您所在的位置: 上海有色 > 有色金属产品库 > 钨精矿总量控制

钨精矿总量控制

抱歉!您想要的信息未找到。

钨精矿总量控制百科

更多

钨精矿

2017-06-06 17:50:12

钨属于稀有元素,在地壳中含量仅为0.007%,我国钨(钨精矿)储量约占世界总储量的55%,居首位。华北、西北和西南都有产出,尤其是西起广西,经湖南、广东, 江西,东至福建的南岭山脉一带,钨矿最多。其中又以江西南部最为集中,大小矿山达数百处,大吉山、西华山、岿美山、盘古山等都是世界有名的钨矿山。我国选冶钨矿物原料与国外不同 国外长期以来开发的钨矿,主要是白钨矿,占总生产能力的60%。而我国尽管白钨矿已探明储量376万t,占全国钨矿总储量的71%,但由于一些大型、超大型钨多 金属 矿床的矿石物质成分复杂,嵌布粒度细,选冶技术尚未彻底解决,因而现阶段开采仍以石英脉型黑钨矿为主,占全国采出矿量的90%。   性质:   钨属亲石元素,主要以钨酸盐的形态存在于伟晶岩和热液矿床中;已知的钨矿约有15种,其中主要有黑钨矿和白钨矿两种。   (1)黑钨矿(Fe,Mn)WO4,又名钨锰铁矿,含WO3约76%,呈褐黑色至黑色,显半 金属 光泽,比重为7.1~7.9;属单斜晶系,晶体常呈厚板状,晶面上常有纵纹。黑钨矿常与石英脉共生在一起。   (2)白钨矿CaWO4,又名钨酸钙矿,含WO3约80%,常呈灰白色,有时略带浅黄、浅紫、浅褐等色,显金刚光泽或油脂光泽,比重为5.9~6.1;属四方晶系,晶形常呈双锥状,集合体多为不规则粒状或致密块状。白钨矿常与辉钼矿、方铅矿和闪锌矿共生在一起。   已知的含钨矿石主要有石英—黑钨矿矿石,硅卡岩—白钨矿矿石和砂矿等类型。   用途:钨精矿是生产钨铁、钨酸钠、仲钨酸铵(APT)、偏钨酸铵(AMT)等钨化合物的主要原料,其下游产品主要有三氧化钨、蓝色氧化钨、钨粉、碳化钨、硬质合金、钨钢、钨条、钨丝等。   生产工艺:   钨精矿的选矿工艺一般是由钨矿石(黑钨矿或白钨矿)经破碎、球磨、重选(主要有摇床、跳汰)、浮选、电选、磁选等工艺过程,生产出达到国家标准的黑钨精矿或白钨精矿,钨精矿的主要成份三氧化钨含量可达到65%以上。 钨广泛应用于刀刃具、模具等的生产中。这种暴涨主要是供求关系所造成的,而造成这种供求关系的深层次原因,除了包含加工制造业发展因素以外,还有出口过量的因素在内。由于我国的汽车工业、机械加工工业以及采矿业的不断发展, 市场 对硬质合金、高速钢刀刃具的需求正在快速递增,同时对耐震钨丝、钨合金、钨电极等焊接材料的需求也以同样的比例增长。而在供给方面,尽管所有的钨矿点都在高速运转,但今年一季度 产量 仍然不比去年.今年一季度我国钨精矿 产量 为16300吨,比去年同期下降1.6%。

6063铝合金成分含量控制

2018-12-27 16:25:55

6063铝合金广泛用于建筑铝门窗、幕墙的框架,为了保证门窗、幕墙具有高的抗风压性能、装配性能、耐蚀性能和装饰性能,对铝合金型材综合性能的要求远远高于工业型材标准。 在国家标准GB/T3190中规定的6063铝合金成分范围内,对化学成分的取值不同,会得到不同的材质特性,当化学成分的范围很大时,其性能差异会在很大范围内波动,以致型材的综合性能会无法控制。因此,优选6063铝合金的化学成分成为生产优质铝合金建筑型材的最重要的一环。 1 合金元素的作用及其对性能的影响 6063铝合金是AL-Mg-Si系中具有中等强度的可热处理强化合金,Mg和Si是主要合金元素,优选化学成分的主要工作是确定Mg和Si的百分含量(质量分数,下同)。     1.1 Mg的作用和影响 Mg和Si组成强化相Mg2Si,Mg的含量愈高,Mg2Si的数量就愈多,热处理强化效果就愈大,型材的抗拉强度就愈高,但变形抗力也随之增大,合金的塑性下降,加工性能变坏,耐蚀性变坏。     1.2 Si的作用和影响 Si的数量应使合金中所有的Mg都能以Mg2Si相的形式存在,以确保Mg的作用得到充分的发挥。随着Si含量增加,合金的晶粒变细,金属流动性增大,铸造性能变好,热处理强化效果增加,型材的抗拉强度提高而塑性降低,耐蚀性变坏。 2 Mg和Si含量的选择    2.1 Mg2Si量的确定         2.1.1 Mg2Si相在合金中的作用 Mg2Si在合金中能随着温度的变化而溶解或析出,并以不同的形态存在于合金中:                 (1)弥散相β’’固溶体中析出的Mg2Si相弥散质点,是一种不稳定相,会随温度的升高而长大。                 (2)过渡相β’ 是β’’由长大而成的中间亚稳定相,也会随温度的升高而长大。                (3)沉淀相β是由β’ 相长大而成的稳定相,多聚集于晶界和枝晶界。 能起强化作用Mg2Si相是当其处于β’’弥散相状态的时侯,将β相变成β’’相的过程就是强化过程,反之则是软化过程。           2.1.2 Mg2Si量的选择 6063铝合金的热处理强化效果是随着Mg2Si量的增加而增大。参见图1[1]。当Mg2Si的量在0.71%~1.03%范围内时,其抗拉强度随Mg2Si量的增加近似线性地提高,但变形抗力也跟着提高,加工变得困难。但Mg2Si量小于0.72%时,对于挤压系数偏小(小于或等于30)的制品,抗拉强度值有达不到标准要求的危险。当Mg2Si量超过0.9%时,合金的塑性有降低趋势。 GB/T5237.1—2000标准中要求6063铝合金T5状态型材的σb≥160MPa,T6状态型材σb≥205MPa,实践证明.该合金的 最高可达到260MPa。但大批量生产的影响因素很多,不可能确保都达到这么高。综合的考虑,型材既要强度高,能确保产品符合标准要求,又要使合金易于挤压,有利于提高生产效率。我们设计合金强度时,对于T5状态交货的型材,取200MPa为设计值。从图1可知,抗拉强度在200MPa左右时,Mg2Si量大约为0.8%,而对于T6状态的型材,我们取抗拉强度设计值为230 MPa,此时Mg2Si量就提高到0.95%。          2.1.3 Mg含量的确定 Mg2Si的量一经确定,Mg含量可按下式计算: Mg%=(1.73×Mg2Si%)/2.73         2.1.4 Si含量的确定 Si的含量必须满足所有Mg都形成Mg2Si的要求。由于Mg2Si中Mg和Si的相对原子质量之比为Mg/Si=1.73 ,所以基本Si量为Si基=Mg/1.73[2]。 但是实践证明,若按Si基进行配料时,生产出来的合金其抗拉强度往往偏低而不合格。显然是合金中Mg2Si数量不足所致。原因是合金中的Fe、Mn等杂质元素抢夺了Si,例如Fe可以与Si形成ALFeSi化合物。所以,合金中必须要有过剩的Si以补充Si的损失。合金中有过剩的Si还会对提高抗拉强度起补充作用。合金抗拉强度的提高是Mg2Si和过剩Si贡献之和。当合金中Fe含量偏高时,Si还能降低Fe的不利影响。但是由于Si会降低合金的塑性和耐蚀性,所以Si过应有合理的控制。我厂根据实际经验认为过剩Si量选择在0.09% ~0.13%范围内是比较好的。 合金中Si含量应是:Si%=(Si基+Si过)%3 合金元素控制范围的确定       3.1 Mg的控制范围 Mg是易燃金属,熔炼操作时会有烧损。在确定Mg的控制范围时要考虑烧损所带来的误差,但不能放得太宽,以免合金性能失控。我们根据经验和本厂配料、熔炼和化验水平,将Mg的波动范围控制在0.04%之内,T5型材取0.47%~0.50%,T6型材取0.57%~0.60%。      3.2 Si的控制范围 当Mg的范围确定后,Si的控制范围可用Mg/Si比来确定。因为我厂控制Si过为0.09%~0.13%,所以Mg/Si应控制在1.18~1.32之间。 图2示出了我厂6063铝合金T5和T6状态型材化学成分的选择范围。图中示出了过Si上限线和下限线。若要变更合金成分时,比如想将Mg2Si量增加到0.95%,以便有利于生产T6型材时,可沿过Si上下限区间将Mg上移至0.6%左右的位置即可。此时Si约为0.46%,Si过为0.11%,Mg/Si为1. 4 结束语    根据我厂的经验,在6063铝合金型材中Mg2Si量控制在0.75%~0.80%范围内,已完全能够满足力学性能的要求。在正常挤压系数(大于或等于30)的情况下,型材的抗拉强度都处在200~240 MPa范围内。而这样控制合金,不仅材料塑性好,易于挤压,耐蚀性高和表面处理性能好,而且可节约合金元素。但是还应特别注意对杂质Fe进行严格控制。若Fe含量过高,会使挤压力增大,挤压材表面质量变差,阳极氧化色差增大,颜色灰暗而无光泽,Fe还降低合金的塑性和耐蚀性。实践证明,将Fe含量控制在0.15%~0.25%范围内是比较理想的。

钨精矿价格

2017-06-06 17:50:00

近来,钨精矿价格又出现快速上涨行情,一个多月的时间涨幅即超过了20%。以产量最大的黑钨精矿为例,10月27日我国江西省漂唐钨矿规格为65%的产品报价为每吨10.5万元,而其在9月份中旬前后的报价仅为每吨8.5万元,短短一个多月的时间,黑钨精矿价格即上涨了23.5%。这一价格比中国钨业协会8月底公布的国内黑钨精矿协调价格7.5万元/吨整整高出了40%。与去年同期的每吨3.95万元相比,更是大幅上涨165.82%。上半年暴涨暴跌今年上半年,人们已见识了钨精矿价格的暴涨暴跌。在年初时,钨精矿价格大约为每吨4.2万元,经过不到半年的时间,其价格即上涨到了每吨13万元以上,涨幅达到了300%。而从7月份开始形势急转直下,出现高台跳水,短短一个多月的时间每吨即跌到了8万多元,较最高点的跌幅超过了40%。此后经过一个多月的盘整,目前价格再次快速回升。钨精矿价格的上涨不仅推动了钨制品价格的上扬,也带动了国际市场价格的上升。分析人士认为,在有色金属中,钨相对来说是一个比较小的品种,投机商通过囤集钨精矿容易操纵市场价格。今年钨精矿价格的暴涨暴跌,在相当程度上与中间商的投机有关。长期将呈上升趋势从基本面情况看,钨矿是世界稀缺资源,在一些发达国家被作为战略资源而受到严格保护。我国是钨资源大国,也一直在加强包括钨矿在内的稀缺资源的保护工作。总体看,钨矿供应的增长是有限的,而钨由于它的特性得到越来越广泛的应用,需求量不断上升。因此,从趋势看,钨精矿价格应是呈上升趋势的。业内人士分析,就我国目前情况看,钨冶炼能力过快扩张也是拉动需求快速增长的重要因素。数据显示,2004年统计的44家钨冶炼企业APT(仲钨酸铵,钨精矿冶炼后的初级产品)生产能力为11.59万吨,较上一年增加7.4%;统计的65户钨粉生产企业钨粉生产能力为5.01万吨,较上一年增加17.3%。但实际上2004年APT产能利用率仅为41.2%,钨粉产能利用率仅为34.6%。今年正在建设或筹建的APT生产线还有1.8万吨,在建和筹建的钨粉生产线还有8900吨。因此,APT、钨粉等中间产品产能的超常发展,进一步加剧了对上游产品的需求。资源紧缺支撑价格而2009年钨矿的采选生产能力仅比上一年增加7%左右,目前看2010年的采选能力基本与2009年持平。虽然一些优势企业为了有一个稳定的原料来源,自去年开始投资开发了一些钨矿,然而从投入到出矿还要有一个过程。估计从2011年开始,采选生产能力将会有一个比较大的增加。因此,冶炼加工能力过度扩张与钨矿资源开采能力的有限产生碰撞,导致供求紧张和价格上涨。有分析人士认为,10万元/吨的钨精矿价格目前看有些偏高,存在一定的投机成分,其正常价格应在10万元以下。从发展趋势看,考虑到资源的紧缺和需求的不断增长,其价格也不会大幅下跌。 

稀土总量

2017-06-06 17:50:13

稀土总量合理控制和优化产品结构目前我国稀土产品产销严重失衡,导致企业产品积压, 价格 下滑,众多企业难以正常运转。这个问题不仅出现在稀土冶炼厂,现在某些稀土新材料 产业 也出现发展过快、低水平重复建设势头。据初步统计我国烧结钕铁硼磁体生产能力己超过20000吨,超出全世界今年需求量15000吨。适销对路的稀土产品结构不太合理,很大程度影响了 行业 的经济效益。做好稀土产品总量的合理控制、产品结构的优化可以采取以下措施: 1.首先,也是最关键的是要采取切实可行又有效的措施做好稀土 产业 源头矿山的控制,为了保护好稀土资源,特别是南方离子吸附型稀土资源,必须严格控制稀土矿山开采量。按“十五”规划发展目标全国矿产品生 产量 控制在9万吨(REO)水平,包头精矿5万吨,四川氟碳铈矿1万吨,南方离子吸附型中重稀土实行指令性计划开采, 产量 控制在1.8万吨。对于稀土分离产品及合金 金属 和其他稀土产品,应当根据国内外 市场 需求变化来调整产品种类、品种和 产量 ,切不可陷入盲目性生产。 2.国家在政策资金方面,重点支持技术水平高、实力雄厚的稀土骨干企业和有 产业 特色产品销路好的企业,发展适销对路的产品。 3.国家和地方有关政府部门增加投入,优先支持发展稀土高新技术材料、高附加值深加工产品及稀土应用制品的 产业 ,稀土企业也要投入资金不断进行新产品的开发。 4.加强 市场 动态研究和 预测 。经常对国内外 市场 各种信息进行细致分析研究,并科学地 预测 其 市场 前景,对正确引导我国稀土 产业 的发展,显得突出重要。在这一方面,稀土信息中心可以发挥重要作用。希望稀土 界和媒体在宣传报道稀土动态信息时,既要宣传报道稀土的广阔应用前景,更要科学、慎重地估计其应用消耗增长率, 预测市场 实际容量,以及供求关系变化因素和投资风险,避免误 导造成负面影响,要让我国稀土界和社会对全球和我国稀土发展有个科学的认识,保持清醒,这也是避免今后重复建设一哄而上,避免稀土发展 宏观 失控的一个重要措施。更多有关稀土总量的内容请查阅上海 有色 网

钨精矿除杂质

2019-02-27 08:59:29

依据钨精矿的质量标准,除WO3的含量大于65%以上外,其他有害杂质的含量要低于相应标准,特级品钨精矿质量要求还高。钨精矿中的S、P、As、Mo、Ca、Mn、Cu、Sn、SiOl2等杂质均有相应标准,当物理选矿办法达不到要求时则选用化学选矿办法,这样不只能够进步钨精矿质量等级,一起还能够归纳利用其他有用组分。 (1)钨精矿除锡办法锡矿石中的锡以锡石的单体存在时,可用强磁选和电选办法使其别离与黑钨矿及白钨矿别离。 出产中常用固体氯化剂对超锡的钨粗精矿进行氯化焙烧,使锡蒸发以到达除锡的意图。进程的首要反应为: SnO2 + CaCl2+C=SnCl2↑CaO+CO↑(850℃效果下) 2FeWO4+2CaO+1/2O2 =2CaWO4+Fe2O3 2FeWO4+6CaCl2+1/2O2 =6CaWO4+4FeCl2+Fe2O3 钨粗矿氯化焙烧除锡时常用的氯化剂为腐蚀性小并且易收回的氯化铵、等。为了确保反应在复原气氛中进行,配料时需参加必定数量的木炭粉或锯木屑,反应式如下: SnO2 + 2NH4Cl+3C+O2 =SnCl2↑+2NH2↑+3CO↑H2O(850℃效果下) 焙烧时氯化铵的参加量视钨精矿含锡量的不同而异。氯化焙烧温度为850℃左右,进程可在反射炉或回转窑中进行。为了进步脱锡功率,氯化焙烧2~4小时后可翻料一次,保温一段时间以进行氯化焙烧,脱锡率可达90%以上,锡含量可降至0.2%以下。 (2)钨精矿除砷办法 钨精矿中含砷首要以毒矿(FeAsS)、雄黄(AsS)、雌黄(As2 S3)、石(As2O3)和各种盐的形状存在,脱除砷的办法有: ①浮和浮选法能够脱除大部分硫化砷; ②弱氧化焙烧或复原焙烧法脱砷。 焙烧前配料时依据原猜中砷含量的凹凸参加质料质量的2%~6%的木炭粉或煤粉,在700~800℃的温度下焙烧2~4小时,焙烧在反射炉或回转窑中进行,假如木炭粉达不到脱砷要求可参加少数硫黄。进程首要反应为: 2FeAsS+6O2+C=As2O3+Fe2O3+2SO2+CO2 2As2 S3+10O2+C=2As2O3+6SO2+CO2 CaO·As2O5+C=As2O3+CaO+CO2 砷的贱价氧化物(As2O3)为易蒸发物。高价砷氧化物(As2O5)较难蒸发,它能够与某些碱性氧化物生成安稳的盐: As2O3+SiO2+O2=As2O5+SiO2 FeO(CaO)+As2O5=FeO·As2O5(或CaO·As2O5) 因而.川焙烧法脱砷宜在弱氧化气氛中或复原气氛中进行,此刻方可使砷呈贱价砷氧化物蒸发,并使高价砷氧化物(或盐)复原为贱价砷氧化物,然后进步脱砷率。 (3)钨精矿脱磷办法 钨精矿中含磷常以磷灰石Ca5(PO4)3(F、Cl、OH)、磷钇矿YPO4和独居石(Ce、La、Th)PO4等磷酸盐的形状存在。脱磷办法有两种。 ①稀浸出法脱磷 此法适用于脱除磷灰石,一般用1:(3~5)的稀作浸出剂,粗粒精矿用渗浸法,细粒精矿用拌和浸出,能够使磷含量降到0.05%以下。 ②浮选法脱磷 若钨精矿中以磷钇矿、独居石等形状存在磷杂质时,则无法用稀除磷,可用浮磷抑钨的办法,用和油酸混合捕收剂,草酸作抑制剂,碳酸钠作调整剂,可到达降磷意图,并归纳收回了磷钇矿。 (4)钨精矿除钼办法 钨精矿中的钼常呈辉钼矿和钼氧化物(钼酸钙、钼华等)形状存在。一般用抬浮或浮选能够脱除钼的硫化物或许用次氯酸溶液浸出,亦可除掉辉钼矿形状存在的钼。浸出宜在低于40℃温度下进行,此刻铁、铜硫化物的氧化速度比辉钼矿小,且有较高的挑选性。若钼以氧化物形状存在,降钼比较困难,现在尚无经济有用的办法。一般可用酸浸或碱浸办法处理,如用20%~30%的在加热条件下可使悉数钼酸盐转变为易溶于的钼酸钙,部分铜和钨也转入溶液中,钨的酸溶量随浓度和温度的添加而添加。 (5)钨精矿脱铜办法 在钨精矿中的铜若呈硫化物形状存在时,一般用浮选或浮办法将其脱除 选用上述办法除掉某一杂质时,皆可随同除掉适当部分的其他杂质,如氯化焙烧降锡或复原焙烧除砷时均可除掉适当数量的硫。酸浸法除钼、磷时,可除掉适当量的钙、铋、铜等杂质。有时可从酸浸液中收回铋,用次溶液除钼时可除掉部分铜、砷硫化物等。 钨精矿中其他杂质超支状况罕见,一般用物理选矿法屡次精选及化学选矿法除杂质,可使钨精矿中杂质含量降到标准规定值以下。 究竟该做哪些实验? 1、简易探究选矿实验——实用于购买矿权之前,满意出资分析,下降出资危险开始价值判定。 2、矿石的可行性实验——实用于地质详查分析,满意点评,断定合理流程合理工艺目标。 3、体系工艺流程实验——实用于选厂建造之前,满意规划定案,找出规则断定最佳工艺目标。 4、技能攻关研讨实验——实用于矿难技能未解,满意提高效益,产品不合格收回低成本高时。 5、工艺流程验证实验——实用于矿石性质比照,满意药厂挑选,矿山有不同矿石断定适应性。 6、工艺流程考察实验——实用于现已出产选厂,满意现厂查因,进行选厂体检分析选厂问题。 究竟该化验哪些项目? 1、断定矿石类型----需做光谱分析及稀贵元素化验。 2、查明矿石详细性质--需做多元素分析,断定有价及有害元素含量。 3、搞清矿石中各矿藏间联系,含量及成分--需做岩矿判定,对选矿有严重指导意义。 4、断定元素在矿石中的详细存在方式及散布--需做物相分析,对选矿有指导意义。 5、精矿、尾矿化验---需做有价元素及有害元素。 6、原矿及精矿水份、矿石比重断定---选矿实践计量运用。

铝型材壁厚标准对照与质量控制(三)

2019-01-15 09:49:29

标准关于铝型材壁厚的硬性规定不恰当之处   (1)质量定义角度   ISO9000:2000《质量管理体系基础和术语》规定,“质量”的定义是“一组固有特性满足要求的程度”,“特性”是“可区分的特征”,“要求”是“明示的、通常隐含的或必须履行的需求或期望”,铝型材壁厚是质量特征的一个重要指标,“要求”主要体现在顾客要求、工程设计需要。对顾客而言,壁厚大于1.4mm并不代表满足要求,在满足工程设计需要的前提下,壁厚尽量小,才是好的质量。对于工程设计而言,安全因素与铝型材横截面结构、门窗(幕墙)结构、横梁跨度、玻璃面积有关,铝型材壁厚要求应根据使用位置和使用状态变化而变化,铝型材壁厚大于1.4mm不一定满足安全需要,小于1.4mm在相当部分工程中同样可以满足安全需要。通过工程使用状态计算铝型材壁厚才是较科学的方法。   (2)能源角度   目前,中国的GDP占世界GPD总量的1/30,但消耗的钢铁占世界总量的1/4,铝锭占1/4,煤炭占1/3,水泥占1/2,中国目前高速发展的经济是以大量消耗能源为基础的。   硬性规定铝型材壁厚,提高了部分工程的较低铝材消耗量,在某种程度起到浪费能源的推波助澜作用。   因此,标准硬性规定铝型材壁厚,既不符合能源节约,又无法保障顾客利益,无法满足工程设计需要,无法协调生产企业质量控制与市场需求的矛盾,从市场经济角度看,是不科学的。   6结束语   (1)型材作为受力杆件时,其型材壁厚应根据使用条件,通过计算选定。铝合金门窗受力构件应经试验或计算确定。   (2)生产企业在设计时应明确识别主型材及截面主要受力构件,生产中有针对性地进行质量控制铝型材壁厚。   (3)充分理解国家标准、行业标准、地方标准及相应法律法规关于控制铝型材壁厚的规定,既确保产品质量符合相关规定,又能合理控制建筑工程制造成本。

铝型材壁厚标准对照与质量控制

2019-01-02 15:29:20

【摘要】铝合金建筑型材壁厚是影响建筑工程质量的重要质量指标,同时又是关系建筑工程造价的经济指标,本文通过对国家标准、行业标准、地方性法律法规中关于壁厚检测标准进行对照,帮助生产企业提高对国家标准、行业标准和地方性法律法规中关于铝合金型材壁厚规定的理解,探讨在铝型材生产中合理控制铝合金建筑型材壁厚,提高建筑工程质量,降低建筑工程成本,对于铝合金建筑型材生产企业有着重要意义。  【主题词】最小实测壁厚 受力杆件 允许偏差  1 概述  铝合金建筑型材作为建筑工程的一种重要原材料,在国民经济体系中起着基础性的作用,由于汽车和房地产两大产业的拉动,中国铝合金建筑型材产量持续走高,从1990年产量仅为39万吨,到2002年跃升为274万吨,年增长率为17%,大大高于同期国内GDP增长速度。中国有色金属加工协会预测,中国铝材的消费高峰将于2005年后到来,2022年达到最高峰,年需求量超过1000万吨,但目前,国内氧化铝产业受到企业规模小且布局分散、高品位铝土矿资源受先天不足等“软肋”制肘,中国国内氧化铝供应短缺预计将持续到2006年年底,在通过计算确保工程质量的前提下合理控制铝型材壁厚,对于降低铝资源消耗和建筑工程成本,提高铝型材的市场竞争力有着重要意义。  铝合金建筑型材壁厚是影响建筑工程质量的重要质量指标,同时又是关系建筑工程造价的经济指标。一方面,部分铝型材厂急功近利,生产薄壁型材,扰乱市场,为建筑工程留下质量和安全隐患,为便于市场监督抽查,抑制市场上装饰装修行业用门、窗、幕墙型材的薄壁现象,保障消费者权益,GB/T5237-2000《铝合金建筑型材》对门窗、幕墙用受力杆件型材的最小实测壁厚进行规定。另一方面,工程设计单位依据型材的使用条件通过计算选定的壁厚,部分数据与GB/T5237-2000《铝合金建筑型材》规定有差别。如何充分理解国家标准、行业标准和地方性法律法规中关于铝合金型材壁厚规定,生产中合理控制铝合金建筑型材壁厚,是铝合金建筑型材生产企业必须面对的重要课题。  2 GB/T5237-2000《铝合金建筑型材》相关规定  笔者曾经与多家铝型材生产厂家技术人员探讨过GB/T5237-2000《铝合金建筑型材》中关于壁厚的规定,发现有相当一部分厂家忽视或未充分理解5.4.1.4条款中关于壁厚均衡性的规定。  GB/T5237-2000《铝合金建筑型材》5.4.1.4条款规定“横截面中壁厚名义尺寸及允许偏差相同的各个面的壁厚差应不大于相应的壁厚公差之半”,此条款适用的条件是“横截面中壁厚名义尺寸及允许偏差相同”,在此条件下,最大实测壁厚与最小实测壁厚之差,应小于或等于该名义尺寸的公差之半,公差就是正偏差和负偏差的绝对值之和,该条款可理解为:  最大实测壁厚-最小实测壁厚≤(∣正偏差∣+∣负偏差∣)/2  在铝型材挤压实际生产过程中,由于受到模具、挤压设备、生产工艺波动影响,易出现型材挤压流出速度不均衡,壁厚出现偏差,特别是空心型材易出现偏壁现象,需加强现场质量控制,  为确保建筑工程质量和安全,GB/T5237-2000《铝合金建筑型材》规定,“型材作为受力杆件时,其型材壁厚应根据使用条件,通过计算选定。但门、窗用受力杆件型材的最小实测壁厚应≥1.2㎜,幕墙用受力杆件型材的最小实测壁厚应≥3.0㎜”。即在工程设计时,首先要通过计算型材在不同使用场合所需传递力的大小,来确定不同场合下型材所需的最小壁厚。然后应在产品设计时明确识别受力杆件和非受力杆件,标准注1中指出“ 所谓受力杆件是指门、窗结构计算中的杆件,及幕墙的立柱和横梁受力杆件”。  为尽量减少标准滞后性的影响,标准注2中明确规定:“当本标准规定的‘最小实测壁厚’与有关铝门、窗、幕墙国家标准的最新规定不一致时,应执行该门、窗、幕墙国家标准的最新规定。” 2003年9月1日开始实施的GB/T8479-2003《铝合金窗》,5.1条款规定“铝合金窗受力构件应经试验或计算确定。未经表面处理的型材最小实测壁厚应≥1.4㎜”。 2003年9月1日开始实施的GB/T8478-2003《铝合金门》,5.1条款规定“铝合金门受力构件应经试验或计算确定。未经表面处理的型材最小实测壁厚应≥2.0㎜”。  因此,工程建筑用外窗主要受力杆件最小实测壁厚应≥1.4㎜,工程建筑用外门型材最小实测壁厚≥2.0㎜。通常,铝型材生产企业现场质量检验使用的外径千分尺通常精确到0.01㎜,当现场检测最小实测壁厚为1.35㎜,依据GB/T8170《数值修约规则》3.3条款规定:“拟舍弃数值的最左一位数字为5,而右面无数字或皆为0时,若所保留的末位数字为奇数(1,3,5,7,9)则进一,为偶数(2,4,6,8,0)则舍弃。”修约为1.4㎜,符合相应标准规定。  3 JGJ102-2003《玻璃幕墙工程技术规范》相关规定  为使玻璃幕墙工程做到安全适用、技术先进、经济合理,中华人民共和国建设部于2003年11月14日发布行业标准《玻璃幕墙工程技术规范》,规范玻璃幕墙工程的材料、设计、制作、安装施工及验收。  玻璃幕墙的抗风压性能根据现行国家标准GB/T15227《建筑幕墙风压变形性能检测方法》所规定的方法确定。幕墙的抗风压性能是指幕墙在与其相垂直的风荷载作用下,保持正常使用功能、不发生任何损坏的能力。幕墙抗风压性能的定级值是对应主要受力杆件或支承结构的相对挠度值达到规定值时的瞬时风压,即3秒钟瞬时风压。幕墙的抗风压性能应大于其所承受的风荷载标准值。  通常横梁跨度较小,相应的应力也较小,建设部规定:横梁截面主要受力部位的厚度,应符合“当横梁跨度不大于1.2m时,铝合金型材截面主要受力部位的厚度不应小于2.0mm;当横梁跨度大于1.2m时,其截面主要受力部位的厚度不应小于2.5mm”。为了保持直接受力螺丝连接的可靠性,防止自攻螺钉拉脱,受力连接时,在采用螺丝直接连接的局部,“其局部截面厚度不应小于螺钉的公称直径”。  立柱截面主要受力部位的厚度,应符合“铝型材截面开口部位的厚度不应小于3.0mm,闭口部位的厚度不应小于2.5mm;型材孔壁与螺钉之间直接采用螺纹受力连接时,其局部厚度尚不应小于螺钉的公称直径”。立柱截面主要受力部位的厚度的最小值,主要是参照国家标准《铝合金建筑型材》GB/T5237中关于幕墙用型材最小厚度为3.0mm的规定,对于闭口箱形截面,由于有较好的抵抗局部失稳的性能,可以采用较小的壁厚,因此允许采用最小壁厚为2.5mm的型材。  在实际生产中,经常出现工程设计单位依据JGJ102-2003《玻璃幕墙工程技术规范》相关规定,计算选定的铝合金型材壁厚没有达到GB/T5237-2000《铝合金建筑型材》规定,造成生产厂家按顾客设计图纸生产产品,却不符合国家标准。因为标准条款冲突或不适宜,造成铝型材生产厂家、工程设计单位和顾客的困惑。同时,因为标准对壁厚的硬性规定,造成相当部分铝资源的浪费。  4 DBJ 15-30-2002《铝合金门窗工程设计、施工及验收规范》相关规定  为满足建筑工程的需要,使铝合金门窗的性能符合建筑功能的要求,保证铝合金门窗工程的质量,针对广东省的气候特点和工程建设的实际情况,广东省建设厅于2002年10月18日颁布广东省地方标准DBJ 15-30-2002《铝合金门窗工程设计、施工及验收规范》,用于规范广东省范围内的工业与民用建筑铝合金门窗工程的设计、施工及验收。  强制性条款3.2.2规定,“铝门窗主型材壁厚应经计算或试验确定,其中门型材截面主要受力部位最小实测壁厚应不小于2.0㎜,窗型材截面主要受力部位最小实测壁厚应不小于1.4㎜”。  对铝合金型材生产企业而言,铝合金门窗是其下游产品,下一过程就是顾客,工程设计、施工及验收规范是顾客的基本要求,是铝合金型材应用于门窗生产的先决条件。  所以在铝合金门窗型材的设计、生产、质量检验中,需明确识别出主型材及截面主要受力构件。所谓主要受力构件,指门窗立面内承受并传递门窗自身重力及水平风荷载等作用力的中横框、中竖框、扇梃等主型材,以及组合门窗拼樘框型材。所谓型材截面主要受力部位,指门窗主型材横截面中,承受垂直和水平方向荷载作用力的腹板、翼缘或固定其它构件的连接受力部分等主要部位。  明确识别出主型材及截面主要受力构件,在设计、生产中进行有针对性的质量控制,既确保产品符合《铝合金门窗工程设计、施工及验收规范》相关规定,又能合理控制生产成本和顾客工程制造成本。  5 标准关于铝型材壁厚的硬性规定不恰当之处  (1)质量定义角度  ISO9000:2000《质量管理体系 基础和术语》规定,“质量”的定义是“一组固有特性满足要求的程度”,“特性”是“可区分的特征”, “要求”是“明示的、通常隐含的或必须履行的需求或期望”,铝型材壁厚是质量特征的一个重要指标,“要求”主要体现在顾客要求、工程设计需要。对顾客而言,壁厚大于1.4mm并不代表满足要求,在满足工程设计需要的前提下,壁厚尽量小,才是好的质量。对于工程设计而言,安全因素与铝型材横截面结构、门窗(幕墙)结构、横梁跨度、玻璃面积有关,铝型材壁厚要求应根据使用位置和使用状态变化而变化,铝型材壁厚大于1.4mm不一定满足安全需要,小于1.4mm在相当部分工程中同样可以满足安全需要。通过工程使用状态计算铝型材壁厚才是最科学的方法。  (2)能源角度  目前,中国的GDP占世界GPD总量的1/30,但消耗的钢铁占世界总量的1/4,铝锭占1/4,煤炭占1/3,水泥占1/2,中国目前高速发展的经济是以大量消耗能源为基础的。  硬性规定铝型材壁厚,提高了部分工程的最低铝材消耗量,在某种程度起到浪费能源的推波助澜作用。  因此,标准硬性规定铝型材壁厚,既不符合能源节约,又无法保障顾客利益,无法满足工程设计需要,无法协调生产企业质量控制与市场需求的矛盾,从市场经济角度看,是不科学的。  6 结束语  (1)型材作为受力杆件时,其型材壁厚应根据使用条件,通过计算选定。铝合金门窗受力构件应经试验或计算确定。  (2)生产企业在设计时应明确识别主型材及截面主要受力构件,生产中有针对性地进行质量控制铝型材壁厚。  (3)充分理解国家标准、行业标准、地方标准及相应法律法规关于控制铝型材壁厚的规定,既确保产品质量符合相关规定,又能合理控制建筑工程制造成本。  参 考 文 献  【1】左宏卿、陈世昌、卢继延等,GB/T5237-2000《铝合金建筑型材》,国家质量技术监督局,中国标准出版社出版,2000.12  【2】黄小坤、赵西安、姜清海等,JGJ102-2003《玻璃幕墙工程技术规范》,中华人民共和国建设部,中国建筑工业出版社,2003.11  【3】杨仕超、石民祥、谭国湘、张根祥,DBJ 15-30-2002《铝合金门窗工程设计、施工及验收规范》,广东省建设厅,2002.10  【4】葛立新、王国军、李瑞山,GB/T5237-2000《铝合金建筑型材》实施指南,2002  【5】葛立新,GB/T5237-2000《铝合金建筑型材》标准综述,《质量技术监督》,2000.3  【6】刘达民、石民祥、卢继延等,GB/T8479-2003《铝合金窗》,国家质量监督检验检疫总局,2003.9  【7】刘达民、石民祥、卢继延等,GB/T8478-2003《铝合金门》,国家质量监督检验检疫总局,2003.9

工业轧翅用纯铝圆管质量控制

2018-12-28 09:57:19

纯铝圆管在工业上大量使用的表现之一,便是工业化的轧翅。此类产品从普通的工业厂房取暖、大型制冷换热设备到汽车的高性能散热器都广泛使用。从其附着管道来分大体有钢管和铜管之分。其轧制的方法为,钢管或铜管穿在纯铝圆管内,通过翅片轧制机,在确定好相应的轧制参数后形成。在此过程中,翅片的起高程度,以及翅片的圆度、裂度除了与管材设计的壁厚以及配合间隙外,纯铝圆管自身性能以及相应的质量状况对其影响便是主要的了。   下面就以1060H112为例,从材质,挤压,包装,贮存运输等几个方面来阐述对纯铝圆管的质量控制。   1.材质   铝铝圆管的铝纯度很重要,在客户合同中虽然明确标识为1060合金,但是相对于其在GB/T3190中的合金成分中的杂质含量就容易造成翅片开裂缺陷。所以在实际的成分控制当中,本公司对合金成分进行了相应的严格控制,具体对比见表一。  从表一可以看出,成分的控制相当严格,从成分的指标值上可以看出接近于1070合金,但个别的成分比1070合金还要严格,本来1070合金就已经有很好的起高度了,但对于翅片厚度和裂度问题就应该考虑成分的纯度了。另外铝纯度也是良好焊合和轧制延伸率的前提。   2.挤压   挤压对于纯铝圆管性能,不论是起高程度,还是轧制延伸率,亦或是轧制成品率在影响上都是决定的。挤压对于纯铝圆管的影响体现在如下几个方面:   2.1 模具   普通的非轧制铝圆管的挤压模具设计不用考虑充分焊合的问题,在正常检验条件下,外观肉眼观察无明显焊合线纹,无明显开裂即可了,这样条件下,其内部承压能力一般都能高出指标值1.5倍。但对于纯铝圆管而言,焊合的要求就显得非常之重要,这时普通模具的设计就不能满足要求了,相对于普通模具而言应在充分焊合上面下功夫,在模具设计时应作充分的沉桥处理,在此状态下,比普通模具有10—12mm的差异。这对于纯铝圆管的轧翅后翅片有无裂度有深远的影响。   2.2 加温   普通型材的铝棒加温一般在450—490℃之间,保温2.5小时左右,但对于纯铝圆管的铝棒加温就是不适用了。笔者经过长期的试验,摸索和试制最终发现,加温温度控制在500——530℃之间最为合理,而且保温在2.5小时以上。这样能保证足够的焊合、起高度和延伸率。

铝型材的生产过程及质量控制

2018-12-28 09:57:22

铝合金型材出产包含熔铸、揉捏和氧化三个进程。   1.熔铸是铝材出产的首道工序。   首要进程为:   (1)配料:依据需要出产的详细合金商标,计算出各种合金成分的添加量,合理搭配各种原材料。   (2)熔炼:将配好的原材料按技术需求参加熔炼炉内熔化,并经过除气、除渣精粹手法将熔体内的杂渣、气体有用除掉。   (3)锻造:熔炼好的铝液在必定的锻造技术条件下,经过深井锻造系统,冷却锻造成各种规格的圆铸棒。   2、揉捏:揉捏是型材成形的手法。先依据型材商品断面设计、制造出模具,使用揉捏机将加热好的圆铸棒从模具中挤出成形。常用的商标6063合金,在揉捏时还用一个风冷淬火进程及其后的人工时效进程,以完结热处置强化。不一样商标的可热处置强化合金,其热处置准则不一样。强化后能够用W-20韦氏硬度计,进行硬度测试。   3、氧化:揉捏好的铝合金型材,其表面耐蚀性不强,须经过阳极氧化进行表面处置以添加铝材的抗蚀性、耐磨性及表面的漂亮度。   其首要进程为:   (1)表面预处置:用化学或物理的办法对型材表面进行清洁,裸露出纯洁的基体,以利于取得完好、细密的人工氧化膜。还能够经过机械手法取得镜面或无光(亚光)表面。   (2)阳极氧化:经表面预处置的型材,在必定的技术条件下,基体表面发作阳极氧化,生成一层细密、多孔、强吸附力的AL203膜层。   (3)封孔:将阳极氧化后生成的多孔氧化膜的膜孔孔隙关闭,使氧化膜防污染、抗蚀和耐磨性能增强。氧化膜是无色通明的,使用封孔前氧化膜的强吸附性,在膜孔内吸附沉积一些金属盐,可使型材表面显现本性(银白色)以外的很多色彩,如:黑色、古铜色、金黄色及不锈钢色等。

大型玻璃幕墙工程的质量控制

2018-12-25 09:32:41

1、玻璃幕墙的应用   近年来随着我国大规模的经济建设,各类建筑风采各异,为城市增添了美景。玻璃幕墙是公共建筑中一种应用较为广泛的结构形式,特别是应用于城市地标性的建筑物,如高层楼宇、公共建筑中,形式有平面型、弧面型、蛋壳性,立面造型各异。   由于玻璃幕墙的造型日趋复杂,由平面结构向空间结构发展,其受力情况越来越复杂,考虑的受力因素多,材料的性能及组织结构的复杂,不仅加大了设计的难度,在施工中如何保证合理的施工计划,施工工艺,施工管理,才能控制好玻璃幕墙的质量,不仅要保证承载能力极限的安全,更为是要满足日常的实用的正常。故对玻璃幕墙的质量控制与管理不仅是管理方面的,更为重要的是还要有满足各类玻璃幕墙施工及监控的技术能力。   2、玻璃幕墙工程的特点   玻璃幕墙的形式可以分为明框幕墙和隐框幕墙两个大类。明框幕墙由于使用效果较隐框幕墙差,故一般只在规模较少的项目上使用,大量的特别是对外观要求较高的项目,基本上全部使用的是隐框的玻璃幕墙。玻璃幕墙的主要受力结构一般都是采用钢结构和铝结构,由于空间受力结构复杂型,玻璃幕墙设计时,除正常的验收外,还应充分考虑到各种荷载和作用,特别是组合作用的应力与变形,更要注意局部薄弱环节对结构整体性的影响。   此外,玻璃幕墙结构还要考虑到防空气渗透、防雨水渗漏,对于风压大、临海、多雨、环境湿度大的地方,幕墙将长期处于不利的工作环境中,由于施工现场的检测手段有限,如何才能防空气渗透是幕墙工程的难点,在风压和雨水的共同作用下,防渗难度将更大。   玻璃幕墙工程封边封口、拼缝的平整度和直线度以及玻璃及其他材料间会有许多形式不同的封边封口,玻璃板材拼缝较多。由于封边封口的工序较为复杂,操作难度大,影响质量的因素多,如受操作者的影响、工序交叉的影响、材料种类及设计节点作法的影响等,使封边封口及拼缝的质量控制难度加大。这些特点,表明了玻璃幕墙结构设计与施工的复杂性,必须全过程的质量管理与控制,才能保证玻璃幕墙的质量。   3、玻璃幕墙工程的施工管理   3.1 幕墙施工管理   由于大型玻璃幕墙设计与安装专业性很强,结构设计与结构部分的安装,幕墙部分的设计与安装,必须由有资质的高水准专业单位设计施工,才可能保证玻璃幕墙工程的安全和满足正常使用的要求。幕墙的结构与施工,应符合有关结构设计、施工规范的要求。在超限设计与施工的情况下,应通过有关部门组织的专题审查,方可以设计与施工。   3.2 材料质量控制   大型玻璃幕墙的材料包括型钢、型铝、玻璃、结构胶、密封材料等,所有用于工程的原材料均应符合国家规范的要求。为了保证进到施工现场的各类材料质量,还必须按规定按比例抽样检测,检查材料的化学成分和力学性能,合格后方可加工。对于工厂加工的构建,还应在加工场地有专职的质量管理人员。对于加工后的构件,亦应按规定做好试验检测工作,确保构件的加工质量。123后一页