您所在的位置: 上海有色 > 有色金属产品库 > 石墨烯的性能

石墨烯的性能

抱歉!您想要的信息未找到。

石墨烯的性能百科

更多

为何石墨软石墨烯“硬”

2019-01-04 15:47:49

导读 为什么石墨那么软,而石墨烯又表现得那么“硬”呢?浙江大学信息电子工程学院副教授林时胜介绍说,其实这里涉及两个不同的概念,一个是强度,这是力学概念,一个是硬度,属于物理概念。 石墨烯的“硬”,是指强度高,衡量强度的指标是杨氏模量,根据杨氏模量的高低可以把物质分为硬物质和软物质。石墨烯的模量非常高,可达1T帕(压强单位),是材料里最高的,所以石墨烯是硬物质,可以说是很硬。相应的像橡胶这些,模量只有几千帕,就是软物质,很软。材料力学上有刚度、强度、韧度、硬度等不同物理概念,这与我们通常讲的硬与软有区别。从通俗意义上说,石墨烯的“硬”指的是石墨烯的强度很好,就是它抗断裂的能力很强,这也和它的韧性很好有关系,因为容易延展而不断裂。模量就是代表了材料能被拉伸的容易程度。  再说石墨的软,这是物理概念,指的是硬度。硬度的衡量,是用一种材料去破坏另一种材料,被破坏的硬度就小。石墨的片层之间是范德华力,非常弱,只要用固体去划它,都能把它的片层错开,所以石墨很容易被破坏,就是说石墨很软。

为何石墨软,石墨烯“硬”?

2019-01-03 09:37:04

为什么石墨那么软,而石墨烯又表现得那么“硬”呢?浙江大学信息电子工程学院副教授林时胜介绍说,其实这里涉及两个不同的概念,一个是强度,这是力学概念,一个是硬度,属于物理概念。 石墨烯的“硬”,是指强度高,衡量强度的指标是杨氏模量,根据杨氏模量的高低可以把物质分为硬物质和软物质。石墨烯的模量非常高,可达1T帕(压强单位),是材料里最高的,所以石墨烯是硬物质,可以说是很硬。相应的像橡胶这些,模量只有几千帕,就是软物质,很软。 材料力学上有刚度、强度、韧度、硬度等不同物理概念,这与我们通常讲的硬与软有区别。从通俗意义上说,石墨烯的“硬”指的是石墨烯的强度很好,就是它抗断裂的能力很强,这也和它的韧性很好有关系,因为容易延展而不断裂。模量就是代表了材料能被拉伸的容易程度。 再说石墨的软,这是物理概念,指的是硬度。硬度的衡量,是用一种材料去破坏另一种材料,被破坏的硬度就小。石墨的片层之间是范德华力,非常弱,只要用固体去划它,都能把它的片层错开,所以石墨很容易被破坏,就是说石墨很软。

漫画简介石墨烯!

2019-03-08 09:05:26

石墨烯被称为“黑金”,又被称为“新材料之王”,是现在发现的最薄、强度最大、导电导热功能最强的一种新式纳米材料,极有或许掀起一场席卷全球的颠覆性新技术新产业革新。 石墨烯的制备上,多晶薄膜有望未来1-2年内完成产业化使用,单晶石墨烯工业组成办法仍未找到,因而间隔产业化还很悠远。低成本的使用氧化还原法出产石墨烯粉体,一起可以使用CVD法出产出层数可控、大面积的石墨烯薄膜是未来研究要点,也是推进职业开展的要害点。而在使用层面,未来被看好的范畴是锂离子电池、柔性显现、太阳能电池和超级电容器。

石墨烯真神奇

2019-03-07 10:03:00

近两年石墨烯的可控低成本制备技能已获得了打破性开展,有望在不久的将来构成石墨烯工业。 日前,在深圳举行的第十九届我国世界高新技能效果交易会上,石墨烯作为独具特色的新材料再次引起人们的重视,成为这个国内最大规划、最具影响力的科技展会上一个耀眼的“明星”。石墨烯到底有哪些奇特之处,能为人们带来什么惊喜?记者采访了相关专家。 人类正行进在以硅为首要物质载体的信息年代,下一个量子年代,石墨烯很或许锋芒毕露 和金刚石相同,石墨是碳元素的一种存在方式。风趣的是,因为原子结构不同,金刚石是地球上自然界最坚固的东西,石墨则成了最软的矿藏之一,常做成石墨棒和铅笔芯。 科学家介绍说,石墨烯是从石墨材料中剥离出来,只由一层碳原子构成、按蜂窝状六边形摆放的平面晶体。浅显地讲,石墨烯就是单层石墨。一块厚1毫米的石墨大约包括300万层石墨烯;铅笔在纸上悄悄划过,留下的痕迹就或许是好多层石墨烯。 这种只要一个原子厚度的二维材料,一向被以为是假定性的结构,无法独自安稳存在。直至2004年,两位英国科学家成功地从石墨中别离出石墨烯,证明了其可以独自存在,并因而一起获得2010年诺贝尔物理学奖。 据我国电科55所所长、微波毫米波单片集成和模块电路要点试验室主任高涛博士介绍,石墨烯共同的结构让它具有更导电、更传热、更坚固、更透光等优异的电学、热学、力学、光学等方面的功能。轻浮、强韧、导电、导热……石墨烯这些特性赋予人们许多幻想空间。 石墨烯的特色首先是薄,可谓现在世界上最薄的材料,只要一个原子那么厚,约0.3纳米,是一张A4纸厚度的十万分之一、一根头发丝的五十万分之一。与此一起,石墨烯比金刚石更硬,透光率高达97.7%,是世界上最坚固又最薄的纳米材料。 一起,它又能导电。石墨烯的电子运转速度达1000千米/秒,是光速的1/300,十分合适制造下一代超高频电子器材。石墨烯仍是传导热量的高手,比最能导热的银还要强10倍。 石墨烯的特性,也体现得很“好玩”。比方当一滴水在石墨烯表面翻滚时,石墨烯能敏锐地“察觉”到纤细的运动,并发生继续的电流。这种特性给科学家供给了一种新思路——从水的活动中获取电能。比方,在雨天可以用涂有石墨烯的雨伞进行发电,或许可以做成活络的传感器材等。 “人类阅历了石器、陶器、铜器、铁器年代,正行进在以硅为首要物质载体的信息年代;而下一个量子年代哪种材料将锋芒毕露呢?很或许是石墨烯。”浙江大学高分子科学与工程学系教授高明说。 未来电动轿车运用石墨烯电池,花两三分钟就或许把电充溢 因为石墨烯的奇特功能,加上制备简洁、研讨视角多维,其运用潜力巨大、适用职业广大,成为抢眼的材料“新星”一点不古怪。石墨烯从发现到现在仅10余年的时刻,已获得了许多令人震慑的研讨效果,称得上是人类历史上从发现到运用最快的材料。 高明说,从材料化学视点看,石墨烯会带来资源、环境、化工、材料、动力、传感、交通机械、光电信息、健康智能、航空航天等范畴的改动或革新。我国石墨矿储量丰厚,约占全世界的75%,其高效开发将引起碳资源及我国大资源战略的新定位、新考虑、新规划。 石墨烯的工业化出产则将促进化工、机械、智造、自控等职业的技能前进。石墨烯的增加可以发生多功能复合材料,用来制造高功能电池、电容器。石墨烯传感器可以在生物检测、光电勘探方面大显神通,石墨烯及其它二维材料的异质叠合材料可制造高功能晶体管。 可以说,石墨烯技能将对咱们的吃、穿、住、行、用、玩都发生影响。石墨烯复合膜阻氧阻水功能好,可前进食物保质期;石墨烯纤维可制成发热服饰和医疗保健用品;石墨烯电热膜电热转化效率高,可逐渐替代暖气供热;石墨烯系列材料可用于轿车、火车等交通工具,石墨烯导热膜可用于手机高效散热…… 石墨烯另一个被寄予厚望的运用范畴是电能贮存。它的优势在于充电速度快,并且可以重复运用几万次。但现在石墨烯存储的电量不如电池多,还无法存储足够多的电能。未来,跟着充电设备的日益完善和相关技能的前进,电动轿车运用石墨烯电池,花两三分钟就或许把电充溢。 我国电科55所微波毫米波单片集成和模块电路要点试验室副主任孔月婵博士介绍说,石墨烯的电子运转速度是硅的十倍,由石墨烯制造的高频器材理论上作业频率可以到达硅的十倍乃至上百倍。石墨烯引发的技能很或许从人们常见的小小芯片开端。 此外,科研人员已完结柔性衬底晶体管的研发,正在测验柔性通讯电路的研发。未来不管是可以折叠的显现屏幕,仍是可以植入人体的可穿戴设备,都或许靠这样的石墨烯器材来完成。 高涛以为,即便在试验室条件下,石墨烯的奇特功能仍然没有彻底释放出来。因为技能层面还存在着不少应战,真实大面积运用还有很长的路要走。但经过加强需求和研讨的结合,不断在石墨烯材料的制备和器材研发方面获得重要打破,发明更多更新更具颠覆性的运用,石墨烯这种新一代战略性新式材料将会极大改动人们的生发日子。 国内石墨烯研讨与国外底子同步,有望在不久的将来构成石墨烯工业 石墨烯一向是世界上的研讨热门,并在不断升温。近几年来,全球石墨烯相关的论文和发明专利简直呈指数式增加,不只各类优异的物理化学功能被猜测、证明,并且由此生宣布许多详细的研讨方向。 据了解,许多国家正在抢夺石墨烯技能的制高点。欧盟石墨烯旗舰方案以石墨烯传感为首要研讨方向,美国正在测验使用石墨烯完成通讯的柔性化并获得了明显的效果,韩国继续支撑石墨烯柔性显现的研讨并制备出了演示产品。 高涛说,整体来讲,世界上石墨烯各项优异功能正逐渐从试验室研讨向产品运用过渡,一起一些潜在的功能或运用还在不断被开掘。但这个工程化是一个长时间而困难的进程,给我国完成赶超世界水平、占据技能制高点带来了绝好的机会。 高明以为,现在国内石墨烯研讨与国外底子同步,一些方面有原创和引领性效果。国内研讨侧重化学和材料,国外更偏机理和器材。国内石墨烯的研讨在理论研讨方面可说是已完成与世界先进水平“并跑”,论文、专利不管数量仍是质量都具有很强的世界竞争力。到2016年3月,我国石墨烯的专利总数占全世界的56%。与此一起,国家赞助了很多有关石墨烯的基础研讨项目,开始构成了政府、科研机构和厂商协同立异的产学研协作对接机制。 例如,清华大学开宣布米级石墨烯单晶薄膜的快速制备技能;我国电科55所研宣布了世界上最快的柔性石墨烯晶体管;浙江大学纳米高分子团队则经过近十年研讨,开宣布了石墨烯纤维、石墨烯接连拼装膜、石墨烯超轻气凝胶及石墨烯无纺布等。 受访专家指出,各个方向不断呈现令人惊喜的研讨效果,让人们对石墨烯的未来充溢等待。但整体来讲,石墨烯技能成熟度还比较低。关于石墨烯的开展,其限制要素或许说难点,首要在材料制备技能、全新规划理念和二维控制技能等方面。其间,高品质、大批量的石墨烯质料问题暂时没有底子处理,还需要进行很多技能攻关。有些技能如单层氧化石墨烯、石墨烯单晶等在试验室制备成功了,但完成工程化、接连性、低成本、高效安稳制备还有较长的路要走。只要真实高品质的石墨烯量产了,颠覆性运用才会呈现。 不过科学家们也比较达观,近两年石墨烯的可控低成本制备技能已获得了打破性开展,有望在不久的将来构成石墨烯工业。

石墨烯/橡胶纳米复合材料的制备与性能研究

2019-01-04 17:20:18

石墨烯具有极高的力学性质和导电/导热性质,在橡胶复合材料中具有广阔的应用前景,石墨烯不仅能明显提高复合材料的物理机械性能,同时赋予其功能性。本文将综述石墨烯/橡胶复合材料的制备及其性能的研究进展。 橡胶/石墨烯复合材料制备方法 由于石墨烯优异的性质以及低的成本,石墨烯作为橡胶纳米填料被广泛报道。为了获得优异性能的石墨烯/橡胶复合材料,首先要保证石墨烯在橡胶基体中均匀分散。石墨烯的分散与复合材料的制备方法、石墨烯表面化学、橡胶种类以及石墨烯例象胶界面关系有着密切关系。石墨烯/橡胶复合材料的制备方法主要有溶液共混、直接加工和胶乳共混3种方法。 溶液共混法 溶液共混法是指将石墨烯和橡胶分散在溶剂中,在搅拌或超声作用下进行共混,然后挥发溶剂或加入非溶剂进行共沉淀,再硫化制备复合材料的方法。通过溶液共混制备复合材料的关键是将石墨烯及其衍生物均匀分散在能溶解橡胶的溶剂中。 由于GO表面含有很多含氧官能团,在超声作用下,GO能够稳定分散在一些极性有机溶剂如DMF和THF中,这为制备GO复合材料提供了重要前提。对于化学还原或热还原的石墨烯而言,很难将其直接分散在溶剂中,因此需要进行改性处理。直接共混法 直接共混法也称为机械混合法,是指将石墨烯、橡胶配合剂在开炼机或密炼机中与橡胶进行机械混炼,然后硫化制备石墨烯/橡胶复合材料的方法。该方法在机械剪切力作用下分散填料,工艺流程简单,成本低,是目前工业生产橡胶复合材料的主要方法。 虽然直接共混法方便,但在混炼过程时,由于橡胶豁度大,加工困难,且石墨烯片层间范德华力强,橡胶和石墨烯的极性相差大,所以石墨烯很难剥离并均匀分散在橡胶中,另外石墨烯表观密度低导致加料困难。 胶乳共混法 胶乳共混法通常是先将石墨烯及其衍生物分散在水相中,再与橡胶胶乳混合,经过絮凝、烘干、混炼配合制备复合材料。由于绝大多数橡胶都存在胶乳,而且GO和改性石墨烯能稳定分散在水中,因此胶乳共混法为制备石墨烯/橡胶复合材料的制备提供了一种有效和简单的途径。另外,胶乳共混法有利于石墨烯在橡胶中均匀分散,并避免有毒溶剂的使用。 石墨烯/橡胶复合材料性能 机械性能 石墨烯被认为是目前最硬、强度最高的材料,拥有超高的比表面积,加入非常少量石墨烯就能明显提橡胶复合材料性能,下图对比了几种纳米填料对橡胶增强效率,可以看到石墨烯具有更显著的增强效果。虽然纳米填料对聚合物有着非常高的增强效率(加入少量份数即带来强度、模量等大幅度提升),但当加入较多份数时(如大于10 wt%),纳米填料容易发生严重聚集,反而导致复合材料性能下降。为了充分发挥不同形状、形态和性质的纳米填料的各自优势,将两种不同维度的纳米填料进行杂化(杂化填料)并加入到聚合物中,对提高聚合物复合材料的机械性能和导电(热)性表现出显著的协同效应。  接枝反应示意图 导电性 石墨烯具有高的比表面积和电导率,研究报道,石墨烯填充的聚合物复合材料拥有高的电导率和更低的导电值,这为制备轻质量、高导电性的橡胶复合材料提供了机遇。石墨烯/橡胶复合材料的电导率主要依赖于石墨烯比表面积、石墨烯含量、石墨烯分散和分布以及石墨烯例象胶界面结合。TEG比表面积对SR导电性影响石墨烯片层间相互搭接形成3D互连网络结构 通过控制石墨烯在复合材料中的分布,能有效降低复合材料的导电值并提高其导电率。 导热性 导热橡胶在电力电子、热管理材料等领域具有广泛应用。石墨烯具有超高的热导率(5000 W /(mk)),明显高于碳纳米管(3000 W/(mk))因此石墨烯在制备导热橡胶复合材料中也有巨大的应用前景。在橡胶复合材料中,热能主要通过声子进行传递,强的填料镇料、填料沛象胶祸合有利于热能的传导。因此为了获得具有高热导率的石墨烯/橡胶复合材料,需要降低界面声子损耗,增强石墨烯锻胶界面作用。 气体阻隔性 橡胶作为一种重要的密封材料,在工程技术领域有着广泛应用。石墨烯为二维片层材料,具有很大的比表面积,且对气体分子具有优异的阻隔性,因此石墨烯在提高橡胶复合材料气体阻隔方面也具有潜在的应用。 其他性能 石墨烯除了能有效提高橡胶复合材料强度电导率和热导率外如改善其动态使用还能改善复合材料其他性能、增加其耐磨性。 总结与展望 石墨烯具有优异的物理和电子特性,如超高的强度、超高的导电率和导热率、大的比表面积。作为橡胶纳米填料,石墨烯具有非常高的增强效率和效果,同时还可以赋予橡胶材料其他特性如导电性、导热性,改善其动态性能和气体阻隔性等,对橡胶制品的高性能化和功能化具有特别的意义。 石墨烯/橡胶复合材料研究存在的挑战和机遇: (1)需要明确石墨烯的结构特性,确定结构对性质的影响,为石墨烯的改性和其复合材料制备提供理论基础; (2)虽然石墨烯价格比碳纳米管低,但是仍然缺少简单有效的方法宏量生产石墨烯。这是制备石墨烯/橡胶复合材料的重要前提; (3)由于分散和界面对橡胶复合材料性能的决定性影响,目前石墨烯/橡胶复合材料的基础研究关键在于复合材料结构设计的方法学、形态结构的细致和定量化表征(例如3DTEM的应用)以及结构性能关系的确立等几个重要方面; (4)虽然石墨烯在橡胶材料中具有巨大的潜在应用优势,但目前缺乏石墨烯/橡胶应用性研究,尤其是有关石墨烯在高性能轮胎工业的应用。

石墨烯基础科研现状

2019-01-04 09:45:43

石墨烯从其诞生至今不过10年光景。2004年为石墨烯科学研究的萌芽阶段,随后即进入快速成长阶段;从2008年开始,尤其是在2010年石墨烯发明者获得了诺贝尔奖之后,关于石墨烯的基础科研工作开展得如火如荼。 下文从专利分布、研究机构分布、研究领域分布和主要研究成果等方面梳理目前石墨烯的基础科研动向。 一、专利分布 目前全球共有超过200个机构和1000多名研究人员从事石墨烯技术的开发和研究,其中包括三星、IBM等科技巨头。我们通过最近几年的专利申请情况对目前石墨烯的研究进展进行概览。从专利申请总量来看,2010年以来全球石墨烯专利申请总量呈爆发式增长;2012年全球石墨烯专利申请量已经达到3500个,可见目前全球范围内正在掀起石墨烯研究与开发的高潮。 从石墨烯专利申请国别分布来看,2013年全球石墨烯专利申请量最大的是中国,其次为美国、韩国和日本。在石墨烯相关论文方面,欧盟排名第一,2013年共发表了7800篇论文;就国别而论,依然是中国排名第一,共发表了6649篇论文。 总体而言,目前中国已经处在石墨烯研究的前沿阵地;但是,从研究深度和创新性而言,非常核心的技术和创新性技术中国仍未掌握。二、研究机构分布 从事石墨烯研究的机构比较广泛,包括学术研究机构、企业、个人和政府层面。比较普遍的研究模式是学术研究机构与企业的合作,例如韩国三星与韩国成均馆大学合作对石墨烯的制备基础方法和应用开展研究。 从研究机构专利数量口径看,在前十名中,有4家机构来自韩国,4家来自中国,2家来自美国。并且,6家机构都是科研院所或独立科研机构,4家为企业。其中,专利数量最多的是韩国三星电子,其专利申请数量为210个,占全球总量的7.3%,其研究范围涵盖了石墨烯制备方法和在显示屏、锂电池领域的应用;其次为韩国成均馆大学、浙江大学、IBM、清华大学等。三、研究领域分布 从石墨烯研究领域分布看,全球研究热点主要在材料的导电性、导热性、石墨烯的制备研究、纳米材料研究等。 中国石墨烯研究热点主要分布石墨烯纳米复合材料、石墨烯制备、石墨烯电极等方向。我们统计了前20位主要研究机构的重点研究领域,发现研究热点分布于:(1)复合材料;(2)碳纳米管;(3)电容器;(4)传感器;(5)晶体管;(6)透明电极;(7)锂电池;(8)燃料电池。上述研究大多属于石墨烯应用,而关于石墨烯的制备改进工艺或者大规模量产石墨烯的基础研究非常少。 四、最新研究成果 在石墨烯制备方面,最新的研究成果是在生成单晶石墨烯的方法上,目前有两种方法已经能获得直径约为1mm的单晶石墨烯和直径为25px的单晶石墨烯,但是这两种方法各有优劣。 在石墨烯应用方面,最新的研究成果包括把作为光敏元件(PD)的光增益提高到了原来的约1000倍、提高柔性湿度传感器的响应时间等。在锂电池、半导体、传感器、无线通讯、电容器、电子元件、海水淡化等多个领域都有重大突破。 在众多最新研究成果中,属于中国研究机构的成果依然稀少,印证了前文中我们提到的,虽然中国在专利申请和论文发表方面在国际领先,但是在真正的研究前沿方面距离美国、日本和韩国等国家仍有一定差距。

石墨烯的时代,还远没有到来

2019-03-06 10:10:51

导读前不久,任正非在承受媒体采访时宣称,未来10至20年内会迸发一场技能,“我以为这个年代将来最大的推翻,是石墨烯年代推翻硅年代”,“现在芯片有极限宽度,硅的极限是七纳米,现已接近鸿沟了,石墨是技能前沿”。这儿说到的石墨烯,终究是何方神圣?它真的能带来推翻吗?扫描电镜下的石墨烯,显现出其碳原子组成的六边形结构。图片来历:Lawrence Berkley National Laboratory石墨烯——一种只需一个原子厚的二维碳膜——确实是种令人惊奇的材料。尽管姓名里带有石墨二字,但它既不依靠石墨储量也彻底不是石墨的特性:石墨烯导电性强、可弯折、机械强度好,看起来颇有未来奇特材料的风仪。假如再把它的潜在用处开个清单——维护涂层,通明可弯折电子元件,超大容量电容器,等等——那简直是改动国际的发明。连2010年诺贝尔物理学奖都颁发了它呢!其实就在2012年,因石墨烯而取得诺贝尔奖的康斯坦丁·诺沃肖洛夫(Konstantin Novoselov)和他的搭档曾经在《天然》上发表文章评论石墨烯的未来,两年来的开展也根本证明了他们的猜测。他以为作为一种材料,石墨烯“出路是光亮的、路途是曲折的”,尽管将来它或许能发挥严重效果,可是在战胜几个严重困难之前,这一场景还不会到来。更重要的是,考虑到工业更新的巨大本钱,石墨烯的优点或许不足以让它简略地代替现有的设备——它的真实远景,或许在于为它的共同特性量身定做的全新运用场合。 石墨烯终究是什么? 石墨烯是人们发现的第一种由单层原子构成的材料。碳原子之间彼此连接成六角网格。铅笔里用的石墨就适当于许多层石墨烯叠在一起,而碳纳米管就是石墨烯卷成了筒状。石墨、石墨烯、碳纳米管和球烯之间的联系。图片来历:enago.com由于碳原子之间化学键的特性,石墨烯很坚强:能够曲折到很大视点而不开裂,还能反抗很高的压力。而由于只需一层原子,电子的运动被约束在一个平面上,为它带来了全新的电学特点。石墨烯在可见光下通明,但不透气。这些特征使得它十分合适作为维护层和通明电子产品的质料。 可是合适归合适,真的做出来还没那么快。 问题之一:制备方法。       许多项研讨向咱们展示了石墨烯的惊人特征,但有一个圈套。这些美好的特性对样品质量要求十分高。要想取得电学和机械功能都最佳的石墨烯样品,需求最费时吃力费钱的手法:机械剥离法——用胶带粘到石墨上,手艺把石墨烯剥下来。诺沃肖洛夫团队捐赠给斯德哥尔摩的石墨、石墨烯和胶带。胶带上的签名“Andre Geim”就是和诺沃肖洛夫一起取得诺贝尔奖的人。图片来历:wikipedia尽管所需的设备和技能含量看起来都很低,但问题是成功率更低,弄点儿样品做研讨还能够,工业化出产?恶作剧。要论工业化,这手法毫无用处。哪怕你把握了全国际的石墨矿,一天又能剥下来几片……        当然现在咱们有了许多其他方法,能增加产值、降低本钱——费事是这些方法的产品质量又掉下去了。咱们有液相剥离法:把石墨或许相似的含碳材料放进表面张力超高的液体里,然后超声轰炸把石墨烯雪花炸下来。咱们有化学气相堆积法:让含碳的气体在铜表面上冷凝,构成的石墨烯薄层再剥下来。咱们还有直接成长法,在两层硅中间直接设法长出一层石墨烯来。还有化学氧化还原法,靠氧原子的刺进把石墨片层别离,如此等等。方法有许多,也各自有各自的适用范围,可是迄今为止还没有真的能合适工业化大规模推行出产的技能。        这些方法为什么做不出高质量的石墨烯?举个比如。尽管一片石墨烯的中心部分是完美的六元环,但在边际部分往往会被打乱,成为五元或七元环。这看起来没啥大不了的,可是化学气相堆积法发生的“一片”石墨烯并不真的是完好的、从一点上成长出来的一片。它其实是多个点一起成长发生的“多晶”,而没有方法能确保这多个点长出来的小片都能完好对齐。所以,这些变形环不光散布在边际,还存在于每“一片”这样做出来的石墨烯内部,成为结构缺点、简略开裂。更糟糕的是,石墨烯的这种开裂点不像多晶金属那样会自我愈合,而很或许要一向延伸下去。成果是整个石墨烯的强度要折半。材料是个费事的范畴,想鱼与熊掌兼得不是不或许,但必定没有那么快。显微镜下的一块石墨烯,伪色符号。每一“色块”代表一片石墨烯“单晶”。图片来历:Cornell.edu 问题之二:电学功能。       石墨烯一个有远景的方向是显现设备——触屏,电子纸,等等。可是现在而言石墨烯和金属电极的接触点电阻很难抵挡。诺沃肖洛夫估量这个问题能在十年之内处理。       可是为啥咱们不能爽性扔掉金属,全用石墨烯呢?这就是它在电子产品范畴里最丧命的问题。现代电子产品全部是建筑在半导体晶体管之上,而它有一个要害特点称为“带隙”:电子导电能带和非导电能带之间的区间。正由于有了这个区间,电流的活动才干有非对称性,电路才干有开和关两种状况——可是,石墨烯的导电功能真实太好了,它没有这个带隙,只能开不能关。只需电线没有逻辑电路是毫无用处的。所以要想靠石墨烯发明未来电子产品,代替硅基的晶体管,咱们有必要人工植入一个带隙——可是简略植入又会使石墨烯损失它的共同特点。现在针对这个范畴的研讨确实不少:多层复合材料,增加其他元素,改动结构等等;可是诺沃肖洛夫等人以为这个问题要真实处理,还要至少十年。 问题之三:环境危险。       石墨烯工业还有一个意想不到的费事:污染。石墨烯工业现在最老练的产品之一或许是所谓“氧化石墨烯纳米颗粒”,它很廉价,虽不能用来做电池、可弯折触屏等高端范畴,作为电子纸等用处却是适当不错;可是这东西对人体很或许是有毒的。有毒没关系,只需它老老实实呆在电子产品里,那就没有任何问题;可是前不久研讨者刚发现它在地表水里十分安稳、极易分散。尽管现在对它的 环境影响下断语还为时太早,但这确实是个潜在问题。 所以,石墨烯的命运终究怎么?       鉴于曩昔几个月里学界并无新的突破性发展,近来它的这波突发性“炽热”,恐怕本质上仍是本钱运转的炒作成果,应审慎对待。作为工业技能,石墨烯看起来还有许多未能战胜的困难。诺沃肖洛夫指出,现在石墨烯的运用仍是受限于材料出产,所以那些运用最初级最廉价石墨烯的产品(比如氧化石墨烯纳米颗粒),会最早问世,或许只需几年;可是那些依靠于高纯度石墨烯的产品或许还要数十年才干开发出来。关于它能否代替现有的产品线,诺沃肖洛夫仍然心存疑虑。 另一方面,假如商业范畴过度夸张其奇特之处,或许会导致石墨烯工业变成泡沫;一旦决裂,那么或许技能和工业的发展也无法解救它。科学作者菲利普·巴尔曾经在《卫报》上撰文《不要希望石墨烯带来奇观》,指出一切的材料都有其适用范围:钢坚固而沉重,木头简便但易腐,就算看似“全能”的塑料其实也是种种截然不同的高分子各显神通。石墨烯一定会发挥巨大的效果,可是没有理由以为它能成为奇观材料、改动整个国际。或许,用诺沃肖洛夫自己的话说:“石墨烯的真实潜能只需在全新的运用范畴里才干充沛展示:那些设计时就充沛考虑了这一材料特性的产品,而不是用来代替现有产品里的其他材料。” 至于眼下的可打印、可折叠电子产品,可折叠太阳能电池,和超级电容器等等新范畴能否发挥它的潜能,就让咱们平心静气拭目而待吧。

石墨烯在废水中的应用

2019-02-27 08:59:29

2017年能够说是有史以来环保查得最严的一年,8月7日,第四批中心环境保护监察发动。此前,中心环保监察组现已进行了三批监察。为什么本年环保查的这么严呢?近年来,跟着我国经济的飞速发展,环境污染问题现已不容忽视,防治污染刻不容缓。其间水资源的污染更是不容小觑,废水的管理也成为专家学者的要点研讨课题之一。那么被誉为21世纪的“奇特材料”的石墨烯对处理废水有哪些协助呢? 石墨烯是仅由一个原子厚度的碳原子构成的蜂窝状的二维平面碳纳米材料,表面没有活性基团,所以不能直接吸附水合金属离子或金属离子与简略阴离子的合作物,在石墨烯片层上复合一种其它的材料,组成多功用的石墨烯复合材料,能够大大缓解石墨烯简单聚会的状况,还能供给更优异的功用。还有石墨烯的一些衍生物也能够到达比石墨烯更好的吸附作用,下面就介绍几种石墨烯材料在废水中的用处。 1、石墨烯复合材料在染料废水处理中的运用 石墨烯复合材料不只能够处理石墨烯易于聚会的问题进而加速吸附染料的速率,并且赋予了材料新的功用。将用处理过的氧化石墨烯与金属离子溶液反响制备了石墨烯/Fe3O4复合材料,该材料不只能够有用吸附罗丹明B、酸性蓝、孔雀绿等多种染料,并且该材料在400℃条件下煅烧后能够重复运用,是处理染料废水的杰出材料之一。 2、氧化石墨烯在造纸废水中的运用 氧化石墨烯是石墨烯的一种常见的衍生物,其表面和边际具有很多的羟基、羧基及环氧基等含氧基团,具有杰出的化学稳定性、较强的亲水功用和优异的抗污染才能。氧化石墨烯能很好的涣散在水中,可经过真空抽滤、滴涂、旋涂、浸涂等传统办法在载体上构成由氧化石墨烯单原子薄片堆叠的层状别离膜。而相邻氧化石墨烯片层之间可构成具有选择性的二维通道,该通道与氧化石墨烯边际及其片上孔洞、缺点彼此贯穿,构成网络,构成传输途径,水分子能够以单分子层的方式无冲突地经过,一起氧化石墨烯片层间存在较强的氢键,使氧化石墨烯膜具有杰出的力学功用。以氧化铝陶瓷为基底,经过浸渍法制备完好的氧化石墨烯。用于处理造纸芬顿氧化出水,通量为3.10 kg/m2h,Mg2+、Ca2+和SO42-离子的去除率别离能到达71%、70%和54%,且具有较好的稳定性和抗污染才能。 3、氧化石墨烯对重金属离子的吸附 氧化石墨烯表面的含氧基团使得它具有杰出的亲水性,并且含氧基团能够和金属离子发作作用,然后能够别离富集水相中的金属离子。废水中常见重金属离子,其毒性大、散布广、含量低、不易降解,长时间在环境中涣散存在,终究经过生物富集作用被迫植物吸收,经过食物链进入人体,对人类的生计和健康发生严峻的影响。吸附是现在常用的一种处理办法,而吸附的功用决议了深度处理的作用。研讨标明,相同条件下,片状氧化石墨烯、碳纳米管和活性炭对Cu2+的富集量别离为46.6 mgCu/g、28.5 mgCu/g、和4~5 mgCu/g,显示出石墨烯的杰出吸附功用。  石墨烯因具有巨大的比表面积而展现出极强的吸附才能,能够被广泛运用于吸附水溶液中各类分子或离子。而单一的石墨烯因其聚会现象导致吸附才能低下,吸附平衡过久。可是石墨烯的复合材料和其衍生物能够处理这些问题。不过石墨烯载体材料在吸附运用方面还处于探究阶段,还有许多问题需求处理,例如进一步研讨石墨烯材料的循环运用,在研讨富集的一起研讨解吸进程,下降材料运用本钱。

石墨烯的功能化及其相关应用

2019-03-07 09:03:45

现在,石墨烯的功用化研讨才刚刚开始,从功用化的办法来看,首要分为共价键功用化和非共价键功用化两种。本文将要点介绍石墨烯功用化的首要展开及其相关使用,并对往后的研讨方向进行了展望。 石墨烯的共价键功用化 石墨烯的共价键功用化是现在研讨最为广泛的功用化办法。虽然石墨烯的主体部分由安稳的六元环构成,但其边缘及缺陷部位具有较高的反响活性,可以经过化学氧化的办法制备石墨烯氧化物((Grapheneoxide)。因为石墨烯氧化物中含有很多的羧基、羟基和环氧键等活性基团,可以使用多种化学反响对石墨烯进行共价键功用化。 石墨烯的有机小分子功用化 石墨烯氧化物及其功用化衍生物具有较好的溶解性,但因为含氧官能团的引进,损坏了石墨烯的大π共扼结构,使其导电性及其他功用显着下降。 2006年,Stankovich等使用有机小分子完成了石墨烯的共价键功用化,他们首要制备了氧化石墨,然后使用异酸酷与氧化石墨上的按基和轻基反响,制备了一系列异酸酷功用化的石墨烯(图1)。图1 异酸酯功用化石墨烯的结构示意图 该功用化石墨烯可以在N,N-二甲基甲酞胺(DMF)等多种极性非质子溶剂中完成均匀涣散,并可以长期坚持安稳。该办法进程简略,条件温文(室温),功用化程度高,为石墨烯的进一步加土和使用供给了新的思路。 石墨烯的聚合物功用化 选用不同的有机小分子对石墨烯进行功用化,可以取得具有水溶性或有机可溶的石墨烯。在此根底上,Ye等选用共聚的办法制备了两亲性聚合物功用化的石墨烯。如图2所示,他们首要选用化学氧化和超声剥离的手法,制备了石墨烯氧化物,然后用复原,取得了结构相对完好的石墨烯,接下来,在自由基引发剂过氧化二甲酞(BPO)效果下,选用乙烯和酞胺与石墨烯进行化学共聚,取得了聚乙烯-聚酞胺(PS-PAM)嵌段共聚物改性的石墨烯。图2 乙烯-丙稀酰胺共聚物功用化石墨烯的制备 因为聚乙烯和聚酞胺分别在非极性溶剂和极性溶剂中具有较好的溶解性,使得该石墨烯既能溶解于水,也能溶解十二。该办法进一步改进了石墨烯的溶解性,而且,PS-PAM功用化的石墨烯作为添加物,可以在多种聚合物中均匀涣散,使其在聚合物复合材料等范畴有很好的使用远景。 根据共价键功用化的石墨烯杂化材料 石墨烯的共价键功用化不只可以进步石墨烯的溶解性,还可以经过化学交联引进新的官能团,取得具有特殊功用的新式杂化材料。Chen等研讨了强吸光基团卟啉对石墨烯的共价键功用化,卟啉是广泛使用的电子给体材料,而石墨烯是优异的电子受体,经过带基的四基卟啉(TPP)与石墨烯氧化物缩合,初次取得了具有分子内给体-受体(Donor-Acceptox)结构的卟啉-石墨烯杂化材料(图3)。图3 卟啉-石墨烯(给体-受体)杂化材料示意图 检测结果表明,石墨烯与卟啉之间发生了显着的电子及能量转移,该杂化材料具有优异的非线性光学性质。他们还研讨了C60共价键功用化的石墨烯杂化材料,相同使其非线性光学性质大幅度进步。 石墨烯的非共价键功用化 除了共价键功用化外,还可以用π-π相互效果、离子键以及氢键等非共价键效果,使润饰分子对石墨烯进行表面功用化,构成安稳的涣散系统。 石墨烯的兀键功用化 在选用化学氧化办法制备石墨烯的进程中,一般是先制备石墨烯氧化物,然后经过化学复原或高温焙烧来取得石墨烯材料。石墨烯氧化物在水中具有较好的溶解性,但其复原产品简略发生集合,而且很难再次涣散。图4 PmPV非共价键功用化的石墨烯带 聚类高分子PmPV具有大π共扼结构,Dai等使用PmPV与石墨烯之间的π-π相互效果,制备了PmPV非共价键功用化的石墨烯带。他们将胀大石墨涣散到PmPV的二溶液中,然后在超声波效果下取得了PmPV润饰的石墨烯纳米带,在有机溶剂中具有杰出的涣散性(图4)。 石墨烯的离子键功用化 离子相互效果是另一类常用的非共价键功用化办法。Penicaud等经过离子键功用化制备了可溶于有机溶剂的石墨烯。他们选用老练的办法制备了碱金属(钾盐)石墨层间化合物,然后在溶剂中剥离取得了可溶于N-甲基毗咯烷酮(NMP)的功用化石墨烯。图5石墨烯的离子键功用化 该办法不需要添加表面活性剂及其它涣散剂,使用了钾离子与石墨烯上按基负离子之间的相互效果,使石墨烯可以安稳地涣散到极性溶剂中(图5)。 石墨烯的氢键功用化 氢键是一种较强的非共价键,因为石墨烯氧化物的表面具有很多的羧基和羟基等极性基团,简略与其它物质发生氢键相互效果,因而,可以使用氢键对石墨烯氧化物进行功用化。 表1不同PH值下石墨烯氧化物与阿霉素中可构成氢键的基团石墨烯的氢键功用化不只可以用于进步石墨烯的溶解性,还能使用氢键完成有机分子在石墨烯上的负载。Chen等使用氢键效果将抗肿瘤药物阿霉素负载到石墨烯上。他们系统研讨了该系统的氢键品种及构成办法,因为阿霉素中含有羧基和羟基等基团,与石墨烯氧化物的羧基和羟基之间会构成多种氢键,如表1所示,跟着PH值的改动,氢键的品种也会发生变化。 功用化石墨烯的相关使用 经过对石墨烯进行功用化,不只可以进步其溶解性,而且可以赋子石墨烯新的性质,使其在聚合物复合材料,光电功用材料与器材以及生物医药等范畴有很好的使用远景。 聚合物复合材料图6石墨烯聚介物复介材料的光驱动性质 根据石墨烯的聚合物复合材料是石墨烯迈向实践使用的一个重要方向。因为石墨烯具有优异的功用和低价的本钱,而且,功用化今后的石墨烯可以选用溶液加土等惯例办法进行处理,十分适用于开发高功用聚合物复合材料。Ruoff等首要制备了石墨烯-聚乙烯导电复合材料,引起了极大的重视。他们先将基异酸酷功用化的石墨烯均匀地涣散到聚乙烯基体中,然后用二甲阱进行复原,成功地康复了石墨烯的本征导电性,其导电临界含量仅为0.1%。 光电功用材料与器材 新式光电功用材料与器材的开发对电子、信息及通讯等范畴的展开有极大的促进效果。其间,非线性光学材料在图画处理、光开关、光学存储及人员和器材维护等许多范畴有重要的使用远景。好的非线性光学材料一般具有大的偶极矩和二系统等特色,而石墨烯的结构特征正好契合这些要求。图7根据功用化石墨烯的有机光伏器材 Chen等研讨了具有溶液可处理性的功用化石墨烯(SPFGraphene)在通明电极和有机光伏等器材中的使用。根据石墨烯的柔性通明导电薄膜在80%的透光率下,其方块电阻为~102Ω/square,可望在通明电极及光电器材等方面取得广泛的使用;他们还规划并制备了以SPFGraphene作为电子受体,具有体相异质结结构的有机光伏器材,其在空气条件下的光电转化功率可达1.4%(图7)。 生物医药使用 因为石墨烯具有单原子层结构,其比表面积很大,十分合适用作药物体。Dai等首要制备了具有生物相容性的聚乙二醇功用化的石墨烯,使石墨烯具有很好的水溶性,而且可以在血浆等生理环境下坚持安稳涣散;然后使用π-π相互效果初次成功地将抗肿瘤药物喜树碱衍生物((SN38)负载到石墨烯上,敞开了石墨烯在生物医药方面的使用研讨。 结语及展望 如上所述,在短短的几年内,关于石墨烯功用化及其相关使用研讨现已取得了很大的展开。但要真实完成石墨烯的可控功用化及产业化使用,还面对很多的问题和应战。共价键润饰的长处是在添加石墨烯的可加土性的一起,为石墨烯带来新的功用,其缺陷是会部分损坏石墨烯的本征结构,并会改动其物理化学性质;非共价键功用化的长处是土艺简略,条件温文,一起能坚持石墨烯自身的结构与性质,其缺陷是在石墨烯中引进了其他组分(如表面活性剂等)。 经过在石墨烯功用化范畴展开愈加广泛深化的研讨,除了使人们对这一新式二维纳米材料的本征结构和性质取得愈加全面深入的了解外,必将发生一系根据石墨烯的功用愈加优胜的新式材料,从而为完成石墨烯的实践使用奠定科学和技能根底。

石墨烯远红外效应的医学应用

2019-01-03 15:20:48

石墨烯加热发射的8-15微米远红外波,能有激活身体细胞核酸蛋白质等生物分子等功能,起到改善血液循环、改善关节疼痛、调节自律神经、提高免疫功能、消炎功能、增强生物体的新陈代谢以及护肤美容、改善体内微循环的作用! 人们知道,2010年的诺贝尔物理奖颁发给了在英国曼彻斯特大学的两位科学家—安得列·盖姆 (Andre Geim) 和 康斯坦丁·诺沃肖罗夫( KonstantinNovoselov), 表彰他们对石墨烯 (Graphene)研究的卓越贡献。作为碳组成的一种结构,石墨烯是一种全新的材料,它不单是其厚度达到前所未有的薄 (是人们发现的第一种由单层原子构成的材料),而且其强度非常高(其碳原子结构非常稳定)。同时,它也具世界上最小的电阻率,导电性是铜的一百万倍。在导热方面,更是超越了目前已知的其它所有材料。石墨烯近乎完全透明并柔软,但其原子排列之紧密,连具有最小分子结构的氦都无法穿透它,现已被称为是21世纪最为颠覆的材料。近年来,石墨烯及其衍生物广泛在生物医学,包括生物元件,生物检测,疾病诊断,肿瘤治疗,生物成象和药物输送系统等的应用前景,使其成为纳米生物医学领域的研究热点。石墨烯还具有诸多引人瞩目的光学属性,近年来IBM的研究人员已发现,石墨烯能吸收和辐射高达40%的远红外线。       人体也是一个天然的红外线辐射源,其辐射频带很宽,无论肤色如何,活体皮肤的发射率为98%,其中3-50微米波段的远红外线的辐射约占人体辐射量的46%。人体同时又是良好的远红外线吸收体,其吸收波段以3-15微米为主,刚好是在远红外线的作用波段。人体远红外线的吸收机制是通过人体组织的细胞分子中的碳-碳键,碳-氢键,氧-氢键等的伸缩振动,其谐振波大部分在3-15微米,和远红外线的波长和振幅相同,引起共振共鸣。石墨烯加热发射的8-15微米远红外波,能有激活身体细胞核酸蛋白质等生物分子等功能,起到改善血液循环、改善关节疼痛、调节自律神经、提高免疫功能、消炎功能、增强生物体的新陈代谢以及护肤美容、改善体内微循环的作用!目前,以石墨烯为代表的新材料, 已被中国列为“十三五”战略规划发展重点。