恩菲镍渣虑饼降水技术节约成本降低能耗
2019-03-14 11:25:47
日前,我国恩菲技能发展部研制中心在沉镍下降渣含水的研讨课题中取得了突破性效果,该技能大幅度下降了氢氧化镍滤饼含水率。此项效果填补了国内此项研讨的空白,直接发明了巨大的经济效益,而且能够直接使用到工程实践中。
据介绍,沉镍工艺简略,可操作性强,国内外许多厂商皆使用这种办法,如国外的RAMU项目。现在国外镍冶炼项目一般建造在红土矿原产地,考虑到建厂环境的各种因素,大多都不建造精粹厂,而是将含镍滤饼用船运送回国内进行处理,选用惯例沉镍的办法得到的滤饼含水率较高,一般为70~75%,这就意味着运回的1t产品中有700~750kg左右的水,下降了运送功率,增加了运送费用,若将压榨后的滤饼就地烘干,则需求消耗很多的动力。
在我国恩菲红土矿项目部的大力支持下,在王魁珽、刘金山两位老专家的指导下,由孙宁磊、刘国、彭建华、张文组成的研制团队对此问题进行了攻关。在进行了历时10个月的艰苦攻关后,总算将滤饼的含水率由本来的75%下降至55%。据悉,若将此项技能效果使用于年产33000t镍的RAMU项目,仅运送成本就能够从本来的1240美元/t镍下降至690美元/t镍,每年能够节约的运送、储存、包装等费用近两千万美元。(Ivy)
镍的制法、用途和回收
2019-03-14 11:25:47
收回镍
镍的制法有:①电解法。将富集的硫化物矿焙烧成氧化物,用炭复原成粗镍,再经电解得纯金属镍。②羰基化法。将镍的硫化物矿与效果生成四,加热后分化,又得纯度很高的金属镍。③复原法。用复原氧化镍,可得金属镍。镍大部分用于制作不锈钢和抗腐蚀合金。镍还很多用于镀镍。镍铜合金用于电阻合金、热交换器和冷凝器管道。镍铬铁合金用于制作蒸气叶轮机和电热丝。在化学工业中镍用作加氢反响的催化剂。
镍的辨别常识
镍合金常为银白色有光泽固体,用物理办法欠好辨别,用化学办法为宜。
常见的镍合金有镍-铁,镍-铝,镍-镁合金等。
将镍合金投入或稀硫酸中,溶解后能够看到溶液出现绿色。参加丁二酮肟得到鲜红色的合作物。这个反响很活络,即便含镍的溶液极稀即合金中含镍量很少也能辨别出来。
假如要定量分析,如测定新版1毛便是镍-铁合金中两组分含量,可用吸光光度法测定,留意用或酒石酸掩蔽铁离子。
镍的用处与收回
镍的主要用处是制作不锈钢、高镍合金钢和合金结构钢,被广泛用于飞机、雷达、、坦克、舰艇、宇宙飞船、原子反响堆等各种军工制作业;在民用工业中,镍常制成结构钢、耐酸钢、耐热钢等很多用于各种机械制作业、石油;镍与铬、铜、铝、钴等元素可组成非铁基合金。镍基合金、镍铬基合金是耐高温、抗氧化材料,用于制作喷气涡轮、电阻、电热元件、高温设备结构件等;镍还可作陶瓷颜料和防腐镀层;镍钴合金是一种永磁材料,广泛用于电子遥控、原子能工业和超声工艺等范畴,在化学工业中,镍常用作氢化催化剂。近年来,在彩色电视机、磁带录音机和其他通讯器材等方面镍的用量也正在迅速增长。
镍常识-含镍的金属
专家称,不锈钢是20世纪冶金史上的一大创造,他是在碳素钢的基础上增加必定含量的铬元素冶炼制成的。不锈钢之所以具有不锈性,关键是因为钢中含有铬。所需求的最低铬含量美国、欧洲标准中规则为不小于10.5%(质量分数,后同),日本工业标准规则一般不小于约11%,我国一般以为不小于12%。因为铬的影响,在腐蚀介质的效果下,钢件表面生成一层巩固细密的氧化物膜,称作“钝化膜”。这层膜使金属与外界的介质隔离,阻挠金属被进一步腐蚀;而且还具有自我修正的才能,假如一旦遭到损坏,钢中的铬会与介质中的氧从头生成钝化膜,持续起维护效果。不锈钢的不锈性,还与运用环境有关,不同的环境,要运用含铬量不同的不锈钢。含铬量的凹凸是决议不锈钢功能的底子要素。所以,没有铬就没有不锈钢,而一般的碳素钢和含铬的不锈钢都是具有磁性的物质。
专家介绍,不锈钢分为五大类:奥氏体不锈钢、铁素体不锈钢、马氏体不锈钢、奥氏体—铁素体双相不锈钢和沉积硬化不锈钢。其间只要奥氏体不锈钢和一部分沉积硬化不锈钢(奥氏体沉积硬化不锈钢)是无磁的,不能用吸铁石吸住;而其类型他的不锈钢都是有磁性的,能够用吸铁石吸住。在空气、水、蒸汽等弱腐蚀介质中不生锈的钢是不锈钢,在酸、碱、盐溶液等强腐蚀介质中耐腐蚀的钢是耐蚀钢,不锈钢未必耐蚀,耐蚀钢必定不锈。
镍钴溶液的分离和净化
2019-01-24 09:36:23
在镍钴湿法生产过程中,从含镍钴溶液到生产出符合一定标准的镍和钴产品,中间必须经过杂质去除(净化)及有价金属元素的分离富集等工序。目前镍钴提取冶金工业上应用的溶液净化和分离富集方法主要有化学沉淀、溶剂萃取和离子交换等三种。
一、化学沉淀法
化学沉淀法是最常用的溶液除杂和分离方法,镍钴提取冶金工业上主要应用水解沉淀、硫化物沉淀、难溶盐沉淀和置换分离等工艺。
(一)水解沉淀
水解沉淀
水解沉淀的原理是不同金属氢氧化物在水中具有不同溶解度或溶度积,因而具有不同的开始沉淀的pH值,通过控制溶液中沉淀pH值,则可将要求从溶液中除去的离子以氢氧化物的形式沉淀,有时需要辅之以氧化还原电位的控制。一些金属氢氧化物25℃的溶度积及根据Eh-pH图获得的开始沉淀的pH值列于表1,供设计水解沉淀净化方案时参考。工业常用的水解沉淀工艺包括氧化水解除铁、氧化水解分离镍和钴等。
表1 某些金属氢氧化物的PKSP及开始沉淀的最低pH值氢氧化物PKsp开始沉淀pH值氢氧化物PKsp开始沉淀pH值Co(OH)343.80.5Cu(OH)219.35.0Sn(OH)456.00.5Fe(OH)215.35.8Sn(OH)227.81.5Zn(OH)216.36.8Fe(OH)338.62.2Pb(OH)214.97.2Pt(OH)235.02.5Ni(OH)218.47.4Pd(OH)231.03.4Co(OH)215.77.5In(OH)333.23.5Ag2O7.718.0Ga(OH)335.23.5Cd(OH)25.268.3Al(OH)332.73.8Mn(OH)213.48.3Ni(OH)34.0Mg(OH)211.39.6
针铁矿法除铁也是一种水解沉淀工艺。形成针铁矿(FeOOH)晶体的主要条件是:低浓度Fe3+、pH=3~5、高温(≥90℃)。常用方法是先将Fe3+还原成Fe2+,然后中和到要求pH值,高温下再使Fe2+缓慢氧化。这样得到的沉淀是FeOOH而不是Fe(OH)3,易于过滤。在镍钴生产中,常用高镍锍作还原剂,空气作氧化剂。形成针铁矿的另一种方式是在大容量已除铁溶液中以喷淋方式加入欲净化除铁溶液,在充分搅拌下,Fe3+总体浓度不高(<1g/L),在空气氧化条件下加入中和剂可形成FeOOH。这样,溶液不用先还原,再氧化。
(二)硫化物沉淀
硫化物沉淀是分离镍、钴、铜等有价金属的常用方法,硫化剂多为Na2S、NaHS和H2S。一般金属硫化物在水中的溶解度都很小,常用于从镍钴溶液中沉淀分离铜,也用于从红土矿浸出液中沉淀分离铜、镍、钴。当用H2S作硫化沉淀时,形成硫化物的平衡pH值取决于该硫化物的活(浓)度积、溶液中金属离子浓度及离子价数。25℃及常压下,H2S沉淀硫化物时的平衡pH值列于表2。
表2 不同离子浓度时形成硫化物的平衡pH(25℃及常压)硫化物CMe=1mol/LCMe=10-4mol/L硫化物CMe=1mol/LCMe=10-4mol/LHgS-15.00-13.00CdS-2.50-0.25Ag2S-14.00-10.60ZnS-0.531.47Cu2S-12.35-8.35CoS0.852.85CuS-6.55-4.55NiS1.243.24SnS-3.00-1.00FeS2.304.30PbS-2.85-0.85MnS3.905.90
(三)难溶盐(化合物)沉淀法
最常用的难溶盐(化合物)沉淀法是黄钠铁矾工艺除铁。黄钠铁矾是两种以上硫酸盐的复盐,通试为Na2Fe6(SO4)4(OH)12或Me+Fe3(SO4)2(OH)6、Me2+Fe6(SO4)4(OH)12,具有结晶好,易过滤的优点。通式中,Me+一般为Na+、K+、NH4+或H3O+,其中以钾钒最稳定,沉降性能最好。
(四)置换沉淀
通常的置换沉淀是电负性金属从溶液中置换出电正性离子,如镍粉除铜。广义上说,置换沉淀还包括固休物料与溶液反应,其中固体中某一元素与溶液中的金属离子交换位置,如利用Ni2S3从溶液中沉淀铜。
二、溶剂萃取分离
溶剂萃取是分离和富集金属离子的常用方法之一,在有色金属湿法冶金领域有着广泛的工业应用,在镍钴提取工业中的应用也正在走向成熟。
溶剂萃取是利用有机相从不相混的液相中把某种物质提取出来的一种分离方法。溶剂萃取法的工艺过程包括萃取、洗涤和反萃三个阶段。萃取是使水相中某些物质转移到有机相,洗涤是使进入有机相的杂质回到水相(洗涤液),反萃是使被萃物质(目标组元)从有机相转移到水相(反萃剂),以便进一步处理成产品。有些萃取剂在萃取前需要进行预处理(如皂化等),以保证萃取条件。
溶剂萃取工艺的关键是萃取剂的选择。除经济效益外,选择萃取剂的基本原则为:
1、选择性好,容易实现金属分离;
2、良好的萃取动力学性能,平衡速度快;
3、大萃取容量,萃取剂用量少;
4、在水相虽的溶解度小,且化学稳定性好;
5、易与稀释剂互溶,混合后具有良好的分相性能,不易产生第三相。
溶剂萃取在镍钴冶金中的应用主要有两方面:一是从主金属溶液中将杂质元素萃取除去,或相反,将主金属离子萃取出来;二是将性质相近的镍和钴分离。
在工业生产中,往往采取多级萃取流程。因有机相和水相流动方式不同,多级萃取又分为逆流萃取、错流萃取和分馏萃取等多种方式,如图1所示,分馏萃取是逆流萃取上加入有机相的洗涤段。图1 萃取流程
a-三级错流萃取;b-三级逆流萃取
F-料液;S-有机相;E-萃取液;R-萃余液
镍钴提取工业中,溶剂萃取主要用于镍和钴的分离,以及分离铜铁等杂质。硫酸介质中常用CYANEX272、P507或N235萃取分离钴和镍,CYANEX272是新开发的萃取剂,其分离系数比P507大-个数量级。杂质(铁、铜、锌)的萃取分离常采用P204。氯化介质中常用铵类萃取剂。一些用于镍钴分离的新萃取正在研究开发中。
三、离子交换
通过离子交换树脂的吸附和解吸,可从溶液中脱除特定的离子。离子交换法一般用来处理低浓度(如浓度小于10-6mol/L)的稀溶液,当溶液浓度较高时(如高于1%),采用这种方法的分离效果不大。离子交换的主要工业应用是微量杂质的深度净化,在镍钴湿法冶金中用于脱铅和锌,以及用于微量铜的脱除。
用于镍钴分离的离子交换工艺的研究也较活跃,提出了一些有潜在工业应用前景的新型离子交换树脂。
世界镍产量和消耗量
2019-01-08 09:52:41
目前,主要产镍国家有:加拿大、苏联、澳大利亚、新喀里多尼亚、印度尼西亚、古巴和中国等;主要耗镍国家有:美国、苏联、日本、西德、法国、英国、意大利和中国等。1984年世界年产矿产镍74.72万吨,另产再生镍几万吨;世界总消耗量为78.27万吨。产量和消耗量基本保持平衡。预计,今后全世界的镍总消耗量将以年平均2%的速度增长,近年来,世界矿产镍产量和镍消耗量分别列于下两表。世界矿产镍金属产量(万t) 1982年1983年1984年欧洲 芬兰0.630.530.69希腊0.550.811.36挪威0.050.050.06捷克斯洛伐克0.350.360.22阿尔巴尼亚0.90.90.9民主德国0.250.20.2波兰0.10.030.02苏联1717.217.5共计19.8320.0820.55非洲 博茨瓦纳1.781.821.86摩洛哥0.05——南非2.052.052.2津巴布韦1.341.11.11共计5.224.975.17亚洲 缅甸0.010.010.01印度尼西亚4.854.164.78菲律宾1.971.391.16共计6.835.586.35美洲 加拿大9.2712.8117.42美国0.29—0.87古巴3.763.923.32巴西0.531.071.27哥伦比亚0.51.751.65多米尼加0.662.122.43共计14.9521.6726.96澳洲 澳大利亚8.767.877.63新喀里多尼亚6.014.215.83共计14.7712.1113.52其他1.41.71.95全世界总计62.9265.8374.72[next]世界镍金属消耗量 1982年1983年1984年欧洲 芬兰0.950.821.32法国3.183.543.89西德5.775.767.8意大利2.42.052.8西班牙0.790.80.93瑞典1.51.52.04英国2.252.252.01捷克斯洛伐克11.021.1民主德国10.91波兰0.650.70.75罗马尼0.550.50.45苏联13.81414其他1.451.51.75共计35.335.3440.46非洲共计0.650.650.8亚洲 中国1.91.92印度1.11.11.52日本10.6710.9414.6其他0.60.61.03共计14.2712.6419.13美洲 加拿大110.91美国9.4311.7414.48巴西0.570.721.03其他0.590.590.61共计11.5914.0215.28澳洲共计0.360.360.35其他0.50.50.5全世界总计62.6768.2378.27
硫酸镍和氯化镍溶液的分析方法
2019-03-14 11:25:47
―、硫酸镍和氯化镍中镍总量的测定 1.办法摘要 在碱性溶液中,镍与EDTA生成安稳的络合物,以紫脲酸铵为指示剂,反响如下: 2.试剂 (1)标准0.05molEDTA溶液; (2)缓冲溶液(pH=10):溶解54g氯化铵于水中,加人350mL(d=0.89)加水稀释至1L; (3)紫脲酸铵指示剂。 3.分析办法 取分析镀液10mL于100容量瓶中,加水稀释至刻度,摇匀。汲取此稀释液10mL于250mL锥形瓶中,加水80mL,缓冲溶液10mL,加人紫脲酸铵指示剂少数,以标准0.05molEDTA滴定至由橙黄色恰变为紫色为结尾。 二、氯化镍中氯离子含量的测定 1.办法摘要 氯离子与定量地生成白色氯化银沉积,以为指示剂,反响式如下: 2.分析办法 用移液管汲取镀液10mL于100mL容量瓶中,加水稀释至刻度,摇匀。汲取此稀释液10mL于250mL锥形瓶(若测Ni2+总量已稀释,可直接汲取稀释液)。加水50mL及1%溶液2?5滴,用0.1mol标准滴定至最终一滴生成的白色沉积略带淡红色为结尾。 三、的测定 1.办法摘要 是一元弱酸,不能直接用碱滴定。但甘油、甘露醇和转化糖等含多羟基的有机物,能和生成较强的络合物,可用碱滴定,以酚酞为指示剂。 2.试剂 (1)甘油混合液:称柠檬酸钠60g溶于少数水中,加人甘油600mL,再加人2g酚酞(溶于少数温热乙醇),加水稀释至1L。 (2)标准0.1mol溶液。 3.分析办法 汲取稀释液10mL于250mL锥形瓶中,加水10mL,加甘油混合液25mL,以0.1mol标准滴定至溶液由嫩绿色变为灰蓝色为结尾。 附注:结尾编号由嫩绿―灰蓝―紫红。例如,灰蓝色结尾不易控制,可滴至紫红色再减去过量的毫升数(约0.2mL)。
镍基废料原生和再生含镍物料的同时处理
2019-01-24 11:10:25
前面已指出,(前)苏联的有相当一部分镍废料在原生有色冶金企业内处理,其中胡乌拉尔镍厂。送入企业的废料,先要考虑进行分选,主要是按其化学成分分选。如在乌法利亚镍联合公司,含镍量低于10%的废料要挑选出来,以便在鼓风炉内重熔。根据其粒度,预先将它们同细粒级的矿石一起压成团块,或直接将其投炉;含镍量大于10%的废料在转炉内处理。含铜量大于2%的废料可与含铜量低的物粒一起扩大备料。
氧化镍矿石的鼓风熔炼就其性质而言是一种还原硫化反应,也就是在有硫化试剂存在的条件下,在还原环境中进行。炉料的各种组分(包括再生有色金属)在气流的作用下受热,而且这些组份彼此之间及其与气相组份之间开始发生化学交互作用。
冰铜和渣是交互作用的产物。例如,硫酸镍在还原环境中加热,先失去结晶水,然后分解,或还原成硫化物。主要反应如下:
NiSO4·7H2O=NiSO4+7H2O ↘
NiSO4=NiO+SO3(SO2+1/2 O2) (1)
NiSO4+4CO=NiS(Ni3S2)+4CO2 ↗
碳酸镍也发生类似的变化:
NiCO3·6H2O=NiCO3+6H2O ↘ (2)
NiCO3=NiO+CO2 ↗
反应在炉子的预热带进行。
鼓风炉中也处理某些其它再生物料,例如废蓄电池、含镍量较高的炉渣等。蓄电池的钢壳在熔炼时铁化合物、氧化镍矿石起到还原剂的作用,而过剩的铁则溶解于硫化物熔融体中。片状铁和镍的氢氧化物先开始分解,生成相应的氧化物。接着氧化镍进行硫化,并转化成为冰铜,而氧化铁转入渣中:
NiO+FeS=NiS(Ni3S2)+FeO (3)
2FeO+SiO2=2FeO·SiO2 (4)
硫化亚铁起着硫化剂的作用,它进入炉料时,呈黄铁矿的形式,或者在炉中添加石膏予以使用。
在鼓风炉里熔炼所得到的冰铜含Ni15~20%、Co0.3~0.4%、Fe50~60%,S20~22%。其产出率不高,占熔炼含金属原料的5~10%。从矿石中进入冰铜的镍直接回收率为75~82%;从再生金属中镍回收率稍高些(85~90%)。
第二种产物是渣,其成分为:Ni0.15~0.20%,FeO17~20%,SiO244~46%,MgO10~18%,CaO12~20%,Al2O38~12%。渣经水淬粒化,尔后运往废料场。在国民经济中,渣可用来生产水泥、碎渣、渣铸体以及渣棉等。
气体净化除尘后排入大气;回收的烟道灰压块或烧结,作返回炉料。熔炼时燃料的消耗量是烧结矿或团块总量的20~30%。在风口区,炉子的单位截面积生产率为30~40吨/米2·昼夜。
相当一部分原生金属进入冶金企业用转炉处理。装入转炉前,在吹炼原生冰铜时所得到的富集镍的含量约40%。未经处理的再生废料如刨屑、切边、报废零部件等在1250~1300℃的温度下与硫化物熔体接触。
铬、钨和钼以各自相应的氧化物转入渣中。根据上述资料,一部份氧化物升华并进入气体。铬实际上完全转入渣中。存在于再生物料中的镍和部份钴经硫化而转入硫化物熔体。
FeS+Ni=NiS(Ni3S2)Fe (5)
FeS+Co=CoS+Fe (6)
在进一步的吹炼中,相当一部分硫化钴氧化,并同铁及其它杂技一起转入炉渣。
在铜镍工业企业中处理废料时,钴力求留在二次冰铜里,因为工艺流程已考虑到在电解镍阳极时,将其从镍中分离。铜在这种情况下不是杂质,它在浮选二次冰铜和电解时与镍分离开。二次冰铜中不希望有其它金属存在。
转炉所得二次水铜有下列成分(%):
原料 Ni Cu Co Fe S
氧化镍矿石 77~80 0.9~1.5 0.5~0.55 0.2~0.3 17~22
硫化铜镍矿石 41~49 24~32 0.5~1.0 2.0~3.0 20~22
使用再生原料,可以改变铜镍二次冰铜中镍与铜之间的比例,这对下一步处理具有很重要的意义。
多年处理铜镍二次冰铜的实践证明,鲷镍二次冰铜中Ni:Cu>1这一比值是合理的。
这种比例对原矿料在许多情况下是难以维持的,而在再生镍原料里却很容易调整到这种比例。
无论在镍企业,还是铜镍企业,用转炉处理含钴量的较高的镍废料时,都必须注意钴这一杂质。镍二次冰铜的含钴量不应超过0.5~0.6%。这可通过新冰铜精炼二次冰铜得到。
渣是转炉吹炼的另一种产物,它在乌拉尔镍厂中含镍0.8~1.2%,则另一家镍厂含镍0.8~1.2%、铜0.6~0.8%。渣中钴的含量大都一样,均等于0.25~0.45%。铁的含量为47~57%,硅的含量为24~30%。
渣中钨、铬和钼的存在取决于被处理的再生金属的数量、成分,其含量可在0.n%至3~5%之间波动。精炼后得到的渣在转炉或电炉中进行贫化处理。贫化的目的在于从渣中提取镍和钴。贫化了的渣中,镍含量不超过0.2%,钴含量不超过0.08%,而铬、钨和钼的损失是不可挽回的。
黑镍的制备和除钴
2019-01-24 09:37:16
合格浸出液泵入φ2.0m×1.5m机械搅拌槽中,加入适量NaOH生成Ni(OH)2沉淀,使Ni(OH)2浆料液中Ni=20g/L,pH=10~12。然后,将浆液泵入氧化电解槽中,鼓入空气进行电解。阳极为镍始极片,阴极为不锈钢片,槽电压2.4~3.2V,槽电流2800~3000A,温度45~52℃,电解20~24h,颜色由绿转黑,黑镍转化率可达65%~75%。黑镍浆液转入φ3.0m×1.9m洗钠槽,洗钠后的黑镍即可用于除钴,洗水送污水处理站。
除钴在φ2.5m×3.0m空气搅拌槽中间段进行,温度70~80℃,停留时间1.5h,Ni(Ⅲ)∶Co=1.2(mol比)。流出的除钴矿浆经二段压滤,滤液调pH至3.2~3.4后送镍电解工序,滤渣浆化后送钴系统处理。黑镍除钴的效果良好,钴的脱除率可达98%,并约有60%的铜和铁同时除去。除钴前后典型溶液成分和除钴效率列于表1。所得钴渣的化学成分列于表2。
表1 除钴前后溶液平均成分和除钴率元素除钴前液除钴后液钴脱除率/%NiCoCuFeNiCoCuFeg/L83.30.1910.00280.003781.7<0.0020.00100.000998.31
表2 钴渣的典型化学成分组元NiCoCuFeMnSiO2CaOMgOH2O%33.722.120.980.350.0150.260.0660.2641.5
炼镍工艺--高镍锍的铜镍分离和精炼方法
2019-02-25 15:59:39
因为镍矿石和精矿具有档次低、成分杂乱、伴生脉石多、属难熔物料等特色,因面使镍的出产办法比较杂乱。依据矿石的品种、档次和用户要求的不同,能够出产多种不同形状的产品,一般有纯镍类:电镍、镍块、镍锭、镍粉;非纯镍类:烧结氧化镍与镍铁等。近30年来,由纯镍类,因为这样较为经济。现在国外非纯镍类的耗费量占总耗费量的30%以上。镍的出产办法归灯如图1。我国金川公司和新疆阜康冶炼厂(处理喀拉通克铜镍矿鼓风炉熔炼产出的金属化高镍锍)镍出产的准则工艺流程如图2。
因为高镍锍除含镍和硫以外,还含有适当数量的铜,并富集了原猜中的狂族金属和贵金属及钴,困此高镍锍的铜镍别离和精粹是镍冶炼工艺中的杰出问题,也是多年处理硫化矿的出产要害。在镍冶金开展的前期阶段,一般选用四种办法处理高镍锍,即分层熔炼法、选矿磨浮别离法、选择性浸出法、低压基法。上世纪70年代以来,国内外高镍锍,即镍别离办法较多的长处,运用规模正在逐步扩展。分层熔炼法的根本理论依据是:将高镍锍和混合熔化,在熔融状态下,硫化铜极易溶解在Na2S中,而硫化镍不易溶解于Na2S中。硫化铜和硫化镍的密度为5300—5800kg/m3,而Na2S的密度仅为1900kg/m3。当高镍锍和Na2S混合熔化时,硫化铜大部分进入Na2S相,因其间密度小而浮在顶层,而硫化镍因其密度大面留在底层。当温度下降到凝结温度时,二者别离得更完全,凝结后的顶层和底层很简单分隔。为了使硫化铜及硫化镍更好地别离,顶层和底层再别离进行分层熔炼,从头取得分层后的硫化铜和硫化镍,直至满意工艺要求。因为该法工艺进程杂乱、劳动条件差,且出产成本高,除个别工厂经改造后仍在运用外,现已根本筛选。使用选矿磨浮别离铜镍—可溶阳极电解传统工艺处理,即:吹炼成高镍锍--转炉渣电炉贫化--高镍锍磨浮别离--阳极熔炼--电解。该工艺的缺陷是出产疚功率低,排入大气的烟气中含硫量高,耗电量大,有价金属的丢失大。湿法选择性浸出因其铜镍提取办法不同,大致可分为五种。
(1)硫酸选择性浸出电积法。芬哈贾伐尔塔精粹厂、南非的吕斯腾堡厂均选用这一工艺。但其流程又不完全相同。如芬兰哈贾伐尔塔精粹厂处理的高镍锍成分为(%):Ni75、Cu15、S7、Co0.7、Fe0.5、Ni/Cu=5。原先选用两段常压浸出,因为镍浸出率低。现已改为三段常压浸出。吕腾堡厂处理的高镍锍成分为(%):Ni约50、Cu约28、S约22。选用两段加压浸出,电积提铜和电积提镍。这种浸出别离与部分净液相结合的工艺流程比较简单:缺陷是电能耗费大,当Ni/Cu比低时选择性浸出作用较差。
(2)硫酸选择性浸出氢复原。本工艺与上一工艺比较不同之外在于以加压氢复原替代镍电积。代表性的工厂为1974年投产的美国镍港精粹厂。其流程为高镍锍熔化--水淬--细磨,然后经一段常压浸出和两段加压浸出液经净化后用加压氢复原法制得镍粉。南非英帕拉厂所选用的流程与镍港精粹厂相似,不同之处是选用三段加压浸出。本工艺与上一工艺比较,流程比较简单,但能源耗费都比较多;镍粉价格尽管较高,然而在商场供应上的灵活性不如电解镍。
(3)加压浸--氢复原法。代表性的工厂有加拿大舍里特公司克莱夫科精粹厂、澳大利亚克威那拉镍精粹厂。克威那拉镍精粹厂原规划处理硫化镍精矿,1974年后改为处理卡尔古利镍冶炼厂的高镍锍。该法的长处是在较低温度和压力下,在碱性介质中浸出,设备的结构和防腐蚀等方面比较简单处理。缺陷是耗费很多,大部分硫终究氧化成硫酸根;且对含铜量高的质料亦不太合适。
(4)浸出法。代表性工厂有加拿大鹰桥公司在挪威的克里斯蒂安松精煤炼厂的实验工厂。其办法是经细磨后的高镍锍用浓溶液在约70℃常压下浸出12h,浸出率为98.7%。该法选择性浸出作用很好,提镍能耗出比较低;但设备腐蚀比较严重,现已根本不选用。
(5)浸出法。挪威的克里斯蒂安松厂除了曾实验过上述浸出法外,1975年后又开端试作选择性浸出新工艺,几回改善后,于1981年建成年产(4—5.5)×104t阴极镍的精粹厂。该法的本质是,在110℃下通选择性浸出镍,浸出液经置换脱铜,用碳酸镍中和脱铁,溶剂萃取公离镍钴,别离电积得到阴极镍和阴极钴。在阳极上发生的回来浸出。高镍锍中的铜、硫简直悉数以CuS形状留于浸出渣中。该流程的特色是浸出液体中Ni2+高达230g/L,总的溶液量少,阳极分出的回来使用;与其他工艺比较,流程较为简化。现在世界上用浸出法的还的日本住友新居滨精粹厂。
羰基法出产归于气化冶金办法,以加拿大世界镍公司铜崖精粹厂选用的中压法为代表。其高镍锍的成分为(%):Ni62、Cu14、S2.0、Fe2、Co1,在旋转转炉内用氧气吹至S为0.2%--4%,在180℃、7.2MPa压力下羰基化,产出高纯镍粉及Ni--Fe粉,铜和贵金属富集于残渣中。该法比蒙得法功率高,但不像蒙得法要求原猜中不能含硫和铜。高压法尽管比中压法功率要高,但进程要求在200℃、18—20MPa压力下进行,中压法对质料的镍铜等到含硫量量要求比高压法要严厉。俄罗斯诺里尔斯克北镍公司是选用高压羰基法,加拿大世界镍公司英国克莱达奇精粹厂是选用低压羰基法。从上述高镍锍的别离和精粹工艺开展来看,总的趋势是别离与精粹紧密结合,逐步简化流程。但各厂所选用的详细工艺条件都不尽相同,原因是与各厂的质料成分及产品形状要求不同有关,另一方面也阐明高镍锍别离和精粹的工艺还有待进一步研讨开发。
电镀镍和化学镀镍的区别在哪里
2019-03-14 11:25:47
01.化学镀镍层表面是极为均匀的,只需镀液能够浸泡得到镍层表面,电镀过程中溶质交流充沛,镀层就会十分均匀,简直能够到达仿形的作用。 02.电镀无法对一些形状杂乱的产品资料进行全表面施镀,但化学镀能够对任何形状工件施镀。 03.高磷的化学镀镍层为非晶态,镀层表面没有任何晶体空隙,而电镀层为典型的晶态镀层。 04.电镀因为有外加的电流,所以镀速要比化学镀快得多,平等厚度的镀层电镀要比化学镀提前完成。 05.化学镀层的结合力要遍及高于电镀层 06.化学镀因为大部分运用食品级的添加剂,不运用比如等有害物质,所以化学镀比电镀要环保一些。 07.化学镀现在市场上只要纯镍磷合金的一种颜色,而电镀能够完成许多颜色。
羰基镍渣的熔炼和灰吹
2019-03-05 09:04:34
加拿大大都工厂在选用蒙德(Mond)工厂的法出产纯镍过程中,产出的含贵金属总量4%的残渣,运往伦敦阿克顿工厂处理。
阿克顿工厂处理渣的办法是向渣中参加氧化铅和碳酸钠,经混匀后于容量100kg的小反射炉中熔炼,产出贵铅锭和含少数贵金属的炉渣。炉渣回来加拿大镍厂处理。
贵铅于容量100kg的煤气加热灰吹炉中灰吹。产出的氧化铅渣铸锭后送熔炼铅。烟气经洗刷塔除尘后排放。合金中含80%银,铂族金属富集3倍。将合金水淬成粒,称为一号贵金属合金。
合金用热的浓硫酸处理以溶解银和部分钯。过滤后,滤液中的银呈氯化银收回,然后送还原熔炼。再加铜置换钯,所得的沉淀物并入浓硫酸不溶渣(铂精矿)中,送收回金及铂族金属。
阿克顿精粹厂也运用熔炼、灰吹法处理英国克利德赫(Clydach)工厂的镍阳极泥,这是由于该质猜中含有很多铅。假如质猜中首要含镍,则选用二次电解法或其他办法处理更为有利。