您所在的位置: 上海有色 > 有色金属产品库 > 石墨烯气凝胶

石墨烯气凝胶

抱歉!您想要的信息未找到。

石墨烯气凝胶百科

更多

一张图看懂气凝胶材料

2019-01-04 09:45:26

为何石墨软石墨烯“硬”

2019-01-04 15:47:49

导读 为什么石墨那么软,而石墨烯又表现得那么“硬”呢?浙江大学信息电子工程学院副教授林时胜介绍说,其实这里涉及两个不同的概念,一个是强度,这是力学概念,一个是硬度,属于物理概念。 石墨烯的“硬”,是指强度高,衡量强度的指标是杨氏模量,根据杨氏模量的高低可以把物质分为硬物质和软物质。石墨烯的模量非常高,可达1T帕(压强单位),是材料里最高的,所以石墨烯是硬物质,可以说是很硬。相应的像橡胶这些,模量只有几千帕,就是软物质,很软。材料力学上有刚度、强度、韧度、硬度等不同物理概念,这与我们通常讲的硬与软有区别。从通俗意义上说,石墨烯的“硬”指的是石墨烯的强度很好,就是它抗断裂的能力很强,这也和它的韧性很好有关系,因为容易延展而不断裂。模量就是代表了材料能被拉伸的容易程度。  再说石墨的软,这是物理概念,指的是硬度。硬度的衡量,是用一种材料去破坏另一种材料,被破坏的硬度就小。石墨的片层之间是范德华力,非常弱,只要用固体去划它,都能把它的片层错开,所以石墨很容易被破坏,就是说石墨很软。

为何石墨软,石墨烯“硬”?

2019-01-03 09:37:04

为什么石墨那么软,而石墨烯又表现得那么“硬”呢?浙江大学信息电子工程学院副教授林时胜介绍说,其实这里涉及两个不同的概念,一个是强度,这是力学概念,一个是硬度,属于物理概念。 石墨烯的“硬”,是指强度高,衡量强度的指标是杨氏模量,根据杨氏模量的高低可以把物质分为硬物质和软物质。石墨烯的模量非常高,可达1T帕(压强单位),是材料里最高的,所以石墨烯是硬物质,可以说是很硬。相应的像橡胶这些,模量只有几千帕,就是软物质,很软。 材料力学上有刚度、强度、韧度、硬度等不同物理概念,这与我们通常讲的硬与软有区别。从通俗意义上说,石墨烯的“硬”指的是石墨烯的强度很好,就是它抗断裂的能力很强,这也和它的韧性很好有关系,因为容易延展而不断裂。模量就是代表了材料能被拉伸的容易程度。 再说石墨的软,这是物理概念,指的是硬度。硬度的衡量,是用一种材料去破坏另一种材料,被破坏的硬度就小。石墨的片层之间是范德华力,非常弱,只要用固体去划它,都能把它的片层错开,所以石墨很容易被破坏,就是说石墨很软。

漫画简介石墨烯!

2019-03-08 09:05:26

石墨烯被称为“黑金”,又被称为“新材料之王”,是现在发现的最薄、强度最大、导电导热功能最强的一种新式纳米材料,极有或许掀起一场席卷全球的颠覆性新技术新产业革新。 石墨烯的制备上,多晶薄膜有望未来1-2年内完成产业化使用,单晶石墨烯工业组成办法仍未找到,因而间隔产业化还很悠远。低成本的使用氧化还原法出产石墨烯粉体,一起可以使用CVD法出产出层数可控、大面积的石墨烯薄膜是未来研究要点,也是推进职业开展的要害点。而在使用层面,未来被看好的范畴是锂离子电池、柔性显现、太阳能电池和超级电容器。

石墨烯真神奇

2019-03-07 10:03:00

近两年石墨烯的可控低成本制备技能已获得了打破性开展,有望在不久的将来构成石墨烯工业。 日前,在深圳举行的第十九届我国世界高新技能效果交易会上,石墨烯作为独具特色的新材料再次引起人们的重视,成为这个国内最大规划、最具影响力的科技展会上一个耀眼的“明星”。石墨烯到底有哪些奇特之处,能为人们带来什么惊喜?记者采访了相关专家。 人类正行进在以硅为首要物质载体的信息年代,下一个量子年代,石墨烯很或许锋芒毕露 和金刚石相同,石墨是碳元素的一种存在方式。风趣的是,因为原子结构不同,金刚石是地球上自然界最坚固的东西,石墨则成了最软的矿藏之一,常做成石墨棒和铅笔芯。 科学家介绍说,石墨烯是从石墨材料中剥离出来,只由一层碳原子构成、按蜂窝状六边形摆放的平面晶体。浅显地讲,石墨烯就是单层石墨。一块厚1毫米的石墨大约包括300万层石墨烯;铅笔在纸上悄悄划过,留下的痕迹就或许是好多层石墨烯。 这种只要一个原子厚度的二维材料,一向被以为是假定性的结构,无法独自安稳存在。直至2004年,两位英国科学家成功地从石墨中别离出石墨烯,证明了其可以独自存在,并因而一起获得2010年诺贝尔物理学奖。 据我国电科55所所长、微波毫米波单片集成和模块电路要点试验室主任高涛博士介绍,石墨烯共同的结构让它具有更导电、更传热、更坚固、更透光等优异的电学、热学、力学、光学等方面的功能。轻浮、强韧、导电、导热……石墨烯这些特性赋予人们许多幻想空间。 石墨烯的特色首先是薄,可谓现在世界上最薄的材料,只要一个原子那么厚,约0.3纳米,是一张A4纸厚度的十万分之一、一根头发丝的五十万分之一。与此一起,石墨烯比金刚石更硬,透光率高达97.7%,是世界上最坚固又最薄的纳米材料。 一起,它又能导电。石墨烯的电子运转速度达1000千米/秒,是光速的1/300,十分合适制造下一代超高频电子器材。石墨烯仍是传导热量的高手,比最能导热的银还要强10倍。 石墨烯的特性,也体现得很“好玩”。比方当一滴水在石墨烯表面翻滚时,石墨烯能敏锐地“察觉”到纤细的运动,并发生继续的电流。这种特性给科学家供给了一种新思路——从水的活动中获取电能。比方,在雨天可以用涂有石墨烯的雨伞进行发电,或许可以做成活络的传感器材等。 “人类阅历了石器、陶器、铜器、铁器年代,正行进在以硅为首要物质载体的信息年代;而下一个量子年代哪种材料将锋芒毕露呢?很或许是石墨烯。”浙江大学高分子科学与工程学系教授高明说。 未来电动轿车运用石墨烯电池,花两三分钟就或许把电充溢 因为石墨烯的奇特功能,加上制备简洁、研讨视角多维,其运用潜力巨大、适用职业广大,成为抢眼的材料“新星”一点不古怪。石墨烯从发现到现在仅10余年的时刻,已获得了许多令人震慑的研讨效果,称得上是人类历史上从发现到运用最快的材料。 高明说,从材料化学视点看,石墨烯会带来资源、环境、化工、材料、动力、传感、交通机械、光电信息、健康智能、航空航天等范畴的改动或革新。我国石墨矿储量丰厚,约占全世界的75%,其高效开发将引起碳资源及我国大资源战略的新定位、新考虑、新规划。 石墨烯的工业化出产则将促进化工、机械、智造、自控等职业的技能前进。石墨烯的增加可以发生多功能复合材料,用来制造高功能电池、电容器。石墨烯传感器可以在生物检测、光电勘探方面大显神通,石墨烯及其它二维材料的异质叠合材料可制造高功能晶体管。 可以说,石墨烯技能将对咱们的吃、穿、住、行、用、玩都发生影响。石墨烯复合膜阻氧阻水功能好,可前进食物保质期;石墨烯纤维可制成发热服饰和医疗保健用品;石墨烯电热膜电热转化效率高,可逐渐替代暖气供热;石墨烯系列材料可用于轿车、火车等交通工具,石墨烯导热膜可用于手机高效散热…… 石墨烯另一个被寄予厚望的运用范畴是电能贮存。它的优势在于充电速度快,并且可以重复运用几万次。但现在石墨烯存储的电量不如电池多,还无法存储足够多的电能。未来,跟着充电设备的日益完善和相关技能的前进,电动轿车运用石墨烯电池,花两三分钟就或许把电充溢。 我国电科55所微波毫米波单片集成和模块电路要点试验室副主任孔月婵博士介绍说,石墨烯的电子运转速度是硅的十倍,由石墨烯制造的高频器材理论上作业频率可以到达硅的十倍乃至上百倍。石墨烯引发的技能很或许从人们常见的小小芯片开端。 此外,科研人员已完结柔性衬底晶体管的研发,正在测验柔性通讯电路的研发。未来不管是可以折叠的显现屏幕,仍是可以植入人体的可穿戴设备,都或许靠这样的石墨烯器材来完成。 高涛以为,即便在试验室条件下,石墨烯的奇特功能仍然没有彻底释放出来。因为技能层面还存在着不少应战,真实大面积运用还有很长的路要走。但经过加强需求和研讨的结合,不断在石墨烯材料的制备和器材研发方面获得重要打破,发明更多更新更具颠覆性的运用,石墨烯这种新一代战略性新式材料将会极大改动人们的生发日子。 国内石墨烯研讨与国外底子同步,有望在不久的将来构成石墨烯工业 石墨烯一向是世界上的研讨热门,并在不断升温。近几年来,全球石墨烯相关的论文和发明专利简直呈指数式增加,不只各类优异的物理化学功能被猜测、证明,并且由此生宣布许多详细的研讨方向。 据了解,许多国家正在抢夺石墨烯技能的制高点。欧盟石墨烯旗舰方案以石墨烯传感为首要研讨方向,美国正在测验使用石墨烯完成通讯的柔性化并获得了明显的效果,韩国继续支撑石墨烯柔性显现的研讨并制备出了演示产品。 高涛说,整体来讲,世界上石墨烯各项优异功能正逐渐从试验室研讨向产品运用过渡,一起一些潜在的功能或运用还在不断被开掘。但这个工程化是一个长时间而困难的进程,给我国完成赶超世界水平、占据技能制高点带来了绝好的机会。 高明以为,现在国内石墨烯研讨与国外底子同步,一些方面有原创和引领性效果。国内研讨侧重化学和材料,国外更偏机理和器材。国内石墨烯的研讨在理论研讨方面可说是已完成与世界先进水平“并跑”,论文、专利不管数量仍是质量都具有很强的世界竞争力。到2016年3月,我国石墨烯的专利总数占全世界的56%。与此一起,国家赞助了很多有关石墨烯的基础研讨项目,开始构成了政府、科研机构和厂商协同立异的产学研协作对接机制。 例如,清华大学开宣布米级石墨烯单晶薄膜的快速制备技能;我国电科55所研宣布了世界上最快的柔性石墨烯晶体管;浙江大学纳米高分子团队则经过近十年研讨,开宣布了石墨烯纤维、石墨烯接连拼装膜、石墨烯超轻气凝胶及石墨烯无纺布等。 受访专家指出,各个方向不断呈现令人惊喜的研讨效果,让人们对石墨烯的未来充溢等待。但整体来讲,石墨烯技能成熟度还比较低。关于石墨烯的开展,其限制要素或许说难点,首要在材料制备技能、全新规划理念和二维控制技能等方面。其间,高品质、大批量的石墨烯质料问题暂时没有底子处理,还需要进行很多技能攻关。有些技能如单层氧化石墨烯、石墨烯单晶等在试验室制备成功了,但完成工程化、接连性、低成本、高效安稳制备还有较长的路要走。只要真实高品质的石墨烯量产了,颠覆性运用才会呈现。 不过科学家们也比较达观,近两年石墨烯的可控低成本制备技能已获得了打破性开展,有望在不久的将来构成石墨烯工业。

纤维素气凝胶简介及发展展望

2019-01-03 09:36:51

纤维素气凝胶作为新生的第三代材料,超越了硅气凝胶和聚合物基气凝胶,在具备传统气凝胶特性的同时融入了自身的优异性能,如良好的生物相容性和可降解性,在制药业、化妆品等方面具有很大的应用,是一个不断发展的生物类聚合物材料。作为超轻结构材料,纤维素气凝胶密度可以达到0.008g/cm3。Innerlohinger等在2006年具体研究了其内部结构,纤维素凝胶具备很高的多孔率及比表面积,在干燥过程中受毛细管压力作用,容易引起收缩、毛细管张力和破裂。因此,选择合适的干燥方式是制备纤维素至关重要的一步,常用干燥方法包括超临界干燥、冷冻干燥和常压干燥,其中超临界CO2干燥是比较常用的干燥方法,因为它可以避免毛细管作用力,不会破坏固态机构,但过程相对复杂。随着对纤维素气凝胶认识的加深,以及全球能源危机的加剧,人们对于纤维素气凝胶的研究热情逐步升高,各种研究也逐渐增多,如对纤维素来源、溶剂、干燥方式等的研究。 纤维素气凝胶作为一种可持续发展的纳米材料,可作为活性物载体,也可以作为模板材料制备含纳米金属粒子的复合气凝胶。现在气凝胶作为一种超轻材料正逐步走入人们的生活中。虽然纤维素气凝胶还未实现其工业化生产,但纤维素来源丰富,可再生,比强度和模量高,随着研究的深入,制备工艺的日益简单,作为纳米科技中的一支新绿色队伍,独特的光学、热学性质以及机械性能将会使其在材料科学领域独树一帜,得到广泛的应用。

石墨烯基础科研现状

2019-01-04 09:45:43

石墨烯从其诞生至今不过10年光景。2004年为石墨烯科学研究的萌芽阶段,随后即进入快速成长阶段;从2008年开始,尤其是在2010年石墨烯发明者获得了诺贝尔奖之后,关于石墨烯的基础科研工作开展得如火如荼。 下文从专利分布、研究机构分布、研究领域分布和主要研究成果等方面梳理目前石墨烯的基础科研动向。 一、专利分布 目前全球共有超过200个机构和1000多名研究人员从事石墨烯技术的开发和研究,其中包括三星、IBM等科技巨头。我们通过最近几年的专利申请情况对目前石墨烯的研究进展进行概览。从专利申请总量来看,2010年以来全球石墨烯专利申请总量呈爆发式增长;2012年全球石墨烯专利申请量已经达到3500个,可见目前全球范围内正在掀起石墨烯研究与开发的高潮。 从石墨烯专利申请国别分布来看,2013年全球石墨烯专利申请量最大的是中国,其次为美国、韩国和日本。在石墨烯相关论文方面,欧盟排名第一,2013年共发表了7800篇论文;就国别而论,依然是中国排名第一,共发表了6649篇论文。 总体而言,目前中国已经处在石墨烯研究的前沿阵地;但是,从研究深度和创新性而言,非常核心的技术和创新性技术中国仍未掌握。二、研究机构分布 从事石墨烯研究的机构比较广泛,包括学术研究机构、企业、个人和政府层面。比较普遍的研究模式是学术研究机构与企业的合作,例如韩国三星与韩国成均馆大学合作对石墨烯的制备基础方法和应用开展研究。 从研究机构专利数量口径看,在前十名中,有4家机构来自韩国,4家来自中国,2家来自美国。并且,6家机构都是科研院所或独立科研机构,4家为企业。其中,专利数量最多的是韩国三星电子,其专利申请数量为210个,占全球总量的7.3%,其研究范围涵盖了石墨烯制备方法和在显示屏、锂电池领域的应用;其次为韩国成均馆大学、浙江大学、IBM、清华大学等。三、研究领域分布 从石墨烯研究领域分布看,全球研究热点主要在材料的导电性、导热性、石墨烯的制备研究、纳米材料研究等。 中国石墨烯研究热点主要分布石墨烯纳米复合材料、石墨烯制备、石墨烯电极等方向。我们统计了前20位主要研究机构的重点研究领域,发现研究热点分布于:(1)复合材料;(2)碳纳米管;(3)电容器;(4)传感器;(5)晶体管;(6)透明电极;(7)锂电池;(8)燃料电池。上述研究大多属于石墨烯应用,而关于石墨烯的制备改进工艺或者大规模量产石墨烯的基础研究非常少。 四、最新研究成果 在石墨烯制备方面,最新的研究成果是在生成单晶石墨烯的方法上,目前有两种方法已经能获得直径约为1mm的单晶石墨烯和直径为25px的单晶石墨烯,但是这两种方法各有优劣。 在石墨烯应用方面,最新的研究成果包括把作为光敏元件(PD)的光增益提高到了原来的约1000倍、提高柔性湿度传感器的响应时间等。在锂电池、半导体、传感器、无线通讯、电容器、电子元件、海水淡化等多个领域都有重大突破。 在众多最新研究成果中,属于中国研究机构的成果依然稀少,印证了前文中我们提到的,虽然中国在专利申请和论文发表方面在国际领先,但是在真正的研究前沿方面距离美国、日本和韩国等国家仍有一定差距。

碳气凝胶研究领域取得新进展

2019-03-07 11:06:31

中国科学院姑苏纳米技能与纳米仿生研讨所研讨员张学同带领的气凝胶团队与英国伦敦大学学院教授宋文辉及中国科学技能大学教授闫立峰等协作,成功取得了一种新式的全碳气凝胶,即石墨烯交联的碳空心球气凝胶。 气凝胶曾被誉为改动国际的新材料,在航空航天、国防等高技能范畴及建筑、工业管道保温等民用范畴都有极端广泛的运用远景。从结构上看,气凝胶是由零维的量子点、一维的纳米线或许二维的纳米片等低维纳米结构经三维拼装而成的超轻多孔纳米材料。低维纳米结构的各种变量,如几许形状、尺度、密度、表面描摹、化学特点等参数,都会对终究取得的气凝胶功用发生重要影响。图1 石墨烯交联的碳空心球气凝胶制备工艺道路 示意图 迄今为止,已有多种低维纳米结构拼装成功用各异的气凝胶,但这些纳米结构单元的尺度均在100纳米以下,乃至仅仅为几个纳米。关于结构单元的尺度大于100纳米(即亚微米级)的气凝胶的制备应战巨大,这主要是由两方面原因形成的:一是气凝胶结构单元的尺度越大,其比表面积越小(两者成反比联系)。关于亚微米级的结构单元,不管其为无机物(密度较高)仍是有机物(密度较低),取得的气凝胶的比表面积都十分小,因此失去了气凝胶比表面积大这一优异特征;二是不管纳米级结构单元之间的衔接是物理效果或许化学键合,跟着结构单元尺度的变大,衔接处的原子占总原子数的比例会急剧下降,因此拼装后的气凝胶材料会跟着结构单元尺度变大而急剧变脆。 针对这些应战,中国科学院姑苏纳米技能与纳米仿生研讨所研讨员张学同带领的气凝胶团队与英国伦敦大学学院教授宋文辉及中国科学技能大学教授闫立峰等协作,以均匀直径到达220纳米的导电高分子(聚聚共聚物)空心球为前驱体,以氧化石墨烯为交联剂,先后经过溶胶-凝胶工艺、超临界流体萃取工艺、高温热处理工艺等关键步骤(图1),成功取得了一种新式的全碳气凝胶,即石墨烯交联的碳空心球气凝胶(图2)。交联剂石墨烯的存在,把球与球之间的点对点触摸奇妙转化为点对面触摸,因此提高了终究气凝胶的力学功用;空心球结构的运用,以及在亚微米级空心球壳层上造出的很多微孔,确保了取得的终究气凝胶具有大的比表面积;而前驱体导电高分子的挑选,使得终究的全碳气凝胶完成了氮元素的掺杂。图2石墨烯交联的碳空心球气凝胶:(a)花瓣上的气凝胶;(b)气凝胶的扫描电子显微镜相片;(c)气凝胶的透射电子显微镜相片;(d)气凝胶的氮气吸脱附曲线。 研讨取得的石墨烯交联的碳空心球气凝胶具有低密度((51-67mg/cm3)、高导电性(263-695S/m)、高比表面积(569-609m2/g)、高杨氏模量(1.8MPa)等许多长处,有望在动力(捕获、存储、转化)、传感、催化、吸附、别离、功用复合材料等范畴得到广泛运用。例如,将石墨烯交联的碳空心球气凝胶作为电极材料运用在U-型热电化学池上,电池的输出功率高达1.05W·m-2 (6.4 W·Kg-1),其相对卡诺循环的能量转化功率高达1.4%,这些数值远高于现在同类型器材的数值。 该工作为大尺度粒子拼装成气凝胶供给了很好的规划思路,处理了由亚微米结构单元制备功用性气凝胶的技能难题。相关成果宣布在Nano Energy (2017,39, 470 - 477)上。中科院姑苏纳米所硕士生董大鹏和郭海涛为该论文的一起榜首作者。

石墨烯在水性涂料中应用

2019-03-07 09:03:45

水性涂料是国家发起开展的环境友好型涂料,但某些功用尚不及相应的溶剂型涂料,影响其开展。石墨烯具有共同功用,可改善水性涂料功用,促进其开展,给涂料作业者带来新的等待。石墨烯在涂猜中运用首先是改性溶剂型涂料,但用于改性水性涂料也有显着开展。改性办法可用共混法复合改性,也可用原位聚合和溶胶-凝胶技能复合法改性,还可用偶联剂润饰,一同实施不同的功用改性。 1 用钛酸酯偶联剂润饰水涣散改性石墨烯 按通用办法将石墨制成氧化石墨烯,向氧化石墨烯涣散液内分别参加钛酸酯和,在水浴加热法下发作反响,使氧化石墨烯复原并一同嫁接上钛酸酯偶联剂分子。将取得的混合液进行后处理和真空枯燥,得到粉末状改性石墨烯。 因为钛酸酯偶联剂对氧化石墨烯进行了表面润饰,不再发生聚会,故石墨烯水涣散体稳定性高,可长期储存,合适用于复合材料及涂层材料的制备。制备工艺简洁,出产效率高,出产进程和产品均能契合环保要求。 2 石墨烯与基体树脂共混复合水性涂料 2.1 水性导电涂料 石墨烯/聚酯树脂复合水性导电涂料。用Hummers法制备氧化石墨烯,经两步化学复原法得到有机分子润饰的石墨烯水溶液,参加聚酯、助剂和交联剂、催化剂,经液态共混,制备得到水性导墨烯涂料。该涂料具有高导电功用和力学功用,可运用于电磁屏蔽、抗静电、防腐、散热、耐磨及电子线路等范畴,具有广泛的运用价值。 2.2 石墨烯改性水性环氧树脂耐磨玻璃涂料 石墨烯改性的耐磨水性玻璃涂料由两组分组成,榜首组分为基体成膜物,第二组分为固化剂。其间榜首组分包含改性环氧树脂20%~40%、助剂0.5%~7%、氧化石墨烯0.1%~5%、偶联剂1%~2%,其他为水(均为质量分数);第二组分是胺类固化剂。在运用前将两组分混合,其间第二组分占混合物质量分数的3%~30%。该涂料具有硬度高、耐磨性好、与玻璃基底亲和力与附着力强、耐水、耐乙醇性好,且契合环保要求。别的制备办法简洁,具有重要的商业化运用价值。 2.3 石墨烯改性酸酯聚合物水泥防水涂料 用Hummers法制备的氧化石墨烯参加酸酯类聚合物乳液中,参加选用的助剂,按份额参加水泥,拌和涣散,制成氧化石墨烯改性的聚合物水泥防水涂料。该涂料显着增加了酸酯类聚合物乳液成膜的抗拉强度;进步了耐水性;此外,氧化石墨烯丰厚的含氧官能团能够调理水泥水化产品晶体的成长,进步其抗拉强度和耐性。故氧化石墨烯改性的聚合物水泥防水涂料具有杰出的耐久性、抗渗性以及物理力学功用,运用远景宽广。 2.4 石墨烯改性聚酯树脂复合水性涂料 2.4.1 石墨烯/水性聚酯纳米复合乳液 将真空脱水的聚醚多元醇(N210)和TDI反响制得聚酯预聚体,参加二羟甲基引进亲水羧基,加中和盐基化,参加氧化石墨烯水溶液、去离子水和乙二胺进行乳化反响,减压蒸馏出后,滴加维生素C溶液进行原位复原反响,得到石墨烯/水性聚酯纳米复合乳胶树脂。该乳胶树脂可运用于静电防护、防腐涂层、建筑涂料等范畴,本发明工艺简洁、环保、合适大规模出产。 2.4.2 石墨烯/TiO2复合材料改性水性聚酯抗菌涂料 纳米TiO2作为光催化纳米材料的一种,有抗菌灭菌效果,但它关于可见光吸收率较低,纳米粒子趋向于集合,大大降低了其灭菌效果。在含纳米TiO2抗菌涂猜中,引进5%以下的石墨烯,显着进步涂料对可见光吸收率,并加强纳米TiO2的光催化活性和抗菌、灭菌才能,使改性后的水性聚酯在抗菌灭菌归纳功用方面有很大进步。而且具有杰出的表面功用、耐水性和力学功用。 3 石墨烯/聚酯原位聚合的水性导电涂料 石墨烯比较传统的碳系导电填料(炭黑、石墨、碳纳米管、碳纤维等)具有愈加优异的导电性及机械功用。 用二元胺对氧化石墨烯进行基化改性,后用化学复原康复石墨烯的共导电系统,使用石墨烯表面的—NH与—NCO封端的水性聚酯原位聚合,制得含石墨烯的水性聚酯导电涂料。 该导电涂料具有防辐射、抗静电、防腐蚀、耐磨等特性,可用于高分子材料、金属材料、纺织材料表面等方面。 4 用溶胶-凝胶技能制备改性石墨烯/水性聚酯纳米复合涂料 中国科技大学Xin Wang等于2012年在《Surface& CoatingsTechnology》上宣布了他们的研讨论文:用溶胶-凝胶技能制备改性石墨烯/水性聚酯复合纳米涂料,分3部分: (1)硅烷改性石墨烯纳米薄膜制备。用Hummers法制备氧化石墨烯(GO),然后对GO水涣散体用化学复原成GNS,再用DCC(N,N'-二环己基碳化二亚胺)和3-基丙基三乙氧基硅烷(APTES)功用改性,用超声波涣散1h,在70 ℃下拌和反响24 h,经后处理得到APTES功用改性的石墨烯纳米膜f-GNS。 (2)硅烷APTES封端的水性聚酯(WPU)制备。用异佛尔酮二异酸酯(IPDI)、聚氧化丙二醇、一缩二乙二醇和三羟甲基混合多元醇组成PU预聚物,再和二羟甲基反响,然后加APTES反响,得到APTES封端的水性聚酯(WPU),产率86.3%,数均分子量28600(GPC测定)。 (3)溶胶-凝胶技能制备f-GNS/WPU纳米复合涂料。凭借超声波将f-GNS粉末涣散在去离子水中制成悬浮液,将APTES封端的WPU参加其间一同混合,用调理pH值,制成f-GNS/WPU纳米复合涂料。 用1H-NMR、FTIR、XPS、GPC、AFM、HRTEM等表征了GO、f-GNS的结构,根本验证了图1所示的分子结构式与反响进程,及f-GNS/WPU纳米复合涂料产品结构和组成。纳米复合物中的T1、T2和T3代表了单、二和三替代的硅烷键合,证真实APTES封端的WPU和f-GNS相邻的硅氧烷分子之间缩聚反响,构成共价键。 5 结 语 5.1 石墨烯具有共同功用,研制热潮在全球突起 石墨烯是当今世界发现的“至薄”的晶体材料,厚度只要1个碳原子,也是“至坚”材料之一,并具有高导电性、高导热性。猜测在航空航天、世界勘探、海洋开发、国防工业、国民经济各方面具有不可估量的运用远景,研讨热潮在全球突起,国内也起步不俗,开展较快。 5.2 石墨烯在改性涂料功用方面展现了新的远景 对石墨烯在导电、防腐、阻燃、导热和高强度等功用涂猜中都具有十分诱人的潜在远景。 石墨烯与各种涂料树脂经过物理共混、原位聚合和溶胶-凝胶技能等法复合;或用偶联剂润饰,或选用原位聚合等工艺。这些工艺在改性水性涂猜中均证明可行,且功用改善显着。水性涂料经石墨烯改性,其功用有望“更上一层楼”,其进一步开展可期。 5.3 石墨烯改性涂料研制脚步初迈,要正确促进石墨烯出产及运用的开发热潮继续升温,但应镇定对待。 对出产厂商而言,石墨烯出产技能是否到达世界最先进,是否契合清洁文明出产工艺要求,本钱是否合理,有许多技能作业要做。石墨烯在涂猜中的运用,国内有不少研讨作业和专利宣布,开展势头较好,但不能说“已入胜境”。石墨烯和涂料树脂复合办法、助剂挑选、功用性改善,研制的空间都很大。国内宣布石墨烯改性水性涂料的作业和专利多是实验室效果,要到达有用并产业化,要更多投入,有许多研制作业要做。

石墨烯的时代,还远没有到来

2019-03-06 10:10:51

导读前不久,任正非在承受媒体采访时宣称,未来10至20年内会迸发一场技能,“我以为这个年代将来最大的推翻,是石墨烯年代推翻硅年代”,“现在芯片有极限宽度,硅的极限是七纳米,现已接近鸿沟了,石墨是技能前沿”。这儿说到的石墨烯,终究是何方神圣?它真的能带来推翻吗?扫描电镜下的石墨烯,显现出其碳原子组成的六边形结构。图片来历:Lawrence Berkley National Laboratory石墨烯——一种只需一个原子厚的二维碳膜——确实是种令人惊奇的材料。尽管姓名里带有石墨二字,但它既不依靠石墨储量也彻底不是石墨的特性:石墨烯导电性强、可弯折、机械强度好,看起来颇有未来奇特材料的风仪。假如再把它的潜在用处开个清单——维护涂层,通明可弯折电子元件,超大容量电容器,等等——那简直是改动国际的发明。连2010年诺贝尔物理学奖都颁发了它呢!其实就在2012年,因石墨烯而取得诺贝尔奖的康斯坦丁·诺沃肖洛夫(Konstantin Novoselov)和他的搭档曾经在《天然》上发表文章评论石墨烯的未来,两年来的开展也根本证明了他们的猜测。他以为作为一种材料,石墨烯“出路是光亮的、路途是曲折的”,尽管将来它或许能发挥严重效果,可是在战胜几个严重困难之前,这一场景还不会到来。更重要的是,考虑到工业更新的巨大本钱,石墨烯的优点或许不足以让它简略地代替现有的设备——它的真实远景,或许在于为它的共同特性量身定做的全新运用场合。 石墨烯终究是什么? 石墨烯是人们发现的第一种由单层原子构成的材料。碳原子之间彼此连接成六角网格。铅笔里用的石墨就适当于许多层石墨烯叠在一起,而碳纳米管就是石墨烯卷成了筒状。石墨、石墨烯、碳纳米管和球烯之间的联系。图片来历:enago.com由于碳原子之间化学键的特性,石墨烯很坚强:能够曲折到很大视点而不开裂,还能反抗很高的压力。而由于只需一层原子,电子的运动被约束在一个平面上,为它带来了全新的电学特点。石墨烯在可见光下通明,但不透气。这些特征使得它十分合适作为维护层和通明电子产品的质料。 可是合适归合适,真的做出来还没那么快。 问题之一:制备方法。       许多项研讨向咱们展示了石墨烯的惊人特征,但有一个圈套。这些美好的特性对样品质量要求十分高。要想取得电学和机械功能都最佳的石墨烯样品,需求最费时吃力费钱的手法:机械剥离法——用胶带粘到石墨上,手艺把石墨烯剥下来。诺沃肖洛夫团队捐赠给斯德哥尔摩的石墨、石墨烯和胶带。胶带上的签名“Andre Geim”就是和诺沃肖洛夫一起取得诺贝尔奖的人。图片来历:wikipedia尽管所需的设备和技能含量看起来都很低,但问题是成功率更低,弄点儿样品做研讨还能够,工业化出产?恶作剧。要论工业化,这手法毫无用处。哪怕你把握了全国际的石墨矿,一天又能剥下来几片……        当然现在咱们有了许多其他方法,能增加产值、降低本钱——费事是这些方法的产品质量又掉下去了。咱们有液相剥离法:把石墨或许相似的含碳材料放进表面张力超高的液体里,然后超声轰炸把石墨烯雪花炸下来。咱们有化学气相堆积法:让含碳的气体在铜表面上冷凝,构成的石墨烯薄层再剥下来。咱们还有直接成长法,在两层硅中间直接设法长出一层石墨烯来。还有化学氧化还原法,靠氧原子的刺进把石墨片层别离,如此等等。方法有许多,也各自有各自的适用范围,可是迄今为止还没有真的能合适工业化大规模推行出产的技能。        这些方法为什么做不出高质量的石墨烯?举个比如。尽管一片石墨烯的中心部分是完美的六元环,但在边际部分往往会被打乱,成为五元或七元环。这看起来没啥大不了的,可是化学气相堆积法发生的“一片”石墨烯并不真的是完好的、从一点上成长出来的一片。它其实是多个点一起成长发生的“多晶”,而没有方法能确保这多个点长出来的小片都能完好对齐。所以,这些变形环不光散布在边际,还存在于每“一片”这样做出来的石墨烯内部,成为结构缺点、简略开裂。更糟糕的是,石墨烯的这种开裂点不像多晶金属那样会自我愈合,而很或许要一向延伸下去。成果是整个石墨烯的强度要折半。材料是个费事的范畴,想鱼与熊掌兼得不是不或许,但必定没有那么快。显微镜下的一块石墨烯,伪色符号。每一“色块”代表一片石墨烯“单晶”。图片来历:Cornell.edu 问题之二:电学功能。       石墨烯一个有远景的方向是显现设备——触屏,电子纸,等等。可是现在而言石墨烯和金属电极的接触点电阻很难抵挡。诺沃肖洛夫估量这个问题能在十年之内处理。       可是为啥咱们不能爽性扔掉金属,全用石墨烯呢?这就是它在电子产品范畴里最丧命的问题。现代电子产品全部是建筑在半导体晶体管之上,而它有一个要害特点称为“带隙”:电子导电能带和非导电能带之间的区间。正由于有了这个区间,电流的活动才干有非对称性,电路才干有开和关两种状况——可是,石墨烯的导电功能真实太好了,它没有这个带隙,只能开不能关。只需电线没有逻辑电路是毫无用处的。所以要想靠石墨烯发明未来电子产品,代替硅基的晶体管,咱们有必要人工植入一个带隙——可是简略植入又会使石墨烯损失它的共同特点。现在针对这个范畴的研讨确实不少:多层复合材料,增加其他元素,改动结构等等;可是诺沃肖洛夫等人以为这个问题要真实处理,还要至少十年。 问题之三:环境危险。       石墨烯工业还有一个意想不到的费事:污染。石墨烯工业现在最老练的产品之一或许是所谓“氧化石墨烯纳米颗粒”,它很廉价,虽不能用来做电池、可弯折触屏等高端范畴,作为电子纸等用处却是适当不错;可是这东西对人体很或许是有毒的。有毒没关系,只需它老老实实呆在电子产品里,那就没有任何问题;可是前不久研讨者刚发现它在地表水里十分安稳、极易分散。尽管现在对它的 环境影响下断语还为时太早,但这确实是个潜在问题。 所以,石墨烯的命运终究怎么?       鉴于曩昔几个月里学界并无新的突破性发展,近来它的这波突发性“炽热”,恐怕本质上仍是本钱运转的炒作成果,应审慎对待。作为工业技能,石墨烯看起来还有许多未能战胜的困难。诺沃肖洛夫指出,现在石墨烯的运用仍是受限于材料出产,所以那些运用最初级最廉价石墨烯的产品(比如氧化石墨烯纳米颗粒),会最早问世,或许只需几年;可是那些依靠于高纯度石墨烯的产品或许还要数十年才干开发出来。关于它能否代替现有的产品线,诺沃肖洛夫仍然心存疑虑。 另一方面,假如商业范畴过度夸张其奇特之处,或许会导致石墨烯工业变成泡沫;一旦决裂,那么或许技能和工业的发展也无法解救它。科学作者菲利普·巴尔曾经在《卫报》上撰文《不要希望石墨烯带来奇观》,指出一切的材料都有其适用范围:钢坚固而沉重,木头简便但易腐,就算看似“全能”的塑料其实也是种种截然不同的高分子各显神通。石墨烯一定会发挥巨大的效果,可是没有理由以为它能成为奇观材料、改动整个国际。或许,用诺沃肖洛夫自己的话说:“石墨烯的真实潜能只需在全新的运用范畴里才干充沛展示:那些设计时就充沛考虑了这一材料特性的产品,而不是用来代替现有产品里的其他材料。” 至于眼下的可打印、可折叠电子产品,可折叠太阳能电池,和超级电容器等等新范畴能否发挥它的潜能,就让咱们平心静气拭目而待吧。