合金铝冷凝器的氩弧焊接工艺
2018-12-29 09:42:51
一、引言
铝制冷凝器,用于CS2气体的回收,原工艺是采用手工钨极氩弧焊,其缺点是(1)焊道厚度小,熔深浅,承力低,该设备使用不到一年,因焊缝受到热胀冷缩的拉应力作用在焊口处发现开裂。(2)手工钨极氩弧焊焊接施工条件差,因管板较厚(30mm),施焊时需要将管板用气焊预热200℃以上,方能焊接。(3)焊接的效率低。为此我们进行了用熔化极氩弧焊(MIG)代替钨极氩弧焊(TIG)工艺并在生产实践中取得了成功,延长了设备的使用寿命。
二.冷凝器的结构及工况
冷凝器是管壳式结构,壳体是有碳钢制造,管束和管板的材料为L2工业纯铝。由121根管束与管板焊接而成,见图1。铝管规格为φ38×4 mm,长度为3600 mm,管板的规格为φ750×30 mm。管程走CS2与水蒸汽的混合气体,温度约为100℃。壳程走工业水,水温约在50℃。
三、可焊性分析
铝的导电性和导热性比钢均大四倍,因此需要更高的线能量。铝具有面心立方结晶组织,纯金属的朔性非常好。铝的线膨胀系数和结晶收缩率比钢大两倍,易产生较大的焊接变形和内应力,对刚性较大的结构将导致裂缝的产生。高温时的铝的强度和朔性很低,常常不能支持液体熔池金属的重量,破坏焊缝金属的成形,有时还容易造成焊缝金属塌落和焊穿现象。纯铝的熔点低,熔化时颜色无变化。采用交流钨极氩弧焊(TIG)时虽然能够获得优良的焊接质量,但由于受到钨极许用电流的限制,焊接电流不能太大,一般只能焊接厚度小于4毫米的薄板。如果板厚大于6毫米,就需要开坡口焊接。当板厚大于8毫米,被焊接工件不但要开坡口,同时还需要预热才能进行焊。所以钨极氩弧焊焊接厚板时,显得生产率低、焊接变形大,劳动条件差。焊接冷凝器时,管子与管板的厚度相差较大,管子只有4 mm厚,而管板的厚度为30 mm,焊接时需将管板预热200℃以上,方可施焊,若施焊时焊炬对母材的加热不均匀,管板还未熔化,而管子的端头已烧塌,焊道只有靠着管子的端部的圆周上很薄的一层焊肉,管子和管板的熔深浅焊肉少,在热胀冷缩的应力作用下,将焊口拉裂。
熔化极氩弧焊(MIG)用焊丝本身做电极,电流可以大大提高,因而母材熔深大,焊丝熔敷速度快,提高了劳动生产率。不仅不需要预热,改善了劳动条件,而且减少了焊接变形,特别适应于中等和大厚度板材的焊接。
四、焊接工艺
4.1坡口制备
管孔采用3×45°坡口,以保证焊缝的熔深及熔透良好,增加焊缝的承载强度。铝管的伸出长度与管板的平面不大于3 mm。
4.2焊接设备
熔化极氩弧焊(MIG)的焊接设备选用技术先进、容量较大的瑞典ESAB生产的,型号为Aristo-500的焊机。
4.3焊丝
焊丝规格为φ1.2 mm,其型号为ER5356,是一种通用性好的铝镁合金焊丝,铝镁焊丝与纯铝及铝硅焊丝相比较,焊接纯铝时,焊接容易程度较好,所焊的接头强度较好,朔性中等,抗蚀性一般。经综合考虑,选用了焊缝强度较好的铝镁合金焊丝。母材及焊丝的化学成分组成如表1所示。 4.4焊接参数
焊接参数为:电流200-250A,电压22——25V,送丝速度12-13m/min,氩气流量17.5L/min,氩气纯度不低于99.70%。
12后一页
铝熔体在线除气装置的特性及其改进
2019-01-15 09:51:44
铝合金熔体的炉内精炼处理其净化效果是有限的,而且熔体在流送过程中易产生二次污染,因此难以控制熔体中的杂质(氢、碱性金属、非金属夹杂),尤其是每年6月~9月高温多雨季节,铸锭中气孔、夹杂等严重影响其内部质量,导致铝材成品率降低。因此,在线除气装置一自是我公司熔铸分厂重点研究和改进的对象,近几年先后对几条铸造线进行了技术改造,加装了三种不同的在线除气装置:(1)在一号铸造线和25 t生产线采用Aplur旋转喷嘴除气装置,此后在引进装备的基础上,根据生产实际具体情况,与供货厂家共同设计了经济实用且方便的除气装置。(2)在5#铸造线上我们加装了自己研发的简单实用的除气装置,它是在流槽上用多个小转子进行精炼,转子间用隔板分隔,使铸次间无金属存留,无需加热保温,运行费用大幅降低,除气效果非常好;这种除气装置避免了一般除气装置金属容积大,铸次间放干料多或需加热保温,运行费用高等问题。(3)制造出紧凑型除气装置。其宽度和高度与流槽接近,在侧面下部安装固定嘴供气。该装置占地极小,放干料少,操作简单,除气效率高,在采用氩气情况下除气率达到36%以上,造价仅仅为传统除气装置的1/4~1/3,运行费用降低30%以上。今后我们将大量采用这种除气装置。这几套装置经过在生产中运行证明不仅净化效果好,而且不污染环境。下面仅对Aplur旋转喷嘴除气装置进行详细介绍,其他除气装置的原理、流程等与其相似。 1 除气工艺流程和原理 精炼气体流程:惰性气体储气罐→在线除气装置气体控制柜→石墨转子喷头→处理的铝合金熔体→进行净化除气处理。 工作原理:在保温炉和铸造机之间放置除气装置,在除气处理池中通过旋转的石墨转子将吹入铝合金熔体的氮气切碎,形成大量的弥散气泡,使铝合金液与氮气在处理池中充分接触,根据气压差和表面吸附原理,气泡在熔体中吸收熔体中的氢,以及吸附氧化夹渣(大的以碰撞的方式,小的以径向拦截方式)之后上升到熔体的表面形成浮渣。而铝合金熔体从除气装置的出口(设在浮渣下部)流向铸造机,铝合金液连续进入除气装置,氮气连续吹入,随着净化处理的行,达到净化铝合金液的目的。 2 除气装置主要组成部分 2.l 处理箱 处理箱包括净化室与加热保温室两个内腔,中间用SiC材质的隔板隔开,两室的底部连通,铝合金液在净化室进行除气除渣后,从隔板下方流入保温室静置保温,保温室采用U形硅碳捧外套碳化硅保护管浸入铝合金液对其加热.箱体外壳由10 mm钢板制成,内衬采用耐火材料整体浇注而成,在侧壁上部设有观察查、扒渣口,底部设有清渣口。处理箱前后连体为独立的一个内腔.便于加热器直接传导,对处理后的铝合金液进行潜流输送。在我公司建议下,在箱体两侧壁的下部设有清渣门,不用启动箱盖即可完成腔内清渣,延长了箱体内腔的使用寿命,其保温性能也有所提高,热损失减小、经加热器的热补偿,完全可以满足生产工艺对温度的要求;箱体封闭性好,可以避免空气进入箱内,避免铝合金液受二次污染。配有液压倾翻装置,铸造工作完成后或合金更换时可以彻底放流,箱内完全可做到彻底清空。加热器不必长时间通电保温,可以相对降低电耗。 2.2 升降系统 为保证其准确定位采用两个液压缸作为升降装置,分别用于控制石墨转子与U形硅碳棒加热器加热系统的垂直上下运动,并可以进行90°水平方向旋转,液压系统相对较为稳定,定位准确。 2.3 加热系统 加热系统采用浸入式加热器,U形硅碳棒外套圆柱形的碳化硅或氮化硅保护管。在管内设有测温热电偶、可以实现温度自动控制、功率在2 kW~26 kW范围内任意调节。温控系统采用较先进的功率集成单元实现全自动控制,避免加热器通、断电缺少缓冲阶段的缺点,U形硅碳棒加热器在频繁的通断电中,不断受到主电流冲击,若无缓冲阶段加热器易老化,寿命短。 2.4 石墨转子 石墨转子旋转喷嘴由高纯度石墨制成,喷嘴的结构除考虑应打散气泡外,还利用搅动铝合金熔体产生的离心力,使熔体进入喷嘴内与水平喷出的气体均匀混合,形成气/液流喷出,增加气泡与铝合金液的接触面积和接触时间,提高除气净化效果。石墨转子的转速可以通过变频器调速控制,较高可达400 r/min。石墨转子规格为Φ150 mm~250 mm,叶轮规格为Φ250 mm~350 mm,高纯抗氧化石墨转子具有强度高、耐高温、耐铝流腐蚀等特点。在净化除气过程中,箱内铝合金液表面通入氮气覆盖保护,使石墨转子露出铝合金液的部分处于惰性气体中,防止转子高温氧化,延长转子的使用寿命;叶轮外形是流线型,可以减小旋转时的阻力,叶轮与铝合金液间产生的摩擦冲刷力也相对较小。 2.5 控制系统 控制系统包括气体和电气两部分,分别设有各自的控制柜。 (l)气体控制:包括氮气和压缩空气控制,设有手动/自动控制。根据实际需要,按处理/保持两状态自动调整氩气供给量,并经过电磁气体流量计可在电脑操作画面上看到准确的氮气流量,氮气流量按工艺要求自动整定好后自动锁定,保证整个处理过程氮气流景均匀稳定,操作方便可靠。压缩空气主要使箱盖与箱体之间密封,以保证热量不大量散失。 (2)电气控制:电控部分主要有传动控制、温度控制两方面。传动控制单元是控制石墨转子提升、旋转,配备变频无极调速装置,使转子可以无阻碍直线性调速。而温控单元主要控制加热器的加热功能。电控系统采用PLC集中控制。各种控制单元的采集参数进入中央处理器,对各个工艺参数,执行元件通过人/机操作画面进行在线监控,如有故障自动报警,并可以远程控制。
金属探测器与除铁装置
2019-01-21 09:41:38
金属探测器安装在选矿厂破碎机前面的皮带上,用以检测外界混入矿石中的金属物体,并发出信号,以便人工或自动取出该金属物体,防止这些金属物体进入破碎机,造成破碎机“卡铁”而堵塞,甚至产生断轴等设备事故,使选矿生产不能正常进行。 一、主要技术性能
主要技术性能要求如下:
(1)HQ-5型金属探测器可在磁性或非磁性矿石中发现各种金属物体, 通过探测器的调整装置可以克服不同磁性矿石对探测器的影响。
(2)灵敏度:一般可发现相当于直径30 ~60毫米的钢球。灵敏度随线圈尺寸增大而降低,如表5-2-4所示。在线圈平面内靠近线圈绕组灵敏度较高,中心灵敏度最低。灵敏度可按需要在规定的最大范围内调整。
(3)皮带速度03~2.0米/秒。
(4)输出:除仪器本身灯光信号外,可接出一组常开常闭接点,接点容量 为交流220伏、3安。
(5)结构型式:仪器箱为墙挂式现场安装,线圈为穿套皮带的平面型或X型装配方式,可以不断皮带安装。
线圈外形尺寸及重量因皮带宽度而异。
二、原理与结构
金属物体在交变电磁场中,由于涡流、磁滞和介质损耗等作用,吸收了一部分电磁场的能量,这部分能量转换成热能,相当于增大了产生此电磁场的线圈电阻。在音频范围内,由于金属物体和磁性矿石的电导率不同,其涡流损耗的差别更为突出。涡流不仅使线圈等效电阻增大,而且涡流所产生的磁通与原电磁场的磁通反相,起到了减弱电磁场的作用.相当于减少了产生此电磁场的线圈电感。另一方面,物体的导磁性会使线圈的电感量增大。综合上述作用,显然导电性较好的金属物体会使线圈等效电阻明显增大,而电感则增加很少(对导电导磁金属而言)或减少(对导电非导磁金属而言〕导电性较差的磁性矿石,仅使线圈的等效电阻稍有增大,而电感的增加则较为明显。HQ-5型磁性矿石金属探测器是按这个原理设计的。
采用lc自激振荡器作为探测器的检测电路,产生电磁场的皮带线圈作为振荡器谐振回路中的电感元件。这样,线圈既是振荡源的元件,又是敏感元件。当金属物体进入皮带线圈时,在交变电磁场的作用下,金属的良导电性能产生较大的涡流损耗,使振荡器的振幅降低,当这种情况被检测出来后,便可得知有局外金属物体通过皮带线圈。当磁性矿石进入线圈时,矿石磁性使线圈电感明显增加,会使振荡器的振幅提高,来补偿由于矿石本身的能耗使振荡器振幅降低的作用。结果,当补偿合适时,振荡器的振幅保持不变,从而克服了磁性矿石对探测器工作的影响。HQ-5框图如图5-2-8所示。 振荡器在正常情况下输出等幅交流电压,检波后为不变的直流电压,因而输出微分为零。当金属物体经过线圈时,振荡的振幅降低后又恢复,检波后的直流电压产生一个降低的波动经微分电路,将有脉冲信号输出。此脉冲经过放大,推动继电器动作,并输出接点信号,去控制金属物体取出装置,把金属物体取出来。
HQ-5型磁性矿石金属探测器的原理电路如图5-2-9所示。 三、安装调试
仪器箱可挂在皮带线圈附近的墙上。仪器箱外部接线采用CA型20路插件便于取下仪器箱进行检修和更换。
电源线和控制线应与线圈线分开走线。联接线圈导线应穿钢管敷设,或采用双芯屏蔽线。
根据现场要求,可以调整仪器的灵敏度,以保护破碎机的安全。一般,中、细破碎机分开保护,并规定不同的灵敏度。灵敏度调整由安装在仪器箱内电路板上的电位器W2来实现,并把钢球送进线圈进行检查。钢球在线圈平面的中心位置时灵敏度最低,越靠近线圈灵敏度越高,可按现场实况决定线圈的灵敏度。电位器W3作为调零之用,一般调在5μA位置。
含有大量磁性矿石的选矿厂,还要仔细调整磁性矿石的影响。对于非磁性矿石的选矿厂则不必进行这项调整。调整磁性矿石影响时,把μA表接在FC2的输出端上(K3置于使μA表与R20并联的位置上〕。当金属物体进入线圈时,μA表电流增大,甚至引起继电器动作。金属物体取出线圈时,表电流减小。这说明仪器正常。当磁性矿石(预选一块较有代表性的磁性矿石,尽可能大些〕进入线圈时,表电流也增大,说明矿石与金属物体有相同的影响。这时应把调整磁性矿石影响的电位器W1的阻值增大。反之,如果磁性矿石进入线圈时表电流减小,与金属物体进入线圈时有相反的影响,则应减小W1的阻值。这样反复进行调整,直到磁性矿石进入线圈的影响最小为止。然后,再确定仪器工作的灵敏度,进行使用观察。由于磁性矿石的形状、大小、品位等差异,因此对磁性矿石影响的调整应在实际使用中再进行适当的修正。
四、自动除铁装置
除铁装置有多种型式,这里仅介绍电磁铁卸铁小车的型式。它配合金属探测器构成自动除铁装置。该装置除金属探测器外,一般由小车、悬挂在小车上的电磁铁、电动机〔JQ41- 6,千瓦〕、蜗轮减速机〔PyⅡ-120-315,i =2) 以及鼓轮和牵引小车的钢丝绳组成,使电磁铁能在横皮带方向的轨道上受控来回移动。电磁铁为MZZ3 -535型。额定电压为220伏,通电持续率为 40%,由硅整流装置供电。电磁铁在皮带上部时距皮带面高为160~175毫米(具体数据应根据生产要求确定,此数据仅供参考〕。金属探测器检测线圈安装在取铁装置的来矿石方向的前方。
控制电路如图5-2-10所示。M为电磁铁,D为传动小车的电动机, 1QZK为电磁铁在皮带上部A点的位置控制开关,1FZK为电磁铁停在皮带外侧卸矿点B位置控制开关,2QZK、2FZK为相应的限位开关。JTQ为金属探测器控制接点。SJ为时间继电器,控制电磁铁在皮带上部A点的停留时间。QCQ和FCQ为拖动电磁铁电动机正、反转(去A点和返回B点)的接触器。V 为电磁铁激磁的直流电源。
当有铁件经过金属探测器检测线圈时,电动机经减速机减速,瓦通过鼓轮和钢丝绳,带动小车从运输皮带外侧卸铁处B点向皮带中心A点移动,稍停在皮带上部,把铁件从矿石流中吸出,然后从A点返回到B点,停机并把铁件卸在废铁箱内.完成一个自动除铁周期。 如果小车带走第一块铁件,离开了A点,但未回到B点之前,又有第二块铁件通过探测器线圈时.小车再次受时间继电器控制又返回A点,将第二块铁件吸起,然后按原来次序再回到B点.把第一块、第二块铁件一起卸在废铁箱内。完成两块铁件的清除任务,小车需要工作时间最多两个周期。多块来铁时依此类推。
稀土在线
2017-06-06 17:50:13
稀土在线稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。根据稀土元素间物理化学性质,稀土类元素分为轻、重两组。 1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕。 2)重稀土(又称钇组):钆、铽、镝、钬、铒、铥、镱、镥、钪、钇。 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。稀土
金属
(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。稀土元素在地壳中平均含量为165.35×10-6(黎彤,1976)。在自然界中稀土元素主要以单矿物形式存在,目前世界上已发现的稀土矿物和含稀土元素的矿物有250多种,其中稀土含量ΣREE>5.8%的有50~65种,可视为稀土独立的矿物。重要的稀土矿物主要为氟碳酸盐和磷酸盐。稀土矿物总的特点:一是缺少硫化物和硫酸盐(只有极个别的),这说明稀土元素具有亲氧性;二是稀土的硅酸盐主要是岛状,没有层状、架状和链状构造;三是部分稀土矿物(特别是复杂的氧化物及硅酸盐)呈现非晶质状态;四是稀土矿物的分布,在岩浆岩及伟晶岩中以硅酸盐及氧化物为主,在热液矿床及风化壳矿床中以氟碳酸盐、磷酸盐为主。富钇的矿物大部分都赋存在花岗岩类岩石和与其有关的伟晶岩、气成热液矿床及热液矿床中;五是稀土元素由于其原子结构、化学和晶体化学性质相近而经常共生在同一个矿物中,即铈族稀土和钇族稀土元素常共存在一个矿物中,但这类元素并非等量共存,有些矿物以含铈族稀土为主,有些矿物则以钇族为主。想要了解更多关于稀土在线的信息,请继续浏览上海
有色
网。
白铜冷凝管
2017-06-06 17:50:03
硫酸亚铁成膜失效的镍白铜冷凝管腐蚀机理分析运用力学性能测试、扫描电镜观察、微区能谱成分分析和x射线衍射物相分析等手段对硫酸亚铁成膜的镍自铜冷凝管内壁腐蚀特性进行观察和分析.结果表明:镰白铜冷凝管服役前的组织和性能符合国家标准GB/T8890—1998的要求;硫酸亚铁成膜后的新管使用1年半后,管内壁有较厚的不均匀疏松沉积层.去除沉积层后。白铜管内壁有明显腐蚀现象,并且是明显点蚀坑和少量鼓包状腐蚀产物,由于点蚀坑内腐蚀产物中的CuS和CuCl2的古量较高,说明循环冷却水中硫离子(S^2-)和氧离子(Cl^-)参与了白铜管的腐蚀过程.铸轧工艺生产白铜BFe10-1-1冷凝管中的水平连铸和行星轧制两个关键工序,考察了连铸管坯和行星轧制态管坯的
宏观
组织、微观组织、成分分布、力学性能及铸轧过程中存在的问题。实验结果验证了铸轧工艺生产白铜BFe10-1-1冷凝管是可行的,可以通过施加电磁场改善铸造管坯的缺陷,同时行星轧机的性能也需要加以改进,如氮气、乳液和冷却水的能力为紫铜TP2管坯的2.5~3.0倍,并采用新型轧辊材质.以上就是硫酸亚铁成膜失效的镍白铜冷凝管腐蚀机理分析,更多信息请详见上海
有色
网
废铝清洗
2017-06-06 17:50:03
废铝清洗是废铝循环利用生产的首要关键步骤。因为只有将废铝清洗干净才能提炼出更纯的新铝。废铝中经常含有油漆、油类、塑料、橡胶等有机非
金属
杂质。废铝清洗是十分重要的。在回炉冶炼前,必须设法加以废铝清洗。对于导线类废铝,一般可采用机械研磨或剪切剥离、加热剥离、化学剥离等措施去除包皮。目前国内企业常用高温烧蚀的办法去除绝缘体,烧蚀过程中将产生大量的有害气体,严重地污染空气。如果采用低温烘烤与机械剥离相结合的办法,先通过热能使绝缘体软化,机械强度降低,然后通过机械揉搓剥离下来,这样既能达到净化目的,同时又能够回收绝缘体材料。废铝器皿表面的涂层、油污以及其他污染物,可采用丙酮等有机溶剂对废铝清洗,若仍不能清除,就应当采用脱漆炉脱漆。脱漆炉的最高温度不宜超过566℃,只要废物料在炉内停留足够的时间,一般的油类和涂层均能够将废铝清洗干净。更多关于废铝清洗的问题可以登陆上海
有色
网查询,更多更全的废铝清洗的商家信息也可以在商家平台上寻找到!
铜合金清洗
2017-06-06 17:50:06
环保洗铜水产品用途,本品主要铜及铜合金光亮酸洗,不含强酸,适用于 H60以上黄铜、锰黄铜、磷铜、白铜、锌磷青铜等的氧化皮清除及表面光亮处理。本品有别于普通铜及铜合金酸洗液,在洗铜操作时杜绝黄烟产生,绝对环保。极底腐蚀率。性能特点:1、工作液不含硝酸、铬酸,抛光时不产生氮氧化物,不污染环境,三废处理简单。 2、对基体腐蚀作用相对较弱,清洗时间适中,不仅适合手工生产线也适合自动化电镀生产线。 3、工作液稳定,操作工艺简单。 使用方法 1、操作条件 双氧水(30%) 200-300ml/L(体积) 环保洗铜水A组 50 ml/L(体积) 自来水 余量 温度 35–55℃(最佳: 40–45℃) pH值 1.0–1.8 (最佳:1.10–1.60) 抛光时间 1–8分钟(视清洗前基体光洁度及对清洗后光亮度的要求) 2、环保洗铜水的配制 往清洗槽中加入所需要的自来水,然后加入双氧水组份搅匀,再加入洗铜水搅匀。测定洗铜水的pH值,若pH值低于1.0,用10%NaOH水溶液将pH值调整到1.10–1.20。若pH值高,则添加本品的B组份来调节. 3、操作指导及槽液维护 (1)、pH值的控制 在洗铜过程中,洗铜水的pH值会不断上升,当pH值高于1.60时,用洗铜水将pH值调整至1.10–1.20范围内。清洗后铜或铜合金的表面光亮度不仅与清洗时间有关也与洗铜液的pH值有关;当洗铜水的pH值高于1.60,尤其高于1.80时,清洗后的光亮度明显降低。反之,若洗铜水的pH值过低(<1.0),清洗时铜与铜合金表面处于活化状态,在此状态下,铜与铜合金清洗后的光亮度不足。 (2)、双氧水的补加 在清洗过程中双氧水的浓度在不断的降低,为此在操作过程中应间歇适量补充双氧水以保证其浓度在20–30%的范围内,双氧水的浓度过低不仅影响工件的抛光速度也影响工件的抛光质量。当其浓度低于规定浓度时往往造成铜及其合金表面不能形成棕色氧化膜。在此情况下,铜与铜合金表面清洗后的光亮度不足。 (3)、洗铜水的添加量 设定铜与铜合金工件的平均清洗时间为5分钟,每升环保洗铜水的使用面积为7.5-10平方米。 (4)、洗铜水的更换与使用寿命 随着洗铜的进行,洗铜水中的铜离子浓度不断提高,当其浓度接近或达到硫酸铜溶解度时,工件表面不再具有金属光泽的棕色氧化膜,洗铜水失去正常抛光作用。但对氧化皮的清除作用依然存在,此时可以全部报废并更换新的洗铜水。设定工件的平均清洗时间为5分钟,该洗铜水的使用寿命为1.0–1.5平方米/升。 4、设备要求 (1)、清洗槽材料 使用聚氯乙稀、聚乙烯等非
金属
材料制作。 (2)、加热器 使用石英加热管或聚四氟乙烯加热管。 (3)、挂具或吊篮 使用塑料,不要使用
金属
件。
钢管清洗方法
2019-03-18 11:00:17
钢管清洗方法:利用溶剂、乳剂清洗钢材表面,以达到去除油、油脂、灰尘、润滑剂和类似的有机物,但它不能去除钢管表面的锈、氧化皮、焊药等,因此在钢管防腐生产中只是辅助方法。
钢管清洗与预热
2019-03-18 11:00:17
钢管喷(抛)射处理前,钢管清洗的方法除去钢管表面的油脂和积垢,采用加热炉对管体预热至40一60℃,使钢管表面保持干燥状态。在喷(抛)射处理时,由于钢管表面不含油脂等污垢,可增强钢管除锈的效果,干燥的钢管表面也有利于钢丸、钢砂与锈和氧化皮的分离,使除锈后的钢管表面清洁。
铝型材挤压温度在线监测方案
2019-01-14 11:16:06
1.工艺要求 通常铝材挤压生产中,较大产量主要决定于挤压速度,而型材的质量取决于型材出模温度。随着挤压速度的加快,型材出模温度将显著升高,当温度超越一定值时,铝材组织性能和表面质量将出现多种问题,为此,必须随时对铝材出口温度进行监控、检测,以保证挤压产量与型材质量的较佳匹配。 2.仪器介绍 温度检测分为接触式和非接触式两大类。在铝挤压生产中,通常做法是采用快速热电偶接触方式来检测铝材温度,而挤压过程中型材一直运动,其检测元件必须随型材一起运动,无法保持在线监测,且检测时人为操作手法不同,型材出模后即刻冷却,导致检测温度检测偏差很大,因此很难得到准确的温度与速度较佳匹配。此时,往往是机手通过以往经验,目视检查型材表面质量,结合温度检测来决定型材挤压速度,人的操作不稳定性也就导致产品的质量与产量的不稳定。 为消除上述常规的热电偶接触方式来检测弊病,许多工厂开始寻找在线及时温度检测方法,因生产的特点确定了在线监测只能采用非接触方式检测。目前较为成功使用的是红外线温度检测仪。其原理是一切物体都辐射红外线,红外辐射能量的大小及其按波长的分布,与物体表面温度有密切关系,因此通过测量红外测温,能准确地测定它的表面温度。一般物体,其发射率稳定,用红外辐射测温仪测量目标的温度时,测量出目标在其波段范围内的红外辐射量,就能计算出被测目标的温度。 针对铝合金型材而言,由于其发射率低,波动变化大,导致红外辐射波动大,加之环境中烟尘影响,型材出模后晃动,采用传统的单波长测量无法得出准确的温度。要得到准确地测量温度,则必须使用多波长方式测量,对其变化的发射率配合以特殊的运算补偿,方可解决。其补偿运算方式必须要考虑到型材截面形式及合金成分的变化。 我们针对目前多种红外测温仪进行了现场实测试验,发现许多红外测温仪自称能检测铝型材,其实只能检测某些简单截面形式的型材,仅克服了铝材因表面光亮导致发射率偏低的情形,当型材外截面变化时,必须手动设置仪表的参数,方能得到准确的温度值,并不能依实际情况进行参数智能修正,故而使用范围较窄。这其中有个关键问题,是此类测温仪未采取有效措施消除因铝材截面形状改变,自身多次反射其辐射能量而导致的干扰,尤其是针对鳍片较多或有沟槽的型材,此干扰很明显。经对比测试,目前真正可用于铝挤压在线检测,只有那些设有专门的软件,对上述干扰进行有效过滤或抑制的红外测温仪。 3.同行业推广 现我司使用的红外测温仪表即采用多波长检测方式,该仪表红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统收集视场内的目标所测波段的红外辐射能量、发射率,再将其光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪表内定的算法和目标发射率校正后转变为被测目标的温度值。该仪表内定算法即是其特殊补偿运算软件。测量时,在考虑所测铝材红外辐射能量、发射率及所测波长后,再通过特殊补偿运算计算出准确温度。 4.总结 上述补偿运算是基于大量的型材实际生产数据而做出的经验模型,实质是针对不同型材、不同工况下,收集起的完整有效数据库,使用时,将检测到的信号与数据库内给定的数据进行综合对比,从而能准确判断出被测量的型材表面温度。此运算中又配以高信号稀释因数,有效克服了红外测温仪光学系统因镜头脏污、烟雾、水汽导致的衰减,适应各种截面形式,尤其是多鳍片形式,提高抗干扰能力,同时为使用者的维护保养给予智能提示。