锑锭
2017-06-06 17:50:12
锑锭 元素符号:Sb 锑锭原子量:121.75(3) 英文名:Stibium;Antimony 俗称:精锑 用途:锑锭主要作为合金的硬化剂用于冶金、蓄电池及军工等工业,也是生产氧化锑的原料,锑锭还用于活字印刷
行业
、铅材、电缆护套、焊料和滑动轴承。 外观:银白色固体。 包装:锑锭每锭重约25公斤,木箱包装,每箱净重1000Kg,也可按用户要求进行包装。 物化性质:锑是一种
有色
重
金属
,质脆有光泽的银白色固体。有两种同素异形体,黄色变体在负90度下稳定,
金属
变体是锑的稳定形式。熔点630度,密度6.62克/厘米3,导热不良。锑系
金属
锑的简称,又名纯锑。锑锭是
金属
锑的锭状产品,为截角锥六面体。规定锭重不大于25公斤,其表面光滑,无熔碴,且有星状花纹呈现。锑的常用的
有色金属
之一,单纯的
金属
锑很少单独使用,除电镀以外,多以其他
金属
为基体形成合金使用。它是间接法生产锑白的原料。我国是世界上出产锑最多的国家,锑矿资源异常丰富,分布于湘、黔、滇、桂、陕、甘等省,其中尤以湖南为最。锑锭出口情况主要输往国家有美国、巴西、欧洲共同体和日本。国内锑锭的生产厂家很多,湖南锡矿山矿务局生产的“闪星”牌精锑、高纯锑和贵州晴隆、东峰锑矿生产的精锑久以闻名世界,还有通化冶炼厂的“吉星”牌,挑江县板溪锑矿生产的“久通”牌,沈阳冶炼厂的“矿工”牌,广西大厂矿务局、湘西金矿。
锑锭价格
2017-06-06 17:50:00
由于现货市场上锑价高,成交稀少以及其他有色金属价格在经历了持续三周的暴跌后和湖南受灾等原因,造成锑品价格有小幅的波动。但本周锑锭价格小幅下滑,锑锭市场成交清淡。湖南和云南部分氧化锑生产商虽然市场报价不变,但是现货实盘的价格都做了相应的调整。但是采购商期待价格进一步下跌,消费商宁愿观望市场推迟采购。目前目前国内三氧化二锑主流报价为:56000元/吨左右;0#锑锭主流报价为:60000元/吨,1#锑锭主流报价为:59200元/吨,2#锑锭主流报价为:59000元/吨。基本上锑锭价格已经滑落至60000元以下的价格。锑锭市场买卖双方在对峙了一个多星期后,一些生产商开始以出厂价55000-56000元/吨出货,而之前的成交价格为出厂价57000-58000元/吨。湖南有一年产能约8000吨的锑锭生产商。该生产商周二以出厂价55000元/吨的价格出售了60吨2#锑锭,比上周的价格下降了1000元/吨。“我们上周以出厂价56000元/吨卖了100吨2#锑锭,”该生产商透露。目前,该生产商有500-600吨的库存。他们认为由于国内外市场需求不旺,近期锑锭价格还会持续下滑。湖南另一生产商称他们上周以出厂价56000元/吨卖了100吨2#锑锭。“尽管我们目前对2#锑锭报出厂价57000元/吨,但如果付款方式合适,我们愿以出厂价56000元/吨的价格出货,”该消息人士说,并透露说他们本周还没有收到任何询盘。该生产商月产量约200吨锑锭,现在有100吨2#锑锭的库存。针对市场形势,该消息人士和上述生产商有着一样的看法,认为现货市场需求不旺,锑锭价格可能会继续下探。
铜的冶炼工艺
2018-12-13 10:40:31
从铜矿中开采出来的铜矿石,经过选矿成为含铜品位较高的铜精矿或者说是铜矿砂,铜精矿需要经过冶炼提成,才能成为精铜及铜制品。 目前,世界上铜的冶炼方式主要有两种:即火法冶炼与湿法冶炼(SX-EX) 1. 火法: 通过熔融冶炼和电解精火炼生产出阴极铜,也即电解铜,一般适于高品位的硫化铜矿。 除了铜精矿之外,废铜做为精炼铜的主要原料之一,包括旧废铜和新废铜,旧废铜来自旧设备和旧机器,废弃的楼房和地下管道;新废铜来自加工厂弃掉的铜屑(铜材的产出比为50%左右),一般废铜供应较稳定,废铜可以分为:裸杂铜:品位在90%以上;黄杂铜(电线):含铜物料(旧马达、电路板);由废铜和其他类似材料生产出的铜,也称为再生铜。 2.湿法: 一船适于低品位的氧化铜,生产出的精铜称为电积铜。 3. 火法和湿法两种工艺的特点 比较火法和湿法两种铜的生产工艺,有如下特点: (1)后者的冶炼设备更简单,但杂质含量较高,是前者的有益补充。 (2) 后者有局限性,受制于矿石的品位及类型。 (3) 前者的成本约在70-80美分/磅(约合1540-1760美元/吨),后者仅为30-40美分/磅(约合660-880美元/吨)。 可见,湿法冶炼技术具有相当大的优越性,但其适用范围却有局限性,并不是所有铜矿的冶炼都可采用该种工艺。不过通过技术改良,这几年已经有越来越多的国家,包括美国、智利、加拿大、澳大利亚、墨西哥及秘鲁等,将该工艺应用于更多的铜矿冶炼上。湿法冶炼技术的提高及应用的推广,降低了铜的生产成本,提高了铜矿产能,短期内增加了社会资源供给,造成社会总供给的相对过剩,对价格有拉动作用。1997年铜的期价由1996年的2600美元/吨高位跌至目前1998年11月的1600美元/吨左右,与湿法冶炼工艺比重的大大提高导致大量低成本铜上市有着直接的关系。 目前由于铜的平均生产成本在1400-1600美元/吨(64-73美分/磅),期价下跌是价格向价值的合理回归,随着冶炼工艺中其比重的不断增加,铜的价格走向将会受到越来越深远的影响。据报道,目前湿法炼铜最低成本只有20美分/磅(合450美元/吨),最高77美分/磅(合1697.5美元/吨),平均约低于50美分/磅(合1100美元/吨)。需要指出的是,在1995年湿法炼铜的平均生产成本还只有39美分/磅,近来湿法炼铜平均生产成本有所上升,主要是由于湿法炼铜工艺推广到了处理铜的硫化矿物的缘故。湿法炼铜工艺较适合处理铜的氧化矿物和贫矿,而处理硫化矿物及较富矿石时,或当矿山地处寒冷地区,采用湿法炼铜工艺,其生产成本亦较高,多在50美分/磅以上。 中国自70年代开始研究从低品位铜矿中提取铜技术,1983年建立了第一座湿法冶炼铜的工厂,年产120吨,近来由于引进了国外优良的铜莘取剂,加上地方铜工业的发展,现在已建成了几十座小型的湿法冶炼厂,规模从几百到2000吨不等,但年产铜仅1.5万吨,这与我国年产精炼铜100万吨的规模相比远远不够。目前我国铜的生产成本大约在18500元左右,远远高于世界平均水平1477美元(67美分)。"95"期间国家计委和中国有色金属工业总公司把湿法冶炼项目列为重点攻关项目,在德兴铜矿、玉龙铜矿、大冶铜录山铜矿等地建几个示范工厂,经过几年努力,估计至本世纪末我国的湿法技术会有较大发展,届时年产能估计可达5万吨以上。 据统计,1980年湿法炼铜的精铜产量占世界精铜产量的2.5%,1994年该比重提高到10%,1997估计提高到18%预计最终湿法产铜的比例将提高到25-35%之间。 单位:万吨1980199419971998湿法产铜比重2.5%10%18%20-25%湿法产铜量24108172.3225
再生铜冶炼工艺
2018-12-05 10:43:33
一、再生铜冶炼工艺 再生铜处理工艺取决于原料,约2/3的高品位铜废料不需要熔炼处理而直接用于铜产品生产,1/3的废杂铜需要熔炼处理。目前国内外回收利用废杂铜的方法很多,主要可分为两大类:第一类是将高质量的废杂铜直接冶炼成紫精铜或铜合金后供用户使用,称作直接利用;第二类是将废杂铜冶炼成阳极板后经电解精炼成电解铜后供用户使用,称为间接利用。其中,第二类方法根据原料分为高品位和低品位,从冶炼工艺上分为一段、二段和三段法冶炼。 一段法:铜品位>98%的紫杂铜、黄杂铜、电解残极等直接加入精炼炉内精炼成阳极,再电解生产阴极铜。 二段法:废杂铜在熔炼炉内先熔化,吹炼成粗铜,再经过精炼炉—电解精炼,产出阴极铜。 三段法:废杂铜及含铜废料经鼓风炉(或ISA炉、TBRC炉、卡尔多炉等)熔炼—转炉吹炼—阳极精炼—电解,产出阴极铜。原料品位可以低至含铜1%。 三段法原料综合利用率高,产出的烟尘成分简单、容易处理,粗铜品位较高,精炼炉操作比较容易,设备生产率也比较高等优点,但又有过程复杂、设备多、投资大且燃料消耗多等缺点。因而,再生铜的冶炼一般采用两段法与三段法相结合的工艺流程,此法有利于降低能耗并提高有价金属的综合回收利用。 二、主要冶炼工艺介绍 1、北德精炼凯撒冶炼厂凯撒回收再生系统(KRS) 北德精炼凯撒冶炼厂是目前世界上最大最先进的再生铜精炼厂。凯撒冶炼厂用1台ISA炉取代3台鼓风炉和1台PS转炉,处理含铜1%~80%的残渣和杂铜;ISA炉间断地进行熔炼和吹炼,含铜残渣和杂铜,先在ISA炉中进行还原熔炼,产出黑铜和硅酸盐炉渣,黑铜继续吹炼,产出含铜95%的粗铜。 2、奥地利MontanwerkeBrixlegg冶炼厂鼓风炉-转炉-反射炉工艺 Montanwerke Brixlegg冶炼厂是奥地利唯一的铜冶炼厂,原料为废杂铜,含铜在15%~99%。生产工艺由鼓风炉、PS转炉、固定式阳极炉及电解组成,是典型的三段法。 该工艺的特点是:不同品位的残渣和紫杂铜用不同的工艺流程生产不同的产品。含铜15%~70%的残渣原料先进鼓风炉,用焦炭还原生产出黑铜,再进转炉生产出粗铜;含铜75%以上的黑铜和铜合金直接进转炉,生产出含铜96%以上的粗铜进阳极炉精炼;含铜品位较高的杂铜、粗铜则直接进阳极炉精炼;而含铜品位更高的光亮铜则无需冶炼处理,直接加入感应电炉生产铜材,对原料的适应性很强。 3、比利时Metallo-Chimique 冶炼厂氧气顶吹旋转转炉(TBRC)冶炼工艺 Metallo-Chimique 冶炼厂的TBRC炉对原料的适应性强,处理的原料非常杂,品种很多。主要原料为含铜25%~30%的工业残渣、各种铜合金(黄铜、青铜等)、废旧电机、海绵铜、电缆、各种品位的杂铜等等,尤以处理含铜、铅、锡的低品位工业残渣、铜合金、难处理的杂铜为主。 4、卡尔多炉处理低品位废杂铜 卡尔多炉处理低品位废铜是一种先进的熔炼技术,主要体现在金属回收率高和环境效益好等方面,可以处理含铜15%-99%的废杂铜,适应性强,物料不用预处理,可以直接入炉,可以控制氧化和还原气氛。处理低品位废杂铜分加料、熔炼、放渣、吹炼、出铜5个步骤,在一台炉内分阶段完成,粗铜品位可达到96%。其反应过程通常用废杂铜原料中的铁作为还原剂,添加石英石熔剂。卡尔多炉处理废杂铜工艺是国外二段法处理废杂铜的一种先进工艺,国内大型冶炼厂,如江西铜业也引进该方法处理废杂铜。 5、NGL炉精炼废杂铜工艺 针对现有废杂铜处理技术的不足,中国瑞林工程技术有限公司研发了“NGL”炉废杂铜火法精炼工艺。 NGL炉是结合倾动炉和回转式阳极炉的优点而开发的,侧面有大的加料门和渣门,另一侧有氧化还原口和透气砖,炉体可在一定角度内转动。“NGL炉精炼废杂铜成套工艺及装备”首次在废杂铜精炼工艺中采用了氮气搅动技术,有效强化了精炼过程的传质传热,提高了生产效率。该工艺采用氧气卷吸燃烧的方式供热,大大提高了热效率,缩短了生产周期,使排出的烟气量减少了65%以上。 NGL炉精炼废杂铜成套工艺及装备于2010年开始,分别在山东金升集团东部铜业有限公司和广西有色集团再生金属有限公司进行了大规模的工业化应用,其4套250吨的NGL炉系统均于2012年投产。
锌冶炼工艺简述
2019-02-26 10:02:49
现在国际上经过锌精矿出产精粹锌的冶炼首要有两种工艺:火法冶炼和湿法冶炼。
火法炼锌中的竖罐蒸馏炼锌已趋筛选,电炉炼锌规划小且未见新的开展。密闭鼓风炉炼铅锌是国际上最首要的几乎是仅有的火法炼锌办法。国际上总共有15台(包含国内ISP工厂)密闭鼓风炉在进行锌的出产,占锌的总产值12%-13%,其技能开展首要是添加二次含铅锌物料的处理办法;改善冷凝功率;富氧技能的运用等。
湿法炼锌是当今国际最首要的炼锌办法,其产值占国际总锌产值的85%以上。近期国际新建和扩建的出产能力均选用湿法炼锌工艺。湿法炼锌技能开展很快,首要表现在:硫化锌精矿的直接氧压浸出;硫化锌精矿的常压富氧直接浸出;设备大型化,高效化;浸出渣归纳收回及无害化处理;工艺进程自动操控系统等几个方面。一、火法炼锌
在高温下,用碳作复原剂从氧化锌物猜中复原提取金属锌的进程就叫做火法炼锌。
1、冶炼办法介绍(一)横罐炼锌
横罐炼锌是20世纪初选用的首要的炼锌办法,一座蒸馏炉约有300个罐,出产周期为24h,每罐一周期出产20~30kg,残渣中含锌月5~10%,锌收回率只要80~90%。
横罐炼锌的出产进程简略,基建投资少,但因为罐体容积少,出产能力低,难以完成接连化和机械化出产。并且燃料及耐火材料的耗费大,锌的收回率还很低,所以现在已根本筛选。
(二)竖罐炼锌
竖罐炼锌具有接连性作业,出产率、金属收回率、机械化成都都很高的有点,但存在制团进程杂乱、耗费贵重的碳化硅耐火材料等缺乏。竖罐炼锌是20实践30年代应用于工业出产,现在已根本筛选,但现在在我国的锌出产仍占必定的位置。
(三)电炉炼锌
电炉炼锌的特点是直接加热炉料的办法,得到锌蒸汽和熔体产品,如冰铜、熔铅和熔渣等。因而此法可处理多金属锌精矿。此法锌的收回率约为90%,电耗在3000~3600KW·h/t(Zn)。电炉炼锌仅适于电力廉价的区域。
(四)鼓风炉炼锌(ISP法)
英国于1950年开展的办法,此法与罐式蒸馏法直接加热的办法不同,它是将热交换和氧化锌复原进程在同一容器内进行。鼓风炉既能处理锌、铅混合硫化矿或锌铅氧化矿,也能处理铅锌烟尘等,现在为火法炼锌的首要工艺。
硫化锌铅精矿经烧结焙烧成烧结矿,配以焦炭,参加鼓风炉内,鼓入预热空气,使炭焚烧,在高温文强复原性气氛中进行复原熔炼。复原所得锌蒸汽从炉顶扫除,经铅雨冷凝得粗锌,一起从炉底排出复原熔炼所产的粗铅。
2、冶炼工艺介绍
(一)竖罐炼锌
在高于锌沸点的温度下,于竖井式蒸馏罐内,用碳作复原剂复原氧化锌矿藏的球团,反响所发作锌蒸气经冷凝成液体金属锌。我国葫芦岛锌厂是我国惟一和国际仅存的两家竖罐炼锌厂之一。竖罐炼锌的出产工艺由硫化锌精矿氧化焙烧、焙砂制团和竖罐蒸馏三部分组成。竖罐炼锌炉示意图
(1)硫化锌精矿的氧化焙烧
一般硫化锌精矿的成分是:Zn46%-62%,S27%-34%,Pb
首要焙烧反响为:
2ZnS+3O2=2ZnO+2SO2
2SO2+O2=2SO3
ZnO+SO3=ZnSO4
4FeS2+11O2=2Fe2O3+8SO2
ZnO进而与Fe2O3生成铁酸锌ZnO.Fe2O3。
大型欢腾炉断面为圆形,下部设有耐高温炉底,炉底上等间隔按必定规矩摆放着风帽。炉底以上1m高左右设有焙砂溢流口,炉顶有烟气出口。加料室建在炉底部分扩出部分。含水6%左右的锌精矿自前室加进炉内,在风帽吹出风力煽动下,敏捷混入流态化层,被加热,发作焙烧反响。经过溢流口产出的焙砂送去制球团,烟气净化后送硫酸出产系统,捕集的烟尘供归纳利用。
欢腾焙烧的首要技能经济目标是:脱硫率90%,锌收回率99.5%,镉收回率85%,烟尘率23%。
(2)焙砂制团与焦结
竖罐蒸馏炼锌是气固反响进程,要求参加的物料有必要具有杰出透气性和传热功能,以及适当的热强度,抗压强度在4.9MPa以上。为此将锌焙砂制成团块并焦结处理。工艺上首先将锌焙砂和复原用粉煤、胶粘剂充沛混合、碾磨、限制成团块,然后送入机械化燃油枯燥库枯燥。枯燥后团矿用机械进步从炉顶参加焦结炉,在800℃温度下,在团矿中的焦性煤发作粘结效果下使团块焦结,一起干团矿中的残存水分蒸发分被完全除掉。
(3)竖罐蒸馏
竖罐本体是用机械强度高、传热功能好、高温下化学性安稳的碳化硅材料砌成的直井状炉体,横断面成细长矩形,高8-12m,受热面积100-110m2。
近代大型竖罐的尺度为(2535mm×2mm)×290mm×12261mm,两长边罐壁外侧各有煤气焚烧室,对罐内团矿进行直接加热。来自焦结炉的热团矿经密封料钟参加罐顶,下降进程中被加热到1000℃以上,团矿中ZnO复原反响开端剧烈进行:
ZnO+CO=CO2+Zn (1)
CO2+C=2CO (2)
ZnO复原反响首要是气一固反响,系统中(团矿中)配入过量的碳在1000℃高温下发作的CO在数量上完全能够确保反响(1)顺利完成。固体碳与ZnO间固一固复原反响只具有极非必须的含义。
复原发作的炉气中含气体锌约35%,经罐口下的上延部进入装有石墨转子的冷凝器,在转子扬起的锌雨捕集下,锌蒸气冷凝成了液态锌,守时从冷凝器中放出液态锌并铸成锌锭。出冷凝器的气体经过洗刷净化除掉剩下的锌,成为含CO80%左右、含H2约10%的罐气,悉数回来竖罐作为燃料。竖罐底部有接连工作的排渣机,蒸锌后的团块经此机械排出。竖罐炼锌的首要技能经济目标如下:锌冶炼收回率>94%;弃渣含锌
(二)密闭鼓风炉炼锌
该办法是在密闭炉顶的鼓风炉中,用碳质复原剂从铅锌精矿烧结块中复原出锌和铅,锌蒸气在铅雨冷凝中冷凝成锌,铅与炉渣进入炉缸,经中热前床使渣与铅别离。此办法是英国帝国熔炼公司(ImperialSmelting Corp.)研讨成功的,简称ISP,对质料适应性强,既能够处理原生硫化铅锌精矿,也能够熔炼次生含铅锌物料,能源耗费也比竖罐炼锌法低。密闭鼓风炉炼锌示意图
燃料焚烧和金属氧化物复原是密闭鼓风炉中的根本反响。参加炉内的焦炭在高温下与风口鼓入空气中的氧发作焚烧,发作炼锌进程所需的热量。首要熔炼反响为:
C+O2=CO2
CO2+C=2CO
ZnO+CO=Zn+CO2
CdO+CO2=Cd+CO2
PbO+CO=Pb+CO2
ISP的技能特点是:①选用密封高温炉顶(1000-1100℃),以避免锌蒸气进入铅雨冷凝器之前降温氧化;②选用高密度、低熔点、低蒸气压的铅作冷凝捕收锌蒸气介质,有利于锌蒸气的快速冷凝,避免氧化和铅锌别离;③选用高钙渣系(CaO/SiO2=1.0-1.5),渣型熔点高(125℃),密度较低,为下降炉渣含锌和渣与铅别离发明了有利条件。
密闭鼓风炉炼铅锌流程首要包含含铅锌物料烧结焙烧、密闭鼓风炉复原蒸发熔炼和铅雨冷凝器冷凝三部分。
(1)烧结焙烧
般铅锌精矿含Pb+Zn在45%-60%,与其他含锌物料混合配料后,在烧结机上脱硫烧结成块。烧结块要有必定的热强度,以确保炉内的透气性,烧结块的成分是(%):Zn41.4、Pb19.2、FeO 12、CaO 5.7、SiO2 3.8、S 0.8。
(2)密闭鼓风炉复原蒸发熔炼
前期炉子风口区断面积为5.1-6.4m2,现在最大的达27.2m2,大都工厂选用10m2和17.2m2。炉柱高度6m,炉高10.66m,风口内径159mm,共16个。炉顶设双层料钟密封加料器,炉身上部内砌轻质高铝砖,下部为高铝砖,炉缸用镁砖砌成,钢板外壁三杯水冷却。熔炼时,烧结块、石灰熔剂和经预热的焦炭分批自炉顶参加炉内,烧结块中的铅锌被复原,锌蒸气随CO2、CO烟气一道进入冷凝器,熔炼产品粗铅、铜锍和炉渣经过炉缸流进电热前床进行别离,炉渣烟气处理收回锌后弃去,锍和粗铅进一步处理。
(3)锌蒸气冷凝
冷凝设备为铅雨飞溅冷凝器,冷凝器外形长7-8m,高3m,宽5-6m,内设8个转子,浸入冷凝内的铅池中。转子扬起的铅雨使含锌蒸气炉气敏捷降温到600℃以下,使锌冷凝成锌液溶入铅池,铅液用泵不断循环,流出冷凝器铅液在水冷流槽中被冷却到450℃,然后进入别离槽,液体锌密度小在铅液上层,操控必定深度使其不断流出,浇铸成锌锭。
鼓风炉炼铅锌的首要技能经济目标为:热风温度950-1150℃,冷凝功率90%-92%,烟化炉渣含Pb 0.15%、Zn1.35%,粗锌含锌大于98%、含铅1.2%-1.5%,粗铅含铅大于98%、含锌0.1%,冶炼收回率Pb>93%、Zn>94%,原猜中S利用率90%-92%。
(三)电炉炼锌
20世纪30年代在国外呈现电炉炼锌技能。80年代,我国开端选用电炉炼锌技能,至今已有10多处小型火法炼锌厂推广应用,出产规划为500-2500t/a。
电炉炼锌是以电能为热源,在焦炭或煤等复原剂存在条件下,直接加热炉料使其间的ZnO成分接连复原成锌蒸气并冷凝成金属锌。该工艺能够处理高铜高铁锌矿,但要求质料含S不得大于1%,关于含S高的碳酸盐锌矿需求预脱除处理。
电炉形状为圆形或矩形,卧式,功率有500kW、1250kW、200kW和2250kW多种。炉床面积4-8m2,电极直径200-350mm。首要目标为:熔炼温度1250一1350℃,电能耗费4600kWh/tZn,残渣含锌3%-5%,粗锌档次98.7%,直收率80%,总收回率95%。
二、湿法炼锌
湿法炼锌是用稀硫酸(即废电解液)浸出锌焙烧矿得硫酸锌溶液,经净化后用电积的办法将锌从溶液中提取出来。当时,湿法炼锌具有出产规划大、能耗较低、劳动条件较好、易于完成机械化和自动化等优点在工业上占主导位置。
国际上近80-85%的锌均产自湿法冶炼,大大都选用酸浸出液电解,在惯例流程中,因为对其间浸渣的处理办法不同而派生出不同的湿法冶炼工艺。湿法炼锌示意图
(1)锌精矿焙烧
用空气或富氧,在高温下使锌精矿中ZnS氧化成ZnO和ZnSO4,一起除掉As、Sb、Cd等杂质的一种作业。焙烧产品焙砂,送去浸出锌,烟气或许制硫酸或许出产液态S02-湿法炼锌的精矿焙烧与火法焙烧不同,湿法炼锌焙砂中要求保存1%-2%的硫以SO42-形状存在,以弥补锌焙砂浸出时缺乏的硫酸。而火法炼锌精矿焙烧期望悉数ZnS都氧化为ZnO,以进步冶炼收回率。
(2)锌焙砂浸出与浸出液净化
焙砂浸出锌由中性浸出和酸性浸出两段组成。一段中性浸出选用废电解液,二段用硫酸作浸出液,酸度30-60 g/LH2SO4,浸出温度65-70℃。浸出液含Zn>120 g/L。影响浸出的要素有浸出温度、拌和速度、酸浓度、锌焙砂颗粒巨细等。ZnO浸出反响为:
ZnO+H2SO4=ZnSO4+H2O
为了进步锌焙砂中锌浸出率,选用空气拌和,以强化浸出进程。使难溶的ZnO.Fe2O3、ZnO.Al2O3及ZnS得以溶解。
(3)锌电解堆积
经过净化后的硫酸锌溶液参加添加剂,经过高位槽接连送入电解槽,槽中布以不溶性铅钙合金阳极和铝阴极。在南北极上施以直流电压时,电解液中的锌离子便不断在铅阴极上分出。电解最终发作的废电解液,部分送去作焙砂浸出剂,部分配成电解液回来。分出的锌铝阴极,每隔必守时刻(24-48h)取出,清洗后剥离锌片,然后熔化铸成锌锭,阴极经清洗加工后回来运用。锌电解堆积的根本反响是:
在阴极上 :Zn2++SO42-+2e=Zn+SO42-
在阳极上:2H+2OH--2e =1/2O2+2H++H20
总反响式:ZnSO4+H2O=Zn+H2SO4+1/2O2
三、部分冶炼厂冶炼工艺介绍
锑矿冶炼工艺概况
2019-02-22 14:08:07
锑矿冶炼工艺概略:锑的冶炼办法有火法和湿法两种。我国用的矿藏质料,主要是硫化矿(辉锑矿),其次是氧化矿和杂乱锑铅矿(主要是脆硫锑铅矿)。这些矿石一般要用选矿办法选出富块矿和精矿进行冶炼。
(1)火法炼锑 硫化矿经蒸发焙烧或蒸发熔炼,使Sb2S3变成Sb2O3(俗称锑氧),再经还原熔炼和精粹,成为金属锑。还可用沉积熔炼法直接出产粗锑。
(2)锑氧出产 有4种办法:①硫化锑块矿的蒸发焙烧;②硫化锑精矿闪速蒸发焙烧;③硫化锑精矿鼓风炉蒸发熔炼;④硫化锑精矿旋涡炉蒸发熔炼。
(3)还原熔炼和火法精粹蒸发焙烧和蒸发熔炼所产锑氧含杂质很少,配入煤和少数纯碱(Na2CO3),在反射炉内还原熔炼成粗锑。如需精粹,可持续参加纯碱,碱熔化后把压缩空气鼓入锑液,进行碱性精粹。
(4)电解精粹 选用电解办法进行精粹,能获得纯度较高的锑并能收回粗锑中的贵金属和其他有价值金属。
(5)沉积熔炼 此法适于处理富矿,不宜处理含铅的矿石。小规划出产多用坩埚炉,大规划出产用反射炉,有的厂用电炉。
(6)氧化锑矿石熔炼用鼓风炉熔炼成粗锑,鼓风炉习惯规划大,能够处理难熔矿石,对矿石档次要求不严厉,还答应氧化矿石中混有部分硫化矿。熔炼时以铁矿石、石灰石为熔剂,以焦炭为还原剂,产出粗锑。
(7)杂乱锑铅矿石熔炼这是一种难冶炼的矿石类型,广西大厂以脆硫锑铅矿为质料,选用欢腾炉焙烧,反射炉还原熔炼,所产粗合金吹炼蒸发锑、锑烟尘还原熔炼精粹出产高铅锑、精铅进行电解产精铅的办法。通过10多年的出产实践,已日趋老练,为杂乱的锑铅矿的处理积累了名贵经历。
火法炼锑是国内外传统选用的出产工艺,但由于在冶炼过程中,砷、硫污染环境严峻,因而迫使研讨使用新的湿法工艺。
(8)湿法炼锑用、溶液浸出硫化锑精矿,硫化锑与效果生成溶于水的硫代亚锑酸钠(Na3SbS3);以此溶液配制成阴极液,以溶液为阳极液,进行隔阂电积,得到含锑96%~98%的电锑。
我国对湿法炼锑的研讨使用已获得可喜的发展。80年代末,“氯化-水解法处理硫化锑精矿制取锑白新工艺实验”,已在几家厂商构成规划出产,“从浸取液中直接提取锑酸钠新工艺”研讨,也已使用于出产。氯(盐)氧化法制取锑酸钠,已在出产中选用。其特点是:质料习惯性强,含铅等杂质较高的锑矿也能处理,能归纳收回质猜中的锑和硫,基本上处理了硫烟污染问题。
(9)锑白出产锑白(Sb2O3)是锑的主要用途之一。我国用精锑出产锑白一般用反射炉。将精锑投入反射炉熔化,向锑液中鼓入一次空气,向液面上鼓入二次空气,使锑蒸气彻底氧化。氧化锑出炉后与很多冷空气集合,敏捷冷却,进入收尘体系,即得优质锑白。
(10)生锑生锑即工业用纯洁Sb2O3,是由高档次辉锑矿熔析而得,呈针状结晶,又称针锑。将硫化锑块矿破碎至粒度为20~30mm,在反射炉中增加1%~2%的纯碱助熔剂,于900~1000℃下,熔融分出,扒出残渣,出炉铸锭,即得含锑71%~73%的生锑。
铜冶炼新工艺
2017-06-06 17:50:11
铜冶炼新工艺,其工艺流程是:首先将铜精矿进碾矿机碾细至200目-400目,再经摇床重选分离出三种品种:含铜量达90%以上铜精粉,中矿、尾矿,其中铜精粉经脱水后直接进入熔炼炉熔炼;中矿回流碾矿机;尾矿进入浮选,浮选出含铜量90%以上的铜精粉经脱水后进熔炼炉熔炼;经熔炼炉熔炼所得粗铜最后经电解得精铜成品;本发明克服了传统铜冶炼以炉炼为主,空气污染严重,能源消耗高,生产成本高,产品质量差,产品总回收率低的问题,本发明重在选矿,加大低能耗的选矿力度,减少高能耗的冶炼炉的使用,提高了产品的回收率,大大降低了生产成本。 铜冶炼技术的发展经历了漫长的过程,但至今铜的冶炼仍以火法冶炼为主,其
产量
约占世界铜总
产量
的85%。1)火法冶炼一般是先将含铜百分之几或千分之几的原矿石,通过选矿提高到20-30%,作为铜精矿,在密闭鼓风炉、反射炉、电炉或闪速炉进行造锍熔炼,产出的熔锍(冰铜)接着送入转炉进行吹炼成粗铜,再在另一种反射炉内经过氧化精炼脱杂,或铸成阳极板进行电解,获得品位高达99.9%的电解铜。该流程简短、适应性强,铜的回收率可达95%,但因矿石中的硫在造锍和吹炼两阶段作为二氧化硫废气排出,不易回收,易造成污染。近年来出现如白银法、诺兰达法等熔池熔炼以及日本的三菱法等、火法冶炼逐渐向连续化、自动化发展。2)现代湿法冶炼有硫酸化焙烧-浸出-电积,浸出-萃取-电积,细菌浸出等法,适于低品位复杂矿、氧化铜矿、含铜废矿石的堆浸、槽浸选用或就地浸出。湿法冶炼技术正在逐步推广,预计本世纪末可达总
产量
的20%,湿法冶炼的推出使铜的冶炼成本大大降低。更多有关铜冶炼新工艺请详见于上海
有色
网
铬矿冶炼工艺了解
2019-01-04 09:45:31
增产降耗是铁合金生产永恒的话题,碳素铬铁生产亦是如此,尤其是近来铬矿资源馈乏,生产使用的铬矿往往品种杂乱,配矿单一,给工艺控制造成较大难度,稍有不慎则炉况恶化,生产不能顺行,技术经济指标难以控制。重庆铁合金(集团)有限责任公司近年来使用过十余中铬矿,在应对上述不利因素方面作了较多的探索。我们发现铬矿石中MgO与Al2O3的含量能直接反映铬矿的冶炼性能,针对不同的MgO/Al2O3值采取应对措施,效果明显,是碳素铬铁生产取得良好指标的关键。
1铬矿特性大致分类
1.1铬矿中的MgO/Al2O3值
传统上将铬矿石按粒度分为块矿和粉矿,按理化性能分为难熔矿和易熔矿。在生产实践中,我们发现铬矿的冶炼性能主要与其中MgO及Al2O3含量紧密相关。众所周知,矿石的粒度过小会影响炉料透气性,但可以通过一定的措施进行改善(如增大焦炭粒度、多加回炉渣铁等),矿石的熔化性能也可以通过改变其入炉粒度在一定程度上得到改善。而铬矿中如果MgO及Al2O3含量严重失调,则会使炉况不顺,生态平衡产业指标下滑。在生产实践中我们以铬矿的MgO/Al2O3值作为衡量铬矿冶炼性能的一个重要指标。一般我们将MgO/Al2O3〈1称为低镁铝比矿,MgO/Al2O3〉1.5称为高镁铝比矿,MgO/Al2O3=1~1.5为中度镁铝比矿。
1.2MgO/Al2O3值与铬矿冶炼性能
MgO属碱性氧化物,在溶液中可电离成为Mg2+及O2-,具有较强的导电能力,因此,如果炉料中MgO含量过高,将会使炉料及所形成的炉渣比电阻减小,导电能力增强,电流急剧增大,电极上抬,刺火严重,反应区缩小,炉渣流动性差,产量下降,电耗上升;Al2O3属高熔点氧化物,当其含量过高时,炉料及炉渣比电阻增大,容易使符合使用不足,电极深埋,料面死火,炉温低,产量下降,回收率低,炉渣粘稠,炉衬易损坏.当炉料中MgO与Al2O3的含量达到一定的比例时,形成一种平衡,此时炉料的导电性能\熔化性能以及炉渣的熔点\黏度等都能达到一种良好的状态。在生产过程中我们注意到,无论何种铬矿进行配搭,当炉料MgO/Al2O3
1.5以后,则会呈现前述MgO过高的炉况,而MgO/Al2O3值越高情况越严重。根据铬矿中不同的MgO/Al2O3值,生产中应该采取相应的对策。
2参数选择
2.1二次工作电压
对高MgO/Al2O3矿,应选择较低的二次工作电压;对低MgO/Al2O3矿宜选择较高的二次工作电压。以500kvA电炉为例,当MgO/Al2O3>1.4,二次电压选择为105~110V;当MgO/Al2O3
2.2极心圆直径
高MgO/Al2O3矿及块矿,应选择较大极心圆直径;低错误!链接无效。及粉矿,则应该选择较小极心圆直径。
2.3炉膛深度
通过长期实践摸索我们感觉到,在碳素铬铁生产中,较深的炉膛有利于增加料层厚度,预热炉料,深埋电极,保持炉缸温度,减小热散失,取得较好的技术指标。中小型矿热炉参数一般是通过米库林斯基简易计算法来确定,在计算值的基础上将炉膛加深20%能取得较好的效果。
3渣型与碱度过控制
碳素铬铁生产为有渣冶炼,控制合适的渣型是生产的关键环节。渣型不应是一个固定的形态,不应该只按百分含量去调整其中的氧化物成分,调配渣型最直观的依据是MgO/Al2O3值和碱度。
3.1MgO/Al2O3
在矿种的搭配上,应努力将炉料的综合MgO/Al2O3值调至适中的范围内,我们的实际体会是:如果将MgO/Al2O3值调配在1.05~1.2范围内,再配以合适的碱度能取得较理想的效果,此种渣型导电性能适中,有利于电极深插而用足负荷,炉况稳定,料面火焰均匀,产量高,电耗低,各项指标良好。如果矿石中MgO/Al2O3
3.2炉渣碱度
除了MgO/Al2O3以外,炉渣碱度(MgO+CaO)/SiO2也是一个重要指标.碱度主要是以硅石的配入量来调节,但不能单纯强调碱度,必须要将碱度与MgO/SiO2值进行综合考虑,当MgO/SiO2较大时可适当控制较低碱度,而MgO/SiO2值小时应控制较高碱度,以使炉渣具有恰当的熔点\黏度和导电性能。一般情况,如果MgO/SiO2值在1.05~1.2范围内,碱度控制为1.1~1.25能取得较好效果。
4合金成分控制
合金成分控制主要是指合金中C\Si\S等杂质元素的控制,这些元素在合金中的含量与铬矿的性能及生产技术经济指标有较直接的关系。
4.1[C]
根据铬铁生产精炼脱碳机理,炉内降碳需要两大条件:①要具有较高而且稳定的炉内温度②必须在炉缸高温区存在有足够量的残存Cr2O3。必须同时具备这两个因素,精炼脱碳反应才能进行,产品的含碳量才能有所降低。因此,块矿\高MgO/Al2O3矿能生产出含炭较低的碳素铬铁,反之,粉矿\低MgO/Al2O3矿所生产的铬铁含炭都较高。而生产含炭低的碳素铬铁产品因需要保持较高的炉温和炉缸残存Cr2O3,需造高熔点渣,单位电耗都较高。
4.2[Si]
合金中硅含量与炉温及还原剂用量直接相关,[Si]含量高将使还原剂用量增加,单位电耗升高,但过低的[Si]含量不利于[C]\[S]控制,如果矿石中MgO/Al2O3低时,[Si]过低会导致负荷使用不足。因此合金中[Si]的控制应考虑矿石中MgO/Al2O3值,MgO/Al2O3值高时宜控制较低的[Si],反之,应将[Si]控制得稍高。
4.3[S]
合金中的硫主要是由焦炭代入,在生产过程中控制合金含[S]量的有效手段主要有两方面:
4.3.1调配合适的渣型。适当增加炉渣中CaO的含量,有利于增强炉渣的脱硫能力,增大硫在炉渣中的分配率,降低合金的含硫量。
4.3.2控制合适的合金成分。合金中的[Si]及[C]含量增加,会在一定程度上降低[S]含量。生产过程中的脱硫将增加冶炼的负担,需要控制较高的合金[Si],较高的炉渣(CaO),使焦耗\电耗增加,因此应严格限制入炉原材料中的硫含量。
5结束语
MgO/Al2O3值是铬矿的一个重要指标,在生产中应根据矿石中MgO/Al2O3值,对电炉电气参数\渣型及合金成分等方面采取相应的控制措施,方能取得良好的生产技术经济指标。
赋存不同的冶炼工艺
2019-03-05 12:01:05
金矿选矿设备加工技能首要选用浮选、磁选、重选等工艺或湿法冶炼等办法。而金矿石冶炼工艺首要有火法冶炼、湿法冶炼。依据矿藏质料性质和有害组分锌、砷、氟、镁等含量、赋存状况而选用不同的冶炼工艺。 火法冶炼是常用的炼铜工艺,又分为鼓风炉熔炼、反射炉熔炼、电炉熔炼、闪速炉熔炼、诺兰达接连炼铜法等。湿法冶炼首要用于处理氧化矿石或含天然铜不高的单一矿石。因为运用的浸出剂不同,可分为: 1、硫酸浸出法,用以处理二氧化硅含量很高的酸性氧化矿石; 2、浸出法,用以处理含多量碱性矿藏的氧化矿石或天然铜贫矿; 3、细菌浸出法,用以处理低档次硫化矿石。 依据矿石天然类型的不同按其氧化铜和硫化铜的份额划分为三种类型:硫化矿石、氧化矿石、混合矿石。其加工技能如下: 1、硫化矿石多金属硫化矿石,针对矿石组分特性而别离选用混合浮选法、优先浮选法、混合优先浮选法、浮选和重选联合选矿法、浮选和磁选联合选矿法,以及浮选和湿法冶炼联合处理等; 2、氧化矿石选矿常用浮选与湿法冶炼联合处理或用离析法与浮选联合处理;含结合式氧化铜高地矿石,常用湿法冶炼处理; 3、混合矿石选矿常用浮选法,它能独自处理,或与硫化矿石一同处理;也能选用浮选和湿法冶炼联合处理。
钼铁冶炼工艺的介绍
2019-01-29 10:09:51
钼是钢铁工业重要的合金元素之一,添加有钼的钢铁量占了世界钢铁总产量的1/10。
作钢铁的合金添加剂是钼最重要的用途,近年世界总消费量的83%~85%用作钢铁合金添加剂。
钼添加进钢铁时,通常以钼铁、钼酸钙和钼压块形式,尤以钼铁形式最常见。
钼与铁可以按任何比例组成合金,申哈认为钼-铁固体化合物通常为MoFe(它在1180~1540℃时稳定)、Mo2Fe3(它到1480℃稳定)、MoFe2(它到950℃是稳定的)。钼铁合金中,除了含有Mo、MoFe、Mo2Fe3、MoFe2外,其他成份是Fe。
钼是难熔金属,熔点2622℃±10℃,钼铁合金的熔点随其中钼含量的增加而上升。含钼高于50%后的钼铁熔点比较高,含钼60%的钼铁熔点约为1800℃。所以,冶炼时欲放出熔融的液态钼铁将很困难。
铁合金冶炼通常都是金属氧化物被还原成金属的过程,钼铁的冶炼正是氧化钼还原为钼的反应。其原料是钼焙砂——工业(粗)三氧化钼粉。
钼的氧化物中,不论是三氧化钼,或者是二氧化钼。它们都能很容易地被碳、硅或铝还原成金属钼。
钼铁冶炼所用还原剂可以是碳,亦可以是硅或硅加铝。随所用还原剂的不同,冶炼方法、工艺和设备也迥异。钼铁产品标准见下表。
表 钼铁质量标准
标准等级含 量(%)备注Mo≥WSiSPCCuAsSbSnPb≤中国
GB3649-87FeMo7065~75 1.50.100.050.100.5 最大块10kg<1mm小块5%FeMo6060.0 2.00.100.050.150.5 0.040.04 FeMo55A55.0 1.00.100.080.200.5 0.050.06 FeMo55B55.0 1.50.150.100.251.0 0.080.08 美国ASTMA
132-64A55~70 1.50.250.102.0~2.51.0 B60.0 1.00.150.050.101.0 0.0100.01美国克莱麦克斯1971标准 60.0 1.00.150.050.100.2 原西德
DIN17561FeMo7060~75 1.00.100.100.100.5 FeMo6258~65 2.00.100.100.51.0 日本JISG
2307-1967FMoH55~65 3.00.200.106.00.5 FMoL60~70 2.00.080.060.10.5 前苏联ROCT4759-69¢M158.00.60.80.100.050.050.50.030.020.015 ¢M255.01.01.50.150.100.101.50.050.050.050 ¢M355.01.02.00.200.200.202.50.100.100.100
其它主要成份主要为Fe。
6082铝合金冶炼工艺
2018-12-27 16:25:50
1、熔炼 6082合金特点是含Mn,Mn是难熔金属,熔炼温度应控制在740-760℃。取样前均匀搅拌两次以上,保证金属完全熔化、温度准确、成分均匀。搅拌后在铝液深度的中部、炉膛左右两侧各取一个样进行分析,分折合格后即可转炉。 2、净化与铸造 熔体转入静置炉后,用氮气和精炼剂进行喷粉、喷气精炼,精炼温度735-745℃,时间15分钟,精炼完后静置30分钟。通过此过程除气、除渣、净化熔体。 熔铸时在铸模至炉口间有两道过滤装置,炉口有泡沫陶瓷过滤板(30PPI)过滤,铸造前用14目玻璃纤维丝布过滤,充分滤去熔体中的氧化物、夹渣。 6082合金铝板铸造温度偏高(较6063铝板正常工艺),铸造速度偏低,水流量偏大,上述工艺需严格控制,不能超出范围,否则容易导致铸造失败。
粗铜的生产工艺介绍 火法冶炼 湿法冶炼
2018-12-05 10:10:48
铜治金技术的发展经历了漫长的过程,但至今铜的冶炼仍以火法治炼为主,其产量约占世界铜总产量的85%,现代湿法冶炼的技术正在逐步推广,湿法冶炼的推出使铜的冶炼成本大大降低。 接下来会详细介绍火法冶炼与湿法冶炼(SX-EX)以及两种冶炼法的特点。a.火法炼铜: 通过熔融冶炼和电解精火炼生产出阴极铜,也即电解铜,一般适于高品位的硫化铜矿。火法冶炼一般是先将含铜百分之几或千分之几的原矿石,通过选矿提高到20-30%,作为铜精矿,在密闭鼓风炉、反射炉、电炉或闪速炉进行造锍熔炼,产出的熔锍(冰铜)接着送入转炉进行吹炼成粗铜,再在另一种反射炉内经过氧化精炼脱杂,或铸成阳极板进行电解,获得品位高达99.9%的电解铜。该流程简短、适应性强,铜的回收率可达95%,但因矿石中的硫在造锍和吹炼两阶段作为二氧化硫废气排出,不易回收,易造成污染。近年来出现如白银法、诺兰达法等熔池熔炼以及日本的三菱法等、火法冶炼逐渐向连续化、自动化发展。 生产过程大致如图: 除了铜精矿之外,废铜做为精炼铜的主要原料之一,包括旧废铜和新废铜,旧废铜来自旧设备和旧机器,废弃的楼房和地下管道;新废铜来自加工厂弃掉的铜屑(铜材的产出比为50%左右),一般废铜供应较稳定,废铜可以分为:裸杂铜:品位在90%以上;黄杂铜(电线):含铜物料(旧马达、电路板);由废铜和其他类似材料生产出的铜,也称为再生铜。b.湿法炼铜: 一船适于低品位的氧化铜,生产出的精铜称为电积铜。现代湿法冶炼有硫酸化焙烧-浸出-电积,浸出-萃取-电积,细菌浸出等法,适于低品位复杂矿、氧化铜矿、含铜废矿石的堆浸、槽浸选用或就地浸出。湿法冶炼技术正在逐步推广,预计本世纪末可达总产量的20%,湿法冶炼的推出使铜的冶炼成本大大降低。 湿法冶炼过程为:c.火法和湿法两种工艺的特点 比较火法和湿法两种铜的生产工艺,有如下特点:(1)后者的冶炼设备更简单,但杂质含量较高,是前者的有益补充。(2)后者有局限性,受制于矿石的品位及类型。 (3)前者的成本要比后者高。 可见,湿法冶炼技术具有相当大的优越性,但其适用范围却有局限性,并不是所有铜矿的冶炼都可采用该种工艺。不过通过技术改良,这几年已经有越来越多的国家,包括美国、智利、加拿大、澳大利亚、墨西哥及秘鲁等,将该工艺应用于更多的铜矿冶炼上。湿法冶炼技术的提高及应用的推广,降低了铜的生产成本,提高了铜矿产能,短期内增加了社会资源供给,造成社会总供给的相对过剩,对价格有拉动作用。
铅的湿法冶炼工艺—引言
2019-02-14 10:39:59
为了彻底消除火法炼铅发生的污染,各国冶金工作者长时间展开了湿法炼铅的研讨,其间较为成功的有:美国矿务局进行的方铅矿浸出-融盐电解制取金属铅的实验[1]; Forward等[2]进行的在有机铵系统中对方铅矿加压氧化成硫酸铅,然后通入二氧化碳气体,沉积出碳酸铅,再用低温熔炼,把碳酸铅还原成金属铅的实验;Bratt[3]等展开了用高浓度-硫酸铵溶液浸出氧化铅和硫酸铅,再用沉积、溶解、电解等进程出产金属铅的实验。可是这些办法因进程杂乱、介质腐蚀性强、出产成本高级原因,没有有完成工业化的报导。 中国科学院进程工程研讨所陆克源等在20世纪80年代成功研讨了碳酸化转化炼铅工艺[4,5],该工艺具有以下特色, (1)进程简略、操作条件温文、易于工业化。 (2)对矿石适应性强,综合利用好,能处理低档次铅矿和多金属杂乱铅矿。 (3)金属回收率高,产品多样化(金属铅和各种铅的化工产品),经济效益好。 (4)为全湿法操作,基本上消除了三废污染。 参考文献: 1 M. M. Wong,R G. Sandberg and C.H. Elges,Ferric Chloride Leach-Electrolysis Process for Production of Lead,U. S. Bureau of Mines,Rep. Invest.(1983),No. 8770 2 F. A. Forward,H. Veltman and A.Vizsolyi,Aqueous Oxidation of Galena Under Pressure in Amine Solutions,International Mineral Processing Congress 1960,Instn. Min. Metall.,London,p. 823-837 3 G. C. Bratt and R. W. Pickering,Production of Lead Via Ammoniacal Ammonium Sulfate Leaching Met. Trans.,I(1970),P. 2141~2149 4 K. Y. Lu and C. Y. Chen,Conversion of Galena to Lead Carbonate in Ammonium Carbonate Solution-A New Approach to Lead Hydrometallurgy,Hydrometallurgy,17(1976)p. 73-83 5 陆克源,陈家铺.碳酸钠转化处理铅基金矿或铅矿工艺.中国专利ZL89109462. 8(1989)
金矿冶炼工艺流程
2019-03-06 10:10:51
黄金的冶炼进程一般为: 预处理 ——浸取 —— 收回 —— 精粹
1.4.1矿石的预处理办法矿石的预处理办法分为: 焙烧法、化学氧化法、微生物氧化法、其他预处理办法。
1、焙烧法焙烧是将砷、锑硫化物分化,使金粒露出出来,使含碳物质失掉活性。它是处理难浸金矿最经典的办法之一。焙烧法的长处是工艺简略,操作简洁,适用性强,缺陷是环境污染严峻。
2、化学氧化法化学氧化法首要包含常压化学氧化法和加压化学氧化法。
常压化学氧化法是为处理碳质金矿而发展起来的一种办法。常温常压下增加化学试剂进行氧化,如常压加碱氧化,在碱性条件下,将黄铁矿氧化成Fe2(SO)3,砷氧化成As(OH)3和As203,后者进一步生成盐,能够脱除。
加压氧化法具有金收回率高(90%-98%)、环境污染小、习惯面广等长处,处理大多数含砷硫难处理金矿石或金精矿均能取得满足效果。加压氧化包含高压氧化、低压氧化和高温加压氧化。如加压硝酸氧化法,用硝酸将砷和硫氧化成亚和硫酸,使包裹金充沛化离,金的浸出率在95%以上,缺陷是酸耗较高。
3、微生物氧化法微生物氧化又称细菌氧化,它是使用细菌氧化矿石中包裹了金的硫化物和砷化物而将金暴露出来的一种预处理办法。现在,细菌浸出可用于处理矿石和精矿,对精矿一般选用拌和浸出,关于低档次矿石则多选用堆浸。
4、其他预处理办法石灰一压缩空气预处理法能够代替焙烧法,用以处理含黄铁矿和砷黄铁矿的金矿石,能使砷构成慵懒组分留在残渣中。
炭浸法和炭氯法是处理碳质难浸金矿石的直接办法。炭浸法即在有活性炭存在时对矿石进行浸出。炭氯法是将和活性炭一起参加到矿浆中,金溶解并转化成金氯合作物,然后在炭粒表面还原成金属金。浸出后,从矿浆中筛出载金炭并收回金,金收回率达90%。
1.4.2浸取金的化学性质十分安稳,一般情况下不与酸、碱反响,但与混合酸和一些特殊试剂反响生成可溶性合作物。从含金矿石中提取金的办法有多种,详细挑选哪种办法取决于矿石的化学组成、矿藏组成、金的赋存状况及对产品的要求。
1、物理办法物理办法分为混法、重选法、浮选法
(1)混法:混法是收回粗粒单体金的有用办法。该办法是将含黄金的矿石与碾磨,使Au溶于中成金齐,再将蒸腾便得到粗金。混法提金收率在50%—60%之间。该法对高档次黄金矿处理比较适宜,不适于碲金矿、砷锑金矿。
(2)重选法:重选法是使用黄金与脉石的密度差异进行重力分选的办法,是人们从金矿中收回黄金的最陈旧的办法。重选法在脉金矿的选矿或提取工艺中,首要用于磨矿回路收回粗粒单体金。对砂矿的提金该法占主导,砂矿经粗选后须再选用重选、磁选、电选或由这些办法组成的联合流程精选,最终选用火法冶炼取得成色为85%一92%的制品金。
(3)浮选法:浮选法是一种重要而有用的富集金属矿的办法。该法很合适收回0.84mm的金粒。冶炼低档次金矿和金矿尾矿常用此法,该法对含金、铜、铅、锌的硫化矿也适用。浮选法关键在于捕收剂的挑选。
2、化学办法化学办法分为化法(又分:化助浸工艺、堆浸工艺)与非化法(又分:法、硫代硫酸盐法、多硫化物法、氯化法、石硫合剂法、硫酸盐法、化法、碘化法、其他无提金法)。
(1)化助浸工艺:化助浸工艺首要有富氧浸出和液相氧化剂辅佐浸出,如增加过氧化氢或,助浸,加温加压助浸,加Pb(NO3)2助浸等。
(2)堆浸工艺:一般,因为矿石均匀档次低,堆浸浸出率较低(50%~70%),但因为堆浸为大规模出产,并且可通过改善制粒和喷淋办法,强化微生物效果,增加强化试剂、纯氧口。别的,浸出设备的改善也可进步浸出率。堆浸法工艺老练,流程简略,成本低,可是对矿石习惯性差,浸出速度慢,周期长,耗量高,废液严峻污染环境,且易受铜、铁、铅、锌、硫和砷等杂质的搅扰。
(3)法:提金办法较多,常见的有铁浆法、炭浆法、离子交换树脂法、锌粉(铝粉,铅粉)置换法、电积法、溶剂萃取法等,工业上使用较多的是铁浆法、锌粉(铝粉)置换法。用提金,溶金速度快,比化法快4—5倍,可避免浸出进程中呈现钝化现象;挑选性高,对一些难选难浸矿石浸出率高。缺陷是它不合适处理含碱性脉石较多的矿石,并且报价较贵,从贵液中收回金的工艺尚不老练比。
(4) 硫代硫酸盐法:硫代硫酸盐浸出法是根据碱性条件下,金能与硫代硫酸盐构成安稳的合作物Au(S2O3)23-。为避免S2O32-分化,常参加SO2或盐作安稳剂。研讨标明,在Cu2+催化效果下,金的溶解速度可进步17~19倍。该法特别适于处理含铜、锰、砷的难处理金矿石及碳质金矿。该法速度快,无毒,对杂质不灵敏,金浸出率高,但硫代硫酸盐耗量高,不安稳,所以至今没有推广使用。
(5) 多硫化物法: 使用含多硫螯合离子S22-、S23- 、S24-、S25-的多硫化物与适宜的氧化剂,通过多硫离子本身的岐化效果与金反响生成合作物。该法适于处理含砷、锑的含金硫化矿精矿。多硫化物的特点是挑选性强,浸出速度快,浸出周期短,金浸出率高达80%~99%。该法的缺陷是热安稳性差,分化发作和气,对环境有污染,对设备密闭性要求高。
(6) 氯化法:氯化法使用的是氯的强氧化性。在金一氯一水体系中,金被氯化而发作氧化并与氯离子合作进入溶液,故亦称水氯化法。氯化法有多种形式,如空气氧化一氯化浸金法,处理含砷碳质金矿,金浸出率达94%;焙烧一氯化浸金法,金浸出率达98%,比直接氯化浸金法高4%;炭氯浸金法,可使矿石预处理、浸出与收回在同一体系中进行;闪速氯化法,对传统的水溶化法进行改善,使通入的高度涣散,可进步6%的金提取率,并下降25%的耗费;电化学氧化法,在矿浆中参加氯化钠然后通电,使用电解发作的次氯酸盐使碳质矿石氧化。
(7)石硫合剂法: 石硫合剂法的原理是电化学一催化原理。可浸出含碳、砷、铜、锑、铅等的难处理矿石。
(8) 硫酸盐法:硫酸盐具有溶解金的才能。在酸性条件下,以MnO2作氧化剂,SCN-作合作剂,使用SCN-与Au的较强的配位才能,MnO2可先将SCN-氧化为可溶于水的(SCN)2,然后由它再将金、银氧化成可溶性配离子。此法金浸出率高,反响速率快,不污染环境。
(9) 化法和碘化法一化物浸出与氯一氯化物浸出类似。化法的特点是浸出快,金收回率高,试剂无毒,药剂费用与氯化法相差不大。
(10) 其他无提金法其他非试剂浸金法还有生物有机试剂法,如基酸类、类化合物和腐植酸类等。基酸类分子在适宜的氧化剂如效果下可使用其分子中的氮氧配位原子与金构成有利的可溶性螯合物,使金溶解。
1.4.3溶解金的收回办法溶解金的收回一般选用锌置换法和炭吸附法,树脂吸附技能也开端用于工业出产。分为:锌置换沉淀法、炭吸附法、离子交换法、其它收回办法。
1、锌置换沉淀法锌置换沉淀法也称为Merrill—Crowe法.金的收回率一般可达97.5%以上,且反响速度快,金停留量小。
2、炭吸附法包含炭吸附法(CIP)与炭浸出法(CIL)。CIP是在浸出完成后将活性炭参加专门的吸附槽中。从矿浆中吸附金,吸附时刻大约为浸出时刻的l/5;CIL则是把炭加在浸出槽中吸附金。
3、离子交换法阳离子交换树脂一般制成强碱性、弱碱性或二者的混合树脂
4、其它收回办法溶剂革取比较固体离子交换剂提金有速度快、挑选性好、抗中毒等长处。
1.4.4精粹办法首要有全湿法,它包含电解法、法、法、氯化法、还原法火法、湿法一火法联合法。
精炼炉冶炼工艺改进
2019-01-25 13:37:59
1前语 超高功率电炉快节奏出产是节省冶炼电耗、下降吨钢本钱的有用手法;完成高附加值的优质钢高质量、快节奏的出产,能有用地进步炼钢厂的技经目标和市场竞争力。南京钢铁集团电炉厂在讨论快节奏出产优钢时,经过设备改造、技术进步及工艺改善.取得了较好的作用。2工艺配备条件2.1电炉 100tUHP—EAF—EBT,炉壳内径5900mm,炉容927m3,变压器6O(1+02)MVA,1只主氧及设备2支炉壁module氧燃,2只烧嘴,1支EBT氧,3支底吹拌和元件。22精粹炉及VOD炉 UHP—IF炉,变压器l2+2O%MVA、在线安置;二次精粹设备包含一座真空脱气VD,装有真空吹氧脱碳VOD,以及一个独自的钢水成分和温度的精调站。处理才干:钢包容量LF:100t,LF+VD处理80t,LF+V0[I7Ot。2、3连铸机 5机5流方/矩坯,R80m,方坯截面130mm×130mm.150mm×150mm,矩坯150mm×220mm,配结晶器电磁拌和设备,结晶器液面检测及主动操控设备。2.4质料 热装铁水比30%~40%,选用一次废钢和一罐铁水的装料准则,部分炉次可实施庋钢预热。3冶炼钢类及质量希望目标3.1冶炼优质钢及舍金钢种规模 矿用钢丝绳钢、轮胎子午线钢丝绳用钢、预应力钢丝用钢、工具钢、冷墩钢、绷簧用带(线)钢、合金钢等。4工艺操控要害4.1成分要求 结尾成分:[c]>03%,且低于制品钢成分下限-0.10%,[P]5出产节奏5.1精粹炉 精粹炉在线安置,精粹完毕钢包喂丝吊离,空钢包吊入及预备到出钢部位,一般需求lO~12rain;出钢及钢水由电炉下到LF精粹位,一般需求4~5rain;在精粹炉最太答应逗留(精粹)时刻一般在30~40min。6出产实验及作用 结尾[C]操控的精确性与金属猜中生铁(铁水)量、废钢中铸铁件在废钢中的散布和加人炉内的各批料的次序有关,操作者供氧办法及炉内熔化有关;一般在熔清~段时刻后选用提早取样分析,依据熔池[C]断定补吹氧量;熔池熔清状况不定,熔池[C]不均匀,按一次取样分析,成果供氧操控误差较大:或许[C]高于结尾出钢[C]上限,或许已远低于确保的低限[C]操控值。为此,或许需求选用取样一分析一补吹氧一分析的循环办法,正常废钢取样l~2次,非正常耗时0~1.5min。若废钢中含较多铸铁件时;中层定位取样l~3次,非正常耗时l~3min;恣意方位,非正常耗时4~1Omin。这就形成冶炼周期延伸,影响出产节奏。6.1精确断定供氧与熔池脱碳速度联系 消除熔化滞后区和表面熔化、熔池F部部分未熔化现象,才干做到熔池成分、温度根本均匀共同,出产安排中采纳了如下办法:(1)尽量进步铁水热装量:在废钢熔化一起,供氧就与铁水c:反响发生热量,进步前期温度,加速废钢熔化和化学反响速度缩短冶炼时刻。(2)废钢质量做到分类,含铸铁件及大块废钢,装在废钢料篮中部,在废钢人炉时尽量使铸铁件处于电极下部,铸铁件提早熔化。(3)炉墙氧燃及EBT氧尽早运用,消除炉内冷区废钢滞后熔化现象。(4)废钢根本熔清时,氧燃持续供氧,炉壁氧燃沿炉墙切向对钢水供氧的动力带动边部钢水循环,底吹Ar气拌和,钢水向上部翻卷,电极供电发生磁场的切开磁力线带动炉内钢水循环,供氧表面脱[C]的钢水及部分[C]进入熔池深部及非氧气掩盖区,发生[C]反响,促进炉内钢水成分温度的均匀,取样及测温代表性增强。此种办法下供氧脱碳速度安稳,算的精确率大幅进步,取样次数削减,冶炼节奏加速,一起冶炼电耗也大幅下降。6.2精粹炉冶炼工艺改善 快节奏出产种类钢,在线精粹炉冶炼已成为出产安排的瓶颈,加速优质钢脱氧、造渣、成分调整速度是进步全体作业水平的要害之一。实验选用下列办法,强化LF精粹作用:(1)精粹前的预脱氧:在电炉出钢前,将部分脱氧造渣剂先行加人包底,使用出钢时钢水落人包内的冲击、拌和动能,添加钢水与脱氧剂的触摸反响界及分散速度,是脱氧反响动力学条件最好阶段,此种办法运用妥当,将使精粹炉造自渣能在钢包到站精粹2~5min内完成,脱氧进展提早1/5~1/4。使用电炉出钢进行强脱氧,不占用工艺流程中的额定时刻。(2)精粹炉脱氧、脱硫:挑选具有强脱氧才干的脱氧剂是加速精粹炉脱氧速度的有用办法。实验用以caC2为主要成分的脱氧剂在精琼初期加人,使白渣成渣时刻提早4~8min,精粹中期加八通用造渣剂坚持白渣.能有用地将钢水中[0]降到18×10之下;脱氧速度加速。(3)EAF—LF温度:种类钢冶炼,电炉出钢恰当进步温度,对精粹炉到站取样误差可缩小到0.01%~0.03%;较低的温度,LF必须在供电5min之后才干取样分析,可进行[c成分调整时刻被缩短;一起恰当的高温,精粹炉成渣及白渣加速,脱s功率进步。进步到精粹炉温度,是缩短精粹处理时刻的有用手法之,但它并不会形成冶炼电耗(EAF+I)添加。6.3改善连铸工艺(1)维护浇铸改善:大包到中包,选用—c维护护套管,大包滑动水口与维护套管间选用Ar气维护,削减钢水在浇铸进程中的吸气,削减此进程钢水二次氧化及吸氧。成功的维护浇注。(2)主动液面操控有用安稳铸坯速度,削减拉漏。(3)结晶器下部电磁拌和,铸坯表面和亚表面层的搀杂削减,表面质量进步,一起能削减中心偏析及疏松。7完毕语 选用热装铁水、氧(燃)归纳供氧、出钢脱氧低、过热度恰当、快拉等先进工艺,加上严厉的出产管理.到达要点工艺的科学完成,在确保具有较高钢质的状况下,完成快节奏的出产。
钴硫精矿的冶炼工艺
2019-01-18 11:39:38
国内将含钴的黄铁矿和磁黄铁矿精矿通称钴硫精矿,是国内主要炼钴原料之一。南京钢厂、葫芦岛锌厂、湖北光化磷肥厂和山东淄博钴厂四个厂家利用这种原料。其中葫芦岛锌厂的产品是二号电钴,采用硫酸化焙烧→浸出→脂肪酸脱铁铜→沉钴→还原铸阳极→阳极液净化→隔膜电解的方法,因生产成本高,现已停产。南京钢厂曾采用氧化焙烧——烧渣中温氯化焙烧工艺,湖北光化磷肥厂采用氧化焙烧——烧渣硫酸化焙烧工艺。但由于钴硫精矿含钴太低,一般都小于0.3%,加上回收钴的工艺流程复杂,普遍无利可图,所以,这些厂在生产一段时间后,又停止了生产。山东淄博钴厂利用钴硫精矿和含钴原料生产硫化钴、氧化钴、氯化钴、硫酸钴等产品。
钴的冶炼回收工艺
2019-01-07 17:37:56
加工生产金属钴和高纯度氧化钴的技术要求高,冶炼流程复杂,加上能耗高和污染等问题,一般不适合民间冶炼。根据不同炼钴原料主要有如下几种冶炼回收工艺。 1.钴土矿冶炼工艺 建国初期,钴土矿主要作为制取氧化钴的原料。工艺流程大体上是将钴土矿用鼓风炉或电弧炉还原熔炼成钴铁,经退火或焙烧后,用酸浸得到含钴溶液,再经净化处理,沉淀出亚硝酸钴钾,然后焙解和粉碎制得工业氧化钴粉。潮州冶炼厂和赣州钴冶炼厂等厂家曾采用此工艺回收过钴。现在已没有厂家利用这种原料生产钴产品了。 2.钴硫精矿的冶炼工艺 国内将含钴的黄铁矿和磁黄铁矿精矿通称钴硫精矿,是国内主要炼钴原料之一。南京钢厂、葫芦岛锌厂、湖北光化磷肥厂和山东淄博钴厂四个厂家利用这种原料。其中葫芦岛锌厂的产品是二号电钴,采用硫酸化焙烧→浸出→脂肪酸脱铁铜→沉钴→还原铸阳极→阳极液净化→隔膜电解的方法,因生产成本高,现已停产。南京钢厂曾采用氧化焙烧——烧渣中温氯化焙烧工艺,湖北光化磷肥厂采用氧化焙烧——烧渣硫酸化焙烧工艺。但由于钴硫精矿含钴太低,一般都小于0.3%,加上回收钴的工艺流程复杂,普遍无利可图,所以,这些厂在生产一段时间后,又停止了生产。山东淄博钴厂利用钴硫精矿和含钴原料生产硫化钴、氧化钴、氯化钴、硫酸钴等产品。 3.砷钴矿冶炼工艺 赣州钴冶炼厂是国内唯一使用这种原料的厂家,原料从摩洛哥进口,该厂采用电炉熔炼→脱砷焙烧→二段浸出除铁砷→Na2S2O3脱铜→沉钴→还原铸阳极→净化→隔膜电解法生产氧化钴和电钴。 4.冶炼副产品中提钴的冶炼工艺 镍电解液净化产出的钴渣为主要原料。甘肃金川有色金属公司的生产流程为钴渣→浸出除铁→二次沉钴→还原铸阳极→阳极液净化→隔膜电解。该公司在许多生产、设计和科研单位的协助下在大量试验研究基础上确定了转炉渣提钴新工艺,该工艺采用电炉贫化获得钴硫,转炉吹炼富钴硫,加压氧化浸出技术,镍、钴、铜的浸出率高,反应速度快,浸出渣沉降性能好,钴的冶炼回收率达50%左右。金川有色金属公司采用硫酸溶解法从镍电解系统净化钴渣中回收钴,钴的回收率达到85%以上,同时,硫酸溶解钴渣还生产纯氧化钴粉。 5.从含钴废料提钴的工艺 二次提钴的工艺较简单,原料便宜,又不一定非要产出金属钴,因此,国内一些厂家已经开始利用含钴废料生产钴产品了。镇江冶炼厂利用各种含钴工业废料及钴硫精矿生产各类钴盐,采用流程为钴原料→净化提纯→合成→各类钴盐。江苏阜宁化工厂利用磁钢熔渣和砂轮磨屑等废料生产钴盐,采用流程为钴原料→酸溶造液→除铁→萃取→结晶。另外,赣州钴冶炼厂处理过废触媒,葫芦岛锌厂处理过磁钢渣,上海和沈阳冶炼厂处理过高温合金。 目前,国内已能利用矿山生产的各种原料生产高纯度电解钴、氧化钴粉和钴盐,生产加工工艺也得到很大发展,溶剂萃取技术在湿法炼钴中普遍得到应用。
红土镍矿冶炼工艺
2019-02-22 12:01:55
我国的镍矿类型首要分为硫化铜镍矿和红土镍矿。红土镍矿的镍含量低于硫化镍矿,曩昔不受注重,但跟着可挖掘的硫化镍矿资源的日益干涸和镍需求的报价举高,厂商开端把注意力转向红土镍矿,国内乃至有些钢铁厂商计划很多进口印尼红土镍矿,以加工下降出产成本。跟着红土镍矿资源不断地开发,红土的镍矿冶炼工艺也越来越遭到人们的重视。
一般来说,现在咱们将红土镍矿的冶炼工艺分为三类,即火法工艺、湿法工艺以及火法-湿法结合工艺。下面我国矿产商业网专家就为您详细解说各个冶炼工艺的处理流程。
1、火法工艺
红土镍矿的火法冶炼工艺还能够分为:镍铁工艺、镍硫工艺以及复原焙烧-磁选法三类。
(1)镍铁工艺
镍铁是选用火法工艺处理镍红土矿的产品,其工艺流程为:首先将矿石破碎到50-150mm,在回转窑煅烧,700℃产出焙砂,将其加电炉,再参加10-30mm的挥发性煤,经过1000℃的复原熔炼,产出粗镍铁合金,再经过吹炼产出制品镍铁合金。
(2)镍硫工艺
该工艺是在出产镍铁工艺的1500-1600℃熔炼进程中,参加,产出低镍硫,再经过转炉吹炼出产高镍硫。出产高镍硫的主见工厂有:法国镍公司、印尼的苏拉威西.梭罗阿科冶炼厂。
(3)复原焙烧-磁选法
该法是使用粉煤灰作为复原剂,在450℃高温下激烈复原固相氧化镍和氧化钴,使焙砂中的镍和钴100%呈金属状况,然后经过湿式磁选收回镍和钴。
2、湿法工艺
红土镍矿的湿法冶炼工艺可分为:复原焙烧-浸工艺和常压酸浸工艺,此外还有加压酸浸工艺、微波加热-FeCl3氯化法、生物浸出工艺等。
(1)复原焙烧-浸工艺
该法是由Caron教授创造,最早在古巴得到应有。工艺为:将红土700℃温度复原焙烧成镍、钴合金,再经过多级逆流浸。镍、钴等金属进入浸出液。浸出液经硫化沉积,沉积母液再除铁、蒸,产出碱式硫酸内,煅烧后转化成氧化镍,也可经复原出产镍粉。
(2)常压酸浸工艺
该法是现在红土矿处理工艺研讨较为抢手的方向。工艺为:对镍红土矿先进行磨矿和分级处理,将磨细后的矿浆与洗涤液和硫酸按必定的份额在加热的条件下反响,将矿石中的镍浸出进入溶液,再选用碳酸钙进行中和处理,过滤进行固液别离,得到浸出液用CaO或Na2S做沉积剂进行沉镍。
3、火法-湿法结合工艺
火法-湿法结合工艺的工厂,现在世界上只要日本冶金公司的大江山冶炼厂。首要工艺进程为:原矿磨细与粉煤混合制团,团矿经枯燥和高温复原焙烧,焙烧矿团再磨细,矿浆进行选矿别离得到镍铁合金产品。
信任跟着硫化镍矿资源的日益匮乏,镍产值的扩大将首要依托与红土镍矿。红土镍矿的冶炼工艺也将成为镍职业能否快速开展的关键所在。
高炉冶炼主要工艺设备简介
2019-03-06 10:10:51
铁设备组成有:①高炉本体;②供料设备;③送风设备;④喷吹设备;⑤煤气处理设备;⑥渣铁处理设备。
一般,辅佐体系的建造出资是高炉本体的4~5倍。出产中,各个体系互相配合、互相制约,构成一个接连的、大规模的高温出产过程。高炉开炉之后,整个体系有必要日以继夜地接连出产,除了方案检修和特殊事端暂时休风外,一般要到一代寿数终了时才停炉。
高炉炼铁体系(炉体体系、渣处理体系、上料体系、除尘体系、送风体系)首要设备扼要介绍一下。
1、高炉
高炉炉本体较为杂乱,本文在最终附有专门介绍。
横断面为圆形的炼铁竖炉。用钢板作炉壳,壳内砌耐火砖内衬。高炉本体自上而下分为炉喉、炉身、炉腰、炉腹 、炉缸5部分。因为高炉炼铁技 术经济指标杰出,工艺 简略 ,出产量大,劳动出产效率高,能耗低一级长处,故这种办法出产的铁占国际铁总产量的绝大部分。高炉出产时从炉顶装入铁矿石、焦炭、造渣用熔剂(石灰石),从坐落炉子下部沿炉周的风口吹入经预热的空气。在高温下焦炭(有的高炉也喷吹煤粉、重油、天然气等辅佐燃料)中的碳同鼓入空气中的氧焚烧生成的和,在炉内上升过程中除掉铁矿石中的氧,然后复原得到铁。炼出的铁水从铁口放出。铁矿石中未复原的杂质和石灰石等熔剂结合生成炉渣,从渣口排出。发生的煤气从炉顶排出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。高炉冶炼的首要产品是生铁 ,还有副产高炉渣和高炉煤气。
2、高炉除尘器
用来搜集高炉煤气中所含尘埃的设备。高炉用除尘器有重力除尘器、离心除尘器、旋风除尘器、洗刷塔、文氏管、洗气机、电除尘器、布袋除尘器等。粗粒尘埃(>60~90um),可用重力除尘器、离心除尘器及旋风除尘器等除尘;细粒尘埃则需用洗气机、电除尘器等除尘设备。
3、高炉鼓风机
高炉最重要的动力设备。它不光直接供应高炉冶炼所需的氧气,并且供应战胜高炉料柱阻力所需的气体动力。现代大、中型高炉所用的鼓风机,大多用汽轮机驱动的离心式鼓风机和轴流式鼓风机。近年来运用大容量同步电动鼓风机。这种鼓风机耗电虽多,但发动便利,易于修理,出资较少。高炉冶炼要求鼓风机能供应必定量的空气,以确保焚烧必定的碳;其所需风量的巨细不只与炉容成正比,并且与高炉强化程度有关、一般按单位炉容2.1~2.5m3/min的风量装备。但实际上不少的高炉考虑到出产的开展,装备的风机才能都大于这一份额
4、高炉热风炉
热风炉是为高炉加热鼓风的设备,是现代高炉不行短少的重要组成部分。现代热风炉是一种蓄热式换热器。现在风温水平为1000℃~1200 ℃ ,高的为1250 ℃~1350 ℃ ,最高可达1450 ℃~1550 ℃。
进步风温能够经过进步煤气热值、优化热风炉及送风管道结构、预热煤气和助燃空气、改进热风炉操作等技术措施来完成。理论研究和出产实践标明,选用优化的热风炉结构、进步热风炉热效率、延伸热风炉寿数是进步风温的有效途径。
5、铁水罐车
铁水罐车用于运送铁水,完成铁水在脱硫跨与加料跨之间的搬运或放置在混铁炉下,用于高炉或混铁炉等出铁。
锰硅合金冶炼工艺操作(二)
2019-01-08 09:52:46
五、炉渣中的A12O3含量对炉况的影响 炉渣中的A12O3具有增高炉渣熔点、稠化炉渣的作用,在同一温度条件下,增加Al2O3含量,将降低炉渣的导电性,如图6所示。 A12O3-CaO-MnO-SiO2系粘度图(图2)说明,等温条件下,提高A12O3含量,将增大炉渣粘度。某研究所实测的锰硅炉渣粘度和A12O3含量及温度关系图(图7)表明,在同样温度条件下炉渣粘度随A12O3含量的增加而增加。高铝渣与低铝渣的低温粘度相差很大,高温粘度差别不大;炉渣温度超过1500℃时,含A12O312%~21%的炉渣粘度相差不到1Pa·S.挪威埃肯公司和我国上海铁合金厂的生产实践表明,炉渣温度足够高时,炉渣粘度不再成为反应趋近于平衡的障碍。由于硅酸钙、硅酸镁和硅酸铝比硅酸更稳定,提高碱度和A12O3含量有增大MnO活度的作用,适当提高炉渣碱度和A12O3含量有利于MnO的还原、降低渣中MnO含量,提高锰的回收率。上海铁合金厂以此为理论依据组织进行了低渣法锰硅合金的生产,特别是生产含硅较高的锰硅合金(Sil7%~23%)取得了较好的冶炼指标。[next] 六、炉缸温度 SiO2是较难还原的氧化物,它的还原程度与还原剂用量,特别是炉缸温度有关。因此,冶炼含硅量较高的锰硅合金除了要适当增加焦炭量外,关键是设法提高炉缸温度。在连续式操作过程中,炉渣的熔点对炉温有很大影响。冶炼锰硅合金时,炉渣中SiO2和MnO在1240℃形成低熔点的硅酸锰,而从MnSiO3中还原得到含Si20%的合金液的开始还原温度是1490℃,因此冶炼含硅较高的锰硅合金的主要困难也是炉温问题。 由于炉内的冶炼过程是连续进行的,出炉时熔池溶液在上层炉料的重压下,几乎全部被挤出炉外,低密度的SiC等高熔点物质直接接触并凝结在炉底上,增高了炉缸的位置,缩小了反应区面积,部分熔化但还没有来得及充分还原的炉料也被排出炉外。这可从出炉间隔较短的锰硅合金炉渣MnO含量较高得到证实。 当炉眼堵实后,新的一炉开始的初期,炉内由于缺少液相溶液的帮助,不能够通过液相溶液把电极脚下的电热能及时传递开,传到整个炉膛熔池界面,以至由于反应区狭小,形成局部的超高温,使锰元素过量挥发而损失。 稳定和提高反应区面积的措施有: (1)提高炉体内衬的蓄热能力。锰硅合金电炉内衬采用碳质材料制作,其导热、蓄热性能良好,由于蓄热量和砖体体积成正比,通常选择2~3倍于炉墙内衬厚度的炉底碳质内衬,以便尽量减小出炉前后炉缸温度的波动范围。 (2)延长出炉时间间隔。在堵眼后的1h内,液相熔液明显不足,不能适应平衡炉膛单位面积电热分布的需要,反应区的面积不够;随着冶炼时间的延续,熔池逐渐加深,反应区的MnO·SiO2还原反应近于合理,若能长期保持即可以取得理想的技术经济指标;然而,由于受炉前设备容量的限制,必须按规定要求定时出炉,以避免不必要的炉前事故。在炉前设备容量允许的前提下,有意识地降低产品冶炼的渣铁比,延长出炉时间间隔,在许多铁合金厂已经明显地改善了产品的技术经济指标。 (3)采用留渣或留铁操作法。留渣法冶炼是日本首先提出来的,它利用炉渣电阻热代替常规法的电弧热,使炉内形成广泛的反应区,以此提高电炉的生产能力,降低冶炼电耗。留渣或留铁操作法的优点是:①在熔池中能量转换稳定;②放出的液体的温度稳定;③扩大了反应区,逸出气体分布均匀,热利用率高。 (4)减少热停炉次数。经常地热停炉,对电极在炉料中的插入深度影响极大,生产中宁愿一次停炉30min,也不愿分两次停炉20min.频繁地升吊电极对炉况综合利用维护不利,经常停炉势必造成高温区上移,炉底温度降低。 锰矿石的品位和粒度对炉温也有一定影响。矿石含锰量越高,渣铁比就越低,可以相应地延长出炉时间,均匀提高炉温。如果矿石粒度合适,粉末率低,则炉料透气性良好,整个炉口均匀冒火、下沉,炉料预热效果好,带入下部反应区的显热较多,生产技术指标较好;如果矿石粒度较大,则熔化速度减慢,成渣温度提高,有助于提高炉温,但是塌料现象会有所增加。 提高合金含硅量,需要有合适的炉渣成分,炉渣成分是影响炉况及各项技术经济指标的重要因素。冶炼锰硅合金所用原材料不是固定不变的,原料成分稍有变化,炉渣成分也随之改变。实践经验表明,炉渣碱度n(CaO+MgO)/n(SiO2)控制在0.6~0.8是合适的,此时合金含量较高,渣中含锰量在6%左右。如果炉渣含有5%~7%的MgO,将大大改善炉渣的流动性,有利于炉温的提高,促进SiO2的还原。 电极工作端长度对于炉温有着直接的影响。9000~12500kVA电炉冶炼锰硅合金时电极的正常插入深度为1.2~1.4m,工作电压130~145V;3000~6000kVA的电炉冶炼锰硅合金时电极的正常插入深度为0.6~0.8m。 此外,如果骑马碳砖受到侵蚀变薄,炉眼太大会造成出炉时淌料严重,也将妨碍炉温的提高,从而影响合金中硅含量的提高。 七、锰的回收率 锰的回收率是生产锰硅合金的一项重要指标。提高锰的回收率就是要减少进入炉渣和随同炉气逸出的锰。表1 渣中锰含量与炉渣碱度的关系碱度n(CaO)/ n(SiO2)0.21~0.30.24~0.40.41~0.50.51~0.60.61~0.70.71~0.80.81~0.9渣中含锰量/%10.39.68.358.417.255.764.88
炉渣中锰含量与炉渣碱度有关,如表1所示。炉渣碱度越高,其锰含量也就越低。但是这并不是结论。因为随着炉渣碱度的增高,渣量相应增大,虽然渣中锰的百分比下降,炉渣中总的跑锰量却不一定下降。实践经验证明,当碱度由0.2增大到0.7~0.8时,锰的回收率随着碱度的增加而提高,当碱度进一步提高时,锰的回收率反而降低。[next] 八、炉膛压力和炉气成分 全封闭炉冶炼锰硅合金时,判断炉况除了要根据原料情况(粒度、成分)、电极位置,炉渣碱度、合金成分、渣量(与敞口炉相同)等分析外,还要考虑炉气成分、炉膛各部位温度变化等情况,对冶炼过程进行全面分析,综合判断。例如: (1)炉气出口压力波动,炉盖温度局部升高说明炉膛内局部翻渣或刺火。 (2)炉气出口压力增大,炉盖温度未升高,二次电流下降,说明炉内有塌料现象。 (3)炉气出口压力增大,炉盖温度升高,电极波动,出炉压力显著下降,是炉膛内翻渣的象征。 (4)炉气中氢含量急剧上升,在原料温度不变的情况下,说明炉内设备有严重漏水现象,应立即停电处理。如果氧含量增加,说明密封不好,应搞好密封。 为了减少随炉气逸出的锰损失,需要避免高温区过于集中,减少锰的挥发,因此,二次电压不宜过高,如果电极插得深,料柱厚,炉气外逸有比较长的路径,炉料能够吸附一部分挥发锰,减少锰的挥发损失。 近年来国内外一些大型电炉推行低渣比操作法,减少料批中的熔剂配入量,延长出炉时间间隔,提高炉缸热容量,提高炉温,借此提高硅的利用率,降低渣铁比。随着渣铁比的降低,炉渣中的A12O3含量也大幅度地提高,尽管高铝渣的熔点比低铝渣高一百多度,当炉况良好,炉缸温度真正地提高时,在上层炉料的压力作用下,高A12O3含量的炉渣是可以顺利地排出炉外的,并与金属液很好地分离。某厂自1984年以来一直推行低渣比配料计算法,在同样的原材料条件下将渣铁比由1.35降到1.1左右,电耗从4650kWh/t左右降至4400kWh/t左右。 冶炼锰硅合金时的出炉程序和铁水浇铸程序与电炉高碳锰铁冶炼相同。 冶炼一吨锰硅合金的消耗大致为: 锰矿(含Mn28.5%) 2000~2100kg 富锰渣(含Mn36%) 700~850kg 硅石 250~180kg 焦炭 550~650kg 锰的回收率 75%~80% 硅的回收率 40%~50kg 某厂锰硅合金冶炼的主要技术经济指标如表2所示。表2 某厂锰硅合金治炼的主要技术经济指标主要原料锰硅合金牌号Mn64Si18Mn64Si23锰矿(Mn33%)/(kg·t-1)1340~15201400~1540富锰矿(Mn38%)/(kg·t-1)400~600400~490硅石(kg·t-1)150~160180~200石灰(kg·t-1)150~170 白云石(kg·t-1) 130~170萤石(kg·t-1)60~7060~70锰铁返回渣(kg·t-1)500~600 硅铁炉渣(kg·t-1)60~7010~20电耗(kWh·t-1)3300~35004000~4200锰的回收率/%80~8385~87[next]
九、配料计算 根据以下条件进行配料计算: 按品种要求混合锰矿m(Mn)/m(Fe)≥4.5,m(P)/m(Mn)<0.0025.原材料化学成分如表3所示。表3 原材料化学成分(%)名称MnPFeOSiO2CaOMgOAl2O3混合锰矿300.061323.991.14.3焦碳固定碳灰分挥发分 821520 灰分组成 64541.23硅石 0.0080.597
注:焦炭含水量约10% 元素分配如表4所示。表4 元素分配(%)元素入合金入渣挥发Mn781012Fe9550Si405010P85510
锰硅合金化学成分为:Mn70%,Si20%,C1%,Fe8%,P0.18%. 出铁口排炭及炉口燃烧损失10%。 以100kg混合锰矿为计算基础,求需焦炭、硅石量,并计算出炉渣碱度。 (1)合金质量的计算
[next]
(2)焦炭用量的计算 焦炭用量如表5所示。 考虑出铁口排炭,炉口烧损折合成含水10%计,则焦炭量: 13.584÷0.82÷0.9÷0.9=20.4(kg) (3)硅石用量的计算 以上炉渣碱度稍低,可加适量石灰调整,合适的炉渣碱度为0.6~0.7。如采用碱度为0.698,则加石灰(石灰含CaO85%)量为: 每批料的组成为:混合锰矿100kg;硅石12.4kg;焦炭20.4kg;石灰3.3kg。
锰硅合金冶炼工艺操作(一)
2019-01-08 09:52:46
锰硅合金的生产与电炉高碳锰铁一样都是在矿热炉内进行的,采用有渣法冶炼。主要采用焦炭作还原剂,锰矿石、富锰渣和硅石作原料,石灰或白云石作熔剂在电炉内连续生产,操作方法与高碳锰铁相同;渣铁比受锰矿的金属含量波动影响较大,锰矿品位高,渣量则少,反之渣量就多,波动范围一般为0.8~1.5。 炉况掌握比冶炼高碳锰铁困难一些,为此在操作上更要求精心细致,正确地判断炉况并及时处理。为保证冶炼过程正常进行,在操作中需要特别重视还原剂的用量和炉渣成分。 一、炉况正常的标志和熔池结构 正常炉况的标志是:电极的插入深度合适,炉料均匀下沉,炉口冒火均匀,产品和炉渣成分稳定,各项技术经济指标良好。生产中密切观察炉况,及时正确地调整配料比例是保证正常炉况的关键。 锰硅合金矿热炉熔池是由炉料区、焦炭区、冶炼区和合金池四个不同区域构成。如图1所示,在炉料区锰和铁的高价氧化物被还原成低价氧化物,MnO与SiO2结合成复合硅酸盐,并在1250~1300℃熔化,锰和硅的还原主要是在焦炭区和冶炼区之间进行的。 二、焦炭层的作用 焦炭层对锰硅合金的冶炼是否正常起着关键的作用。焦炭层处于固态的炉料层与液态的冶炼层之间,其厚度和部位决定了电极工作端的位置和电炉操作的稳定性,不同容量或不同工艺参数的锰硅电炉都有着各自的最佳焦炭层厚度和部位。最佳焦炭层部位保证了电极能够在炉料中插入足够的深度和炉况的顺行;最佳的焦炭层厚度则保证MnO,SiO2等氧化物的直接还原反应得以顺利进行及其还原过程的稳定性。选择合适的焦炭粒度,适当的配炭量是维持焦炭层一定的厚度和部位的主要方式之一。[next] 三、配炭量对焦炭层和炉况的作用与影响 当炉料中的配炭量过量时,炉料电阻率减小,导电性增强,电表电流上涨,电极上抬,焦炭层增厚,焦炭层的部位上移,炉膛熔池坩埚缩小,刺火塌料现象增多,合金含硅量偏高。这种现象如果持续下去,则会由于电极插入深度不够,使高温区上移,炉口温度升高,电极上抬严重,炉内塌料增多,炉底温度降低SiO2得不到充分还原,合金中含硅量反而下降,同时出铁排渣不畅。对于封闭炉则会出现炉气压力升高且不稳定的现象。当炉况出现上述特征时,就可以判断为还原剂过剩,必须在料批中减碳,必要时配入不带焦炭的料批。 当炉料中焦炭量不足时,就会引起焦炭层减薄,此时虽然电极插入较深,但负荷会不足,炉料消耗速度慢,炉口翻渣频繁,炉口火焰低、发暗。由于还原剂不足,人炉SiO2还原率降低,炉渣中的SiO2和MnO含量增高。合金中的锰、硅含量偏低,磷含量升高,这时料批中应增加焦炭的配入量,或者单独附加焦炭。 因此,计算配料比,特别是还原剂焦炭的用量直接关系到合金的质量和炉况的顺行。焦炭层的厚度和部位不仅决定于配碳量,还决定于锰矿和焦炭的性质及粒度,以及电炉容量的大小和其他一些因素。在某一特定电炉和同样的原材料条件下,就主要决定于焦炭粒度和出铁工艺。 配碳量是先使用公式计算,再综合考虑炉子上的一些实际情况,进行具体修正后确定。例如炉渣碱度高时渣液较稀,出炉时带走的生料较多,配碳量可以稍多些;又比如炉眼较大时,出炉带走的残余焦炭较多,配碳量也应适当多一些。 四、矿渣碱度对炉况的作用与影响 在冶炼原理中已经介绍了锰和硅都是从液态硅酸锰中还原出来的。由于SiO2比MnO难还原得多,当SiO2能够被大量还原时,MnO的还原也是比较充分的。 为促使SiO2充分还原,需要提高SiO2的活度系数,炉渣碱度选择似乎应该越低越好;但是当碱度小于0.5时,虽然SiO2的活度大,但其炉渣的粘度也大(图2),熔液中SiO2的传质速度低;沪渣的导电性变差。炉内温度梯度大,距离电极稍远的一些区域渣液温度降低;还原SiO2所需的温度不够SiO2还原困难,硅的回收率降低;粘稠炉渣中的一些高熔点物质如SiC等在炉内积存结瘤,难以排出炉外。具体表现为:渣液粘稠,出炉排渣困难,排渣不彻底,熔池坩埚缩小,化料速度趋缓,生产效率低,合金中的硅低碳高,炉渣跑锰损失增大。 向炉料中添加适量的石灰或白云石等碱性物质,有利于改善炉渣的流动性和导电性,提高SiO2的还原率,改善炉况,提高产品冶炼的技术经济指标。[next] 当碱度小于0.75时,锰的回收率随碱度的提高而提高,硅的回收率也随着碱度的提高也有所提高(图3和图4).这说明在规定的限度范围内提高碱度可以改善炉渣的导电性和流动性,使输往炉内的电能可以在较大的范围内均匀分布,减小炉内反应区的温度梯度,有利于加快SiO2的传质速度,而不会由于碱度的提高SiO2活度下降而恶化SiO2还原的热力学条件。需要特别指出的是,为了提高炉渣碱度,不能只靠增加碱性物质来实现,重要的是要提高SiO2还原率。只有在提高SiO2还原率的前提下,炉渣跑锰量才低。单凭增加炉料中CaO,MgO的含量来提高炉渣碱度,往往限制了SiO2还原,也不能提高锰的回收率。通过增加炉料中的n(CaO+MgO)/n(SiO2)比值来提高炉渣碱度,其增加值是有限的,并且在这种情况下不但炉渣跑锰不低,渣量增大,而且由于SiO2活度随着碱度的提高而越来越小,SiO2还原的热力学条件严重恶化,导致硅的回收率迅速降低。分析图5可以得出如下结论:在生产锰硅合金时较高或合适的炉渣碱度是凭SiO2的还原度来达到的,只有SiO2的还原率得到提高,锰的回收率才能得到真正提高。 碱度过高时,成渣温度降低,炉内温度提不高,加上CaO与SiO2结合成硅酸钙,这些都造成SiO2还原的困难,合金含硅量上不去。此外,碱度过高,渣液过稀,不仅出炉时带走的生料多,而且出铁口容易烧坏,炉眼不好堵,因此,碱度太高不好。
高炉富锰渣的冶炼工艺特点
2019-01-04 17:20:15
高炉富锰渣的冶炼工艺特点
高炉冶炼生产富锰渣在我国较普遍,其工艺流程、生产设备与高炉生铁、锰铁、锰硅合金基本相同,但与其它高炉产品在工艺操作上有自己的特点:
1.在所有高炉产品中,高炉富锰渣冶炼温度是最低的。理论上要求炉温控制在保证铁、磷从相图研究和生产实践来看渣的熔化温度一般在1000—1200℃,将炉温控制在1280—1350℃之间能使锰的入渣率达到85%左右,铁、磷入渣率在5%左右。
2.在所有高炉产品中,高炉富锰渣的炉渣碱度是最低的。大部分为自然碱度的酸性渣冶炼,碱度一般控制在0.3以下。而生铁炉渣碱度为1.0左右,硅锰合金渣碱度在0.6—0.8左右。
3.高炉冶炼富锰渣一般是高负荷低风温操作,其负荷与入炉的矿的含铁量有关。含铁低时风温低负荷高,含铁高时风温高负荷低。
4.高炉冶炼富锰渣煤气热能利用好。顶温一般只有200—300℃,但化学能利用相对较差,混合煤气中CO2一般仅10%左右。
5.富锰渣冶炼为大渣量冶炼渣铁比高的达3—4,低的也在1以上。其含锰的高低主要取决于矿石中的含锰和含铁量,锰的回收率一般可达到85%—90%。
6.入炉原料粒度一般锰矿为5—50mm,冶金焦碳为15—100mm。
电炉富锰渣的生产
1)电炉富锰渣的工艺过程与高炉冶炼富锰渣的工艺过程基本相同,都是渣中锰的富集过程,但在冶炼操作上则有所不同。主要有:①电炉冶炼的热源靠电源,电炉的炉料可以搭配部分粉焦和粉矿。 ②电炉的炉身矮,料柱短,煤气量少,故煤气通过料柱的压力降小。③电炉冶炼富锰渣质量较好,渣中含锰量高,含磷和铁较低,可以冶炼出w(SiO2)
48%的富锰渣(没有焦炭的灰分参加造渣)。④电炉富锰渣不仅可作为冶炼锰硅合金的原料,而且还可以作为冶炼金属锰的优质原料。⑤出炉后,为使渣中的铁珠完全沉淀(降低富锰渣含铁、磷)需要在渣坑或渣包内镇静一定时间再放渣浇铸。
2)电炉冶炼富锰渣的原料电炉冶炼富锰渣的主要原料是含铁的锰矿石、焦炭和萤石(或硅石)。为了满足富锰渣质量要求,普通电炉富锰渣对入炉锰矿石的化学成分要求如下:m(Mn)/m(Fe)=0.3~2.5,w(Mn+Fe)≥38%,w(Mn)≥18%,w(A12O3+SiO2)≤35%,m(SiO2)/m(A12O3)≥1.7,m(CaO)/m(SiO2)0.3。锰矿石的入炉粒度,一般为5~50mm,含粉率小于8%,锰矿石含水要控制在8%以下。焦炭主要是做还原剂用,要求固定碳含量≥80%,灰分≤18%,焦炭粒度为3~15mm。萤石要求CaF2含量≥85%,粒度为5~80mm。硅石要求,SiO2含量大于97%,粒度为20~80mm
电解铅的冶炼工艺流程
1970-01-01 08:00:00
铅冶金是白银生产的最佳载体:一般铅对金银的捕集回收率都在95%以上,因此金银的回收是与铅的生产状况直接相关的。现在世界上约有80%的原生粗铅是采用传统的烧结一鼓风炉熔炼工艺方法生产的。传统法技术成熟,较完善可靠,其不足之处在于脱硫造块的烧结过程中,烧结烟气的SO2浓度较低,硫的回收利用尚有一定难度,鼓风炉熔炼需要较昂贵的冶金焦炭。为了解决上述问题,冶金工作者进行了炼铅新工艺的研究。八十年代以来,相继出现了QSL法、闪速熔炼法、TBRC转炉顶吹法、基夫赛特汉和艾萨熔炼法等新的炼铅方法。其中,QSL法是德国鲁奇公司七十年代开发的直接炼铅新工艺,加拿大、韩国和我国虽然先后购买了此专利建厂,但生产效果不甚理想;闪速熔炼法尚未实现工业化生产;TBRC法是瑞典波里顿公司所创,但此法作业为间断性的,且炉衬腐蚀严重;基夫赛特法由原苏联有色金属研究院研究成功,现已有多个厂家实现了工业化生产,是一种各项指标先进、技术成熟可靠的炼铅新工艺,但采用该法单位投资大,只有用于较大生产规模的工厂时,才能充分发挥其效益。 艾萨炼铅技术基于由上方插入的赛罗浸没喷将氧气喷射入熔体。产生涡动熔池,让强烈的氧化反应或者还原反应迅速发生。在第一段,熔炼炉产出的高铅渣经过流槽送还原炉,氧化脱硫所产的烟气经除尘后送制酸系统。在第二段还原炉中,所产粗铅和弃渣从排放口连续放出,并在传统的前床中分离,所产烟气进行除尘处理后经烟囱排放。 艾萨法熔炼流程。该工艺流程先进,对原料适应性广、生产规模可大可小,比较灵活、指标先进、SO2烟气浓度高,可解决生产过程中烟气污染问题;同时冶炼过程得到强化,金银捕集率高,余热利用好,能耗低。它不仅适应308厂铅银冶炼的改建要求,而且能够对我国的银铅冶金生产和技术进步起到推动作用,故推荐引进艾萨法作为本项目粗铅冶炼生产工艺的第一方案。 传统的鼓风烧结——鼓风炉法虽然在烟气制酸方面尚有一定困难,但近年来,我国株洲冶炼厂、沈阳冶炼厂、济源冶炼厂等大型铅厂的改扩建工程仍然采用此法,是因为它具有建设快、投产、达产快的优点 . 粗铅精炼工艺有火法和电解法两种。一般来说,电解法对银、金、铋和锑的分离效果好,铅、银等金属的回收率高,劳动条件好,机械化自动化程度高。电解法的缺点是基建投资较火法高。采用火法需要处理大量中间产物,能耗较高,致使其生产成本较电解法高。鉴于本项目粗铅含银、铋等金属较多. 常规方法处理铅阳极泥是采用火法——电解法流程获得金、银,渣进行还原熔炼,精炼得精铋等,流程简单、技术成熟,工人易操作,但有价金属回收率不高,锑、铅呈氧化物形态挥发进入烟尘,不但不便于综合回收,而且造成第二次污染。
锰冶炼厂工艺设计概述
2019-01-07 08:31:34
设计是一门涉及国家方计、政策、科学技术、经济等各个领域的综合性的应用技术科学,是基本建设程序中的重要组成部分。在建设项目确定之前,设计工作为建设项目决策提供科学依据,在建设项目确定之后,它为建设项目提供设计文件——建设项目大纲和蓝图。设计文件是众多专业的集体工作成果。是创造性劳作,对设计成果有重大的影响。
建设项目工作涉及面极广,环节多。一个项目从计划到建成生产,通常要经过下面的环节:编制项目建议书、选择厂址、工程地质勘察、工程设计、建设准备、建设计划进度安排、组织施工、生产准备、竣工验收、交付生产等,设计工作贯穿在整个建设项目工作的始终。
设计工作是基本建设工作的灵魂,一个工程项目建设前决策是否正确,建设地点是否适合,投资是否节约,建设后生产能力是否能充分发挥,产品质量和经济效益、环境效果的好坏等,在很大程度上取决于设计质量的好坏。
铬铁成分、用途及冶炼工艺介绍
2018-12-07 13:52:39
铬铁按照含碳量分为高碳铬铁、中碳铬铁、低碳铬铁和微碳铬铁。 高碳铬铁的含碳为4~8%、中碳铬铁的含碳为0.4%、低碳铬铁的含碳0.15~0.50%、微碳铬铁的含碳为0.06%.铬铁主要用作炼钢的重要合金添加剂,过去都在炼钢的精炼后期加入,现在铬铁生产重点是炼制碳素铬铁。铬铁按不同含碳量分为高碳铬铁(包括装料级铬铁)、低碳铬铁、微碳铬铁等。冶炼铬铁用的铬铁矿一般氧化铬含量在40%-50%。
1、牌号及用途牌号化学成份 %-CrCSiPS-范围ⅠⅡ ⅠⅡⅠⅡⅠⅡ--≥≤FeCr67C6.062.0-72.0--6.03.0-0.03-0.040.06FeCr55C600-60.052.06.03.05.00.040.060.040.06FeCr67C9.562.0-72.0--9.53.0-0.03-0.040.06FeCr55C1000-60.052.010.03.05.00.040.060.040.06
高碳铬铁(含再制铬铁)主要用途有: (1)用作含碳较高的滚珠钢、工具钢和高速钢的合金剂,提高钢的淬透性,增加钢的耐磨性和硬度; (2)用作铸铁的添加剂,改善铸铁的耐磨性和提高硬度,同时使铸铁具有良好的耐热性; (3)用作无渣法生产硅铬合金和中、低、微碳铬铁的含铬原料; (4)用作电解法生产金属铬的含铬原料; (5)用作吹氧法冶炼不锈钢的原料。 2、冶炼工艺
高碳铬铁的冶炼方法有高炉法、电炉法、等离子炉法等。使用高炉只能制得含铬在30%左右得特种生铁。目前,含铬高的高碳铬铁大都采用熔剂法在矿热炉内冶炼。
电炉法冶炼高碳铬铁的基本原理是用碳还原铬矿中铬和铁的氧化物。碳还原氧化铬生成Cr2C2的开始温度为1373K,生成Cr7C3的反应开始温度1403K,而还原生成铬的反应开始温度为1523K,因而在碳还原铬矿时得到的是铬的碳化物,而不是金属铬。铬铁中含碳量的高低取决于反应温度。生成含碳量高的碳化物比生成含碳量低的碳化物更容易。 3、炼高碳铬铁的原料
冶炼高碳铬铁的原料有铬矿、焦炭和硅石。
铬矿中Cr2O3≥40%,Cr2O3/∑FeO≥2.5,S
焦炭要求含固定碳不小于84%,灰分小于15%,S
硅石要求含SiO2≥97%,Al2O3≤1.0%,热稳定性能好,不带泥土,粒度20~80mm。氧气吹炼低碳铬铁吹氧法炼制中低碳铬铁使用的设备是转炉,故称转炉法。按供氧方式不同,吹氧可分侧吹、顶吹、底吹和顶底复吹四种。我国采用的是顶吹转炉法。吹氧法是将氧气直接吹入液态高碳铬铁中使其脱碳而制得中低碳铬铁。高碳铬铁中的主要元素有铬、铁、硅、碳,它们都能被氧化。氧化吹炼高碳铬铁的主要任务是脱碳保铬。当氧气吹入液态高碳铬铁后,由于铬和铁的含量占合金总量的90%以上,所以首先氧化的是铬和铁,然后,这些氧化物将合金中的硅氧化掉。由于铬、铁、硅的被氧化,熔池温度迅速提高,脱碳反应迅速发展,温度越高,越有利于脱碳反应,并能抑制铬的氧化反应,合金中的碳可以降得越低。氧气顶吹炼制中低碳铬铁的原料为高碳铬铁、铬矿、石灰和硅铬合金。对于转炉的高碳铬铁液要求温度要高,通常在1723~1873K之间。铁水含铬量要高于60%,含硅不超过1.5%,含硫量小于0.036%。铬矿是用作造渣材料的,要求铬矿中的SiO3含量要低,MgO、Al2O3含量可适当高些,其粘度不能过大。石灰也是作造渣材料,其要求与电硅热法的相同。硅铬合金用于吹炼后期还原高铬炉渣,一般可用破碎后筛下的硅铬合金粉末。电硅热法冶炼低碳铬铁用电硅热法冶炼中低碳铬铁是在固定式三相电弧炉内进行的,可以使用自焙电极,炉衬是用镁砖砌筑的(干砌)。炉衬寿命短是中低碳铬铁生产中的重要问题。由于冶炼温度较高(达1650摄氏度),炉衬寿命一般较短。冶炼中低碳铬铁的原料有铬矿、硅铬合金和石灰。铬矿应是干燥纯净的块矿或精矿粉,其中Cr2O3含量越高越好,杂质含量越低越好。铬矿中磷含量不应大于0.03%,粒度小于60mm。硅铬合金应是破碎的,粒度小于30mm,不带渣子。石灰应是新烧好的,其CaO含量不少于85%。鉴别方法:高碳铬铁(含碳为4~8%)、中碳铬铁(含碳为0.5~4%)、低碳铬铁(含碳0.15~0.50%)、微碳铬铁(含碳为0.06%)、超微碳铬铁(含碳小于0.03%)、金属铬、硅铬合金。大量生产的含铬50%的“装料级铬铁”,用含Cr2O3和铬与铁比值较低的矿石。铬铁按不同含碳量分为碳素铬铁(包括装料级铬铁)、中碳铬铁、低碳铬铁、微碳铬铁等。常用的还有硅铬合金、氮化铬铁等。铬铁主要用作炼钢的合金添加剂,过去都在炼钢的精炼后期加入。冶炼不锈钢等低碳钢种,必须使用低、微碳铬铁,因而精炼铬铁生产一度得到较大规模的发展。由于炼钢工艺的改进,现用AOD法(见炉外精炼)等生产不锈钢等钢种时,用碳素铬铁(主要是装料级铬铁)装炉,因而只需在后期加低、微碳铬铁调整成分,所以现铬铁生产重点是炼制碳素铬铁。
铅矿冶炼技术及工艺流程
2019-02-26 11:04:26
铅从原矿开端,经过采矿和选矿,得到含铅45%-70%的铅精矿,然后送入冶炼厂进行冶炼。
炼铅质料
炼铅质料大部分是硫化铅精矿,小部分是铅锌氧化矿,其间所含有价金属简直都可在冶炼进程中收回。我国硫化铅精矿中常含有以下有价金属:铅、锌、铜、砷、锑、铋、镉、、金、银、硒、碲、铟、锗、。在烧结进程,95%以上的进入烟气;70%的,30~40%的镉、硒、碲,以及一小部分砷、锑、铋等金属进入烟尘;其他留在烧结块和返粉中。在鼓风炉熔炼进程中,简直悉数的金、银和大部分铜、砷、锑、铋、锡、硒、碲进入粗铅,95%以上的锌、锗,50%以上的铟进入炉渣,80~90%的镉进入烟尘。在火法开端精粹进程,粗铅中的铜、锡、铟大部分进入浮渣,金、银、铋等金属留在铅中。在铅电解精粹进程,比铅更正电性的金属如金、银、铜、锑、铋、砷、硒、碲等不溶解而留在阳极泥,比铅更负电性的金属如铁、锌、镍、钴与铅一道溶解,进入电解液,但不在阴极分出。
从烧结机烟气中可收回,烟尘一般回来配料,经循环富集后收回镉和。处理鼓风炉烟尘可收回镉、锌、铟、等金属。
浮渣熔炼时产出粗铅、冰铜(包含砷冰铜)、炉渣和烟尘,可从冰铜和炉渣中收回铜、铅,从烟尘中收回铟和砷。处理含锡较高的粗铅时,高锡浮渣可经重选得到铅精矿和锡精矿,别离收回铅、锡。
我国低档次铅锌氧化矿在鼓风炉化矿进程中,一部分铅、锌、镉、锗蒸发进入烟尘,一部分进入粗铅,大部分留在熔渣。熔渣经烟化炉蒸发,铅、锌、镉、锗进入烟尘,再从烟尘中收回。
精粹
经过初级冶炼后得到的粗铅进一步精粹,有火法和湿法两种。现在世界上以火法为主,湿法炼铅尚处于实验研讨阶段。国外以火法为主,我国以电解精粹为主。电解法的特点是能更好地收回金、银、铋等有价金属,并得到纯电铅。火法精粹则较灵敏,可依据粗铅中杂质状况和商场的需求安排出产,出资也省。首要冶炼工艺介绍
基夫塞特(Kivcet)炼铅:1967年前苏联有色金属矿冶研讨院开端实验;1988年完结了工业化连续出产。该工艺是由原苏联的莫斯科有色研讨院和哈萨克斯坦一起研发完结的。意大利萨米公司购买了该项专利权并在威斯麦港(VesmePort)建设了一座8万吨/年粗铅厂。许可证和根本设计费高达1000万美元,出资巨大。基夫塞特法炼铅对物料的制备要求严厉,入炉炉料经配料后要求充沛枯燥至水份0.5%以下,粒度要求100目左右。终渣含铅3%以上,仍有低空污染问题,出产能耗高。
QSL炼铅:由德国鲁奇公司等研发的,已在我国、德国、韩国建厂,该工艺对质料制备要求相对较为宽松,物料水份、粒度组成不受严厉的约束。因为氧化与复原在同一个设备中完结,终渣含铅为5%-10%,氧耗高、电耗高。
富氧顶吹浸没熔炼法(ISA和Ausmelt炼铅):是澳大利亚联邦科学工业研讨安排(简称CSIRO)在20世纪70年代初开端研讨开发的顶吹浸没喷技能衍生出来的熔炼办法,属熔池熔炼领域。20世纪70年代末澳大利亚MIM与CSiRO协作开发熔炼技能直接炼铅,并以艾萨炼铅法获得专利权。20世纪80年代初顶吹浸没喷技能发明人组建了Ausmelt公司并在喷和一些新的运用领域进行了开发,至此MIM和Ausmelt两家公司均获得了该项技能的转让权。该技能选用两台相同结构的竖式炉子别离进行氧化、复原熔炼。现在,ISA法氧化段出产已趋正常,氧化炉产出的SO2烟气可供制酸,但复原段出产稳定性较差。一起,该工艺氧替换频频,一般4-7天需替换一次,作业率低,换组织杂乱,且出资较大。
卡尔多转炉炼铅:由瑞典波立登公司开发的技能,是氧气冶金在顶吹转炉上的一种运用,也属熔池熔炼领域。
炼铅工艺分两段进行:富氧熔化并氧化,熔融物料复原熔炼,渣含铅可依据复原剂用量和复原时刻断定,渣含铅也在3%左右。但氧化和复原产出的烟气,二氧化硫含量有较大差异。氧化段烟气,二氧化硫浓度高达16%,复原段产出烟气二氧化硫浓度低于400PPm。为了酸厂的连续出产,氧化段烟气先经紧缩冷凝使50%的二氧化硫液化,剩下的烟气中的二氧化硫制酸。
ISA和Kaldo实践意义上都不是一步炼铅,只要Kivcet和QSL法属一步炼铅,前者要不是两个炉子别离氧化复原,要不分阶段进行。
鼓风炉法炼铅:该工艺铅冶炼出产能耗高,发生SO2浓度低,不能完结两转两吸制酸,污染较为严峻,劳动条件差。依据设备不同又分为烧结锅-鼓风炉、烧结机-鼓风炉和密闭鼓风炉ISP。烧结锅-鼓风炉国家已明确规定在2000年前有必要筛选。现在大部分现在出产的厂商首要用的是烧结机-鼓风炉工艺。ISP技能能够运用混合铅锌矿质料进行冶炼,具有质料习惯规模广,工艺本钱低一级长处。
氧气底吹炼铅(SKS):1998年,多家单位出资协作使用水口山底吹炼铅实验车间,展开了氧气底吹熔炼-鼓风炉复原炼铅(即SKS法)验证实验作业,经两个多月的实验证明,工艺牢靠、目标可行。完结了用底吹熔炼替代传统炼铅工艺中的烧结和返粉破碎工序。因为底吹炉烟气SO2浓度高,利于制酸,硫的收回率高达95%~96%,一起因为取消了烧结返粉破碎,彻底根治了SO2和铅扬尘污染。底吹熔炼进程不需外加燃料,彻底自热并可使用部分余热发电节能。
更首要的是底吹进程约有50%的铅经过交互反响直接产出粗铅,进入鼓风炉的高铅渣含铅40%~45%,与烧结块含铅平起平坐,因而鼓风炉熔炼的物料与烧结工艺比相应削减约50%,因而,焦炭耗量显着下降,从而使炼铅本钱低于传统工艺,加上硫酸的赢利,可获得杰出的经济效益。该工艺质料习惯性强,既可直接处理各种档次的铅精矿,也能够处理各种含铅物料、次生料,如铅极板、废旧蓄电池等。
金矿选矿设备的选金冶炼工艺
2019-02-26 16:24:38
金矿选矿设备首要包含破碎设备(颚式破碎机 以下简称鄂破 圆锥破碎机以下简称圆锥破)磨矿设备(高效节能圆锥球磨机)分级机 拌和桶 溜槽 浮选机等组成。
现在干流的选金工艺,一般都通过选矿设备(破碎机设备:颚式破碎机 )破碎,再进金矿选矿设备(高效节能球磨机)破坏,然后分级机 拌和桶 溜槽 浮选机等设备处理,通过重选、浮选,提取出来精矿和尾矿,再运用选矿药剂通过化学办法,终究通过冶炼,其产品终究成为制品金。
火法冶炼是常用的炼铜工艺,又分为鼓风炉熔炼、反射炉熔炼、电炉熔炼、闪速炉熔炼、诺兰达接连炼铜法等。湿法冶炼首要用于处理氧化矿石或含天然铜不高的单一矿石。因为运用的浸出剂不同,可分为:
1、硫酸浸出法,用以处理二氧化硅含量很高的酸性氧化矿石;
2、浸出法,用以处理含多量碱性矿藏的氧化矿石或天然铜贫矿;
3、细菌浸出法,用以处理低档次硫化石。
依据矿石天然类型的不同按其氧化铜和硫化铜的份额划分为三种类型:硫化矿石、氧化矿石、混合矿石。其加工技能如下:
1、硫化矿石多金属硫化矿石,针对矿石组分特性而别离选用混合浮选法、优先浮选发、混合优先浮选法、浮选和重选联合选矿法、浮选和磁选联合选矿法,以及浮选和湿法冶炼联合处理等;
2、氧化矿石选矿常用浮选与湿法冶炼联合处理或用离析法与浮选联合处理;含结合式氧化铜高地矿石,常用湿法冶炼处理;
3、混合矿石选矿常用浮选法,它能独自处理,或与硫化矿石一同处理;也能选用浮选和湿法冶炼联合处理。
金属镉的提取工艺与冶炼方法
2019-10-29 10:49:48
1、置换法产镉从处理镉原料所得含镉溶液中,用锌粉置换出海绵镉并加以精炼制取精镉的进程,为镉生产方法之一。因为电解堆积法出产镉的电耗大(每吨镉耗电约1300kw•h),许多工厂将电解堆积法改为置换法以节约电能。此法首要用于处理镉渣。工艺流程包含镉渣的浸出、溶液净化、置换、海绵镉精炼和熔铸等进程。2、电解堆积法产镉从含镉原料制得的纯净镉电解液,经电解堆积出产金属镉的进程,为镉出产方法之一。首要用于处理铜镉渣,包含铜镉渣硫酸浸出、锌粉置换沉淀海绵镉、海绵镉溶解造液、镉电解堆积和镉熔铸等进程。
稀土冶炼厂的工艺流程
2019-03-07 09:03:45
以稀土精矿为质料,经分化、混合化合物制备、分组别离等工序制取不同纯度的单一化合物、金属和稀土制品的稀有金属冶炼厂规划。规划规模首要包含:稀土提取别离车间规划、稀土金属车间规划、稀土永磁材料车间规划和稀土发光材料车间规划。首要的稀土精矿有氟碳铈镧矿、独居石、离子吸附稀土矿和磷钇矿。
简史稀土吨量级工厂的规划、出产和运用,始于20世纪20年代,首要是以独居石、40年代末又加上氟碳铈镧矿为质料,用化学法出产混合稀土化合物,用于制备打火石和电弧碳极、抛光粉、冶金添加剂等。60年代起,混合稀土化合物开端用作石油裂化催化剂;特别是1964年氧化铕开端用于彩色电视赤色荧光粉,促进了单一稀土别离技能的开展,规划制作了大直径离子交换柱和各型萃取器,出产各种单一稀土化合物和单一金属,运用于发光、电子、磁性材料、超导体和光导纤维等。80年代,美国钼公司氟碳铈镧精矿出产才能为40000t/a(以REO计,下同);法国罗歇尔稀土厂的别离才能达5000t/a。
我国稀土储量居国际第一位。稀土冶炼厂规划始于20世纪50年代,用碱法处理独居石。到1992年,规划建设了约50个稀土冶炼厂,运用的稀土精矿有包头混合稀土矿、氟碳铈镧矿、离子吸附型稀土矿和独居石等;稀土别离办法以液一液溶剂萃取为主。1988年,各种稀土矿产品年产量约30000t。至1989年,分组别离才能为每年12000t,出产400余个种类、1000余个规格产品;各种产品出口量约为9200t,领先于国际;国内运用量为6770t,占国际第二。甘肃稀土公司是我国规划的最大稀土项目,处理包头混合稀土矿、氟碳铈镧矿和离子吸附型稀土矿,出产混合氯化稀土和单一稀土产品。
产品计划稀土产品首要用于冶金、玻璃陶瓷、石油化工及光学、电子、发光、永磁、磁光、超导材料等范畴。产品约500个种类、3000个规格,其中有混合轻稀土,各种档次的富集物,各种纯度的单一化合物和金属。用于荧光材料的稀土化合物纯度为99.95%~99.99%,用于光学、激光等方面的化合物纯度为99.995%~99.999%。我国稀土产品已有400多种、1000余个规格,至1992年已制定23种产品的国家标准。
工艺流程挑选稀土出产过程首要由精矿分化、稀土分组别离、化合物和金属制备等工序组成。
精矿分化有硫酸焙烧法、烧碱浸煮法和用或硝酸溶解法等。处理包头混合稀土矿和氟碳铈镧矿时,假如厂区的“三废”处理排放条件较好,多用本钱较低的硫酸焙烧法;相反则可用烧碱浸煮法。处理独居石多用烧碱浸煮法,能够一起收回磷酸三钠。出产无水氯化稀土时,可用直接氯化法处理包头混合稀土矿、氟碳铈镧矿或独居石。离子吸附型矿,用或硝酸溶解法分化。
混合稀土分组别离工艺的断定,首要考虑产种类类、纯度和经济效益。大批量出产多用液一液溶剂萃取法;批量较小的高纯稀土,则可用离子交换法或萃取色层法出产。
铕的别离多选用锌粉复原碱度法。
通过分组别离的富集物或单一稀土氯化物或硝酸盐,纯度高的用草酸沉积法;富集物或纯度较低的产品,则用本钱较低的碳酸氢铵沉积法,过滤后,再灼烧成氧化物。混合轻稀土氯化物也可直接浓缩结晶,再经熔盐电解成混合稀土金属。单一稀土金属制取中,轻稀土多用熔盐电解,重稀土多用金属热复原,或先熔盐电解,制得相应的中间合金,再经真空蒸馏得海绵状纯金属。稀土永磁体出产,用粉末冶金法或复原分散法。稀土荧光材料出产,多用粉末烧成法。
稀土出产准则工艺流程图
首要设备稀土出产用设备,首要由精矿分化、分组别离、化合物烘干灼烧和金属制备几部分设备组成。除溶解、溶液制备、沉积、过滤、溶液运送、金属热复原和蒸馏等,选用通用化工和冶金标准设备外,大部分对错标准设备。1、包头混合稀土矿和氟碳铈镧矿的分化,多选用回转窑,也可用竖式氯化炉;独居石烧碱浸煮分化,选用加压或常压钢质反响槽;离子吸附型矿的分化,用珐琅反响槽。2、稀土的分组别离,选用箱式混合弄清萃取槽,或离子交换柱。3、草酸盐或碳酸盐的煅烧,大批量产品选用地道式接连煅烧炉,量小的产品用箱式电阻炉。4、各种稀土金属的制备,多用砖砌或石墨坩埚熔盐电解槽或真空复原炉。5、稀土磁性材料和荧光材料的烧结烧成,用地道式接连电炉。
车间组成与装备稀土冶炼厂一般由精矿分化、稀土别离、化学处理、化合物制品、金属车间和稀土。
水口山铅锭的冶炼生产工艺
2019-03-07 09:03:45
铅锭的出产
铅的性质
铅是最软的重金属,也是比重较大的金属之一,展性杰出,易与其他金属构成合金。铅最大的特性是能吸收效射线,如X射线和γ射线等。常见的化合价+2、+4。
铅的物理性质密度(20℃)11.68 g/cm3熔点327.4℃沸点1750℃均匀比热(0℃ ~100℃)129.8 J/(kg·K)熔化热4.98 kJ/mol汽化热178.8 kJ/mol热导率(0℃~100℃)34.9 W/(m·K)电阻率(20 ℃)20.6 μΩ·cm铅的化学性质
在空气中铅表面会生成碱式碳酸铅,这些化合物阻挠了铅的进一步氧化。铅是金属,可构成各种铅酸盐。铅能与H2SO4和HCl作用在表面构成几乎不溶的PbS04和低温下不溶的PbCl2,避免铅持续被腐蚀。二价铅的标准电极电位为-0.128,电化当量为3.8657克/(安培·小时)。
出产特色
①、水口山炼铅法属熔池熔炼炼铅法,它是在一个熔池里送入富氧空气,一起参加炉料,构成激烈搅动的熔池,一起完结加热、熔化、氧化、造锍、造渣等进程。具有高的传热、传质功用;
②本办法从底部送入富氧空气,气体射流与熔池介质充沛混合,因为气液运动轨道的特性,确保了单位时间内气液两相的混合程度和速度,充沛体现了富氧底吹工艺在冶金反响动力学方面的优胜性,翻腾状况安稳,无喷溅,无死角;
③选用空气冷却底吹氧,是本工艺一项成功的壮举,在改善氧操作技能和参数后,每支氧均匀寿命为21天左右;
④本工艺可完结全自热熔炼;
⑤本工艺无炉膛积铁毛病,单体硫问题能得到妥善解决。
出产原理
水口山炼铅法是由湖南水口山有色金属集团有限公司独立开发的一权新式专利炼铅工艺。水口山炼铅法属熔池熔炼领域,当物料投入炉内,一起完结加热、熔化、氧化、造渣、造锍等进程,具有很高的传质、传热功用;所不同的是,它选用了共同而简略、具有优胜冶金动力学功用的设备——水口山熔炼炉。从熔炼炉顶部参加炉料,底部送入富氧空气搅动熔池,入炉物料在熔池中完结熔炼进程,产出粗铅、高铅渣和烟气,分别从放铅口、放渣口、排烟口排出。
水口山熔炼炉是一个密闭的长圆筒型卧式转炉,钢板外壳内衬铬镁砖,炉身有传动装置,可旋转,设有加料口、排烟口、放渣口、放铅口,底部装设氧,氧及其套砖能够替换,端墙燃油烧嘴供开炉和保温运用。
水口山炼铅法是接连熔池熔炼和吹炼进程,它是将含水6~7%的含铅物料和熔剂经混合制粒后,接连、均匀地参加到底部配有射流氧的氧气底吹炉中,完结物料的枯燥、熔化、氧化造渣、沉铅进程,完结渣铅别离,产出粗铅,烟气和熔炼渣。产出含SO2浓度高,成分和流量安稳的烟气,经净化后制酸。
首要的反响方程式如下:
氧化造渣反响:
2FeS + 3O2 + SiO2 = 2FeO•SiO2 + 2SO2
2ZnS + 3O2 = 2ZnO + 2SO2
2PbS + 3O2 + SiO2= 2PbO•SiO2 + 2SO2
2PbS + 3O2 = 2Pb + 2SO2
2Pb + O2 = 2PbO
PbS + 2O2 = PbSO4
沉铅反响:
PbS +O2 = Pb + SO2
2PbS +O2 = 2PbO + 2SO2
PbS +2PbO = 3Pb + SO2
出产工艺流程图水口山炼铅法(SKS法)工艺流程