我国在氧化石墨烯薄膜淡化海水领域获突破
2019-01-04 17:20:20
继石墨烯之父、2010年诺贝尔物理学奖得主安德烈·海姆(AndreGeim)团队探索控制氧化石墨烯薄膜的孔径大小淡化海水后,日前中国科学家在该领域也获得新突破。 海水淡化示意图
10月9日,国际学术期刊《Nature》在线刊登了题目为“通过阳离子控制氧化石墨烯薄膜层间距实现离子筛分”(“Ion sieving ingraphene oxide membranes via cationic control of interlayerspacing”)的研究论文。该研究提出并实现了通过水合离子精确控制石墨烯膜的层间距,展示出优异的离子筛分和海水淡化性能。该研究来自中国科学院上海应用物理研究所研究院方海平、李景烨,以及上海大学的吴明红团队、南京工业大学金万勤团队等。
石墨烯因具有优良的光、电、力学等性能,被称为“新材料之王”、“超级材料”等。2004年,海姆和康斯坦丁·诺沃肖洛夫(KonstantinNovoselov)成功地从石墨中分离出石墨烯,证实石墨烯可单独存在。两人也因此共同获得2010年诺贝尔物理学奖。
氧化石墨烯是石墨烯的衍生物,其能够在实验室通过简单的氧化生产出来。考虑到氧化石墨烯的灵活性和成本,氧化石墨烯比单层石墨烯更具有潜在优势。
据了解,精确控制(氧化)石墨烯膜的层间距在环境、能源材料等领域具有重要意义,尤其在水处理、离子/分子分离以及电池/电容等应用领域中起到关键作用。对于(氧化)石墨烯纳米片,要实现其层间距固定并精确到1/10纳米这么小的尺度,其困难可想而知,更具挑战的是,(氧化)石墨烯膜在水溶液中还会发生溶胀导致分离性能严重衰减。一直以来,研究者们利用纳米技术操控、膜间修饰小分子等技术做了诸多努力但仍难以如愿。
海姆在“第四届中国国际石墨烯创新大会”上曾称,氧化石墨烯氧化物分层取得进展后,现在可得到100纳米的厚度,形成氧化石墨烯膜。该研究成果已于今年4月发表在国际学术杂志《NatureNanotechnology》上。彼时的实验证实,用他们的方法能够使氧化石墨烯薄膜对氯化钠的离子的过滤率高达97%,这意味着该膜系统能够很好地进行过滤常见的盐离子。
据上海大学网站消息,中国科学家提出了溶液中离子本身可以有效控制(氧化)石墨烯膜的层间距,并进行了相应的理论模拟计算加以验证,同时利用上海光源的X射线小角散射(BL16B1)、精细吸收谱(BL14W1)以及紫外等表征手段证明了离子与(氧化)石墨烯片层内芳香环结构之间存在水合离子-π相互作用。这样的作用像“桥墩”一样支撑石墨烯片层,精确控制了(氧化)石墨烯膜的层间距,而不同大小的水合离子相当于不同大小的“桥墩”,进而对应于不同的层间距。
通过实验成功实现并观测到(氧化)石墨烯膜与不同的离子溶液作用后具有特定的层间距,这样的间距可以小到一纳米左右,而不同离子对应的间距差异小于1/10纳米;当(氧化)石墨烯膜与水合直径小的离子溶液结合后,具有更大水合直径的离子就难以进入石墨烯膜。因此,通过离子选择可以实现对(氧化)石墨烯膜的层间距达1/10纳米的精确控制。此外,通过系列水合离子控制的多(氧化)石墨烯复合膜,从实验上实现了不同离子间的精确筛分。
该研究不仅为石墨烯膜的设计制备提供了理论与技术指导,也为其他二维材料在分离膜领域的研究开辟了新思路。
海姆曾表示,“把氧化石墨烯的薄膜应用到海水淡化当中,我认为这是一个可以实现商业化的例子。在未来海水淡化中,由于使用了氧化石墨烯,我认为它的成本将会越来越低,所以这将会是一个非常好的商业化的例子。”不过,如何在工业上大规模地、廉价地生产稳定的氧化石墨烯薄膜系统,而且还能有效抵抗有机物、盐、和生物材料的腐蚀等,可能还面临一定的挑战。
超重力法制备石墨烯材料研究
2019-02-28 11:46:07
石墨烯(Graphenes):是一种二维纳米碳材料,是单层石墨烯、双层石墨烯和多层石墨烯的总称。石墨烯具有完美的二维晶体结构,它的晶格是由六个碳原子围成的六边形,厚度为一个原子层。碳原子之间由s键衔接,结合办法为sp2杂化,这些s键赋予了石墨烯极端优异的力学性质和结构刚性。
1、石墨烯的根本特性和制备办法
石墨烯(Graphenes):是一种二维纳米碳材料,是单层石墨烯、双层石墨烯和多层石墨烯的总称。石墨烯具有完美的二维晶体结构,它的晶格是由六个碳原子围成的六边形,厚度为一个原子层。碳原子之间由s键衔接,结合办法为sp2杂化,这些s键赋予了石墨烯极端优异的力学性质和结构刚性。
石墨烯是已知的世上最薄、最坚固的纳米材料,它几乎是彻底通明的,只吸收2.3%的光;导热系数高达5300W/m·K,高于碳纳米管和金刚石,常温下其电子搬迁率超越15000cm2/V·s,又比纳米碳管或硅晶体高,而电阻率只约1Ω·m,比铜或银更低,为世上电阻率最小的材料。因其电阻率极低,电子搬迁的速度极快,因而被等待可用来开展更薄、导电速度更快的新一代电子元件或晶体管。因为石墨烯实质上是一种通明、杰出的导体,也合适用来制作通明触控屏幕、光板、乃至是太阳能电池。图1 石墨烯的结构示意图
石墨烯首要制备办法图2 石墨烯制备办法优缺点比较
制备石墨烯常见的办法为液相剥离法、氧化复原法、SiC外延生长法和化学气相堆积法(CVD)。液相剥离法是在溶液中首要依托机械力的作用,战胜石墨层间的范德华力,将体相石墨剥离成单层或少层石墨烯的办法。现在最常用的剥离设备是超声发生器,存在扩大难、功率低及石墨烯层数较厚等问题。
氧化复原法是经过将石墨氧化,增大石墨层之间的距离,再经过物理办法将其别离,最终经过化学法复原,得到石墨烯的办法。这种办法操作简略,产值高,可是产品质量稍差。一般运用的剥离设备是超声发生器,氧化复原设备是反应釜,导致扩大难及氧化复原功率低一级问题。
SiC外延法是经过在超高真空的高温环境下,使硅原子提高脱离材料,剩余的C原子经过自组方式重构,然后得到根据SiC衬底的石墨烯。这种办法能够获得高质量的石墨烯,可是这种办法对设备要求较高。
CVD法是现在最有或许完成工业化制备高质量、大面积石墨烯的办法。这种办法制备的石墨烯具有面积大和质量高的特色,但现阶段本钱较高,工艺条件还需进一步完善。这些办法中最有或许规模化的低本钱制备办法是液相剥离法和氧化复原法。
2、超重力氧化复原法制备石墨烯
2.1 超重力技能介绍:
超重力技能是使用旋转填充床(RPB)发生的比地球重力大得多的超重力环境,强化物质的传递、混合、传热及化学反应的技能。
自世纪面世以来,在国内外遭到广泛的注重,因为它的广泛适用性以及具有传统设备所不具有的体积小、重量轻、能耗低、易工作、易修理、安全、牢靠、灵敏以及更能适应环境等长处,使得超重力技能在化工、环保、材料等工业领域中较广泛应用。
超重力工程技能的特色:具有微观混合特性;具有极大的强化传质特性;能发生均匀而有梯度的剪切作用;扩大作用不明显等。图3 年产1万吨超重力法纳米碳酸钙出产线
2.2 超重力氧化复原法制备石墨烯:图4 超重力氧化复原法制备石墨烯研讨布景图5 超重力氧化复原法制备石墨烯根本工艺
2.3 超重力法氧化石墨剥离技能
(1)剥离时刻对氧化石墨烯功能影响:图6 不同剥离时刻制备的氧化石墨烯对MB染料吸附曲线图7 不同剥离时刻制备的氧化石墨烯TEM相片
(2)氧化石墨溶液浓度对氧化石墨烯功能的影响图8 不同氧化石墨溶液浓度制备的氧化石墨烯对MB染料吸附曲线图9 不同溶液不同氧化石墨溶液浓度制备的氧化石墨烯层数示意图
由图9标明:G峰的波数越高,层数越少,G’峰的波数越低,层数越少。D峰和G峰的强度比ID/IG数值越大,缺点程度越高
(3)旋转床办法和超声法制备氧化石墨烯功能比照图10石墨烯循环伏安曲线图(a)经旋转床剥离后制备石墨烯CV曲线;(b)经超声剥离后制备石墨烯CV曲线;(c)两种办法制备石墨烯在10mV/s下CV曲线
成果显现:旋转床办法制备的石墨烯比电容量为225F/g,而超声办法制备为175 F/g。图11 两种办法制备的石墨烯沟通阻抗值比较
旋转床制备的石墨烯沟通阻抗值约为7.5Ω,超声反应釜制备的石墨烯沟通阻抗值约为14Ω,阻抗值更小,导电率更大,选用四探针法测定的石墨烯均匀电导率,RPB剥离的为312.8S/m,超声反应釜的为278.1 S/m 。
2.4 超重力复原技能
(1)温度对超重力复原法制备石墨烯的影响图12 不同复原温度下制备石墨烯的CV曲线图13 不同复原温度下制备石墨烯的EIS曲线
(2)不同复原剂品种对制备石墨烯功能的影响不同复原剂制备石墨烯TEM相片不同复原剂制备石墨烯红外光谱相片
图14不同复原剂品种对制备石墨烯功能的影响
由图14能够看出,VC(抗坏血酸)和复原作用较好,复原程度较高,含氧基团特征峰强度低 。
(3)超重力法和惯例办法复原氧化石墨烯的作用比照图15 超重力法和惯例法制备石墨烯XPS成果比照
小结:3、超重力液相剥离法制备石墨烯图16 超重力液相剥离法制备石墨烯设备图17 超重力液相剥离法制备石墨成果
横向尺度150nm, 厚度3-9层,浓度:0.3mg/ml; 产率:3%; 溶剂为水
4、总结
(1)超重力氧化复原法制备石墨烯具有产品质量高,出产功率高,易产业化的特色。
(2)超重力直接剥离法具有本钱低,产品质量好,易产业化的特色。
(3)这种技能也有望用于其它层状材料,如:高岭土、蒙脱土、云母等的剥离及深加工,欢迎合作开发。
如何制备黑磷——有望超过石墨烯的新材料
2019-03-08 12:00:43
磷是地球上含量最丰厚的元素之一,约占地壳中所有元素质量的0.1%。磷元素的同素异形体有、、紫磷和黑磷,其间黑磷的性质最为安稳,反响活性最弱,它在空气中不会焚烧。黑磷是用在很高压强和较高温度下转化而构成的。图1:黑磷晶体及其晶胞结构示意图
黑磷的物理性质黑磷的制备办法
高压法
高压法是最早用于黑磷制备的办法,1914年Bridgman开发出来的。试验过程:首要将放入长约15cm、内径1.5cm的圆柱型钢制容器,然后将装有的容器放入装有火油的高压设备,并在室温条件下加压至0.6×109Pa,随后,将设备加热到200℃,压力提升到1.2×109Pa,可得到黑磷。高压法制备黑磷重复性较好,并且很短时刻内就能完成到黑磷的转化。可是其制备办法需求用到超高压设备,必定程度上导致黑磷出产本钱较高,不利于大规模商业化出产
铋熔化法
首要,在氩气气氛下将和铋颗粒别离放在设备左右两头,并进行抽真空密封处理(如图2a.所示);然后,对和铋粉加热处理,右端底部会构成铋块,上面则生成,此刻把设备右端取下(如图2b.所示);终究,在300℃下加热铋,并将液铋浇注到固体上,把设备放400℃环境下保温48h,随后降至室温,用硝酸除掉铋,即可得到黑磷。图2:铋熔化法制备黑磷设备示意图
矿化法
矿化法是近几年开发的一种制备黑磷的办法。将Au、Sn、SnI4与按必定质量的份额混合,真空封装在石英管中,加热至必定的温度并保温必定的时刻,即可得到黑磷,但终究产品中存在少数未转化的及反响生成的金属磷化物等杂质。但Au报价贵重,SnI4有毒。后来研讨者们发现直接以I、Sn、为质料在常压下也能制备出黑磷,其具体过程:将Sn、I和在氩气气氛下密封,通过程序升降温处理,相同制备出了黑磷。该制备办法不光不再运用贵重且有毒的SnI4作为矿化剂,并且不再需求真空处理,因此简化了制备工艺流程,本钱大大下降,具有很好的工业化使用远景。
制备办法比较
黑磷未来发展远景
用相似制备石墨烯的办法,黑磷也能够得到黑磷烯。与黑磷比较,黑磷烯具有较高的比表面积、较好的机械功能及电学功能,黑磷和黑磷烯在锂离子电池、钠离子电池和超级电容范畴都具有较好的使用远景。可是黑磷的丧命缺点是缺少安稳性。当触摸水和氧气时,黑磷片层会在极短时刻内氧化进而降解。这一缺点极大地约束了黑磷的研讨和工业使用。高安稳性黑磷的成功制备,无疑可有用推进黑磷在光电器材等范畴的工业使用,还将极大促进其在动力、催化、生物医学等范畴的深入研讨。
为何石墨软石墨烯“硬”
2019-01-04 15:47:49
导读
为什么石墨那么软,而石墨烯又表现得那么“硬”呢?浙江大学信息电子工程学院副教授林时胜介绍说,其实这里涉及两个不同的概念,一个是强度,这是力学概念,一个是硬度,属于物理概念。
石墨烯的“硬”,是指强度高,衡量强度的指标是杨氏模量,根据杨氏模量的高低可以把物质分为硬物质和软物质。石墨烯的模量非常高,可达1T帕(压强单位),是材料里最高的,所以石墨烯是硬物质,可以说是很硬。相应的像橡胶这些,模量只有几千帕,就是软物质,很软。材料力学上有刚度、强度、韧度、硬度等不同物理概念,这与我们通常讲的硬与软有区别。从通俗意义上说,石墨烯的“硬”指的是石墨烯的强度很好,就是它抗断裂的能力很强,这也和它的韧性很好有关系,因为容易延展而不断裂。模量就是代表了材料能被拉伸的容易程度。
再说石墨的软,这是物理概念,指的是硬度。硬度的衡量,是用一种材料去破坏另一种材料,被破坏的硬度就小。石墨的片层之间是范德华力,非常弱,只要用固体去划它,都能把它的片层错开,所以石墨很容易被破坏,就是说石墨很软。
为何石墨软,石墨烯“硬”?
2019-01-03 09:37:04
为什么石墨那么软,而石墨烯又表现得那么“硬”呢?浙江大学信息电子工程学院副教授林时胜介绍说,其实这里涉及两个不同的概念,一个是强度,这是力学概念,一个是硬度,属于物理概念。
石墨烯的“硬”,是指强度高,衡量强度的指标是杨氏模量,根据杨氏模量的高低可以把物质分为硬物质和软物质。石墨烯的模量非常高,可达1T帕(压强单位),是材料里最高的,所以石墨烯是硬物质,可以说是很硬。相应的像橡胶这些,模量只有几千帕,就是软物质,很软。
材料力学上有刚度、强度、韧度、硬度等不同物理概念,这与我们通常讲的硬与软有区别。从通俗意义上说,石墨烯的“硬”指的是石墨烯的强度很好,就是它抗断裂的能力很强,这也和它的韧性很好有关系,因为容易延展而不断裂。模量就是代表了材料能被拉伸的容易程度。
再说石墨的软,这是物理概念,指的是硬度。硬度的衡量,是用一种材料去破坏另一种材料,被破坏的硬度就小。石墨的片层之间是范德华力,非常弱,只要用固体去划它,都能把它的片层错开,所以石墨很容易被破坏,就是说石墨很软。
石墨烯/橡胶纳米复合材料的制备与性能研究
2019-01-04 17:20:18
石墨烯具有极高的力学性质和导电/导热性质,在橡胶复合材料中具有广阔的应用前景,石墨烯不仅能明显提高复合材料的物理机械性能,同时赋予其功能性。本文将综述石墨烯/橡胶复合材料的制备及其性能的研究进展。
橡胶/石墨烯复合材料制备方法
由于石墨烯优异的性质以及低的成本,石墨烯作为橡胶纳米填料被广泛报道。为了获得优异性能的石墨烯/橡胶复合材料,首先要保证石墨烯在橡胶基体中均匀分散。石墨烯的分散与复合材料的制备方法、石墨烯表面化学、橡胶种类以及石墨烯例象胶界面关系有着密切关系。石墨烯/橡胶复合材料的制备方法主要有溶液共混、直接加工和胶乳共混3种方法。
溶液共混法
溶液共混法是指将石墨烯和橡胶分散在溶剂中,在搅拌或超声作用下进行共混,然后挥发溶剂或加入非溶剂进行共沉淀,再硫化制备复合材料的方法。通过溶液共混制备复合材料的关键是将石墨烯及其衍生物均匀分散在能溶解橡胶的溶剂中。
由于GO表面含有很多含氧官能团,在超声作用下,GO能够稳定分散在一些极性有机溶剂如DMF和THF中,这为制备GO复合材料提供了重要前提。对于化学还原或热还原的石墨烯而言,很难将其直接分散在溶剂中,因此需要进行改性处理。直接共混法
直接共混法也称为机械混合法,是指将石墨烯、橡胶配合剂在开炼机或密炼机中与橡胶进行机械混炼,然后硫化制备石墨烯/橡胶复合材料的方法。该方法在机械剪切力作用下分散填料,工艺流程简单,成本低,是目前工业生产橡胶复合材料的主要方法。
虽然直接共混法方便,但在混炼过程时,由于橡胶豁度大,加工困难,且石墨烯片层间范德华力强,橡胶和石墨烯的极性相差大,所以石墨烯很难剥离并均匀分散在橡胶中,另外石墨烯表观密度低导致加料困难。
胶乳共混法
胶乳共混法通常是先将石墨烯及其衍生物分散在水相中,再与橡胶胶乳混合,经过絮凝、烘干、混炼配合制备复合材料。由于绝大多数橡胶都存在胶乳,而且GO和改性石墨烯能稳定分散在水中,因此胶乳共混法为制备石墨烯/橡胶复合材料的制备提供了一种有效和简单的途径。另外,胶乳共混法有利于石墨烯在橡胶中均匀分散,并避免有毒溶剂的使用。
石墨烯/橡胶复合材料性能
机械性能
石墨烯被认为是目前最硬、强度最高的材料,拥有超高的比表面积,加入非常少量石墨烯就能明显提橡胶复合材料性能,下图对比了几种纳米填料对橡胶增强效率,可以看到石墨烯具有更显著的增强效果。虽然纳米填料对聚合物有着非常高的增强效率(加入少量份数即带来强度、模量等大幅度提升),但当加入较多份数时(如大于10 wt%),纳米填料容易发生严重聚集,反而导致复合材料性能下降。为了充分发挥不同形状、形态和性质的纳米填料的各自优势,将两种不同维度的纳米填料进行杂化(杂化填料)并加入到聚合物中,对提高聚合物复合材料的机械性能和导电(热)性表现出显著的协同效应。 接枝反应示意图
导电性
石墨烯具有高的比表面积和电导率,研究报道,石墨烯填充的聚合物复合材料拥有高的电导率和更低的导电值,这为制备轻质量、高导电性的橡胶复合材料提供了机遇。石墨烯/橡胶复合材料的电导率主要依赖于石墨烯比表面积、石墨烯含量、石墨烯分散和分布以及石墨烯例象胶界面结合。TEG比表面积对SR导电性影响石墨烯片层间相互搭接形成3D互连网络结构
通过控制石墨烯在复合材料中的分布,能有效降低复合材料的导电值并提高其导电率。
导热性
导热橡胶在电力电子、热管理材料等领域具有广泛应用。石墨烯具有超高的热导率(5000 W /(mk)),明显高于碳纳米管(3000 W/(mk))因此石墨烯在制备导热橡胶复合材料中也有巨大的应用前景。在橡胶复合材料中,热能主要通过声子进行传递,强的填料镇料、填料沛象胶祸合有利于热能的传导。因此为了获得具有高热导率的石墨烯/橡胶复合材料,需要降低界面声子损耗,增强石墨烯锻胶界面作用。
气体阻隔性
橡胶作为一种重要的密封材料,在工程技术领域有着广泛应用。石墨烯为二维片层材料,具有很大的比表面积,且对气体分子具有优异的阻隔性,因此石墨烯在提高橡胶复合材料气体阻隔方面也具有潜在的应用。
其他性能
石墨烯除了能有效提高橡胶复合材料强度电导率和热导率外如改善其动态使用还能改善复合材料其他性能、增加其耐磨性。
总结与展望
石墨烯具有优异的物理和电子特性,如超高的强度、超高的导电率和导热率、大的比表面积。作为橡胶纳米填料,石墨烯具有非常高的增强效率和效果,同时还可以赋予橡胶材料其他特性如导电性、导热性,改善其动态性能和气体阻隔性等,对橡胶制品的高性能化和功能化具有特别的意义。
石墨烯/橡胶复合材料研究存在的挑战和机遇:
(1)需要明确石墨烯的结构特性,确定结构对性质的影响,为石墨烯的改性和其复合材料制备提供理论基础;
(2)虽然石墨烯价格比碳纳米管低,但是仍然缺少简单有效的方法宏量生产石墨烯。这是制备石墨烯/橡胶复合材料的重要前提;
(3)由于分散和界面对橡胶复合材料性能的决定性影响,目前石墨烯/橡胶复合材料的基础研究关键在于复合材料结构设计的方法学、形态结构的细致和定量化表征(例如3DTEM的应用)以及结构性能关系的确立等几个重要方面;
(4)虽然石墨烯在橡胶材料中具有巨大的潜在应用优势,但目前缺乏石墨烯/橡胶应用性研究,尤其是有关石墨烯在高性能轮胎工业的应用。
漫画简介石墨烯!
2019-03-08 09:05:26
石墨烯被称为“黑金”,又被称为“新材料之王”,是现在发现的最薄、强度最大、导电导热功能最强的一种新式纳米材料,极有或许掀起一场席卷全球的颠覆性新技术新产业革新。
石墨烯的制备上,多晶薄膜有望未来1-2年内完成产业化使用,单晶石墨烯工业组成办法仍未找到,因而间隔产业化还很悠远。低成本的使用氧化还原法出产石墨烯粉体,一起可以使用CVD法出产出层数可控、大面积的石墨烯薄膜是未来研究要点,也是推进职业开展的要害点。而在使用层面,未来被看好的范畴是锂离子电池、柔性显现、太阳能电池和超级电容器。
石墨烯真神奇
2019-03-07 10:03:00
近两年石墨烯的可控低成本制备技能已获得了打破性开展,有望在不久的将来构成石墨烯工业。
日前,在深圳举行的第十九届我国世界高新技能效果交易会上,石墨烯作为独具特色的新材料再次引起人们的重视,成为这个国内最大规划、最具影响力的科技展会上一个耀眼的“明星”。石墨烯到底有哪些奇特之处,能为人们带来什么惊喜?记者采访了相关专家。
人类正行进在以硅为首要物质载体的信息年代,下一个量子年代,石墨烯很或许锋芒毕露
和金刚石相同,石墨是碳元素的一种存在方式。风趣的是,因为原子结构不同,金刚石是地球上自然界最坚固的东西,石墨则成了最软的矿藏之一,常做成石墨棒和铅笔芯。
科学家介绍说,石墨烯是从石墨材料中剥离出来,只由一层碳原子构成、按蜂窝状六边形摆放的平面晶体。浅显地讲,石墨烯就是单层石墨。一块厚1毫米的石墨大约包括300万层石墨烯;铅笔在纸上悄悄划过,留下的痕迹就或许是好多层石墨烯。
这种只要一个原子厚度的二维材料,一向被以为是假定性的结构,无法独自安稳存在。直至2004年,两位英国科学家成功地从石墨中别离出石墨烯,证明了其可以独自存在,并因而一起获得2010年诺贝尔物理学奖。
据我国电科55所所长、微波毫米波单片集成和模块电路要点试验室主任高涛博士介绍,石墨烯共同的结构让它具有更导电、更传热、更坚固、更透光等优异的电学、热学、力学、光学等方面的功能。轻浮、强韧、导电、导热……石墨烯这些特性赋予人们许多幻想空间。
石墨烯的特色首先是薄,可谓现在世界上最薄的材料,只要一个原子那么厚,约0.3纳米,是一张A4纸厚度的十万分之一、一根头发丝的五十万分之一。与此一起,石墨烯比金刚石更硬,透光率高达97.7%,是世界上最坚固又最薄的纳米材料。
一起,它又能导电。石墨烯的电子运转速度达1000千米/秒,是光速的1/300,十分合适制造下一代超高频电子器材。石墨烯仍是传导热量的高手,比最能导热的银还要强10倍。
石墨烯的特性,也体现得很“好玩”。比方当一滴水在石墨烯表面翻滚时,石墨烯能敏锐地“察觉”到纤细的运动,并发生继续的电流。这种特性给科学家供给了一种新思路——从水的活动中获取电能。比方,在雨天可以用涂有石墨烯的雨伞进行发电,或许可以做成活络的传感器材等。
“人类阅历了石器、陶器、铜器、铁器年代,正行进在以硅为首要物质载体的信息年代;而下一个量子年代哪种材料将锋芒毕露呢?很或许是石墨烯。”浙江大学高分子科学与工程学系教授高明说。
未来电动轿车运用石墨烯电池,花两三分钟就或许把电充溢
因为石墨烯的奇特功能,加上制备简洁、研讨视角多维,其运用潜力巨大、适用职业广大,成为抢眼的材料“新星”一点不古怪。石墨烯从发现到现在仅10余年的时刻,已获得了许多令人震慑的研讨效果,称得上是人类历史上从发现到运用最快的材料。
高明说,从材料化学视点看,石墨烯会带来资源、环境、化工、材料、动力、传感、交通机械、光电信息、健康智能、航空航天等范畴的改动或革新。我国石墨矿储量丰厚,约占全世界的75%,其高效开发将引起碳资源及我国大资源战略的新定位、新考虑、新规划。
石墨烯的工业化出产则将促进化工、机械、智造、自控等职业的技能前进。石墨烯的增加可以发生多功能复合材料,用来制造高功能电池、电容器。石墨烯传感器可以在生物检测、光电勘探方面大显神通,石墨烯及其它二维材料的异质叠合材料可制造高功能晶体管。
可以说,石墨烯技能将对咱们的吃、穿、住、行、用、玩都发生影响。石墨烯复合膜阻氧阻水功能好,可前进食物保质期;石墨烯纤维可制成发热服饰和医疗保健用品;石墨烯电热膜电热转化效率高,可逐渐替代暖气供热;石墨烯系列材料可用于轿车、火车等交通工具,石墨烯导热膜可用于手机高效散热……
石墨烯另一个被寄予厚望的运用范畴是电能贮存。它的优势在于充电速度快,并且可以重复运用几万次。但现在石墨烯存储的电量不如电池多,还无法存储足够多的电能。未来,跟着充电设备的日益完善和相关技能的前进,电动轿车运用石墨烯电池,花两三分钟就或许把电充溢。
我国电科55所微波毫米波单片集成和模块电路要点试验室副主任孔月婵博士介绍说,石墨烯的电子运转速度是硅的十倍,由石墨烯制造的高频器材理论上作业频率可以到达硅的十倍乃至上百倍。石墨烯引发的技能很或许从人们常见的小小芯片开端。
此外,科研人员已完结柔性衬底晶体管的研发,正在测验柔性通讯电路的研发。未来不管是可以折叠的显现屏幕,仍是可以植入人体的可穿戴设备,都或许靠这样的石墨烯器材来完成。
高涛以为,即便在试验室条件下,石墨烯的奇特功能仍然没有彻底释放出来。因为技能层面还存在着不少应战,真实大面积运用还有很长的路要走。但经过加强需求和研讨的结合,不断在石墨烯材料的制备和器材研发方面获得重要打破,发明更多更新更具颠覆性的运用,石墨烯这种新一代战略性新式材料将会极大改动人们的生发日子。
国内石墨烯研讨与国外底子同步,有望在不久的将来构成石墨烯工业
石墨烯一向是世界上的研讨热门,并在不断升温。近几年来,全球石墨烯相关的论文和发明专利简直呈指数式增加,不只各类优异的物理化学功能被猜测、证明,并且由此生宣布许多详细的研讨方向。
据了解,许多国家正在抢夺石墨烯技能的制高点。欧盟石墨烯旗舰方案以石墨烯传感为首要研讨方向,美国正在测验使用石墨烯完成通讯的柔性化并获得了明显的效果,韩国继续支撑石墨烯柔性显现的研讨并制备出了演示产品。
高涛说,整体来讲,世界上石墨烯各项优异功能正逐渐从试验室研讨向产品运用过渡,一起一些潜在的功能或运用还在不断被开掘。但这个工程化是一个长时间而困难的进程,给我国完成赶超世界水平、占据技能制高点带来了绝好的机会。
高明以为,现在国内石墨烯研讨与国外底子同步,一些方面有原创和引领性效果。国内研讨侧重化学和材料,国外更偏机理和器材。国内石墨烯的研讨在理论研讨方面可说是已完成与世界先进水平“并跑”,论文、专利不管数量仍是质量都具有很强的世界竞争力。到2016年3月,我国石墨烯的专利总数占全世界的56%。与此一起,国家赞助了很多有关石墨烯的基础研讨项目,开始构成了政府、科研机构和厂商协同立异的产学研协作对接机制。
例如,清华大学开宣布米级石墨烯单晶薄膜的快速制备技能;我国电科55所研宣布了世界上最快的柔性石墨烯晶体管;浙江大学纳米高分子团队则经过近十年研讨,开宣布了石墨烯纤维、石墨烯接连拼装膜、石墨烯超轻气凝胶及石墨烯无纺布等。
受访专家指出,各个方向不断呈现令人惊喜的研讨效果,让人们对石墨烯的未来充溢等待。但整体来讲,石墨烯技能成熟度还比较低。关于石墨烯的开展,其限制要素或许说难点,首要在材料制备技能、全新规划理念和二维控制技能等方面。其间,高品质、大批量的石墨烯质料问题暂时没有底子处理,还需要进行很多技能攻关。有些技能如单层氧化石墨烯、石墨烯单晶等在试验室制备成功了,但完成工程化、接连性、低成本、高效安稳制备还有较长的路要走。只要真实高品质的石墨烯量产了,颠覆性运用才会呈现。
不过科学家们也比较达观,近两年石墨烯的可控低成本制备技能已获得了打破性开展,有望在不久的将来构成石墨烯工业。
石墨烯基纳米复合材料的主要掺杂方法
2019-03-06 10:10:51
碳元素广泛存在,具有许多同素异形体,常以为石墨是由二维网状碳原子组平面经有序堆叠成的晶体,其单层网状平面结构晶体在自然界中并不能独自安稳存在。但早在1988年日本东北大学教授以蒙脱土为模板,用腈做质料,在模板二维层间制得石墨烯片层结构,但当去除模板后不能独自存在,敏捷生成了三维石墨体。
随后2004年英国科学家成功用机械剥离法将石墨层片剥离,取得了碳 原子sp2杂化衔接的单层石墨层片。此种可安稳存在的二维单原子厚度碳原子晶体——自由态石墨烯(Graphene),其根本单元结构是最具安稳结构的六元环,它的发现充分了碳元素宗族,可作为零维富勒烯、一维碳纳米管(特别单壁CNT)、三维金刚石及石墨的根本结构单元,是当时抱负的二维纳米材料,结构如图1。 图1 石墨烯的二维单原子层结构(a)和石墨烯为根本结构单元构成的sp2碳质材料(b)
石墨烯与富勒烯和碳纳米管比较,其报价便宜,质料易得,且质量轻,抱负比表面积大(2630 m2/g),导热功用好[3000 W/(m·K)],拉伸模量和极限强度与单壁碳纳米管适当,一起因为其维数不同,石墨烯也有自己特有性质,如手性的载流子、量子隧穿效应、不会消失的电导率、二维零停止的Dirac费米子系统、搬迁速度高的双极性电流、安德森局域化的弱化现象、半整数的量子霍尔效应及双层石墨烯的场效应,可望成为纳米复合材料的优质基体或填充材料,引起国内外对二维碳材料的研讨热门。
一、石墨烯的制备
近年来,许多科学家致力于探究制备单层石墨烯的途径,特别是要制备高质量、产率高、成本低、结构安稳的石墨烯的办法。现在制备石墨烯的办法首要有以下几种:
①剥离法,包含微机械剥离法和溶剂剥离法等;
②成长法,包含晶体外延成长、取向附生法、化学气相堆积等;
③氧化复原石墨法,包含常用的Hummers法、Standenmaier法、Brodie法等;
④其它办法,首要有电弧放电法、石墨层间化学物途径法、现在十分新颖的高温淬火法与碳纳米管剥开法等。
二、石墨烯基纳米复合材料首要掺杂办法
石墨烯具有适当大的比表面积及共同电子搬迁功用,成为基体载体的抱负材料,经过掺杂可以对石墨烯进行化学改性,然后增强其物化功用。首要的掺杂办法:元素掺杂法、氧化物掺杂法、碳质材料掺杂法等。
2.1元素掺杂法
元素掺杂法可使石墨烯进行化学改性,增强其物化功用。在半导体材料运用中,它是一种十分有用的办法,一起也广泛运用到新式的催化剂范畴中。元素掺杂包含非金属元素掺杂和金属元素掺杂。
2.1.1非金属元素掺杂法
非金属元素掺杂,望文生义是在石墨烯上掺杂非金属元素纳米粒子,即该元素替代了碳原子的方位,在石墨烯上归于代位式杂质,构成了电子搬运或电子空穴。
美国斯坦福大学的Wang等,经过高强度的电子焦耳热加热,使石墨烯和气经过电热反响制备出n-型N掺杂的石墨烯纳米复合材料。通常状况下,石墨烯较简单被掺杂构成p-型(空穴导电)半导体材料。在实践运用傍边,经常也需求n-型(电子导电)掺杂的半导体。
2.1.2金属元素掺杂法
金属元素掺杂,便是金属纳米粒子掺杂。石墨烯具有上下两面的比表面积,作为支撑载体,可供金属纳米粒子重复地镶嵌与脱嵌的结构应变,可表现出杰出的循环功用。一起金属纳米颗粒也具有较大的比表面积和强的催化功用。所以此种掺杂法可使得制备出的纳米复合材料比表面积显着增大,更有利于电子搬迁或储能、储氢空间的扩展以及催化活性的增强。
Kou等经过热膨胀氧化石墨制备出功用化石墨烯片,用Pt的前体H2PtCl6·xH2O处理得出均匀直径约为2 nm巨细的Pt催化剂纳米粒子。选用浸渍法将此Pt纳米粒子均匀地掺杂到此功用化石墨烯片(FGSs)上,取得FGSs-Pt纳米粒子复合材料,故此纳米材料具有更大的比表面积,更好的氧化复原功用且比一般的商业催化剂具有更安稳更优秀的催化功用。
Chao等运用溶液混合法别离制备了Au、Pt、Pd与石墨烯掺杂的纳米复合材料。将这些贵金属(Au、Pt、Pd)的前体(HAuCl4·3H2O、K2PtCl4、K2PdCl4)水溶液和乙二醇都加到经超声后的氧化石墨水溶液中,最终得到金属粒子掺杂的石墨烯纳米复合材料。
2.1.3化合物掺杂法
石墨烯一般状况是由氧化石墨制备成的。氧化石墨具有准二维层状结构,片层上赋有较多极性含氧官能团,易于同具有较高表面活性的纳米氧化物或其它化合物结合,可生成化合物掺杂的氧化石墨烯(GO)复合材料。
Chen等使用调理溶液pH值,反响温度等的液体插入法,经过静电效果,使金属阳离子及其配离子经过静电吸附到氧化石墨烯层间活性基团上,在低温下快速沉积成功制备出了针状的MnO2掺杂的石墨烯插层纳米复合材料,此复合材料电化学功用有了很大进步,跟着MnO2掺杂量的不同,电容量巨细也不同,GO可进步MnO2的分散性,其协同效果使电化学功用得到必定程度的进步。
Cao等选用溶剂热法,用二甲基亚砜作为溶剂,此二甲基亚砜既是溶剂更是作为复原剂,可复原氧化石墨烯,合成了纳米CdS掺杂的石墨烯复合材料,此CdS在石墨烯表面的分散性较好且粒径较小。
2.1.4碳质材料掺杂法
试验证明石墨烯是一种较好的超级电容器碳材料,其理论比表面积很大,但会在枯燥后失掉层间的水以及其它溶剂,然后发作层与层之间的叠层以及聚会等现象。
为了处理枯燥后石墨烯叠层和聚会的发作,经过掺杂碳纳米管到石墨烯层间,即碳纳米管上的官能团与石墨烯上的官能团彼此发作反响,使得碳纳米管接枝在石墨烯表面,使得石墨烯层与层之间彼此分脱离,然后到达进步石墨烯枯燥后的比表面积。
Dimitrakakis等规划了一种石墨烯和碳纳米管掺杂的复合结构,,用蒙特卡洛办法计算出,此结构的储氢才能只稍微低于美国能源部标准45g/L。一起研讨石墨烯的储氢功用,也对提醒在其表面的吸附方式有着重要意义。
葛士彬用肼做复原剂,复原氧化石墨水溶液,成功将碳纳米管掺插到石墨烯层间,制得碳纳米管/石墨烯纳米复合材料,把其做成电极片测验其电容功用。
三、结语
石墨烯从一个新生儿敏捷成为科学界的新宠,其优异功用逐步被开掘,运用范畴也不断地被开发。这些掺杂法制备出的纳米复合材料运用广泛,首要在超级电容器、传感器、储氢方面以及生物医学等范畴杰出。
但石墨烯的开展也存在一些问题,例如,该怎么大规模制备高质量石墨烯,使其不会发生较多的褶皱,以及怎么坚持其安稳的分散性,使其层间剥离后,不会从头堆积成多层的石墨烯片或是复原回石墨。此外,一些石墨烯的其它功用现在还不清楚,如磁性、光学功用等。因而往后应着力于开辟石墨烯和其它学科范畴的穿插,探究石墨烯功用化及一些其它新功用。
节选自:《化工发展》
作者:张紫萍,刘秀军,李同起,胡子君
石墨烯基础科研现状
2019-01-04 09:45:43
石墨烯从其诞生至今不过10年光景。2004年为石墨烯科学研究的萌芽阶段,随后即进入快速成长阶段;从2008年开始,尤其是在2010年石墨烯发明者获得了诺贝尔奖之后,关于石墨烯的基础科研工作开展得如火如荼。
下文从专利分布、研究机构分布、研究领域分布和主要研究成果等方面梳理目前石墨烯的基础科研动向。
一、专利分布
目前全球共有超过200个机构和1000多名研究人员从事石墨烯技术的开发和研究,其中包括三星、IBM等科技巨头。我们通过最近几年的专利申请情况对目前石墨烯的研究进展进行概览。从专利申请总量来看,2010年以来全球石墨烯专利申请总量呈爆发式增长;2012年全球石墨烯专利申请量已经达到3500个,可见目前全球范围内正在掀起石墨烯研究与开发的高潮。
从石墨烯专利申请国别分布来看,2013年全球石墨烯专利申请量最大的是中国,其次为美国、韩国和日本。在石墨烯相关论文方面,欧盟排名第一,2013年共发表了7800篇论文;就国别而论,依然是中国排名第一,共发表了6649篇论文。
总体而言,目前中国已经处在石墨烯研究的前沿阵地;但是,从研究深度和创新性而言,非常核心的技术和创新性技术中国仍未掌握。二、研究机构分布
从事石墨烯研究的机构比较广泛,包括学术研究机构、企业、个人和政府层面。比较普遍的研究模式是学术研究机构与企业的合作,例如韩国三星与韩国成均馆大学合作对石墨烯的制备基础方法和应用开展研究。
从研究机构专利数量口径看,在前十名中,有4家机构来自韩国,4家来自中国,2家来自美国。并且,6家机构都是科研院所或独立科研机构,4家为企业。其中,专利数量最多的是韩国三星电子,其专利申请数量为210个,占全球总量的7.3%,其研究范围涵盖了石墨烯制备方法和在显示屏、锂电池领域的应用;其次为韩国成均馆大学、浙江大学、IBM、清华大学等。三、研究领域分布
从石墨烯研究领域分布看,全球研究热点主要在材料的导电性、导热性、石墨烯的制备研究、纳米材料研究等。
中国石墨烯研究热点主要分布石墨烯纳米复合材料、石墨烯制备、石墨烯电极等方向。我们统计了前20位主要研究机构的重点研究领域,发现研究热点分布于:(1)复合材料;(2)碳纳米管;(3)电容器;(4)传感器;(5)晶体管;(6)透明电极;(7)锂电池;(8)燃料电池。上述研究大多属于石墨烯应用,而关于石墨烯的制备改进工艺或者大规模量产石墨烯的基础研究非常少。
四、最新研究成果
在石墨烯制备方面,最新的研究成果是在生成单晶石墨烯的方法上,目前有两种方法已经能获得直径约为1mm的单晶石墨烯和直径为25px的单晶石墨烯,但是这两种方法各有优劣。
在石墨烯应用方面,最新的研究成果包括把作为光敏元件(PD)的光增益提高到了原来的约1000倍、提高柔性湿度传感器的响应时间等。在锂电池、半导体、传感器、无线通讯、电容器、电子元件、海水淡化等多个领域都有重大突破。
在众多最新研究成果中,属于中国研究机构的成果依然稀少,印证了前文中我们提到的,虽然中国在专利申请和论文发表方面在国际领先,但是在真正的研究前沿方面距离美国、日本和韩国等国家仍有一定差距。