您所在的位置:
上海有色 >
有色金属产品库 >
石墨烯粉体
石墨烯粉体
粉体:石墨术语大全
2019-01-04 15:47:49
石墨素有黑金之称,广泛应用于电子、汽车、医药、航空航天、海洋和核能等领域,是极其重要的的战略性资源。
一、天然石墨
天然石墨是富碳有机物在高温高压的地质环境长期作用下转变而成的,是大自然的恩赐。天然石墨的工艺特性主要决定于它的结晶形态。结晶形态不同的石墨矿物,具有不同的工业价值和用途。
二、人造石墨
广义上,一切通过有机炭化再经过石墨化高温处理得到的石墨材料均可称为人造石墨。而狭义上的人造石墨通常指以杂质含量较低的炭质原料为骨料、煤沥青等为粘结剂,经过配料、混捏、成型、炭化和石墨化等工序制得的块状固体材料,如石墨电极、等静压石墨等。
三、晶质石墨
晶质石墨(鳞片石墨),矿石结晶好,晶体粒径大于1μm,属六方晶系,呈层状结构,具有良好的耐高温、导电、导热、润滑、可塑及耐酸碱等性能。
将鳞片石墨按固定碳含量分为四类:高纯石墨,高碳石墨,中碳石墨,低碳石墨。
高纯石墨:石墨的含碳量≥99.9%。
高碳石墨:94.0≤石墨的含碳量
中碳石墨:80.0≤石墨的含碳量
低碳石墨:50.0≤石墨的含碳量
四、隐晶质石墨
隐晶质石墨(土状石墨、无定形石墨、微晶石墨),晶体粒径大于1μm,只有在电子显微镜下才能观察到其晶型。矿石可选性差,工业应用范围较小。
五、可膨胀石墨
可膨胀石墨(酸化石墨),由天然晶质鳞片石墨,经酸性氧化剂处理后得到的一种石墨层间化合物,亦称为石墨酸、酸化石墨、氧化石墨。
六、膨胀石墨
可膨胀石墨在一定的温度下可以迅速膨胀为膨胀石墨。
七、柔性石墨
膨胀石墨具有良好的可塑性、柔韧延展性和密封性。膨胀石墨可进一步加工制成纸、箔等制品,具有不同于普通石墨的柔韧性,称为柔性石墨。
八、氟化石墨
氟化石墨是层间化合物的一种,它具有两种稳定的化合物形态:一种为聚单氟碳,另一种为聚单氟二碳。
九、胶体石墨
胶体石墨分为水基胶体石墨(锻造石墨乳),油基胶体石墨,硅基胶体石墨等。
水基胶体石墨:由高纯超细石墨粉、水、高温黏结剂、悬浮液、分散剂和涂膜增强剂等组成。其生产分为提纯、超细粉碎、配置、包装等工序。
油基胶体石墨与硅基胶体石墨的生产工艺与水基胶体石墨基本相同。
十、石墨乳
石墨乳是将高纯超细石墨粉加入液体中并呈分散状态。
十一、等静压石墨
等静压石墨是指采用等静压成型方式生产的石墨材料。由于成型过程中通过液体压强均匀不变施压,制得的石墨材料性质优异,具有:成型规格大;坯料组织结构均匀;密度高,强度高;向同性(特性与尺寸、形状、取样方向无关)等优点,因此等静压石墨也称为“各向同性”石墨。
十二、浸硅石墨
目前仅德、美、俄生产。该产品是一种在宽温度区内具有高硬度和高机械强度、耐磨、耐腐蚀、润滑性好的新材料。与碳化硅制品相比,最大的特点是成品率高,价格较低廉。
十三、球形石墨
球形石墨是以优质高碳天然鳞片石墨为原料、采用先进加工工艺对石墨表面进行改性处理,生产的不同细度,形似椭圆球形的石墨产品。
十四、纳米石墨
纳米石墨是采用特殊的生产设备,先进的检测仪器,生产出的高纯、高碳纳米级石墨粉,经润滑、润滑油、拉丝、导电、油墨等行业应用,效果极佳。
为何石墨软石墨烯“硬”
2019-01-04 15:47:49
导读
为什么石墨那么软,而石墨烯又表现得那么“硬”呢?浙江大学信息电子工程学院副教授林时胜介绍说,其实这里涉及两个不同的概念,一个是强度,这是力学概念,一个是硬度,属于物理概念。
石墨烯的“硬”,是指强度高,衡量强度的指标是杨氏模量,根据杨氏模量的高低可以把物质分为硬物质和软物质。石墨烯的模量非常高,可达1T帕(压强单位),是材料里最高的,所以石墨烯是硬物质,可以说是很硬。相应的像橡胶这些,模量只有几千帕,就是软物质,很软。材料力学上有刚度、强度、韧度、硬度等不同物理概念,这与我们通常讲的硬与软有区别。从通俗意义上说,石墨烯的“硬”指的是石墨烯的强度很好,就是它抗断裂的能力很强,这也和它的韧性很好有关系,因为容易延展而不断裂。模量就是代表了材料能被拉伸的容易程度。
再说石墨的软,这是物理概念,指的是硬度。硬度的衡量,是用一种材料去破坏另一种材料,被破坏的硬度就小。石墨的片层之间是范德华力,非常弱,只要用固体去划它,都能把它的片层错开,所以石墨很容易被破坏,就是说石墨很软。
为何石墨软,石墨烯“硬”?
2019-01-03 09:37:04
为什么石墨那么软,而石墨烯又表现得那么“硬”呢?浙江大学信息电子工程学院副教授林时胜介绍说,其实这里涉及两个不同的概念,一个是强度,这是力学概念,一个是硬度,属于物理概念。
石墨烯的“硬”,是指强度高,衡量强度的指标是杨氏模量,根据杨氏模量的高低可以把物质分为硬物质和软物质。石墨烯的模量非常高,可达1T帕(压强单位),是材料里最高的,所以石墨烯是硬物质,可以说是很硬。相应的像橡胶这些,模量只有几千帕,就是软物质,很软。
材料力学上有刚度、强度、韧度、硬度等不同物理概念,这与我们通常讲的硬与软有区别。从通俗意义上说,石墨烯的“硬”指的是石墨烯的强度很好,就是它抗断裂的能力很强,这也和它的韧性很好有关系,因为容易延展而不断裂。模量就是代表了材料能被拉伸的容易程度。
再说石墨的软,这是物理概念,指的是硬度。硬度的衡量,是用一种材料去破坏另一种材料,被破坏的硬度就小。石墨的片层之间是范德华力,非常弱,只要用固体去划它,都能把它的片层错开,所以石墨很容易被破坏,就是说石墨很软。
漫画简介石墨烯!
2019-03-08 09:05:26
石墨烯被称为“黑金”,又被称为“新材料之王”,是现在发现的最薄、强度最大、导电导热功能最强的一种新式纳米材料,极有或许掀起一场席卷全球的颠覆性新技术新产业革新。
石墨烯的制备上,多晶薄膜有望未来1-2年内完成产业化使用,单晶石墨烯工业组成办法仍未找到,因而间隔产业化还很悠远。低成本的使用氧化还原法出产石墨烯粉体,一起可以使用CVD法出产出层数可控、大面积的石墨烯薄膜是未来研究要点,也是推进职业开展的要害点。而在使用层面,未来被看好的范畴是锂离子电池、柔性显现、太阳能电池和超级电容器。
石墨烯真神奇
2019-03-07 10:03:00
近两年石墨烯的可控低成本制备技能已获得了打破性开展,有望在不久的将来构成石墨烯工业。
日前,在深圳举行的第十九届我国世界高新技能效果交易会上,石墨烯作为独具特色的新材料再次引起人们的重视,成为这个国内最大规划、最具影响力的科技展会上一个耀眼的“明星”。石墨烯到底有哪些奇特之处,能为人们带来什么惊喜?记者采访了相关专家。
人类正行进在以硅为首要物质载体的信息年代,下一个量子年代,石墨烯很或许锋芒毕露
和金刚石相同,石墨是碳元素的一种存在方式。风趣的是,因为原子结构不同,金刚石是地球上自然界最坚固的东西,石墨则成了最软的矿藏之一,常做成石墨棒和铅笔芯。
科学家介绍说,石墨烯是从石墨材料中剥离出来,只由一层碳原子构成、按蜂窝状六边形摆放的平面晶体。浅显地讲,石墨烯就是单层石墨。一块厚1毫米的石墨大约包括300万层石墨烯;铅笔在纸上悄悄划过,留下的痕迹就或许是好多层石墨烯。
这种只要一个原子厚度的二维材料,一向被以为是假定性的结构,无法独自安稳存在。直至2004年,两位英国科学家成功地从石墨中别离出石墨烯,证明了其可以独自存在,并因而一起获得2010年诺贝尔物理学奖。
据我国电科55所所长、微波毫米波单片集成和模块电路要点试验室主任高涛博士介绍,石墨烯共同的结构让它具有更导电、更传热、更坚固、更透光等优异的电学、热学、力学、光学等方面的功能。轻浮、强韧、导电、导热……石墨烯这些特性赋予人们许多幻想空间。
石墨烯的特色首先是薄,可谓现在世界上最薄的材料,只要一个原子那么厚,约0.3纳米,是一张A4纸厚度的十万分之一、一根头发丝的五十万分之一。与此一起,石墨烯比金刚石更硬,透光率高达97.7%,是世界上最坚固又最薄的纳米材料。
一起,它又能导电。石墨烯的电子运转速度达1000千米/秒,是光速的1/300,十分合适制造下一代超高频电子器材。石墨烯仍是传导热量的高手,比最能导热的银还要强10倍。
石墨烯的特性,也体现得很“好玩”。比方当一滴水在石墨烯表面翻滚时,石墨烯能敏锐地“察觉”到纤细的运动,并发生继续的电流。这种特性给科学家供给了一种新思路——从水的活动中获取电能。比方,在雨天可以用涂有石墨烯的雨伞进行发电,或许可以做成活络的传感器材等。
“人类阅历了石器、陶器、铜器、铁器年代,正行进在以硅为首要物质载体的信息年代;而下一个量子年代哪种材料将锋芒毕露呢?很或许是石墨烯。”浙江大学高分子科学与工程学系教授高明说。
未来电动轿车运用石墨烯电池,花两三分钟就或许把电充溢
因为石墨烯的奇特功能,加上制备简洁、研讨视角多维,其运用潜力巨大、适用职业广大,成为抢眼的材料“新星”一点不古怪。石墨烯从发现到现在仅10余年的时刻,已获得了许多令人震慑的研讨效果,称得上是人类历史上从发现到运用最快的材料。
高明说,从材料化学视点看,石墨烯会带来资源、环境、化工、材料、动力、传感、交通机械、光电信息、健康智能、航空航天等范畴的改动或革新。我国石墨矿储量丰厚,约占全世界的75%,其高效开发将引起碳资源及我国大资源战略的新定位、新考虑、新规划。
石墨烯的工业化出产则将促进化工、机械、智造、自控等职业的技能前进。石墨烯的增加可以发生多功能复合材料,用来制造高功能电池、电容器。石墨烯传感器可以在生物检测、光电勘探方面大显神通,石墨烯及其它二维材料的异质叠合材料可制造高功能晶体管。
可以说,石墨烯技能将对咱们的吃、穿、住、行、用、玩都发生影响。石墨烯复合膜阻氧阻水功能好,可前进食物保质期;石墨烯纤维可制成发热服饰和医疗保健用品;石墨烯电热膜电热转化效率高,可逐渐替代暖气供热;石墨烯系列材料可用于轿车、火车等交通工具,石墨烯导热膜可用于手机高效散热……
石墨烯另一个被寄予厚望的运用范畴是电能贮存。它的优势在于充电速度快,并且可以重复运用几万次。但现在石墨烯存储的电量不如电池多,还无法存储足够多的电能。未来,跟着充电设备的日益完善和相关技能的前进,电动轿车运用石墨烯电池,花两三分钟就或许把电充溢。
我国电科55所微波毫米波单片集成和模块电路要点试验室副主任孔月婵博士介绍说,石墨烯的电子运转速度是硅的十倍,由石墨烯制造的高频器材理论上作业频率可以到达硅的十倍乃至上百倍。石墨烯引发的技能很或许从人们常见的小小芯片开端。
此外,科研人员已完结柔性衬底晶体管的研发,正在测验柔性通讯电路的研发。未来不管是可以折叠的显现屏幕,仍是可以植入人体的可穿戴设备,都或许靠这样的石墨烯器材来完成。
高涛以为,即便在试验室条件下,石墨烯的奇特功能仍然没有彻底释放出来。因为技能层面还存在着不少应战,真实大面积运用还有很长的路要走。但经过加强需求和研讨的结合,不断在石墨烯材料的制备和器材研发方面获得重要打破,发明更多更新更具颠覆性的运用,石墨烯这种新一代战略性新式材料将会极大改动人们的生发日子。
国内石墨烯研讨与国外底子同步,有望在不久的将来构成石墨烯工业
石墨烯一向是世界上的研讨热门,并在不断升温。近几年来,全球石墨烯相关的论文和发明专利简直呈指数式增加,不只各类优异的物理化学功能被猜测、证明,并且由此生宣布许多详细的研讨方向。
据了解,许多国家正在抢夺石墨烯技能的制高点。欧盟石墨烯旗舰方案以石墨烯传感为首要研讨方向,美国正在测验使用石墨烯完成通讯的柔性化并获得了明显的效果,韩国继续支撑石墨烯柔性显现的研讨并制备出了演示产品。
高涛说,整体来讲,世界上石墨烯各项优异功能正逐渐从试验室研讨向产品运用过渡,一起一些潜在的功能或运用还在不断被开掘。但这个工程化是一个长时间而困难的进程,给我国完成赶超世界水平、占据技能制高点带来了绝好的机会。
高明以为,现在国内石墨烯研讨与国外底子同步,一些方面有原创和引领性效果。国内研讨侧重化学和材料,国外更偏机理和器材。国内石墨烯的研讨在理论研讨方面可说是已完成与世界先进水平“并跑”,论文、专利不管数量仍是质量都具有很强的世界竞争力。到2016年3月,我国石墨烯的专利总数占全世界的56%。与此一起,国家赞助了很多有关石墨烯的基础研讨项目,开始构成了政府、科研机构和厂商协同立异的产学研协作对接机制。
例如,清华大学开宣布米级石墨烯单晶薄膜的快速制备技能;我国电科55所研宣布了世界上最快的柔性石墨烯晶体管;浙江大学纳米高分子团队则经过近十年研讨,开宣布了石墨烯纤维、石墨烯接连拼装膜、石墨烯超轻气凝胶及石墨烯无纺布等。
受访专家指出,各个方向不断呈现令人惊喜的研讨效果,让人们对石墨烯的未来充溢等待。但整体来讲,石墨烯技能成熟度还比较低。关于石墨烯的开展,其限制要素或许说难点,首要在材料制备技能、全新规划理念和二维控制技能等方面。其间,高品质、大批量的石墨烯质料问题暂时没有底子处理,还需要进行很多技能攻关。有些技能如单层氧化石墨烯、石墨烯单晶等在试验室制备成功了,但完成工程化、接连性、低成本、高效安稳制备还有较长的路要走。只要真实高品质的石墨烯量产了,颠覆性运用才会呈现。
不过科学家们也比较达观,近两年石墨烯的可控低成本制备技能已获得了打破性开展,有望在不久的将来构成石墨烯工业。
石墨烯基础科研现状
2019-01-04 09:45:43
石墨烯从其诞生至今不过10年光景。2004年为石墨烯科学研究的萌芽阶段,随后即进入快速成长阶段;从2008年开始,尤其是在2010年石墨烯发明者获得了诺贝尔奖之后,关于石墨烯的基础科研工作开展得如火如荼。
下文从专利分布、研究机构分布、研究领域分布和主要研究成果等方面梳理目前石墨烯的基础科研动向。
一、专利分布
目前全球共有超过200个机构和1000多名研究人员从事石墨烯技术的开发和研究,其中包括三星、IBM等科技巨头。我们通过最近几年的专利申请情况对目前石墨烯的研究进展进行概览。从专利申请总量来看,2010年以来全球石墨烯专利申请总量呈爆发式增长;2012年全球石墨烯专利申请量已经达到3500个,可见目前全球范围内正在掀起石墨烯研究与开发的高潮。
从石墨烯专利申请国别分布来看,2013年全球石墨烯专利申请量最大的是中国,其次为美国、韩国和日本。在石墨烯相关论文方面,欧盟排名第一,2013年共发表了7800篇论文;就国别而论,依然是中国排名第一,共发表了6649篇论文。
总体而言,目前中国已经处在石墨烯研究的前沿阵地;但是,从研究深度和创新性而言,非常核心的技术和创新性技术中国仍未掌握。二、研究机构分布
从事石墨烯研究的机构比较广泛,包括学术研究机构、企业、个人和政府层面。比较普遍的研究模式是学术研究机构与企业的合作,例如韩国三星与韩国成均馆大学合作对石墨烯的制备基础方法和应用开展研究。
从研究机构专利数量口径看,在前十名中,有4家机构来自韩国,4家来自中国,2家来自美国。并且,6家机构都是科研院所或独立科研机构,4家为企业。其中,专利数量最多的是韩国三星电子,其专利申请数量为210个,占全球总量的7.3%,其研究范围涵盖了石墨烯制备方法和在显示屏、锂电池领域的应用;其次为韩国成均馆大学、浙江大学、IBM、清华大学等。三、研究领域分布
从石墨烯研究领域分布看,全球研究热点主要在材料的导电性、导热性、石墨烯的制备研究、纳米材料研究等。
中国石墨烯研究热点主要分布石墨烯纳米复合材料、石墨烯制备、石墨烯电极等方向。我们统计了前20位主要研究机构的重点研究领域,发现研究热点分布于:(1)复合材料;(2)碳纳米管;(3)电容器;(4)传感器;(5)晶体管;(6)透明电极;(7)锂电池;(8)燃料电池。上述研究大多属于石墨烯应用,而关于石墨烯的制备改进工艺或者大规模量产石墨烯的基础研究非常少。
四、最新研究成果
在石墨烯制备方面,最新的研究成果是在生成单晶石墨烯的方法上,目前有两种方法已经能获得直径约为1mm的单晶石墨烯和直径为25px的单晶石墨烯,但是这两种方法各有优劣。
在石墨烯应用方面,最新的研究成果包括把作为光敏元件(PD)的光增益提高到了原来的约1000倍、提高柔性湿度传感器的响应时间等。在锂电池、半导体、传感器、无线通讯、电容器、电子元件、海水淡化等多个领域都有重大突破。
在众多最新研究成果中,属于中国研究机构的成果依然稀少,印证了前文中我们提到的,虽然中国在专利申请和论文发表方面在国际领先,但是在真正的研究前沿方面距离美国、日本和韩国等国家仍有一定差距。
粉体的表面能
2019-01-03 09:37:04
粉体的表面能与粉体的结构、原子之间的键型和结合力、表面的原子数、表面官能团等有关。
物料粉碎后产生了新的表面,部分机械能转变为新生表面的表面能。粉体的表面能与以下两点关系很大:(1)表面改性剂和粉体表面的作用。(2)粉体的应用性能。
通常:表面能越高,吸附性越强,越容易团聚,越不易在高聚物中均匀分散。对无机填料进行有机表面改性实际上就是降低其表面能,使其不产生团聚。
CIS系粉体的应用
2019-01-03 09:36:51
CuInSe2(简称CIS)及其衍生物因其低成本、高的光吸收系数(105/cm)和良好的稳定性被认为是最有潜力的薄膜太阳能吸收层材料,近年来逐渐受到研究者的重视。目前CIS系粉体的制备多集中于实验室规模,量产化工艺有待进一步研究和改进。CIS系粉体的应用例举如下。
1 涂覆法制备太阳能电池吸收层
涂覆法是一种很有前景的的CIS系吸收层薄膜低成本制备工艺,该方法先制备出符合原子计量比的前驱物,使用各种涂覆工艺沉积在基板上后在控制气氛下热处理而转变为CIS系薄膜。以CIS系纳米粉末作为涂覆原料可保证薄膜原子计量比接近既定计量比,有利于提高薄膜质量,并且工艺简洁。Ahn等将Cu0.90In0.64Ga0.23Se2.0(15nm)溶于甲醇,使用喷雾的方法沉积到Mo/Glass基板上并在160℃热处理,后经固态源硒化成膜。升高硒源蒸发温度和增加载气流速均有利于形成结晶良好的大尺寸CIGS晶粒,但同时也在Mo和CIGS之间形成MoSe2层。Guo等采用“墨水印刷”的工艺制备CIS系薄膜,将CIS系纳米粉体溶于有机溶剂作为“墨水”,将其直接涂覆于基板上经硒化处理成膜。基于CuInSe2的电池器件达到了3.2%的转换效率;而基于Cu(In1–xGax)(S1–ySey)2的电池器件转换效率为4.76%(有效面积效率5.55%)。
2 纳米晶–聚合物太阳能电池
纳米晶–聚合物太阳能电池又称为混合太阳能电池(Hybrid SolarCell),是将n型半导体纳米晶植入p型掺杂的聚合物而得的新型异质结太阳能电池。该类太阳能电池近年来成为国内外研究的热点。由于CIS系材料的导电类型依赖于自身的缺陷种类,调整其原子计量比就可以得到所期望的导电类型。Arici等[34]将n型CuInSe2纳米颗粒植入p型P3HT聚合物,在ITO玻璃上制得了异质结。当CISe/P3HT质量比为6:1时,其光电响应较好;所制得的器件开路电压最高值为1V,光电流为0.3 ×10–3 A/cm2。Arici等同时研究了基于CuInS2纳米颗粒的异质结,该工作中,作者采用了不同的聚合物体系。
石墨烯在水性涂料中应用
2019-03-07 09:03:45
水性涂料是国家发起开展的环境友好型涂料,但某些功用尚不及相应的溶剂型涂料,影响其开展。石墨烯具有共同功用,可改善水性涂料功用,促进其开展,给涂料作业者带来新的等待。石墨烯在涂猜中运用首先是改性溶剂型涂料,但用于改性水性涂料也有显着开展。改性办法可用共混法复合改性,也可用原位聚合和溶胶-凝胶技能复合法改性,还可用偶联剂润饰,一同实施不同的功用改性。
1 用钛酸酯偶联剂润饰水涣散改性石墨烯
按通用办法将石墨制成氧化石墨烯,向氧化石墨烯涣散液内分别参加钛酸酯和,在水浴加热法下发作反响,使氧化石墨烯复原并一同嫁接上钛酸酯偶联剂分子。将取得的混合液进行后处理和真空枯燥,得到粉末状改性石墨烯。
因为钛酸酯偶联剂对氧化石墨烯进行了表面润饰,不再发生聚会,故石墨烯水涣散体稳定性高,可长期储存,合适用于复合材料及涂层材料的制备。制备工艺简洁,出产效率高,出产进程和产品均能契合环保要求。
2 石墨烯与基体树脂共混复合水性涂料
2.1 水性导电涂料
石墨烯/聚酯树脂复合水性导电涂料。用Hummers法制备氧化石墨烯,经两步化学复原法得到有机分子润饰的石墨烯水溶液,参加聚酯、助剂和交联剂、催化剂,经液态共混,制备得到水性导墨烯涂料。该涂料具有高导电功用和力学功用,可运用于电磁屏蔽、抗静电、防腐、散热、耐磨及电子线路等范畴,具有广泛的运用价值。
2.2 石墨烯改性水性环氧树脂耐磨玻璃涂料
石墨烯改性的耐磨水性玻璃涂料由两组分组成,榜首组分为基体成膜物,第二组分为固化剂。其间榜首组分包含改性环氧树脂20%~40%、助剂0.5%~7%、氧化石墨烯0.1%~5%、偶联剂1%~2%,其他为水(均为质量分数);第二组分是胺类固化剂。在运用前将两组分混合,其间第二组分占混合物质量分数的3%~30%。该涂料具有硬度高、耐磨性好、与玻璃基底亲和力与附着力强、耐水、耐乙醇性好,且契合环保要求。别的制备办法简洁,具有重要的商业化运用价值。
2.3 石墨烯改性酸酯聚合物水泥防水涂料
用Hummers法制备的氧化石墨烯参加酸酯类聚合物乳液中,参加选用的助剂,按份额参加水泥,拌和涣散,制成氧化石墨烯改性的聚合物水泥防水涂料。该涂料显着增加了酸酯类聚合物乳液成膜的抗拉强度;进步了耐水性;此外,氧化石墨烯丰厚的含氧官能团能够调理水泥水化产品晶体的成长,进步其抗拉强度和耐性。故氧化石墨烯改性的聚合物水泥防水涂料具有杰出的耐久性、抗渗性以及物理力学功用,运用远景宽广。
2.4 石墨烯改性聚酯树脂复合水性涂料
2.4.1 石墨烯/水性聚酯纳米复合乳液
将真空脱水的聚醚多元醇(N210)和TDI反响制得聚酯预聚体,参加二羟甲基引进亲水羧基,加中和盐基化,参加氧化石墨烯水溶液、去离子水和乙二胺进行乳化反响,减压蒸馏出后,滴加维生素C溶液进行原位复原反响,得到石墨烯/水性聚酯纳米复合乳胶树脂。该乳胶树脂可运用于静电防护、防腐涂层、建筑涂料等范畴,本发明工艺简洁、环保、合适大规模出产。
2.4.2 石墨烯/TiO2复合材料改性水性聚酯抗菌涂料
纳米TiO2作为光催化纳米材料的一种,有抗菌灭菌效果,但它关于可见光吸收率较低,纳米粒子趋向于集合,大大降低了其灭菌效果。在含纳米TiO2抗菌涂猜中,引进5%以下的石墨烯,显着进步涂料对可见光吸收率,并加强纳米TiO2的光催化活性和抗菌、灭菌才能,使改性后的水性聚酯在抗菌灭菌归纳功用方面有很大进步。而且具有杰出的表面功用、耐水性和力学功用。
3 石墨烯/聚酯原位聚合的水性导电涂料
石墨烯比较传统的碳系导电填料(炭黑、石墨、碳纳米管、碳纤维等)具有愈加优异的导电性及机械功用。
用二元胺对氧化石墨烯进行基化改性,后用化学复原康复石墨烯的共导电系统,使用石墨烯表面的—NH与—NCO封端的水性聚酯原位聚合,制得含石墨烯的水性聚酯导电涂料。
该导电涂料具有防辐射、抗静电、防腐蚀、耐磨等特性,可用于高分子材料、金属材料、纺织材料表面等方面。
4 用溶胶-凝胶技能制备改性石墨烯/水性聚酯纳米复合涂料
中国科技大学Xin Wang等于2012年在《Surface& CoatingsTechnology》上宣布了他们的研讨论文:用溶胶-凝胶技能制备改性石墨烯/水性聚酯复合纳米涂料,分3部分:
(1)硅烷改性石墨烯纳米薄膜制备。用Hummers法制备氧化石墨烯(GO),然后对GO水涣散体用化学复原成GNS,再用DCC(N,N'-二环己基碳化二亚胺)和3-基丙基三乙氧基硅烷(APTES)功用改性,用超声波涣散1h,在70 ℃下拌和反响24 h,经后处理得到APTES功用改性的石墨烯纳米膜f-GNS。
(2)硅烷APTES封端的水性聚酯(WPU)制备。用异佛尔酮二异酸酯(IPDI)、聚氧化丙二醇、一缩二乙二醇和三羟甲基混合多元醇组成PU预聚物,再和二羟甲基反响,然后加APTES反响,得到APTES封端的水性聚酯(WPU),产率86.3%,数均分子量28600(GPC测定)。
(3)溶胶-凝胶技能制备f-GNS/WPU纳米复合涂料。凭借超声波将f-GNS粉末涣散在去离子水中制成悬浮液,将APTES封端的WPU参加其间一同混合,用调理pH值,制成f-GNS/WPU纳米复合涂料。
用1H-NMR、FTIR、XPS、GPC、AFM、HRTEM等表征了GO、f-GNS的结构,根本验证了图1所示的分子结构式与反响进程,及f-GNS/WPU纳米复合涂料产品结构和组成。纳米复合物中的T1、T2和T3代表了单、二和三替代的硅烷键合,证真实APTES封端的WPU和f-GNS相邻的硅氧烷分子之间缩聚反响,构成共价键。
5 结 语
5.1 石墨烯具有共同功用,研制热潮在全球突起
石墨烯是当今世界发现的“至薄”的晶体材料,厚度只要1个碳原子,也是“至坚”材料之一,并具有高导电性、高导热性。猜测在航空航天、世界勘探、海洋开发、国防工业、国民经济各方面具有不可估量的运用远景,研讨热潮在全球突起,国内也起步不俗,开展较快。
5.2 石墨烯在改性涂料功用方面展现了新的远景
对石墨烯在导电、防腐、阻燃、导热和高强度等功用涂猜中都具有十分诱人的潜在远景。
石墨烯与各种涂料树脂经过物理共混、原位聚合和溶胶-凝胶技能等法复合;或用偶联剂润饰,或选用原位聚合等工艺。这些工艺在改性水性涂猜中均证明可行,且功用改善显着。水性涂料经石墨烯改性,其功用有望“更上一层楼”,其进一步开展可期。
5.3 石墨烯改性涂料研制脚步初迈,要正确促进石墨烯出产及运用的开发热潮继续升温,但应镇定对待。
对出产厂商而言,石墨烯出产技能是否到达世界最先进,是否契合清洁文明出产工艺要求,本钱是否合理,有许多技能作业要做。石墨烯在涂猜中的运用,国内有不少研讨作业和专利宣布,开展势头较好,但不能说“已入胜境”。石墨烯和涂料树脂复合办法、助剂挑选、功用性改善,研制的空间都很大。国内宣布石墨烯改性水性涂料的作业和专利多是实验室效果,要到达有用并产业化,要更多投入,有许多研制作业要做。
石墨烯既可以做绝缘体也可以做超导体?
2019-01-03 10:44:25
麻省理工学院和哈佛大学的研究人员又有了新发现,石墨烯可以通过调节变为绝缘体或超导体。过去研究者们通过将石墨烯与其他超导材料结合的方式合成石墨烯超导体,这种结构使得石墨烯具备一定的超导特性。但是最新的研究表明,石墨烯靠自己也可以实现超导,证明单纯的碳基材料本身也具有超导性。神奇的“魔角”
研究人员通过创建两个石墨烯薄片堆叠在一起的“超晶格”结构来实现这一性质。石墨烯薄片不是完全重合叠加,而是在一个特定的角度(研究人员称其为“魔角”),也就是旋转1.1度(如上图右侧所示)。这样就形成了精确的莫尔结构,这种结构可以使石墨烯薄片之间的电子发生强相互作用。在其他任何方式的堆叠结构中,石墨烯都很少与相邻的电子产生相互作用。
研究人员发现,当以这个“魔角”旋转时,两片石墨烯不导电,类似于莫特绝缘体。当研究人员施加电压,向石墨烯超晶格添加少量电子时,就会发现在一定水平上,电子突破了初始绝缘状态,形成电流,并且没有电阻,就像超导体一样。“现在我们可以利用石墨烯作为研究超常规超导的新平台,”研究人员说,“人们也可以想象出从石墨烯中制造出一种超导晶体管,这种晶体管可以由开关控制其从超导到绝缘体的变化。这为量子设备提供了许多可能性。”
什么是莫特绝缘体?
绝缘体的能带完全被电子沾满,而像金属这样的导体其能带被部分填充,电子可以自由填充剩下的空能带。而莫特绝缘体与两者不同,从它的能带结构看是可以导电的,但是测量时却表现出绝缘体的特性。也就是说虽然它们的能带是半填充的,但是由于电子间的静电作用(例如同种电荷互相排斥),材料不导电。半填充带基本上分裂成两个平坦的能带,电子完全占据其中一条,另一条是空的,因而表现出绝缘体的性质。
“这意味着所有的电子都不能流动,所以它是绝缘体”研究人员解释道。“莫特绝缘体为什么重要?有数据表明,大多数高温超导体的母体化合物都是莫特绝缘体。”换句话说,科学家已经找到了能让莫特绝缘体变成超导体的方法,在约100K的时候。研究人员用氧去“吸”莫特绝缘体,氧原子将电子从莫特绝缘体中吸出去,留下更多的空间让剩余的电子流动。氧气充足的条件下,绝缘体就能变成导体。
如何制备出“魔角”结构的石墨烯
在研究石墨烯的电子性质时,研究人员开始研究简单的石墨烯堆。研究人员首先从石墨中剥离一块石墨烯薄片,然后用涂有粘性聚合物的玻璃片和一层氮化硼绝缘材料,小心地将一半的薄片剥离出来,从而制造出两片超晶格。然后他们轻轻地转动玻璃片,拿起了石墨薄片的第二部分,贴在前半部分上。这样,他们就得到了一个超晶格的偏移结构,这是与石墨烯原始蜂窝晶格截然不同的结构。
研究人员重复了几次这个实验,做了几个装置,使石墨烯超晶格在0-3°之间旋转不同的角度,测量电流通过。如果旋转角度下降0.2°,所有的物理现象消失,没有超导体或莫特绝缘体出现,所以必须非常精确地对准旋转角度。
1.1°被认为是一个“魔角”,研究人员发现,石墨烯超晶格电子类似扁平带结构,就像莫特绝缘体,无论动量是多少,所有的电子携带相同的能量。研究人员说:“想象汽车的动量是质量×速度,如果以30英里/小时的速度行驶,汽车会有一定的动能。如果以60英里/小时的速度行驶,这个动能就会更高。而我们现在的情况是想象不管速度是30、60或是100英里/小时,都拥有同样的能量。”对电子来说这就意味着即使它们占据了半填充的能带,一个电子的能量不比任何其他电子的多,不足以使它在这个能带内移动。因此,即使这样半填充的能带结构应该像导体一样,它却表现为绝缘体的特性,更确切一点说是莫特绝缘体。
把“魔角”结构的石墨烯做成超导体
研究人员从之前的结论中得到这样一个想法:如果他们能把电子添加到这些类似莫特绝缘体的超晶格中,就像用氧掺杂莫特绝缘体使它们变成超导体一样,石墨烯会反过来呈现超导性质吗?为了找出答案,他们将一个小的触发电压施加到“魔角石墨烯超晶格”,向其中加入少量的电子。结果单个电子与石墨烯中的其他电子结合在一起,并且可以流动。过程中,研究人员继续测量材料的电阻,却发现当他们添加一定量的少量电子时,电流就像超导体一样不损耗能量。
更重要的是,研究人员可以在同一个设备中通过调整石墨烯使其变成绝缘体或超导体,或是这之间的任何相位。这与之前其他的方法形成鲜明的对比,以前科学家们需要制备和操作成百上千个单独的晶格,每一个晶格只能在一个电子相位中运行。
也就是说研究人员可以通过研究石墨烯这一种材料就可以获取绝缘体、超导体以及中间任何相位的物理信息。而目前其他任何材料都还不具备这种性质。