您所在的位置: 上海有色 > 有色金属产品库 > 活性氧化镁 > 活性氧化镁百科

活性氧化镁百科

氧化镁

2019-01-25 15:49:17

MgO俗称苦土,是一种白色粉末状固体。熔点3125K,沸点3873K,密度3.58g/cm3(298K),硬度6.50。MgO对水呈一定惰性,特别是高温煅烧后的MgO难溶于水。MgO溶于酸。    MgO的制备方法:   (1)金属镁在高温下燃烧。                              2Mg  +  O2  ==  2MgO    (2)工业上一般通过煅烧碳酸镁或氢氧化镁来生产氧化镁。                             MgCO3  ====  MgO  +  CO2                                Mg(OH)2  ==== MgO  +  H2O    煅烧温度在923K左右制成的为轻质MgO,煅烧温度在1923K以上时制成的为MgO。    MgO大量用于耐火材料、金属陶瓷、电绝缘材料,轻质MgO与MgCl2或MgSO4溶液混合后可制成镁质水泥。医疗上用MgO作抗酸药和轻泻药。常与易致便秘的CaCO3配合应用。在水处理、人造纤维织物加工、造纸、催化剂生产等方面MgO都有重要应用。

活性氧化铜粉

2017-06-06 17:50:01

活性氧化铜粉,也就是我们所说的活性氧化铜。活性氧化铜 

活性氧化铝

2017-06-06 17:50:11

活性氧化铝为白色、球状多孔性物质,无毒、无臭,不粉化、不溶于水、乙醇。    高性能的活性氧化铝在不定形耐火材料配料中能带来以下好处:提高坯体密度、流动性、强度,提高二次莫来石生成量等,降低加水量和气孔率。此外,活性氧化铝还能做干燥剂,吸水量大、干燥速度快,能再生(400 -500K烘烤)。活性氧化铝属于化学品氧化铝范畴,主要用于吸附剂、净水剂、催化剂及催化剂载体,根据不同的用途,其原料和制备方法不同。    活性氧化铝(分子式Al2O(3-x)(OH)2x,0<x<0.8)是当前世界上大量使用的无机化工产品之一。由于活性氧化铝具有多孔结构,高比表面积且处于不稳定的过渡态,因而具有较大的活性。在石油化工、化肥工业中,广泛用作催化剂、催化剂载体。活性氧化铝又具有吸附特性,因而用作气体和液体的干燥剂、气体净化的吸附剂、饮水除氟剂、工业污水的颜色和气味消除剂等。当今得到的主要的工业活性氧化铝产品都是靠快速脱水法生产的。活性氧化铝是指经过充分细磨、以原晶尺寸大小1μm的α- Al2O3为基本组成(20%-90%)的煅烧氧化铝。    该纳米氧化铝XZ-L14显白色蓬松粉末状态,晶型是α型。粒径是20nm;比表面积≥50m/g。粒度分布均匀、纯度高、高分散、α-Al2O3,其比表面低,具有耐高温的惰性,但不属于活性氧化铝,几乎没有催化活性;耐热性强,成型性好,晶相稳定、硬度高、尺寸稳定性好,可广泛应用于各种塑料、橡胶、陶瓷、耐火材料等产品的补强增韧,特别是提高陶瓷的致密性、光洁度、冷热疲劳性、断裂韧性、抗蠕变性能和高分子材料产品的耐磨性能尤为显著。由于α相氧化铝也是性能优异的远红外发射材料,作为远红外发射和保温材料被应用于化纤产品和高压钠灯中。此外,α相氧化铝电阻率高,具有良好的绝缘性能,可应用于YGA激光晶的主要配件和集成电路基板中。    在催化剂中使用氧化铝的通常专称为“活性氧化铝”,它是一种多孔性、高分散度的固体材料,有很大的表面积,其微孔表面具备催化作用所要求的特性,如吸附性能、表面活性、优良的热稳定性等,所以广泛地被用作化学反应的催化剂和催化剂载体。

活性氧化铝

2017-06-06 17:50:09

活性氧化铝,又名活性矾土,英文名称为Activated Alumina 或Reactive alumina;activated alumin(I)um oxide。在催化剂中使用氧化铝的通常专称为“活性氧化铝”。用途  高性能的活性氧化铝在不定形耐火材料配料中能带来以下好处:提高坯体密度、流动性、强度,提高二次莫来石生成量等,降低加水量和气孔率。   此外,活性氧化铝还能做干燥剂,吸水量大、干燥速度快,能再生(400 -500K烘烤)。   活性氧化铝属于化学品氧化铝范畴,主要用于吸附剂、净水剂、催化剂及催化剂载体,根据不同的用途,其原料和制备方法不同。   亿洋水处理用活性氧化铝,高效氧化铝制备。工业标准  中华人民共和国化工部标准: HG/T 3927-2007   双氧水专用氧化铝性状   项 目 指标INDEX   晶 相 γ-Al2O3   规 格 (mm) 7-14目 Φ3-5、Φ4-6 、Φ5-7   外 观 白色球状   堆 密 度 (g/cm3) 0.68-0.75   强 度 (N/粒) >50   比 表 面 (m2/g) 200-260   孔 容 (cm3/g) 0.40-0.46   大 孔 (>750A) 0.14   吸 水 (%) >50   活性氧化铝干燥剂性状   晶 相 x-ρ Al2O3   规 格 (mm) Φ3-5、Φ4-6、Φ5-7 、Φ8-10   外 观 白色球状   堆 密 度 0.68-0.89   强 度 (N/粒) >130   比 表 面 (m2/g) 280-360   孔 容 (cm3/g) 0.38-0.40   静态吸附容量 (RH%) 18   活性氧化铝除氟剂   规 格 Φ1.5-2、Φ4-3、Φ4-6 、Φ5-7   外 观 白色球状   堆 密 度 (g/cm3) ≥0.75   强 度 (N/粒) 50-80   比 表 面 (m2/g) 280-360   孔 容 (cm3/g) 0.40   除 氟 (mgF/g Al2O3) ≥1.2其他性状  晶体:-AL2O3型   分子式:AL2O3nH2O(0<n<=0.8)   分子量:102<分子量<=117   物化性质:本品为白色、球状多孔性物质,无毒、无臭,不粉化、不溶于水、乙醇。   包装:本产品采用双层包装,外层塑编袋内衬塑料袋,每袋净重25KG,特殊包装另定。   白色球状物质,特殊工艺制作,因具有独特的骨架结构,所以与活性组分亲和力极强,该产品微孔分布均匀,孔径大小适宜,孔容大吸水率高,堆积密度小,机械性能好,具有良好的稳定性,适合做干燥剂、催化剂载体、除氟剂、变压吸附剂。使用本品制备的CO-MO系耐硫变换催化剂,具有低温活性好,使用温区宽,硫化时间短等特点,该催化剂适用于中小合成氨厂。制备或来源  活性氧化铝(分子式Al2O(3-x)(OH)2x,0<x<0.8)是当前世界上大量使用的无机化工产品之一。由于活性氧化铝具有多孔结构,高比表面积且处于不稳定的过渡态,因而具有较大的活性。在石油化工、化肥工业中,广泛用作催化剂、催化剂载体。活性氧化铝又具有吸附特性,因而用作气体和液体的干燥剂、气体净化的吸附剂、饮水除氟剂、工业污水的颜色和气味消除剂等。当今得到的主要的工业活性氧化铝产品都是靠快速脱水法生产的。活性氧化铝是指经过充分细磨、以原晶尺寸大小1μm的α- Al2O3为基本组成(20%-90%)的煅烧氧化铝。   分子式(Formula): Al2O3 ·nH2O (0<n<3)   分子量(Molecular Weight): 101.96 + nH2O )   CAS No.: 1344-28-1   该纳米氧化铝XZ-L14显白色蓬松粉末状态,晶型是α型。粒径是20nm;比表面积≥50m/g。粒度分布均匀、纯度高、高分散、α-Al2O3,其比表面低,具有耐高温的惰性,但不属于活性氧化铝,几乎没有催化活性;耐热性强,成型性好,晶相稳定、硬度高、尺寸稳定性好,可广泛应用于各种塑料、橡胶、陶瓷、耐火材料等产品的补强增韧,特别是提高陶瓷的致密性、光洁度、冷热疲劳性、断裂韧性、抗蠕变性能和高分子材料产品的耐磨性能尤为显著。由于α相氧化铝也是性能优异的远红外发射材料,作为远红外发射和保温材料被应用于化纤产品和高压钠灯中。此外,α相氧化铝电阻率高,具有良好的绝缘性能,可应用于YGA激光晶的主要配件和集成电路基板中。技术指标  1. 纳米氧化铝浆料XZ-L14外观 白色粉末。   2. 纳米氧化铝XZ-L14晶相 α相。   3. 纳米氧化铝XZ-L14平均粒度(nm) 20±5.   4. 纳米氧化铝XZ-L14含量% 大于 99.9%。应用范围  1. 纳米氧化铝浆料XZ-L14透明陶瓷:高压钠灯灯管、EP-ROM窗口。   2. 纳米氧化铝浆料XZ-L14化妆品填料。   3. 纳米氧化铝浆料XZ-L14单晶、红宝石、蓝宝石、白宝石、钇铝石榴石。   4. 纳米氧化铝浆料XZ-L14高强度氧化铝陶瓷、C基板、封装材料、刀具、高纯坩埚、绕线轴、轰击靶、炉管。   5. 纳米氧化铝浆料XZ-L14精密抛光材料、玻璃制品、 金属 制品、半导体材料、塑料、磁带、打磨带。   6. 纳米氧化铝浆料XZ-L14涂料、橡胶、塑料耐磨增强材料、高级耐水材料。   7. 纳米氧化铝浆料XZ-L14气相沉积材料、荧光材料、特种玻璃、复合材料和树脂材料。   8. 纳米氧化铝浆料XZ-L14催化剂、催化载体、分析试剂。   9. 纳米氧化铝浆料XZ-L14宇航飞机机翼前缘。它是一种多孔性、高分散度的固体材料,有很大的表面积,其微孔表面具备催化作用所要求的特性,如吸附性能、表面活性、优良的热稳定性等,所以广泛地被用作化学反应的催化剂和催化剂载体

活性氧化铜

2017-06-06 17:50:01

 

活性氧化锌

2017-06-06 17:49:59

活性氧化锌是什么?相信许多的网民并不了解,接下来就跟着小编来了解下活性氧化锌吧!活性氧化锌为白色或微黄色球状微细粉末,密度5.47g/cm3,熔点1800℃,不溶于水,溶于酸,碱氯化铵和氨水中。在潮湿空气中二氧化碳生成碱式碳酸锌。其最大特征是粒径50-100纳米,比间接法氧化锌和直接法氧化锌有更大的比表面积,在应用中具有更高活性和良好分散性.活性氧化锌的折射率与天然橡胶非常相近,因此能让硫化产品的颜色更清澈透明。活性氧化锌具有滚动性好,分散性优良的特点,加上它粒径小,结构轻而疏松,氮吸附比表面积大,使它在用作硫化活性剂时,在胶料中分布均匀,与硫化氢的接触面积大,进行界面反应机遇较大,再加上本产品有活性物质的助催作用,使氧化锌转化为硫化锌的转化率高。因此作为合成橡胶的硫化促进剂和良好的补强剂,是普通氧化锌用量的50-70%.活性氧化锌能制成的氧化锌脱硫剂,具有比表面积大,穿透硫容高,机械强度高,堆积隙大,床层压降小的特性。广泛应用于全成氨,甲醇和制氢等工业原料气,油的深度脱硫净化过程。在一定温度和压力下能把气体中微量的硫化氢,有机硫浓度有效的降低。活性氧化锌不仅拥有一些氧化锌的优点,而且还有着自己的特点,相信在不久的将来,活性氧化锌将成为工业界的"主力军"  

活性氧化铝粉

2017-06-06 17:50:11

活性氧化铝粉为白色,无毒、无臭,不粉化、不溶于水、乙醇的物质。    活性氧化铝(分子式Al2O(3-x)(OH)2x,0<x<0.8)是当前世界上大量使用的无机化工产品之一。由于活性氧化铝具有多孔结构,高比表面积且处于不稳定的过渡态,因而具有较大的活性。在石油化工、化肥工业中,广泛用作催化剂、催化剂载体。活性氧化铝又具有吸附特性,因而用作气体和液体的干燥剂、气体净化的吸附剂、饮水除氟剂、工业污水的颜色和气味消除剂等。当今得到的主要的工业活性氧化铝产品都是靠快速脱水法生产的。活性氧化铝是指经过充分细磨、以原晶尺寸大小1μm的α- Al2O3为基本组成(20%-90%)的煅烧氧化铝。    高性能的活性氧化铝在不定形耐火材料配料中能带来以下好处:提高坯体密度、流动性、强度,提高二次莫来石生成量等,降低加水量和气孔率。此外,活性氧化铝还能做干燥剂,吸水量大、干燥速度快,能再生(400 -500K烘烤)。活性氧化铝属于化学品氧化铝范畴,主要用于吸附剂、净水剂、催化剂及催化剂载体,根据不同的用途,其原料和制备方法不同。    该纳米氧化铝XZ-L14显白色蓬松粉末状态,晶型是α型。粒径是20nm;比表面积≥50m/g。粒度分布均匀、纯度高、高分散、α-Al2O3,其比表面低,具有耐高温的惰性,但不属于活性氧化铝,几乎没有催化活性;耐热性强,成型性好,晶相稳定、硬度高、尺寸稳定性好,可广泛应用于各种塑料、橡胶、陶瓷、耐火材料等产品的补强增韧,特别是提高陶瓷的致密性、光洁度、冷热疲劳性、断裂韧性、抗蠕变性能和高分子材料产品的耐磨性能尤为显著。由于α相氧化铝也是性能优异的远红外发射材料,作为远红外发射和保温材料被应用于化纤产品和高压钠灯中。此外,α相氧化铝电阻率高,具有良好的绝缘性能,可应用于YGA激光晶的主要配件和集成电路基板中。    在催化剂中使用氧化铝的通常专称为“活性氧化铝”,它是一种多孔性、高分散度的固体材料,有很大的表面积,其微孔表面具备催化作用所要求的特性,如吸附性能、表面活性、优良的热稳定性等,所以广泛地被用作化学反应的催化剂和催化剂载体。    纳米技术已经可以生产1微米以下的氧化铝粉。   纳米氧化铝XZ-L690显白色蓬松粉末状态,晶型是γ-Al2O3。粒径是20nm;比表面积≥160m2/g。粒度分布均匀、纯度高、极好分散,其比表面高,具有耐高温的惰性,高活性,属活性氧化铝;多孔性;硬度高、尺寸稳定性好,具有较强的表面酸性和一定的表面碱性,被广泛应用作催化剂和催化剂载体等新的绿色化学材料。可广泛应用于各种塑料、橡胶、陶瓷、耐火材料等产品的补强增韧,特别是提高陶瓷的致密性、光洁度、冷热疲劳性、断裂韧性、抗蠕变性能和高分子材料产品的耐磨性能尤为显著。极好分散,在溶剂水里面;溶剂乙醇、丙醇、丙二醇、异丙醇、乙二醇单丁醚、丙酮、丁酮、苯、二甲苯内,不需加分散剂,搅拌搅拌即可以充分的分散均匀。在环氧树脂,塑料等中,极好添加使用。    XZ-L690用于制镶牙水泥、瓷器、油漆的填料、媒染剂、 金属 铝等。 可添加到各种水性树脂、油性树脂内、环氧树脂、丙稀酸树脂、聚铵酯树脂、朔料、橡胶中,添加量为3%-5%,可以明显提高材质的硬度,硬度可达6-8H甚至更高。还可以用在导热、抛光、电镀、催化剂等。    自行研发生产的氧化铝水分散液用分散剂HFXZ-802 ,根据客户需求,经过大量实验验证,得出能在水体系中完全防止氧化铝粉体沉降复合配方,该分散剂是一个复合配方体系,粉体粒径可以是80目到1000目。    了解更多有关活性氧化铝粉的信息,请关注上海 有色 网。  

活性氧化铝球

2017-06-06 17:50:09

活性氧化铝球     活性氧化铝球是具有很多毛细管道的白色球粒,有很多毛细孔通道,这些孔道的表面有较高的活性,能对气体,蒸汽,液体的水份具有选择吸附本领。在一定条件下干燥深度可达-70℃以下的露点,饱和可在175℃-400℃加热除水而复活,能进行多次,还可从染污的氧、氢、二氧化硫中吸附润滑油及其它油类蒸汽,并可做催化剂或载体。广泛用于石化、炼油、电子、乙烯、丙烯、空气等干燥装置,已在全国许多双氧水厂,化肥厂,制氧厂和石油化工炼油单位使用,并取得了良好效果。   活性氧化铝球还根据吸附物质的极性强弱来确定,对水、氧化物、醋酸、碱等具有较强的亲合力,是一种微水深度干燥剂,也是吸附极性分子的吸附剂。   活性氧化铝瓷球除氟类似于阴离子交换树脂,但对氟离子的选择性比阴离子树脂大,活性氧化铝吸附脱氟效果好,容量稳定,每立方米活性氧化铝吸氟6400克,本产品具有强度高,磨损低、水浸不变软、不膨胀、不粉化、不破裂。可广泛用于石油裂解气、乙烯丙烯气的深度干燥和制氢、空分装置、仪表风干机的干燥、双氧水中氟化物处理,还可以去除废气中的硫气氢、二氧化碳、氟化氢、烃类等污染物质,特别适应含氟水的除氟处理。新型的氧化铝液体材料,该液体纳米氧化铝,不沉底,不分层。纳米氧化铝透明液体XZ-LY101体颜色无色透明色固含量的20%-25%。该纳米氧化铝透明分散液中使用的是5-10纳米的氧化铝,该5-10纳米的氧化铝是经过原来粒径稍大的纳米氧化铝经过层层深加工筛选出来的氧化铝,具有明显纳米蓝相,添加到各种丙烯酸树脂,聚氨酯树脂,环氧树脂,三聚氰胺树脂,硅丙乳液等树脂的水性液体中,添加量为5%到10%,可以明显提高树脂的硬度,硬度可达6-8H甚至更高。完全透明,该纳米氧化铝液体可以是水性的或者油性的任何溶剂,由于其纳米粒径相当细小,固无论是何种溶剂皆是透明的,同时可以做各种玻璃涂层材料,宝石,精密仪器材料等。   性质1、 纳米氧化铝透明液体XZ-LY101透明,含量高。不沉淀不分层。2、 纳米氧化铝透明液体XZ-LY101有水性液体,油性液体,可以是醇类,醚类,酮类液体。皆是透明,相容性很好。3、纳米氧化铝透明液体XZ-LY101 PH=7.0 但是具体ph值具体可根据客户要求调整。调整ph值对液体无影响。4、纳米氧化铝透明液体XZ-LY101硬度高、尺寸稳定性好,可广泛应用于各种塑料、橡胶、陶瓷、耐火材料等产品的补强增韧5、纳米氧化铝透明液体XZ-LY101提高陶瓷的致密性、光洁度、冷热疲劳性、断裂韧性、抗蠕变性能和高分子材料产品的耐磨性能尤为显著6、纳米氧化铝透明液体XZ-LY101是性能优异的远红外发射材料,作为远红外发射和保温材料被应用于化纤产品和高压钠灯中。此外氧化铝电阻率高,具有良好的绝缘性能,可应用于YGA激光晶的主要配件和集成电路基板中7、提高紫外固化涂层的耐刮擦能力和耐用性,这些紫外固化涂料大量用于需要高度耐磨的领域.

活性氧化铝与活性氧化铝瓷球的区别

2019-03-11 11:09:41

活性氧化铝与活性氧化铝瓷球的差异主要有以下几个方面:   活性氧化铝   晶体:Y-AL2O3型   分子式:AL2O3nH2O(0  分子量:102   物化性质:本品为白色、球状多孔性物质,无毒、无臭,不粉化、不溶于水、乙醇。   包装:本产品选用双层包装,外层塑编袋内衬塑料袋,每袋毛重40KG,特殊包装另定。   白色球状物质,特殊工艺制造,因具有共同的骨架结构,所以与活性组分亲和力极强,该产品微孔散布均匀,孔径巨细适合,孔容大。   吸水率高,堆积密度小,机械性能好,具有杰出的稳定性,适合做催化剂载体。运用本品制备的CO-MO系耐硫改换催化剂,具有低温活性好,运用温区宽,硫化时间短等特色,该催化剂适用于中小合成厂。   活性氧化铝(球)A-AS-LD(粒度可根据用户要求加工)。   活性氧化铝瓷球是具有许多毛细管道的白色球粒,有许多毛细孔通道,这些孔道的表面有较高的活性,能对气体,蒸汽,液体的水份具有挑选吸附身手。在必定条件下枯燥深度可达-70℃以下的露点,饱满可在175℃-400℃加热除水而复生,能进行屡次,还可从染污的氧、氢、二氧化硫中吸附润滑油及其它油类蒸汽,并可做催化剂或载体。广泛用于石化、炼油、电子、乙烯、、空气等枯燥设备,已在全国许多厂,化肥厂,制氧厂和石油化工炼油单位运用,并取得了杰出作用。   活性氧化铝瓷球特色   本产品具有强度高、磨损低、水浸不变软、不胀大、不粉化、不决裂。可广泛用于石油裂解气、乙烯气的深度枯燥和制氢、空分设备、外表风干机的枯燥、中氟化物处理还能够去除废气中的硫气氢、二氧化硫、氟化氢、烃类等污染物质,特别习惯含氟水的除氟处理。  两者联系:   活性氧化铝瓷球是由活性氧化铝制成的。

氢氧化镁简单介绍

2019-02-14 10:39:59

碱土金属的氢氧化物都是白色固体,置于空气中就吸水潮解。其间Ca(OH)2就是常用的干燥剂。碱土金属氢氧化物在水中的溶解度比碱金属氢氧化物要小得多,从表中数据看,从Be到Mg,氢氧化物的溶解度顺次递加,它们的碱性也顺次递加。Be(OH)2和Mg (OH)2是难溶的氢氧化物。Be(OH)2是氢氧化物,Mg (OH)2归于中强碱,其他均归于强碱。表1  碱土金属氢氧化物的某些性质物质Be(OH)2Mg(OH)2Ca(OH)2Sr(OH)2Ba(OH)2性质色彩白白白白白熔点/K脱水分化脱水分化脱水分化脱水分化脱水分化水中溶解度/mol-dm-3(293K)8×10-1S×10-11.8×10-26.7×10-22×10-1酸碱性中强碱强碱强碱强碱 碱金属和部分碱土金属的焰色离子Li+Na-K+Rb+Cs+Ca2+Sr2+Ba2+焰色红黄紫紫红紫红紫红洋红黄绿波长/nm670.8589.6404.7629.8459.3616.2707553.6     Mg(OH)2的密度为2.36g/cm3,加热至623K即脱水分化:                                   Mg(OH)2  ====  MgO  +  H2O    Mg(OH)2易溶于酸或铵盐溶液:                               Mg(OH)2  +  2HCl  ====  MgCl2 +2H2O    这一反响可应用于分析化学中。    将海水和廉价的石灰乳反响,能够得到Mg(OH)2沉积,亦称氧化镁乳:                             Mg2+   +  Ca(OH)2  ==  Mg(OH)2  +  Ca2+    Mg(OH)2的乳状悬浊液在医药上用作抗酸药弛缓泻剂。

活性氧化锌的生产

2019-02-14 10:39:49

A  性质和用处    活性氧化锌为白色或微黄色球状微细粉末,密度5.47g/cm3,熔点1800℃,不溶于水,溶于酸、碱、氯化按和中。在湿润空气中能吸收空气中二氧化碳生成碱式碳酸锌。    按化工部HG2572-94标准,普通氧化锌粒度0.5μm,球状,比表面积35~45 m2/g。活性氧化锌表面能吸附气体分子构成单分子吸附层,据此可计算出其比表面积,判别其活性度。    活性氧化锌和氧化锌在化学成分上是相同的,它们的差异首要表现在物理性质上,因此用处也不尽相同。活性氧化锌的纯度低于用直接法或间接法出产的氧化锌,但其特有的物理、化学性质能显示出其优越性。氧化锌一般用于橡胶工业,它首要作为天然橡胶、合成橡胶及乳胶的活化剂。活性氧化锌的颗粒细微呈球状,具有很大的表面积,具有杰出的分散性与杰出的吸附性,因此能促进橡胶的硫化、活化和防老化效果,能加强硫化进程,进步橡胶制品的耐撕裂性、耐磨性。    活性氧化锌还用于白色乳胶的着色剂和填充剂、氯丁橡胶中的硫化剂、塑料工业的光稳定剂、合成工业中的脱硫催化剂,还可用于涂料、珐琅、颜料等化工工业。在橡胶工业顶用活性氧化锌比用普通氧化锌可削减1/3~1/4的用量。    B  出产工艺    a  锌盐纯碱法    锌盐纯碱法,通常是用98%的硫酸与含锌物料(大都为90%的粗氧化锌,要求含As量0.2%;亦可用锌冶炼厂的锌烟尘、锌废液、初级氧化锌、含锌档次低的菱锌矿等)浸出,得到硫酸锌溶液,借KMn04氧化和锌粉置换除掉硫酸锌溶液中的铁、铜、锡等杂质,通过净化的硫酸锌溶液参加纯碱中和得碱式碳酸锌沉积。沉积物锻烧得活性氧化锌。锌盐纯碱法出产活性氧化锌的出产工艺流程如下图所示。 [next]     b  配合法    配合法是用碳酸氢按和来浸出粗氧化锌或锌烟尘、菱锌矿等物料,使氧化锌溶解生成锌络合物,再净化溶液,锌络合物分化即得活性氧化锌。浸法流程简略,成本低,但得到的活性氧化锌的质量比锌盐纯碱法差一些。络合物法的出产流程如下图所示。    在浸出槽中按配料比参加碳铵、配成溶液,在拌和下参加粗氧化锌,加热到40℃反响约2h,反响彻底后将料浆输送到压滤机过滤,即得到浸出液和滤渣,其首要反响式如下:                Zn0+3NH3·H20+NH4HC03 ==== Zn(NH3)4 C03+4H20    浸法能够处理含锌烟尘,或菱锌矿。我国各大矿山贮藏着很多的氧化锌矿待开发利用。氧化矿中锌首要以菱锌矿形状存在,含锌档次低,用惯例法难以提取。将氧化锌矿(菱锌矿)用浸取,络合物法可获得符合要求的活性氧化锌。[next]    C  产品质量标准    工业活性氧化锌(HG/T 2572-94)化工部部颁标准如下表所示。该标准适用于碳酸锌分化制得的工业活性氧化锌,该产品首要用作橡胶或电缆的补强剂、活性剂(天然橡胶)、天然橡胶和氯化橡胶的硫化剂。工业活 性氧化锌部颁标准(HG/T 2572—94)项目目标一等品合格品氧化锌(ZnO)含量/%95~9895~98水分含量/%≤0.7≤0.7水溶物含量/%≤0.5≤0.7灼烧失量/%1~41~4不溶物含量/%≤0.02≤0.05氧化铅(以Pb计)含量/%≤0.01≤0.05氧化锰(以Mn计)含量/%≤0.001≤0.003氧化铜(以Cu计)含量/%≤0.001≤0.003细度(45μm实验筛筛余物)/%≤0.1≤0.4比表面积/(m2·g-1)≥45≥35堆积密度/(g·cm-3)≤0.35≤0.40

利用硼泥制备氢氧化镁

2019-02-18 15:19:33

硼泥是、硼砂出产过程中构成的固体废弃物。硼泥中含有氧化镁、氧化钙、等碱性物质,对环境造成了极大污染。截止到2006年仅辽宁省内的硼泥就已达1700万t,并正以每年130万t的速度添加。       现在,国内外对硼泥归纳利用的研讨有诸多方面,已取得了许多科研成果,但硼泥污染的现象依然存在,这首要是因为各类硼泥归纳利用技术落后,工业化程度较低。硼泥中含有镁等有价元素,极具开发利用价值。因而,开发利用这种二次资源,出产氢氧化镁,对进步经济效益、削减环境污染、促进资源再生都有重要意义。氢氧化镁作为典型的无卤阻燃剂,具有阻燃、消烟、阻滴、高热稳定性、高效的促基材成碳效果和强除酸才能等特性。       现在,出产氢氧化镁的首要办法有:合成法、白云石的挑选煅烧法和电解卤水法。合成法需以含有氯化镁的卤水为质料,白云石的挑选煅烧法和电解卤水法的能耗皆较高。本文选用高温下煅烧工业浓硫酸与硼泥混合物的办法收回氢氧化镁,此办法能耗低且易于完成工业化,不只能够处理硼泥对环境的污染问题,也为氢氧化镁的出产拓荒了一条新途径。       一、试验       (一)试验质料       硼泥取自辽宁省某地,首要化学组成见表1。硫酸为工业级,浓度98%,、及其它检测所用药品均为分析纯,试验用水为二次蒸馏水。   表1  硼泥的成分(质量分数)/%MgOCO2SiO2Fe2O3Al2O3CaOMnO其它39.030.219.74.562.991.840.0821.628       (二)试验内容       将硼泥与工业硫酸的混合泥浆在高温炉中煅烧必定时刻,取出后加水溶解、加热、过滤,得到母液。用0.01mol/L的EDTA滴定Mg2+,核算浸出率。重复加热、过滤母液至用(NH4)2C2O4溶液体会不到Ca2+。向滤液中参加将溶液中的Fe2+、Mn2+氧化成高价的Fe3+、Mn4+有利于完全除杂,加至用K3[Fe(CN)6]溶液查验不到Fe2+,用硝酸和NaBiO3查验不到Mn2+。在必定温度下加10%NaOH溶液将母液调理至pH=9.0,过滤,除掉杂质,得到镁精液。再向镁精液中参加5mol/L的NaOH溶液调理,pH=12.0,过滤、洗刷,然后将产品恒温烘干,得到氢氧化镁产品。产品的检测按标准HG/T3607—2000履行。       (三)工艺流程       工艺流程见图1。图1  硼泥制备氢氧化镁工艺流程       二、成果与评论       (一)煅烧温度对镁浸出率的影响       在煅烧时刻为1h,硫酸与硼泥液固比为1∶1的条件下,调查不同煅烧温度下镁的浸出率,试验成果如图2所示。由图2可知,在烧烧温度为300℃时,镁的浸出率最高,尔后跟着煅烧温度的升高镁的浸出率反而快速下降。这是因为浓硫酸在350℃时开端发作分化反响,温度过高时,生成的SO3烟气和氧气会快速逸出,使反响不能充沛进行,故镁的浸出率下降。一起高温效果黏结生成不溶于水的硅酸盐类也会使得镁的浸出率下降。图2  煅烧温度对镁浸出率的影响       (二)煅烧时刻对镁浸出率的影响       在硫酸与硼泥液固比为1∶1、煅烧温度为300℃条件下,别离调查不同煅烧时刻下镁的浸出率,试验成果如图3所示。由图3可知,跟着煅烧时刻添加,镁的浸出率逐步增大。反响时刻为2h时硫酸与硼泥的反响根本完毕,此刻镁的浸出率到达最大。图3  煅烧时刻对镁浸出率的影响       (三)硫酸与硼泥份额对镁浸出率的影响       在煅烧时刻为1h,煅烧温度为300℃条件下,调查不同液固比时镁的浸出率,试验成果如图4所示。由图4可知,跟着硫酸与硼泥液固比的增大,硫酸过量增多,硼泥能充沛与硫酸反响,镁浸出率趋于增大,但耗酸量增大。若硫酸与硼泥的份额太小,则硼泥中的矿藏不能与硫酸充沛反响,导致镁的浸出率不高。依据试验成果,硫酸与硼泥的液固比以2∶1为宜。图4  硫酸与硼泥份额对镁浸出率的影响       (四)归纳条件试验       依据试验成果及归纳考虑能耗、药品用量和硫酸分化温度对浸出率的影响,断定工艺条件为:煅烧温度为300℃、煅烧时刻为2h、硫酸与硼泥的液固比为2∶1,在此工艺条件下镁的浸出率为88%。将此条件下所制样品按1.2所述办法制备氢氧化镁,经测定镁精液中镁的收回率为91.17%。因而,硼泥中镁的归纳收回率可达80%左右。       (五)氢氧化镁的检测与分析       1、氢氧化镁的XRD分析  选用X射线衍射仪分析了产品物相组成,其成果见图5。由图5可知,该产品的峰方位和强度均与JDPDS卡上标准Mg(OH)2的衍射峰数据完全一致,且峰值规整,无杂峰出现,可知粉体为Mg(OH)2。图5  Mg(OH)2样品XRD图       2、氢氧化镁的检测  对氢氧化镁产品进行成分分析,检测成果如表2所示。   表2  氢氧化镁成分(质量分数)/%Mg(OH)2FeAlCaOMn99.540.0190.0150.4300.008       由表2可知,氢氧化镁的纯度为99.54%,换算成氧化镁纯度为68.64%,高于标准HG/T3607—2000的规则,其他杂质的含量也契合此标准。       3、氢氧化镁的SEM分析  用SEM对氢氧化镁粉末的表面描摹微观结构进行分析,其成果见图6。由图6能够看出,未烘干的Mg(OH)2颗粒出现聚会状况,晶体微粒十分小,颗粒直径不到1μm。将样品烘干后Mg(OH)2晶体微粒逐步长大,颗粒呈不规则球状,颗粒直径大约70~90μm。图6  氢氧化镁SEM相片                     (a)未烘干;(b)烘干后       三、定论       (一)依据单要素条件试验断定高温煅烧工业硫酸与硼泥混合物的工艺条件为:煅烧温度为300℃、煅烧时刻为2h、硫酸与硼泥的份额为2∶1。此刻镁的浸出率为88%。       (二)以为沉积剂制备氢氧化镁可使镁精液中镁的收回率到达91.17%,硼泥中镁的归纳收回率可达80%。经XRD检测断定沉积产品为氢氧化镁,产品质量契合标准HG/T3607—2000。       (三)由SEM检测能够看出,未烘干的Mg(OH)2晶体微粒十分小,颗粒直径不到1μm。氢氧化镁经烘干后晶粒长大,颗粒呈不规则球状,颗粒直径大约70~90μm。

活性氧化铝干燥剂

2019-01-15 09:51:32

活性氧化铝干燥剂◆ 简介: 活性氧化铝球具有吸附性能、催化活性的多孔性、高分散度、大比表面积等特点。活性氧化铝按内部主晶相组成分为Y型和X-P型,按照其用途可分为活性氧化铝吸附剂、活性氧化铝干燥剂和活性氧化铝催化剂载体。 ◆适用范围: 适用于多种气体和液体的干燥,在石油、化肥、化工等许多反应过程中作吸附剂、干燥剂、催化剂及其载体。 ◆ 主要技术参术及规格:品种性能 活性氧化铝吸附剂 活性氧化铝干燥剂 活性氧化铝催化剂载体通用型 高强型 通用型 空分用型晶相类型 Y型   X-P型 Y型化学成分% Al2O3 ≥92 ≥93 ≥90 ≥95Na2O ≤0.3其余 6-8 5-7 <10 <5物理性能 外形尺寸mm φ2-3 φ5-8 φ2-3 φ2-3φ3-5 φ3-5 φ3-5φ4-6 φ4-6 φ4-6比表面积m2/g ≥300 300-325 ≥300 350±20 280-360孔容率ml/g ≥0.35 ≥0.5 0.4±0.05 0.4±0.03 0.4-0.6静态吸水量% ≥15 17-19 ≥15 ≥19 ≥28堆积密度g/cm3 0.68-0.72 0.74-0.77 0.68-0.72磨耗率% ≤0.04点压碎强度N/颗 φ2-3 ≥70 222-311 φ2-3 ≥70 φ2-3 ≥70φ3-5 ≥100 φ3-5 ≥100 φ3-5 ≥100φ4-6 ≥100 φ4-6 ≥100 φ4-6 ≥10

镍精矿降低氧化镁工艺技术

2019-01-21 18:04:33

一、概述     金川公司选矿厂一选矿车间处理龙首混合矿石,设计处理能力为1200t/d,有破矿、磨浮、精矿输送三道工序。其中,磨浮采用三段磨矿、三段浮选的阶段磨选流程。经80年代后期和90年代初期的系列改造,形成了1500t/d的生产能力。90年后期,经过不断挖潜改造,特别是2000年和2001年连续两次150t/d的扩能改造,现已形成2000t/d的生产能力。     目前所指的龙首混合矿石,是指龙首矿东、中、西部三个不同采区的矿石混合,而不是矿石工业类型上所所义的硫化率为45%~60%的混合矿石。其中一部分较富混合矿石(含Ni1.3%以上)由一选矿进行处理,另一部分较贫混合矿石(含Ni1.122%左右)由二选磨浮车间处理。     本文所探讨的就是Ni品位在1.30 %以上的由一选处理的龙首混合矿。     二、矿石性质及主要矿物选矿工艺特性     (一)龙首混合矿石中主要金属矿物及选矿工艺特性     龙首混合矿石中主要金属矿物有紫硫镍铁矿、镍黄铁矿、黄铁矿、磁黄铁矿、黄铜矿、方铜矿等;脉石矿物有蛇纹石、绿泥石、滑石及碳酸盐。紫硫镍铁矿被认为是最易浮选的硫化镍矿物。镍黄铁矿属比较好选的镍矿物,其选别效果仅次于紫硫镍铁矿,主要原因是其原生粒度比紫镍铁矿小,由于中细粒贫矿石中的镍黄铁矿和磁铁矿紧密共生呈网络状结构,磨矿过程中绝大部分不能单体解离,造成镍黄铁矿可浮性稍差。氧化会使紫硫镍铁矿的可浮性变差,因此对于以紫硫镍铁矿为主的硫化镍矿石要求快采、快运、快选,矿石存放越久越不利于选别。     一般的蛇纹石化矿石,用黄药做捕收剂,镍回收率和硫化率接近或比较接近,是比较好选的硫化镍矿石,使用调整剂可提高精矿品位,回收率无明显改善。蛇纹石具有一定的可浮性,所以精矿中30%左右脉石矿物中有相当部分是蛇纹石,致使精矿中金属品位降低,氧化镁含量高。强蚀变矿石中蛇纹石含量较少,在一般的浮选生产中,硫化物损失严重。     研究证明:各类厂矿中的硫化镍矿物可选性无明显差异,但矿石中脉石矿物对选别生产显著影响,因此,提高镍矿物选别指标或降低精矿中氧化镁的研究工作中,必须重视脉石矿物的抑制。     (二)含镁脉石矿物的浮选工艺性质     金川硫化铜、镍矿床中主要脉石矿物为含镁硅酸盐,由于地质蚀变作用,这些硅酸盐主要以蛇纹石、绿泥石、滑石的形式存在,这些脉石矿物对铜、镍的浮选影响较大。     1、主要脉石矿物的结构     蛇纹石是层状碳酸盐矿物中最简单的矿物,结构式为[Mg3Si2O3(OH)],在它的没一层结构中都含有一层硅氧四面体,水镁石层获得额外电荷,所以和另外一个硅氧四面体六方网成夹层结构,一旦在滑石层上没有净电荷而只有范德华力时,这个夹层就裂开,滑石也很软。     绿泥石也是层状硅酸盐矿物,结构式为(Mg·Al·Fe)12[(SiAl)8O22](OH12),它是在双层云母之间夹上一层水镁石而形成的,如果水镁石层价键遭到破坏,这个矿物就裂开。和前两种矿物比,它最松软。     2、脉石矿物的可浮性     蛇纹石大量存在于镍精矿中而影响精矿质量。在镍矿的生产实践中发现蛇纹石大量进入镍精矿而难以脱除,原因是蛇纹石在形成过程中具有较强的磁性,具有磁性的蛇纹石吸附与同样具有磁性的硫化物表面一起进入精矿;另外,带正电的蛇纹石易吸附与带负电的镍矿物表面而上浮。     绿泥石在镍矿物浮选中易浮难抑,另外,绿泥石疏松易碎,在磨矿过程中易泥化。绿泥石矿泥在镍矿物浮选中其行为与蛇纹石细泥基本一致。     滑石具有非极性表面,疏水性好,具有较强的天然可浮性,仅用起泡剂就能很好使之浮游,镍矿物浮选中,滑石极易进入精矿中。     三、降镁现状分析     (一)工艺流程及其特点     90年代,为了给闪速炉提供低镁合格精矿,弥补二矿区富矿精矿量的不足,金川公司选矿厂、金川镍钴研究设计院、中南工业大学、西北矿冶研究院等单位,针对龙首混合矿石低精矿中氧化镁进行了大量的试验研究,这些试验研究概括起来有三种:       1、通过改变工艺流程降镁;       2、通过新药剂达到活化有用矿物,抑制脉石矿物的药剂降镁;       3、采用改变工艺流程和添加新药剂相结合的方式降镁。       通过大量的试验研究,一选车间于1998年6月9月分别对2#系统和1#系统进行了流程改造,形成了目前的降镁工艺,产出的低镁精矿送闪速炉处理,新的降镁工艺主要是强化了精选作业,增加了粗选次数,通过提高精矿品位达到降镁的目的。现场生产实践证明三段磨矿、三段浮选的阶段磨选流程是选别金川龙首混合矿石的成功经验,既可使有用矿物达到充分单体解离得到有效回收,又可减少过磨和矿物表面污染。生产实践还证明,该流程适应性比较好,既可组织降镁生产,为二期闪速炉提供低镁精矿(精矿中氧化镁含量≤7%);又可以组织低精矿品位生产,为一期电炉生产提供原料,并且在这两种情况下,回收率都基本不受损失。一选磨浮工艺流程(框图)如图1。    图1  一造厂磨浮原则流程     (二)生产指标分类统计分析     对2000年1~8月选厂生产指标进行了分类统计,从统计结果得出如一结论。     1、原矿品位对指标有着直接的影响。随着原矿品位的升高,精矿品位、回收率均呈上升趋势,精矿中MgO含量逐渐降低。     2、原矿镍品位大于1.2%时,只要控制精矿镍品位大于6.5%,精矿中MgO含量即能低于7%,说明在现有工艺条件下,保证一定的精矿品位是降镁的首要条件。     3、原矿镍品位小于1.2%时,要保证精矿中MgO含量,必须将精矿品位提高到7%以上,回收率损失较多。     四、降镁问题分析     (一)矿石性质对降镁的影响     1、MgO赋存矿物的自然可浮性     大多数硅酸盐矿物有强的共价键或离子键,亲水性强,可浮性差,如橄榄石、辉石等。但蛇纹石、滑石、绿泥石等矿物是特殊的层状或双链状硅酸盐矿物,破碎后表面键力是分子键力,疏水性好,自然可浮性强,在浮选过程中容易进入精矿,致使精矿中MgO含量升高。金川矿区的矿石大多发生蚀变,原生的橄榄石、辉石大多蚀变为蛇纹石、滑石、绿泥石等,这些含镁矿物可浮性好,是MgO难以抑制的主要原因。     2、矿石硬度     矿石的硬度变小,在磨矿过程中更容易泥化,矿石的蚀变与矿石中构造挤压带的发育会加剧这一趋势,使蛇纹石、滑石、绿泥石矿泥包裹在金属矿物的表面进入精矿,造成MgO含量升高。     3、矿石品位     矿石中金属硫化物与含镁脉石矿物呈负相关,即矿石品位越低,MgO含量越高。2001年1~8月一选矿处理的龙首混合矿石累计Ni原矿品位1.333%,比计划Ni原矿品位1.35%低0.017%,比2000年同期的1.445%降低了0.112%,呈明显的下降趋势,增加了降镁工作的难度。     (二)降镁方案的局限性     针对龙首混合矿石改善镍铜指标,降低精矿中MgO的工作,各大专院校,科研院所做了大量的试验研究,对不同的矿石采用不同的技术措施都有一定的效果,但是一经生产应用,效果若显若隐。选矿过程很复杂,工业化生产又是一个连续性过程,因目前矿山尚无法实现配矿或稳定出矿,入选的矿石性质、品位波动很大,以不变(或说相对固定)的选矿设备、工艺流程处理多变化矿石,使过程控制更加复杂化,从而使一些看起来比较好的技术措施,在现场应用时就很难取得理想的效果。     五、降镁工作的研究方向     (一)工艺矿物学研究     一矿区龙首混合矿石矿物组成复杂,过去的矿物工艺学研究多侧重于考察原矿,对脉石矿物在选矿过程中各中间产品的赋存状态和工艺特性研究很少,而弄清楚含镁脉石矿物在整个浮选工艺过程中的走向及选矿过程中各中间产品中的脉石矿物的工艺特性,对降镁工艺与药剂的研究具有重要的指导意义,是降镁的关键所在。     (二)选矿新工艺研究     金种一矿区龙首混合矿石降镁工艺的研究晚于二矿区,但也取得了一定进展。但从生产实践来看,还需继续深入探索。     澳大利亚的G·D·Senior等人采用一种新的工艺流程处理镍硫化矿,可除去98%的含镁矿物,工艺要点为:预先浮选含镁矿物,然后将物料分别处理,分段抑制含镁矿物,最后活化含镍矿物,得到高品位镍精矿。金川一矿区混合矿石主要含镁矿物为蛇纹石,其良好的可浮性是造成精矿MgO含量高的重要原因,可以考虑预先浮选蛇纹石,并通过降镁药剂分段抑制其它含镁矿物来达到降镁的目的。另外,G·D·Senior等人认为,粒度不同的物料可浮性和对药剂的要求都有很大的差异,这一点也值得借鉴。     (三)浮选新药剂研究     在工艺流程确定的前提下,影响浮选过程和最终指标最为关键的因素就是浮选药剂的合理选择与使用。由于浮选过程中药剂之间存在着的交互作用,很难真正搞清楚选矿药剂的作用机理,现有的很多理论都是以假设和推测的形式出现,不能确定地描述药剂如何作用于矿物,怎样改变其浮选特性,这一点妨碍了浮选药剂研究的针对性。因此,深入研究各种药剂的作用机理,是降镁研究的重要组成部分。     (四)应注意整体指标的优化     各大专院样、科研院所以往对于金川矿石降低精矿中MgO的研究中,虽然部分地注意了对其它指标的影响,并且采取了一定的技术措施,但这种注意还是不够的。很多降镁方案都要通过不同程度地提高精矿品位来实现,而精矿品位的提高势必造成回收率的损失。若是为了降镁则大幅度提高精矿品位,导致过多地损失回收率,在经济上是不合理的,金川资源有限,在考虑降镁满足闪速炉要求的同时,不能过多损失镍、铜回收率,要特别注意整体指标的优化,这应在今后的降镁工艺研究中引足够重视。     六、结语     金川一矿区龙首混合矿石降镁工艺,经各大专院校、科研院所的大量研究,已取得了一定的进展,有些已应用于工业生产中,目前一选矿的降镁工艺就是在充分吸收各家研究成果的基础上形成的,生产实践也证明在矿石性质、品位相对稳定时,还要靠提高精矿品位来达到降鲜的目的;在矿石性质恶化时,精矿中MgO含量还不能满足要求等,因此,针对一矿区龙首混合矿石降低精矿中MgO含量的工作,还要进一步地探索研究。

氧化镁在电加热管方面的应用

2019-01-04 17:20:20

镁粉主要可用于火箭冲压发动机和去除推进剂燃气中氯化氢。另外还可用作还原剂、制闪光粉、铅合金,冶金中作去硫剂、有机合成、照明剂等。镁粉与铝粉一样,受潮会产生自燃、自爆。当每公升空气中含镁粉10-25毫克,遇到火源就会爆炸。因此工厂在储放镁粉时要格外的注意,一旦生产自然爆炸后果将不堪设想。镁粉做为炼钢不可缺少的材料之一,其需求也多来自于炼钢,因此钢市的好换对镁粉价格有一定的制约作用。 镁粉分为碳酸镁、雾化球形镁粉等。而氧化镁粉作为制作电加热管的主要材料之一,对其电加热管性能好坏的影响非常大。电工级氧化镁粉是指电熔结晶氧化镁块经破碎并对不同颗粒尺寸或数目按一定比例配合,直接或改性后用于管状电热元件中作为在高温下导热的绝缘介质。 电工级氧化镁粉可分为普通型、低温防潮型、中温防潮型以及高温型。氧化镁粉在工作温度的时候,其要具有较高的导热性能,以便能迅速把热量传递到管表面上去,使电阻与管壁温度更接近。当工作温度在1100摄氏度以内时,其具有较好的绝缘性能。其必要要具有一定的颗粒度,形状一般要求为圆状。并且要求其无论在常温还是高温状态下对发热丝材料和管材都应无腐蚀现象。 因氧化镁矿石经粉碎后,颗粒的大小不同,若按一定数量的配比具有以下优点,一是能提高粉密度,减少电阻丝的温度,从而提高电热元件的寿命。二是能克服“分筛”效应,提高mgo粉的利用率。

纳米氢氧化镁的用途及合成方法

2019-01-04 09:45:23

氢氧化镁产品分类及应用现状

2019-03-08 11:19:22

氢氧化镁产品从应用上分为阻燃级、中和级、医用、电子级、油品增加剂用氢氧化镁等;从结构上分为片状、超细、晶须、纳米级、重质氢氧化镁等。其间发展潜力较好的是超细氢氧化镁和氢氧化镁晶须。 片状氢氧化镁可作为增加型阻燃剂,碳化法即以菱镁矿或白云石为质料,经煅烧、消化、除杂、碳化、沉积制得产品。以白云石为质料,为沉积剂并参加表面改性剂十六烷基三甲基化铵,水热制得菱面片层氢氧化镁,该法镁、钙别离程度较高,镁的提取率为90.02%,产品收率为88.21%;沉积法以菱镁矿或白云石为质料,经煅烧、浸取、除杂、沉积制得产品。以白云石为质料,先后用和硫酸浸取,参加克己络合沉积剂和表面改性剂聚乙二醇可制得产品,收率为85.20%。酸解法以多种含镁矿藏为质料,经过酸解、除杂、沉积制得产品。以白云石为质料,经酸化、除杂,以白云石灰乳为沉积剂,产品纯度为98%,其间,白云石灰乳经过白云石煅烧消化制备。 超细氢氧化镁可作为复合材料的阻燃成分,参加不同的表面改性剂能够改动产品粒径。以氯化镁溶液为质料,为沉积剂,产品粒径 卤水替代。 氢氧化镁晶须是短纤维功能型材料,首要作为阻燃剂和补强材料增加到高分子材料中。沉积法,改善沉积进程能够改动长径比。以氯化镁溶液为质料,参加碱和表面改性剂,水热组成产品。以为沉积剂,丙三醇为表面改性剂,选用微波水热,直径为0.1~0.3μm,长度为80~110μm;改用和为沉积剂,酸为表面改性剂,直径为8~15nm,长度为50~150nm;中低浓度的和低浓度的氯化镁溶液,产品的分散性较好;以碱式硫酸镁晶须为前驱体,为沉积剂,油酸钾为表面改性剂,水热制得直径为1~2μm,长度为100~200μm的产品;参加表面改性剂不能减小粒径,反而会阻挠碱式硫酸镁晶须向氢氧化镁晶须转化。

氨法超细活性氧化锌研究

2019-02-18 15:19:33

据全国锌盐协作组查询,国外氧化锌工业开展较为老练,近几年处于相对安稳的状况,1999年美国、日本、西欧的氧化锌消费量共582.3万吨,实践产值共466.5万吨。与国外构成显着对照的是,近几年我国汽车工业的快速开展,加上我国涂料工业的快速开展,使我国氧化锌的需求在逐年上升。估计到2005年,我国氧化锌仍将以6~8﹪的速度开展。据全国锌盐协作组2000年职业查询,现在我国氧化锌出产厂商为96家,2000年氧化锌实践产值30.63万吨。 国内外氧化锌出产工艺还是以直接法和直接法为主,少数以湿法工艺出产。而湿法工艺出产氧化锌中大部分是硫酸法工艺的产品,其很多副产品难以收回,环保问题不易处理;直接法氧化锌工艺以含氧化锌的质料经氧化复原直接产出氧化锌产品。该法受质料约束,质量不高,价格较低;直接法氧化锌出产工艺以冶炼提纯的金属锌为质料,经熔化、汽化、氧化出产出氧化锌。该法出产成本较高。法湿法工艺是现在国内氧化锌出产工艺的开展方向。且其产品简单完成多种类、多规格。可广泛用于橡胶、涂料、陶瓷、磁性材料等范畴。 南京铅锌银矿业公司经过以广西冶金研讨所协作研讨,以成功开发了法超细氧化锌新工艺及其产品。《法超细氧化锌新工艺及其产品》在2001年经过江苏省科技厅安排专家判定,并被南京市经委认定为高新技术产品。国内近年稀有家单位都在研讨类似工艺,咱们现在的水平在同行中处于先进水平。 法超细氧化锌新工艺,克服了硫酸法工艺环保问题难以处理的缺陷,它以氧化锌焙砂为质料,经脱硫、洗刷、浸出,除铜、铅、铁、锰;深度静化、水解、蒸、枯燥、煅烧,制得超细活性氧化锌产品。 与现有的各种氧化锌出产工艺比较,法超细氧化锌新工艺的优势: 1、出产成本低。直接法氧化锌与直接法氧化锌因为所用质料不同。所以出产成本也不一样。前者出产成本显着低于后者。直接法中法和酸法出产成本附近,法在质猜中能够调配运用低度氧化锌、锌灰、菱锌矿、锌烟尘,使出产成本更低。 2、产品活性高。氧化锌出产原理不同,制品的晶型也不一样,因而化学活性不同很大,法工艺出产的超细氧化锌,具有粒度细、比表面积大、晶型出现多孔的结构。因而,具有化学活性高的特色。 3、产品纯度高。因为法在出产中应用了多种净化办法,使得杂质金属含量降到最低。一起,也避免了酸法工艺的产品中硫酸根的残留问题。 4、产品种类多。直接法受工艺的约束,只要一种产品——直接氧化锌。而法经过微调工艺可出产出不同功能的氧化锌和锌盐产品。以满意用户不同的需求。习惯商场的广泛需求。 5、质料来历广。法工艺质料习惯性最广。锌焙砂、低度氧化锌、锌灰、菱锌矿等都能够作为法工艺的出产质料。在矿产资源越来越匮乏的今日,这是一个很大的优势。 6、环保有保证。法工艺的规划思维就是水、闭路循环。没有一般湿法出产水的污染问题。 别的,咱们经过调整某些工艺参数、流程工序,能够出产出粒径40~60nm的氧化锌。

从低品级菱镁矿中提取高纯氧化镁的研究

2019-01-24 09:36:25

Abstrac:The carbonization soakingof low2grade granularmagnesite is studied. Themineralproperty and light baking performance ofmagnesite, the digestingprocessofMgO aswell as the technologicalparametersof carbonization soaking are investigated. With the carbonization soaking of magnesite, high2grade MgO has been obtained, which contains 99% ofMgO。 我国镁矿资源非常丰富 ,采用碳化法生产轻质碳酸镁的工艺依据矿石性质不同而分为两种:白云石碳化法和菱镁矿碳化法。白云石碳化法生产工艺成熟,但由于碳化浸出过程存在钙含量较高的问题,所以该工艺生产高纯产品受到限制。随着冶炼技术的不断发展,冶金过程中的许多特殊作业趋向于使用高纯度镁砂来大幅度提高耐火制品的寿命,降低生产成本。同时由于高品级菱镁矿的大量出口,因此导致镁矿资源的综合利用问题日益显著。为此,笔者采用低品级菱镁矿粉矿进行碳化法提取高纯氧化镁 (wMgO大于 99%)的工艺研究。试验中,对菱镁矿的矿石性质及轻烧性能、氧化镁的消化过程和碳化浸出的工艺条件和参数进行了研究,并用所获高纯碱式碳酸镁生产出高纯镁砂。 一、矿石性质研究与工艺流程 试样的矿物组成比较简单 ,主要矿物为菱镁矿和白云石,次要矿物为滑石、绿泥石;微量矿物有石英、褐铁矿、黄铁矿、磷灰石等。MgO在矿石中主要作为独立矿物的基本组成形式存在于矿石矿物菱镁矿和脉石矿物白云石、滑石和斜绿泥石中。CaO以两种形式存在于矿物中:一种是以形成独立矿物的基本组成形式存在 ,如白云石、磷灰石 另外一种是以白云石微细包裹体形式存在于菱镁矿晶体中。SiO2亦以两种形式存在于石英、滑石、斜绿泥石、透闪石、方柱石等脉石矿物中,另一种是以石英和硅酸盐矿物细微机械包裹体形式存在于菱镁矿晶体中。 粒度筛析结果表明,wSiO2,wAl2O3在细粒级(-150目 )中略为偏高。wMgO,wCaO,wFe2O3在各粒级中变化不大,与多元素化学分析结果相近。化学分析结果见表1。本试验工艺流程见图1。二、试验结果与分析 (一)煅烧试验 天然菱镁矿在碳化过程中不能直接与二氧化碳起作用,碳酸仅对具有活性的氧化镁起反应,因此需将矿石在高温设备中轻烧,使菱镁矿逸出二氧化碳,生成具有活性的氧化镁。煅烧反应如下: 菱镁矿(WMgCO3约为90%) 轻烧料(WMgO大于90%)+CO2↑    (1) 为使氧化镁易于消化和碳化,对试样进行了差热分析。差热分析结果表明,试样中MgCO3的初始热分解温度为666℃。根据失重曲线可知,700℃以上。由于轻烧氧化镁的活性与煅烧温度和时间有关,故将温度控制在700~850℃之间,并在不同保温时间内进行煅烧条件试验。图2示出了温度和时间对菱镁矿灼减的影响。结果表明,菱镁矿的灼减随温度升高和时间延长而增大。为保证轻烧料不欠烧也不过烧,并具有较高的活性,最佳煅烧温度应控制在800℃,煅烧时间为1.5h。(二)消化试验 许多厂家的生产实践表明,采用白云石生产轻质碳酸镁的工艺中,白云石煅烧后,矿石中含量约30%的CaO与水反应生成Ca (OH)2,矿石自然 裂 解,wMgO为20 %也易与水作用生成Mg(OH)2,因而无需采用细磨工艺。本试验从节约能耗的角度出发 ,将菱镁矿破碎至较小粒级后进行煅烧、消化试验,以探索消化工艺的最佳工艺条件。消化过程的化学反应式如下: MgO+H2O→Mg(OH)2              (2) 轻烧料中的氧化镁在水溶液中转化为氢氧化镁的过程与反应浓度、温度、时间等因素有关,同时与粒度有关。本试验的消化试样为小于2mm粒级的轻烧粉料。 1、消化浓度 将试样放入80℃水中,搅拌4min后过滤,分析不同浓度对消化率的影响。由试验结果得知,消化过程浓度大,转化率低,当浓度低于20%时 ,消化率的变化不大 ,故取消化浓度为 20%进行下面的试验。 2、消化时间 由于浓度试验消化率较低 ,故消化时间试验时增强了搅拌 在消化温度为 ℃、浓度为,80 20%的条件下进行了试验。时间变化对消化率的影响见图3。图3中曲线表明,消化反应时间的增加,对消化率的影响比较明显。消化时间超过12min,消化率已达98%以上。3、消化温度 在试验浓度和时间相对稳定的条件下,温度对消化结果的影响见图4。由图4看出,氧化镁转化成氢氧化镁的过程受化学反应控制,提高反应温度,可加快反应速度,消化温度的提高,对消化过程的影响极为明显。适宜的消化温度应控制在80℃以上。(三)碳化浸出试验 将氢氧化镁转化成碳酸氢镁,是以适量的二氧化碳为浸出剂,在特定的浓度、温度条件下进行反应,不同的时间和压力对浸出结果影响较大。其化学反应式如下 Mg(OH)2+CO2+H2O→Mg(HCO3 )2+H2O          (3) 借鉴前期做过的工作,在常温常压条件下对消化后的试样进行了碳化浸出试验,进塔液nMgO为18.62g /L, cCO2为33%,在浸出过程中定时抽取泥浆过滤,分析碳酸氢镁溶液中WMgO,试验结果见图5。图5中下部曲线表明,试样粒径较大,碳化时间较长。超过90min后氧化镁的转化率增加不明显,浆液中nMgO为7.8g/L。为此,在上述浸出工艺条件相对稳定的条件下,降低进塔液中氧化镁的浓度进行了试验。由图5中上部曲线可知,随着进塔液中的氧化镁浓度的降低,转化率升幅较大,碳化反应至90 min时,MgO的转化率达84.01%,回收率为80.97%。(四)热水解试验 碳化浸出过程实现了目的组分由固相到液相的转移。经固液分离、滤去残渣,将滤液 (重镁水 )加热,使碳酸氢镁转型生成碱式碳酸镁。化学反应式如下: 5Mg(HCO3 )2→4Mg(OH)2·Mg(OH2 )·4 H2O+6 CO2 ↑    (4) 根据上式,在滤液加温至沸腾温度时进行了热水解时间对母液 (废镁水 ) 中氧化镁含量影响的试验。试验结果表明,随时间的延长,母液中氧化镁浓度随之降低。超过5 min后,母液中nMgO均为0.18 g/L,故热水解过程控制为滤液加热至沸腾温度后继续保温 5 min。过滤烘干后的碱式碳酸镁产品多元素化学分析及氧化镁回收率如表2所示。三、结论 (一)采用碳化法浸出工艺处理低品级菱镁矿粉矿,可获得灼减为零时wMgO为99.31%的高纯轻质碳酸镁。氧化镁回收率为80.97%。经烧结工艺处理 ,可获得氧化镁含量为 99.21%,体积密度为3.38g/cm的高纯烧结镁砂。 (二)常压二氧化碳浸出工艺生成的轻质碳酸镁中氧化钙含量较前期加压试验最终产品的CaO品位略有升高。 (三)由于菱镁矿碳化浸出过程中未采用磨矿工艺 ,试样粒径较大 ,故氧化镁的转化率和回收率不近人意。当粒度变小后进行研究,浸出液中氧化镁的转化率指标非常理想。

熔盐法制备氧化镁粉体及其反应机理

2019-02-21 11:21:37

跟着高技术陶瓷、橡胶、塑料、催化剂、环保材料、航天材料的不断发展,氧化镁晶体材料、特别是高纯氧材料(MgO含量不低于98%)的使用越来越广。例如用于医治胃酸过多及十二指肠溃疡患者,用作硅钢制作进程中的高温退火阻隔剂,用于制作电子管、滤光器、滤色器、滤波器等。此外作为灵敏型高效催化剂及功用体良的掺杂材料,高纯氧化镁有很多使用于工业催化及材料改性和高功用复合材料的制备。已报导的高纯氧化镁制备办法较多,例如菱镁矿(白云石)碳化法、卤水(海水)-石灰()法、卤水(海水)-碳按法及镁盐直接热解法等。     熔盐法选用一种或几种低熔点的盐类作为反响介质,在高温熔融盐中完结组成反响,然后选用适宜的溶剂将盐类溶解,经过滤、洗刷得到组成产品,它在高熔点氧化物粉体和电子陶瓷粉体及其它功用粉体材料组成等范畴广泛使用。熔盐法具有工艺简略、组成温度低、保温时刻短、本钱低价、组成粉体的化学成分安稳均匀等长处。     对熔盐法制备MgO粉体的不同熔盐系统进行了比照,发现NaCl-KCl盐类熔点适中,功用相对安稳,洗刷进程中NaCl、KCl溶解于水,滤液经枯燥后得到NaC1、KC1等盐类可回收使用,是一种优秀的反响介质。当选用NaN03-KN03盐类作反响介质时,与镁盐直接热解法相同,反响进程中发作腐蚀性气体,不适合工业化出产。可是NaN03 -KN03盐类熔点较低,有利于分析质料系统在熔盐中的反响进程,进而对反响机理进行评论,因而本文以MgCl2、 CaCO3和NaN03、KN03为质料制备Mg0粉体。     一、试验     (一)质料     试验所用无水氯化镁、碳酸钙、、、无水乙醇等均为分析纯。     (二)氧化镁粉体的制备     将MgCl2、CaCO3及NaN03、KN03按1.1︰1︰2︰2配比置于碾钵中碾磨,使质料混合均匀并磨细至-0.074mm粒级,550℃下保温3h热处理,经水浸泡、洗刷、减压过滤、110℃枯燥,再在600℃下保温3h热处理。     (三)反响机理分析     作CaCO3和MgCl2-CaCO3-NaN03-KN03的TG-DSC曲线,分析质料热反响进程;依据TG-DSC曲线,将质料在不同温度和保温时刻下热处理,断定产品组成,分析熔盐法制备氧化镁的反响机理。     (四)表征     用德国NETZSCH公司STA449/6/G型热重-差示扫描归纳热分析仪对试样进行热效应分析。     用荷兰Philips公司出产的X′Pert Pro型X射线衍射仪对产品进行物相判定。     用荷兰Philips公司出产的Nova400NanoSEM型场发射扫描电子显微镜调查粉体描摹及巨细。     二、成果及评论     (一)试样的组成与描摹分析    图1为S11试样和S12试样的XRD图谱,其间S11试样为质料在550℃下保温3h热处理,用水洗刷后经110℃枯燥的前驱物,S12试样为S11试样在600℃温3h热处理的产品。     从图1可见,质料在550℃下保温3h热处理,用水洗刷后的前驱物主要为氢氧化镁,其间尚有少数氧化镁没有水解,经600℃保温3h热处理,氢氧化镁分化为氧化镁。图2  试样TEM (a)S11;(b)S12     图2为S11试样和S12试样的SEM图。从图2可见,氢氧化镁前驱物主要为层状描摹,形状不规整,巨细散布不均匀,厚度介于0.03~0.05μm,直径介于0.2~1.0μm之间;氢氧化镁分化后得到的氧化镁为颗粒状描摹,巨细散布较均匀,粒径介于0.2~0.5μm之间。     表1为S12试样的化学成分分析成果。从表1可知,所制备的氧化镁粉体纯度高,可满意医药、冶金、工业催化、量子器材、微电子等职业要求。 表1  S12试样化学成分分析成果(质量分数)/%Mg0CaC03A1203Si02Fe203IL98.820.520.100.090.060.41     (二)反响机理分析     图3为CaCO3和MgC12-CaC03-NaN03-KN03质料的TG-DSC曲线。     由图3(a)可见,从700℃至800℃失重37.08%,CaC03分化为CaO和CO2,对应的DSC曲线在769.2℃有一个吸热峰。    由图3(b)可见,从室温至400℃失重18.90%,该温度范围内质料失掉悉数物理水及结构水,NaN03-KNO3熔融,对应的DSC曲线上有3个吸热峰;从400℃至530℃失重8.10%,对应的DSC曲线上在490.5℃有一个吸热峰,该温度范围内可能发作了分化反响;从530℃至700℃失重23.20%,对应的DSC曲线上在660.4℃有一个吸热峰,该温度范围内可能发作了分化反响;温度大于700℃后,失重持续加大,主要是熔盐在高温下加速蒸腾。对照图3(a),没有呈现CaCO3分化的吸热峰,阐明在700℃曾经CaCO3已彻底反响。     图4为试样的XRD图谱。其间M11试样为质料在320℃下保温48h热处理,水洗后经110℃枯燥的产品;Ml2试样为质料在320℃下保温360h热处理,水洗后经110℃枯燥的产品;M14试样为质料在900℃下保温3h热处理,用无水乙醇洗刷后产品的XRD图谱。由图4可见,质料在320℃下保温48h热处理,水洗后经110℃枯燥的产品主要为碳酸镁和白云石及少数的氢氧化镁;质料在320℃下保温360h热处理,水洗后经110℃枯燥的产品主要为碳酸镁;质料在900℃下保温3h热处理,用无水乙醇洗刷后产品悉数为氧化镁。    结合S11试样和S12试样的XRD图谱,以MgC12、CaCO3和NaNO3、KNO3为质料,选用熔盐法制备Mg0粉体的反响机理如下:     1、  熔盐环境下Mg2+与Ca2+发作置换反响,其产品组成与反响温度和反响时刻有关。     MgCl2←→Mg2++2Cl-     xMg2++CaCO3→MgxCa1-xCO3     当x<0.5时.产品为碳酸钙的置换型固溶体,当x=0.5时,产品为CaMg(C03)2,当0.5<x<1时,产品为CaMg(C03)2和MgC03混合物,跟着反响的不断进行,当x=1时,产品为MgC03。     2、碳酸镁分化。     MgC03→Mg0+C02↑     3、水洗进程中氧化镁水解。     Mg0+H20→Mg(OH)2     4、氢氢氧化镁分化。        三、结语     (一)MgCl2-CaC03-NaN03-KN03质料制备氧化镁进程中,在熔盐环境下Mg2+与Ca2+发作置换反响,生成白云石和碳酸镁等中间产品,跟着反响的不断进行,白云石终究转变为碳酸镁;550℃热处理碳酸镁分化为氧化镁,经水浸泡后氧化镁水解生成氢氧化镁,600℃热处理氢氧化镁分化为氧化镁。     (二)氢氧化镁前驱物为不规整的层状描摹,巨细散布不均匀,厚度介于0.03~0.05μm,直径介于0.2~1.0μm之间;产品氧化镁为颗粒状描摹,巨细散布较均匀,粒径介于0.2~0.5μm之间。

活性氧化铝球生产工艺技术

2019-01-02 09:41:28

活性氧化铝球生产方法,涉及化学品氧化铝生产工艺,该方法以氢氧化铝为原料经粉碎、快速脱水、制粒、水化、活化焙烧、筛分包装等工序,主要的技术特点是,在上述快速脱水工序,闪速焙烧炉的入口温度为850-950℃,其出口温度控制在430-490℃,在制粒工序所用粘结剂的配方为100份水、8-12份碳酸氢铵、6-10份碳酸钠、40-60份ρ氧化铝,在料球的水化工序,料球水化处理后再用蒸气水化,温度为90-100℃,时间4-6小时,所述活化焙烧工序,其焙烧温度为390-430℃,焙烧时间30-40分钟。采用本发明工艺方法制出的活性氧化铝球,其比表面达280m#+〔2〕/g以上,广泛应用于石油化学工业,特别在净化乙烯、丁烯等化工原料时吸附净化效果很好,同时能有效防止丁烯单体发生异构化反应。

雾化热解法制备活性氧化锌

2019-02-11 14:05:30

超细氧化锌是一种近年来开展的新式高功用无机产品,它具有了其本体块状物料所无法比拟的优异功能。现在氧化锌的制备办法首要有:直接沉淀法、均相沉淀法、溶胶-凝胶法、微乳液法、水热法、醇盐水解法、溶剂蒸腾法等。     雾化热解进程作为一种新式的超细粒子制备技能,遭到材料、化学工程、气溶胶、超导等范畴研究人员的广泛重视。本文以锌焙砂为质料,用NH3-NH4·HCO3-H2O系统作为浸出剂,经浸出-雾化热解-锻烧制取活性氧化锌。     一、实验     (一)实验原理     锌焙砂的首要成分为ZnO,并伴有少数的ZnSO4、ZnO·SiO2、ZnO·Fe2O3及ZnS,在性系统中浸出时,锌焙砂中Cu、Ni、Cd、Co等杂质元素也生成合作物进入溶液,ZnO·SiO2、ZnO·Fe2O3及ZnS等不溶解,残留在渣中。     在净化进程中,因系统呈弱碱性,Cu、Ni、Cd、Co等杂质均易被锌粉置换除掉,净化后液选用并流式离心雾化枯燥器雾化枯燥,溶液通过高速旋转的离心盘雾化成微米级液滴,当即与热风触摸,在枯燥器中呈螺线型运动,而且随同枯炎热分化进程。雾化后的每一个球形液滴能够作为一个反响器,其阅历三个阶段,首要因为NH3蒸腾温度低,在高温下NH3敏捷蒸腾,导致溶液中[Zn(NH3)m]2+合作物失去平衡,分出碱式碳酸锌前躯体,此阶段相当于蒸进程;第二阶段为水的蒸腾,粒子表面的水蒸气分压远大于空气中的水蒸气分压,枯燥进程持续进行,分压差为枯燥进程的推动力;第三阶段为降速阶段,粒子表面的水蒸气分压等于空气中的水蒸气分压,两者之间的分压差等于零,不再进行枯燥,可是此刻物料分化敏捷,而得到高活性氧化锌。     因碱式碳酸锌分化不彻底,将前躯体在马弗炉中锻烧,锻烧温度300~600℃,锻烧时刻30~60min,而得到高活性氧化锌。     (二)试剂及试料     (25%~28%)、碳酸氢铵,分析纯;实验质料取自江西某炼锌厂的锌焙砂,其化学成分(%):Zn 53.17、S 2.58、Cu 1.03、Pb 1.48、Cd 0.09、Fe13.06、As 0.24、Sb 0.08。     (三)实验装置     浸出实验在1 L圆底三口烧瓶中进行,选用恒温磁力拌和器坚持稳定的反响温度,操控温度差错士1℃,拌和速度为450 r/mine     (四)实验及分析办法     每次取40 g氧化锌焙砂,按必定的液固比参加配好的及碳酸氢铵混合液,通过必定时刻的浸出后过滤,用EDTA滴定法分析滤液中Zn的浓度,核算Zn的浸出率。锌粉置换除杂反响所用锌粉粒度为145~175μm,在快速拌和下缓慢参加。净化液通过滤后在离心喷雾枯燥器中雾化、枯燥、分化得到中间产品,最终在马弗炉中煅烧得到活性氧化锌。以SEM、XRD等分析手法分析产品的粉体结构、描摹特征。     二、成果与评论     (一)浸出     1、 NH3/NH4+对Zn浸出率的影响     在总浓度8mol/L,液固比8∶1,温度35℃、时刻lh的条件下,调查NH3/NH4+对Zn浸出进程的影响,成果见图1。从图1可知,NH3/NH4+对Zn浸出率的影响显着,当NH3/NH4+从1∶1添加到2.5∶1时,Zn浸出率显着进步,通过预订的浸出时刻,Zn浸出率由75.96%添加到82.56%,当铵比持续增大,Zn浸出率缓慢下降。其原因首要是因为NH3/NH4+的改变,引起浸出液pH的改变,依据Zn浸出电位-pH图,pH的巨细直接影响ZnO的浸出进程,在NH3/NH4+=2.5∶1时,浸出液pH=12。因而断定浸出液NH3/NH4+=2.5∶1。图1  铵比对Zn浸出率的影响     2、液固比对Zn浸出率的影响     在总浓度8 mol/L、NH3/NH4+=2.5∶1、温度35℃,时刻1h的条件下,调查液固比对Zn浸出进程的影响,成果如图2所示。从图2可看出,液固比对Zn浸出率的影响非常显着,当液固比低于8∶1时,跟着液固比的添加,Zn浸出率显着添加;可是当液固比大于8∶1后,Zn浸出率改变不大。因而断定液固比为8∶1。图2  液固比对Zn浸出率的影响     3、总浓度对Zn浸出率的影响     在液固比=8∶1、NH3/NH4+=2.5∶1、温度35℃、时刻1h的条件下,调查总浓度对Zn浸出进程的影响,成果如图3所示。从图3可看出,总浓度对Zn浸出率的影响显着,当总浓度小于8 mol/L时,跟着总浓度的添加,Zn浸出率显着进步;可是总浓度大于8mol/L后,Zn浸出率改变不大。因而断定总浓度为8mol/L。图3  总浓度对Zn浸出率的影响     4、浸出时刻对Zn浸出率的影响     在总浓度8mol/L、NH3/NH4+=2.5∶1、液固比=8∶1、温度为35℃的条件下,调查浸出时刻对Zn浸出进程的影响,成果如图4所示。从图4可看出,浸出时刻对Zn浸出率的影响显着。在NH3-NH4·HCO3-H2O系统中,Zn浸出反响敏捷,在浸出时刻为10min时,Zn浸出率就到达72.28%,而且跟着时刻连续,浸出率快速进步,浸出40min时,Zn浸出率到达82%。当浸出时刻到60min,Zn浸出率到达82.34%,可浸Zn根本浸出彻底。     5、浸出归纳条件实验     依据以上实验成果,断定最佳浸出的归纳条件为:总浓度8 mol/L、NH3/NH4+=2.5∶1、液固比=8∶1,时刻1h。浸出液锌含量为54.34g/L,浸出率为82.56%,首要杂质元素含量(mg/L):Cu250、Pb 25.1、Co 0.52、Cd 31.6、Fe 3.3、As 0.43、Sb 0.15。按可溶性的氧化锌、硫酸锌核算,可溶锌浸出率大于97%。形成浸出率低的原因是焙砂中铁酸锌、硅酸锌含量较高。浸出液进行二次浸出,锌含量可到达97.62 g/L。图4  浸出时刻对Zn浸出率的影响     (二)净化     由上述成果可知浸出液中Cu、Ni、Cd、Co等杂质元素含量较高,本实验选用锌粉置换法除掉这些杂质,净化实验在高拌和强度下进行,选用的锌粉粒度为145~175μm,温度操控在50℃左右,反响时刻1h。在此条件下,溶液中Cu、Cd、Co、Fe等杂质均可被置换除掉,净化后液杂质元素含量(mg/L):Cu 0.32、Pb 0.79、Co 0.02、Cd 0.68、Fe 1.3、As0.06、Sb 0.0。Cu净化率到达99.87%,一起Co净化率为96.15%,净化后液中Fe含量为1.3 mg/L, 到达净化要求。     (三)雾化分化     雾化分化在并流式离心喷雾枯燥器中进行,溶液通过蠕动泵泵入雾化器中,经高速离心效果,将机械能转化成细微雾滴的表面能,而且在极短的时刻内完结蒸腾、水蒸腾、碱式碳酸锌的分出及分化进程。溶液的黏度及表面张力对雾化起阻止效果,其首要由物料的性质及组成操控。     雾化热解进程在人口温度为340℃,出口温度180℃以上,雾化转速为400n/s,进料速度为60mL/min;料液浓度为100g/L的条件下进行,产品进行SEM分析,成果如图5所示。从图5可看出,大部分为长度不大于2μm的针状物,其为前期跟着气蒸腾而分出的碱式碳酸锌,通过水分蒸腾枯燥分化而得的氧化锌。还有少部分为未彻底分化的前躯体,为表面润滑的实心球体。这是因为物料在枯燥器内与执风并行活动,目在枯燥器内只逗留20~30s,热风温度跟着水分的蒸腾直线下降,在出口温度仅能到达180℃左右,低于碱式碳酸锌的分化温度,所以有部分不能分化。图5  雾化分化粉体的SEM图     (四)煅烧     锻烧在马弗炉中进行,温度设定为400℃,时刻1h。锻烧后的粉末XRD谱图与ZnO的XRD标准卡片(JCPDS)对照分析标明,煅烧后制备的氧化锌微粒与JCPDS标准卡片相符,这阐明得到了六方晶系结构的氧化锌粉体,衍射峰都很尖利,而且几乎没有杂质衍射峰,阐明结晶程度和纯度都较高。     锻烧后描摹及粒度经电镜分析,其成果如图6~7。如图6所示,其间大部分针状物的描摹、粒度都没有发作显着的改变,少部分发作聚会现象。从图7能够看出,前躯体中的球形碱式碳酸锌则生成蜂窝状,增大了其比表面积。图6  400℃煅烧后针状ZnO粉体的SEM图图7   400℃煅烧后蜂窝状ZnO粉体的SEM     三、定论     (一)在总浓度8 mol/L,液固比=8∶1、NH3与NH4+的比为2.5∶1,温度35℃、时刻1h的条件下,一段浸出液锌含量为54.34 g/L,浸出率为82.56%,两段浸出液进锌含量可到达97.62 g/L,平均可浸锌浸出率到达97%以上;     (二)在性条件下,Fe根本不会浸出,浸出液铁离子浓度仅为3.3 mg/L,净化液中Co的净化率到达96.15%;     (三)在进口温度为340℃,出口温度为 180℃,雾化转速400n/s,进料速度为60mL/min,料液浓度为100g/L的条件下进行为行雾化热解,能够得到长度不大于2μm的针状活性氧化锌。可是因为温度不行,有部分前躯体没有分化彻底,有必要进行煅烧处理;     (四)前驱体在马弗炉中400℃煅烧1h后,为蜂窝状氧化锌。

活性氧化铝干燥剂性能和用途

2018-12-29 09:42:49

活性氧化铝干燥剂性能和用途:   活性氧化铝干燥剂无毒、无臭、不粉化、不溶于水. 本产品为X-ρ型活性氧化铝干燥剂、白色球状、吸附水的能力强。在一定的操作条件和再生条件下它的干燥深度高达露点温度-70℃以下,是一种微量水深度干燥的高效干燥剂。广泛用于石油化工的气、液相干燥,空气滤清器、空压机等进气设备以及自动化仪表风的干燥。

烧结矿不同碱度、氧化镁及二氧化硅含量水平试验研究

2019-01-24 09:38:21

Abstract:Based on the present material condition of N0.3 sintering plant of Magang, the effects of different basicitys and SiO2 and MgO contents in sinter on production and quality of sinter are studied. The results show that, with increas ing the sinter basicitys and SiO2 contents, the sinter strength is improved, but after increasing the MgO contents in sinter, all sinter technicaleconomic indexes are worsened. Therefore, the sinter basicity should be 2.0, SiO2 content should be 4.95%, MgO content should be reduced to the best of its ability in practical production. 烧结矿的碱度、MgO及SiO2含量水平直接影响着烧结矿品位、强度、产量及其冶金性能。为了了解其变化对烧结生产技术指标的影响,马鞍山钢铁股份有限公司(简称马钢)在烧结实验室进行了烧结矿不同MgO、SiO2含量及不同碱度水平的试验。 一、原料成分及烧结工艺制度 试验用含铁料均取自港务原料厂和马钢第三烧结厂生产现场,其化学成分列于表1。此次烧结试验在Φ300mm烧结杯上进行,料层高度为580mm,点火负压6kPa,点火时间1.5min,烧结抽风负压为12kPa。烧结饼经机上冷却后,进行落下和ISO转鼓试验,然后取样做化学分析和冶金性能检验。每组试验在相同的条件下反复进行多次,取在允许误差范围内的两次试验平均值为试验结果,以确保试验结果的重现性。 表1  含铁原料化学成分分析  %粉矿名称TFeFeOSiO2CaOAl2O3MgOTiO2SP烧损姑精57.410.5012.090.8231.150.2990.2250.0120.2502.25CVRD粉65.280.233.740.3550.780.0890.0540.0120.0190.72杨基粉58.710.314.350.1021.350.1040.0490.0030.05010.47天普乐粉62.361.763.840.0291.940.0670.1150.0030.0494.47恰那粉63.010.313.970.1302.120.0850.1040.0120.0653.19FTC粉66.010.313.100.0780.890.0430.1180.0090.0291.22MBR粉67.000.421.460.1201.200.0600.190.0100.0501.30 二、试验方案 本次试验共进行7组。所用的烧结含铁料配比设计基本与马钢第三烧结厂现行生产混匀矿配比相一致,主要是通过对含SiO2较高的姑精配比以及石灰石、白云石的添加量作调整,使得烧结矿的碱度、MgO及SiO2含量满足各个试验水平的要求。设计各组试验因素的水平见表2。各组混合料配比及编组见表3。混合料中含铁料配比为100%,燃料和熔剂百分数是外配的。 表2  各组试验因素的水平  %组号SiO2RMgO备  注14.951.852.10基准组24.951.652.10低碱度34.952.052.10高碱度44.951.852.40高MgO含量54.951.851.80低MgO含量64.801.852.10低SiO2含量75.151.852.10高SiO2含量 表3  混合料的配比及编组  %组号姑精CVRD粉杨基粉天普乐粉恰那粉FTC粉白云石石灰石113.63012111716.410.097.10213.23012111716.810.064.87314.03012111716.010.139.38413.73012111716.311.806.20513.53012111716.58.407.99611.73012111718.310.116.50716.23012111713.810.077.92 三、试验结果及分析 烧结矿化学成分列于表4,冶金性能试验结果见表5。 表4  烧结矿化学成分  %组号TFeFeOSiO2CaOMgOAl2O3TiO2SPC/S157.738.445.029.232.101.460.1060.0110.0651.84257.977.965.098.532.111.540.1030.0100.0631.67357.137.465.049.982.071.580.1200.0140.0681.98457.588.735.009.412.301.560.1040.0120.0691.88557.689.254.949.271.891.410.1070.0090.0651.88658.158.564.819.052.101.550.1020.0090.0651.88757.627.755.159.352.031.500.1170.0130.0711.82 表5  还原性、还原粉化及熔滴性能试验结果组号还原粉化试验结果/%不同还原时间的还原度(RI)/%开始软化温度Ts/℃开始熔化温度Tm/℃开始滴下温度TD/℃最高压差△Pmax/kPa透气性指标S/kPa.℃滴下量MD/gRDI+6.3RDI+3.15RDI-0.530min60min90min120min150min180min125.3658.767.5330.3646.2458.1566.4671.2075.141108133514954.60941841.5223.5654.928.3728.3944.9055.5260.9668.4771.981128132414402.15715780.3326.2459.637.5529.9645.1357.9367.9275.7181.091115134515203.5303421.5428.0961.796.6828.8843.3254.1463.7569.7574.131130133015052.15732085.0532.7862.717.4525.7741.2854.0064.3273.0579.391082132414654.70733979.1626.4159.557.4024.7939.5151.4461.7870.5278.061108131014807.74777843.1724.8057.428.1327.9644.3757.9868.3776.7681.931126134215103.13819741.4 (一)不同烧结矿碱度的影响 由第2组、第1组和第3组构成不同烧结矿碱度水平试验。从试验结果可以看出,当烧结矿SiO2含量一定时,随碱度的提高,烧结生产率及烧结矿强度指标均呈上升趋势。当碱度由1.65升至2.05时,垂直烧结速度稍微加快(由18.78mm/min升到19.51mm/min)、再加上烧结矿成品率的增加(由76.42%升到78.17%),使烧结生产率提高,由1.231t/m2.h增加到1.253t/m2.h,而且也改善了烧结矿的强度指标,转鼓指数也从65.39%提高到67.88%。这主要是因为碱度提高后,烧结矿粘结相中铁酸钙系得以进一步发展的缘故。同时,由于烧结成品率随碱度升高而提高,吨矿烧结固体燃耗由68.24kg下降到66.65kg。而烧结矿品位相应由57.97%降到57.13%。 随碱度升高,RDI+6.3不断升高,RDI+3.15亦升高,RDI-0.5有所降低,但1、3组极接近;还原性改善明显,碱度提高0.1,RI180min提高近3.2%,软化温度无明显变化,熔融和滴下温度不断升高,滴下量逐渐减少。 (二)同烧结矿SiO2含量的影响 由第6组、第1组和第7组构成烧结矿不同SiO2含量试验。在烧结矿碱度一定条件下,随着SiO2含量增加,烧结矿粘结相增加,强度指标变好。当烧结矿SiO2含量从4.80%提高到5.15%时,转鼓指数由64.80%升高到67.70%,提高幅度约2.9个百分点,烧结成品率亦提高1个百分点。而烧结生产率则呈下降趋势,从1.300t/m2.h降到1.247t/。造成生产率下降的原因是:当烧结矿粘结相增多时,烧结过程透气性变差,烧结速度会下降。此外,本次试验是通过调整含SiO2较高的姑精矿配量来满足烧结矿SiO2含量不同水平要求。提高烧结矿SiO2含量就需要配加更多的姑精矿,精粉率增大也直接影响了烧结矿生产率的提高。 随SiO2含量的升高,烧结矿品位由58.15%下降到57.62%。这是因为在原料中增加了高硅的自产姑精矿用量、并减少了进口高品位巴西FTC矿,同时石灰石的配比也有所提高。 6、1、7三组含SiO2由低到高,对应的还原粉化及还原性指标基本相近,而软化、熔融、滴下温度亦不断升高,TD-Ts、TD-Tm区间差异不大,最高压差和透气性S值不断降低,滴下量无明显差异。 (三)不同烧结矿MgO含量的影响 由第5组、第1组和第4组构成烧结矿不同MgO含量试验。从试验结果可知,随MgO含量的增加,烧结矿产量、转鼓强度均有所下降,固体燃耗上升。当烧结矿MgO含量从1.8%增加到2.4%时,生产率由1.281t/m2.h降至1.240t/m2.h,烧结矿转鼓强度由67.07%降到65.67%;而吨矿固体燃耗由68.04kg上升到69.20kg。造成烧结经济技术指标变差有以下原因: 1、白云石在烧结过程中的分解是吸热反应,因此对分解后的MgO矿化形成新的化合物不利,显微分析发现有不少未发生反应的圆粒状MgO被方镁石周围生成的铁酸镁(MgO·Fe2O3)液相所胶结。 2、本次烧结试验及现场生产均配用粗颗粒白云石(-4mm含量只有90%),导致烧结矿产生大量白云石“白点”。 3、白云石与硅酸盐矿物常混在一起,生成镁橄榄石和钙铁橄榄石,结晶细小,一般以玻璃质的物相存在,而玻璃相中发现有细微裂纹,随着白云石的添加,烧结矿玻璃相大量增加。 4、白云石中Mg++容易渗入Fe3O4晶格,稳定了Fe3O4矿相,造成Fe3O4难以向Fe2O3转变形成铁酸钙,MgO添加量愈多,将有更多Mg++渗入到Fe3O4晶格中,限制了铁酸钙系的发展。 由表5可见,随MgO含量上升,还原粉化指标略变差,还原度有所下降,软化、熔融、滴下温度逐渐上升。 四、结  语 (一)在烧结矿SiO2含量一定条件下,随着烧结矿碱度提高,烧结生产率及烧结矿强度指标均能得到提高,还原粉化指标得到改善。因此,在现有高炉用料碱度得到平衡的条件下,马钢第三烧结厂应按2.0的碱度组织生产以满足炼铁厂对烧结矿产、质量的要求。 (二)提高烧结矿SiO2含量亦能提高烧结矿强度,烧结矿软熔温度均有所上升,其它冶金性能无明显变化,但同时烧结矿品位及生产率皆呈下降趋势。因此,在目前条件下烧结矿SiO2含量应稳定在4.95%,以保证烧结矿的强度。 (三)当MgO含量增加时,烧结各项技术经济指标均变差,烧结矿还原性及还原粉化指标略变差。可见,在确保高炉炉渣流动性的前提下,应尽可能降低烧结矿中MgO含量。

一种生产环保型氢氧化镁的新工艺

2019-02-22 09:16:34

跟着社会经济的开展,燃煤开释的二氧化硫、二氧化碳,燃油开释的硫化合物,氮化合物及采矿、冶金、印染、化工、制药等职业排放的工业废液对人类赖以生存的环境的污染日益严峻,怎么有用地处理这些污染要素,以削减它们给人类带来的巨大丢失,已成为需求火急处理的全球性重要问题之一。 依据对环境保护的需求,处理这些污染必定要用到具有以下特色的化工产品:无毒、温文、不腐蚀处理设备,廉价易得、处理本钱低,效率高,能力强、易操作,且易收回或综合利用、不构成二次污染。 料浆状氢氧化镁正是契合上述一切特色的最佳质料之一,它是一种首要运用于环保范畴的液相无机碱类产品,具有活性大、比表面积大、吸附能力强、缓冲和中和能力强、非沉积性、流动性好、运用和调理便利、温文、安全、无毒、无害、腐蚀性小、易操作、副产品易收回或综合利用等特色,被称为环境友好型“绿色安全中和剂”,运用于酸性废水中和、废液中重金属离子(Ni2+、Mn2+、Cd2+、Cu2+、Cr3+、Cr6+等)脱除、烟气脱硫、印染废液处理等环保范畴,具有其他碱性物质(氧化钙、氢氧化钙、、碳酸钠等)无与伦比的优越性,以往运用于酸性工业废水、含硫烟气处理范畴中的一些强碱物质,如:石灰、烧碱、纯碱等的运用逐渐遭到限制,而被兴起的弱碱氢氧化镁所代替。 因料浆状氢氧化镁运用于环保范畴的许多优势,20世纪90年代末,国外料浆状氢氧化镁料的出产和运用得到迅速开展;我国虽然具有丰厚的镁资源,可是氢氧化镁的出产和运用并未引起人们的满意注重,首要处于研讨开发阶段。近年来,国内虽然建设了一些中试或出产设备,但规划小、品种少、产品质量低、技能水平低,亟待进步职业全体水平。 一、现有料浆状氢氧化镁的首要出产办法 依据氢氧化镁用处和形状的不同,可分为粉末状、滤饼状、料浆状三种。用于环保范畴的料浆状氢氧化镁的纯度要求不是很高,一般在30%左右即可,首要是要求不含重金属等污染严峻的杂质,其出产办法相对简略,首要包含粗氧化镁(镁砂、粗制工业氧化镁等)水化法、海水或卤水-碱性物质(、石灰、氢氧化钙、等)沉积法等。 氧化镁水化法是一种非常陈旧的出产工艺,首要是将菱镁矿轻烧得到的轻烧氧化镁粉放入盛有热水的反响池中,边加边拌和,加料结束后保温沉化2h左右,然后进行固液别离、脱水,得到滤饼状及料浆状氢氧化镁。此工艺根本不具有除杂功用,产品质量受质料氧化镁的纯度和活性影响,氧化镁中的杂质除微量可溶性的盐类外,根本被带入产品中,因此,只能出产低层次的氢氧化镁。 海水或卤水-碱性物质(、石灰、氢氧化钙、等)沉积法是将海水或卤水经过简略的净化后,参加碱性沉积剂,发生氢氧化镁沉积,经过滤、洗刷、脱水得到滤饼状及料浆状氢氧化镁。虽然原理简略,但的挥发性强,易污染环境,操作难度大;石灰和氢氧化钙易生成硫酸钙,随氢氧化镁一同分出,构成产品杂质含量高,质量差;是强碱,易使生成的氢氧化镁构成胶体沉积,给产品功能操控带来困难,一起易带入较多的Na+和Cl-及其他杂质,也构成产品杂质含量高,纯度难以保证。 二、海水、卤水-轻烧白云石沉积法 氢氧化镁运用于环保范畴具有其它碱性物质无与伦比的优越性,在国外已被大量出产和广泛的运用,而我国氢氧化镁的出产办法较落后,本钱较高,杂质含量较多,质量较差,在环保范畴的运用更是屈指可数。鉴于此,咱们首要针对出产环保型氢氧化镁,研制了海水、卤水-轻烧白云石沉积法。 该办法归于沉积法的一种,以海水、卤水和轻烧白云石为质料,选用操控结晶一步组成工艺制取氢氧化镁,它克服了以往出产办法的不利要素,产品纯度高、杂质含量少、质量安稳。 (一)根本原理 将轻烧白云石水合生成含氢氧化钙和氢氧化镁的轻烧白云石乳,轻烧白云石乳中的氢氧化钙和质料海水、卤水中的镁离子在接连组成及别离一体化反响器中反响生成氢氧化镁。本工艺选用自主研制的接连组成及别离一体化反响器,在反响器中始终保持一定量的晶种,简化了传统的晶种回头增加工艺,并在反响器中将生成的氢氧化镁和杂质进行了有用地别离,氢氧化镁完结液经沉降、洗刷、别离、脱水得到滤饼状氢氧化镁,把滤饼加水谐和,并按份额增加分散剂,以防止氢氧化镁的聚会结核,然后制得不同浓度且功能安稳的料浆状氢氧化镁,反响方程式:(二)工艺流程(见图1)图1  海水、卤水-轻烧白云石沉积法工艺流程图 首要,用一种不同于韩利华说到的新处理技能,将质料水中影响产品质量的杂质除掉,得到净化质料水,将轻烧白云石加适量净化质料水水合消化后,加水制得契合组成要求的轻烧白云石乳。 然后,将制好的净化质料水和轻烧白云石乳按份额打入带拌和的接连组成及别离一体化反响器中,操控好反响时间和反响结尾,使二者充沛触摸、完全反响。因为氢氧化镁和不溶性较大粒径杂质沉降速度的不同,不溶性较大粒径杂质首要沉积到反响器底部,并由反响器底部排出。富含氢氧化镁的完结液从反响器中上部进入一级沉降器进行固液别离,固相经净化水洗刷除掉大部分可溶性杂质后进入二级沉积器进行二次固液别离,固相经脱水得到滤饼状产品,滤饼加水谐和,并按份额增加分散剂,以防止氢氧化镁的聚会结核,然后制得不同浓度且功能安稳的料浆状氢氧化镁。 (三)产品质量 氢氧化镁的技能方针多种多样,但用于环保范畴的料浆状和滤饼状氢氧化镁在我国没有见专门的质量标准,为适运用户需求,国外有关供应商对料浆状和滤饼状氢氧化镁产品均拟定了厂商标准,见表1。 表1  国外料浆状、滤饼状氢氧化镁厂商标准本工艺出产的氢氧化镁的首要方针:Mg(OH)230%~35%,CaO 0.5%~0.6%,Cl-≤0.1%,虽杂质氧化钙的含量稍高于日、美产品的质量方针,但已远低于瑞士的质量方针。且该质量的氢氧化镁已足以满意废水处理、烟气脱硫等环保范畴的质量要求咱们将在此基础上进一步改善工艺,进步产品质量,以满意更多职业更高运用要求的需求。 (四)工艺特色 该工艺的首要质料为海水、卤水和轻烧白云石,其来历广泛、报价低廉。 该工艺反响在常温下进行,整个进程不需求加压、加热,出产节能、本钱低。 该工艺进程无有毒、有害及有腐蚀性的物料投入和产出,对出产设备无特殊要求,首要设备为压滤机、普通工业泵和反响器、沉降器等碳钢槽罐,设备出资少,操作简略。 该工艺中,经过对质料水的预处理,有用地下降了产品中杂质含量,产品质量显着优于国内同类工艺产品,达到了沉积法出产高质量氢氧化镁的要求。 该工艺中,接连组成及别离一体化反响器的研制和运用,有用地操控了产品结晶,反响器中保留足量的晶种,防止了晶种的回头增加,完成了接连组成,并完成了方针产品和杂质的有用别离,产品质量较传统办法出产的产品杂质含量少、质量高。 三、结束语 污染正给人类构成巨大的损害,给经济构成巨大的丢失。就我国排放的二氧化硫一项,其构成的酸雨给我国经济构成的丢失每年大约在1100亿元在上,环境管理,已刻不容缓。 我国在酸性废水中和、重金属离子脱除和烟气脱硫等环保方面运用的处理工艺比较落后,操作杂乱,质料耗费高,运转本钱高,并且处理的不完全,副产品又构成二次污染。 跟着我国可持续开展战略的施行、世贸组织的参加、环保认识的增强和环保法律法规的逐渐健全、完善,运用于环保范畴的新技能、新工艺也被日益注重,对其研讨开发的力度正在加大,高效、无毒、优质的新产品或代替产品越来越遭到人们的注重。 我国海水、卤水资源、白云石、菱镁矿、水镁石等含镁资源适当丰厚,应充沛利用现有资源优势,经过改善现有落后工艺,研讨开发新工艺,大力开展多品种的氢氧化镁产品,并进步产品的质量和附加值、下降出产本钱,以满意环保及其他职业日益开展对氢氧化镁质量要求不断进步和用量不断增加的需求,促进经济健康快速地开展。

铁质活性滤膜接触氧化除铁原理

2019-01-21 18:04:24

一、前言 在我国地下水除铁技术中,广泛采用曝气接触氧化的除铁方法。曝气接触氧气除铁法,是使曝气地下水中的亚铁离子不经氧化与溶解氧一同进入接触滤层,在滤层的接触催化作用下完成亚铁离子的氧化和截留。天然锰砂除铁是在我国已得到广泛应用的一种接触氧化除铁法;人造锈砂和自然形成的锈砂除铁法,是七十年代在我国实验成功的另一种接触氧化除铁法。 过去,笔者曾对天然锰砂除铁法进行过系统的实验和研究。近些年来,国内外又对以石英砂为载体的人造锈砂和自然形成的锈砂的除铁过程进行了研究。这些研究成果,发展了接触氧化除铁工艺,提高了接触氧化除铁工艺的效能,促进了接触氧化除铁工艺的推广和应用。 人们对于接触氧化除铁机理的认识有一个发展过程。本世纪三十年代开始将软锰矿砂用作地下水的接触氧化除铁滤料以来,人们一直把二氧化锰当作催化剂,这被称作经典理论。早在六十年代初,笔者在研究天然锰砂除铁过程中就发现了“活性滤膜”的接触催化作用,后又经多次模型及生产试验检验证实,终于于1974年正式提出了活性滤膜接触氧化除铁原理,这使认识又深化了一步。近几年,笔者对铁质活性滤膜接触氧化除铁的基本特征又进行了研究。实验表明,新滤料初期皆有一定的除铁能力,但并不持久经过一段时间除铁能力便开始衰竭。滤后水的含铁浓度相应升高;随着运行时间的增长,滤料的除铁能力又逐渐提高,滤后水水质变好,最终滤料具有了稳定的除铁能力。最终具有稳定的除铁能力。最终具有稳定除铁能力的滤料,称为“成熟”的滤料;由新滤料到“成熟”滤料的转化过程,称为滤料的“成熟”过程。事实上,滤料的成熟过程,正是滤料表面铁质活性滤膜的形成和积累的过程。本文将对新滤料的除铁作用、活性滤膜的形成及积累过程,以及成熟滤层中活性滤膜的除铁特征等方面的问题进行探讨。  二、新滤料的除铁作用 用未经曝气的无氧含铁地下水经新滤料层过滤,发现滤层最初都有一定的去除亚铁离子的能力。图1为新天然锰砂去除水中亚铁离子的情况。新石英砂或无烟煤去除亚铁离子的情况,与天然锰砂类似。新滤料能在无氧条件下除铁,表明新滤料对水中的亚铁离子有吸附作用。 新滤料对水中亚铁离子的吸附能力,与滤料的品种有关,表1为几种新滤料在无氧条件下对水中亚铁离子的动态吸附容量。由表1可见,马山锰砂的吸附容量最大,石英矿砂最小。              表1  新滤料对亚铁离子的动态吸附容量滤料品种名称滤料粒径mm水的含铁浓度  mg/l水的pH水温(℃)吸附容量mg/l马山锰砂1.0~1.2514~186.165000锦西锰砂1.0~1.2514~186.161000阳泉无烟煤1.0~1.2514~186.16250黑龙江烟煤1.0~1.2514~186.16250松花江河砂1.0~1.2514~186.16250北戴河石英矿砂1.0~1.2514~186.1624 实验表明,吸附于新滤料表面的亚铁离子,在有溶解氧的情况下,能被氧化为高铁。但是,在新滤料表面生成的高铁氢氧化物,与在成熟滤料表面生成的具有强烈催化活性的铁质滤膜,在性质上有很大不同。首先,在新滤料表面生成的高铁氢氧化物具有非常密实的构造。新滤料层与成熟滤层的对比试验表明,在滤层都截留相同的铁量时(某次试验为2g),成熟滤层的水力阻抗竟比新滤层高40倍。所以,在新滤料表面生成的高铁氢氧化物比成熟滤料表面的活性滤膜要密实得多。其次,在新滤料表面生成的高铁氢氧化物并不具有强烈的接触催化活性。图2为三种新滤料成熟过程的对比试验。由图可见,由于新滤料具有一定的吸附能力,所以过滤初期都有一定的除铁效果,但当它们的吸附容量逐步耗尽,滤后水的含铁浓度便不断升高。随着过滤除铁过程的进行,在滤料表面开始生成具有接触催化活性的铁质滤膜,由于活性滤膜物质在滤料表面的积累,滤料渐趋成熟。滤层出水含铁浓度又开始降低,从而具有峰状特征。试验发现,虽然这三种新滤料的吸附容量有很大差别,但它们的成熟期却基本相同。如果新滤料表面生成的高铁氢氧化物具有接触催化活性。那么吸附容量大的新滤料截留下来的铁质较多,应该能较快地成熟,即具有较短的成熟期,但实际情况并非如此。所以,新滤料表面生成的高铁氢氧化物不具有强烈的接触催化活性,它与成熟滤料表面具有强烈接触催化活性的铁质滤膜物质的性质是不同的。 三、滤料的成熟过程 含铁地下水曝气充氧后,通过新滤料层过滤,由于新滤料具有吸附能力,所以具有一定的除铁能力。与此同时,滤料表面开始成生具有催化活性的铁质滤膜。所以,新滤料在成熟过程中,同时具有吸附除铁和接触氧化除铁两种作用。新滤料过滤初期,接触氧化除铁作用很小,所以以吸附除铁为主。随着滤料吸附能力的消耗,除铁能力降低,滤层出水含铁浓度逐渐增大。另一方面,在滤料表面生成的活性滤膜的除铁能力则不断增大,当活性滤膜除铁能力的增大速率超过了吸附除铁能力的减小速率时,滤层出水含铁浓度便开始出现下降趋势。由于活性滤膜的接触氧化除铁过程是一个自动催化过程,所以滤膜除铁能力的增大具有加速的特征,使滤层出水含铁浓度的变化过程线在峰值后略具上凸的形状,直至出水浓度降至要求值。之后,滤层出水的含铁浓度便稳定在很低的数值,它表明滤料已趋于成熟。这样,可以把滤料的成熟过程分为三个阶段,第一阶段为新滤料的吸附除铁作用占优势,称为吸附段;第二阶段为铁质活性滤膜的催化除铁作用占优势,并具有加速进行的特征,称为加速催化段;第三阶段表现为铁质活性滤膜的稳定催化除铁作用,称为稳定催化段,如图3。稳定催化除铁过程连续进行相当时间,滤料最终完全成熟。完全成熟的滤料表面被铁质活性滤膜覆盖而发黄,故常称为锈砂。滤料的吸附容量不同,它们的成熟过程也有差别;吸附容量小的滤料,吸附阶段比较短,且滤层出水浓度变化过程线的峰值也较大;吸附容量大的滤料,吸附阶段比较长,出水峰值也较小。当滤料的吸附容量较大,而地下水的含铁浓度又较小时,出水浓度峰值有可能降至水质标准要求值以下,这时滤池一投产便能供应合格的水质。 我们在图2所示条件下,还进行了北戴河石英矿砂、松花江河砂、黑龙江烟煤等滤料的成熟试验,试验结果与图2基本一致。上述六种滤料的吸附段和加速催化段的总长度,大致为4~5d,此时滤层出水含铁浓度都能降至0.3mg/l以下,但出水水质尚不够稳定,7d后则皆能稳定地除铁。 综上所述,滤料品种不同,只对除铁初期的出水水质有影响,基本上不影响滤料的成熟期和成熟滤料的除铁性能,即对成熟滤料而言,不同品种的滤料作为铁质活性滤膜的载体,其作用是没有区别的,这就为在接触氧化除铁工艺中采用石英砂、河砂、无烟煤等廉价滤料提供了理论依据,经济意义是很大的。但是,吸附容量大的滤料,如天然锰砂,在除铁初期出水水质较好,这在实用上是有重要意义的。石英砂、无烟煤等吸附容量小的滤料,投产初期出水水质差,需采取改善水质和加速滤料成熟的措施,是其缺点。 有人用滤料表面铁质的附着指数(附着于100mg滤料表面的铁质的mg数)作为滤料成熟的指标。前已述及,由于不同滤料具有不同的吸附容量,而在滤料表面吸附氧化的铁质并不具有催化活性。吸附容量大的滤料,在除铁初期就使附着指数达到相当数值,但这时滤料并不具有相应的“成熟”程度。所以,用附着指数作为滤料成熟的指标,对吸附容量不同的滤料不是普遍适用的。 人们习惯于以除铁滤层出水含铁浓度降至饮用水水质标准(0.3mg/l)以下作为滤料成熟的标志。由于滤层都是在一定的条件下进行工作的,这就使“成熟”与具体的工况有关,而不具有统一的标准,难于相互比较,所以也是不完善的。 我们认为,以单位滤料表面积所具有的接触氧化反应速度常数或滤层的接触催化活性系数作为滤料成熟的指标比较合理。 四、铁质活性滤膜的化学组成及其催化的基本特征 在去除亚铁离子的过程中,滤料表面上逐渐形成了铁质活性滤膜。在一个过滤周期里,如果滤膜在滤料表面上的附着量大于反冲洗中的剥落里,滤料表面上的铁质便增多,这使滤料颗粒逐渐变大。对含铁浓度较高的地下水除铁水厂,能观察到明显的滤层增厚和造粒现象,有的水厂,滤料使用一年,部分滤料的粒径可由0.6~2.0mm增大到5~6mm,体积增加几倍乃至几十倍,成为锈球。这种锈球湿时为棕黄色,表面上附着一层疏松的铁质氢氧化物(滤膜)。洗去滤膜,锈球表面光滑且有一定强度。剖开锈球,内部棕黑相间,为年轮状,比较密实。锈球内多有一个由细滤料构成的小的核心,但也有没有核心全由铁质组成的。 将由佳木斯水厂取来的锈球焙烧后,测得其中含Fe2O388%,SiO28%,此外还含有Ca、Mg、Mn等多种元素。锈球外部疏松的铁质滤膜的化学成分,与锈球相同。根据锈球形成的过程,可以断定内部那样密实的物质是由滤料表面这种疏松的铁质滤膜长期积累逐渐形成的。 我们还对新鲜滤膜和锈球内部物质进行了差热和热失重分析,测出它们的化学组成如表2。新鲜滤膜的试样为生产滤池反冲洗水沉淀下来的铁泥(测定前已存放一天)。由表2可见,铁质滤膜与锈球内部物质虽然化学成份相同,但化学组成却有不少差异。通过比较可以看出,由滤料表面铁质滤膜积累成锈球内部物质的过程,是结晶水逐渐脱离的过程,外观上则由疏松到密实。 为了了解滤膜与锈球内部物质催化活性的差别。进行了下面的对比试验。一支滤管装入附有新鲜滤膜的锈球作滤料,另一支滤管装入洗去滤膜的锈球作滤料,使它们在相同的条件下进行除铁试验。 表2  铁质活性滤膜的化学组成试样名称化学组成新鲜滤膜Fe2O3·5H2O或Fe(OH)3·H2O锈球内部物质Fe2O3·H2O或FeOOH新鲜滤膜Fe2O3·6H2O或Fe(OH)3·2H2O图4为试验结果。由图可见,有新鲜滤膜的锈球,降铁效果良好。而洗去滤膜的锈球则除铁效果很差,并且具有与新滤料相同的特征,它表明只有锈球表面疏松的滤膜物质才具有催化活性,而锈球内总密实的物质则没有催化活性。滤料表面这种具有催化活性的疏松的铁质滤膜,称为铁质活性滤膜。 地下水含铁浓度14mg/l;溶解氧浓度7~8mg/l;滤速10m/h。 实验表明,新鲜的铁质活性滤膜的催化活性最强,随着时间的延长,铁质滤膜逐渐老化,其催化活性也逐渐减退。实验是用成熟滤料进行的,实验结果如图5。由图可见,停运几天以后,成熟滤料的除铁效能已大大降低,表明铁质滤膜会随时间逐渐老化而丧失其催化活性。锈球内部的密实物质,正是由老化的铁质滤膜长期积累而成。所以,滤料表面铁质活性滤膜的催化作用只有在连续的除铁过程中才能实现。滤料表面的铁质活性滤膜在过滤除铁过程中得到新的补充,从而在原来的滤膜上不断覆盖上新的滤膜,这使滤膜始终保持新鲜而具有很高的催化活性。旧的滤膜则逐渐老化丧失催化活性,久之便成为滤料表面密实的附着物。滤料表面的铁质活性滤膜的不断更新,是锈砂接触氧化除铁过程正常进行的必要条件。已经明了,铁质活性滤膜接触氧化除铁的过程,首先是滤膜离子交换吸附水中的亚铁离子,可表示如下: Fe(OH)3·2H2O+Fe2+= Fe(OH)2(OFe) ·2H2O++H+ 当水中有溶解氧时,被吸附的亚铁离子在活性滤膜的催化下迅速地水解和氧化,从而使催化剂得到再生,反应生成物又作为催化剂参与反应,所以铁质活性滤膜接触氧化除铁是一个自动催化过程。 Fe(OH)2(Ofe) ·2H2O+1/4·O2+9/2 ·H2O= 2Fe(OH)3·2H2O+ H+ 收集反冲洗水中的铁泥进行分析,发现其中基本上不含亚铁化合物。它表明被活性滤膜吸附的亚铁离子能被迅速地氧化为高铁。 按照铁质活性滤膜接触氧化除铁是一个自动催化过程的概念,在过滤除铁过程中被截留于滤层中的铁质由于具有催化作用,应能使滤层的接触氧化除铁能力得到提高。情况确实如此。图6为除铁过程中,水的含铁浓度沿滤层深度方向分布的变化情况。其中曲线1为滤层反冲洗后1小时的浓度分布情况,曲线2为反冲洗后36小时的情况。由图可见,曲线2较曲线1的位置上移,表明随着铁质在滤层中的积累,滤层的接触氧化除铁能力有明显的提高,它证实了铁质活性滤膜接触氧化除铁是自动催化过程的结论。 五、成熟滤层的接触氧化除铁速率 水中的亚铁离子在成熟滤层中被去除,经历以下诸步骤:亚铁离子由水中向滤料表面扩散;亚铁离子被滤料表面的活性滤膜吸附;被吸附的亚铁离子水解并被氧化,生成高铁氢氧化物——铁质活性滤膜。上述诸步骤中,反应速度最慢者将成为除铁速率的控制步骤。实验表明,亚铁离子向滤料表面扩散可能是除铁速率的控制因素。实验还表明,滤料上活性滤膜只以外表面吸附水中的亚铁离子。根据菲克定律,亚铁离子向滤膜表面扩散时,扩散速率与水中和滤膜表面的亚铁离子浓度差(C-C’)成正比,与滤膜表面的边界层厚度σ成反比。如果将扩散速率作为除铁速率,并认为C’很小可忽略不计,则 -dc/dt=DS/D(C-C’)≈DS/σ·C        (1) 式中 t——时间,t=ml/u; l——滤层的厚度; m——滤层孔隙度; u——滤速; D——扩散系数; S——单位体积滤层中滤膜的外表面积,S=6a(1-m)/d; d——滤料粒径; a——滤料的形状系数; σ——边界层厚度; C’——滤膜表面上的亚铁离子浓度。 将上列各参数代入式(1)得 -dc/dι=βC               (2) β=6Dam(1-m)/ σdu           (3) 式中β称为滤层的接触催化活性系数。 当水在滤层中呈层流状态流动时,可以认为边界层厚度为一定值(σ=const),由式(3)可知,这时滤层的催化活性系数与滤速的一次方成反比例关系。 当水在滤层中呈紊流状态流动时可近似地认为边界层厚度与滤速成反比例关系, σ=a/u                 (4) 式中 a为比例系数。将式(4)代入式(3),得 β=6Dam(1-m)/ad             (5) 即紊流时,除铁效果与滤速无关,这可以看作与滤速的零次方成反比。 当水在滤层中低于层流和紊流之间的过渡区时,可以认为滤层的催化活性系数与滤速的p次方成反比, β=6Dam(1-m)/bdup            (6) 式中 b为比例系数;而0 由雷诺数可判别水在滤层中的流态。雷诺数按下式计算 Re=pdu/6μa(1-m)             (7) 则Re上述滤层除铁速率与滤料粒径以及滤速的关系,笔者早在天然锰砂除铁的研究中已经通过实验得到。现在,我们又从理论上作出了论证。 设亚铁离子在滤膜上的反应速率(吸附、氧化、水解)与表面上的亚铁离子浓度成正比,所以滤膜表面上的除铁速率为 -Dc/dt=KSC’                (8) 式中 K——单位面积滤膜上的反应速度常数。 当除铁过程稳定时,表面反应速率与扩散速率相等,即 KSC’=DS/σ(C-C’)              (9) 从而得  C’=C/(1+Kσ/D)            (10) 将式(10)代入式(8),得 -Dc/dl=[K/(1+Kσ/D)]·[6am(1-m)/du·C]   (11) 比较式(11)和式(2),可知 β=[K/(1+Kσ/D)]·[6am(1-m)/du]       (12) 由上式可知,β随K的增大而增大,所以两者都可用作判断滤料成熟程度的指标。 六、几点结论 1.通过对天然锰砂、石英砂、河砂、无烟煤等多种滤料的实验,发现新滤料对水中铁离子有吸附作用,吸附容量因滤料种类而异,但吸附于新滤料表面的铁质氧化后并不具有催化性能。新滤料的吸附容量大,过滤初期除铁水质较好。 2.实验表明,对亚铁离子氧化起催化作用的是除铁过程在滤料表面上自然形成的铁质活性滤膜,其形成速度一般与滤料种类无关。铁质活性滤膜的化学组成为Fe(OH)3·2H2O。实验证实,铁质活性滤膜接触氧化除铁过程是:水中亚铁离子先被滤膜吸附,然后被氧化和水解,生成新的活性滤膜,并作为新的催化剂参与反应,所以活性滤膜除铁是一个自动催化反应过程。实验表明,除铁过程中截留于滤层中的铁质,能使滤层的接触催化能力增大。 3.实验表明,新滤料的“成熟”过程,就是铁质活性滤膜在滤料表面逐步积累的过程。成熟滤料的除铁过程,实质上就是滤料表面铁质活性滤膜的除铁过程。对成熟滤料而言,不同品种的滤料作为铁质活性滤膜的载体,其作用基本上是没有区别的。滤料的成熟过程可分为吸附段、加速催化段和稳定催化段等三个区段。建议以单位滤料表面积上的反应速度常数K或滤层的接触催化活性系数β作为判别滤料成熟的指标。 4.实验研究表明,新鲜的铁质活性滤膜的催化活性最强,但随时间滤膜逐渐脱水老化,其催化活性也逐渐减弱,所以,滤料表面活性滤膜的催化作用只有在连续的过滤除铁过程中才能实现。 5.实验证实,滤层的接触氧化除铁速率由亚铁离子向滤膜表面的扩散速度控制。从扩散定律出发,理论推导出滤层除铁速率公式。

活性二氧化锰

2017-06-06 17:50:07

活性二氧化锰制造方法  一种用于电池填充料的活性二氧化锰制造方法,它是将含MnO↓[2]70-72%的天然锰矿粉与谷壳催化剂混合配料,制浆时加入MnSO↓[4]·H↓[2]O增锰制浆,岐化氧化反应采用分次加料3-4次进行,洗涤时先用H↓[2]SO↓[4]溶液进行酸洗,中和反应加NH↓[4]HCO↓[3],采用本方法具有不增加设备,可降低原料品位和生产成本5%,缩短工时,提高工效一倍以上,产品MnO↓[2]含量稳定大于75%,视比重达1.8-2.1克/cm↑[3],放电性能好,间歇放电和连续放电均达到或超过电解二氧化锰标准。  一种用合成碳酸锰为原料热解制取二氧化锰的方法和设备,碳酸锰在回转窑中的热解氧化反应采用间接加热连续焙烧,参与反应的物料和气体以及加热介质三者均同向流动,控制入窑物料水分,使其在窑中预热段产生蒸汽,同时调节入窑空气量,以形成含湿含氧的反应气体,无须按一般方法通入蒸汽和氧气,所设计的回转窑是双层夹套结构的筒体,以通过夹套中的热空气为焙烧加热介质,采用密闭循环低温加热方式,因此热效率高,能耗低,设备简单,所制得活性好的γ型二氧化锰,其转化率达80~85%.  一种利用制药 行业 废锰渣生产活性二氧化锰 的方法,它涉及化工废渣利用领域。其特征在于它以制药 行业 的废锰渣及酸和水为原料,通过焙烧、酸化、分离、活化、粉碎等六道工序制得活性二氧化锰。$该方法变废为宝,保护环境;成本低,利润高,有竞争能力。更多有关活性二氧化锰信息请详见上海 有色 网

什么是活性石灰,活性石灰有哪些特点,使用活性石灰有什么好处?

2019-01-07 07:51:16

通常把在1050~1150℃温度下,在回转窑或新型竖窑(套筒窑)内焙烧的石灰,即具有高反应能力的体积密度小、气孔率高、比表面积大、晶粒细小的优质石灰叫活性石灰,也称软烧石灰。   活性石灰的水活性度大于310mL,体积密度小,约为1.7~2.0g/cm3,气孔率高达40%以上,比表面积为0.5~1.3cm2/g;晶粒细小,熔解速度快,反应能力强。使用活性石灰能减少石灰、萤石消耗量和转炉渣量,有利于提高脱硫、脱磷效果,减少转炉热损失和对炉衬的蚀损,在石灰表面也很难形成致密的硅酸二钙硬壳,有利于加速石灰的渣化。

硝酸氧化改性活性炭处理含铬废水的研究

2019-01-25 15:49:34

含Cr的电镀废水严重污染环境,利用改性的活性炭对它进行处理,效果明显.活性炭用HNO3(1:1)氧化并经300℃左右温度煅烧改性后,具有较高的阳离子交换容量,其阳离子交换容量达到1.88mmol/g.常温条件下以该改性活性炭作吸附材料处理镀铬厂含铬废水,在酸性条件下具有较高的还原性和吸附性,可将废水中以CrO2-4和Cr2O2-7两种形式存在的Cr(Ⅵ)离子完全还原成Cr3+,获得了较高的Cr(Ⅵ)离子去除率,并对溶液的pH值和吸附时间对废水中Cr(Ⅵ)离子去除率的影响进行了探讨.结果表明,当溶液的pH值为2.5~3.0,吸附时间为3~4 h时,废水中Cr(Ⅵ)离子的去除率可达到97.5%左右.

活性炭的性质

2019-03-07 11:06:31

活性炭由人工制作,所用质料有木材、果核、煤炭、石油以及农作物等,经过恰当的办法成型,然后进行活化,即出产出制品。活性炭的形状有粉状、球状、柱状和片状,其活化办法有水蒸气活化和氯化锌活化。因而,出产出来的产品性质不同很大,例如,黄金炭浆厂所用的吸收金活性炭为椰壳炭和杏核炭,为片状,其强度较好,耐磨,而处理含废水所用的活性炭一般为煤质炭,报价低,比表面积大,但强度差。活性炭供应商一般用吸量、碘值、比表面积和总孔隙率表明活性炭的吸附功能,这些目标分别在20~400mg/L、600~800mg/L、300~1000m2/g和0.35~0.81cm3/g规模,孔隙率越大,其它几个参数也越大,吸附才能越强并且吸附量也大,粒径越小,吸附速度越快,处理含废水一般选用比表面积大,粒度小的活性炭。 7.2.1 吸附性吸附是活性炭的主要特征,它被看成是一种表面现象,当含废水经过活性炭时,活性炭的表面对着相应的废水表面,两表面层围住的区间是一个界面,所以就在这个界面区内,产生了吸附,活生炭的吸附即有物理吸附又有化学吸附,要截然分隔这两种吸附是办不到的,以金吸附在活性炭上为例,首要,金以Au(CN)2-方式吸附,然后Au(CN)2-分解出AuCN。活性炭对的吸附与金的吸附不同,重金属是以离子方式被吸附的,而游离络物是以离子方式被吸附的,而游离是以HCN方式被吸附的,因而,下降废水pH值时,在活性炭上的吸附率就高。在被吸附的没有在炭表面上发作氧化反响生成CNO-曾经,是可以用酸把洗脱下来的。吸附速率取决于分散到炭表面的速度和从炭外层分散到内层未被占有表面的速度。这关于HCN气体来说,并不难,但关于水中的,则有必定的难度,因而,在用新炭处理废水时,一开始咱们看到吸附速度很快,但过一段时间外表面积已被占有,吸附速度由内分散控制,吸附速度显着减慢,这也是咱们在活性炭催化分解法中挑选小粒度活性炭的原因。 7.2.2 比表面积及孔结构活性炭总活性表面积一般达300~1000m2/g,就是被吸附在活性炭表面上,一般以为,比表面积越大的活性炭,其活性表面活性点(活性中心)就越多。但是,是否能被吸附还要看活性炭的孔结构怎么,假如孔径小于HCN分子或络合物离子的直径,那么,就不能到达活性表面上,因而,活性炭就不能吸附,一般以为,活性炭的微晶凝集体中包含着形状不规则的缝隙的衔接网,在这种网中有巨细不同的孔径,大孔为可吸附的分子进入内部供给通道,微孔则供给进行吸附的表面积,应该指出的是,并不是一切微孔的吸附性都共同,往往在不同的表面部位有特定的和挑选性的吸附才能,所以人们提出了活性中心的假说,活性炭的这种性质与制作工艺办法有关。 7.2.3 活性炭的催化效果因为活性炭比表面积之大,吸附效果好含的废水在与活性炭触摸时则被活性炭吸附,而活性炭与空气触摸时空气中的氧也被活性炭吸附,如此,活性炭表面上的和氧的浓度比废水中的、溶解氧浓度高得多,并且反响的活化能也得以减小,发作氧化反响就比在水中与氧发作反响简单得多,因而说,活性炭的催化效果就是富集反响物的效果以及削减瓜尖所需活化能的效果,后者也是由活性表面所供给的。