您所在的位置: 上海有色 > 有色金属产品库 > 石墨烯电池试生产

石墨烯电池试生产

抱歉!您想要的信息未找到。

石墨烯电池试生产百科

更多

“石墨烯+”电池问世,电池续航两倍不是梦!

2019-01-03 14:43:39

自电动汽车问世以来,电池的续航能力一直是人们所关注的焦点,近日,中科院宁波材料所利用石墨烯研制出了一种千瓦级铝空气电池,其能量密度相当于一般商业电池的4倍乃至更高,能量密度的高低直接决定了动力汽车的续航能力,研发项目的成功使得电动汽车行业有了进一步的提升。 自电动汽车问世以来,电池的续航能力一直是人们所关注的焦点,近日,中科院宁波材料所利用石墨烯研制出了一种千瓦级铝空气电池,其能量密度相当于一般商业电池的4倍乃至更高,能量密度的高低直接决定了动力汽车的续航能力,研发项目的成功使得电动汽车行业有了进一步的提升。这一“续航魔咒”正在被打破,新的研究技术有望解决电动汽车的“里程焦虑”。 该电池系统能量密度高达510Wh/kg、容量20kWh、输出功率1000W,该能量密度比一般电池系统有了显著的提高,验证该系统的发电能力发现,该系统可同时为一台电视、电脑、电风扇以及10个60瓦照明灯泡供电。图为浙江省石墨烯应用研究重点实验室主任刘兆平  浙江省石墨烯应用研究重点实验室主任刘兆平介绍,如果将该电池系统用于新能源汽车上的话,可多方面提高汽车的性能,车身更加轻盈,大大提高了续航里程;如果用于手机充电宝上,则可大大提高输出电量。此外,传统通讯基站酸铅蓄电池3—4年更换一次,而宁波材料所研发的铝空气电池储存时间约15年,电池寿命要长得多。“正是拥有能量密度高、价格低廉、资源丰富、绿色无污染、放电寿命长等优势,铝空气电池在通讯基站备用电源与电动汽车增程器应用方面具有诱人的市场前景。”刘兆平说。

石墨烯在锂硫电池中的应用

2019-01-03 09:36:39

随着便携式电子设备和电动汽车等产业的快速发展,人们对高能量密度电池的需求日益迫切,然而在传统锂离子电池中,正极材料因“插层式”的储锂机制导致其容量普遍较低,无法满足快速增长的市场需求。因此,新型高能量密度二次电池的探索和研发成为了储能领域的研究热点,锂硫电池就是其中之一。 一、锂硫电池简介 锂硫电池的工作原理基于硫和Li+可以发生可逆的氧化还原反应,两者之间的电化学反应式如下:基于该反应的硫正极的理论比容量高达1675mAh/g,是传统锂离子电池正极材料的10倍,同时硫储量丰富、成本低,因此锂硫电池受到了广泛关注,然而硫及多硫化物本身性质的缺陷,使得锂硫电池仍存在很多问题。 首先,硫是绝缘体,导电性差,给电荷传递过程带来困难;其次,多硫化锂可以溶解在电解质中,易迁移到金属锂一侧被还原成不溶性Li2S沉积在金属锂电极表面发生“shuttleeffet”现象;再次,可溶性多硫化锂被完全还原成不溶性硫化物时,会阻碍电子和离子的有效传输;最后,单质硫转化为不溶性硫化物后,由于两种物质密度的差异,会造成体积效应,降低电极稳定性。因此,锂硫电池存在实际容量低、循环性能差和信率性能不佳等缺点。 二、石墨烯在锂硫电池中的应用 针对上述问题,为了获得高性能的锂硫电池,研究者对硫正极进行了多种手段的复合与改性研究,设计并制备了一系列具有新颖结构和优异性能的复合硫正极材料。其中,碳材料因其导电性高、结构丰富、比表面积大等优势而得到了广泛应用,而石墨烯这一新型碳材料在提升锂硫电池性能方面有优异表现。 石墨烯是优异的电子导体,同时具有机械强度高、比表面积大等优点,同时化学改性的石墨烯及石墨烯衍生物具有一系列能为负载提供诸多活性位点的表面官能团,因此石墨烯在复合硫正极材料中得到了广泛的应用。 一方面,石墨烯被用作硫正极的导电载体,弥补硫导电性差的缺陷;另一方面,通过合理的结构设计与表面改性,石墨烯还能够抑制多硫化物的溶解。此外,在最近的研究中,科学家还发现通过石墨烯功能涂层的设计,能够减缓多硫化物在正负极之间的穿梭,抑制“shuttleeffet”现象。 1、石墨烯/硫复合正极材料研究进展 石墨烯极高的电导率可以弥补硫颗粒导电性差的问题,因此石墨烯材料多被设计成负载硫单质的导电基体或者导电网络,比如石墨烯泡沫结构可实现石墨烯与硫在纳米尺度的均匀复合,能够为硫提供快速与高效的电子传输通道,同时纳米孔还能够有效束缚多硫化物。 常规条件下获得的三维石墨烯尽管结构丰富,但极为蓬松,表观密度很低,导致硫负载后复合电极材料体积能量密度严重不足,为此,中科院沈阳金属所成会明院士利用CVD方法在泡沫镍上获得三维多孔石墨烯泡沫。图1 (a)柔性石墨烯/硫复合材料的制备流程;(b、c、d、e)石墨烯/硫复合电极材料照片及柔性展示 该方法不仅能够负载高比例的硫,而且硫的含量能够在3.3~10.1mg/cm2范围内进行调控,特别是负载量为10.1mg/cm2的电极,能够获得极高的比面积容量(13.4mAh/cm2)。 另外,考虑到石墨烯独特的二维片状纳米结构,采用以石墨烯纳米片作为包裹材料,构筑具有“核壳”结构的复合电极材料也是固定多硫化物,缓解其溶解的重要方式。先在碳纳米纤维表面均匀负载上硫,再使用石墨烯包覆在硫表面是一种很有效的方法。图2 具有同轴结构石墨烯/S/碳纳米纤维复合电极制备图 2、石墨烯功能涂层在锂硫电池中的应用 为提高锂硫电池的循环稳定性,除了对硫正极材料的组成与结构进行调控以抑制多硫化物的溶解,通过极片结构的设计来减弱“shuttleeffect”也是一条重要途径。例如,在硫正极和隔膜间添加一层缓冲层能够极大的提高锂硫电池的寿命。图3 石墨烯隔膜涂层有效阻挡多硫化物迁移示意图 石墨烯/硫/石墨烯-隔膜的创新极片结构设计,一方面将集流体由传统的Al箔改为石墨烯;另一方面对隔膜进行改性,改变了原有隔膜与硫正极直接接触的方式,在隔膜表面涂布一层石墨烯材料。 采用传统的极片结构,在循环过程中多硫化物溶解在电解液后,会穿过隔膜进入金属Li一侧,而在这一新颖结构中,存在于隔膜与正极材料之间的石墨烯层能够有效阻止多硫化物的迁移。另外,由于石墨烯材料优异的力学性能,石墨烯改性隔膜能够有效缓解硫正极在充放电过程中的体积变化,保持极片结构的完整性。 综述: 电化学储能在当今人们的生产生活中占有重要地位,无论是可再生能源的大量存储还是便携式设备的高密度存储,对电化学储能器件和材料的成本、储能密度、稳定性等指标都提出了较高的要求。 锂硫电池由于其理论比容量、比能量高,原料价廉易得,在未来电化学储能领域中将极具竞争力,如果通过石墨烯的应用能够改善锂硫电池实际容量低、循环性能差和信率性能不佳等缺点,在不远的将来,锂硫电池的表现可能会给我们带来更多惊喜。

为何石墨软石墨烯“硬”

2019-01-04 15:47:49

导读 为什么石墨那么软,而石墨烯又表现得那么“硬”呢?浙江大学信息电子工程学院副教授林时胜介绍说,其实这里涉及两个不同的概念,一个是强度,这是力学概念,一个是硬度,属于物理概念。 石墨烯的“硬”,是指强度高,衡量强度的指标是杨氏模量,根据杨氏模量的高低可以把物质分为硬物质和软物质。石墨烯的模量非常高,可达1T帕(压强单位),是材料里最高的,所以石墨烯是硬物质,可以说是很硬。相应的像橡胶这些,模量只有几千帕,就是软物质,很软。材料力学上有刚度、强度、韧度、硬度等不同物理概念,这与我们通常讲的硬与软有区别。从通俗意义上说,石墨烯的“硬”指的是石墨烯的强度很好,就是它抗断裂的能力很强,这也和它的韧性很好有关系,因为容易延展而不断裂。模量就是代表了材料能被拉伸的容易程度。  再说石墨的软,这是物理概念,指的是硬度。硬度的衡量,是用一种材料去破坏另一种材料,被破坏的硬度就小。石墨的片层之间是范德华力,非常弱,只要用固体去划它,都能把它的片层错开,所以石墨很容易被破坏,就是说石墨很软。

为何石墨软,石墨烯“硬”?

2019-01-03 09:37:04

为什么石墨那么软,而石墨烯又表现得那么“硬”呢?浙江大学信息电子工程学院副教授林时胜介绍说,其实这里涉及两个不同的概念,一个是强度,这是力学概念,一个是硬度,属于物理概念。 石墨烯的“硬”,是指强度高,衡量强度的指标是杨氏模量,根据杨氏模量的高低可以把物质分为硬物质和软物质。石墨烯的模量非常高,可达1T帕(压强单位),是材料里最高的,所以石墨烯是硬物质,可以说是很硬。相应的像橡胶这些,模量只有几千帕,就是软物质,很软。 材料力学上有刚度、强度、韧度、硬度等不同物理概念,这与我们通常讲的硬与软有区别。从通俗意义上说,石墨烯的“硬”指的是石墨烯的强度很好,就是它抗断裂的能力很强,这也和它的韧性很好有关系,因为容易延展而不断裂。模量就是代表了材料能被拉伸的容易程度。 再说石墨的软,这是物理概念,指的是硬度。硬度的衡量,是用一种材料去破坏另一种材料,被破坏的硬度就小。石墨的片层之间是范德华力,非常弱,只要用固体去划它,都能把它的片层错开,所以石墨很容易被破坏,就是说石墨很软。

漫画简介石墨烯!

2019-03-08 09:05:26

石墨烯被称为“黑金”,又被称为“新材料之王”,是现在发现的最薄、强度最大、导电导热功能最强的一种新式纳米材料,极有或许掀起一场席卷全球的颠覆性新技术新产业革新。 石墨烯的制备上,多晶薄膜有望未来1-2年内完成产业化使用,单晶石墨烯工业组成办法仍未找到,因而间隔产业化还很悠远。低成本的使用氧化还原法出产石墨烯粉体,一起可以使用CVD法出产出层数可控、大面积的石墨烯薄膜是未来研究要点,也是推进职业开展的要害点。而在使用层面,未来被看好的范畴是锂离子电池、柔性显现、太阳能电池和超级电容器。

石墨烯真神奇

2019-03-07 10:03:00

近两年石墨烯的可控低成本制备技能已获得了打破性开展,有望在不久的将来构成石墨烯工业。 日前,在深圳举行的第十九届我国世界高新技能效果交易会上,石墨烯作为独具特色的新材料再次引起人们的重视,成为这个国内最大规划、最具影响力的科技展会上一个耀眼的“明星”。石墨烯到底有哪些奇特之处,能为人们带来什么惊喜?记者采访了相关专家。 人类正行进在以硅为首要物质载体的信息年代,下一个量子年代,石墨烯很或许锋芒毕露 和金刚石相同,石墨是碳元素的一种存在方式。风趣的是,因为原子结构不同,金刚石是地球上自然界最坚固的东西,石墨则成了最软的矿藏之一,常做成石墨棒和铅笔芯。 科学家介绍说,石墨烯是从石墨材料中剥离出来,只由一层碳原子构成、按蜂窝状六边形摆放的平面晶体。浅显地讲,石墨烯就是单层石墨。一块厚1毫米的石墨大约包括300万层石墨烯;铅笔在纸上悄悄划过,留下的痕迹就或许是好多层石墨烯。 这种只要一个原子厚度的二维材料,一向被以为是假定性的结构,无法独自安稳存在。直至2004年,两位英国科学家成功地从石墨中别离出石墨烯,证明了其可以独自存在,并因而一起获得2010年诺贝尔物理学奖。 据我国电科55所所长、微波毫米波单片集成和模块电路要点试验室主任高涛博士介绍,石墨烯共同的结构让它具有更导电、更传热、更坚固、更透光等优异的电学、热学、力学、光学等方面的功能。轻浮、强韧、导电、导热……石墨烯这些特性赋予人们许多幻想空间。 石墨烯的特色首先是薄,可谓现在世界上最薄的材料,只要一个原子那么厚,约0.3纳米,是一张A4纸厚度的十万分之一、一根头发丝的五十万分之一。与此一起,石墨烯比金刚石更硬,透光率高达97.7%,是世界上最坚固又最薄的纳米材料。 一起,它又能导电。石墨烯的电子运转速度达1000千米/秒,是光速的1/300,十分合适制造下一代超高频电子器材。石墨烯仍是传导热量的高手,比最能导热的银还要强10倍。 石墨烯的特性,也体现得很“好玩”。比方当一滴水在石墨烯表面翻滚时,石墨烯能敏锐地“察觉”到纤细的运动,并发生继续的电流。这种特性给科学家供给了一种新思路——从水的活动中获取电能。比方,在雨天可以用涂有石墨烯的雨伞进行发电,或许可以做成活络的传感器材等。 “人类阅历了石器、陶器、铜器、铁器年代,正行进在以硅为首要物质载体的信息年代;而下一个量子年代哪种材料将锋芒毕露呢?很或许是石墨烯。”浙江大学高分子科学与工程学系教授高明说。 未来电动轿车运用石墨烯电池,花两三分钟就或许把电充溢 因为石墨烯的奇特功能,加上制备简洁、研讨视角多维,其运用潜力巨大、适用职业广大,成为抢眼的材料“新星”一点不古怪。石墨烯从发现到现在仅10余年的时刻,已获得了许多令人震慑的研讨效果,称得上是人类历史上从发现到运用最快的材料。 高明说,从材料化学视点看,石墨烯会带来资源、环境、化工、材料、动力、传感、交通机械、光电信息、健康智能、航空航天等范畴的改动或革新。我国石墨矿储量丰厚,约占全世界的75%,其高效开发将引起碳资源及我国大资源战略的新定位、新考虑、新规划。 石墨烯的工业化出产则将促进化工、机械、智造、自控等职业的技能前进。石墨烯的增加可以发生多功能复合材料,用来制造高功能电池、电容器。石墨烯传感器可以在生物检测、光电勘探方面大显神通,石墨烯及其它二维材料的异质叠合材料可制造高功能晶体管。 可以说,石墨烯技能将对咱们的吃、穿、住、行、用、玩都发生影响。石墨烯复合膜阻氧阻水功能好,可前进食物保质期;石墨烯纤维可制成发热服饰和医疗保健用品;石墨烯电热膜电热转化效率高,可逐渐替代暖气供热;石墨烯系列材料可用于轿车、火车等交通工具,石墨烯导热膜可用于手机高效散热…… 石墨烯另一个被寄予厚望的运用范畴是电能贮存。它的优势在于充电速度快,并且可以重复运用几万次。但现在石墨烯存储的电量不如电池多,还无法存储足够多的电能。未来,跟着充电设备的日益完善和相关技能的前进,电动轿车运用石墨烯电池,花两三分钟就或许把电充溢。 我国电科55所微波毫米波单片集成和模块电路要点试验室副主任孔月婵博士介绍说,石墨烯的电子运转速度是硅的十倍,由石墨烯制造的高频器材理论上作业频率可以到达硅的十倍乃至上百倍。石墨烯引发的技能很或许从人们常见的小小芯片开端。 此外,科研人员已完结柔性衬底晶体管的研发,正在测验柔性通讯电路的研发。未来不管是可以折叠的显现屏幕,仍是可以植入人体的可穿戴设备,都或许靠这样的石墨烯器材来完成。 高涛以为,即便在试验室条件下,石墨烯的奇特功能仍然没有彻底释放出来。因为技能层面还存在着不少应战,真实大面积运用还有很长的路要走。但经过加强需求和研讨的结合,不断在石墨烯材料的制备和器材研发方面获得重要打破,发明更多更新更具颠覆性的运用,石墨烯这种新一代战略性新式材料将会极大改动人们的生发日子。 国内石墨烯研讨与国外底子同步,有望在不久的将来构成石墨烯工业 石墨烯一向是世界上的研讨热门,并在不断升温。近几年来,全球石墨烯相关的论文和发明专利简直呈指数式增加,不只各类优异的物理化学功能被猜测、证明,并且由此生宣布许多详细的研讨方向。 据了解,许多国家正在抢夺石墨烯技能的制高点。欧盟石墨烯旗舰方案以石墨烯传感为首要研讨方向,美国正在测验使用石墨烯完成通讯的柔性化并获得了明显的效果,韩国继续支撑石墨烯柔性显现的研讨并制备出了演示产品。 高涛说,整体来讲,世界上石墨烯各项优异功能正逐渐从试验室研讨向产品运用过渡,一起一些潜在的功能或运用还在不断被开掘。但这个工程化是一个长时间而困难的进程,给我国完成赶超世界水平、占据技能制高点带来了绝好的机会。 高明以为,现在国内石墨烯研讨与国外底子同步,一些方面有原创和引领性效果。国内研讨侧重化学和材料,国外更偏机理和器材。国内石墨烯的研讨在理论研讨方面可说是已完成与世界先进水平“并跑”,论文、专利不管数量仍是质量都具有很强的世界竞争力。到2016年3月,我国石墨烯的专利总数占全世界的56%。与此一起,国家赞助了很多有关石墨烯的基础研讨项目,开始构成了政府、科研机构和厂商协同立异的产学研协作对接机制。 例如,清华大学开宣布米级石墨烯单晶薄膜的快速制备技能;我国电科55所研宣布了世界上最快的柔性石墨烯晶体管;浙江大学纳米高分子团队则经过近十年研讨,开宣布了石墨烯纤维、石墨烯接连拼装膜、石墨烯超轻气凝胶及石墨烯无纺布等。 受访专家指出,各个方向不断呈现令人惊喜的研讨效果,让人们对石墨烯的未来充溢等待。但整体来讲,石墨烯技能成熟度还比较低。关于石墨烯的开展,其限制要素或许说难点,首要在材料制备技能、全新规划理念和二维控制技能等方面。其间,高品质、大批量的石墨烯质料问题暂时没有底子处理,还需要进行很多技能攻关。有些技能如单层氧化石墨烯、石墨烯单晶等在试验室制备成功了,但完成工程化、接连性、低成本、高效安稳制备还有较长的路要走。只要真实高品质的石墨烯量产了,颠覆性运用才会呈现。 不过科学家们也比较达观,近两年石墨烯的可控低成本制备技能已获得了打破性开展,有望在不久的将来构成石墨烯工业。

石墨烯基锂电池有了新突破

2019-03-08 09:05:26

深圳市来历新材料科技有限公司、秦皇岛市太极环纳米制品有限公司选用智能制作新技能,干法机械剥离石墨烯。并以机械石墨烯为首要新材料制成正极,以涂层金属锂为负极,组成锂烯电池,通过一千屡次循环,成果证明,比容量初始最高可达1800mAh/g,100次时稳定在1200mAh/g以上,约等于一般锂电池的4~5倍,至200次时稳定在1100mAh/g,400次一向到600次也一向稳定在1000mAh/g以上,至700至800次,都是在900mAh/g以上,至1100次时,也还有700mAh/g以上的比容量,也还比一般的锂电池高出两三倍。是行业界石墨烯基锂电池研制以来最好的数据。 “千呼万唤始出来”的石墨烯锂电池,是怎么面世的呢?原因是中国人自己的一个科学发现导致了一个范畴的技能。这就是落地发作的多边应力连动的二次加力,这一力学原理带来了智能制作的创意,发作了Gpa级的超高能冲击式球磨纳米技能,见图2,原因是选用原创的干法机械剥离石墨烯(以下简称机械烯)技能。 干法机械烯的特点是:石墨层间的碱金属不丢失、密度大、表面缺点多、与金属片可衔接成千层饼结构,多层层叠后微孔大增,所以容量高、效率高、寿命长。从图能够看出石墨烯的层厚散布在0.224-0.952纳米之间,其间40%微片进入量子点尺度,石墨烯外观体现极不规矩。 最大的长处是高性价比。大型机可宏量出产,出产成本仅几毛钱1克,使石墨烯天价落地。 锂烯电池是以石墨烯复合纳米材料制成正极,以涂层金属锂为负极,再运用陶瓷纤维隔阂,滴防燃爆电解液组成,涂层的锂片按捺了锂枝晶的成长,陶瓷纤维隔阂可防止意外的枝晶穿透、防燃爆电解液按捺了起火,爆破的意外发作。 以上是2016年研究成果,本年又有了明显发展,在比容量提升至2700mAh/g以上的一起,也感触到了锂烯电池的能量还有很大的上升空间。 新能源要害是新材料,谁能把握新材料,谁就能执锂电商场之盟主,而机械石墨烯及纳米合金新材料最急需是制备要害技能及要害设备的智能制作渠道。 石墨烯剥离机、纳米磨天磨及机械制备石墨烯全纳米材料电池的量产项目是彻底自主立异的新科学发现、新科学理念、新工艺、新技能、新要害制作设备,推翻人们观念的方法学打破,机器的力学规划合理,多边连动,动能巨大,又节约资源,可将石墨烯剥离,可宏量制作石墨烯,确保新材料的宏量。是配备制作与新能源纳米新材料聚合发力的制作渠道。 此外,咱们在秦皇岛一起启动了收回废物废品制成石墨烯负极,成本可低至几分钱1克,比容量是碳负极的两倍,是环保、新能源、新材料的好项目。希有志同路成为合作伙伴。

科学家研发铝-石墨烯-氧合成电池

2019-01-09 11:26:51

据报道,总部位于布里斯班的能源技术公司LWP Technologies Limited宣布将投资于具有开创意义的铝-石墨烯合成与电池制造技术,收购三项“准专利”,准备推动新技术的营销、专利授权与商业化。俄籍澳洲科学家及发明家VictorVolkov发明的颠覆性电池技术已经完成国际实验室测试,这种名为“铝-石墨烯-氧”合成电池较锂电池的性能更是优越。石墨烯产品将较早在电池领域迎来产业化曙光,国内石墨烯相关公司将迎来产业化良机。    新技术将首先应用在电池制造领域。电动汽车制造商与电池供应商正投资数亿用于锂电池研发,希望获得更高储能表现,并减少充电时间,但锂电子技术进步十分有限。并且,尽管锂电池需求前景广阔,锂电池表现不稳定且存易燃爆风险是共识。相比之下,石墨烯技术的能源密度要高于锂电池,且应用范围更广。

石墨烯+锂电池可行性有多大?

2019-01-03 09:36:39

众所周知石墨烯具有高导电性、高导热性、高比表面积、高强度和刚度等诸多优良特性,在储能、光电器件、化学催化等诸多领域获得了广泛的应用。 锂离子电池是迄今为止能量比最高的二次电池,但是应用于如新能源汽车时需要进一步提高其能量比。石墨烯的出现为锂离子电池高性能的突破带来了可能,从而为高容量、高倍率、长寿命的锂离子电池材料的研究掀起新一轮的研究热潮。 目前石墨烯在锂电池方面的研究主要分两块 一是在传统锂电池上进行应用,目的是改进、提升锂电池的性能,这类电池不会产生颠覆性的影响; 二是依据石墨烯制造一个新体系的电池,它是一个崭新系列的,在性能上是颠覆性的,称作“超级电池”。 石墨烯在正极材料中的应用 锂电池的正极材料例如常用LiCoO2、LiMn2O4和LiFePO4都是不良的电子导体,它们的电导率分别为10-4、10-6和10-9Scm-1。在目前现有的锂离子电池体系中,电池使用的正负极材料本身具有较低的离子与电子电导率,这是影响和限制锂电池充放电循环和倍率性能的主要因素。所以为了充放电过程中充分有效利用正极材料同时能提高电池的倍率性能,要在正极材料中加入导电剂,传统的导电剂一般是石墨。而石墨烯本身具有非常高的电子传导率,用石墨烯作为导电添加剂是其在锂电池中最直接,也是最广泛的应用。 石墨烯作为导电剂的问题 对于石墨烯导电剂的实际应用,需要综合考虑石墨烯对电子电导的“面-点”促进作用和对离子传导的“位阻效应”;针对导电剂用量和最终电池的能量/功率密度综合考虑设计电极的厚度。对于LFP体系的锂离子电池,由于石墨烯对锂离子传输的影响非常强,所以需要特别注意电极的厚度。 石墨烯在负极材料中的应用 目前锂电池常用的负极材料是石墨,用石墨烯作负极材料的优势有: 石墨烯导电性能好,耐腐蚀,用作负极材料可以增强活性物质与集流体的导电性; 石墨烯片层作为单层二维结构,原则上不存在体积膨胀,所以结构稳定,充放电快,循环性能好; 纳米颗粒原位法合成于石墨烯表面形成基复合材料,通过控制其生长颗粒的尺寸,从而缩短锂离子和电子扩散距离,改善材料的倍率性能; 纳米颗粒均匀覆盖在石墨烯表面,一定程度能够防止石墨烯片层的聚合和电解质浸入石墨烯片层,导致电极材料失效。 石墨烯直接用作负极材料存在的问题 石墨烯由于尺寸小并且具有很高的比表面积,容易与电解液发生反应生成大量的SEI膜,造成大量不可逆容量的损失。 石墨烯在电极循环中容易发生团聚,并且由于范德华力导致团聚不可逆,导致嵌锂困难,电池容量衰减。 石墨烯在制备过程中容易发生再堆叠,对分散和干燥条件要求苛刻,导致成本增加。 石墨烯材料在电池负极材料的应用中表现为首次效率低,循环性能差等问题还未能解决。 当前石墨烯复合材料在锂电池的应用成为研究热门,如何完善高质量石墨烯的制备技术,寻找出一种可控、大规模的石墨烯制备方法,并制备出性能优异的石墨烯基复合材料,是当前研究的重点。若石墨烯基电极材料在高能量密度、高功率密度要求的动力锂离子电池领域获得应用,必将大大提升动力电池的综合性能,推动电动车、电动工具等领域的发展。

石墨烯不仅用于电池还将用于混凝土设计

2019-01-03 09:36:46

我们都知道石墨烯这个材质是用于新材料电池的研发当中,不过目前国外科学家却利用石墨烯材质打造世界最强人造材料。现在,科学家已经用它来创造一种比过去更坚固、更防水和更环保的新型混凝土。为了制造出这种混凝土,英国埃克塞特大学的一个团队设计了一种技术,将石墨烯片悬浮在水中,然后将水与传统混凝土成分混合。据报道该工艺价格低廉,并且符合现代大规模生产要求。石墨烯不仅用于电池还将用于混凝土设计 经测试,加入石墨烯的混凝土与普通混凝土相比,抗压强度提高了146%,抗弯拉强度提高了79.5%,渗水率降低了近400%。这种材料符合英国和欧洲建筑标准。增加的强度和耐水性应该允许用混凝土制造的结构持续更长的时间。这意味着它们不需要经常更换-混凝土中使用的水泥的生产是二氧化碳排放的主要来源。 另外,据报道在混凝土中掺入石墨烯可以减少约50%的其他材料,包括水泥。科学家们表示,这个因素应该导致在生产每吨混凝土时二氧化碳排放量减少446千克。