸锰又有较高的应用价值。    更多关于 软锰矿的资讯,请登录上海有色网查询。 

锰矿选矿

2017-06-06 17:50:14

锰矿选矿的主要特点及锰矿选矿设备的安装与维护:锰矿选矿浮选工艺与加工技术,锰矿选矿方法,锰矿的选矿技术 我国锰矿绝大多数属于贫矿,必须进行选矿处理。但由于多数锰矿石属细粒或微细粒嵌布,并有相当数量的高磷矿、高铁矿和共(伴)生有益 金属 ,因此给选矿加工带来很大难度。目前,常用的锰矿选矿方法为机械选(包括洗矿、筛分、重选、强磁选和浮选),以及火法富集、化学选矿法等。1.锰矿选矿的洗矿和筛分,洗矿是利用水力冲洗或附加机械擦洗使矿石与泥质分离。常用设备有洗矿筛、圆筒洗矿机和槽式洗矿机。   洗矿作业常与筛分伴随,如在振动筛上直接冲水清洗或将洗矿机获得的矿砂(净矿)送振动筛筛分。筛分可作为独立作业,分出不同粒度和品位的产品供给不同用途使用。2.锰矿选矿中的重选:目前重选只用于选别结构简单、嵌布粒度较粗的锰矿石,特别适用于密度较大的氧化锰矿石。常用方法有重介质选矿、跳汰选矿和摇床选矿。目前我国处理氧化锰矿的工艺流程,一般是将矿石破碎至6~0mm或10~0mm,然后进行分组,粗级别的进行跳汰,细级别的送摇床选。设备多为哈兹式往复型跳汰机和6-S型摇床。3锰矿选矿所涉及.强磁选:锰矿物属弱磁性矿物〔比磁化系数X=10×10-6~600×10-6cm3/g〕,在磁场强度Ho=800~1600kA/m(10000~20000oe)的强磁场磁选机中可以得到回收,一般能提高锰品位4%~10%。   由于磁选的操作简单,易于控制,适应性强,可用于各种锰矿石选别,近年来已在锰矿选矿中占主导地位。各种新型的粗、中、细粒强磁机陆续研制成功。目前,国内锰矿应用最普遍的是中粒强磁选机,粗粒和细粒强磁选机也逐渐得到应用,微细粒强磁选机尚处于试验阶段。4.锰矿选矿的重-磁选:目前国内已新建和改建成的重-磁选厂有福建连城,广西龙头、靖西和下雷等锰矿。如连城锰矿重-磁选厂,主要处理淋滤型氧化锰矿石,采用AM-30型跳汰机处理30~3mm的洗净矿,可获得含锰40%以上的优质锰精矿,再经手选除杂后,可作为电池锰粉原料。跳汰尾矿和小于3mm洗净矿径磨至小于1m后,用强磁选机选别,锰精矿品位要提高24%~25%,达到36%~40%。锰矿选矿目前采用强磁-浮选工艺仅有遵义锰矿。该矿是以碳酸锰矿为主的低锰、低磷、高铁锰矿。据工业试验,磨矿流程采用棒磨-球磨阶段磨矿,设备规模均为φ2100mm×3000mm湿式磨矿机。强磁选采用shp-2000型强磁机,浮选机主要用CHF型充气式浮选机。经过多年生产的考验,性能良好,很适合于遵义锰选矿应用。强磁-浮选工艺流程试验成功并在生产中得到应用,标志着我国锰矿的深选已经向前迈进了一大步。

锰矿选矿

2017-06-02 15:05:38

锰矿选矿的主要特点及锰矿选矿设备的安装与维护:锰矿选矿浮选工艺与加工技术,锰矿选矿方法,锰矿的选矿技术 我国锰矿绝大多数属于贫矿,必须进行选矿处理。但由于多数锰矿石属细粒或微细粒嵌布,并有相当数量的高磷矿、高铁矿和共(伴)生有益 金属 ,因此给选矿加工带来很大难度。目前,常用的锰矿选矿方法为机械选(包括洗矿、筛分、重选、强磁选和浮选),以及火法富集、化学选矿法等。1.锰矿选矿的洗矿和筛分,洗矿是利用水力冲洗或附加机械擦洗使矿石与泥质分离。常用设备有洗矿筛、圆筒洗矿机和槽式洗矿机。   洗矿作业常与筛分伴随,如在振动筛上直接冲水清洗或将洗矿机获得的矿砂(净矿)送振动筛筛分。筛分可作为独立作业,分出不同粒度和品位的产品供给不同用途使用。2.锰矿选矿中的重选:目前重选只用于选别结构简单、嵌布粒度较粗的锰矿石,特别适用于密度较大的氧化锰矿石。常用方法有重介质选矿、跳汰选矿和摇床选矿。目前我国处理氧化锰矿的工艺流程,一般是将矿石破碎至6~0mm或10~0mm,然后进行分组,粗级别的进行跳汰,细级别的送摇床选。设备多为哈兹式往复型跳汰机和6-S型摇床。3锰矿选矿所涉及.强磁选:锰矿物属弱磁性矿物〔比磁化系数X=10×10-6~600×10-6cm3/g〕,在磁场强度Ho=800~1600kA/m(10000~20000oe)的强磁场磁选机中可以得到回收,一般能提高锰品位4%~10%。   由于磁选的操作简单,易于控制,适应性强,可用于各种锰矿石选别,近年来已在锰矿选矿中占主导地位。各种新型的粗、中、细粒强磁机陆续研制成功。目前,国内锰矿应用最普遍的是中粒强磁选机,粗粒和细粒强磁选机也逐渐得到应用,微细粒强磁选机尚处于试验阶段。4.锰矿选矿的重-磁选:目前国内已新建和改建成的重-磁选厂有福建连城,广西龙头、靖西和下雷等锰矿。如连城锰矿重-磁选厂,主要处理淋滤型氧化锰矿石,采用AM-30型跳汰机处理30~3mm的洗净矿,可获得含锰40%以上的优质锰精矿,再经手选除杂后,可作为 电池 锰粉原料。跳汰尾矿和小于3mm洗净矿径磨至小于1m后,用强磁选机选别,锰精矿品位要提高24%~25%,达到36%~40%。锰矿选矿目前采用强磁-浮选工艺仅有遵义锰矿。该矿是以碳酸锰矿为主的低锰、低磷、高铁锰矿。据工业试验,磨矿流程采用棒磨-球磨阶段磨矿,设备规模均为φ2100mm×3000mm湿式磨矿机。强磁选采用shp-2000型强磁机,浮选机主要用CHF型充气式浮选机。经过多年生产的考验,性能良好,很适合于遵义锰选矿应用。强磁-浮选工艺流程试验成功并在生产中得到应用,标志着我国锰矿的深选已经向前迈进了一大步。本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。  

菱锰矿

2017-06-06 17:49:58

菱锰矿也是碳酸盐矿物,它常含有铁、钙、锌等元素,并且这些元素往往会取代了锰,因此,纯菱锰矿很少见。菱锰矿是生产铁锰合金的锰的来源。它们通常为粒状、块状或肾状,红色,氧化后表面呈褐黑色。具有玻璃光泽。有些色彩好看且透明的菱锰矿可制作成低档饰品。提取锰的重要矿石矿物。晶粒大、透明色美者可作宝石;颗粒细小、半透明的集合体则可作玉雕材料。    菱锰矿Rhodochrosite也叫红纹石,名字来源于希腊语“rhodon”和“chrosis”,意为其颜色为玫瑰色;Rhodochrosite一字,来自两个希腊字,分别指玫瑰(Rose )和颜色(Color),以象征它特殊的色彩。菱锰矿的色泽来自其基本组成之一,锰离子,因而使其呈现或深或浅的粉红色调。菱锰矿最早产于阿根廷,因而有”阿根廷石”,”印加玫瑰(Inca Rose)”的别名。这是南美原住民印地安人,相信他们古老的祖先、圣者、大智慧者在转世后,其高贵精纯的能量就会化为此种宝石。    菱锰矿的用途:1、美丽的菱锰矿是一种很好的装饰品首饰,建议垂挂在前胸心轮之处,可以和心轮的能量相应,使配戴者随时开心、愉快。2.当心情感觉郁闷烦燥时,可用它来磨擦心轮几分钟,再放置心轮上,以心轮为呼吸的支点,吸进粉红光,呼出黑光,即可消除心中的负能量。3.出门时,随时配戴着菱锰矿,并观想全身笼罩在粉红色光里面,有助于吸引好朋友来接近,也有助于吸引爱情。4.时常把握着菱锰矿来看周遭的人、事、物,可以带来更包容,宽恕的心态,容忍别人的差错及小毛病,也使得自己人缘更好。5.在一个众人开会的场合,若每个人手握菱锰矿,及在桌子中央也摆上一颗大型的菱锰矿,有助于融合不同的个性、习性、脾气、看法,容易形成共识,达成协议。6.建议夫妻或情侣一起选购一对菱锰矿,一起静心瞑想,融入彼此爱意,事后再互赠给对方,有助于彼此的心意连结,灵犀相通。7.在月圆的夜晚,将菱锰矿放置在一杯水中,并接受月光照射,并在一旁点起红色蜡烛来瞑想,有助于吸引美妙的爱情接近。8.若是能避免水温的变化过大,导致宝石破裂,则可戴着来洗澡,或是浸泡在洗澡水里面,有助于洗涤、净化周边的能量场。9 菱锰矿招桃花,提到宝石桃花运大家都会想到的是粉晶,其实菱锰矿也是招桃花的法宝。    更多关于菱锰矿的资讯,请登录上海有色网查询。 

锰矿简介

2019-03-07 09:03:45

锰矿是含有锰的矿藏。在自然界中已知的含锰矿藏约有150多种,别离属氧化物类、碳酸盐类、硅酸盐类、硫化物类、盐类、钨酸盐类、磷酸盐类等。 锰是元素周期表中第四周期的第七族元素。在自然界中锰有Ⅱ、Ⅲ、Ⅳ及Ⅶ价态,其间以Ⅱ和Ⅳ价态最为常见。锰在空气中十分简单氧化。在加热条件下,粉状的锰与氯、、磷、硫、硅及碳元素都可以化合。锰在地球岩石圈中以及硅酸盐相的陨石中表现有激烈的亲石性质,但在岩石圈上部则有激烈的亲氧性质,锰与铁在岩石圈中以及陨石中虽有许多类似的化学性质,但锰并不亲铁。 在自然界中已知的含锰矿藏约有150多种,别离属氧化物类、碳酸盐类、硅酸盐类、硫化物类、盐类、钨酸盐类、磷酸盐类等。但含锰量较高的矿藏则不多。现就几种常见的锰矿藏叙说如下。 (1)软锰矿四方晶系,晶体呈细柱状或针状,一般呈块状、粉末状集合体。色彩和条痕均为黑色。光泽和硬度视其结晶粗细和形状而异,结晶好者呈半金属光泽,硬度较高,而隐晶质块体和粉末状者,光泽昏暗,硬度低,极易污手。比重在5左右。软锰矿主要由堆积效果构成,为堆积锰矿的主要成分之一。在锰矿床的氧化带部分,一切原生贱价锰矿藏也可氧化成软锰矿。软锰矿在锰矿石中是很常见的矿藏,是炼锰的重要矿藏质料。 (2)硬锰矿单斜晶系,晶体罕见,一般呈钟乳状、状和葡萄状集合体,亦有呈细密块状和树枝状。色彩和条痕均为黑色。半金属光泽。硬度4~6,比重4.4~4.7。硬锰矿主要是外生成因,见于锰矿床的氧化带和堆积锰矿床中,亦是锰矿石中很常见的锰矿藏,是炼锰的重要矿藏质料。 (3)水锰矿单斜晶系,晶体呈柱状,柱面具纵纹。在某些含锰热液矿脉的晶洞中常呈晶簇产出,在堆积锰矿床中多呈隐晶块体,或呈鲕状、钟乳状集合体等。矿藏色彩为黑色,条痕呈褐色。半金属光泽。硬度3~4,比重4.2~4.3。水锰矿既见于内生成因的某些热液矿床,也见于外生成因的堆积锰矿床,是炼锰的矿藏质料之一。 (4)黑锰矿四方晶系,晶体呈四方双锥,一般为粒状集合体。色彩为黑色,条痕呈棕橙或红褐。半金属光泽。硬度5.5,比重4.84。黑锰矿由内生效果或蜕变效果而构成,见于某些触摸告知矿床、热液矿床和堆积蜕变锰矿床中,与褐锰矿等共生,亦是炼锰的矿藏质料之一。 (5)褐锰矿四方晶系,晶体呈双锥状,也呈粒状和块状集合体产出。矿藏呈黑色,条痕为褐黑色。半金属光泽。硬度6,比重4.7~5.0。其他特征与黑锰矿相同。 (6)菱锰矿三方晶系,晶体呈菱面体,一般为粒状、块状或结核状。矿藏呈玫瑰色,简单氧化而转变成褐黑色。玻璃光泽。硬度3.5~4.5,比重3.6~3.7。由内生效果构成的菱锰矿多见于某些热液矿床和触摸告知矿床;由外生效果构成的菱锰矿很多散布于堆积锰矿床中。菱锰矿是炼锰的重要矿藏质料。 (7)硫锰矿等轴晶系,常见单形有立方体、八面体、菱形十二面体等,集合体为粒状或块状。色彩钢灰至铁黑色,风化后变为褐色,条痕呈暗绿色。半金属光泽。硬度3.5~4,比重3.9~4.1。硫锰矿很多出现在堆积蜕变锰矿床中,是炼锰的矿藏质料之一。

锰矿重选

2019-01-25 10:19:16

目前重选只用于选别结构简单、嵌布粒度较粗的锰矿石,特别适用于密度较大的氧化锰矿石。常用方法有重介质选矿、跳汰选矿和摇床选矿。    目前我国处理氧化锰矿的工艺流程,一般是将矿石破碎至6~0mm或10~0mm,然后进行分组,粗级别的进行跳汰,细级别的送摇床选。设备多为哈兹式往复型跳汰机和6-S型摇床。

宜昌某高磷赤铁矿反浮选提铁降磷试验研究

2019-01-24 09:37:09

鄂西地区存在着大量的赤铁矿资源,累计探明的储量18.95亿吨,远景资源量可达30亿~40亿吨。矿石的有害组分磷含量为0.3 %~1.8 %,SiO2含量也较高,在10%~15%左右,硫含量为0.01 %~0.4 %,矿石具有鲕状结构,属于“宁乡式” 鲕状赤铁矿,由于其难选难冶的特点而一直未得到开发利用。受宜昌市某单位委托,对宜昌某高磷赤铁矿进行了可选性试验研究,在给矿铁品位50.09%,含磷量0.53%的条件下,通过选择性絮凝脱泥-反浮选可获得精矿铁品位57.43%, 回收率71.80%,含磷量0.18%的良好指标。且探讨了组合捕收剂对此矿的分选效果,结果表明组合捕收剂用量为300g/t时可获得与单一捕收剂用量800g/t时相似的浮选指标,降低了捕收剂的用量,解决了此矿提铁降磷的难题,并为同类矿石的开发利用提供了一定的依据。     一、矿石性质    从宜昌某矿山四个不同地点按比列取样配矿,矿石为粒度范围较大的块矿,采用采用颚式破碎机和对辊式破碎筛分机将矿石破碎至-2mm,混匀后缩分至每袋1kg,并取样供化学多元素分析,物相分析。原矿化学多元素分析结果与铁物相分析结果分别见表1、2。 表1  原矿化学多元素分析结果元素TFeFeOSiO2PCaOMgOAl2O3含量(%)50.098.3017.280.533.391.366.75 表2  铁矿物物相分析结果铁物相磁性铁碳酸铁硫化铁硅酸铁赤褐铁含量(%)/1.680.0415.3343.04占有率(%)/3.360.0810.6485.92     从表1中可以看出矿石中有回收价值的元素只有铁,铁品位为50.09%,主要杂质SiO2品位为17.28%,含磷量为0.53%;另外(CaO+ MgO)/(SiO2+ Al2O3)<0.5,为酸性不自熔矿石。物相分析结果表明:铁矿物主要为赤褐铁,占85.92%,少量的硅酸铁、碳酸铁及硫化铁,不含磁性铁。     工艺矿物学研究表明矿石中铁矿物主要为赤褐铁矿,共占80%以上,主要脉石矿物为石英,粘土矿物以及胶磷矿。矿石为具有同心圆的鲕状结构,鲕粒粒径大小一般为100-120µm,最大的200µm,最小60µm,鲕粒内粘土矿物和赤铁矿交互生长在一起,二者无法单体解离。石英呈不规则的粒状,粒径一般为60-80µm,最大的为95µm,最小为10µm,表面光滑,含量为15%-20%;粘土矿物和赤铁矿交织在一起,粒径小于2µm,含量在15%左右;磷矿物为胶磷矿和磷灰石分布在一起,与鲕粒一起致密共生。     二、试验研究     (一)磨矿试验     磨矿采用XMQ—67型Ф240×90mm球磨机,每次磨矿250g,磨矿浓度为50%。磨矿之前加入NaOH和Na2SiO3为分散剂,脱泥前加入对铁矿物有选择性絮凝作用的玉米淀粉100g/t。浮选采用XDF单槽式浮选机,浮选浓度约为30%,NaOH为矿浆pH调整剂,HZ为铁矿物的抑制剂,CaO为石英活化剂,MG为捕收剂,反浮选试验流程见图1,磨矿时间对浮选指标的影响见图2。图1  反浮选试验流程               图2  磨矿时间对浮选指标的影响     随着磨矿细度的增加,精矿铁品位不断上升,铁回收率不断下降,当磨矿时间从1min增加到6min时,精矿铁品位由51.74%上升到54.06%,磨矿时间继续增加到9min时,铁品位没有明显升高。所以选择磨矿时间为6min,此条件下的磨矿细度为-74um占94.17%。     (二)矿浆温度试验     阴离子反浮选常用的是脂肪酸类捕收剂,此类药剂在碱性介质中,常温下大多呈胶束形,很少呈浮游活性形,长期以来,阴离子反浮选通常需将矿浆加温,以使捕收剂保持高度的分散性,获得较理想的分选指标。但矿浆加温费用太高,目前的研究主要是集中在常温(25℃左右)浮选上。矿浆温度试验条件为:NaOH用量1500g/t,HZ用量1000g/t,CaO500g/t,MG400g/t,变换矿浆温度,矿浆温度对浮选指标的影响见图3。     矿浆温度为10和15℃时,浮选指标不理想,精矿铁品位仅为52-53%,磷品位均为0.53%,可知阴离子捕收剂MG并不能实现低温浮选;随着矿浆温度从20℃上升到40℃,精矿铁品位由54.99%上升到56.42%、铁回收率从73.52%下降到63.56%、含磷量由0.37%下降到0.29%。从节约能源的角度考虑,选择合适的矿浆温度为25℃,在MG用量为400g/t的条件下,可以获得精矿品位为55.06%,回收率76.50%,磷品位0.36%的浮选指标。(a)                                                 (b) 图3  矿浆温度对浮选指标的影响 (a) 矿浆温度对精矿铁品位与回收率的影响;(b)矿浆温度对精矿磷品位的影响     (三) pH调整剂用量试验     NaOH用量试验条件为:HZ用量1000g/t,CaO500g/t,MG400g/t,变换NaOH用量,NaOH用量对浮选指标的影响见图4。(a)    NaOH用量对精矿铁品位与回收率的影响;(b)NaOH用量对精矿磷品位的影响 图4  NaOH用量对浮选指标的影响     由图4(a)可知,随着NaOH用量的增加,精矿铁品位不断上升,回收率不断下降,用量为2000g/t时精矿品位达到55.15%,回收率达到76.59%。NaOH用量达到2500g/t时,精矿品位反而下降。图4(b)可知,随着NaOH用量的增加,精矿磷品位变化不大,保持在0.35-0.4%之间,因此NaOH的最佳用量为2000g/t。     (四)捕收剂用量试验     MG用量试验条件为:NaOH用量2000g/t,HZ用量1000g/t,CaO500g/t,变换MG用量,NaOH用量对浮选指标的影响见图5。(a)(b) 图5   MG用量对浮选指标的影响 (a)MG用量对精矿铁品位与回收率的影响;(b)MG用量对精矿磷品位的影响     从图5 (a)中可看出,当捕收剂MG用量为400g/t时,精矿铁品位为55.15%,回收率为76.59%,磷品位为0.36%,当MG用量为800g/t时,精矿铁品位上升到56.74%,回收率为65.23%,含磷量下降到0.22%。随着MG用量增加,精矿铁品位上升,回收率下降,精矿铁品位在MG用量800g/t左右时达到最大值,之后随MG用量增加到1000g/t时精矿品位与回收率同时有所下降;从图5 (b)看出,精矿磷品位随着捕收剂MG用量增加而持续下降,综合考虑确定捕收剂MG用量为800g/t。     (五)抑制剂用量试验      从图6(a)可看出,HZ用量从1000g/t增加到1500g/t时,精矿铁品位变化不大,而回收率由65.23%上升73.63%,之后随着HZ用量继续增加,铁品位持续下降,铁回收率不断升高;从图6 (b)可看出,精矿磷品位在HZ用量1500g/t左右也降到最低,综合考虑确定抑制剂用量为1500g/t。在此条件下,精矿铁品位为56.66%,回收率为73.63%,磷品位为0.21%。      ( a)    (b) 图6  HZ用量对浮选指标的影响 (a)HZ用量对精矿铁品位与回收率的影响;(b)HZ用量对精矿磷品位的影响     (六)开路试验     确定了浮选药剂用量、矿浆浓度、温度对浮选指标的影响之后,为提高浮选药剂的选择性,采取分段加药的方式。通过大量的试验,确定了开路试验流程为一段粗选两段精选,浮选流程如图7所示。分散剂NaOH用量为1000g/t、Na2SiO3的用量为500g/t,粗选NaOH用量为 2000g/t,高分子抑制剂HZ用量为1500g/t, CaO用量为500g/t,捕收剂MG用量为300 g/t,精选ⅠMG用量为300g/t,精选ⅡMG用量为200g/t为最佳药剂制度。在给矿铁品位为50.09%、磷品位为0.53%的条件下,获得开路浮选试验指标为:精矿铁品位57.43%,铁回收率为71.80%,磷品位为0.18%。图7  开路试验流程     三、组合用药试验     浮选工艺中,通常对现有的捕收剂进行合理搭配、组合使用。组合用药大致可以获得以下的效果:1)改善浮选指标,组合药剂与单一药剂相比,可分别提高品位、回收率及浮选速度,也可同时改善几项指标。2) 扩大药剂的原料来源,药剂的组合使用,可减少主药的消耗量,缓解某些原料的紧缺问题。3)减少药剂用量,组合用药由于各药剂之间的协同效应,当配比适当时往往可以减少总药剂用量,从而达到降低选矿成本的作用。4)减少环境污染,通过组合用药可以用无毒无害或毒性较小的药剂部分或完全取代有毒有害药剂。     MY武汉理工大学自行研制的一种新型的多官能团阴离子捕收剂,合成工艺路线简单,原料来源广泛,起泡性能好。将MG与MY按2:1的比例组合使用,总用量为300g/t的条件下可获得精矿品位56.83%,回收率72.41%,磷品位0.18%的指标,此指标与单独用MG800g/t时近似。浮选试验流程见图8,试验指标对比见表3。图8  组合用药试验流程 表3  组合用药与单独用药试验指标对比       药剂用量/g/t精矿品位 /%铁回收率 /%磷品位/%MGMY组合捕收剂20010056.8372.410.18单一捕收剂800/57.4371.800.18单一捕收剂/60056.4033.530.25     四、结论     a  原矿含铁品位50.09%,磷含量0.53%,SiO2品位17.28%,为酸性不自溶矿石。铁矿物主要为赤褐铁矿,矿石为鲕状构造,为典型的难选矿石。     b  反浮选开路流程为一段粗选两段精选,粗选NaOH用量为 2000g/t, HZ用量为1500g/t,CaO用量为500g/t,MG用量为300 g/t,精选ⅠMG用量为300g/t,精选ⅡMG用量为200g/t为最佳药剂制度。在给矿铁品位为50.09%、磷品位为0.53%的条件下可获得精矿铁品位57.43%,铁回收率71.80%,磷含量0.18%的优良指标。     c MG与MY以 2∶1的比列组合使用在用量为300g/t的条件下即可获得单独用MG800g/t时相似的浮选指标,可以在很大程度上降低选矿成本。     协同效应的产生主要是由于组合药剂在矿物表面产生了共吸附,与单独使用时比较,其吸附量大、吸附层比较致密、吸附层与疏水层的形成较快、颗粒的絮凝作用较大、与气泡的粘附作用时间较短,从而改变了矿物表面的疏水性、矿粒与气泡粘着几率、粘着强度与接触时间,并在一定条件下达到优化。由于吸附密度的增大,矿物表面的疏水性增强,可浮性增大,所以可以降低捕收剂的用量。

铁知识

2019-03-14 09:02:01

铁是最常用的金属,密度7.87,熔点为1536℃,沸点3070℃,有很强的铁磁性和杰出的可塑性和导热性。铁比较生动,在金属活动次序表里排在氢的前面。铁在枯燥空气中很难跟氧气反响,但在湿润空气中很简单腐蚀,若在酸性气体或卤素蒸气空气中腐蚀更快。铁易溶于稀的无机酸和浓,生成二价铁盐,并放出。在常温下遇浓硫酸或浓硝酸时,表面生成一层氧化物保护膜,使铁“钝化”,故可用铁制品盛装浓硫酸或浓硝酸。  铁是地球上散布最广的金属之一,在天然界中,游离态的铁只能从陨石中找到,散布在地壳中的铁都以化合物的状况存在。铁矿藏种类繁复,现在已发现的铁矿藏和含铁矿藏约300余种,其间常见的有170余种。但在当时技能条件下,具有工业使用价值的首要是磁铁矿、赤铁矿、磁赤铁矿、钛铁矿、褐铁矿和菱铁矿等。  铁是世界上发现最早,使用最广,用量也是最多的一种金属,其消耗量约占金属总消耗量的95%左右。铁矿石首要用于钢铁工业冶炼含碳量不同的生铁(含碳量一般在2%以上)和钢(含碳量一般在2%以下)。生铁一般按用处不同分为炼钢生铁、铸造生铁、合金生铁。钢按组成元素不同分为碳素钢、合金钢。合金钢是在碳素钢的基础上,为改进或取得某些功能而有意参加适量的一种或多种元素的钢,参加钢中的元素种类许多,首要有铬、锰、钒、钛、镍、钼、硅。此外,铁矿石还用于作合成的催化剂(纯磁铁矿),天然矿藏颜料(赤铁矿、镜铁矿、褐铁矿)等,但用量很少。钢铁制品广泛用于国民经济各部门和人民日子各个方面,是社会生产和大众日子所必需的根本材料。自从19世纪中期创造转炉炼钢法逐步构成钢铁工业大生产以来,钢铁一直是最重要的结构材料,在国民经济中占有极重要的位置,是现代化工业最重要和使用最多的金属材料。所以,人们常把钢产量、种类、质量作为衡量一个国家工业、国防和科学技能发展水平的重要标志。  我国铁矿资源具有散布广泛,矿床类型完全,贫矿多富矿少,矿石类型杂乱,伴(共)生组分多等特色。现在已查明铁矿产地散布广泛全国29个省、市、自治区660多个县(旗),全国铁矿石保有储量中贫铁矿石储量较多,占全国储量的97.5%;而含铁均匀品位在55%左右能直接入炉的富铁矿储量很少,占全国储量的2.5%,而构成必定挖掘规划,能独自挖掘的富铁矿就更少了。  我国铁矿石天然类型杂乱,有磁铁矿石、钒钛磁铁矿石、赤铁矿石、菱铁矿石、褐铁矿石、镜铁矿石及混合矿石(2种或2种以上类型矿石稠浊一同)。在铁矿石保有储量中,以磁铁矿石为最多(占55.5%),是现在挖掘的首要矿石类型;钒钛磁铁矿石(占14.4%)成分杂乱,但选冶技能已根本解决,也是现在挖掘的首要矿石类型;赤铁矿石(占18%)、菱铁矿石(占3.4%)、褐铁矿石(占2.3%)、镜铁矿石(占1.1%)、混合矿石(占5.3%)等5种类型矿石,因选别功能差,其贫矿大都没有使用。  我国具有伴(共)生有利组分的铁矿石储量约占全国储量的1/3,触及一批大、中型铁矿区,如攀枝花、红格、白马、太和、大庙、大冶、大顶、黄岗、翠宏山、金岭、大宝山、桦树沟、马鞍山、庐江、龙岩和海南石碌等铁矿区。伴(共)生有利组分有钒、钛、铜、铅、锌、锡、钨、钼、钴、镍、锑、金、银、镉、镓、铀、钍、硼、锗、硫、铬、稀土、铌、氟、石膏、石灰石等30余种。白云鄂博铁、稀土、铌归纳矿床是我国稀土、铌蕴藏量最大的矿床,TR2O3、Nb2O5储量别离占全国总储量的94.3%和72%。通过多年的实验研讨,稀土元素的归纳收回问题已根本解决。我国铁矿资源的归纳使用具有很大的潜力和宽广远景,跟着科学技能的前进和选、冶技能水平的进步,对伴(共)生有利组分的归纳使用将显示出极大的经济效益。

硅铁

2017-07-04 17:10:29

硅铁就是铁和硅组成的铁合金。 硅铁是以焦炭、钢屑、石英(或硅石)为原料,用电炉冶炼制成的铁硅合金。由于硅和氧很容易化合成二氧化硅,所以硅铁常用于炼钢时作脱氧剂,同时由于SiO2生成时放出大量的热,在脱氧的同时,对提高钢水温度也是有利的。同时,硅铁还可作为合金元素加入剂,广泛应用于低合金结构钢、弹簧钢、轴承钢、耐热钢及电工硅钢之中,硅铁在铁合金生产及化学工业中,常用作还原剂。硅的用途:①高纯的单晶硅是重要的半导体材料。在单晶硅中掺入微量的第IIIA族元素,形成p型硅半导体;掺入微量的第VA族元素,形成n型和p型半导体结合在一起,就可做成太阳能电池,将辐射能转变为电能。在开发能源方面是一种很有前途的材料。②金属陶瓷、宇宙航行的重要材料。将陶瓷和金属混合烧结,制成金属陶瓷复合材料,它耐高温,富韧性,可以切割,既继承了金属和陶瓷的各自的优点,又弥补了两者的先天缺陷。 可应用于军事武器的制造第一架航天飞机“哥伦比亚号”能抵挡住高速穿行稠密大气时磨擦产生的高温,全靠它那三万一千块硅瓦拼砌成的外壳。③光导纤维通信,最新的现代通信手段。用纯二氧化硅拉制出高透明度的玻璃纤维,激光在玻璃纤维的通路里,无数次的全反射向前传输,代替了笨重的电缆。光纤通信容量高,一根头发丝那么细的玻璃纤维,可以同时传输256路电话,它还不受电、磁干扰,不怕窃听,具有高度的保密性。光纤通信将会使 21世纪人类的生活发生革命性巨变。④性能优异的硅有机化合物。例如有机硅塑料是极好的防水涂布材料。在地下铁道四壁喷涂有机硅,可以一劳永逸地解决渗水问题。在古文物、雕塑的外表,涂一层薄薄的有机硅塑料,可以防止青苔滋生,抵挡风吹雨淋和风化。 天安门 广场上的 人民英雄纪念碑 ,便是经过有机硅塑料处理表面的,因此永远洁白、清新。有机硅化合物,是指含有Si-O键、且至少有一个有机基是直接与硅原子相连的化合物,习惯上也常把那些通过氧、硫、氮等使有机基与硅原子相连接的化合物也当作有机硅化合物。其中,以硅氧键(-Si-0-Si-)为骨架组成的聚硅氧烷,是有机硅化合物中为数最多,研究最深、应用最广的一类,约占总用量的90%以上。有机硅材料具有独特的结构:(1) Si原子上充足的甲基将高能量的聚硅氧烷主链屏蔽起来;(2) C-H无极性,使分子间相互作用力十分微弱;(3) Si-O键长较长,Si-O-Si键键角大。(4) Si-O键是具有50%离子键特征的共价键(共价键具有方向性,离子键无方向性)。 由于有机硅独特的结构,兼备了无机材料与有机材料的性能,具有表面张力低、粘温系数小、压缩性高、气体渗透性高等基本性质,并具有耐高低温、电气绝缘、耐氧化稳定性、耐候性、难燃、憎水、耐腐蚀、无毒无味以及生理惰性等优异特性,广泛应用于航空航天、电子电气、建筑、运输、化工、纺织、食品、轻工、医疗等行业,其中有机硅主要应用于密封、粘合、润滑、涂层、表面活性、脱模、消泡、抑泡、防水、防潮、惰性填充等。随着有机硅数量和品种的持续增长,应用领域不断拓宽,形成化工新材料界独树一帜的重要产品体系,许多品种是其他化学品无法替代而又必不可少的。 有机硅材料按其形态的不同,可分为:硅烷偶联剂(有机硅化学试剂)、硅油(硅脂、硅乳液、硅表面活性剂)、高温硫化硅橡胶、液体硅橡胶、硅树脂、复合物等。发现  1822年, 瑞典 化学家白则里用金属钾还原 四氟化硅 ,得到了单质硅。构成铁和硅组成的 铁合金 (以硅石、钢、焦碳为原料,经过1500-1800度高温还原的硅熔于铁液中,形成硅铁合金)。是冶炼行业重要的合金品种。硅铁按硅及其杂质含量,分为21个牌号,其化学成分如下表:(根据GB/T 2272-2009)用途(1)在炼钢工业中用作脱氧剂和合金剂。为了获得化学成分合格的钢和保证钢的质量,在炼钢的最后阶段必须进行脱氧,硅和氧之间的化学亲和力很大,因而硅铁是炼钢较强的脱氧剂用于沉淀和扩散脱氧。在钢中添加一定数量的硅,能显著的提高钢的强度、硬度和弹性,因而在冶炼结构钢(含硅0.40-1.75%)、工具钢(含SiO.30-1.8%)、弹簧钢(含SiO.40-2.8%)和变压器用 硅钢 (含硅2.81-4.8%)时,也把硅铁作为合金剂使用。 同时改善夹杂物形态减少钢液中气体元素含量,是提高钢质量、降低成本、节约用铁的有效新技术。特别适用于连铸钢水脱氧要求,实践证明,硅铁不仅满足炼钢脱氧要求,还具有脱硫性能且具有比重大,穿透力强等优点。此外,在炼钢工业中,利用 硅铁粉 在高温下烯烧能放出大量热这一特点,常作为钢锭帽发热剂使用以提高钢锭的质量和回收率。(2)在铸铁工业中用作孕育剂和球化剂。铸铁是现代工业中一种重要的金属材料,它比钢便宜,容易熔化冶炼,具有优良的铸造性能和比钢好得多的抗震能力。特别是球墨铸铁,其机械性能达到或接近钢的机械性能。在铸铁中加入一定量的硅铁能阻止铁中形成碳化物、促进石墨的析出和球化,因而在球墨铸铁生产中,硅铁是一种重要的孕育剂(帮助析出石墨)和球化剂。(3)铁合金生产中用作还原剂。不仅硅与氧之间化学亲和力很大,而且高硅硅铁的含碳量很低。因此高硅硅铁(或硅质合金)是铁合金工业中生产低碳铁合金时比较常用的一种还原剂。(4)75#硅铁在皮江法炼镁中常用于金属镁的高温冶炼过程中,将CaO.MgO中的镁置换出来,每生产一吨金属镁就要消耗1.2吨左右的硅铁,对金属镁生产起着很大的作用。(5)在其他方面的用途。磨细或雾化处理过的硅铁粉,在选矿工业中可作为悬浮相。在焊条制造业中可作为焊条的涂料。高硅硅铁在化学工业中可用于制造硅酮等产品。在这些用途中,炼钢工业、铸造工业和铁合金工业是硅铁的最大用户。它们共消耗约90%以上的硅铁。在各种不同牌号的硅铁中,目前应用最广的是75%硅铁。在炼钢工业中,每生产1t钢大约消耗3-5kg75%硅铁。

铁黄铜

2017-06-06 17:50:01

铁黄铜是指在黄铜中加入铁元素,从而使具有某些特殊用途的黄铜。    中国铁黄铜的牌号:铁黄铜HFe59-1-1、铁黄铜HFe58-1-1    铁黄铜:铁黄铜中,铁以富铁相的微粒析出,作为晶核而细化晶粒,并能阻止再结晶晶粒长大,从而提高合金的机械性能和工艺性能。铁黄铜中的铁含量通常在1.5%以下,其组织为(α+β),具有高的强度和韧性,高温下塑性很好,冷态下也可变形。    铁黄铜特性及适用范围:HFe59-1-1铁黄铜具有高的强度、韧性、减摩性性良好,在大气、海水中的耐蚀性高,但有腐蚀破裂倾向,热态下塑性良好。HFe59-1-1铁黄铜用于制作在摩擦和受海水腐蚀条件下工作的结构零件。    铁黄铜化学成份:铜 Cu :57.0~60.0 、锡 Sn :0.3~0.7、锌 Zn:余量、铅 Pb:≤0.20 、磷 P:≤0.01 、铝 Al:0.1~0.5、铁 Fe:0.6~1.2 、锰 Mn:0.5~0.8、锑 Sb :≤0.01、铋 Bi:≤0.003 注:≤0.3(杂质)     铁黄铜力学性能:抗拉强度 σb (MPa):≥430、   伸长率 δ10 (%):≥28、    伸长率 δ5 (%):≥31、     注 :管材的室温纵向力学性能、   试样尺寸:壁厚1.5~42.5    铁黄铜热处理规范:热加工温度680~730℃;退火温度600~650℃。    黄铜是铜与锌的合金。最简单的黄铜是铜——锌二元合金,称为简单黄铜或普通黄铜。改变黄铜中锌的含量可以得到不同机械性能的黄铜。黄铜中锌的含量越高,其强度也较高,塑性稍低。工业中采用的黄铜含锌量不超过45%,含锌量再高将会产生脆性,使合金性能变坏。为了改善黄铜的某种性能,在一元黄铜的基础上加入其它合金元素的黄铜称为特殊黄铜。常用的合金元素有硅、铝、锡、铅、锰、铁与镍等。    更多关于铁黄铜的资讯,请登录上海 有色 网查询。    

硅铁

2017-06-06 17:49:59

硅铁硅铁就是铁和硅组成的铁合金。 硅铁是以焦炭、钢屑、石英(或硅石)为原料,用电炉冶炼制成的铁硅合金。由于硅和氧很容易化合成二氧化硅,所以硅铁常用于炼钢时作脱氧剂,同时由于SiO2生成时放出大量的热,在脱氧的同时,对提高钢水温度也是有利的。同时,硅铁还可作为合金元素加入剂,广泛应用于低合金结构钢、弹簧钢、轴承钢、耐热钢及电工硅钢之中,硅铁在铁合金生产及化学工业中,常用作还原剂。用途(1)在炼钢工业中用作脱氧剂和合金剂。为了获得化学成分合格的钢和保证钢的质量,在炼钢的最后阶段必须进行脱氧,硅和氧之间的化学亲和力很大,因而硅铁是炼钢较强的脱氧剂用于沉淀和扩散脱氧。在钢中添加一定数量的硅,能显著的提高钢的强度、硬度和弹性,因而在冶炼结构钢(含硅0.40-1.75%)、工具钢(含SiO.30-1.8%)、弹簧钢(含SiO.40-2.8%)和变压器用硅钢(含硅2.81-4.8%)时,也把硅铁作为合金剂使用。   此外,在炼钢工业中,利用硅铁粉在高温下烯烧能放出大量热这一特点,常作为钢锭帽发热剂使用以提高钢锭的质量和回收率。   (2)在铸铁工业中用作孕育剂和球化剂。铸铁是现代工业中一种重要的金属材料,它比钢便宜,容易熔化冶炼,具有优良的铸造性能和比钢好得多的抗震能力。特别是球墨铸铁,其机械性能达到或接近钢的机械性能。在铸铁中加入一定量的硅铁能阻止铁中形成碳化物、促进石墨的析出和球化,因而在球墨铸铁生产中,硅铁是一种重要的孕育剂(帮助析出石墨)和球化剂。   (3)铁合金生产中用作还原剂。不仅硅与氧之间化学亲和力很大,而且高硅硅铁的含碳量很低。因此高硅硅铁(或硅质合金)是铁合金工业中生产低碳铁合金时比较常用的一种还原剂。   (4)75#硅铁在皮江法炼镁中常用于金属镁的高温冶炼过程中,将CaO.MgO中的镁置换出来,每生产一吨金属镁就要消耗1.2吨左右的硅铁,对金属镁生产起着很大的作用。   (5)在其他方面的用途。磨细或雾化处理过的硅铁粉,在选矿工业中可作为悬浮相。在焊条制造业中可作为焊条的涂料。高硅硅铁在化学工业中可用于制造硅酮等产品。   在这些用途中,炼钢工业、铸造工业和铁合金工业是硅铁的最大用户。它们共消耗约90%以上的硅铁。在各种不同牌号的硅铁中,目前应用最广的是75%硅铁。在炼钢工业中,每生产1t钢大约消耗3-5kg75%硅铁。应用硅铁在钢工业、铸造工业及其他工业生产中被广泛应用。   硅铁是炼钢工业中必不可少的脱氧剂。炬钢中,硅铁用于沉淀脱氧和扩散脱氧。砖坯铁还作为合金剂用于炼钢中。钢中添加一定数量的硅,能显著提高钢的强度、硬度和弹性,提高钢的磁导率,降低变压器钢的磁滞损耗。一般钢中含硅0.15%-0.35%,结构钢中含硅0.40%~1.75%,工具钢中含硅0.30%~1.80%,弹簧钢中含硅0.40%~2.80%,不锈耐酸钢中含硅3.40%~4.00%,耐热钢中含硅1.00%~3.00%,硅钢中含硅2%~3%或更高。   高硅硅铁或硅质合金在铁合金工业中用作生产低碳铁合金的还原剂。硅铁加入铸铁中可作球墨铸铁的孕育剂,且能阻止碳化物形成,促进石墨的析出和球化,改善铸铁性能。   此外,硅铁粉在选矿工业中可作悬浮相使用,在焊条制造业中作焊条的涂料;高硅硅铁在电气工业中可用制备半导体纯硅,在化学工业中可用于制造硅酮等。   在炼钢工业中,每生产一吨钢大约消耗3~5kg75%硅铁。   熔点:75SiFe为1300℃

高铁泥化氧化铅锌矿的浮选工艺研究

2019-01-31 11:05:59

前语     跟着硫化铅锌矿资源的逐步干涸,许多较低档次的氧化铅锌资源也作为开发的目标;众所周知,氧化矿是由原生硫化矿通过天然的氧化以及地表水的淋滤进程所构成的产品[1],矿石中除了铅、锌氧化矿藏外,还含有较多的碳酸盐矿藏、石英及硅酸盐矿藏和易泥化的褐铁矿、针铁矿等铁矿藏[2]。因为矿石中含有较多的易泥化的褐铁矿,构成很多的矿泥,对其浮选技术目标形成严峻的影响。本文针对广西某地的含铁高、泥化严峻的氧化铅锌矿,在不脱泥的条件下进行了浮选实验研讨,取得较好的选别效果,为低档次氧化铅锌资源的收回供给参阅依据。     一、矿石性质     矿石中首要有用矿藏为白铅矿、菱锌矿、少数铅钒、异极矿及微量的黄铜矿等,脉石矿藏首要为黄铁矿、褐铁矿、赤铁矿、方解石、白云石等,首要矿藏铅、锌联系杂乱、风化、铁化、泥化严峻,而又多呈细脉浸染状,铅锌档次别离3.54%、5.86%,氧化率高,硫首要是以黄铁矿方式存在。物相分析氧化铅首要是白铅矿,还有少数的铅钒,氧化锌矿则为菱锌矿及少数异极矿,试样多元素分析见表1。 表1  试样多元素分析元素SiO2TiO2ZrO2LiSrMnSnAs含量/%12.70.10.30.060.1元素MgOV2O5MoNiBePbSSb含量1.30.020.010.053.542.60.03元素WO3CaOBaCoCrZnCuFe2O3含量/%0.73.20.015.860.0226.6     二、实验计划挑选     适合的工艺流程是进步选别效果的条件,而挑选工艺流程的依据是矿石性质,针对该矿石的特色进行了前期探究实验,实验成果表明选用浮选的办法可以收回矿石中的铅锌,脱泥浮选并不能有用改进浮选目标,相反丢失了很多微细颗粒的铅锌矿,下降了收回率。因为含铁比较高,选用硫化-黄药法难以取得比较好的目标,但在不脱泥的情况下选用硫化-胺法浮选可取得比较好的目标。归纳比较后断定选用硫化-胺法对该矿石进行浮选实验。浮选流程如图1所示。图1 浮选实验流程图     三、实验成果与分析     (一)涣散剂的影响     因为该矿石泥化比较严峻,褐铁矿含量较高,需求参加涣散剂对矿浆进行涣散,消除矿泥的影响。在矿浆pH=9,用量2kg/t,硫酸锌与钠用量以1:1份额500g/t,混合胺80g/t条件下调查了六偏磷酸钠用量对铅矿浮选目标的影响。由表2成果可见参加六偏磷酸钠可以进步铅矿档次和铅的收回率,跟着六偏磷酸钠用量的增大,铅精矿档次不断增加,但铅收回率开端下降,阐明在必定用量下六偏磷酸钠具有比较好的涣散效果,可以明显进步铅矿浮选目标,但用量过大时,六偏磷酸钠对铅矿有必定的按捺效果,依据浮选现象和化验成果分析,这首要是因为部分铅矿和褐铁矿共生亲近,六偏磷酸钠用量过大导致和褐铁矿共生的铅矿遭到按捺。 表2  六偏磷酸钠用量对铅矿浮选目标的影响六偏磷酸钠用量,g/t0100300500铅精矿档次,%10.2411.6514.6416.59铅收回率,%62.8665.4268.1762.57     (二)的用量与分析     氧化铅表面的硫化好坏是决议其浮选效果的要害,用量小的情况下,难以取得抱负的硫化效果,硫化用量过大又会对铅矿产生按捺效果,然后下降铅的收回率。本研讨选用图1(下同)流程调查了用量对浮选目标的影响,其间六偏磷酸钠用量300g/t,混合胺用量为100g/t,按捺剂硫酸锌500g/t、钠500g/t,2号油60g/t。浮选实验成果见表3。 表3  用量对钼铅矿浮选目标的影响用量,kg/t1.52.02.53.0.3.54.0矿浆pH值6.07.08.09.010.011.0铅精矿档次,%10.3212.2513.6715.5313.9612.63铅收回率,%50.5355.7663.068.562.556.9     由表3中硫化用量与矿浆pH的数据可见,可以明显进步铅矿的浮选,跟着用量的增加,铅精矿的档次和收回率均增加,当用量到达3kg/t时,铅精矿档次到达15.53%,收回率到达68.5%;再增加用量钼精矿档次和收回率下降,当用量到达4kg/t时,铅精矿档次仅有12.63%,收回率56.9%。这首要是因为用量过大,一方面按捺了胺在铅矿表面的吸附,另一方面矿浆黏度增大,泡沫带泥较多,然后下降了精矿档次。从归纳目标来看适合用量为3kg/t。     (三)按捺剂的用量与分析     在六偏磷酸钠300g/t,3.0kg/t,混合胺用量为100g/t条件下,首要调查了硫酸与钠用量以1:1份额对粗铅精矿锌含量的影响,浮选实验成果见表4。 表4  硫酸锌+钠用量对铅矿浮选目标的影响硫酸锌/钠,g/t400500600700800900矿浆pH值6.07.08.09.010.011.0锌档次,%11.358.257. 766.536.165.83锌收回率,%20.5117.3612.0510.259.859.79     由表4硫酸锌与钠与pH数据可见,当硫酸锌与钠用量逐步增大时,铅粗矿中锌的含量与档次逐步下降,但当用量增加到700 g/t时,锌的收回率与档次下降不明显,这首要是因为浮选进程中含泥太多机械搀杂所造成的,因而,硫酸锌与钠适合量700 g/t。     (四)捕收剂的挑选与分析     在六偏磷酸钠300g/t,3.0kg/t,硫酸锌与钠700 g/t,捕收剂用量为100g/t条件下,调查了各种胺类捕收剂对铅、锌浮选目标的影响。实验成果见图表5。 表5  不同捕收剂对铅矿浮选目标的影响捕收剂称号十二胺十六胺十八胺混合胺铅收回率65.8763.3262.7669.43锌收回率14.6515.7416.8311.23     由表5可以看出,不同品种的胺捕收剂都能完成对铅的有用捕收,但混合胺对铅的挑选性捕收较好,故挑选混合胺作为铅的捕收剂,用量为100 g/t。     (五)活化剂的用量与分析     断定铅矿浮选药剂目标,在丁基黄药200 g/t,2#油60 g/t条件下,调查了不同用量的硫酸铜对氧化锌的浮选目标的影响,浮选实验成果如6。硫酸铜用量g/t150250350450锌档次19. 7817. 2313.3511. 34锌收回率61.6567.7468.8569.27     由表6可见,跟着硫酸铜用量的增加,锌档次逐步下降,但收回率增加,但当硫酸铜用量增加参与350克/吨时,锌收回率增加不明显,故硫酸铜用量断定为350克/吨。     依据以上实验成果断定了铅锌矿浮选工艺参数为:调矿浆pH到9、六偏磷酸钠300g/t,3kg/t,硫酸铜350 g/t,丁基黄药用量200g/t,2号油60g/t进行了小型闭路实验,实验流程为一粗一扫三次精选,在铅、锌给矿档次为3.54%和5.86条件下,取得了铅档次45.23%,收回率73.51%,锌档次40.56%,,收回率为76.21的浮选目标。     四、定论    选用硫化-胺法可以有用完成高铁泥化氧化铅锌矿的浮选收回,需求恰当用量才干取得比较好的硫化效果,混合胺对铅矿具有比较好的捕收才能和挑选性,适量的六偏磷酸钠具有较好的涣散效果,可以明显改进铅矿浮选效果,硫酸锌+钠是锌的杰出按捺剂,硫酸铜的增加可以起到活化锌矿的效果,进步锌的浮选目标。

高碱度烧结矿及低温烧结-关于铁酸钙的实验研究

2019-01-25 15:49:24

一、概  述    高碱度烧结矿出现于20世纪60年代,以其碱度高、冶金性能优良区别于自熔性烧结矿。低温烧结技术是生产优质高碱度烧结矿和降低烧结能耗的基本措施,它出现于70年代,低温烧结技术的核心是创造适宜的温度、气氛和物质成分条件,形成大量针状铁酸钙(SF-CA)使之成为烧结矿的主要粘结相。高碱度烧结矿和低温烧结技术已经在生产实践中广泛使用。    二、高碱度烧结矿的基本特征    高碱度烧结矿既具有FeO低、还原性好的特征,又具有强度高的特征,根本原因在于其主要粘结相为铁酸钙(SFCA).    优质高碱度烧结矿的碱度值(m(CaO)/m(SiO2))一般在1.8~2.2范围之内,其铁酸钙主要以针状存在。烧结矿的冶金性能最好,能耗也低。    碱度值低于1.8,烧结矿中含铁硅酸盐液相增多,碱度值高于2.2,生成铁酸钙过多,且将有相当量的铁酸一钙,甚至铁酸二钙出现,均不利于烧结矿的强度和还原性。    三、关于铁酸钙的实验研究    鉴于铁酸钙,尤其是针状铁酸钙,对烧结矿冶金性能起决定性的影响,国内外的炼铁烧结工作者就铁酸钙进行了大量的实验研究。   (一)铁酸钙的化学构成    大量的实验研究证实,烧结矿中的铁酸钙成分除主要为Fe2O3及CaO外,均含有一定量的SiO2和Al2O3,为Fe2O3-CaO-SiO2-Al2O3四元系复合铁酸钙,其化学式为5CaO•2SiO2•9(Fe,Al)2O3,简写SFCA,并常含一些MgO、FeO等成分。用扫描电镜-能谱分析我国鞍钢、宝钢、首钢等十余家的烧结矿,结果表明,尽管他们的含铁品位、碱度和铁酸钙的形态不同,烧结矿的含铁原料各异,但所生成的铁酸钙都是铁、钙、硅、铝四元系复合化合物,其化学式均为SFCA,Fe2O3与CaO物质的量的比值在2左右,属于铁酸半钙。铁酸钙中SiO2含量和Al2O3含量分别在5%~10%和1%~3%不等。在宝钢的烧结矿中还含有Fe2O3与CaO物质的量的比值为3~4的高铁分铁酸钙.X光衍射及化学分析证明,铁酸钙中的铁主要以Fe2O3形式存在,FeO含量仅有1%左右。   (二)关于铁酸钙的强度和还原性    通过对烧结矿的主要矿物进行强度测定,得知赤铁矿的强度最高,铁酸钙次之,磁铁矿再次之,各种硅酸盐矿物,尤其是玻璃相的强度最低。参见图1 [next]     实验研究表明铁酸钙(SFCA)的还原性与赤铁矿近似,显著优于磁铁矿。铁酸钙中的m(Fe2O3)/m(CaO)的比值愈高,还原性愈好,其顺序是;铁酸半钙—铁酸—钙—铁酸二钙。针状铁酸钙属于铁酸半钙型,它的还原性最好,见图2.    1979年首钢23m3试验高炉做解剖试验时,在显微镜下观察烧结矿试样,发现金属铁优先出现于赤铁矿和铁酸钙还原形成的Fe/O周边,证实铁酸钙的还原性优于磁铁矿。针状铁酸钙存在的烧结矿的还原性明显优于以片状、柱状铁酸钙存在的烧结矿。    高碱度烧结矿中,铁酸钙的含量一般在30%~50%,其中Fe2O3的含量占70%以上,所以针状铁酸钙不仅是良好的粘结相,同时也是与赤铁矿和磁铁矿同等重要的铁矿物,而且其还原性极好.高碱度烧结矿中的SiO2,Al2O3大量进入铁酸钙中,使含铁硅酸盐液相渣大为减少,这也是高碱度烧结矿强度和还原性好的原因。针状铁酸钙是一种含Fe2+极低的粘结相,所以高碱度烧结矿的强度与FeO的含量没有直接的关系,从而打破了FeO作为烧结矿强度指标的传统观念。针状铁酸钙代替硅酸盐作为烧结矿的粘结剂,使降低SiO2,提高烧结矿的含铁品位成为可能。以前认为烧结矿的SiO2含量不能低于6%,否则强度将受到影响。目前优质高碱度烧结矿的SiO2含量已经降到4%~5%,仍然具有足够的强度。   (三)针状铁酸钙的形成机理    作者用微型烧结实验以及中断烧结杯实验过程、解剖烧结料柱等方法,对于针状铁酸钙形成的机理、工艺条件、影响因素,进行了较细致、深入的研究,下面是研究结果。    1.针状铁酸钙形成的过程    中断烧结杯实验,解剖烧结料柱,是研究针状铁酸钙形成过程的理想方法。以赤铁矿作为烧结的原料,碱度值(m(CaO)/m(SiO2))为2,中断烧结过程,解剖取样,在显微镜下分析它们的矿物组成。    用赤铁矿烧结时,在预热带中,除了石灰石分解反应外,便有较多的高钙型铁酸钙(含Si、Al的铁酸一钙、铁酸二钙)生成。在燃烧带中迅速生成大量的针状铁酸钙(SF-CA),同时有较多赤铁矿被还原为磁铁矿。在高温氧化带(指温度在1100℃以上的冷却带)中,部分磁铁矿再氧化,针状铁酸钙进一步明显增加,铁酸钙形成交织结构或与磁铁矿形成交织熔蚀结构,并将原生及再生的赤铁矿粘结起来。    用磁铁矿烧结时(碱度值也为2),预热带中主要是熔剂的分解反应,铁酸钙数量生成极少。在燃烧带中铁氧化物仍主要以磁铁矿存在,只生成少数片状高钙型铁酸钙,CaO大量固溶在磁铁矿中,及与SiO2、Al2O3等形成硅酸二钙和硅酸盐液相。在高温氧化带的温度和气氛下,大量磁铁矿氧化,新生的赤铁矿遂与硅酸二钙等成分大量形成针状铁酸钙。其化学反应可表示如下:    9(Fe,Al)2O3+2(2CaO•SiO2)+CaO固溶→5CaO•2SiO2•9(Fe,Al)2O3    研究表明,以磁铁矿为原料,也能够形成以针状铁酸钙为主要粘结相的优质高碱度烧结矿,但是较以赤铁矿为原料,针状铁酸钙生成数量少一些,FeO含量多一些。    由上述可知位于燃烧带上部的高温氧化带(1100℃以上的冷却带)对针状铁酸钙的形成,无论对磁铁矿还是赤铁矿烧结都是十分重要的,特别是对磁铁矿烧结。    2.温度对于针状铁酸钙形成的影响    将磁铁矿配成碱度值(m(CaO)/m(SiO2))2.0的烧结试样,压成小饼(Ф8mm×4mm),于空气介质中,在1260℃焙烧,仅能生成少量的片状铁酸钙。1210℃铁酸钙开始迅速生成,并向针状铁酸钙转化。1250℃下,试样中的针状铁酸钙含量达到75%~80%。温度高于1260℃,针状铁酸钙发生明显分解,转变成赤铁矿、硅酸二钙和硅酸盐液相,铁酸钙含量急剧下降。实验表明,对于磁铁矿,针状铁酸钙形成的最佳温度是1230~1250℃,而赤铁矿则为1250~1270℃.    对上述小饼实验进行了烧结杯烧结验证。碱度值为2.0的磁铁矿混合料,燃料配比按4.3%、4%、3.8%、3.6%、3.2%下降,随着燃比降低,烧结矿中的铁酸钙含量由30%提高到50%~55%,形态由多熔蚀片状变为主要为针状,FeO含量由10.6%下降到5.62%.    上述实验表明,针状铁酸钙的形成对于温度比较敏感,要求较低的烧结温度。这是生产以针状铁酸钙为主要粘结相的高碱度烧结矿需要和允许低温烧结的根本原因,说明优质高碱度烧结矿生产技术是集优质与节能为一体的。

弱磁-强磁工艺选别高铁铬铁矿的试验

2019-01-24 09:37:06

铬是重要的战略资源,是不锈钢工业的重要原料,在耐火材料、化工及轻工等领域也有广泛应用。随着我国国民经济的发展,对铬铁矿的需求增长迅速。但我国铬铁矿资源严重短缺,保有储量只有1077.9万t(矿石),且富矿只占其中的1/2,大多分布在西藏、新疆等地区,由于基础设施不健全而难以利用。近几年,我国每年所需铬铁矿85%以上依赖进口,资源供应形势十分紧张。因此,在加强国内铬铁矿资源地质找矿的同时,针对铬铁矿资源开展选别技术研究,提高资源利用率已日益引起研究者的关注。     目前,在铬铁矿选别的生产实践中,摇床和跳汰等重选方法被广泛采用,干式强磁选、湿式强磁选、浮选和各种化学选矿法也有实验室研究报道,但在生产中少有应用。本文针对某含铁量高的铬铁矿,确定了以弱磁选选别磁铁矿,强磁选回收铬铁矿的工艺流程,在回收铬铁矿的同时,实现铁资源的综合利用。     一、矿石性质     该矿石属高铁铬铁矿海滨砂矿类型。原矿中含Cr203品位为31.20%,全铁品位(TFe)为29.11%。矿石中金属矿物主要是铬铁矿、铬尖晶石和磁铁矿,次为赤铁矿和钛铁矿;脉石矿物以橄榄石、辉石和角闪石为主,其次是蛇纹石。铬矿物含量为60.3%,其中铬尖晶石所占比例较大,铬铁矿和铬尖晶石的矿物含量比大致为35︰65。由此推断很难从样品中获得高品位的铬精矿。磁铁矿含量达到27.6%,部分磁铁矿因含Cr203较高而属铬磁铁矿的范畴。扫描电镜能谱微区成分分析表明,样品铬矿物中Cr203平均含量为43.58%,磁铁矿平均含铁为60.66%。     矿样中主要粒级为0.1~0.5mm,其中+0.5mm粒级产率仅为0.3%左右,-0.1mm粒级产率小于3%,铬矿物和磁铁矿的解离度分别为93.7%和90.2%。     该矿石化学成分、铬物相分析和主要矿物质量含量分析结果分别列于表1、表2和表3中。 表1  原矿主要化学成分(质量分数)/%Cr203TFeFeOFe203SiO2Ti02A1203Mg0CaO其它31.2029.1119.8119.615.360.399.449.423.011.76 表2  原矿铬物相分析结果铬相含量/%分布率/%铬铁矿与铬尖晶石中Cr20328.0589.90磁铁矿中Cr2030.993.17硅酸盐中Cr2032.166.93合计31.20100.00 表3  原矿矿物组成及相对含量(质量分数)/%铬铁矿、铬尖晶石磁铁矿赤铁矿钛铁矿橄榄石、辉石、角闪石蛇纹石其它60.327.62.90.57.80.70.2     二、试验研究     工艺矿物学研究结果表明,样品中可供选矿回收的主要组分是Cr203,铁可作为综合利用的对象。即该矿物需要去除的脉石矿物主要为橄榄石等硅酸盐矿物,并将有用矿物铬铁矿、铬尖晶石与磁铁矿分离。与脉石矿物相比,磁铁矿、铬铁矿与铬尖晶石密度较大,通过重选可以抛除部分脉石矿物;磁铁矿属强磁性矿物,铬铁矿属弱磁性矿物,弱磁选可实现二者分离,弱磁选精矿为铁精矿,弱磁选尾矿为铬粗精矿;铬粗精矿可采用强磁选提高铬精矿品位。需要说明的是,由于该矿样硅酸盐脉石矿物含量较少,且为非磁性矿物,在磁选过程中亦可实现其与有用矿物的分离,故重选作业可视选别效果选择性采用。     (一)重选试验     重选试验考查了摇床、跳汰与溜槽对原矿的分选效果,试验结果表明,跳汰与溜槽作业对该矿石分选效果较差,摇床分选可以脱除橄榄石、辉石等轻质矿物,对精矿品位有一定的提高,可将原矿Cr203品位由31.04%提高到33.68%,回收率为84.47%。但由于该矿石中低密度脉石矿物较少,重选作业对有用矿物的富集效果并不明显。     (二)弱磁选试验    弱磁选工艺流程如图1所示。弱磁选试验主要考查了弱磁选磁场强度、入选粒度、磁选机辊筒转速等因素对分离效果的影响。     1、弱磁选磁场强度试验     在磨矿粒度为-0.074mm粒级占62%,滚筒转速为50r/min条件下进行了弱磁选磁场强度试验,铁精矿和铬粗精矿的品位与回收率见图2。从图2可知,随着场强增强,虽然铁精矿TFe品位变化不大,但回收率明显提高,同时,铬粗精矿中Cr203品位有一定提高。因此确定弱磁选场强为0.12T,此时铁精矿TFe品位为55.38%。    2、弱磁选入选粒度试验   为考查矿物的解离情况对磁铁矿(Fe304)与铬铁矿(Cr203)分离的影响,在磁场强度为0.12T,滚筒转速为50r/min条件下,进行了弱磁选入选粒度试验,试验中磁铁矿与铬铁矿的分离情况见图3。图3结果表明,物料粒度变细时,铁精矿中Fe304含量与铬粗精矿中Cr203回收率均明显下降。说明矿石细磨可能导致磁选时的机械夹带。因此,该矿样无需磨矿(-0.074mm粒级含量约2%),可直接进行弱磁选,此时,可得到含Fe304 69.24%的铁精矿,作业中Fe304回收率为 97.91%;对于铬粗精矿,Cr203含量为41.55%,作业回收率为80.61%。     3、弱磁选辊筒转速试验     在磁场强度为0.12T时,对不经磨矿的原矿进行了磁选机辊筒转速试验,试验中磁铁矿与铬铁矿的分离情况见图4。从图4可以看出,随着辊筒转速增高,铁精矿中Fe304含量稍有提高,但铬粗精矿品位有所下降,因此确定适宜辊筒转速为50r/min。    (三)强磁选试验     原矿直接弱磁选时,强磁性的磁铁矿进入铁精矿,而弱磁性的含铬矿物与非磁性脉石矿物一同进入尾矿,二者采用强磁选进行分离,试验流程见图5。强磁选试验主要针对原矿不经磨矿直接弱磁选的尾矿,考查了入选粒度和磁场强度等因素对分离效果的影响。    1、强磁选入选粒度试验     为考查矿物解离情况对弱磁选尾矿中铬铁矿指标的影响,进行了强磁入选粒度试验,试验中磁选强度为0.9T,试验结果见图6。由图6可见,强磁选入选粒度对铬精矿中Cr2O3品位和回收率均影响不大,只是在磨矿过细时会降低其回收率,因此弱磁选尾矿可不经磨矿直接进行强磁选。     2、强磁选场强试验     弱磁选尾矿在不同场强下进行强磁选的试验结果见图7。由图7可见,随磁场强度提高,铬铁矿的回收率大幅提高;但场强达到0.7T以后,继续提高磁场强度,铬精矿的品位有所降低,综合考虑,确定强磁选场强为0.9T,此时铬精矿中Cr2O3品位为41.43%,作业回收率为93.01%。    (四)全流程试验     根据上述试验结果,确定了原矿不经磨矿和重选、直接以弱磁选回收磁铁矿、弱磁选尾矿进行强磁选回收铬铁矿的全流程试验。试验流程如图8所示,试验结果见表4。从表4可知,采用弱磁选-强磁选流程,可以从含Cr2O3为31.23%、含Fe为28.81%的原矿中获得Cr2O3品位为41.43%、回收率为79.31%的铬精矿和TFe品位为55.89%、回收率为58.71%的铁精矿。 表4  全流程试验结果产品名称产率/%品位/%回收率/%Cr2O3TFeCr2O3TFe铁精矿30.2615.2155.8914.7458.71铬精矿59.7741.4317.4779.3136.25尾矿9.9618.6414.585.955.04原矿100.0031.2328.81100.00100.00    三、结语     某高铁铬铁矿选别关键在于利用铬铁矿、磁铁矿和脉石矿物三者之间的磁性差异。弱磁选一强磁选工艺可有效选别该矿石,实现铬铁矿与磁铁矿的综合利用。原矿无需磨矿,在弱磁选磁场强度为0.12T,滚筒转速为50r/min时,可以获得TFe品位为55.89%、回收率为58.71%的磁铁矿;弱磁选尾矿经磁场强度为0.9T的强磁选,所得铬精矿Cr203品位为41.43%,回收率为79.31%。