您所在的位置: 上海有色 > 有色金属产品库 > 石墨烯聚合材料电池 > 石墨烯聚合材料电池百科

石墨烯聚合材料电池百科

借助聚合物实现石墨烯转移的技术进展

2019-03-07 10:03:00

高质量、低本钱、绿色制备石墨烯及其高效搬运技能是促进石墨烯运用和职业开展的要害。现在制备大面积高质量石墨烯的干流办法是根据金属表面催化成长的化学气相堆积法。薄膜搬运技能作为衔接石墨烯制备和运用的重要桥梁,在完成石墨烯产业化运用中发挥着重要效果。当时石墨烯薄膜的搬运技能首要是运用各种聚合物作衬底或支撑材料的直接和直接搬运技能。1.单一聚合物搬运法1. 1聚乙烯(Polystyrene)剥离法这种办法的原理是运用交联剂分子(TFPA-NH2)能与石墨烯构成共价键,使石墨烯深合物之间的结合力比石墨烯叙属之间的结合力要大得多,为石墨烯与金属基底的别离供给了或许。搬运进程首要分3步,如图1所示。首先是搬运前的组成和预处理进程,即石墨烯的化学气相堆积法组成以及对聚合物表面进行预处理以进步聚合物与石墨烯的吸附力;其次是叠氮化交联剂分子的等离子体表面活化与堆积,将叠氮化交联剂分子与石墨烯/铜在有必定温度和压力的纳米压印机(aNX 2000 )中压印;最终是聚合物/石墨烯与金属基底别离。图1 聚乙烯剥离搬运进程图该办法的特点是省去了铜的刻蚀,节省了金属材料,避免了刻蚀进程中刻蚀剂离子和液体对石墨烯的污染。该办法适用于对石墨烯纯净度要求比较高的搬运进程,可是试验为了确保石墨烯和聚合物从铜箔上剥离下来,需求选用表面处理以进步聚合物和石墨烯之间的吸附力,添加了中间进程,简略带来其他的问题,别的对石墨烯进行前处理也会对石墨烯自身的性质形成影响。1.2聚乙烯醇( Polyvinyl alcohol ,PVA)剥离法Marta等提出用化学气相堆积法在铜基成长的石墨烯搬运时用PVA作为支撑层,运用PVA/石墨烯之间的粘附力比石墨烯/铜之间粘附力大的原理,将PVA/石墨烯直接从铜箔上撕下来取得PVA/石墨烯薄膜。详细操作进程如图2所示,图2 PVA剥离搬运流程示意图这种办法最大的特点是制备的薄膜与惯例制备办法比较搬运前后石墨烯的质量和完好性都没有受到影响。该办法存在显着的局限性,PVA既是搬运辅佐基材也是方针衬底,运用的方针衬底规划仅限于PVA基的各类材料。可是与聚乙烯剥离办法比较,这种办法操作进程更为简略易行、耗时少、可扩展性广,选用的PVA材料价廉、无污染、易制备。若能将运用的方针基底经过改善拓展到多种方针衬底将会大大拓展此办法的运用远景。1.3聚甲基酸甲醋(PMMA)搬运法凭借于PMMA的搬运技能是石墨烯搬运中较为老练的技能,且PMMA是石墨烯搬运中运用最为频频的聚合物材料,是石墨烯搬运开展中不可或缺的部分,搬运到平坦和贯穿衬底的进程如图3所示。该办法操作便利简略,取得的石墨烯质量较高,缺陷是PMMA的引进触及去胶进程,不论是或其他有机溶剂,仍是用热处理退火和紫外线辐照都存在聚甲基酸甲酷等剩余去除不尽的问题。Suk等提出了用热处理的办法消除PMMA/石墨烯复合结构之间的空隙,搬运后在和氛围下进一步热处理样品去除PMMA剩余取得洁净的石墨烯薄膜。Lin等针对剩余做了研讨,以为PMMA剩余不是单一成分,经过退火发现在退火时接近空气的一侧PMMA分化温度低,触摸石墨烯的一侧则断键反响温度高,即便700℃也无法彻底分化,而一旦超越600℃就会引进缺陷,并且退火也仅适用于耐高温衬底材料,关于柔性衬底就不再适用。Burin等也发现经过优化PMMA的浓度和烘烤时刻能进步石墨烯质量和削减剩余,可是并不能彻底去除。根据PMMA的搬运进程获取洁净的高质量石墨烯膜现在仍旧是一个不小的应战。图3 PMMA搬运到平坦衬底和贯穿衬底流程示意图1. 4聚二甲基硅氧烷(PDMS )压印搬运法针对石墨烯搬运进程中刻蚀剂带来的污染问题,Cha等提出了一种不引进刻蚀剂的低温干法搬运技能。该办法运用塑性印章压印搬运成长在铜箔上的图画化石墨烯,试验流程如图4所示。图4 聚二甲基硅氧烷压印搬运流程示意图用PDMS制造的印章压印搬运石墨烯进步了石墨烯向刚性衬底搬运的成功率,拓展了运用衬底的运用规划。该办法制备的图画化石墨烯在硅基材料等刚性衬底上有望完成必定规划的运用,所得到的石墨烯单层在石英玻璃衬底上的方阻达到了573Ω/口。试验有用避免了刻蚀剂对石墨烯的污染问题。可是因为添加了贵金属金的堆积和刻蚀等工艺,形成试验工艺进程和本钱的添加。归纳以上几种单一聚合物搬运办法,不难发现单一聚合物搬运法触及的搬运结构较为简略,在搬运进程中单一聚合物对石墨烯表面起到了维护支撑效果。这类搬运办法因引进的支撑聚合物品种单一,除了触及到去除PMMA时有剩余影响外万,其他聚合物不触及去胶操作。该类办法的长处是对衬底的挑选规划广,石墨烯尺度小、质量高,首要适用于试验室阶段小规划的探究和运用。单一聚合物搬运是复合聚合物结构搬运和其他搬运办法的重要参阅,是在基础研讨方面获取高质量石墨烯的重要办法。但该办法的缺陷是,跟着搬运尺度添加,单一聚合物搬运不具备搬运大面积石墨烯的试验条件,石墨烯质量也将不再得到确保。2.复合结构聚合物搬运法针对上述单一聚合物搬运办法存在的局限性,研讨者们又开展出多种复合结构聚合物搬运办法。2.1 PMMA/AB-胶/PET联合搬运Cai等研讨证明PMMA搬运的石墨烯运用于通明导电电极,在去除PMMA时会引起裂纹。发生的裂纹会削减载流子传输通道,导致电极功能严峻下降,而石墨烯表面电阻与裂纹面积成正比联系,因而为了消除裂纹对石墨烯电阻的影响,他们提出用PMMA/AB-胶和PET联合搬运石墨烯的办法。搬运进程如图5所示。图5 PMMA/AB-胶/PET联合搬运流程示意图该办法在金属刻蚀后没有去胶进程,而是将石墨烯/PMMA直接搬运到方针衬底上,避免了由去胶进程发生裂纹和缺陷的问题。这种结构的材料可用作石墨烯基通明电极材料,整个搬运进程避免了聚合物的去除进程,降低了裂纹发生的或许性,便于完成大尺度石墨烯的搬运。2.2 PMMA/PDMS/SU-8联合搬运Witchawate等发现在将石墨烯搬运到PDMS衬底上时,PDMS极低的表面能约束了其作为方针衬底的运用件片不。所以,他们提出用SU-8光刻胶薄层作为粘结层,进步石墨烯和PDMS衬底之间的粘结性,将石墨烯成功搬运到PDMS衬底上。试验中将铜箔上成长的石墨烯均匀涂布PMMA后,用SU-8光刻胶作为粘结层搬运到PDMS衬底上,最终除掉PMMA,得到石墨烯/SU-8/PDMS的复合结构。试验成果显现搬运到PDMS后的石墨烯10层时的方阻大约是(1147士184)Ω/口,与石墨烯搬运到刚性衬底上的方阻值适当。综上所述,复合结构的聚合物搬运的长处是复合结构聚合物比较单一聚合物更能有用增强搬运时石墨烯和聚合物界面的黏附性,削减衬底缺陷,进步石墨烯质量和搬运的成功率。这类办法搬运的石墨烯连续性好,掺杂等级低、导电性好,是关于要求较高光透过率的聚合物材料(如场效应管和通明导电电极等石墨烯电用)的优选搬运办法。该类办法的缺陷是除了除胶进程引进PMMA等剩余会对石墨烯的质量形成影响外,有的还需引进其他工艺进程然后降低了搬运功率,添加了流程的复杂性和本钱投入。复合结构聚合物搬运选用的聚合物品种纷歧,搬运条件也各不相同,并且衬底多为柔性基材,对比如SiO2/Si等刚性衬底则不能直接运用此类办法,使得这类办法只能针对小规划的特定基材适用。除此之外,还有学者研讨了其他聚合物搬运办法,如热开释胶带搬运,卷对卷搬运等办法。3.结语化学气相堆积法成长的石墨烯在传感器、超级电容器和太阳能电池等方面的运用远景可观。凭借聚合物的石墨烯搬运是现在搬运技能开展的一种趋势。跟着石墨烯职业的快速开展,在很大程度上对石墨烯组成、搬运和运用的各个环节提出了更高的要求。从已有的搬运技能来看,大面积、高功率、高产出均匀单层和少层石墨烯膜依旧是应战。而在衬底的挑选上,大多搬运办法倾向于运用柔性衬底,满意刚性衬底搬运的办法相对较少,对拓展衬底挑选规划方面的研讨还需求加强。但不论是哪种搬运办法,搬运后的石墨烯表面完好、质量均匀依旧是寻求的方针。跟着石墨烯产业化和商业化趋势的加速,开发具有遍及适用性,合适规划化出产的高效石墨烯搬运办法仍然十分必要。文章摘自:材料导报A:总述篇 作者:张自元,门传玲,曹军,李振鹏,赵明杰

“石墨烯+”电池问世,电池续航两倍不是梦!

2019-01-03 14:43:39

自电动汽车问世以来,电池的续航能力一直是人们所关注的焦点,近日,中科院宁波材料所利用石墨烯研制出了一种千瓦级铝空气电池,其能量密度相当于一般商业电池的4倍乃至更高,能量密度的高低直接决定了动力汽车的续航能力,研发项目的成功使得电动汽车行业有了进一步的提升。 自电动汽车问世以来,电池的续航能力一直是人们所关注的焦点,近日,中科院宁波材料所利用石墨烯研制出了一种千瓦级铝空气电池,其能量密度相当于一般商业电池的4倍乃至更高,能量密度的高低直接决定了动力汽车的续航能力,研发项目的成功使得电动汽车行业有了进一步的提升。这一“续航魔咒”正在被打破,新的研究技术有望解决电动汽车的“里程焦虑”。 该电池系统能量密度高达510Wh/kg、容量20kWh、输出功率1000W,该能量密度比一般电池系统有了显著的提高,验证该系统的发电能力发现,该系统可同时为一台电视、电脑、电风扇以及10个60瓦照明灯泡供电。图为浙江省石墨烯应用研究重点实验室主任刘兆平  浙江省石墨烯应用研究重点实验室主任刘兆平介绍,如果将该电池系统用于新能源汽车上的话,可多方面提高汽车的性能,车身更加轻盈,大大提高了续航里程;如果用于手机充电宝上,则可大大提高输出电量。此外,传统通讯基站酸铅蓄电池3—4年更换一次,而宁波材料所研发的铝空气电池储存时间约15年,电池寿命要长得多。“正是拥有能量密度高、价格低廉、资源丰富、绿色无污染、放电寿命长等优势,铝空气电池在通讯基站备用电源与电动汽车增程器应用方面具有诱人的市场前景。”刘兆平说。

石墨烯在锂硫电池中的应用

2019-01-03 09:36:39

随着便携式电子设备和电动汽车等产业的快速发展,人们对高能量密度电池的需求日益迫切,然而在传统锂离子电池中,正极材料因“插层式”的储锂机制导致其容量普遍较低,无法满足快速增长的市场需求。因此,新型高能量密度二次电池的探索和研发成为了储能领域的研究热点,锂硫电池就是其中之一。 一、锂硫电池简介 锂硫电池的工作原理基于硫和Li+可以发生可逆的氧化还原反应,两者之间的电化学反应式如下:基于该反应的硫正极的理论比容量高达1675mAh/g,是传统锂离子电池正极材料的10倍,同时硫储量丰富、成本低,因此锂硫电池受到了广泛关注,然而硫及多硫化物本身性质的缺陷,使得锂硫电池仍存在很多问题。 首先,硫是绝缘体,导电性差,给电荷传递过程带来困难;其次,多硫化锂可以溶解在电解质中,易迁移到金属锂一侧被还原成不溶性Li2S沉积在金属锂电极表面发生“shuttleeffet”现象;再次,可溶性多硫化锂被完全还原成不溶性硫化物时,会阻碍电子和离子的有效传输;最后,单质硫转化为不溶性硫化物后,由于两种物质密度的差异,会造成体积效应,降低电极稳定性。因此,锂硫电池存在实际容量低、循环性能差和信率性能不佳等缺点。 二、石墨烯在锂硫电池中的应用 针对上述问题,为了获得高性能的锂硫电池,研究者对硫正极进行了多种手段的复合与改性研究,设计并制备了一系列具有新颖结构和优异性能的复合硫正极材料。其中,碳材料因其导电性高、结构丰富、比表面积大等优势而得到了广泛应用,而石墨烯这一新型碳材料在提升锂硫电池性能方面有优异表现。 石墨烯是优异的电子导体,同时具有机械强度高、比表面积大等优点,同时化学改性的石墨烯及石墨烯衍生物具有一系列能为负载提供诸多活性位点的表面官能团,因此石墨烯在复合硫正极材料中得到了广泛的应用。 一方面,石墨烯被用作硫正极的导电载体,弥补硫导电性差的缺陷;另一方面,通过合理的结构设计与表面改性,石墨烯还能够抑制多硫化物的溶解。此外,在最近的研究中,科学家还发现通过石墨烯功能涂层的设计,能够减缓多硫化物在正负极之间的穿梭,抑制“shuttleeffet”现象。 1、石墨烯/硫复合正极材料研究进展 石墨烯极高的电导率可以弥补硫颗粒导电性差的问题,因此石墨烯材料多被设计成负载硫单质的导电基体或者导电网络,比如石墨烯泡沫结构可实现石墨烯与硫在纳米尺度的均匀复合,能够为硫提供快速与高效的电子传输通道,同时纳米孔还能够有效束缚多硫化物。 常规条件下获得的三维石墨烯尽管结构丰富,但极为蓬松,表观密度很低,导致硫负载后复合电极材料体积能量密度严重不足,为此,中科院沈阳金属所成会明院士利用CVD方法在泡沫镍上获得三维多孔石墨烯泡沫。图1 (a)柔性石墨烯/硫复合材料的制备流程;(b、c、d、e)石墨烯/硫复合电极材料照片及柔性展示 该方法不仅能够负载高比例的硫,而且硫的含量能够在3.3~10.1mg/cm2范围内进行调控,特别是负载量为10.1mg/cm2的电极,能够获得极高的比面积容量(13.4mAh/cm2)。 另外,考虑到石墨烯独特的二维片状纳米结构,采用以石墨烯纳米片作为包裹材料,构筑具有“核壳”结构的复合电极材料也是固定多硫化物,缓解其溶解的重要方式。先在碳纳米纤维表面均匀负载上硫,再使用石墨烯包覆在硫表面是一种很有效的方法。图2 具有同轴结构石墨烯/S/碳纳米纤维复合电极制备图 2、石墨烯功能涂层在锂硫电池中的应用 为提高锂硫电池的循环稳定性,除了对硫正极材料的组成与结构进行调控以抑制多硫化物的溶解,通过极片结构的设计来减弱“shuttleeffect”也是一条重要途径。例如,在硫正极和隔膜间添加一层缓冲层能够极大的提高锂硫电池的寿命。图3 石墨烯隔膜涂层有效阻挡多硫化物迁移示意图 石墨烯/硫/石墨烯-隔膜的创新极片结构设计,一方面将集流体由传统的Al箔改为石墨烯;另一方面对隔膜进行改性,改变了原有隔膜与硫正极直接接触的方式,在隔膜表面涂布一层石墨烯材料。 采用传统的极片结构,在循环过程中多硫化物溶解在电解液后,会穿过隔膜进入金属Li一侧,而在这一新颖结构中,存在于隔膜与正极材料之间的石墨烯层能够有效阻止多硫化物的迁移。另外,由于石墨烯材料优异的力学性能,石墨烯改性隔膜能够有效缓解硫正极在充放电过程中的体积变化,保持极片结构的完整性。 综述: 电化学储能在当今人们的生产生活中占有重要地位,无论是可再生能源的大量存储还是便携式设备的高密度存储,对电化学储能器件和材料的成本、储能密度、稳定性等指标都提出了较高的要求。 锂硫电池由于其理论比容量、比能量高,原料价廉易得,在未来电化学储能领域中将极具竞争力,如果通过石墨烯的应用能够改善锂硫电池实际容量低、循环性能差和信率性能不佳等缺点,在不远的将来,锂硫电池的表现可能会给我们带来更多惊喜。

超重力法制备石墨烯材料研究

2019-02-28 11:46:07

石墨烯(Graphenes):是一种二维纳米碳材料,是单层石墨烯、双层石墨烯和多层石墨烯的总称。石墨烯具有完美的二维晶体结构,它的晶格是由六个碳原子围成的六边形,厚度为一个原子层。碳原子之间由s键衔接,结合办法为sp2杂化,这些s键赋予了石墨烯极端优异的力学性质和结构刚性。 1、石墨烯的根本特性和制备办法 石墨烯(Graphenes):是一种二维纳米碳材料,是单层石墨烯、双层石墨烯和多层石墨烯的总称。石墨烯具有完美的二维晶体结构,它的晶格是由六个碳原子围成的六边形,厚度为一个原子层。碳原子之间由s键衔接,结合办法为sp2杂化,这些s键赋予了石墨烯极端优异的力学性质和结构刚性。 石墨烯是已知的世上最薄、最坚固的纳米材料,它几乎是彻底通明的,只吸收2.3%的光;导热系数高达5300W/m·K,高于碳纳米管和金刚石,常温下其电子搬迁率超越15000cm2/V·s,又比纳米碳管或硅晶体高,而电阻率只约1Ω·m,比铜或银更低,为世上电阻率最小的材料。因其电阻率极低,电子搬迁的速度极快,因而被等待可用来开展更薄、导电速度更快的新一代电子元件或晶体管。因为石墨烯实质上是一种通明、杰出的导体,也合适用来制作通明触控屏幕、光板、乃至是太阳能电池。图1 石墨烯的结构示意图 石墨烯首要制备办法图2 石墨烯制备办法优缺点比较 制备石墨烯常见的办法为液相剥离法、氧化复原法、SiC外延生长法和化学气相堆积法(CVD)。液相剥离法是在溶液中首要依托机械力的作用,战胜石墨层间的范德华力,将体相石墨剥离成单层或少层石墨烯的办法。现在最常用的剥离设备是超声发生器,存在扩大难、功率低及石墨烯层数较厚等问题。 氧化复原法是经过将石墨氧化,增大石墨层之间的距离,再经过物理办法将其别离,最终经过化学法复原,得到石墨烯的办法。这种办法操作简略,产值高,可是产品质量稍差。一般运用的剥离设备是超声发生器,氧化复原设备是反应釜,导致扩大难及氧化复原功率低一级问题。 SiC外延法是经过在超高真空的高温环境下,使硅原子提高脱离材料,剩余的C原子经过自组方式重构,然后得到根据SiC衬底的石墨烯。这种办法能够获得高质量的石墨烯,可是这种办法对设备要求较高。 CVD法是现在最有或许完成工业化制备高质量、大面积石墨烯的办法。这种办法制备的石墨烯具有面积大和质量高的特色,但现阶段本钱较高,工艺条件还需进一步完善。这些办法中最有或许规模化的低本钱制备办法是液相剥离法和氧化复原法。 2、超重力氧化复原法制备石墨烯 2.1 超重力技能介绍: 超重力技能是使用旋转填充床(RPB)发生的比地球重力大得多的超重力环境,强化物质的传递、混合、传热及化学反应的技能。 自世纪面世以来,在国内外遭到广泛的注重,因为它的广泛适用性以及具有传统设备所不具有的体积小、重量轻、能耗低、易工作、易修理、安全、牢靠、灵敏以及更能适应环境等长处,使得超重力技能在化工、环保、材料等工业领域中较广泛应用。 超重力工程技能的特色:具有微观混合特性;具有极大的强化传质特性;能发生均匀而有梯度的剪切作用;扩大作用不明显等。图3 年产1万吨超重力法纳米碳酸钙出产线 2.2 超重力氧化复原法制备石墨烯:图4 超重力氧化复原法制备石墨烯研讨布景图5 超重力氧化复原法制备石墨烯根本工艺 2.3 超重力法氧化石墨剥离技能 (1)剥离时刻对氧化石墨烯功能影响:图6 不同剥离时刻制备的氧化石墨烯对MB染料吸附曲线图7 不同剥离时刻制备的氧化石墨烯TEM相片 (2)氧化石墨溶液浓度对氧化石墨烯功能的影响图8 不同氧化石墨溶液浓度制备的氧化石墨烯对MB染料吸附曲线图9 不同溶液不同氧化石墨溶液浓度制备的氧化石墨烯层数示意图 由图9标明:G峰的波数越高,层数越少,G’峰的波数越低,层数越少。D峰和G峰的强度比ID/IG数值越大,缺点程度越高 (3)旋转床办法和超声法制备氧化石墨烯功能比照图10石墨烯循环伏安曲线图(a)经旋转床剥离后制备石墨烯CV曲线;(b)经超声剥离后制备石墨烯CV曲线;(c)两种办法制备石墨烯在10mV/s下CV曲线 成果显现:旋转床办法制备的石墨烯比电容量为225F/g,而超声办法制备为175 F/g。图11 两种办法制备的石墨烯沟通阻抗值比较 旋转床制备的石墨烯沟通阻抗值约为7.5Ω,超声反应釜制备的石墨烯沟通阻抗值约为14Ω,阻抗值更小,导电率更大,选用四探针法测定的石墨烯均匀电导率,RPB剥离的为312.8S/m,超声反应釜的为278.1 S/m 。 2.4 超重力复原技能 (1)温度对超重力复原法制备石墨烯的影响图12 不同复原温度下制备石墨烯的CV曲线图13 不同复原温度下制备石墨烯的EIS曲线 (2)不同复原剂品种对制备石墨烯功能的影响不同复原剂制备石墨烯TEM相片不同复原剂制备石墨烯红外光谱相片 图14不同复原剂品种对制备石墨烯功能的影响 由图14能够看出,VC(抗坏血酸)和复原作用较好,复原程度较高,含氧基团特征峰强度低 。 (3)超重力法和惯例办法复原氧化石墨烯的作用比照图15 超重力法和惯例法制备石墨烯XPS成果比照 小结:3、超重力液相剥离法制备石墨烯图16 超重力液相剥离法制备石墨烯设备图17 超重力液相剥离法制备石墨成果 横向尺度150nm, 厚度3-9层,浓度:0.3mg/ml; 产率:3%; 溶剂为水 4、总结 (1)超重力氧化复原法制备石墨烯具有产品质量高,出产功率高,易产业化的特色。 (2)超重力直接剥离法具有本钱低,产品质量好,易产业化的特色。 (3)这种技能也有望用于其它层状材料,如:高岭土、蒙脱土、云母等的剥离及深加工,欢迎合作开发。

为何石墨软石墨烯“硬”

2019-01-04 15:47:49

导读 为什么石墨那么软,而石墨烯又表现得那么“硬”呢?浙江大学信息电子工程学院副教授林时胜介绍说,其实这里涉及两个不同的概念,一个是强度,这是力学概念,一个是硬度,属于物理概念。 石墨烯的“硬”,是指强度高,衡量强度的指标是杨氏模量,根据杨氏模量的高低可以把物质分为硬物质和软物质。石墨烯的模量非常高,可达1T帕(压强单位),是材料里最高的,所以石墨烯是硬物质,可以说是很硬。相应的像橡胶这些,模量只有几千帕,就是软物质,很软。材料力学上有刚度、强度、韧度、硬度等不同物理概念,这与我们通常讲的硬与软有区别。从通俗意义上说,石墨烯的“硬”指的是石墨烯的强度很好,就是它抗断裂的能力很强,这也和它的韧性很好有关系,因为容易延展而不断裂。模量就是代表了材料能被拉伸的容易程度。  再说石墨的软,这是物理概念,指的是硬度。硬度的衡量,是用一种材料去破坏另一种材料,被破坏的硬度就小。石墨的片层之间是范德华力,非常弱,只要用固体去划它,都能把它的片层错开,所以石墨很容易被破坏,就是说石墨很软。

为何石墨软,石墨烯“硬”?

2019-01-03 09:37:04

为什么石墨那么软,而石墨烯又表现得那么“硬”呢?浙江大学信息电子工程学院副教授林时胜介绍说,其实这里涉及两个不同的概念,一个是强度,这是力学概念,一个是硬度,属于物理概念。 石墨烯的“硬”,是指强度高,衡量强度的指标是杨氏模量,根据杨氏模量的高低可以把物质分为硬物质和软物质。石墨烯的模量非常高,可达1T帕(压强单位),是材料里最高的,所以石墨烯是硬物质,可以说是很硬。相应的像橡胶这些,模量只有几千帕,就是软物质,很软。 材料力学上有刚度、强度、韧度、硬度等不同物理概念,这与我们通常讲的硬与软有区别。从通俗意义上说,石墨烯的“硬”指的是石墨烯的强度很好,就是它抗断裂的能力很强,这也和它的韧性很好有关系,因为容易延展而不断裂。模量就是代表了材料能被拉伸的容易程度。 再说石墨的软,这是物理概念,指的是硬度。硬度的衡量,是用一种材料去破坏另一种材料,被破坏的硬度就小。石墨的片层之间是范德华力,非常弱,只要用固体去划它,都能把它的片层错开,所以石墨很容易被破坏,就是说石墨很软。

石墨烯基无机纳米复合材料

2019-03-07 09:03:45

石墨烯是近年被发现和组成的一种新式二维平而碳质纳米材料。因为其别致的物理和化学性质,石墨烯己经成为备受瞩目的科学新星,是纳米材料范畴的一大研讨热门。在石墨烯的研讨中,根据石墨烯的无机纳米复合材料是石墨烯迈向实践使用的一个重要方向。金属/石墨烯纳米复合材料金属/石墨烯纳米复合材料是经过将金属纳米粒子涣散在石墨烯片上构成的。现在,对该类复合材料的研讨首要会集在用贵金属等功能性金属纳米粒子润饰石墨烯,这不只能够得到比金属自身功能更优越的复合材料,显现出潜在使用价值,并且能够削减贵金属的耗费,具有很大的经济价值。石墨烯与铂系金属的复合用表而积大、导电性好的碳材料负载纳米尺度的铂系催化剂能够明显进步其在质子交流膜燃料电池(PEMFC)中的电催化功能。这不只能够使催化剂表而积最大化,以利于电子的传递,并且导电性的支撑材料起到了富集和传递电子效果。现在所用的首要支撑材料是炭黑,但因为石墨烯有着愈加优异的功能,所以被以为是更为抱负的支撑材料。美国圣母大学的Kamat等用NaBH、复原H2PtCh与氧化石墨烯的混合液,组成了Pt/CE纳米复合材料,所得的复合材料在氢氧燃料电池中的电催化活性(161mW /cm2)高于无支撑的Pt (96mW/cm2),标明石墨烯是开展电催化的有用支撑材料(图1)。图1 Pt/GE电催化反响暗示图南京理工大学汪信课题组提出了制备金属/石墨烯纳米复合物的一般道路:先制备氧化石墨,并超声剥离成氧化石墨烯;然后将金属纳米粒子附着在氧化石墨烯表而;终究复原构成石墨烯/金属纳米复合物(如图2所示)。别的,微波法是一种快速有用地制备金属/石墨烯复合材料的办法。图2制备金属/石墨烯纳米复合物的一般道路:1)将石墨氧化得到层间隔更大的氧化石墨,(2)将氧化石墨剥离得到氧化石墨烯片,(3)将金属纳米粒子附着在氧化石墨烯片上,(4)将氧化石墨烯复原成石墨烯,得到金属/石墨烯纳米复合材料石墨烯与金属Ag的复合南京理工大学汪信课题组以氧化石墨烯为基底,用AgNO3,葡萄糖及经过银镜反响,制备出具有高反射率的Ag纳米粒子薄膜。Ag的附着导致薄膜中氧化石墨烯拉曼信号的增强,其增强程度能够经过氧化石墨烯片在Ag纳米粒子的数量进行调理。图3 一步组成Ag/GO复合材料暗示图Pasrich等将Ag2SO4、参加含KOH的氧化石墨烯悬浮液中,因为氧化石墨烯上的轻基具有酚的弱酸性,在碱性条件下生成酚盐阴离子,酚盐阴离子经过芳香族亲电取代反响将电子搬运给Ag+,使Ag+被复原,生成Ag/CO复合物(如图3所示),用胁复原该复合物得到了Ag/CE复合物。石墨烯与其他金属材料的复合Stark等不必表而活性剂,以石墨烯作为涣散剂包裹在Co表而;然后与聚合物(PMMA,PEO)复合,得到了CE/Co/聚合物复合材料。该材料结合了金属与聚合物的优异功能,为石墨烯供给了一个新的使用途径。Warne:等用简略的办法将CoCl2纳米晶附着在石墨烯上,HRTEM显现CoCl2纳米晶在石墨烯表而发作平动和滚动,终究结组成单个晶粒,在真空下退火可将CoCl2转化成Co,构成Co/CE复合物。该项研讨显现出用石墨烯作为HRTEM分析支撑薄膜的使用远景。半导体/石墨烯纳米复合材料石墨烯因为其共同的电学性质,使得其与半导体材料的复组成为一个热门研讨课题。石墨烯作为半导体纳米粒子的支撑材料,能够起到电子传递通道的效果,然后有用地进步半导体材料的电学、光学和光电转化等功能。例如,用作锂离子电池(LIB)电极材料的半导体纳米粒子与石墨烯制成纳米复合材料,能够有用阻比纳米粒子的聚会,缩短锂离子的搬迁间隔,进步锂离子嵌入功率;一起,能够缓解锂离子嵌入-嵌出所形成的体积改变,改进电池的循环安稳性。石墨烯与TiO2的复合TiO2因其安稳、无污染的特性而成为最佳的光催化材料之一。因为光激起TiO2发生的电子空穴对极易复合,所以使用石墨烯共同的电子传输特性下降光生载流子的复合,然后进步TiO2光催化功率成为了一个研讨热门。图4 (a) TiO, /GE及其受紫外光激起暗示;(b)以石墨烯为载体组成多组分催化体系暗示图美国圣母大学的Kamat等将氧化石墨粉末参加TiO2胶体涣散液中超声,得到包裹着TiO2纳米粒子的氧化石墨烯悬浮液,在氮气的维护下用紫外光照耀悬浮液,得到TiO2/CE复合材料。TiO2作为光催化剂将光电子从TiO2搬运至氧化石墨烯片上,紫外光被以为起到了复原剂的效果(图4a)。该法不只供给了一种氧化石墨烯的紫外光辅佐复原技能,并且为取得具有光学活性的半导体/石墨烯复合材料拓荒了新的途径。最近,该课题组初次组成了以石墨烯为载体的多组分催化体系,他们首要经过光激起将电子从T1O2转至氧化石墨烯片上,部分电子用于氧化石墨烯的复原,其他的电子储存在复原后的石墨烯片上;然后向石墨烯悬浮液引进AgNO3,储存在石墨烯片上的电子将Ag+复原成Ag,然后组成了TiO2和Ag处于别离方位的二维TiO2/Ag/CE催化体系(图4b)。石墨烯与Co3O4的复合Co3O4是一种重要的磁性P型半导体,在催化剂、磁性材料、电极材料等范畴有着很大的使用价值Co3O4与石墨烯的复合被以为能够改进其功能并扩展其使用范畴。图5使用金属有机前驱体组成Co/GE和Co3O4/GE复合材料暗示图Yang等研讨了使用金属有机前驱体组成金属或金属氧化物与石墨烯的复合材料的办法,他们用酞著钻(CoPc)与氧化石墨烯片在中混合后用胁复原,组成了CoPc/CE复合物;然后将所组成的复合物在维护下高温分化生成Co/CE复合物;终究将Co/CE复合物在空气中氧化生成Co3O4/CE复合物(如图5所示)。石墨烯与SnO2的复合现在,SnO2的一个重要开展方向是代替碳材料作为锂离子电池(LIB)负极材料,但因为SnO2充放电过程中体积改变大,然后下降了其循环安稳性。研讨者期望经过其与石墨烯的复合来改进这一点。石墨烯与ZnO的复合ZnO半导体因为具有宽的带隙和较大的激子结合能,在场发射显现器、传感器、晶体管等范畴具有潜在的使用价值。国内外研讨者期望经过其与石墨烯的复合进一步扩展其使用规模。图6水热法在石墨烯片上组成规矩摆放的ZnO纳米棒暗示图Park等研讨了经过水热法在石墨烯片上组成ZnO纳米棒阵列的办法:首要经过化学气相堆积法(CVD)使石墨烯在涂有Ni的SiO2/Si基片上成长(图6a};然后将涂有聚甲基酸甲酷CPM M A)的基片浸入HF中得到游离的PMMA/CE(图6b);再将起维护效果的PMMA溶解在中;终究别离经过两种办法在石墨烯上水热组成了规矩摆放的ZnO纳米棒。石墨烯磁性纳米复合材料人们不只研讨了半导体化合物与石墨烯的复合,还使用其他功能性无机化合物纳米粒子润饰石墨烯。如用磁性纳米粒子润饰的石墨烯材料在电磁屏蔽、磁记录及生物医学等范畴具有宽广的使用远景,是石墨烯复合材料研讨的一个重要方向。结语及展望根据碳纳米管的无机纳米复合材料因为其优秀的性质己经在生物医药、催化、传感器等使用范畴得到了广泛而深化的研讨。与碳纳米管比较,石墨烯具有类似的物理性质、更大的比表而积和更低的生产成本,所以石墨烯是代替碳纳米管组成碳基无机纳米复合材料的抱负基体材料。尽管与石墨烯/聚合物复合材料比较,石墨烯基无机纳米复合材料的研讨起步较晚,但在短短的几年内,石墨烯基无机纳米复合材料的组成及其相关使用的研讨己经取得了很大的发展。但要真实完成石墨烯基无机纳米复合材料大规模组成和产业化使用还而临很多问题和应战。文章选自:化学发展 作者:柏篙、沈小平

漫画简介石墨烯!

2019-03-08 09:05:26

石墨烯被称为“黑金”,又被称为“新材料之王”,是现在发现的最薄、强度最大、导电导热功能最强的一种新式纳米材料,极有或许掀起一场席卷全球的颠覆性新技术新产业革新。 石墨烯的制备上,多晶薄膜有望未来1-2年内完成产业化使用,单晶石墨烯工业组成办法仍未找到,因而间隔产业化还很悠远。低成本的使用氧化还原法出产石墨烯粉体,一起可以使用CVD法出产出层数可控、大面积的石墨烯薄膜是未来研究要点,也是推进职业开展的要害点。而在使用层面,未来被看好的范畴是锂离子电池、柔性显现、太阳能电池和超级电容器。

石墨烯:改变21世纪的材料

2019-01-03 09:36:46

南江集团旗下宁波墨西科技公司近日发出声明,公司300吨石墨烯生产线项目有望在10月底试生产。这意味着石墨烯产业化又向前迈出了一大步,有关专家预估石墨烯将成为21世纪最有前景的材料。 石墨烯,只有一个碳原子厚度的二维材料,也是目前世界上最薄、最坚硬的纳米材料。石墨烯比钢铁还要坚硬200倍,同时又极其轻巧。它的神奇之处在于,尽管硬度超过钻石,可是厚度却只有纸张的200万分之一,还可以弯曲。 需求旺盛 前景广阔 石墨烯的用途广泛,据《华尔街日报》报道,石墨烯具有极强的导电和导热能力。石墨烯的纤薄、导电等功能,让它目前的主要应用集中在电视、手机的触控显示屏上,但从长远来看,石墨烯还可运用于医学、运输等领域。比如,采用石墨烯技术的化妆品,可以替代现在化妆品中的重金属;利用石墨烯制造的无毒害透明胶布,贴在伤口后可以起到隔绝细菌的功能。科学家还预测,石墨烯将实现人们有关可折叠手机和电子报纸的梦想。未来,石墨烯可用于生产频率更高、发热量更小、信息量更大的计算机芯片。用石墨烯制备的手机电池,三分钟就充满电,能打半个月电话。应用了石墨烯的光调制器,可使网络速度快一万倍。石墨烯可实现直接快速低成本的基因测序,几个小时就能测定完你自己的基因序列或者很快就能从基因上鉴定某种疾病。用石墨烯还可开发出超轻型飞机、超坚韧的防弹衣、轻型汽车,甚至是直上九霄的太空电梯。石墨烯无疑是改变21世纪的材料。 中科院在发布的《科技发展新态势与面向2020年的战略选择》研究报告中指出,未来5~10年世界可能发生22个重大科技事件,其中石墨烯将成为“后硅时代”的新潜力材料。 技术限制 产能落后 虽然石墨烯的用途广、需求量大,但其开采量却直接受到了生产技术的制约,目前我国石墨烯材料的制备方法有:机械剥离法、化学氧化法、晶体外延生长法、化学气相沉积法、有机合成法和碳纳米管剥离法等。 微机械剥离法可以制备出高质量石墨烯,但存在产率低和成本高的不足,不满足工业化和规模化生产要求。 化学气相沉积法,用CVD法可以制备出高质量大面积的石墨烯,但是理想的基片材料单晶镍的价格太昂贵,这可能是影响石墨烯工业化生产的重要因素。CVD法可以满足规模化制备高质量石墨烯的要求,但成本较高,工艺复杂。 氧化-还原法的缺点是宏量制备,容易带来废液污染和制备的石墨烯存在一定的缺陷,使石墨烯的应用受到限制。 溶剂剥离法的缺点是产率很低。 溶剂热法生产的石墨烯电导率很低 依托科技 赢得机遇 我国石墨烯产业起步晚,对石墨烯的研究还处于相对较落后的阶段。 石墨烯产业的加速发展必须依靠科技,目前国内多所大学在石墨烯的制备及应用领域申请了众多专利,中国石墨烯产业技术创新战略联盟在北京的成立等都将极大地推动石墨烯产业的发展。 国家政策的支持,企业能力的提升,市场旺盛的需求都将引导石墨烯产业向更广的方向迈进,石墨烯的未来前景将不可限量。

石墨烯真神奇

2019-03-07 10:03:00

近两年石墨烯的可控低成本制备技能已获得了打破性开展,有望在不久的将来构成石墨烯工业。 日前,在深圳举行的第十九届我国世界高新技能效果交易会上,石墨烯作为独具特色的新材料再次引起人们的重视,成为这个国内最大规划、最具影响力的科技展会上一个耀眼的“明星”。石墨烯到底有哪些奇特之处,能为人们带来什么惊喜?记者采访了相关专家。 人类正行进在以硅为首要物质载体的信息年代,下一个量子年代,石墨烯很或许锋芒毕露 和金刚石相同,石墨是碳元素的一种存在方式。风趣的是,因为原子结构不同,金刚石是地球上自然界最坚固的东西,石墨则成了最软的矿藏之一,常做成石墨棒和铅笔芯。 科学家介绍说,石墨烯是从石墨材料中剥离出来,只由一层碳原子构成、按蜂窝状六边形摆放的平面晶体。浅显地讲,石墨烯就是单层石墨。一块厚1毫米的石墨大约包括300万层石墨烯;铅笔在纸上悄悄划过,留下的痕迹就或许是好多层石墨烯。 这种只要一个原子厚度的二维材料,一向被以为是假定性的结构,无法独自安稳存在。直至2004年,两位英国科学家成功地从石墨中别离出石墨烯,证明了其可以独自存在,并因而一起获得2010年诺贝尔物理学奖。 据我国电科55所所长、微波毫米波单片集成和模块电路要点试验室主任高涛博士介绍,石墨烯共同的结构让它具有更导电、更传热、更坚固、更透光等优异的电学、热学、力学、光学等方面的功能。轻浮、强韧、导电、导热……石墨烯这些特性赋予人们许多幻想空间。 石墨烯的特色首先是薄,可谓现在世界上最薄的材料,只要一个原子那么厚,约0.3纳米,是一张A4纸厚度的十万分之一、一根头发丝的五十万分之一。与此一起,石墨烯比金刚石更硬,透光率高达97.7%,是世界上最坚固又最薄的纳米材料。 一起,它又能导电。石墨烯的电子运转速度达1000千米/秒,是光速的1/300,十分合适制造下一代超高频电子器材。石墨烯仍是传导热量的高手,比最能导热的银还要强10倍。 石墨烯的特性,也体现得很“好玩”。比方当一滴水在石墨烯表面翻滚时,石墨烯能敏锐地“察觉”到纤细的运动,并发生继续的电流。这种特性给科学家供给了一种新思路——从水的活动中获取电能。比方,在雨天可以用涂有石墨烯的雨伞进行发电,或许可以做成活络的传感器材等。 “人类阅历了石器、陶器、铜器、铁器年代,正行进在以硅为首要物质载体的信息年代;而下一个量子年代哪种材料将锋芒毕露呢?很或许是石墨烯。”浙江大学高分子科学与工程学系教授高明说。 未来电动轿车运用石墨烯电池,花两三分钟就或许把电充溢 因为石墨烯的奇特功能,加上制备简洁、研讨视角多维,其运用潜力巨大、适用职业广大,成为抢眼的材料“新星”一点不古怪。石墨烯从发现到现在仅10余年的时刻,已获得了许多令人震慑的研讨效果,称得上是人类历史上从发现到运用最快的材料。 高明说,从材料化学视点看,石墨烯会带来资源、环境、化工、材料、动力、传感、交通机械、光电信息、健康智能、航空航天等范畴的改动或革新。我国石墨矿储量丰厚,约占全世界的75%,其高效开发将引起碳资源及我国大资源战略的新定位、新考虑、新规划。 石墨烯的工业化出产则将促进化工、机械、智造、自控等职业的技能前进。石墨烯的增加可以发生多功能复合材料,用来制造高功能电池、电容器。石墨烯传感器可以在生物检测、光电勘探方面大显神通,石墨烯及其它二维材料的异质叠合材料可制造高功能晶体管。 可以说,石墨烯技能将对咱们的吃、穿、住、行、用、玩都发生影响。石墨烯复合膜阻氧阻水功能好,可前进食物保质期;石墨烯纤维可制成发热服饰和医疗保健用品;石墨烯电热膜电热转化效率高,可逐渐替代暖气供热;石墨烯系列材料可用于轿车、火车等交通工具,石墨烯导热膜可用于手机高效散热…… 石墨烯另一个被寄予厚望的运用范畴是电能贮存。它的优势在于充电速度快,并且可以重复运用几万次。但现在石墨烯存储的电量不如电池多,还无法存储足够多的电能。未来,跟着充电设备的日益完善和相关技能的前进,电动轿车运用石墨烯电池,花两三分钟就或许把电充溢。 我国电科55所微波毫米波单片集成和模块电路要点试验室副主任孔月婵博士介绍说,石墨烯的电子运转速度是硅的十倍,由石墨烯制造的高频器材理论上作业频率可以到达硅的十倍乃至上百倍。石墨烯引发的技能很或许从人们常见的小小芯片开端。 此外,科研人员已完结柔性衬底晶体管的研发,正在测验柔性通讯电路的研发。未来不管是可以折叠的显现屏幕,仍是可以植入人体的可穿戴设备,都或许靠这样的石墨烯器材来完成。 高涛以为,即便在试验室条件下,石墨烯的奇特功能仍然没有彻底释放出来。因为技能层面还存在着不少应战,真实大面积运用还有很长的路要走。但经过加强需求和研讨的结合,不断在石墨烯材料的制备和器材研发方面获得重要打破,发明更多更新更具颠覆性的运用,石墨烯这种新一代战略性新式材料将会极大改动人们的生发日子。 国内石墨烯研讨与国外底子同步,有望在不久的将来构成石墨烯工业 石墨烯一向是世界上的研讨热门,并在不断升温。近几年来,全球石墨烯相关的论文和发明专利简直呈指数式增加,不只各类优异的物理化学功能被猜测、证明,并且由此生宣布许多详细的研讨方向。 据了解,许多国家正在抢夺石墨烯技能的制高点。欧盟石墨烯旗舰方案以石墨烯传感为首要研讨方向,美国正在测验使用石墨烯完成通讯的柔性化并获得了明显的效果,韩国继续支撑石墨烯柔性显现的研讨并制备出了演示产品。 高涛说,整体来讲,世界上石墨烯各项优异功能正逐渐从试验室研讨向产品运用过渡,一起一些潜在的功能或运用还在不断被开掘。但这个工程化是一个长时间而困难的进程,给我国完成赶超世界水平、占据技能制高点带来了绝好的机会。 高明以为,现在国内石墨烯研讨与国外底子同步,一些方面有原创和引领性效果。国内研讨侧重化学和材料,国外更偏机理和器材。国内石墨烯的研讨在理论研讨方面可说是已完成与世界先进水平“并跑”,论文、专利不管数量仍是质量都具有很强的世界竞争力。到2016年3月,我国石墨烯的专利总数占全世界的56%。与此一起,国家赞助了很多有关石墨烯的基础研讨项目,开始构成了政府、科研机构和厂商协同立异的产学研协作对接机制。 例如,清华大学开宣布米级石墨烯单晶薄膜的快速制备技能;我国电科55所研宣布了世界上最快的柔性石墨烯晶体管;浙江大学纳米高分子团队则经过近十年研讨,开宣布了石墨烯纤维、石墨烯接连拼装膜、石墨烯超轻气凝胶及石墨烯无纺布等。 受访专家指出,各个方向不断呈现令人惊喜的研讨效果,让人们对石墨烯的未来充溢等待。但整体来讲,石墨烯技能成熟度还比较低。关于石墨烯的开展,其限制要素或许说难点,首要在材料制备技能、全新规划理念和二维控制技能等方面。其间,高品质、大批量的石墨烯质料问题暂时没有底子处理,还需要进行很多技能攻关。有些技能如单层氧化石墨烯、石墨烯单晶等在试验室制备成功了,但完成工程化、接连性、低成本、高效安稳制备还有较长的路要走。只要真实高品质的石墨烯量产了,颠覆性运用才会呈现。 不过科学家们也比较达观,近两年石墨烯的可控低成本制备技能已获得了打破性开展,有望在不久的将来构成石墨烯工业。

石墨烯基锂电池有了新突破

2019-03-08 09:05:26

深圳市来历新材料科技有限公司、秦皇岛市太极环纳米制品有限公司选用智能制作新技能,干法机械剥离石墨烯。并以机械石墨烯为首要新材料制成正极,以涂层金属锂为负极,组成锂烯电池,通过一千屡次循环,成果证明,比容量初始最高可达1800mAh/g,100次时稳定在1200mAh/g以上,约等于一般锂电池的4~5倍,至200次时稳定在1100mAh/g,400次一向到600次也一向稳定在1000mAh/g以上,至700至800次,都是在900mAh/g以上,至1100次时,也还有700mAh/g以上的比容量,也还比一般的锂电池高出两三倍。是行业界石墨烯基锂电池研制以来最好的数据。 “千呼万唤始出来”的石墨烯锂电池,是怎么面世的呢?原因是中国人自己的一个科学发现导致了一个范畴的技能。这就是落地发作的多边应力连动的二次加力,这一力学原理带来了智能制作的创意,发作了Gpa级的超高能冲击式球磨纳米技能,见图2,原因是选用原创的干法机械剥离石墨烯(以下简称机械烯)技能。 干法机械烯的特点是:石墨层间的碱金属不丢失、密度大、表面缺点多、与金属片可衔接成千层饼结构,多层层叠后微孔大增,所以容量高、效率高、寿命长。从图能够看出石墨烯的层厚散布在0.224-0.952纳米之间,其间40%微片进入量子点尺度,石墨烯外观体现极不规矩。 最大的长处是高性价比。大型机可宏量出产,出产成本仅几毛钱1克,使石墨烯天价落地。 锂烯电池是以石墨烯复合纳米材料制成正极,以涂层金属锂为负极,再运用陶瓷纤维隔阂,滴防燃爆电解液组成,涂层的锂片按捺了锂枝晶的成长,陶瓷纤维隔阂可防止意外的枝晶穿透、防燃爆电解液按捺了起火,爆破的意外发作。 以上是2016年研究成果,本年又有了明显发展,在比容量提升至2700mAh/g以上的一起,也感触到了锂烯电池的能量还有很大的上升空间。 新能源要害是新材料,谁能把握新材料,谁就能执锂电商场之盟主,而机械石墨烯及纳米合金新材料最急需是制备要害技能及要害设备的智能制作渠道。 石墨烯剥离机、纳米磨天磨及机械制备石墨烯全纳米材料电池的量产项目是彻底自主立异的新科学发现、新科学理念、新工艺、新技能、新要害制作设备,推翻人们观念的方法学打破,机器的力学规划合理,多边连动,动能巨大,又节约资源,可将石墨烯剥离,可宏量制作石墨烯,确保新材料的宏量。是配备制作与新能源纳米新材料聚合发力的制作渠道。 此外,咱们在秦皇岛一起启动了收回废物废品制成石墨烯负极,成本可低至几分钱1克,比容量是碳负极的两倍,是环保、新能源、新材料的好项目。希有志同路成为合作伙伴。

科学家研发铝-石墨烯-氧合成电池

2019-01-09 11:26:51

据报道,总部位于布里斯班的能源技术公司LWP Technologies Limited宣布将投资于具有开创意义的铝-石墨烯合成与电池制造技术,收购三项“准专利”,准备推动新技术的营销、专利授权与商业化。俄籍澳洲科学家及发明家VictorVolkov发明的颠覆性电池技术已经完成国际实验室测试,这种名为“铝-石墨烯-氧”合成电池较锂电池的性能更是优越。石墨烯产品将较早在电池领域迎来产业化曙光,国内石墨烯相关公司将迎来产业化良机。    新技术将首先应用在电池制造领域。电动汽车制造商与电池供应商正投资数亿用于锂电池研发,希望获得更高储能表现,并减少充电时间,但锂电子技术进步十分有限。并且,尽管锂电池需求前景广阔,锂电池表现不稳定且存易燃爆风险是共识。相比之下,石墨烯技术的能源密度要高于锂电池,且应用范围更广。

石墨烯+锂电池可行性有多大?

2019-01-03 09:36:39

众所周知石墨烯具有高导电性、高导热性、高比表面积、高强度和刚度等诸多优良特性,在储能、光电器件、化学催化等诸多领域获得了广泛的应用。 锂离子电池是迄今为止能量比最高的二次电池,但是应用于如新能源汽车时需要进一步提高其能量比。石墨烯的出现为锂离子电池高性能的突破带来了可能,从而为高容量、高倍率、长寿命的锂离子电池材料的研究掀起新一轮的研究热潮。 目前石墨烯在锂电池方面的研究主要分两块 一是在传统锂电池上进行应用,目的是改进、提升锂电池的性能,这类电池不会产生颠覆性的影响; 二是依据石墨烯制造一个新体系的电池,它是一个崭新系列的,在性能上是颠覆性的,称作“超级电池”。 石墨烯在正极材料中的应用 锂电池的正极材料例如常用LiCoO2、LiMn2O4和LiFePO4都是不良的电子导体,它们的电导率分别为10-4、10-6和10-9Scm-1。在目前现有的锂离子电池体系中,电池使用的正负极材料本身具有较低的离子与电子电导率,这是影响和限制锂电池充放电循环和倍率性能的主要因素。所以为了充放电过程中充分有效利用正极材料同时能提高电池的倍率性能,要在正极材料中加入导电剂,传统的导电剂一般是石墨。而石墨烯本身具有非常高的电子传导率,用石墨烯作为导电添加剂是其在锂电池中最直接,也是最广泛的应用。 石墨烯作为导电剂的问题 对于石墨烯导电剂的实际应用,需要综合考虑石墨烯对电子电导的“面-点”促进作用和对离子传导的“位阻效应”;针对导电剂用量和最终电池的能量/功率密度综合考虑设计电极的厚度。对于LFP体系的锂离子电池,由于石墨烯对锂离子传输的影响非常强,所以需要特别注意电极的厚度。 石墨烯在负极材料中的应用 目前锂电池常用的负极材料是石墨,用石墨烯作负极材料的优势有: 石墨烯导电性能好,耐腐蚀,用作负极材料可以增强活性物质与集流体的导电性; 石墨烯片层作为单层二维结构,原则上不存在体积膨胀,所以结构稳定,充放电快,循环性能好; 纳米颗粒原位法合成于石墨烯表面形成基复合材料,通过控制其生长颗粒的尺寸,从而缩短锂离子和电子扩散距离,改善材料的倍率性能; 纳米颗粒均匀覆盖在石墨烯表面,一定程度能够防止石墨烯片层的聚合和电解质浸入石墨烯片层,导致电极材料失效。 石墨烯直接用作负极材料存在的问题 石墨烯由于尺寸小并且具有很高的比表面积,容易与电解液发生反应生成大量的SEI膜,造成大量不可逆容量的损失。 石墨烯在电极循环中容易发生团聚,并且由于范德华力导致团聚不可逆,导致嵌锂困难,电池容量衰减。 石墨烯在制备过程中容易发生再堆叠,对分散和干燥条件要求苛刻,导致成本增加。 石墨烯材料在电池负极材料的应用中表现为首次效率低,循环性能差等问题还未能解决。 当前石墨烯复合材料在锂电池的应用成为研究热门,如何完善高质量石墨烯的制备技术,寻找出一种可控、大规模的石墨烯制备方法,并制备出性能优异的石墨烯基复合材料,是当前研究的重点。若石墨烯基电极材料在高能量密度、高功率密度要求的动力锂离子电池领域获得应用,必将大大提升动力电池的综合性能,推动电动车、电动工具等领域的发展。

“奇迹材料”石墨烯于新三板

2019-01-04 17:20:15

重量极轻,硬度却堪比金刚石: 石墨烯是由碳六角网状构成的二维平面材料(即单层石墨层片),其家族还包括石墨烯衍生材料,即以石墨烯为功能体与其他材料复合或在其他材料辅助下形成的材料。用更通俗的说法就是,这是一块有望让“薄得像纸一样的透明手机”、“1分钟充完电的电池”、“像衬衣一样的防弹衣”等科幻产品变成现实的“点金石”。  石墨烯看上去是材料界的“新生力军”,其实它是饱经沧桑的“老者”。说其古老,是因为石墨烯一直作为天然石墨(尤其是鳞片石墨)的基本单元而广泛存在于自然界中,已经有上万年的历史。让石墨烯焕发年轻活力的是曼彻斯特大学的科学家安德烈·盖姆和康斯坦丁·诺沃肖罗夫。2004年,他们将其作为一种材料的概念分离出来,发现石墨烯是目前唯一的能够单独存在的二维晶体材料,两人因此还获得了2010年的诺贝尔物理学奖。  石墨烯非常薄,被认为是世界上最轻的材料,具有极大的强度、导电性、导热性等性能:石墨烯的强度高达130季帕,比最好的钢材还要强上百倍;弹性很好,拉伸幅度能达到自身尺寸的20%。石墨烯的硬度比莫氏硬度达10级的金刚石还要高,但却又有很好的韧性,可以弯曲。此外,石墨烯是世界上导电性最好的材料,电子在其中的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。石墨烯的热导率也非常高,是世界上导热性能最好的材料。   既能“上天”,又能助力健康:  石墨烯优异的性能决定了其具有广泛的应用价值。石墨烯目前最有潜力的应用是代替硅制造超微晶体管,用来生产超级计算机。据分析,用石墨烯制备的计算机处理器的运行速度将会提高数百倍。这种超级计算机可以为航天飞行器力学、流体、气动、材料等计算提供更为高效的技术手段,提高飞行器设计、材料研发的进程。此外,利用石墨烯材料生产具有超高导热特性的柔性薄膜,这种材料可以用于航天飞行器仪器舱高功率电子器件部位的热管理系统,用于控制关键电子器件的工作有效性。将石墨烯材料加入塑料、复合材料、金属等材料中,可以大幅提高现有材料的力学性能、热物理性能,从而为航天飞行器的轻质化或高载荷化提供高性能材料。利用石墨烯和碳纳米管形成的新型超轻质泡沫材料,作为航天温控系统热耗散型相变储能用高导热骨架材料也具有一定的应用潜力。  另外,石墨烯材料在大容量快速充电锂离子电池、超级电容器、光电传感器、柔性触摸屏、基因测序、超坚韧防弹衣、光调制器、太阳能电池、光驱动等领域也得到了应用开发,均获得了可喜的成果,一些研究成果也可以为航天提供直接或间接的应用。  值得一提的是,采用石墨烯材料制成的枕头,也具有非常好的助眠效果,烯枕依托生物质石墨烯强大的低温远红外功能,与身体共振产生热源实现自暖的同时改善微循环和新陈代谢,使大脑得到充足的氧气和养分,进而改善脑供血不足的状况,缓解睡眠障碍,达到有效放松肌肉、缓解疲劳的效果,帮助使用者轻松摆脱颈部和脑部不适感,迅速进入深度睡眠状态。        第六元素:国内石墨烯粉体产能规模最大的生产企业之一,公司拥有6大系列粉体产品线,在涂料、复合材料等应用领域已取得阶段性成果,而其积极通过与下游战略合作拓宽产业化路径也已取得明显成效,收入规模突破2,000万元。二维碳素:国内石墨烯薄膜产能最大的企业之一,年产能达20万平米。其自主研发的石墨烯透明导电薄膜已规模化应用于触控领域,在便携式智能终端、可穿戴电子产品等领域中是国内第一家销售石墨烯触控产品的企业,具有较高的技术含量和附加值。公司高度重视研发投入,积极开发新产品,是石墨烯薄膜生产及应用的领军者!

如何制备黑磷——有望超过石墨烯的新材料

2019-03-08 12:00:43

磷是地球上含量最丰厚的元素之一,约占地壳中所有元素质量的0.1%。磷元素的同素异形体有、、紫磷和黑磷,其间黑磷的性质最为安稳,反响活性最弱,它在空气中不会焚烧。黑磷是用在很高压强和较高温度下转化而构成的。图1:黑磷晶体及其晶胞结构示意图 黑磷的物理性质黑磷的制备办法 高压法 高压法是最早用于黑磷制备的办法,1914年Bridgman开发出来的。试验过程:首要将放入长约15cm、内径1.5cm的圆柱型钢制容器,然后将装有的容器放入装有火油的高压设备,并在室温条件下加压至0.6×109Pa,随后,将设备加热到200℃,压力提升到1.2×109Pa,可得到黑磷。高压法制备黑磷重复性较好,并且很短时刻内就能完成到黑磷的转化。可是其制备办法需求用到超高压设备,必定程度上导致黑磷出产本钱较高,不利于大规模商业化出产 铋熔化法 首要,在氩气气氛下将和铋颗粒别离放在设备左右两头,并进行抽真空密封处理(如图2a.所示);然后,对和铋粉加热处理,右端底部会构成铋块,上面则生成,此刻把设备右端取下(如图2b.所示);终究,在300℃下加热铋,并将液铋浇注到固体上,把设备放400℃环境下保温48h,随后降至室温,用硝酸除掉铋,即可得到黑磷。图2:铋熔化法制备黑磷设备示意图 矿化法 矿化法是近几年开发的一种制备黑磷的办法。将Au、Sn、SnI4与按必定质量的份额混合,真空封装在石英管中,加热至必定的温度并保温必定的时刻,即可得到黑磷,但终究产品中存在少数未转化的及反响生成的金属磷化物等杂质。但Au报价贵重,SnI4有毒。后来研讨者们发现直接以I、Sn、为质料在常压下也能制备出黑磷,其具体过程:将Sn、I和在氩气气氛下密封,通过程序升降温处理,相同制备出了黑磷。该制备办法不光不再运用贵重且有毒的SnI4作为矿化剂,并且不再需求真空处理,因此简化了制备工艺流程,本钱大大下降,具有很好的工业化使用远景。 制备办法比较   黑磷未来发展远景 用相似制备石墨烯的办法,黑磷也能够得到黑磷烯。与黑磷比较,黑磷烯具有较高的比表面积、较好的机械功能及电学功能,黑磷和黑磷烯在锂离子电池、钠离子电池和超级电容范畴都具有较好的使用远景。可是黑磷的丧命缺点是缺少安稳性。当触摸水和氧气时,黑磷片层会在极短时刻内氧化进而降解。这一缺点极大地约束了黑磷的研讨和工业使用。高安稳性黑磷的成功制备,无疑可有用推进黑磷在光电器材等范畴的工业使用,还将极大促进其在动力、催化、生物医学等范畴的深入研讨。

石墨烯不仅用于电池还将用于混凝土设计

2019-01-03 09:36:46

我们都知道石墨烯这个材质是用于新材料电池的研发当中,不过目前国外科学家却利用石墨烯材质打造世界最强人造材料。现在,科学家已经用它来创造一种比过去更坚固、更防水和更环保的新型混凝土。为了制造出这种混凝土,英国埃克塞特大学的一个团队设计了一种技术,将石墨烯片悬浮在水中,然后将水与传统混凝土成分混合。据报道该工艺价格低廉,并且符合现代大规模生产要求。石墨烯不仅用于电池还将用于混凝土设计 经测试,加入石墨烯的混凝土与普通混凝土相比,抗压强度提高了146%,抗弯拉强度提高了79.5%,渗水率降低了近400%。这种材料符合英国和欧洲建筑标准。增加的强度和耐水性应该允许用混凝土制造的结构持续更长的时间。这意味着它们不需要经常更换-混凝土中使用的水泥的生产是二氧化碳排放的主要来源。 另外,据报道在混凝土中掺入石墨烯可以减少约50%的其他材料,包括水泥。科学家们表示,这个因素应该导致在生产每吨混凝土时二氧化碳排放量减少446千克。

石墨烯基础科研现状

2019-01-04 09:45:43

石墨烯从其诞生至今不过10年光景。2004年为石墨烯科学研究的萌芽阶段,随后即进入快速成长阶段;从2008年开始,尤其是在2010年石墨烯发明者获得了诺贝尔奖之后,关于石墨烯的基础科研工作开展得如火如荼。 下文从专利分布、研究机构分布、研究领域分布和主要研究成果等方面梳理目前石墨烯的基础科研动向。 一、专利分布 目前全球共有超过200个机构和1000多名研究人员从事石墨烯技术的开发和研究,其中包括三星、IBM等科技巨头。我们通过最近几年的专利申请情况对目前石墨烯的研究进展进行概览。从专利申请总量来看,2010年以来全球石墨烯专利申请总量呈爆发式增长;2012年全球石墨烯专利申请量已经达到3500个,可见目前全球范围内正在掀起石墨烯研究与开发的高潮。 从石墨烯专利申请国别分布来看,2013年全球石墨烯专利申请量最大的是中国,其次为美国、韩国和日本。在石墨烯相关论文方面,欧盟排名第一,2013年共发表了7800篇论文;就国别而论,依然是中国排名第一,共发表了6649篇论文。 总体而言,目前中国已经处在石墨烯研究的前沿阵地;但是,从研究深度和创新性而言,非常核心的技术和创新性技术中国仍未掌握。二、研究机构分布 从事石墨烯研究的机构比较广泛,包括学术研究机构、企业、个人和政府层面。比较普遍的研究模式是学术研究机构与企业的合作,例如韩国三星与韩国成均馆大学合作对石墨烯的制备基础方法和应用开展研究。 从研究机构专利数量口径看,在前十名中,有4家机构来自韩国,4家来自中国,2家来自美国。并且,6家机构都是科研院所或独立科研机构,4家为企业。其中,专利数量最多的是韩国三星电子,其专利申请数量为210个,占全球总量的7.3%,其研究范围涵盖了石墨烯制备方法和在显示屏、锂电池领域的应用;其次为韩国成均馆大学、浙江大学、IBM、清华大学等。三、研究领域分布 从石墨烯研究领域分布看,全球研究热点主要在材料的导电性、导热性、石墨烯的制备研究、纳米材料研究等。 中国石墨烯研究热点主要分布石墨烯纳米复合材料、石墨烯制备、石墨烯电极等方向。我们统计了前20位主要研究机构的重点研究领域,发现研究热点分布于:(1)复合材料;(2)碳纳米管;(3)电容器;(4)传感器;(5)晶体管;(6)透明电极;(7)锂电池;(8)燃料电池。上述研究大多属于石墨烯应用,而关于石墨烯的制备改进工艺或者大规模量产石墨烯的基础研究非常少。 四、最新研究成果 在石墨烯制备方面,最新的研究成果是在生成单晶石墨烯的方法上,目前有两种方法已经能获得直径约为1mm的单晶石墨烯和直径为25px的单晶石墨烯,但是这两种方法各有优劣。 在石墨烯应用方面,最新的研究成果包括把作为光敏元件(PD)的光增益提高到了原来的约1000倍、提高柔性湿度传感器的响应时间等。在锂电池、半导体、传感器、无线通讯、电容器、电子元件、海水淡化等多个领域都有重大突破。 在众多最新研究成果中,属于中国研究机构的成果依然稀少,印证了前文中我们提到的,虽然中国在专利申请和论文发表方面在国际领先,但是在真正的研究前沿方面距离美国、日本和韩国等国家仍有一定差距。

宁波材料所在石墨烯基新型长寿命铝离子电池研究中获进展

2019-01-09 09:34:01

电化学储能技术是解决电动汽车与可再生能源并网发电的关键。以有机溶剂为电解液的锂离子电池在能量密度上具有优势,但存在安全隐患和锂资源有限的问题。与之相比,水系非锂离子(如钠离子、钾离子、锌离子、镁离子等)电池具有高安全和低成本等优点,在储能领域中具有重要应用前景。自2013年以来,中国科学院宁波材料技术与工程研究所动力锂电池工程实验室前瞻布局了非锂离子电池的新概念电池研究,在水系离子新概念电池基础研究上取得了系列进展 (Scientific Reports 2013, 3, 1946; ChemSusChem 2014, 7, 2295;Advanced Energy Materials 2015, 5, 1400930; Scientific Reports 2015, 5, 18263; Nature Communications 2016, 7, 11982)。但水系离子电池的循环寿命比较有限,一般小于1000次,难以满足规模储能的需要。2015年美国斯坦福大学教授戴宏杰在Nature (2015, 520, 324) 报道了一种新型铝离子电池,因其耐用、低可燃性及成本等特点,而引起学界和工业界的广泛关注。 受该工作启发,宁波材料所动力锂电池工程实验室开展了以石墨烯为电极的铝离子电池研究,近期研究工作以Large-sized few-layer graphene enables an ultrafast and long-life aluminum-ion battery 为题在线发表于《先进能源材料》(Advanced Energy Materials,DOI: 10.1002/aenm.201700034)。在该工作中,科研人员采用量产的多层石墨烯(由宁波墨西科技有限公司生产提供)为柔性正极、金属铝为负极、离子液体为电解液,构建出具有超长循环寿命和超高倍率性能的2 V铝离子电池。研究发现二维片状石墨类负极材料的厚度(层数)和横向尺寸均对AlCl4-离子的嵌入行为有重要影响。相对于层数达千层的鳞片石墨,多层石墨烯的层数极少(10层以下),可以显著降低AlCl4-离子嵌入和扩散的活化能,使得该电池具有超高的倍率性能,因此可在1分钟内完成充放电。另一方面,由更大尺寸的多层石墨烯制作的电极,由于具有更好的柔韧性和石墨化度,对AlCl4-离子的重复嵌入和脱出具有更强的耐受能力,从而让电池表现超长的循环寿命,充放电循环10000次后容量几乎无衰减。此外,该研究工作通过一系列的精细表征还进一步揭示了AlCl4-离子在多层石墨烯、石墨等二维石墨类正极材料的插层化学机制,即插层离子诱导的四阶和五阶结构变化机制。该研究工作不仅对铝离子电池中石墨类正极材料的选择具有重要指导意义,还对于发展实用化石墨烯基新型长寿命储能电池具有较大的学术价值。 上述研究工作得到了中科院重点部署项目(KGZD-EW-T08-2)、中科院青促会项目(2017341)、国家自然科学基金(51404233)和浙江省自然科学基金(LY15B030004)的资助。 该研究工作靠前作者张乐园目前正在美国德克萨斯大学奥斯汀分校攻读博士学位。

石墨烯基纳米复合材料的主要掺杂方法

2019-03-06 10:10:51

碳元素广泛存在,具有许多同素异形体,常以为石墨是由二维网状碳原子组平面经有序堆叠成的晶体,其单层网状平面结构晶体在自然界中并不能独自安稳存在。但早在1988年日本东北大学教授以蒙脱土为模板,用腈做质料,在模板二维层间制得石墨烯片层结构,但当去除模板后不能独自存在,敏捷生成了三维石墨体。 随后2004年英国科学家成功用机械剥离法将石墨层片剥离,取得了碳 原子sp2杂化衔接的单层石墨层片。此种可安稳存在的二维单原子厚度碳原子晶体——自由态石墨烯(Graphene),其根本单元结构是最具安稳结构的六元环,它的发现充分了碳元素宗族,可作为零维富勒烯、一维碳纳米管(特别单壁CNT)、三维金刚石及石墨的根本结构单元,是当时抱负的二维纳米材料,结构如图1。  图1 石墨烯的二维单原子层结构(a)和石墨烯为根本结构单元构成的sp2碳质材料(b) 石墨烯与富勒烯和碳纳米管比较,其报价便宜,质料易得,且质量轻,抱负比表面积大(2630 m2/g),导热功用好[3000 W/(m·K)],拉伸模量和极限强度与单壁碳纳米管适当,一起因为其维数不同,石墨烯也有自己特有性质,如手性的载流子、量子隧穿效应、不会消失的电导率、二维零停止的Dirac费米子系统、搬迁速度高的双极性电流、安德森局域化的弱化现象、半整数的量子霍尔效应及双层石墨烯的场效应,可望成为纳米复合材料的优质基体或填充材料,引起国内外对二维碳材料的研讨热门。 一、石墨烯的制备 近年来,许多科学家致力于探究制备单层石墨烯的途径,特别是要制备高质量、产率高、成本低、结构安稳的石墨烯的办法。现在制备石墨烯的办法首要有以下几种: ①剥离法,包含微机械剥离法和溶剂剥离法等; ②成长法,包含晶体外延成长、取向附生法、化学气相堆积等; ③氧化复原石墨法,包含常用的Hummers法、Standenmaier法、Brodie法等; ④其它办法,首要有电弧放电法、石墨层间化学物途径法、现在十分新颖的高温淬火法与碳纳米管剥开法等。 二、石墨烯基纳米复合材料首要掺杂办法 石墨烯具有适当大的比表面积及共同电子搬迁功用,成为基体载体的抱负材料,经过掺杂可以对石墨烯进行化学改性,然后增强其物化功用。首要的掺杂办法:元素掺杂法、氧化物掺杂法、碳质材料掺杂法等。 2.1元素掺杂法 元素掺杂法可使石墨烯进行化学改性,增强其物化功用。在半导体材料运用中,它是一种十分有用的办法,一起也广泛运用到新式的催化剂范畴中。元素掺杂包含非金属元素掺杂和金属元素掺杂。 2.1.1非金属元素掺杂法 非金属元素掺杂,望文生义是在石墨烯上掺杂非金属元素纳米粒子,即该元素替代了碳原子的方位,在石墨烯上归于代位式杂质,构成了电子搬运或电子空穴。 美国斯坦福大学的Wang等,经过高强度的电子焦耳热加热,使石墨烯和气经过电热反响制备出n-型N掺杂的石墨烯纳米复合材料。通常状况下,石墨烯较简单被掺杂构成p-型(空穴导电)半导体材料。在实践运用傍边,经常也需求n-型(电子导电)掺杂的半导体。 2.1.2金属元素掺杂法 金属元素掺杂,便是金属纳米粒子掺杂。石墨烯具有上下两面的比表面积,作为支撑载体,可供金属纳米粒子重复地镶嵌与脱嵌的结构应变,可表现出杰出的循环功用。一起金属纳米颗粒也具有较大的比表面积和强的催化功用。所以此种掺杂法可使得制备出的纳米复合材料比表面积显着增大,更有利于电子搬迁或储能、储氢空间的扩展以及催化活性的增强。 Kou等经过热膨胀氧化石墨制备出功用化石墨烯片,用Pt的前体H2PtCl6·xH2O处理得出均匀直径约为2 nm巨细的Pt催化剂纳米粒子。选用浸渍法将此Pt纳米粒子均匀地掺杂到此功用化石墨烯片(FGSs)上,取得FGSs-Pt纳米粒子复合材料,故此纳米材料具有更大的比表面积,更好的氧化复原功用且比一般的商业催化剂具有更安稳更优秀的催化功用。 Chao等运用溶液混合法别离制备了Au、Pt、Pd与石墨烯掺杂的纳米复合材料。将这些贵金属(Au、Pt、Pd)的前体(HAuCl4·3H2O、K2PtCl4、K2PdCl4)水溶液和乙二醇都加到经超声后的氧化石墨水溶液中,最终得到金属粒子掺杂的石墨烯纳米复合材料。 2.1.3化合物掺杂法 石墨烯一般状况是由氧化石墨制备成的。氧化石墨具有准二维层状结构,片层上赋有较多极性含氧官能团,易于同具有较高表面活性的纳米氧化物或其它化合物结合,可生成化合物掺杂的氧化石墨烯(GO)复合材料。 Chen等使用调理溶液pH值,反响温度等的液体插入法,经过静电效果,使金属阳离子及其配离子经过静电吸附到氧化石墨烯层间活性基团上,在低温下快速沉积成功制备出了针状的MnO2掺杂的石墨烯插层纳米复合材料,此复合材料电化学功用有了很大进步,跟着MnO2掺杂量的不同,电容量巨细也不同,GO可进步MnO2的分散性,其协同效果使电化学功用得到必定程度的进步。 Cao等选用溶剂热法,用二甲基亚砜作为溶剂,此二甲基亚砜既是溶剂更是作为复原剂,可复原氧化石墨烯,合成了纳米CdS掺杂的石墨烯复合材料,此CdS在石墨烯表面的分散性较好且粒径较小。 2.1.4碳质材料掺杂法 试验证明石墨烯是一种较好的超级电容器碳材料,其理论比表面积很大,但会在枯燥后失掉层间的水以及其它溶剂,然后发作层与层之间的叠层以及聚会等现象。 为了处理枯燥后石墨烯叠层和聚会的发作,经过掺杂碳纳米管到石墨烯层间,即碳纳米管上的官能团与石墨烯上的官能团彼此发作反响,使得碳纳米管接枝在石墨烯表面,使得石墨烯层与层之间彼此分脱离,然后到达进步石墨烯枯燥后的比表面积。 Dimitrakakis等规划了一种石墨烯和碳纳米管掺杂的复合结构,,用蒙特卡洛办法计算出,此结构的储氢才能只稍微低于美国能源部标准45g/L。一起研讨石墨烯的储氢功用,也对提醒在其表面的吸附方式有着重要意义。 葛士彬用肼做复原剂,复原氧化石墨水溶液,成功将碳纳米管掺插到石墨烯层间,制得碳纳米管/石墨烯纳米复合材料,把其做成电极片测验其电容功用。 三、结语 石墨烯从一个新生儿敏捷成为科学界的新宠,其优异功用逐步被开掘,运用范畴也不断地被开发。这些掺杂法制备出的纳米复合材料运用广泛,首要在超级电容器、传感器、储氢方面以及生物医学等范畴杰出。 但石墨烯的开展也存在一些问题,例如,该怎么大规模制备高质量石墨烯,使其不会发生较多的褶皱,以及怎么坚持其安稳的分散性,使其层间剥离后,不会从头堆积成多层的石墨烯片或是复原回石墨。此外,一些石墨烯的其它功用现在还不清楚,如磁性、光学功用等。因而往后应着力于开辟石墨烯和其它学科范畴的穿插,探究石墨烯功用化及一些其它新功用。 节选自:《化工发展》   作者:张紫萍,刘秀军,李同起,胡子君

石墨烯增强型3D打印材料要来啦!

2019-03-07 11:06:31

导读 据悉,3D打印巨子Stratasys公司正与美国加州的矿业技能开发公司GraphiteTechnologies协作,一起研制石墨烯增强型3D打印材料。 我国粉体网讯材料工业是国民经济的基础工业,特别新式材料,将会给工业带来革新性的革新,新材料是材料工业开展的先导,是重要的战略性新式工业。21世纪的今日,科技革新迅猛开展,新材料产品一日千里,工业晋级、材料更新换代脚步加速。新材料技能与信息技能、生物技能、纳米技能等彼此交融,结构功用一体化、功用材料智能化趋势显着,材料的低碳、绿色、可再生循环(环保)等环境友好特性倍受重视。 3D打印技能的开展离不开其打印材料的开展,现在较为老练的3D打印技能包含SLS、SLA、FDM等,因打印技能的不同所对应的打印材料也就不同,例如SLS常用的打印材料是金属粉末,而SLA一般用光敏树脂,FDM选用的材料比较广泛,如ABS塑料、PLA塑料等。 石墨烯被称为黑金、新材料之王,科学家乃至预言石墨烯将“彻底改变21世纪”。它是现在已知最薄的材料,只要一个碳原子厚,它一起又是最强的材料,比结构钢强约200倍。石墨烯的导电功能优于铜,而热传导性优于一切其他材料。石墨烯几乎是彻底通明的,但它的结构如此严密,即使是最小的原子氦也无法穿过它。作为现在发现的最薄、强度最大、导电导热功能最强的一种新式纳米材料,石墨烯极有或许掀起一场席卷全球的颠覆性新技能新工业革新。早在2016年,闻名石墨烯厂商、伦敦上市公司HGI全资子公司HCS就宣告将与热塑性3D打印线材生产商Filamentprint公司及Fullerex公司一起协作,推行和供应石墨烯增强聚乳酸(PLA)线材以用于3D打印使用。 据悉,这款石墨烯增强型PLA线材,有1.75毫米、2.85毫米线径两种规格可供挑选,该线材具有超卓的首层附着力和Z轴强度坚持率、更快的处理速度、改善的强度和功能、优秀的表面作用和改善的尺度精度等特性。  不难想象,假如可以成功实现用石墨烯作为3D打印材料,那么3D打印机可以构建的零部件在强度、轻质化、柔韧性以及导电性等方面的功能体现将会大幅度的进步。

石墨烯/橡胶纳米复合材料的制备与性能研究

2019-01-04 17:20:18

石墨烯具有极高的力学性质和导电/导热性质,在橡胶复合材料中具有广阔的应用前景,石墨烯不仅能明显提高复合材料的物理机械性能,同时赋予其功能性。本文将综述石墨烯/橡胶复合材料的制备及其性能的研究进展。 橡胶/石墨烯复合材料制备方法 由于石墨烯优异的性质以及低的成本,石墨烯作为橡胶纳米填料被广泛报道。为了获得优异性能的石墨烯/橡胶复合材料,首先要保证石墨烯在橡胶基体中均匀分散。石墨烯的分散与复合材料的制备方法、石墨烯表面化学、橡胶种类以及石墨烯例象胶界面关系有着密切关系。石墨烯/橡胶复合材料的制备方法主要有溶液共混、直接加工和胶乳共混3种方法。 溶液共混法 溶液共混法是指将石墨烯和橡胶分散在溶剂中,在搅拌或超声作用下进行共混,然后挥发溶剂或加入非溶剂进行共沉淀,再硫化制备复合材料的方法。通过溶液共混制备复合材料的关键是将石墨烯及其衍生物均匀分散在能溶解橡胶的溶剂中。 由于GO表面含有很多含氧官能团,在超声作用下,GO能够稳定分散在一些极性有机溶剂如DMF和THF中,这为制备GO复合材料提供了重要前提。对于化学还原或热还原的石墨烯而言,很难将其直接分散在溶剂中,因此需要进行改性处理。直接共混法 直接共混法也称为机械混合法,是指将石墨烯、橡胶配合剂在开炼机或密炼机中与橡胶进行机械混炼,然后硫化制备石墨烯/橡胶复合材料的方法。该方法在机械剪切力作用下分散填料,工艺流程简单,成本低,是目前工业生产橡胶复合材料的主要方法。 虽然直接共混法方便,但在混炼过程时,由于橡胶豁度大,加工困难,且石墨烯片层间范德华力强,橡胶和石墨烯的极性相差大,所以石墨烯很难剥离并均匀分散在橡胶中,另外石墨烯表观密度低导致加料困难。 胶乳共混法 胶乳共混法通常是先将石墨烯及其衍生物分散在水相中,再与橡胶胶乳混合,经过絮凝、烘干、混炼配合制备复合材料。由于绝大多数橡胶都存在胶乳,而且GO和改性石墨烯能稳定分散在水中,因此胶乳共混法为制备石墨烯/橡胶复合材料的制备提供了一种有效和简单的途径。另外,胶乳共混法有利于石墨烯在橡胶中均匀分散,并避免有毒溶剂的使用。 石墨烯/橡胶复合材料性能 机械性能 石墨烯被认为是目前最硬、强度最高的材料,拥有超高的比表面积,加入非常少量石墨烯就能明显提橡胶复合材料性能,下图对比了几种纳米填料对橡胶增强效率,可以看到石墨烯具有更显著的增强效果。虽然纳米填料对聚合物有着非常高的增强效率(加入少量份数即带来强度、模量等大幅度提升),但当加入较多份数时(如大于10 wt%),纳米填料容易发生严重聚集,反而导致复合材料性能下降。为了充分发挥不同形状、形态和性质的纳米填料的各自优势,将两种不同维度的纳米填料进行杂化(杂化填料)并加入到聚合物中,对提高聚合物复合材料的机械性能和导电(热)性表现出显著的协同效应。  接枝反应示意图 导电性 石墨烯具有高的比表面积和电导率,研究报道,石墨烯填充的聚合物复合材料拥有高的电导率和更低的导电值,这为制备轻质量、高导电性的橡胶复合材料提供了机遇。石墨烯/橡胶复合材料的电导率主要依赖于石墨烯比表面积、石墨烯含量、石墨烯分散和分布以及石墨烯例象胶界面结合。TEG比表面积对SR导电性影响石墨烯片层间相互搭接形成3D互连网络结构 通过控制石墨烯在复合材料中的分布,能有效降低复合材料的导电值并提高其导电率。 导热性 导热橡胶在电力电子、热管理材料等领域具有广泛应用。石墨烯具有超高的热导率(5000 W /(mk)),明显高于碳纳米管(3000 W/(mk))因此石墨烯在制备导热橡胶复合材料中也有巨大的应用前景。在橡胶复合材料中,热能主要通过声子进行传递,强的填料镇料、填料沛象胶祸合有利于热能的传导。因此为了获得具有高热导率的石墨烯/橡胶复合材料,需要降低界面声子损耗,增强石墨烯锻胶界面作用。 气体阻隔性 橡胶作为一种重要的密封材料,在工程技术领域有着广泛应用。石墨烯为二维片层材料,具有很大的比表面积,且对气体分子具有优异的阻隔性,因此石墨烯在提高橡胶复合材料气体阻隔方面也具有潜在的应用。 其他性能 石墨烯除了能有效提高橡胶复合材料强度电导率和热导率外如改善其动态使用还能改善复合材料其他性能、增加其耐磨性。 总结与展望 石墨烯具有优异的物理和电子特性,如超高的强度、超高的导电率和导热率、大的比表面积。作为橡胶纳米填料,石墨烯具有非常高的增强效率和效果,同时还可以赋予橡胶材料其他特性如导电性、导热性,改善其动态性能和气体阻隔性等,对橡胶制品的高性能化和功能化具有特别的意义。 石墨烯/橡胶复合材料研究存在的挑战和机遇: (1)需要明确石墨烯的结构特性,确定结构对性质的影响,为石墨烯的改性和其复合材料制备提供理论基础; (2)虽然石墨烯价格比碳纳米管低,但是仍然缺少简单有效的方法宏量生产石墨烯。这是制备石墨烯/橡胶复合材料的重要前提; (3)由于分散和界面对橡胶复合材料性能的决定性影响,目前石墨烯/橡胶复合材料的基础研究关键在于复合材料结构设计的方法学、形态结构的细致和定量化表征(例如3DTEM的应用)以及结构性能关系的确立等几个重要方面; (4)虽然石墨烯在橡胶材料中具有巨大的潜在应用优势,但目前缺乏石墨烯/橡胶应用性研究,尤其是有关石墨烯在高性能轮胎工业的应用。

蛇纹石比石墨烯还牛?无毒环保天然矿电池问世!

2019-01-04 15:47:49

据台湾媒体的最新报道,台湾研究团队在经过三年努力之后终于发现了一种完全取自自然的无毒无害电池。报道称,成功大学材料系洪飞义和吕传盛两名教授所带领的团队经过三年研发,终于利用蛇纹石制成了“天然矿电池”。天然矿电池实际上以蛇纹石硅酸盐矿物群为主要材料(内含有镁、铁、硅等成份),其本身就带有少许电容量15mAh/g,然而研发团队将天然蛇纹石磨成粉末进一步硫化处理,改质获得硫化硅酸镁粉末,粉体经电池组装后确认具有正极材料充放电特性,且电池性能大幅提高4倍达到60mAh/g。洪飞义教授还特别指出,蛇纹石硫化后不仅可做为电池正极,也可以碳化导入电池负极。团队将蛇纹石磨成粉与果糖搅拌,再高温氧化烧结制成碳化硅酸镁粉,较现今常态使用的石墨负极还优异。 蛇纹石藏量多,价格亲民,既使经过硫化处理也无毒性,废电池回收没有环保问题。碳化后用于负极也比目前全球采用石油提炼的石墨负极更具环保,矿电池成本将远比石墨烯电池来得更低、性能更好,而且还环保,如果真的如洪教授所言,小编感觉这新型电池要是不火也没啥道理了。

30页PPT看懂锂电池石墨负极材料

2019-01-04 15:16:49

石墨烯在柔性锂离子电池中的应用及前景

2019-03-07 10:03:00

为了满意日益增长的对电子产品小型化、多样性和可变性的需求, 柔性可穿戴的便携式电子产品成为未来开展的趋势。近年来,可卷绕式显示屏的面世及电子衬衫和卷屏手机等柔性电子产品概念的提出,引发了科研作业者对柔性电子技能的研讨热潮。柔性电子技能行将带来新一轮电子技能,并将对社会生活方式及习气发生性影响。柔性电化学储能材料不只需求接受电池、电容器材料自身在电化学过程中引起的体积改变,一起还需求器材在机械变形条件下也可以正常作业。 石墨烯基柔性锂离子 电池材料开展现状 柔性锂离子电池是锂离子电池范畴的新式研讨方向之一, 现在仍处于试验室研讨阶段。开展柔性锂离子电池的首要困难在于怎么取得高功用的柔性电极极片。 石墨烯也具有很高的电导率和热导率、优异的电化学功用以及易功用化的表面, 一起简单加工构成柔性薄膜。因而,石墨烯被认为是一种极具潜力的先进柔性电化学储能材料。 石墨烯在可弯折柔性锂离子电池中的运用首要包含2个方面: 石墨烯作为导电增强相, 凭借高分子、纸、纺织布供给柔性骨架, 以进步柔性极片的电子导电特性, 取得复合导电基体, 并担载活性物质; 石墨烯或其复合材料直接作为柔性基体或柔性电极。石墨烯/柔性基体复合结构 石墨烯具有很高的电子电导率, 可选用喷涂、滋润、涂覆等不同办法, 将石墨烯附着于各类柔性基底上, 运用基底供给柔性支撑,供给力学功用,石墨烯供给导电网络, 构成了石墨烯/柔性基体复合结构。常见的基体材料, 如高分子、纸、纺织布等, 都可制备这种类型的电极。 Cheng研讨组运用大孔径和高孔隙率的滤纸作为过滤介质, 选用真空抽滤法, 以石墨烯涣散液作为滤液, 得到了石墨烯/纤维素复合纸。在抽滤过程中,石墨烯进入滤纸内部, 受纤维素纤维的毛细效果力和表面官能团的一起效果而结实结合在其表面, 而且持续堆积填充在由纤维素纤维构成的三维网状孔隙内,终究构成一种具有石墨烯和纤维素双相三维交错结构的石墨烯/纤维素复合结构。在这种双相三维交错结构中, 纤维素纤维作为柔性三维骨架,为复合结构供给了杰出的力学功用和离子传输通道。 石墨烯薄膜及复合材料的柔性基体 为了进步活性物质在柔性电极中的份额, 石墨烯薄膜也可直接充任负极运用。选用真空抽滤等办法, 已可很多制备石墨烯薄膜。另一方面,石墨烯具有特殊的二维层状结构和丰厚的表面官能团, 也使得石墨烯薄膜具有高的可弯折和力学特性。石墨烯柔性电极的功用表征 电化学测验首要包含半电池的电化学功用和动态条件下的全电池电化学功用测验等. 现在大部分柔性电极都是拼装成扣子式半电池进行电化学功用的研讨,一起在静态条件下对其拉伸、剪切、弯折强度进行测验。 Ruoff研讨组具体研讨了GO薄膜的制造及拉伸、曲折等力学行为。Kim等人用气相化学堆积法制备了高品质石墨烯薄膜, 将石墨烯转移到PET基底上并包覆一层聚二甲基硅氧烷(PDMS)进行力学功用测验,Cheng研讨组对石墨烯薄膜及石墨烯/纤维素复合纸进行了拉伸测验和重复弯折的试验。Cheng研讨组用泡沫Ni模板定向化学气相堆积制备了三维石墨烯泡沫,互连的网络状结构使其具有高的比表面积、高电导率和柔性。因石墨烯泡沫内存在褶皱和波纹。开展趋势猜测 综上所述, 柔性仍处于试验室研讨阶段, 现在首要会集在可弯折的柔性锂离子电池范畴。 得益于杰出的二维结构和力学特性,石墨烯有望作为柔性电极的中心材料得到广泛运用。虽然如此, 柔性电池依然处于开展的初期, 间隔实践运用仍有适当长的间隔。针对石墨烯柔性电极存在的首要问题,未来的开展方向可能会会集在以下几个方面: 柔性电极的力学功用增强及高可变形性,进步现有石墨烯复合柔性电极拉伸强度和抗弯折功用,解决方案可能将会集在:与碳纳米管复合、与聚合物或柔性基体复合、选用新式的电极结构规划。 具有自我修正才能的柔性电池; 快速充电才能的进步; 柔性电极制备新工艺的开发; 柔性锂离子电池器材拼装及规划。现在存在的问题首要包含: (1) 电解质的优化改善;(2) 柔性封装材料的开展;(3) 极耳与石墨烯柔性极片的衔接。极耳是锂离子电池极片与外电路衔接的重要组成部分,传统锂离子电池中一般选用金属铝和镍作为极耳。因为柔性锂离子电池一般选用碳基极片。 总结 跟着柔性电子产品的开展, 柔性锂离子电池作为其要害部件之一也备受瞩目。虽然近年来, 柔性锂离子电池用电极材料制备技能现已取得了巨大发展,但柔性锂离子电池的功用仍远远达不到传统锂离子电池的水平, 远不能满意实践运用的需求。得益于杰出的二维结构和力学特性,石墨烯有望作为柔性电极的中心材料得到广泛运用石墨烯薄膜直接作为柔性基体可以下降电极的质量, 进步电池的全体能量密度, 因而将具有更宽广的开展前景。

多孔石墨烯复合材料可增强电极性能

2019-01-03 09:36:46

科技日报讯(记者姜靖)近年来研究表明,纳米电极材料有望提供相当于现在商用锂离子电池数倍的能量或功率密度,但该材料此前只能在负载量极低的超薄研究型电极中达到其优异性能,难以在需要较高负载量的商用器件中实现其应有潜力。美国加州大学洛杉矶分校段镶锋教授团队最近研制出一种三维多孔石墨烯复合电极材料,成功地解决了电极性能随着负载量急剧下降的关键难题,使得制备高负载的高性能电极成为可能。相关研究成果美国时间11日发表在《科学》杂志上。 段镶锋近日接受科技日报记者采访时表示,虽然许多纳米材料在一些研究型器件中展现了优异的储能性能,但在此类器件中,电极活性材料负载量经常只有商业化器件中常用负载量的10%左右。由于极低的负载量,最终体现在整体器件中的容量或功率密度很难能较大幅度地超过现在的锂离子电池。如果只是简单地增加电极厚度,随着厚度的增加,电子输运电阻和离子扩散电阻都会显著增加,致使电极性能急剧下降。 该团队研发的三维多孔石墨烯复合材料中,高度联通的石墨烯网络结构提供了优异的电子传输特性,而其多层次孔结构则大大促进了离子的快速输运,从而使该材料在高负载电极中首次同时实现了较高的容量和极高的功率特性。“这标志着高性能电极材料在朝商用储能器件方向发展的道路上迈出了关键的一步。”中国科学院院士、中国科学院金属研究所研究员成会明评论说。 段镶锋表示,这一方案可以适用于其他高性能电极材料,为在商业级器件中实现此类高性能储能材料的潜力提供了一个切实可行的途径,有望极大提高相关储能器件的容量和充放电速度。

石墨烯在水性涂料中应用

2019-03-07 09:03:45

水性涂料是国家发起开展的环境友好型涂料,但某些功用尚不及相应的溶剂型涂料,影响其开展。石墨烯具有共同功用,可改善水性涂料功用,促进其开展,给涂料作业者带来新的等待。石墨烯在涂猜中运用首先是改性溶剂型涂料,但用于改性水性涂料也有显着开展。改性办法可用共混法复合改性,也可用原位聚合和溶胶-凝胶技能复合法改性,还可用偶联剂润饰,一同实施不同的功用改性。 1 用钛酸酯偶联剂润饰水涣散改性石墨烯 按通用办法将石墨制成氧化石墨烯,向氧化石墨烯涣散液内分别参加钛酸酯和,在水浴加热法下发作反响,使氧化石墨烯复原并一同嫁接上钛酸酯偶联剂分子。将取得的混合液进行后处理和真空枯燥,得到粉末状改性石墨烯。 因为钛酸酯偶联剂对氧化石墨烯进行了表面润饰,不再发生聚会,故石墨烯水涣散体稳定性高,可长期储存,合适用于复合材料及涂层材料的制备。制备工艺简洁,出产效率高,出产进程和产品均能契合环保要求。 2 石墨烯与基体树脂共混复合水性涂料 2.1 水性导电涂料 石墨烯/聚酯树脂复合水性导电涂料。用Hummers法制备氧化石墨烯,经两步化学复原法得到有机分子润饰的石墨烯水溶液,参加聚酯、助剂和交联剂、催化剂,经液态共混,制备得到水性导墨烯涂料。该涂料具有高导电功用和力学功用,可运用于电磁屏蔽、抗静电、防腐、散热、耐磨及电子线路等范畴,具有广泛的运用价值。 2.2 石墨烯改性水性环氧树脂耐磨玻璃涂料 石墨烯改性的耐磨水性玻璃涂料由两组分组成,榜首组分为基体成膜物,第二组分为固化剂。其间榜首组分包含改性环氧树脂20%~40%、助剂0.5%~7%、氧化石墨烯0.1%~5%、偶联剂1%~2%,其他为水(均为质量分数);第二组分是胺类固化剂。在运用前将两组分混合,其间第二组分占混合物质量分数的3%~30%。该涂料具有硬度高、耐磨性好、与玻璃基底亲和力与附着力强、耐水、耐乙醇性好,且契合环保要求。别的制备办法简洁,具有重要的商业化运用价值。 2.3 石墨烯改性酸酯聚合物水泥防水涂料 用Hummers法制备的氧化石墨烯参加酸酯类聚合物乳液中,参加选用的助剂,按份额参加水泥,拌和涣散,制成氧化石墨烯改性的聚合物水泥防水涂料。该涂料显着增加了酸酯类聚合物乳液成膜的抗拉强度;进步了耐水性;此外,氧化石墨烯丰厚的含氧官能团能够调理水泥水化产品晶体的成长,进步其抗拉强度和耐性。故氧化石墨烯改性的聚合物水泥防水涂料具有杰出的耐久性、抗渗性以及物理力学功用,运用远景宽广。 2.4 石墨烯改性聚酯树脂复合水性涂料 2.4.1 石墨烯/水性聚酯纳米复合乳液 将真空脱水的聚醚多元醇(N210)和TDI反响制得聚酯预聚体,参加二羟甲基引进亲水羧基,加中和盐基化,参加氧化石墨烯水溶液、去离子水和乙二胺进行乳化反响,减压蒸馏出后,滴加维生素C溶液进行原位复原反响,得到石墨烯/水性聚酯纳米复合乳胶树脂。该乳胶树脂可运用于静电防护、防腐涂层、建筑涂料等范畴,本发明工艺简洁、环保、合适大规模出产。 2.4.2 石墨烯/TiO2复合材料改性水性聚酯抗菌涂料 纳米TiO2作为光催化纳米材料的一种,有抗菌灭菌效果,但它关于可见光吸收率较低,纳米粒子趋向于集合,大大降低了其灭菌效果。在含纳米TiO2抗菌涂猜中,引进5%以下的石墨烯,显着进步涂料对可见光吸收率,并加强纳米TiO2的光催化活性和抗菌、灭菌才能,使改性后的水性聚酯在抗菌灭菌归纳功用方面有很大进步。而且具有杰出的表面功用、耐水性和力学功用。 3 石墨烯/聚酯原位聚合的水性导电涂料 石墨烯比较传统的碳系导电填料(炭黑、石墨、碳纳米管、碳纤维等)具有愈加优异的导电性及机械功用。 用二元胺对氧化石墨烯进行基化改性,后用化学复原康复石墨烯的共导电系统,使用石墨烯表面的—NH与—NCO封端的水性聚酯原位聚合,制得含石墨烯的水性聚酯导电涂料。 该导电涂料具有防辐射、抗静电、防腐蚀、耐磨等特性,可用于高分子材料、金属材料、纺织材料表面等方面。 4 用溶胶-凝胶技能制备改性石墨烯/水性聚酯纳米复合涂料 中国科技大学Xin Wang等于2012年在《Surface& CoatingsTechnology》上宣布了他们的研讨论文:用溶胶-凝胶技能制备改性石墨烯/水性聚酯复合纳米涂料,分3部分: (1)硅烷改性石墨烯纳米薄膜制备。用Hummers法制备氧化石墨烯(GO),然后对GO水涣散体用化学复原成GNS,再用DCC(N,N'-二环己基碳化二亚胺)和3-基丙基三乙氧基硅烷(APTES)功用改性,用超声波涣散1h,在70 ℃下拌和反响24 h,经后处理得到APTES功用改性的石墨烯纳米膜f-GNS。 (2)硅烷APTES封端的水性聚酯(WPU)制备。用异佛尔酮二异酸酯(IPDI)、聚氧化丙二醇、一缩二乙二醇和三羟甲基混合多元醇组成PU预聚物,再和二羟甲基反响,然后加APTES反响,得到APTES封端的水性聚酯(WPU),产率86.3%,数均分子量28600(GPC测定)。 (3)溶胶-凝胶技能制备f-GNS/WPU纳米复合涂料。凭借超声波将f-GNS粉末涣散在去离子水中制成悬浮液,将APTES封端的WPU参加其间一同混合,用调理pH值,制成f-GNS/WPU纳米复合涂料。 用1H-NMR、FTIR、XPS、GPC、AFM、HRTEM等表征了GO、f-GNS的结构,根本验证了图1所示的分子结构式与反响进程,及f-GNS/WPU纳米复合涂料产品结构和组成。纳米复合物中的T1、T2和T3代表了单、二和三替代的硅烷键合,证真实APTES封端的WPU和f-GNS相邻的硅氧烷分子之间缩聚反响,构成共价键。 5 结 语 5.1 石墨烯具有共同功用,研制热潮在全球突起 石墨烯是当今世界发现的“至薄”的晶体材料,厚度只要1个碳原子,也是“至坚”材料之一,并具有高导电性、高导热性。猜测在航空航天、世界勘探、海洋开发、国防工业、国民经济各方面具有不可估量的运用远景,研讨热潮在全球突起,国内也起步不俗,开展较快。 5.2 石墨烯在改性涂料功用方面展现了新的远景 对石墨烯在导电、防腐、阻燃、导热和高强度等功用涂猜中都具有十分诱人的潜在远景。 石墨烯与各种涂料树脂经过物理共混、原位聚合和溶胶-凝胶技能等法复合;或用偶联剂润饰,或选用原位聚合等工艺。这些工艺在改性水性涂猜中均证明可行,且功用改善显着。水性涂料经石墨烯改性,其功用有望“更上一层楼”,其进一步开展可期。 5.3 石墨烯改性涂料研制脚步初迈,要正确促进石墨烯出产及运用的开发热潮继续升温,但应镇定对待。 对出产厂商而言,石墨烯出产技能是否到达世界最先进,是否契合清洁文明出产工艺要求,本钱是否合理,有许多技能作业要做。石墨烯在涂猜中的运用,国内有不少研讨作业和专利宣布,开展势头较好,但不能说“已入胜境”。石墨烯和涂料树脂复合办法、助剂挑选、功用性改善,研制的空间都很大。国内宣布石墨烯改性水性涂料的作业和专利多是实验室效果,要到达有用并产业化,要更多投入,有许多研制作业要做。

锂电池的铜箔可用于制作石墨烯,成本可降低100倍

2019-03-07 10:03:00

现在,比较更传统的电子材料,石墨烯制作进程十分缓慢,意味着本钱更高。现在,格拉斯哥大学研讨人员发现,用于制作锂离子电池的铜材料能够快速批量出产大片石墨烯。 现在,比较更传统的电子材料,石墨烯制作进程十分缓慢,意味着本钱更高。现在,格拉斯哥大学研讨人员发现,用于制作锂离子电池的铜材料能够快速批量出产大片石墨烯。作为碳原子的二维晶体,石墨烯是比如零维富勒烯,一维碳纳米管和三维石墨许多碳衍生物的根本构建材料。这些碳纳米材料都被用于制作各种电子产品。从太阳能电池到灯泡和超活络气体传感器。可是出产大面积高品质的石墨烯,其出产本钱远高于硅。 这种出产本钱傍边很大一部分是出产石墨烯的基板。经过运用化学气相堆积(CVD)的办法,铂,镍或钛的碳化物在高温环境中暴露在乙烯或傍边,来发生单层(一层一个原子厚)石墨烯。最近的出产办法现已下降这些本钱,这种办法经过掺入铜作为基体,但即使是这种办法出产本钱依然贵重。 为了协助极大地下降这些本钱,研讨人员运用一般用于制作超薄阴极(负电极)的锂离子电池的廉价铜箔,在其表面上堆积高品质的石墨烯。事实证明,这种廉价铜箔是优秀基材,铜表面彻底润滑,十分合适构成石墨烯,每平方米本钱一美元,之前贵重办法的每平方米本钱为115美元。 该研讨小组以为,大规模廉价组成办法能完成石墨烯基柔性光电体系,包含比如手机曲折显示器,电子纸,无线射频辨认(RFID)的高质量石墨烯薄膜标签,医疗通道以供给药物或监测生命体征,为机器人和假肢打造的电子皮肤等等。

浅析石墨烯应用于锂电池中的可能性

2019-03-08 09:05:26

事物的开展方向尽管路途弯曲迂回,但终归是行进的和上升的。石墨烯的功能与其层数休戚相关,倘若有一天能完成高质量单层石墨烯的量产,或许全部又会不一样。 我国粉体网讯近年来,跟着新能源轿车和移动通讯设备的开展,运用石墨烯改进、进步动力、储能电池材料的功能,正成为业界重视的焦点。不管是出于炒作的意图仍是科研成果的发布,一时间石墨烯电池新闻“漫山遍野”! 第一款产品是东旭光电于2016年推出了世界首款石墨烯基锂离子电池产品——“烯王”。第二款产品是2016年12月华为推出的业界首个高温长寿命石墨烯助力的锂电池。第三款产品是东旭光电和贝斯特将石墨烯用在隔阂上做出的“国产石墨烯电池”。 …… 尽管“石墨烯电池”的新闻许多,但精确的来讲,现在市面上还没有一款真实意义上的“石墨烯电池”,根本上都是在材料中参加一点石墨烯,以进步锂电池的部分功能的石墨烯基锂离子电池。详细咱们就来分析一下石墨烯在锂电池中究竟能起什么作用。 据了解,石墨烯在电池范畴的运用方式主要有这么几种:1、石墨烯独自用于正/负极材料;2、与其它新式负极材料,比方硅基和锡基材料以及过渡金属化合物构成复合材料;3、作为集流体或集流体涂层,用于进步电池功率特性。 经过以上资料来看,石墨烯在锂电池中的运用还真不少,现在咱们就来分析一下可行性究竟有多大。 1、石墨烯直接作为正/负极材料 研讨标明,纯石墨烯的充放电曲线跟高比表面积硬碳和活性炭材料十分类似,都具有高比表面无序碳材料的根本电化学特征,即初次循环库仑功率极低、充放电渠道过高、电位滞后严峻以及循环稳定性较差的缺陷。 结构上来看,石墨烯的片状结构按捺锂离子的涣散,简单构成电池极化严峻,这也导致了石墨烯的振实和压实密度都十分低,再加上石墨烯本钱极端贵重。归纳来讲,不存在替代传统电极材料直接用作锂离子电池的或许性。 2、石墨烯复合材料电极 石墨烯与硅基和锡基材料以及过渡金属化合物构成复合材料电极。一方面来看,运用石墨烯的纳米空隙能够很好地处理硅和锡材料的胀大碎裂,另一方面,彼此协同作用可有用缓解聚会现象进步额定的储锂空间。 归纳来讲,石墨烯复合材料做电极的确能改进复合材料的电化学功能,但考量材料本钱、生产工艺、量产化或许,石墨烯复合材料电极做不到“鹤立鸡群”,究竟花了大力气做出的材料性价比不高,也就没有完成产业化的必要。 3、石墨烯作为导电剂 其他方面来看,参加到导电剂能进步材料的循环功能和高倍率功能,作用显着高于天然石墨和黑,一起能将电芯内阻减小至最小,有用地处理了阻止锂电池产品快速充电的技能瓶颈,一起大大延长了电池运用寿命,但高倍率功能不抱负,难以广泛运用。 尽管抱负很饱满,但实际总是很骨感,片层结构的石墨烯很难完成均匀涣散,除此之外,石墨烯表面具有丰厚的官能团,添加过多不只会下降电池能量密度,并且会添加电解液吸液量,一起还会添加与电解液的副反应而影响循环性,甚至有或许带来安全性问题。 4、石墨烯运用于正极材料 研讨标明,石墨烯作为辅料添加到正极材料中,可改进倍率和低温功能。可是此类研讨的重复性不高,笔者查阅相关资料,有研讨标明,石墨烯包覆磷酸铁锂只能弱小进步充电功能,作用还不如碳纳米管;而石墨烯包覆三元材料会使材料功能下降,若运用氧化石墨烯功能会稍微改进。归纳来讲,并不是特别抱负。 总结 尽管石墨烯在锂电池中的运用现在并不可观,但今日的石墨烯并不等同于未来的石墨烯,马克思曾在其唯物辩证的哲学思想中提出:“新事物的开展阅历着由小变大,由不完善到完善的进程,人们对新事物的认可也有必定进程,事物的开展方向尽管路途弯曲迂回,但终归是行进的和上升的。”石墨烯的功能与其层数休戚相关,倘若有一天能完成高质量单层石墨烯的量产,或许全部又会不一样。

石墨烯的时代,还远没有到来

2019-03-06 10:10:51

导读前不久,任正非在承受媒体采访时宣称,未来10至20年内会迸发一场技能,“我以为这个年代将来最大的推翻,是石墨烯年代推翻硅年代”,“现在芯片有极限宽度,硅的极限是七纳米,现已接近鸿沟了,石墨是技能前沿”。这儿说到的石墨烯,终究是何方神圣?它真的能带来推翻吗?扫描电镜下的石墨烯,显现出其碳原子组成的六边形结构。图片来历:Lawrence Berkley National Laboratory石墨烯——一种只需一个原子厚的二维碳膜——确实是种令人惊奇的材料。尽管姓名里带有石墨二字,但它既不依靠石墨储量也彻底不是石墨的特性:石墨烯导电性强、可弯折、机械强度好,看起来颇有未来奇特材料的风仪。假如再把它的潜在用处开个清单——维护涂层,通明可弯折电子元件,超大容量电容器,等等——那简直是改动国际的发明。连2010年诺贝尔物理学奖都颁发了它呢!其实就在2012年,因石墨烯而取得诺贝尔奖的康斯坦丁·诺沃肖洛夫(Konstantin Novoselov)和他的搭档曾经在《天然》上发表文章评论石墨烯的未来,两年来的开展也根本证明了他们的猜测。他以为作为一种材料,石墨烯“出路是光亮的、路途是曲折的”,尽管将来它或许能发挥严重效果,可是在战胜几个严重困难之前,这一场景还不会到来。更重要的是,考虑到工业更新的巨大本钱,石墨烯的优点或许不足以让它简略地代替现有的设备——它的真实远景,或许在于为它的共同特性量身定做的全新运用场合。 石墨烯终究是什么? 石墨烯是人们发现的第一种由单层原子构成的材料。碳原子之间彼此连接成六角网格。铅笔里用的石墨就适当于许多层石墨烯叠在一起,而碳纳米管就是石墨烯卷成了筒状。石墨、石墨烯、碳纳米管和球烯之间的联系。图片来历:enago.com由于碳原子之间化学键的特性,石墨烯很坚强:能够曲折到很大视点而不开裂,还能反抗很高的压力。而由于只需一层原子,电子的运动被约束在一个平面上,为它带来了全新的电学特点。石墨烯在可见光下通明,但不透气。这些特征使得它十分合适作为维护层和通明电子产品的质料。 可是合适归合适,真的做出来还没那么快。 问题之一:制备方法。       许多项研讨向咱们展示了石墨烯的惊人特征,但有一个圈套。这些美好的特性对样品质量要求十分高。要想取得电学和机械功能都最佳的石墨烯样品,需求最费时吃力费钱的手法:机械剥离法——用胶带粘到石墨上,手艺把石墨烯剥下来。诺沃肖洛夫团队捐赠给斯德哥尔摩的石墨、石墨烯和胶带。胶带上的签名“Andre Geim”就是和诺沃肖洛夫一起取得诺贝尔奖的人。图片来历:wikipedia尽管所需的设备和技能含量看起来都很低,但问题是成功率更低,弄点儿样品做研讨还能够,工业化出产?恶作剧。要论工业化,这手法毫无用处。哪怕你把握了全国际的石墨矿,一天又能剥下来几片……        当然现在咱们有了许多其他方法,能增加产值、降低本钱——费事是这些方法的产品质量又掉下去了。咱们有液相剥离法:把石墨或许相似的含碳材料放进表面张力超高的液体里,然后超声轰炸把石墨烯雪花炸下来。咱们有化学气相堆积法:让含碳的气体在铜表面上冷凝,构成的石墨烯薄层再剥下来。咱们还有直接成长法,在两层硅中间直接设法长出一层石墨烯来。还有化学氧化还原法,靠氧原子的刺进把石墨片层别离,如此等等。方法有许多,也各自有各自的适用范围,可是迄今为止还没有真的能合适工业化大规模推行出产的技能。        这些方法为什么做不出高质量的石墨烯?举个比如。尽管一片石墨烯的中心部分是完美的六元环,但在边际部分往往会被打乱,成为五元或七元环。这看起来没啥大不了的,可是化学气相堆积法发生的“一片”石墨烯并不真的是完好的、从一点上成长出来的一片。它其实是多个点一起成长发生的“多晶”,而没有方法能确保这多个点长出来的小片都能完好对齐。所以,这些变形环不光散布在边际,还存在于每“一片”这样做出来的石墨烯内部,成为结构缺点、简略开裂。更糟糕的是,石墨烯的这种开裂点不像多晶金属那样会自我愈合,而很或许要一向延伸下去。成果是整个石墨烯的强度要折半。材料是个费事的范畴,想鱼与熊掌兼得不是不或许,但必定没有那么快。显微镜下的一块石墨烯,伪色符号。每一“色块”代表一片石墨烯“单晶”。图片来历:Cornell.edu 问题之二:电学功能。       石墨烯一个有远景的方向是显现设备——触屏,电子纸,等等。可是现在而言石墨烯和金属电极的接触点电阻很难抵挡。诺沃肖洛夫估量这个问题能在十年之内处理。       可是为啥咱们不能爽性扔掉金属,全用石墨烯呢?这就是它在电子产品范畴里最丧命的问题。现代电子产品全部是建筑在半导体晶体管之上,而它有一个要害特点称为“带隙”:电子导电能带和非导电能带之间的区间。正由于有了这个区间,电流的活动才干有非对称性,电路才干有开和关两种状况——可是,石墨烯的导电功能真实太好了,它没有这个带隙,只能开不能关。只需电线没有逻辑电路是毫无用处的。所以要想靠石墨烯发明未来电子产品,代替硅基的晶体管,咱们有必要人工植入一个带隙——可是简略植入又会使石墨烯损失它的共同特点。现在针对这个范畴的研讨确实不少:多层复合材料,增加其他元素,改动结构等等;可是诺沃肖洛夫等人以为这个问题要真实处理,还要至少十年。 问题之三:环境危险。       石墨烯工业还有一个意想不到的费事:污染。石墨烯工业现在最老练的产品之一或许是所谓“氧化石墨烯纳米颗粒”,它很廉价,虽不能用来做电池、可弯折触屏等高端范畴,作为电子纸等用处却是适当不错;可是这东西对人体很或许是有毒的。有毒没关系,只需它老老实实呆在电子产品里,那就没有任何问题;可是前不久研讨者刚发现它在地表水里十分安稳、极易分散。尽管现在对它的 环境影响下断语还为时太早,但这确实是个潜在问题。 所以,石墨烯的命运终究怎么?       鉴于曩昔几个月里学界并无新的突破性发展,近来它的这波突发性“炽热”,恐怕本质上仍是本钱运转的炒作成果,应审慎对待。作为工业技能,石墨烯看起来还有许多未能战胜的困难。诺沃肖洛夫指出,现在石墨烯的运用仍是受限于材料出产,所以那些运用最初级最廉价石墨烯的产品(比如氧化石墨烯纳米颗粒),会最早问世,或许只需几年;可是那些依靠于高纯度石墨烯的产品或许还要数十年才干开发出来。关于它能否代替现有的产品线,诺沃肖洛夫仍然心存疑虑。 另一方面,假如商业范畴过度夸张其奇特之处,或许会导致石墨烯工业变成泡沫;一旦决裂,那么或许技能和工业的发展也无法解救它。科学作者菲利普·巴尔曾经在《卫报》上撰文《不要希望石墨烯带来奇观》,指出一切的材料都有其适用范围:钢坚固而沉重,木头简便但易腐,就算看似“全能”的塑料其实也是种种截然不同的高分子各显神通。石墨烯一定会发挥巨大的效果,可是没有理由以为它能成为奇观材料、改动整个国际。或许,用诺沃肖洛夫自己的话说:“石墨烯的真实潜能只需在全新的运用范畴里才干充沛展示:那些设计时就充沛考虑了这一材料特性的产品,而不是用来代替现有产品里的其他材料。” 至于眼下的可打印、可折叠电子产品,可折叠太阳能电池,和超级电容器等等新范畴能否发挥它的潜能,就让咱们平心静气拭目而待吧。

石墨烯应用领域及前景浅析

2019-01-03 09:36:46

石墨烯是一种二维晶体,石墨烯独特的结构使它具有优异的电学、力学、热学和光学等特性,例如石墨烯具有100倍于硅的超高载流子迁移率、高达130GPa的强度、很好的柔韧性和近20%的伸展率、超高热导率、高达2600m2/g的比表面积,并且几近透明,在很宽的波段内光吸收只有2.3%。这些优异的物理性质使石墨烯在射频晶体管、超灵敏传感器、柔性透明导电薄膜、超强和高导复合材料、高性能锂离子电池和超级电容器等方面展现出巨大的应用潜力。 尽管石墨烯还没有实现大规模的产业化,但是,市场对于石墨烯的应用十分看好,就目前的研发成果显示,未来石墨烯将广泛应用于以下四大领域。 1.电子材料领域 作为电极材料,石墨烯是绝佳的负极材料,被认为是可以替代硅的芯片材料。另外,石墨烯在柔性屏幕、可穿戴设备、太阳能充电等领域的应用还有待挖掘。 据悉,英国曼彻斯特大型已经开发出仅有10至40个原子厚度的石墨烯LED屏幕,拥有超薄、可弯曲的特性。这意味着未来,电子设备的屏幕可以进一步降低厚度、更为灵活,甚至实现整体柔性化。 石墨烯在可穿戴设备领域也具有一定应用空间。例如,爱尔兰科学家正在开发基于石墨烯的灵活可穿戴传感器,并发现该传感器能够检测到用户最细微的动作,包括跟踪呼吸和脉搏。另外,该传感器还能实现自供电,也许未来能够应用在智能服装中。 2.散热材料领域 金属材料在散热应用方面存在难于加工、耗费能源、密度过大、导电、易变形以及废料难回收等诸多问题,几乎没有太大的降价空间。而纳米石墨烯导热塑料如应用在LED灯具等产品的散热上,其系统成本至少可以降低30%。石墨烯是一种由碳原子构成的单层片状结构的纳米新材料,是目前人类所发现的几乎完美的平面原子结构,其出色的导电、导热以及散热性能让各行各业均对其寄予厚望。 石墨烯是二维的单层碳原子晶体,与三维材料相比,其低维结构可显著削减晶界处声子的边界散射,并赋予其特殊的声子扩散模式。石墨烯所具有的快速导热与散热特性使得石墨烯成为极佳的散热材料,可用于智能手机、平板电脑、大功率节能led照明、卫星电路、激光武器等的散热。 3.生物医学领域 石墨烯具有突出的力学性能和生物相容性,将其作为增强填料可显著提高生物材料的力学性能。 生物传感器是生命分析化学及生物医学领域中的重要研究方向,已广泛应用于临床疾病诊断和治疗研究。石墨烯制成的生物传感器对生命分析领域的快速发展具有重要现实意义。在基因组测序技术领域,最近成功开发出来的DNA感测器,是一种以石墨烯为基础的场效应类晶体管设备,能探测DNA链的旋转和位置结构。该感测器利用石墨烯的电学性质,成功实现检测DNA序列的微观功能。 4.军工领域 从中国石墨烯产业技术创新战略联盟(简称联盟)获悉,为促进石墨烯在军工领域的推广应用,2015年1月16日,联盟将举行军工应用委员会成立授牌仪式。 我国政府和国防军工方面的领导和专家对石墨烯在军工领域的应用前景十分关注。据悉,今年年初,在哈尔滨召开的“石墨烯军工应用技术研讨会”上,总装备部、国防科工局、各军工集团相关领导、专家,以及石墨烯产业领域专家与企业家、军工及民口配套单位代表共同研讨石墨烯在军工方面的应用前景。 由于石墨烯具有高导电性、高韧度、高强度、超大比表面积等特点,业内人士认为,石墨烯在航天军工等领域有广泛应用。据悉,我国科学家发现石墨烯可做太空动力源。通过对石墨烯在光作用下的运动现象的研究表明,石墨烯材料可将光能直接转化为动能,这标志着石墨烯材料将成为一种新的动力来源,这种动力源将远高于光压现象所产生的动力源。未来,石墨烯可能为星际探索、卫星变轨等提供无尽的动力。 结语 石墨烯由于优越的特性,业内预计未来5至10年,全球石墨烯产业规模会超过1000亿美元。更有乐观者认为,石墨烯的市场潜在规模至少在万亿元以上。就目前情况来讲,石墨烯市场化的最大阻碍是市场需求和价格,石墨烯未来产业化之路遥遥,需要政府的支持,和研发人员的开拓创新,相信通过共同努力,石墨烯将在更多的领域大放异彩。