您所在的位置: 上海有色 > 有色金属产品库 > 气动隔膜泵常见故障

气动隔膜泵常见故障

抱歉!您想要的信息未找到。

气动隔膜泵常见故障专区

更多
抱歉!您想要的信息未找到。

气动隔膜泵常见故障百科

更多

DBY铝合金电动隔膜泵性能特点和材质分析

2018-12-27 16:25:57

DBY型铝合金电动隔膜泵的工作原理是采用摆线针轮减速机传动,通过曲轴滑块机构带动双隔膜作往复运动,使工作腔容积发生交替变化从而达到将液体不断地吸入和排出,DBY铝合金电动隔膜泵,接液金属部件全部采用铝合金,质量轻,坚固耐用,长时间使用也不会发生锈蚀,用户可根据实际工况选择天然橡胶或丁晴橡胶膜片,以满足不同介质的需要,是代替螺杆泵、离心泵等输送无腐蚀性粘稠介质的首选产品。   性能特点   一、不需灌引水,自吸能力达7米。   二、通过性能好,直径在10毫米以下的颗粒、泥浆等均可以毫不费力地通过。   三、由于隔膜将被输送介质和传动机械件分开,所以介质绝对不会向外泄漏。且泵本身无轴封,使用寿命大大延长。   四、泵体介质流经部分,全部为铝合金。

化学镀镍常见故障及排除

2019-03-14 10:38:21

毛病现象    分析及解决方法  镀层暗淡,不均匀  ①     溶液中主盐与还原剂比例失调,分析调整 ②溶液被其他杂质污染,致使反响中毒,电解处理反响看似剧烈,呈现很多气泡,但沉Ni较少或不堆积,表面发灰pH值偏高,还原剂用于析氢,放出很多,调整镀液pH值镀层色泽不一致①     拌和强度太大且不均匀; ②基体表面材料不一致  堆积速度低,反响较慢或不反响  ①     镀液pH值太低,用或NaOH调整; ②镀液温度偏低,调整; ③主盐及还原剂缺乏,浓度低,调整溶液反响剧烈,表面呈现暗灰色沉淀物  ①     镀液pH值偏高; ②     入槽工件太多或太少且不均匀; ③工件彼此触摸,发生镍颗粒固体;④有金属颗粒带入,过滤除掉调整pH值时,溶液呈现很多白色牛奶状沉淀物加碱太急不均匀且没有拌和。加l0%硫酸溶液调整至正常    镀层起皮,有鱼鳞状,镀层粗糙和针孔    ①     工件触到槽底或离槽壁太近( ②     有反响气泡阻滞在零件表面,要加强搅 ③前处理不良,加强前处理; ④镀液温度改变大,pH值改变大,留意温度和 pH值的操控

镍闪速炉熔炼的操作及常见故障的处理

2019-03-07 09:03:45

(一)闪速炉的操作        1、闪速炉的停炉依据闪速炉检修的类型不同,其停炉作业可分为暂时性事端抢修,故不时行洗炉和炉内熔体的排放。长期方案性停炉,一般是组织炉体大修、中修,需求进行洗炉和炉内熔体的排放。闪速炉暂时性或短时刻方案停炉操作进程是:①反响塔 减料,停料;②贫化区中止加料。随后,闪速炉转入保温作业。 闪速炉 长期方案性停炉操作进程是:(1)闪速炉洗炉。这个进程是经过调整镍锍档次、渣型及炉温文上升镍锍面来进行,消除炉内的侧墙和端墙的炉结及炉底炉结 ,为炉体检修作业发明必在的条件。洗炉进程操控得即,右省服从于许多整理炉内物料的作业和费用,节省时刻,缩短工期,保证大修质量。闪速炉洗炉进程中,一般操控镍锍档次大约为38%(Ni+Cu),炉渣的Fe/SiO2为1.10~1.15,渣温1350℃,镍锍温度1200℃,镍锍面高度为900~1000mm,渣面1200mm。(2)停料进程。其操作亿括反响塔减料、停料;贫化区中止进料;熔体排放,先放渣,放至流不出不止,然后放镍锍至见渣停止;最后由堆积池东侧安全口排放熔体,直至放不出停止。随后,闪速炉转入保温作业。2、闪速炉的保温保温依据检修时刻的长短,闪速炉的保温作业分为较长期保温文较短时刻保温。较长期保温作业一般继续15~30d,短时刻的保温作业一般继续1~3d。为避免闪速炉渣在检修期间的大幅度动摇,避免对炉内壁挂渣,以构成对砌砖及炉体损害,保温期间需求对炉温进行有方针的安稳操控。归纳考虑保温操作,操控所具有的条件及经济核算等方面的要素,较长期的保温作业的方针操控温度要比短时刻的保温作业的方针操控温度低些。前者,一般操控在600~700℃的范围内,保温时刻越长,则选定的方针操控温度要比短时刻的保温作业的方针操控要低些。后者,一般操控在800~900℃的范围内,保温时刻越短,则选定的方针操控温度越高。一般说来,保瘟应以下准则进行:①以闪速炉上升烟道暂时热电偶度为方针操控温度,归纳考虑其他方位的炉墙温度及炉内挂渣状况来进行操控;②安稳炉膛负压,多油,小油量来操控炉温,保证日记温的均衡,安稳;③合理的油挑选及焚烧操控准则。3、检修 闪速炉体系的检修可分为子体系检修和炉体检修。子体系检修包含对二次风体系、电极体系、水淬体系等部分的检修。对运转进程中呈现的影响和限制闪速炉正常出产的毛病和问题进行检修处理。这种类型的检修一般组织每月进行一次,对突发性的毛病或事端组织暂时性事端检修。炉体检修首要是对长期在高温、高氧化强度的条件下运转的炉体耐火材料及炉体骨架进行检修。这种类型的检修一般分大、中、小三种状况:小修是对炉体腐蚀严峻的侧墙,端墙及各放出口进行修补或替换,对变形严峻的炉体骨架进行检修或替换。需求进行洗炉和熔体排放,一般1~2年进行一次,一起可-组织其他体系的严峻技能改造作业。大修是对炉体悉数砌体进行替换,对部分骨回架、紧固绷簧进行替换,需求进行洗炉和熔体排放。一般8~9年或更长一些时刻进行一次。一起可组织其他体系的严峻技能改造作业。      (二)闪速炉常见毛病的处理     在闪速炉的出产中,呈现过多种多样的毛病,这些毛病能够分为惯例障和突发性毛病,不论是哪种类型的毛病,都包含了出产、工艺、设备和设备等方面呈现的问题。这些问题的存在,有的给正常出产带来了困难,有的严峻威胁着出产的安全性需针对具体状况别离处理。1、精矿喷嘴喉口结瘤构成结瘤的原因一般有:①喉口风速过大时,因为塔壁结瘤严峻,造杨喉口部结瘤严峻又恰当难整理;当喉口风速过小时,因为高温区相对上移,并且塔内压力恰当不稳,因而,会呈现喉口部结瘤,为易整理,以致结瘤逐渐严峻。②吹散风压力不妥。当吹散风压力过小时,无法吹散物料或吹散不均,构成喉口四周温度差异较大而使温度较高的部位结瘤严峻。但当喉口风速偏大时,吹散风压力也不宜过大。③物料含水量过高,超越规划规则的要求,因为吹散风吹散不力,会使喉品部结瘤,不过这种瘤易处理。④二次风含水量过高,或二次风加热器走漏时,也会呈现上述第③种的状况。⑤物料粒度不合格。⑥物料部分有阻塞现象或料量瞬时动摇大。⑦四个精矿喷嘴的料量、风量分配不均匀或许不对应。⑧下料管因磨损而呈现孔洞。⑨油烧嘴处的结焦整理不及时。⑩炉膛压力动摇过大。11喉口部外围漏风。12富氧浓度不适宜,并且与喉口风速不相对应。13结瘤整理不及时,等等。预防方法:定时查看和替换喷嘴的易损件,使喷嘴各组成部件处于无缺状况, 一旦呈现结瘤,在要及时调整工艺参数(如配料比、风、油、氧、温度、负压等),并采纳增大反响塔负荷和人工用钢钎捅,并恰当下降喉口部风速,使高温区上移来使炉瘤消出售除。 当喉口结瘤十他严峻时,能够采纳增大反响塔 热负荷的方法“空烧”必定时刻后,一边烧,一边捅,即可在部分铲除其结瘤。②当喉口风速过大而构成喉口部结瘤但又不非常严峻时,则可恰当下降喉口风速来逐渐消除其结瘤。③依据质料成分和现状,对工艺技能参数进行合理调整。2、呈现生料所谓生料,指的是反响塔对应的下部熔池中存在没有熔化的干精矿、混合烟尘和粉状熔剂。当呈现生料时会构成实践镍锍档次低于方针镍锍档次,精矿潜热利用率低。尤其是呈现许多生料时,将会构成堆积池炉膛空间急剧减小,上升烟道处构成“大坝”,使出产无法正常进行和炉体受损。因而,研讨呈现生料的原因和避免生料的主方法将显得恰当重要。构成生料的原因许多,包含:①下料管阻塞;②四个精矿喷嘴的下料量不均匀且风量/矿量不成比例;③燃料量不行,反响塔热负荷小精矿喷嘴结瘤严峻;⑤鼓入反响塔的富氧空气中的含氧量不行;⑥入炉物料的粒度和水分超支;⑦富氧空气中含水量过高;⑧料管磨损严峻;⑨精矿喷嘴各组成部件加工的同心度差;⑩喉口部的风速过低;11吹散风压力过低;12塔壁结瘤严峻;13炉膛负压过大;14配料比不妥以及本料不均匀;15料量和富氧空气量动摇较大,等等。处理方法应首要仔细查找原因,从物料平衡核算看工艺参数(包含风、油、氧、炉料、炉膛负压等)是否适宜;查看物料性质是否发作的改变,以及反响塔空气加热器是否走漏;定时校验各计量高施的精确度;查看精矿嘴的作业状况,然后依据其状况和部位及时进行完全处理,避免事端扩展。例如:①在单个喷嘴下部熔池中呈现生料时,可将该喷嘴的料量恰当削减,或阍燃油量恰当增大;②在单边两喷嘴下部熔池中呈现生料堆时,可调整削减该加料体系埋刮板运输机的下料量,恰当添加燃油量将生料熔化;③当堆积池和上升烟道下部呈现“料坝”,往往是因为反响塔下部熔池生日产的移动,或上升烟道壁上粘结物堆集过多,构成大块结瘤并掉落掉入堆积池内,未及时熔化而构成,此刻有必要敏捷在堆积在池两边与料坝相对应的部位以及上升烟道侧部点着油,进步料坝表面温度使其熔化,也能够参加适量纯碱或黄铁矿等物料促使其熔化。在大的料坝构成时,熔池面将显着上升,此刻还应留意熔体对恋墙的腐蚀和渗漏。3、镍锍档次过高或过低 在闪速炉所产出的低镍锍中,除镍、铜、钴的硫化物外,还含有必定量的磁铁、铁镍合金等成分。所谓镍锍档次的操控,首要取决于工艺规划、出产平衡和归纳经济效益等方面,依据这些要素,进行低***留档次的设定,设定的低镍锍档次叫方针低镍锍档次。然后依据方针档次及其他设定值,进行冶金核算,得到有关的工艺技能参数。一般来说,实承、际低镍锍档次能较好地与方针低镍锍档次相口符合,假如实践档次过高或过低,其原因或许爱:①工艺技能参数核算禁绝;②在单边两个喷嘴下部熔池中呈现生料堆时,可调整削减该加料体系埋刮板运输机的下料量,恰当添加燃油量将生料熔化;③当堆积池和上升烟道下部呈现(料坝),往往是因为反响塔下部熔池生日料的移动,或上升烟道壁上粘结物堆集过多,构成大块结瘤并掉落掉入堆积池内,未及时糖化而构成。此刻有必要敏捷在堆积池两边与料专相对应的部位以及上升烟道侧部点着油,进步料坝表面温度使其熔化,也能够参加适量纯碱或黄铁矿等物料促使其熔化。在大的日产坝构成时,熔池面将显着上升,此刻还应留意熔体对日炉墙的腐蚀和渗。针对低镍锍档次过高问题,其首要手法是从头进行冶金核算,及时批改参数。假如批改参数仍不能解决问题,则要对物料从头取样分析,并由外表人员校正风氧流量计。关于低镍锍档次过低的问题,除了批改参数外,还有必要对风根称、风怀氧流量计和精矿喷嘴等进行校正查看以以及根绝“生料”呈现。 4、渣中Fe/SiO2动摇炉渣中的Fe/SiO2是闪速炉熔炼进程中严格操控的三大参数之一,假如渣中实践Fe/SiO2比同设定值(即方针Fe/SiO2)有必定的差值,只要不超越3%,就应归于正常动摇。可是,假如差值超奋力拼搏3%,则阐明体系操控存在问题,导致参数操控不安稳或许呈现“生料”。当实践Fe/SiO2之间存在较大差错时,除从头进行核算以批改参数外,还有必要体系查看,安稳炉况。值得留意的是,虽然反响塔温度是闪速沪体系中温度最高的,可是,在掺应塔内发作的造渣反响并不非常明显,而首要发作在堆积池内。这样要查看渣中的Fe/SiO2比是否同方针Fe/SiO2比值存在差异,应将弃渣Fe/SiO2作为首要依据,而反响塔下部和堆积池等区域炉渣中Fe/SiO2往往会偏高而只能作参阅。一般来说,在炉况正常时,堆积池炉渣中的Fe/DiO2会比弃渣Fe/SiO2高10%左右,假如超越10%,则阐明不是炉况不稳呈现“生料”,就是给定参数有问题。5、上升烟道结瘤 在闪速炉熔炼进程中,会发生必定量的烟尘,并随烟气进入上升烟道、余热锅炉、电收尘器等热工体系,把从余热锅炉和电收尘器收下的烟尘量与入炉干精矿量的百分比称之为烟尘率。烟尘率的凹凸首要取决于反响塔内的熔炼准则、炉子结构以及炉膛负压等。不论灿尘率是高仍是低,因为烟尘逐渐堆积都会在上升烟道的四周,呈现粘结严峻的现象,导致呈现如下问题:①上升烟道喉口面积逐渐堆积缩小,呈现排烟不畅;②烟尘许多堆集构成的烟尘大块塌落,掉入熔池,呈现“狭道”,使熔体不能顺畅流入贫化区;③当南北两边烟道壁上积累许多烟尘后,有许多尘料发生时易在此形面“大坝”;④大块烟尘在余热锅炉侧塌落时,或许砸坏锅炉管或许阻塞辐射部的灰斗;⑤事端状况或检修需求切换烟气道路时,构成水冷闸板下放困难。针对上升烟道结瘤的问题所采纳的方法是:①防上烟尘率过高;②在上升烟道及邻近增点油,及时化掉结瘤;③定时爆炸,铲除烟尘大块。 6、堆积池结瘤物料在反响塔内经过加热、氧化、熔化、脱硫等一系列物理化学么应后,发生的含尘烟气经过炉膛和上升烟道而进入收尘排烟体系,而熔融的硫化物、氧货品等落入堆积池内,继续进行造渣反响,一起进行镍锍与炉渣的相别离。在反响塔下部,烟气、烟尘、炉渣、镍锍等产品的温度根本持平;进入堆积池后其间镍锍中溶解的Fe3O4和镍铁合金等高熔点物质跟着镍锍散热温度下降而部分析出,堆积池后逐渐构成炉底结瘤,称之为冻住层或堆积池结瘤。在冶炼准则根本安稳的前后提下,堆积池结瘤也会越来越严峻,且渣层厚度越薄,结瘤速度越快。堆积池结瘤首要取决于镍锍的档次和反响塔的温度。当镍锍档次越高时,在镍锍中溶解的Fe3O4越少;而反响塔温度越高时,则Fe3O4的分出量会相应削减,因而恰当进步镍锍档次和反响塔温度能够减慢结瘤速度,以避免堆积池结瘤。可是,假如镍锍档次过高,因为进步了精矿的氧耗才能,又会因过氧化而发生许多的Fe3O4,军不只不能减慢结瘤速度,反而会使结瘤日趋严峻,一起出会下降冶炼回收率。关于不同的冶炼工艺,不同出产供应商,能够在合理考虑生间平衡、米寿数、归纳能耗等许多要素的前提下,找出适宜的反响塔温度和镍锍档次及渣中Fe/SiO2比。在必要时,对构成的堆积池结瘤能够经过反响塔加块煤、生铁等方、法来处理。博茨瓦纳皮克威冶炼厂(年产4.2×104t高镍锍),投产后由烧油改成烧煤,改进水冷体系,炉子投料量由69.5t/h逐渐递增到120t/h,引进堆积池炉渣复原技能。在堆积池以加块煤(粒度10~45nn,)最大给煤量为10t/h)替代喷入的块煤在反响塔内加热后,落到大改进,消除了堆积池的炉结,并在炉床上构成一层保护层。加粉煤及块煤后的堆积池炉衬状况示于下图,(a)为喷粉煤,(b)为加块煤。 7、镍锍温度和炉渣温度偏高或偏低在闪速熔炼进程中所操控的锍档次、炉渣Fe/SiO2比和悄锍温度,是保证炉况正常且为最佳作用的重要参数,镍锍档次和Fe/SiO2取决于物料平衡的成果,怎么取得适宜的镍锍温度是一个勘探重要的问题,其影响要素要取决于平衡核算的可信度和进程操控的准确度。假如镍锍温度过高,是因为反响塔内温度操控过高所构成的;镍锍温度过低,除了受反响塔温度过低外,还有冻住层过厚或许在长期保温后没有康复的原因。炉渣温度的凹凸,除了受反响塔内温度的影响外,还跟炉况、贫化区的送电准则、贫化区的返料参加量有很大联系。合理操控镍锍温度和渣温度,能够坚持炉况正常,冶炼回收率较高。因而,当检测熔体温度时若发现温度不适宜,在归纳分析判断的基础上,应及时批改参数和处理有关问题。

铝合金阳极氧化常见故障分析及预防

2018-12-18 09:41:03

[摘要] 重点介绍铝合金硫酸阳极氧化工艺中经常发生的故障,分析故障产生的原因,采取有效预防措施,可以减少故障发生,保证其质量。   铝的阳极氧化是以铝或铝合金作阳极,以铅板作阴极在硫酸、草酸、铬酸等水溶液中电解,使其表面生成氧化膜层。其中硫酸阳极氧化处理应用最为广泛。铝和铝合金硫酸阳极氧化氧化膜层有较高的吸附能力,易进行封孑L或着色处理,更加提高其抗蚀性和外观。阳极氧化膜层厚一般3~15μm,铝合金硫酸阳极氧化工艺操作简单,电解液稳定,成本也不高,是成熟的工艺方法,但在硫酸阳极化过程中往往免不了发生各种故障,影响氧化膜层质量。认真总结分析故障产生的原因并采取有效预防措施,对提高铝合金硫酸阳极氧化质量有重要的现实意义。   1 常见故障及分析   (1)铝合金制品经硫酸阳极氧化处理后,发生局部无氧化摸,呈现肉眼可见的黑斑或条纹,氧化膜有鼓瘤或孔穴现象。此类故障虽不多见但也有发生。   上述故障原因,一般与铝和铝合金的成分、组织及相的均匀性等有关,或者与电解液中所溶解的某些金属离子或悬浮杂质等有关。铝和铝合金的化学成分、组织和金属相的均匀性会影响氧化膜的生成和性能。纯铝或铝镁合金的氧化膜容易生成,膜的质量也较佳。而铝硅合金或含铜量较高的铝合金,氧化膜则较难生成,且生成的膜发暗、发灰,光泽性不好。如果表面产生金属相的不均匀、组织偏析、微杂质偏析或者热处理不当所造成各部分组织不均匀等,则易产生选择性氧化或选择性溶解。若铝合金中局部硅含量偏析,则往往造成局部无氧化膜或呈黑斑点条纹或局部选择性溶解产生空穴等。另外,如果电解液中有悬浮杂质、尘埃或铜铁等金属杂质离子含量过高,往往会使氧化膜出现黑斑点或黑条纹,影响氧化膜的抗蚀防护性能。   (2) 同槽处理的阳极氧化零件,有的无氧化膜或膜层轻薄或不完整,有的在夹具和零件接触处有烧损熔蚀现象。这类故障在流酸阳极氧化工艺实践中往往较多发生,严重影响铝合金阳极氧化质量。   由于铝氧化膜的绝缘性较好,所以铝合金制件在阳极氧化处理前必须牢固地装挂在通用或专用夹具上,以保证良好的导电性。导电棒应选用铜或铜合金材料并要保证足够接触面积。夹具与零件接触处,既要保证电流自由通过,又要尽可能减少夹具和零件间的接触印痕。接触面积过小,电流密度太大,会产生过热易烧损零件和夹具。无氧化膜或膜层不完整等现象,主要是由于夹具和制件接触不好,导电不良或者是由于夹具上氧化膜层未彻底清除所致。.

钢渣球磨机常见的故障分析

2019-01-24 09:36:27

1、当钢渣球磨机在运转时,出现了很有频率的击打声并且声音也很大时,应该是有些衬板螺栓拧的不太紧,解决办法就是你可以通过机器的声音来判断是球磨机衬板哪下部位,然后找出松动的螺栓,拧紧即可。 2、当钢渣球磨机及其电动机轴承温度升高超过规定标准时,您可以用手试摸轴承是局部还是全部温度过高,那么您可以从以下几方面来检查处理球磨机的这种情况: (1)检查球磨机各部位的润滑点,所用的润滑油牌号与设备出厂说明书是否一致; (2)检查球磨机润滑油及润滑脂是否变质; (3)检查球磨机润滑管路是否有堵塞,或是润滑油没有直接进入润滑点,油量不足引起发热; (4)球磨机轴瓦的侧间隙过小,轴瓦与轴的间隙过大,接触点过多,不能形成轴瓦上的均匀油膜; (5)球磨机滚动轴承润滑脂过多或过少,过多形成滚动体搅动润滑脂产生热量,并且热量不易散出。过少润滑不良,应按规定加足油量,一般为轴承空隙的1/3~1/2较适当; (6)球磨机磨体两端的中空轴的密封装置太紧或是密封体铁件直接与轴相接触。以上出现的问题,按其原因进行处理,唯独轴瓦的侧间隙过小,或底部接触角过,必须将磨筒体用油压千斤顶顶起,将轴瓦从轴的一侧抽出,另行刮研瓦口。 3、球磨机减速机轴承发热:您可以按照检查球磨机轴承过高的方法来检查,也可以检查减速机的排气孔是否堵塞,要经常疏通排气孔。 4、球磨机电动机带减速机启动后,突然发生振动的主要原因有以下几点: (1)球磨机联轴节的两轮间隙太小,不能够补偿电动机在启动时,由自找磁力中心所引起的窜动量; (2)球磨机联轴节的找正方法不对,致使两轴不同心; (3)球磨机联轴节的联接螺栓没有相对称的拧紧,并且紧固力程度不一样; (4)球磨机轴承外圈活动。 处理方法:按规定的对轮间隙调好,使两轴同心。以同等力矩对称紧固联轴节的联接螺栓。转子不平衡时,将球磨机转子抽出另行找静平衡。

隔膜电积和无隔膜电积工艺流程

2019-03-05 09:04:34

隔阂电积和无隔阂电积的工艺流程别离见图1和图2。图1  隔阂电积流程图图2  无隔阂电积流程图 隔阂电积的阴极液一般含Sb 90~100g/L和Na2S 20g∕L,阳极液主要是NaOH溶液,浓度为120~100g∕L,阳极液装入帆布袋内,阴、阳极液循环速度别离为45L∕h和12~18L∕h。电解液温度50~55℃,槽电压2.65~3V,电流效率82%~85%,每吨锑直流电耗2050~3200kW·h,碱耗为1.05t。 无隔阂电积只运用一种电解液,含Sb、NaOH和Na2S各50~60g∕L,Na2CO320~30g∕L,Na2S2O3和Na2SO3共60~65g∕L,Na2SO475~80g∕L,Na2S<1g/L。电积过程中锑和苛性钠下降,和慵懒盐含量增高,排出的电解液成分为:Sb 20~30g∕L,Na2S 90~105g∕L,NaOH 25~30g∕L,Na2S2O3和NaSO3共75~80g∕L,Na2SO4100~120g∕L,Na2CO3 25~35g∕L。无隔阂电积槽电压与隔阂电积附近,为2.7~3.0V,电流效率仅45%~55%,因此每吨锑电耗高达3000~4000kW·h。

国内液压与气动标准大全(二)

2019-01-15 09:49:29

GB/T 15242.1-1994(2001)液压缸活塞和活塞杆动密封装置用同轴密封件尺寸系列和公差   GB/T 15242.2-1994(2001)液压缸活塞和活塞杆动密封装置用支承环尺寸系列和公差   GB/T 15242.3-1994(2001) 液压缸活塞和活塞杆动密封装置用同轴密封   neq ISO 7425-1:1988ISO 7425-2:1989 件安装沟槽尺寸和公差   GB/T 15242.4-1994(2001) 液压缸活塞活塞杆动密封装置用支承环安装沟槽尺寸和公差   GB/T 15622-1995(2001) 液压缸试验方法   neq JIS B 8354-1985   GB/T 15623.1-2003 液压传动 电调制液压控制阀 第1部分:   ISO 10770-1:1998,MOD 四通方向流量控制阀试验方法   GB/T 15623.2-2003 液压传动 电调制液压控制阀 第1部分:   ISO 10770-2:1998,MOD 三通方向流量控制阀试验方法   GB/T 17446-1998 流体传动系统及元件 术语   idt ISO 5598:1985   GB/T 17483-1998 液压泵空气传声噪声级测定规范   eqv ISO 4412-1:1991   GB/T 17484-1998 液压油液取样容器 净化方法的鉴定和控制   idt ISO 3722:1976   GB/T 17485-1998 液压泵、马达和整体传动装置参数定义和字母符号   idt ISO 4391:1983   GB/T 17486-1998 液压过滤器 压降流量特性的评定   idt ISO 3968:1981   GB/T 17487-1998 四油口和五油口液压伺服阀 安装面   idt ISO 10372:1992   GB/T 17488-1998 液压滤芯 流动疲劳特性的验证   idt ISO 3724:1976   GB/T 17489-1998 液压颗粒污染分析 从工作系统管路中提取液样   idt ISO 4021:1992   GB/T 17490-1998 液压控制阀 油口、底板、控制装置和电磁铁的标识   idt ISO 9461:1992   GB/T 17491-1998 液压泵、马达和整体传动装置稳态性能的测定   idt ISO 4409:1986   GB/T 18853-2002 液压传动过滤器 评定滤芯过滤性能的多次通过方法   ISO 16889:1999,MOD   GB/T 18854-2002 液压传动 液体自动颗粒计数器的校准   ISO 11171:1999,MOD   三、行业标准   JB/T 2184-1977 液压元件型号编制方法   JB/T 5120-2000 摆线转阀式全液压转向器   JB/T 5919-1991(2001) 曲轴连杆径向柱塞液压马达安装法兰与轴伸尺寸和标记(一)   JB/T 5920.1-1991(2001) 内曲线(向外作用)式低速大扭矩液压马达安装法兰和轴伸的尺寸系列 靠前部分 20~25MPa的轴转马达   JB/T 5921-1991(2001) 液压系统用冷却器基本参数   JB/T 5922-1991 液压二通插装阀图形符号   JB/T 5923-1997 气动 气缸技术条件   neq JIS B83771991   JB/T 5924-1991参照NFPA/T2.6.1M-1974 液压元件压力容腔体的额定疲劳压力和额定静态压力验证方法   JB/T 5963-1991 二通、三通、四通螺纹式插装阀阀孔尺寸   JB/T 5967-1991(2001) 气动元件及系统用空气介质质量等级   JB/T 6375-1992(2001) 气动阀用橡胶密封圈 尺寸系列和公差   JB/T 6376-1992(2001) 气动阀用橡胶密封圈 沟槽尺寸和公差   JB/T 6377-1992(2001) 气动气口连接螺纹 型式和尺寸   JB/T 6378-1992(2001) 气动换向阀 技术条件   JB/T 6379-1992(2001)参照ISO 6431:1992 缸内径32~320mm的可拆式单杆气缸 安装尺寸   JB/T 6656-1993(2001) 气缸用密封圈安装沟槽型式、尺寸和公差   JB/T 6657-1993(2001) 气缸用密封圈尺寸系列和公差   JB/T 6658-1993(2001) 气动用O形橡胶密封圈沟槽尺寸和公差   JB/T 6659-1993(2001) 气动用O形橡胶密封圈尺寸系列和公差   JB/T 6660-1993(2001) 气动用橡胶密封圈 通用技术条件   JB/T 7033-1993(2001)参照ISO 9110-1: 1990 液压测量技术通则   JB/T 7034-1993 液压隔膜式蓄能器型式和尺寸   JB/T 7035.1-1993 液压囊式蓄能器型式和尺寸 A型   JB/T 7035.2-1993 液压囊式蓄能器型式和尺寸 AB型   JB/T 7036-1993 液压隔离式蓄能器 技术条件   JB/T 7037-1993 液压隔离式蓄能器 试验方法   JB/T 7038-1993 液压隔离式蓄能器 壳体技术条件   JB/T 7039-1993 液压叶片泵 技术条件   JB/T 7040-1993 液压叶片泵 试验方法   JB/T 7041-1993 液压齿轮泵 技术条件   JB/T 7042-1993 液压齿轮泵 试验方法   JB/T 7043-1993 液压轴向柱塞泵 技术条件   JB/T 7044-1993 液压轴向柱塞泵 试验方法   JB/T 7046-1993(2001)参照NFPA/T3.4.7M-1975 液压蓄能器压力容腔体的额定疲劳压力和额定静态压力验证方法   JB/T 7056-1993(2001) 气动管接头 通用技术条件   JB/T 7057-1993(2001) 调速式气动管接头 技术条件   JB/T 7058-1993(2001) 快换式气动管接头 技术条件   JB/T 7373-1994(2001) 齿轮齿条摆动气缸   JB/T 7374-1994 气动空气过滤器 技术条件   JB/T 7375-1994 气动油雾器 技术条件   JB/T 7376-1994 气动空气减压阀 技术条件   JB/T 7377-1994(2001) 缸内径32~250mm整体式单杆气缸安装尺寸   eqv ISO 6430:1992   JB/T 7857-1995(2001) 液压阀污染敏感度评定方法   JB/T 7858-1995(2001) 液压元件清洁度评定方法及液压元件清洁度指标   JB/T 7938-1999 液压泵站油箱公称容量系列   JB/T 7939-1999 单活塞杆液压缸两腔面积比   eqv ISO 7181:1991   JB/T 8727-1998 液压软管总成   JB/T 8728-1998 低速大扭矩液压马达   JB/T 8729.1-1998 液压多路换向阀 技术条件   JB/T 8729.2-1998 液压多路换向阀 试验方法   JB/T 8884-1999**(JB/Z 347-89) 气动元件产品型号编制方法   JB/T 8885-1999**(ZBJ 22008-88) 液压软管总成技术条件   JB/T 9157-1999 液压气动用球涨式堵头 安装尺寸   JB/T 10205-2000 液压缸 技术条件   JB/T 10206-2000 摆线液压马达   JB/T 10364-2002 液压单项阀   JB/T 10365-2002 液压电磁换向阀   JB/T 10366-2002 液压调速阀   JB/T 10367-2002 液压减压阀   JB/T 10368-2002 液压节流阀   JB/T 10369-2002 液压手动及滚轮换向阀   JB/T 10370-2002 液压顺序阀   JB/T 10371-2002 液压卸荷溢流阀   JB/T 10372-2002 液压压力继电器   JB/T 10373-2002 液压电液动换向阀和液动换向阀   JB/T 10374-2002 液压溢流阀

LJC长轴深井泵

2019-03-18 08:36:58

性能范围(按设计点:) 流量Q:3-2000m3/h 扬程H:300m (max) 功率N:900kw (max) 转速n:2940、1460、980r/min 长轴深井泵的性能参数详见选型样本。 型号说明:LJC长轴深井泵 例:150LJC30-12.5×6 150  LJC  30  -  12.5  ×  61.3抽送介质应符合以下要求: 温度不超过40℃,固体物含量(按重量计)不大于0.01%,酸碱率PH值6.5~8.5,含量不大于1.5mg/1,不含有任何油类。(使用在深井中时,井筒应正直,不允许有双向弯曲。) 1.4安全 安装、使用人员必须认真阅读、理解本安装使用说明的全部内容,严格按其要求操作。对不按其要求操作而引起机器故障和人身伤害,南京制泵有限公司恕不承担任何法律责任。 安装、使用人员必须是受过专门训练、有一定技术的专业人员。 在对LJC长轴深井泵进行任何机械、电气安装维护时,起吊、维护器具,必须安全可靠。 在对长轴深井泵进行安装及使用前后,设备基础、工作环境必须安全可靠。 在对长轴深井泵进行任何机械、电气安装维护前,必须把电机的总电源断开。在进行维护时,电机应停止转动。 在进行维护时,如果电机的总电源没有断开,水泵有可能突然起动,造成严重伤害;如果电机的总电源没有断开,还有可能会造成电击、烧伤、死亡等事故。 1.5选型须知 正确选用深井泵可延长泵、电机、水井的使用寿命,必须十分注意。 1.5.1泵型号中的机座号是指该泵可以放入比机座号大25mm的深井中,当下井深度超过30m或井管为铸铁管或水泥管时,实际井径应比该泵机座号大50mm以上。 1.5.2深井泵的流量不能大于井的正常涌水量。 1.5.3深井泵的扬程按计算:H=(H1+H2+?h)×1.1      式中:H-需要的扬程(m)            H1-井中动水位至泵座出水口中心的距离(m)            H2-泵座出水口中心至流量到达地的垂直高度(m)            ?h-扬水管内阻力损失和泵座出水口后的输水管管路的阻力损失(m)管径 mm流量(m3/h)102030405060708090100504.7418.97        651.666.6414.9526.57      75 3.257.3112.9920.3029.23    100   3.084.826.949.4412.3315.6119.27150       1.622.062.54

不锈钢深井泵

2019-03-18 08:36:58

日本大新2寸清水泵:出入水口径2英寸,最高扬程32米,最大抽水量520升/分钟 雅马哈3寸清水泵 :出入水口径3英寸,最高扬程31米,最大抽水量980升/分钟 型号: 汽油清水泵 SCR-100HX ;规格: 4寸; 产品说明: 入水口径×出水口径 4"×4"; 最大总扬程 28米; 吸水扬程 8米;最大抽水量 1800升/分钟 不锈钢深井泵 潜水泵: 微型潜水泵 不锈钢潜水泵 防爆潜水泵 深井潜水泵 小型潜水泵 离心泵: 立式多级离心泵 d型多级离心泵 离心泵多级单吸 离心泵lg立式多级 氟塑料离心泵 管道离心泵 IS清水泵 ISGB便拆清水泵 ISW卧式清水泵 SG型清水管道泵 S.SH双吸泵 YT单吸清水泵 YW漩涡泵 ZX自吸泵、 ISG立式清水泵ISR型单吸热水泵 IRG型立式热水泵 IRGB立式便拆热水泵 ISWR卧式热水泵 SGR热水管道泵

国内液压与气动标准大全(一)

2019-01-15 09:49:29

一、采标情况:   idt或IDT表示等同采用;eqv或MOD表示等效或修改采用;neq表示非等效采用。   二、国家标准   GB/T 786.1-1993(2001*) 液压气动图形符号   eqv ISO 1219-1:1991   GB/T 2346-2003 流体传动系统及元件 公称压力系列   ISO 2944:2000,MOD   GB/T 2347-1980(1997) 液压泵及马达公称排量系列   eqv ISO 3662:1976   GB/T 2348-1993(2001*) 液压气动系统及元件 缸内径及活塞杆外径   neq ISO 3320:1987   GB/T 2349-1980(1997) 液压气动系统及元件 缸活塞行程系列   eqv ISO 4393:1978   GB/T 2350-1980(1997) 液压气动系统及元件 活塞杆螺纹型式和尺寸系列   eqv ISO 4395:1978   GB/T 2351-1993 液压气动系统用硬管外径和软管内径   neq ISO 4397:1978   GB/T 2352—2003 液压传动 隔离式蓄能器 压力和容积范围及特征量   ISO 5596:1999,IDT   GB/T 2353.1-1994 液压泵和马达安装法兰和轴伸的尺寸系列及标记   neq ISO 3019-2:1986 靠前部分:二孔和四孔法兰和轴伸   GB/T 2353.2-1993(2001*) 液压泵和马达 安装法兰与轴伸的尺寸系列和标记(二)   neq ISO 3019-3:1988 多边形法兰(包括圆形法兰)   GB/T 2514-1993 四油口板式液压方向控制阀安装面   eqv ISO 4401:1980   GB/T 2877-1981 二通插装式液压阀安装连接尺寸   GB/T 2878-1993 液压元件螺纹连接 油口型式和尺寸   neq ISO 6149:1980   GB/T 2879-1986 液压缸活塞和活塞杆动密封沟槽型式、尺寸和公差   neq ISO 5597:1987   GB/T 2880-1981 液压缸活塞和活塞杆 窄断面动密封沟槽尺寸系列和公差   GB/T 3452.1-1992 液压气动用O形橡胶密封圈尺寸系列及公差   neq ISO 3601-1:1988   GB/T 3452.2-1987 O形橡胶密封圈外观质量检验标准   GB/T 3452.3-1988 液压气动用O形橡胶密封圈 沟槽尺寸和设计计算准则   neq ISO/DIS 3601-2   GB/T 3766-2001 液压系统通用技术条件   eqv ISO 4413: 1998   GB/T 6577-1986 液压缸活塞用带支承环密封沟槽型式、尺寸和公差   neq ISO 6547:1981   GB/T 6578-1986 液压缸活塞杆用防尘圈沟槽型式、尺寸和公差   neq ISO 6195:1986   GB/T 7932-2003 气动系统通用技术条件   ISO 4414:1998,IDT   GB/T 7934-1987 二通插装式液压阀 技术条件   GB/T 7935-1987 液压元件 通用技术条件   neq NFPA T 310.3   GB/T 7936-1987 液压泵、马达空载排量 测定方法   neq ISO/DP 8426 (1988版)   GB/T 7937-2002 液压气动用管接头及其相关元件公称压力系列   neq ISO 4399:1995   GB/T 7938-1987 液压缸及气缸公称压力系列   neq ISO 3322:1975   GB/T 7939-1987 液压软管总成 试验方法   neq ISO 6605:1986   GB/T 7940.1-2001 气动 五气口气动方向控制阀 靠前部分:不带电气接头的安装面   idt ISO 5599-1:1989   GB/T 7940.2-2001 气动 五气口气动方向控阀 第二部分:带电气接头的安装面   idt ISO 5599-2:1990   GB/T 7940.3-2001 气动 五气口气动方向控制阀 第三部分功能识别编码体系   idt ISO 5599-3:1990   GB/T 8098-2003 液压传动 带补偿的流量控制阀 安装面   ISO 6263:1997,MOD   GB/T 8099-1987 液压叠加阀 安装面   neq ISO 4401-1980   GB/T 8100-1987 板式联接液压压力控制阀(不包括溢流阀)、顺序阀、   neq ISO/DIS 5781(1987) 卸荷阀、节流阀和单向阀 安装面   GB/T 8101-2002 液压溢流阀 安装面   ISO 6264:1998,MOD   GB/T 8102-1987 缸内径8~25mm的单杆气缸安装尺寸   neq ISO 6432:1985   GB/T 8104-1987 流量控制阀 试验方法   neq ISO/DIS 6403(1988)   GB/T 8105-1987 压力控制阀 试验方法   neq ISO/DIS 6403(1988)   GB/T 8106-1987 方向控制阀 试验方法   neq ISO/DIS 6403(1988)   GB/T 8107-1987 液压阀 压差—流量特性试验方法   neq ISO/DIS 4411(1986)   GB/T 9065.1-1988 液压软管接头 连接尺寸 扩口式   GB/T 9065.2-1988 液压软管接头 连接尺寸 卡套式   GB/T 9065.3-1988 液压软管接头 连接尺寸 焊接式或快换式   GB/T 9094-1988(1997) 液压缸气缸安装尺寸和安装型式代号   eqv ISO 6099:1985   GB/T 9877.1-1988 旋转轴唇形密封圈结构尺寸系列 靠前部分 内包骨架旋转轴唇形密封圈   GB/T 9877.2-1988 旋转轴唇形密封圈结构尺寸系列 第二部分 外露骨架旋转轴唇形密封圈   GB/T 9877.3-1988 旋转轴唇形密封圈结构尺寸系列 第三部分 装配式旋转轴唇形密封圈   GB/T 14034-1993 24°非扩口液压管接头连接尺寸   GB/T 14036-1993 液压缸活塞杆端带关节轴承耳环安装尺寸   neq ISO 6982:1982   GB/T 14038-1993(2001) 气缸气口螺纹   neq ISO 7180:1986   GB/T 14039-2002 液压传动 油液 固体颗粒污染等级代号   ISO 4406:1999,MOD   GB/T 14041.1-1993 液压滤芯结构完整性检验方法   neq ISO 2942:1974   GB/T 14041.2-1993 液压滤芯材料与液体相容性检验方法   neq ISO 2943:1974   GB/T 14041.3-1993(2001)液压滤芯抗破裂性检验方法   neq ISO 2941:1974   GB/T 14041.4-1993(2001)液压滤芯额定轴向载荷检验方法   neq ISO 3723:1976   GB/T 14042-1993(2001) 液压缸活塞杆端柱销式耳环安装尺寸   neq ISO 6981:1982   GB/T 14043-1993 液压控制阀安装面标识代号   eqv ISO 5783:1981   GB/T 14513-1993(2001) 气动元件流量特性的测定   neq ISO/DIS 6358(1989)   GB/T 14514.1-1993(2001)气动管接头试验方法   neq JIS 8381-85   GB/T 14514.2-1993(2001)气动快换接头试验方法   neq ISO 6150:1988