氧化镁
2019-01-25 15:49:17
MgO俗称苦土,是一种白色粉末状固体。熔点3125K,沸点3873K,密度3.58g/cm3(298K),硬度6.50。MgO对水呈一定惰性,特别是高温煅烧后的MgO难溶于水。MgO溶于酸。 MgO的制备方法: (1)金属镁在高温下燃烧。 2Mg + O2 == 2MgO (2)工业上一般通过煅烧碳酸镁或氢氧化镁来生产氧化镁。 MgCO3 ==== MgO + CO2 Mg(OH)2 ==== MgO + H2O 煅烧温度在923K左右制成的为轻质MgO,煅烧温度在1923K以上时制成的为MgO。 MgO大量用于耐火材料、金属陶瓷、电绝缘材料,轻质MgO与MgCl2或MgSO4溶液混合后可制成镁质水泥。医疗上用MgO作抗酸药和轻泻药。常与易致便秘的CaCO3配合应用。在水处理、人造纤维织物加工、造纸、催化剂生产等方面MgO都有重要应用。
氢氧化镁简单介绍
2019-02-14 10:39:59
碱土金属的氢氧化物都是白色固体,置于空气中就吸水潮解。其间Ca(OH)2就是常用的干燥剂。碱土金属氢氧化物在水中的溶解度比碱金属氢氧化物要小得多,从表中数据看,从Be到Mg,氢氧化物的溶解度顺次递加,它们的碱性也顺次递加。Be(OH)2和Mg (OH)2是难溶的氢氧化物。Be(OH)2是氢氧化物,Mg (OH)2归于中强碱,其他均归于强碱。表1 碱土金属氢氧化物的某些性质物质Be(OH)2Mg(OH)2Ca(OH)2Sr(OH)2Ba(OH)2性质色彩白白白白白熔点/K脱水分化脱水分化脱水分化脱水分化脱水分化水中溶解度/mol-dm-3(293K)8×10-1S×10-11.8×10-26.7×10-22×10-1酸碱性中强碱强碱强碱强碱 碱金属和部分碱土金属的焰色离子Li+Na-K+Rb+Cs+Ca2+Sr2+Ba2+焰色红黄紫紫红紫红紫红洋红黄绿波长/nm670.8589.6404.7629.8459.3616.2707553.6
Mg(OH)2的密度为2.36g/cm3,加热至623K即脱水分化: Mg(OH)2 ==== MgO + H2O Mg(OH)2易溶于酸或铵盐溶液: Mg(OH)2 + 2HCl ==== MgCl2 +2H2O 这一反响可应用于分析化学中。 将海水和廉价的石灰乳反响,能够得到Mg(OH)2沉积,亦称氧化镁乳: Mg2+ + Ca(OH)2 == Mg(OH)2 + Ca2+ Mg(OH)2的乳状悬浊液在医药上用作抗酸药弛缓泻剂。
利用硼泥制备氢氧化镁
2019-02-18 15:19:33
硼泥是、硼砂出产过程中构成的固体废弃物。硼泥中含有氧化镁、氧化钙、等碱性物质,对环境造成了极大污染。截止到2006年仅辽宁省内的硼泥就已达1700万t,并正以每年130万t的速度添加。
现在,国内外对硼泥归纳利用的研讨有诸多方面,已取得了许多科研成果,但硼泥污染的现象依然存在,这首要是因为各类硼泥归纳利用技术落后,工业化程度较低。硼泥中含有镁等有价元素,极具开发利用价值。因而,开发利用这种二次资源,出产氢氧化镁,对进步经济效益、削减环境污染、促进资源再生都有重要意义。氢氧化镁作为典型的无卤阻燃剂,具有阻燃、消烟、阻滴、高热稳定性、高效的促基材成碳效果和强除酸才能等特性。
现在,出产氢氧化镁的首要办法有:合成法、白云石的挑选煅烧法和电解卤水法。合成法需以含有氯化镁的卤水为质料,白云石的挑选煅烧法和电解卤水法的能耗皆较高。本文选用高温下煅烧工业浓硫酸与硼泥混合物的办法收回氢氧化镁,此办法能耗低且易于完成工业化,不只能够处理硼泥对环境的污染问题,也为氢氧化镁的出产拓荒了一条新途径。
一、试验
(一)试验质料
硼泥取自辽宁省某地,首要化学组成见表1。硫酸为工业级,浓度98%,、及其它检测所用药品均为分析纯,试验用水为二次蒸馏水。
表1 硼泥的成分(质量分数)/%MgOCO2SiO2Fe2O3Al2O3CaOMnO其它39.030.219.74.562.991.840.0821.628
(二)试验内容
将硼泥与工业硫酸的混合泥浆在高温炉中煅烧必定时刻,取出后加水溶解、加热、过滤,得到母液。用0.01mol/L的EDTA滴定Mg2+,核算浸出率。重复加热、过滤母液至用(NH4)2C2O4溶液体会不到Ca2+。向滤液中参加将溶液中的Fe2+、Mn2+氧化成高价的Fe3+、Mn4+有利于完全除杂,加至用K3[Fe(CN)6]溶液查验不到Fe2+,用硝酸和NaBiO3查验不到Mn2+。在必定温度下加10%NaOH溶液将母液调理至pH=9.0,过滤,除掉杂质,得到镁精液。再向镁精液中参加5mol/L的NaOH溶液调理,pH=12.0,过滤、洗刷,然后将产品恒温烘干,得到氢氧化镁产品。产品的检测按标准HG/T3607—2000履行。
(三)工艺流程
工艺流程见图1。图1 硼泥制备氢氧化镁工艺流程
二、成果与评论
(一)煅烧温度对镁浸出率的影响
在煅烧时刻为1h,硫酸与硼泥液固比为1∶1的条件下,调查不同煅烧温度下镁的浸出率,试验成果如图2所示。由图2可知,在烧烧温度为300℃时,镁的浸出率最高,尔后跟着煅烧温度的升高镁的浸出率反而快速下降。这是因为浓硫酸在350℃时开端发作分化反响,温度过高时,生成的SO3烟气和氧气会快速逸出,使反响不能充沛进行,故镁的浸出率下降。一起高温效果黏结生成不溶于水的硅酸盐类也会使得镁的浸出率下降。图2 煅烧温度对镁浸出率的影响
(二)煅烧时刻对镁浸出率的影响
在硫酸与硼泥液固比为1∶1、煅烧温度为300℃条件下,别离调查不同煅烧时刻下镁的浸出率,试验成果如图3所示。由图3可知,跟着煅烧时刻添加,镁的浸出率逐步增大。反响时刻为2h时硫酸与硼泥的反响根本完毕,此刻镁的浸出率到达最大。图3 煅烧时刻对镁浸出率的影响
(三)硫酸与硼泥份额对镁浸出率的影响
在煅烧时刻为1h,煅烧温度为300℃条件下,调查不同液固比时镁的浸出率,试验成果如图4所示。由图4可知,跟着硫酸与硼泥液固比的增大,硫酸过量增多,硼泥能充沛与硫酸反响,镁浸出率趋于增大,但耗酸量增大。若硫酸与硼泥的份额太小,则硼泥中的矿藏不能与硫酸充沛反响,导致镁的浸出率不高。依据试验成果,硫酸与硼泥的液固比以2∶1为宜。图4 硫酸与硼泥份额对镁浸出率的影响
(四)归纳条件试验
依据试验成果及归纳考虑能耗、药品用量和硫酸分化温度对浸出率的影响,断定工艺条件为:煅烧温度为300℃、煅烧时刻为2h、硫酸与硼泥的液固比为2∶1,在此工艺条件下镁的浸出率为88%。将此条件下所制样品按1.2所述办法制备氢氧化镁,经测定镁精液中镁的收回率为91.17%。因而,硼泥中镁的归纳收回率可达80%左右。
(五)氢氧化镁的检测与分析
1、氢氧化镁的XRD分析 选用X射线衍射仪分析了产品物相组成,其成果见图5。由图5可知,该产品的峰方位和强度均与JDPDS卡上标准Mg(OH)2的衍射峰数据完全一致,且峰值规整,无杂峰出现,可知粉体为Mg(OH)2。图5 Mg(OH)2样品XRD图
2、氢氧化镁的检测 对氢氧化镁产品进行成分分析,检测成果如表2所示。
表2 氢氧化镁成分(质量分数)/%Mg(OH)2FeAlCaOMn99.540.0190.0150.4300.008
由表2可知,氢氧化镁的纯度为99.54%,换算成氧化镁纯度为68.64%,高于标准HG/T3607—2000的规则,其他杂质的含量也契合此标准。
3、氢氧化镁的SEM分析 用SEM对氢氧化镁粉末的表面描摹微观结构进行分析,其成果见图6。由图6能够看出,未烘干的Mg(OH)2颗粒出现聚会状况,晶体微粒十分小,颗粒直径不到1μm。将样品烘干后Mg(OH)2晶体微粒逐步长大,颗粒呈不规则球状,颗粒直径大约70~90μm。图6 氢氧化镁SEM相片
(a)未烘干;(b)烘干后
三、定论
(一)依据单要素条件试验断定高温煅烧工业硫酸与硼泥混合物的工艺条件为:煅烧温度为300℃、煅烧时刻为2h、硫酸与硼泥的份额为2∶1。此刻镁的浸出率为88%。
(二)以为沉积剂制备氢氧化镁可使镁精液中镁的收回率到达91.17%,硼泥中镁的归纳收回率可达80%。经XRD检测断定沉积产品为氢氧化镁,产品质量契合标准HG/T3607—2000。
(三)由SEM检测能够看出,未烘干的Mg(OH)2晶体微粒十分小,颗粒直径不到1μm。氢氧化镁经烘干后晶粒长大,颗粒呈不规则球状,颗粒直径大约70~90μm。
纳米氢氧化镁的用途及合成方法
2019-01-04 09:45:23
镍精矿降低氧化镁工艺技术
2019-01-21 18:04:33
一、概述
金川公司选矿厂一选矿车间处理龙首混合矿石,设计处理能力为1200t/d,有破矿、磨浮、精矿输送三道工序。其中,磨浮采用三段磨矿、三段浮选的阶段磨选流程。经80年代后期和90年代初期的系列改造,形成了1500t/d的生产能力。90年后期,经过不断挖潜改造,特别是2000年和2001年连续两次150t/d的扩能改造,现已形成2000t/d的生产能力。
目前所指的龙首混合矿石,是指龙首矿东、中、西部三个不同采区的矿石混合,而不是矿石工业类型上所所义的硫化率为45%~60%的混合矿石。其中一部分较富混合矿石(含Ni1.3%以上)由一选矿进行处理,另一部分较贫混合矿石(含Ni1.122%左右)由二选磨浮车间处理。
本文所探讨的就是Ni品位在1.30 %以上的由一选处理的龙首混合矿。
二、矿石性质及主要矿物选矿工艺特性
(一)龙首混合矿石中主要金属矿物及选矿工艺特性
龙首混合矿石中主要金属矿物有紫硫镍铁矿、镍黄铁矿、黄铁矿、磁黄铁矿、黄铜矿、方铜矿等;脉石矿物有蛇纹石、绿泥石、滑石及碳酸盐。紫硫镍铁矿被认为是最易浮选的硫化镍矿物。镍黄铁矿属比较好选的镍矿物,其选别效果仅次于紫硫镍铁矿,主要原因是其原生粒度比紫镍铁矿小,由于中细粒贫矿石中的镍黄铁矿和磁铁矿紧密共生呈网络状结构,磨矿过程中绝大部分不能单体解离,造成镍黄铁矿可浮性稍差。氧化会使紫硫镍铁矿的可浮性变差,因此对于以紫硫镍铁矿为主的硫化镍矿石要求快采、快运、快选,矿石存放越久越不利于选别。
一般的蛇纹石化矿石,用黄药做捕收剂,镍回收率和硫化率接近或比较接近,是比较好选的硫化镍矿石,使用调整剂可提高精矿品位,回收率无明显改善。蛇纹石具有一定的可浮性,所以精矿中30%左右脉石矿物中有相当部分是蛇纹石,致使精矿中金属品位降低,氧化镁含量高。强蚀变矿石中蛇纹石含量较少,在一般的浮选生产中,硫化物损失严重。
研究证明:各类厂矿中的硫化镍矿物可选性无明显差异,但矿石中脉石矿物对选别生产显著影响,因此,提高镍矿物选别指标或降低精矿中氧化镁的研究工作中,必须重视脉石矿物的抑制。
(二)含镁脉石矿物的浮选工艺性质
金川硫化铜、镍矿床中主要脉石矿物为含镁硅酸盐,由于地质蚀变作用,这些硅酸盐主要以蛇纹石、绿泥石、滑石的形式存在,这些脉石矿物对铜、镍的浮选影响较大。
1、主要脉石矿物的结构
蛇纹石是层状碳酸盐矿物中最简单的矿物,结构式为[Mg3Si2O3(OH)],在它的没一层结构中都含有一层硅氧四面体,水镁石层获得额外电荷,所以和另外一个硅氧四面体六方网成夹层结构,一旦在滑石层上没有净电荷而只有范德华力时,这个夹层就裂开,滑石也很软。
绿泥石也是层状硅酸盐矿物,结构式为(Mg·Al·Fe)12[(SiAl)8O22](OH12),它是在双层云母之间夹上一层水镁石而形成的,如果水镁石层价键遭到破坏,这个矿物就裂开。和前两种矿物比,它最松软。
2、脉石矿物的可浮性
蛇纹石大量存在于镍精矿中而影响精矿质量。在镍矿的生产实践中发现蛇纹石大量进入镍精矿而难以脱除,原因是蛇纹石在形成过程中具有较强的磁性,具有磁性的蛇纹石吸附与同样具有磁性的硫化物表面一起进入精矿;另外,带正电的蛇纹石易吸附与带负电的镍矿物表面而上浮。
绿泥石在镍矿物浮选中易浮难抑,另外,绿泥石疏松易碎,在磨矿过程中易泥化。绿泥石矿泥在镍矿物浮选中其行为与蛇纹石细泥基本一致。
滑石具有非极性表面,疏水性好,具有较强的天然可浮性,仅用起泡剂就能很好使之浮游,镍矿物浮选中,滑石极易进入精矿中。
三、降镁现状分析
(一)工艺流程及其特点
90年代,为了给闪速炉提供低镁合格精矿,弥补二矿区富矿精矿量的不足,金川公司选矿厂、金川镍钴研究设计院、中南工业大学、西北矿冶研究院等单位,针对龙首混合矿石低精矿中氧化镁进行了大量的试验研究,这些试验研究概括起来有三种:
1、通过改变工艺流程降镁;
2、通过新药剂达到活化有用矿物,抑制脉石矿物的药剂降镁;
3、采用改变工艺流程和添加新药剂相结合的方式降镁。
通过大量的试验研究,一选车间于1998年6月9月分别对2#系统和1#系统进行了流程改造,形成了目前的降镁工艺,产出的低镁精矿送闪速炉处理,新的降镁工艺主要是强化了精选作业,增加了粗选次数,通过提高精矿品位达到降镁的目的。现场生产实践证明三段磨矿、三段浮选的阶段磨选流程是选别金川龙首混合矿石的成功经验,既可使有用矿物达到充分单体解离得到有效回收,又可减少过磨和矿物表面污染。生产实践还证明,该流程适应性比较好,既可组织降镁生产,为二期闪速炉提供低镁精矿(精矿中氧化镁含量≤7%);又可以组织低精矿品位生产,为一期电炉生产提供原料,并且在这两种情况下,回收率都基本不受损失。一选磨浮工艺流程(框图)如图1。
图1 一造厂磨浮原则流程
(二)生产指标分类统计分析
对2000年1~8月选厂生产指标进行了分类统计,从统计结果得出如一结论。
1、原矿品位对指标有着直接的影响。随着原矿品位的升高,精矿品位、回收率均呈上升趋势,精矿中MgO含量逐渐降低。
2、原矿镍品位大于1.2%时,只要控制精矿镍品位大于6.5%,精矿中MgO含量即能低于7%,说明在现有工艺条件下,保证一定的精矿品位是降镁的首要条件。
3、原矿镍品位小于1.2%时,要保证精矿中MgO含量,必须将精矿品位提高到7%以上,回收率损失较多。
四、降镁问题分析
(一)矿石性质对降镁的影响
1、MgO赋存矿物的自然可浮性
大多数硅酸盐矿物有强的共价键或离子键,亲水性强,可浮性差,如橄榄石、辉石等。但蛇纹石、滑石、绿泥石等矿物是特殊的层状或双链状硅酸盐矿物,破碎后表面键力是分子键力,疏水性好,自然可浮性强,在浮选过程中容易进入精矿,致使精矿中MgO含量升高。金川矿区的矿石大多发生蚀变,原生的橄榄石、辉石大多蚀变为蛇纹石、滑石、绿泥石等,这些含镁矿物可浮性好,是MgO难以抑制的主要原因。
2、矿石硬度
矿石的硬度变小,在磨矿过程中更容易泥化,矿石的蚀变与矿石中构造挤压带的发育会加剧这一趋势,使蛇纹石、滑石、绿泥石矿泥包裹在金属矿物的表面进入精矿,造成MgO含量升高。
3、矿石品位
矿石中金属硫化物与含镁脉石矿物呈负相关,即矿石品位越低,MgO含量越高。2001年1~8月一选矿处理的龙首混合矿石累计Ni原矿品位1.333%,比计划Ni原矿品位1.35%低0.017%,比2000年同期的1.445%降低了0.112%,呈明显的下降趋势,增加了降镁工作的难度。
(二)降镁方案的局限性
针对龙首混合矿石改善镍铜指标,降低精矿中MgO的工作,各大专院校,科研院所做了大量的试验研究,对不同的矿石采用不同的技术措施都有一定的效果,但是一经生产应用,效果若显若隐。选矿过程很复杂,工业化生产又是一个连续性过程,因目前矿山尚无法实现配矿或稳定出矿,入选的矿石性质、品位波动很大,以不变(或说相对固定)的选矿设备、工艺流程处理多变化矿石,使过程控制更加复杂化,从而使一些看起来比较好的技术措施,在现场应用时就很难取得理想的效果。
五、降镁工作的研究方向
(一)工艺矿物学研究
一矿区龙首混合矿石矿物组成复杂,过去的矿物工艺学研究多侧重于考察原矿,对脉石矿物在选矿过程中各中间产品的赋存状态和工艺特性研究很少,而弄清楚含镁脉石矿物在整个浮选工艺过程中的走向及选矿过程中各中间产品中的脉石矿物的工艺特性,对降镁工艺与药剂的研究具有重要的指导意义,是降镁的关键所在。
(二)选矿新工艺研究
金种一矿区龙首混合矿石降镁工艺的研究晚于二矿区,但也取得了一定进展。但从生产实践来看,还需继续深入探索。
澳大利亚的G·D·Senior等人采用一种新的工艺流程处理镍硫化矿,可除去98%的含镁矿物,工艺要点为:预先浮选含镁矿物,然后将物料分别处理,分段抑制含镁矿物,最后活化含镍矿物,得到高品位镍精矿。金川一矿区混合矿石主要含镁矿物为蛇纹石,其良好的可浮性是造成精矿MgO含量高的重要原因,可以考虑预先浮选蛇纹石,并通过降镁药剂分段抑制其它含镁矿物来达到降镁的目的。另外,G·D·Senior等人认为,粒度不同的物料可浮性和对药剂的要求都有很大的差异,这一点也值得借鉴。
(三)浮选新药剂研究
在工艺流程确定的前提下,影响浮选过程和最终指标最为关键的因素就是浮选药剂的合理选择与使用。由于浮选过程中药剂之间存在着的交互作用,很难真正搞清楚选矿药剂的作用机理,现有的很多理论都是以假设和推测的形式出现,不能确定地描述药剂如何作用于矿物,怎样改变其浮选特性,这一点妨碍了浮选药剂研究的针对性。因此,深入研究各种药剂的作用机理,是降镁研究的重要组成部分。
(四)应注意整体指标的优化
各大专院样、科研院所以往对于金川矿石降低精矿中MgO的研究中,虽然部分地注意了对其它指标的影响,并且采取了一定的技术措施,但这种注意还是不够的。很多降镁方案都要通过不同程度地提高精矿品位来实现,而精矿品位的提高势必造成回收率的损失。若是为了降镁则大幅度提高精矿品位,导致过多地损失回收率,在经济上是不合理的,金川资源有限,在考虑降镁满足闪速炉要求的同时,不能过多损失镍、铜回收率,要特别注意整体指标的优化,这应在今后的降镁工艺研究中引足够重视。
六、结语
金川一矿区龙首混合矿石降镁工艺,经各大专院校、科研院所的大量研究,已取得了一定的进展,有些已应用于工业生产中,目前一选矿的降镁工艺就是在充分吸收各家研究成果的基础上形成的,生产实践也证明在矿石性质、品位相对稳定时,还要靠提高精矿品位来达到降鲜的目的;在矿石性质恶化时,精矿中MgO含量还不能满足要求等,因此,针对一矿区龙首混合矿石降低精矿中MgO含量的工作,还要进一步地探索研究。
氧化镁在电加热管方面的应用
2019-01-04 17:20:20
镁粉主要可用于火箭冲压发动机和去除推进剂燃气中氯化氢。另外还可用作还原剂、制闪光粉、铅合金,冶金中作去硫剂、有机合成、照明剂等。镁粉与铝粉一样,受潮会产生自燃、自爆。当每公升空气中含镁粉10-25毫克,遇到火源就会爆炸。因此工厂在储放镁粉时要格外的注意,一旦生产自然爆炸后果将不堪设想。镁粉做为炼钢不可缺少的材料之一,其需求也多来自于炼钢,因此钢市的好换对镁粉价格有一定的制约作用。
镁粉分为碳酸镁、雾化球形镁粉等。而氧化镁粉作为制作电加热管的主要材料之一,对其电加热管性能好坏的影响非常大。电工级氧化镁粉是指电熔结晶氧化镁块经破碎并对不同颗粒尺寸或数目按一定比例配合,直接或改性后用于管状电热元件中作为在高温下导热的绝缘介质。
电工级氧化镁粉可分为普通型、低温防潮型、中温防潮型以及高温型。氧化镁粉在工作温度的时候,其要具有较高的导热性能,以便能迅速把热量传递到管表面上去,使电阻与管壁温度更接近。当工作温度在1100摄氏度以内时,其具有较好的绝缘性能。其必要要具有一定的颗粒度,形状一般要求为圆状。并且要求其无论在常温还是高温状态下对发热丝材料和管材都应无腐蚀现象。
因氧化镁矿石经粉碎后,颗粒的大小不同,若按一定数量的配比具有以下优点,一是能提高粉密度,减少电阻丝的温度,从而提高电热元件的寿命。二是能克服“分筛”效应,提高mgo粉的利用率。
从低品级菱镁矿中提取高纯氧化镁的研究
2019-01-24 09:36:25
Abstrac:The carbonization soakingof low2grade granularmagnesite is studied. Themineralproperty and light baking performance ofmagnesite, the digestingprocessofMgO aswell as the technologicalparametersof carbonization soaking are investigated. With the carbonization soaking of magnesite, high2grade MgO has been obtained, which contains 99% ofMgO。
我国镁矿资源非常丰富 ,采用碳化法生产轻质碳酸镁的工艺依据矿石性质不同而分为两种:白云石碳化法和菱镁矿碳化法。白云石碳化法生产工艺成熟,但由于碳化浸出过程存在钙含量较高的问题,所以该工艺生产高纯产品受到限制。随着冶炼技术的不断发展,冶金过程中的许多特殊作业趋向于使用高纯度镁砂来大幅度提高耐火制品的寿命,降低生产成本。同时由于高品级菱镁矿的大量出口,因此导致镁矿资源的综合利用问题日益显著。为此,笔者采用低品级菱镁矿粉矿进行碳化法提取高纯氧化镁 (wMgO大于 99%)的工艺研究。试验中,对菱镁矿的矿石性质及轻烧性能、氧化镁的消化过程和碳化浸出的工艺条件和参数进行了研究,并用所获高纯碱式碳酸镁生产出高纯镁砂。
一、矿石性质研究与工艺流程
试样的矿物组成比较简单 ,主要矿物为菱镁矿和白云石,次要矿物为滑石、绿泥石;微量矿物有石英、褐铁矿、黄铁矿、磷灰石等。MgO在矿石中主要作为独立矿物的基本组成形式存在于矿石矿物菱镁矿和脉石矿物白云石、滑石和斜绿泥石中。CaO以两种形式存在于矿物中:一种是以形成独立矿物的基本组成形式存在 ,如白云石、磷灰石 另外一种是以白云石微细包裹体形式存在于菱镁矿晶体中。SiO2亦以两种形式存在于石英、滑石、斜绿泥石、透闪石、方柱石等脉石矿物中,另一种是以石英和硅酸盐矿物细微机械包裹体形式存在于菱镁矿晶体中。
粒度筛析结果表明,wSiO2,wAl2O3在细粒级(-150目 )中略为偏高。wMgO,wCaO,wFe2O3在各粒级中变化不大,与多元素化学分析结果相近。化学分析结果见表1。本试验工艺流程见图1。二、试验结果与分析
(一)煅烧试验
天然菱镁矿在碳化过程中不能直接与二氧化碳起作用,碳酸仅对具有活性的氧化镁起反应,因此需将矿石在高温设备中轻烧,使菱镁矿逸出二氧化碳,生成具有活性的氧化镁。煅烧反应如下:
菱镁矿(WMgCO3约为90%) 轻烧料(WMgO大于90%)+CO2↑ (1)
为使氧化镁易于消化和碳化,对试样进行了差热分析。差热分析结果表明,试样中MgCO3的初始热分解温度为666℃。根据失重曲线可知,700℃以上。由于轻烧氧化镁的活性与煅烧温度和时间有关,故将温度控制在700~850℃之间,并在不同保温时间内进行煅烧条件试验。图2示出了温度和时间对菱镁矿灼减的影响。结果表明,菱镁矿的灼减随温度升高和时间延长而增大。为保证轻烧料不欠烧也不过烧,并具有较高的活性,最佳煅烧温度应控制在800℃,煅烧时间为1.5h。(二)消化试验
许多厂家的生产实践表明,采用白云石生产轻质碳酸镁的工艺中,白云石煅烧后,矿石中含量约30%的CaO与水反应生成Ca (OH)2,矿石自然 裂 解,wMgO为20 %也易与水作用生成Mg(OH)2,因而无需采用细磨工艺。本试验从节约能耗的角度出发 ,将菱镁矿破碎至较小粒级后进行煅烧、消化试验,以探索消化工艺的最佳工艺条件。消化过程的化学反应式如下:
MgO+H2O→Mg(OH)2 (2)
轻烧料中的氧化镁在水溶液中转化为氢氧化镁的过程与反应浓度、温度、时间等因素有关,同时与粒度有关。本试验的消化试样为小于2mm粒级的轻烧粉料。
1、消化浓度
将试样放入80℃水中,搅拌4min后过滤,分析不同浓度对消化率的影响。由试验结果得知,消化过程浓度大,转化率低,当浓度低于20%时 ,消化率的变化不大 ,故取消化浓度为 20%进行下面的试验。
2、消化时间
由于浓度试验消化率较低 ,故消化时间试验时增强了搅拌 在消化温度为 ℃、浓度为,80 20%的条件下进行了试验。时间变化对消化率的影响见图3。图3中曲线表明,消化反应时间的增加,对消化率的影响比较明显。消化时间超过12min,消化率已达98%以上。3、消化温度
在试验浓度和时间相对稳定的条件下,温度对消化结果的影响见图4。由图4看出,氧化镁转化成氢氧化镁的过程受化学反应控制,提高反应温度,可加快反应速度,消化温度的提高,对消化过程的影响极为明显。适宜的消化温度应控制在80℃以上。(三)碳化浸出试验
将氢氧化镁转化成碳酸氢镁,是以适量的二氧化碳为浸出剂,在特定的浓度、温度条件下进行反应,不同的时间和压力对浸出结果影响较大。其化学反应式如下
Mg(OH)2+CO2+H2O→Mg(HCO3 )2+H2O (3)
借鉴前期做过的工作,在常温常压条件下对消化后的试样进行了碳化浸出试验,进塔液nMgO为18.62g /L, cCO2为33%,在浸出过程中定时抽取泥浆过滤,分析碳酸氢镁溶液中WMgO,试验结果见图5。图5中下部曲线表明,试样粒径较大,碳化时间较长。超过90min后氧化镁的转化率增加不明显,浆液中nMgO为7.8g/L。为此,在上述浸出工艺条件相对稳定的条件下,降低进塔液中氧化镁的浓度进行了试验。由图5中上部曲线可知,随着进塔液中的氧化镁浓度的降低,转化率升幅较大,碳化反应至90 min时,MgO的转化率达84.01%,回收率为80.97%。(四)热水解试验
碳化浸出过程实现了目的组分由固相到液相的转移。经固液分离、滤去残渣,将滤液 (重镁水 )加热,使碳酸氢镁转型生成碱式碳酸镁。化学反应式如下:
5Mg(HCO3 )2→4Mg(OH)2·Mg(OH2 )·4 H2O+6 CO2 ↑ (4)
根据上式,在滤液加温至沸腾温度时进行了热水解时间对母液 (废镁水 ) 中氧化镁含量影响的试验。试验结果表明,随时间的延长,母液中氧化镁浓度随之降低。超过5 min后,母液中nMgO均为0.18 g/L,故热水解过程控制为滤液加热至沸腾温度后继续保温 5 min。过滤烘干后的碱式碳酸镁产品多元素化学分析及氧化镁回收率如表2所示。三、结论
(一)采用碳化法浸出工艺处理低品级菱镁矿粉矿,可获得灼减为零时wMgO为99.31%的高纯轻质碳酸镁。氧化镁回收率为80.97%。经烧结工艺处理 ,可获得氧化镁含量为 99.21%,体积密度为3.38g/cm的高纯烧结镁砂。
(二)常压二氧化碳浸出工艺生成的轻质碳酸镁中氧化钙含量较前期加压试验最终产品的CaO品位略有升高。
(三)由于菱镁矿碳化浸出过程中未采用磨矿工艺 ,试样粒径较大 ,故氧化镁的转化率和回收率不近人意。当粒度变小后进行研究,浸出液中氧化镁的转化率指标非常理想。
氢氧化镁产品分类及应用现状
2019-03-08 11:19:22
氢氧化镁产品从应用上分为阻燃级、中和级、医用、电子级、油品增加剂用氢氧化镁等;从结构上分为片状、超细、晶须、纳米级、重质氢氧化镁等。其间发展潜力较好的是超细氢氧化镁和氢氧化镁晶须。
片状氢氧化镁可作为增加型阻燃剂,碳化法即以菱镁矿或白云石为质料,经煅烧、消化、除杂、碳化、沉积制得产品。以白云石为质料,为沉积剂并参加表面改性剂十六烷基三甲基化铵,水热制得菱面片层氢氧化镁,该法镁、钙别离程度较高,镁的提取率为90.02%,产品收率为88.21%;沉积法以菱镁矿或白云石为质料,经煅烧、浸取、除杂、沉积制得产品。以白云石为质料,先后用和硫酸浸取,参加克己络合沉积剂和表面改性剂聚乙二醇可制得产品,收率为85.20%。酸解法以多种含镁矿藏为质料,经过酸解、除杂、沉积制得产品。以白云石为质料,经酸化、除杂,以白云石灰乳为沉积剂,产品纯度为98%,其间,白云石灰乳经过白云石煅烧消化制备。
超细氢氧化镁可作为复合材料的阻燃成分,参加不同的表面改性剂能够改动产品粒径。以氯化镁溶液为质料,为沉积剂,产品粒径
卤水替代。
氢氧化镁晶须是短纤维功能型材料,首要作为阻燃剂和补强材料增加到高分子材料中。沉积法,改善沉积进程能够改动长径比。以氯化镁溶液为质料,参加碱和表面改性剂,水热组成产品。以为沉积剂,丙三醇为表面改性剂,选用微波水热,直径为0.1~0.3μm,长度为80~110μm;改用和为沉积剂,酸为表面改性剂,直径为8~15nm,长度为50~150nm;中低浓度的和低浓度的氯化镁溶液,产品的分散性较好;以碱式硫酸镁晶须为前驱体,为沉积剂,油酸钾为表面改性剂,水热制得直径为1~2μm,长度为100~200μm的产品;参加表面改性剂不能减小粒径,反而会阻挠碱式硫酸镁晶须向氢氧化镁晶须转化。
熔盐法制备氧化镁粉体及其反应机理
2019-02-21 11:21:37
跟着高技术陶瓷、橡胶、塑料、催化剂、环保材料、航天材料的不断发展,氧化镁晶体材料、特别是高纯氧材料(MgO含量不低于98%)的使用越来越广。例如用于医治胃酸过多及十二指肠溃疡患者,用作硅钢制作进程中的高温退火阻隔剂,用于制作电子管、滤光器、滤色器、滤波器等。此外作为灵敏型高效催化剂及功用体良的掺杂材料,高纯氧化镁有很多使用于工业催化及材料改性和高功用复合材料的制备。已报导的高纯氧化镁制备办法较多,例如菱镁矿(白云石)碳化法、卤水(海水)-石灰()法、卤水(海水)-碳按法及镁盐直接热解法等。
熔盐法选用一种或几种低熔点的盐类作为反响介质,在高温熔融盐中完结组成反响,然后选用适宜的溶剂将盐类溶解,经过滤、洗刷得到组成产品,它在高熔点氧化物粉体和电子陶瓷粉体及其它功用粉体材料组成等范畴广泛使用。熔盐法具有工艺简略、组成温度低、保温时刻短、本钱低价、组成粉体的化学成分安稳均匀等长处。
对熔盐法制备MgO粉体的不同熔盐系统进行了比照,发现NaCl-KCl盐类熔点适中,功用相对安稳,洗刷进程中NaCl、KCl溶解于水,滤液经枯燥后得到NaC1、KC1等盐类可回收使用,是一种优秀的反响介质。当选用NaN03-KN03盐类作反响介质时,与镁盐直接热解法相同,反响进程中发作腐蚀性气体,不适合工业化出产。可是NaN03 -KN03盐类熔点较低,有利于分析质料系统在熔盐中的反响进程,进而对反响机理进行评论,因而本文以MgCl2、 CaCO3和NaN03、KN03为质料制备Mg0粉体。
一、试验
(一)质料
试验所用无水氯化镁、碳酸钙、、、无水乙醇等均为分析纯。
(二)氧化镁粉体的制备
将MgCl2、CaCO3及NaN03、KN03按1.1︰1︰2︰2配比置于碾钵中碾磨,使质料混合均匀并磨细至-0.074mm粒级,550℃下保温3h热处理,经水浸泡、洗刷、减压过滤、110℃枯燥,再在600℃下保温3h热处理。
(三)反响机理分析
作CaCO3和MgCl2-CaCO3-NaN03-KN03的TG-DSC曲线,分析质料热反响进程;依据TG-DSC曲线,将质料在不同温度和保温时刻下热处理,断定产品组成,分析熔盐法制备氧化镁的反响机理。
(四)表征
用德国NETZSCH公司STA449/6/G型热重-差示扫描归纳热分析仪对试样进行热效应分析。
用荷兰Philips公司出产的X′Pert Pro型X射线衍射仪对产品进行物相判定。
用荷兰Philips公司出产的Nova400NanoSEM型场发射扫描电子显微镜调查粉体描摹及巨细。
二、成果及评论
(一)试样的组成与描摹分析 图1为S11试样和S12试样的XRD图谱,其间S11试样为质料在550℃下保温3h热处理,用水洗刷后经110℃枯燥的前驱物,S12试样为S11试样在600℃温3h热处理的产品。
从图1可见,质料在550℃下保温3h热处理,用水洗刷后的前驱物主要为氢氧化镁,其间尚有少数氧化镁没有水解,经600℃保温3h热处理,氢氧化镁分化为氧化镁。图2 试样TEM
(a)S11;(b)S12
图2为S11试样和S12试样的SEM图。从图2可见,氢氧化镁前驱物主要为层状描摹,形状不规整,巨细散布不均匀,厚度介于0.03~0.05μm,直径介于0.2~1.0μm之间;氢氧化镁分化后得到的氧化镁为颗粒状描摹,巨细散布较均匀,粒径介于0.2~0.5μm之间。
表1为S12试样的化学成分分析成果。从表1可知,所制备的氧化镁粉体纯度高,可满意医药、冶金、工业催化、量子器材、微电子等职业要求。
表1 S12试样化学成分分析成果(质量分数)/%Mg0CaC03A1203Si02Fe203IL98.820.520.100.090.060.41
(二)反响机理分析
图3为CaCO3和MgC12-CaC03-NaN03-KN03质料的TG-DSC曲线。
由图3(a)可见,从700℃至800℃失重37.08%,CaC03分化为CaO和CO2,对应的DSC曲线在769.2℃有一个吸热峰。 由图3(b)可见,从室温至400℃失重18.90%,该温度范围内质料失掉悉数物理水及结构水,NaN03-KNO3熔融,对应的DSC曲线上有3个吸热峰;从400℃至530℃失重8.10%,对应的DSC曲线上在490.5℃有一个吸热峰,该温度范围内可能发作了分化反响;从530℃至700℃失重23.20%,对应的DSC曲线上在660.4℃有一个吸热峰,该温度范围内可能发作了分化反响;温度大于700℃后,失重持续加大,主要是熔盐在高温下加速蒸腾。对照图3(a),没有呈现CaCO3分化的吸热峰,阐明在700℃曾经CaCO3已彻底反响。
图4为试样的XRD图谱。其间M11试样为质料在320℃下保温48h热处理,水洗后经110℃枯燥的产品;Ml2试样为质料在320℃下保温360h热处理,水洗后经110℃枯燥的产品;M14试样为质料在900℃下保温3h热处理,用无水乙醇洗刷后产品的XRD图谱。由图4可见,质料在320℃下保温48h热处理,水洗后经110℃枯燥的产品主要为碳酸镁和白云石及少数的氢氧化镁;质料在320℃下保温360h热处理,水洗后经110℃枯燥的产品主要为碳酸镁;质料在900℃下保温3h热处理,用无水乙醇洗刷后产品悉数为氧化镁。 结合S11试样和S12试样的XRD图谱,以MgC12、CaCO3和NaNO3、KNO3为质料,选用熔盐法制备Mg0粉体的反响机理如下:
1、 熔盐环境下Mg2+与Ca2+发作置换反响,其产品组成与反响温度和反响时刻有关。
MgCl2←→Mg2++2Cl-
xMg2++CaCO3→MgxCa1-xCO3
当x<0.5时.产品为碳酸钙的置换型固溶体,当x=0.5时,产品为CaMg(C03)2,当0.5<x<1时,产品为CaMg(C03)2和MgC03混合物,跟着反响的不断进行,当x=1时,产品为MgC03。
2、碳酸镁分化。
MgC03→Mg0+C02↑
3、水洗进程中氧化镁水解。
Mg0+H20→Mg(OH)2
4、氢氢氧化镁分化。
三、结语
(一)MgCl2-CaC03-NaN03-KN03质料制备氧化镁进程中,在熔盐环境下Mg2+与Ca2+发作置换反响,生成白云石和碳酸镁等中间产品,跟着反响的不断进行,白云石终究转变为碳酸镁;550℃热处理碳酸镁分化为氧化镁,经水浸泡后氧化镁水解生成氢氧化镁,600℃热处理氢氧化镁分化为氧化镁。
(二)氢氧化镁前驱物为不规整的层状描摹,巨细散布不均匀,厚度介于0.03~0.05μm,直径介于0.2~1.0μm之间;产品氧化镁为颗粒状描摹,巨细散布较均匀,粒径介于0.2~0.5μm之间。
烧结矿不同碱度、氧化镁及二氧化硅含量水平试验研究
2019-01-24 09:38:21
Abstract:Based on the present material condition of N0.3 sintering plant of Magang, the effects of different basicitys and SiO2 and MgO contents in sinter on production and quality of sinter are studied. The results show that, with increas ing the sinter basicitys and SiO2 contents, the sinter strength is improved, but after increasing the MgO contents in sinter, all sinter technicaleconomic indexes are worsened. Therefore, the sinter basicity should be 2.0, SiO2 content should be 4.95%, MgO content should be reduced to the best of its ability in practical production.
烧结矿的碱度、MgO及SiO2含量水平直接影响着烧结矿品位、强度、产量及其冶金性能。为了了解其变化对烧结生产技术指标的影响,马鞍山钢铁股份有限公司(简称马钢)在烧结实验室进行了烧结矿不同MgO、SiO2含量及不同碱度水平的试验。
一、原料成分及烧结工艺制度
试验用含铁料均取自港务原料厂和马钢第三烧结厂生产现场,其化学成分列于表1。此次烧结试验在Φ300mm烧结杯上进行,料层高度为580mm,点火负压6kPa,点火时间1.5min,烧结抽风负压为12kPa。烧结饼经机上冷却后,进行落下和ISO转鼓试验,然后取样做化学分析和冶金性能检验。每组试验在相同的条件下反复进行多次,取在允许误差范围内的两次试验平均值为试验结果,以确保试验结果的重现性。
表1 含铁原料化学成分分析 %粉矿名称TFeFeOSiO2CaOAl2O3MgOTiO2SP烧损姑精57.410.5012.090.8231.150.2990.2250.0120.2502.25CVRD粉65.280.233.740.3550.780.0890.0540.0120.0190.72杨基粉58.710.314.350.1021.350.1040.0490.0030.05010.47天普乐粉62.361.763.840.0291.940.0670.1150.0030.0494.47恰那粉63.010.313.970.1302.120.0850.1040.0120.0653.19FTC粉66.010.313.100.0780.890.0430.1180.0090.0291.22MBR粉67.000.421.460.1201.200.0600.190.0100.0501.30
二、试验方案
本次试验共进行7组。所用的烧结含铁料配比设计基本与马钢第三烧结厂现行生产混匀矿配比相一致,主要是通过对含SiO2较高的姑精配比以及石灰石、白云石的添加量作调整,使得烧结矿的碱度、MgO及SiO2含量满足各个试验水平的要求。设计各组试验因素的水平见表2。各组混合料配比及编组见表3。混合料中含铁料配比为100%,燃料和熔剂百分数是外配的。
表2 各组试验因素的水平 %组号SiO2RMgO备 注14.951.852.10基准组24.951.652.10低碱度34.952.052.10高碱度44.951.852.40高MgO含量54.951.851.80低MgO含量64.801.852.10低SiO2含量75.151.852.10高SiO2含量
表3 混合料的配比及编组 %组号姑精CVRD粉杨基粉天普乐粉恰那粉FTC粉白云石石灰石113.63012111716.410.097.10213.23012111716.810.064.87314.03012111716.010.139.38413.73012111716.311.806.20513.53012111716.58.407.99611.73012111718.310.116.50716.23012111713.810.077.92
三、试验结果及分析
烧结矿化学成分列于表4,冶金性能试验结果见表5。
表4 烧结矿化学成分 %组号TFeFeOSiO2CaOMgOAl2O3TiO2SPC/S157.738.445.029.232.101.460.1060.0110.0651.84257.977.965.098.532.111.540.1030.0100.0631.67357.137.465.049.982.071.580.1200.0140.0681.98457.588.735.009.412.301.560.1040.0120.0691.88557.689.254.949.271.891.410.1070.0090.0651.88658.158.564.819.052.101.550.1020.0090.0651.88757.627.755.159.352.031.500.1170.0130.0711.82
表5 还原性、还原粉化及熔滴性能试验结果组号还原粉化试验结果/%不同还原时间的还原度(RI)/%开始软化温度Ts/℃开始熔化温度Tm/℃开始滴下温度TD/℃最高压差△Pmax/kPa透气性指标S/kPa.℃滴下量MD/gRDI+6.3RDI+3.15RDI-0.530min60min90min120min150min180min125.3658.767.5330.3646.2458.1566.4671.2075.141108133514954.60941841.5223.5654.928.3728.3944.9055.5260.9668.4771.981128132414402.15715780.3326.2459.637.5529.9645.1357.9367.9275.7181.091115134515203.5303421.5428.0961.796.6828.8843.3254.1463.7569.7574.131130133015052.15732085.0532.7862.717.4525.7741.2854.0064.3273.0579.391082132414654.70733979.1626.4159.557.4024.7939.5151.4461.7870.5278.061108131014807.74777843.1724.8057.428.1327.9644.3757.9868.3776.7681.931126134215103.13819741.4
(一)不同烧结矿碱度的影响
由第2组、第1组和第3组构成不同烧结矿碱度水平试验。从试验结果可以看出,当烧结矿SiO2含量一定时,随碱度的提高,烧结生产率及烧结矿强度指标均呈上升趋势。当碱度由1.65升至2.05时,垂直烧结速度稍微加快(由18.78mm/min升到19.51mm/min)、再加上烧结矿成品率的增加(由76.42%升到78.17%),使烧结生产率提高,由1.231t/m2.h增加到1.253t/m2.h,而且也改善了烧结矿的强度指标,转鼓指数也从65.39%提高到67.88%。这主要是因为碱度提高后,烧结矿粘结相中铁酸钙系得以进一步发展的缘故。同时,由于烧结成品率随碱度升高而提高,吨矿烧结固体燃耗由68.24kg下降到66.65kg。而烧结矿品位相应由57.97%降到57.13%。
随碱度升高,RDI+6.3不断升高,RDI+3.15亦升高,RDI-0.5有所降低,但1、3组极接近;还原性改善明显,碱度提高0.1,RI180min提高近3.2%,软化温度无明显变化,熔融和滴下温度不断升高,滴下量逐渐减少。
(二)同烧结矿SiO2含量的影响
由第6组、第1组和第7组构成烧结矿不同SiO2含量试验。在烧结矿碱度一定条件下,随着SiO2含量增加,烧结矿粘结相增加,强度指标变好。当烧结矿SiO2含量从4.80%提高到5.15%时,转鼓指数由64.80%升高到67.70%,提高幅度约2.9个百分点,烧结成品率亦提高1个百分点。而烧结生产率则呈下降趋势,从1.300t/m2.h降到1.247t/。造成生产率下降的原因是:当烧结矿粘结相增多时,烧结过程透气性变差,烧结速度会下降。此外,本次试验是通过调整含SiO2较高的姑精矿配量来满足烧结矿SiO2含量不同水平要求。提高烧结矿SiO2含量就需要配加更多的姑精矿,精粉率增大也直接影响了烧结矿生产率的提高。
随SiO2含量的升高,烧结矿品位由58.15%下降到57.62%。这是因为在原料中增加了高硅的自产姑精矿用量、并减少了进口高品位巴西FTC矿,同时石灰石的配比也有所提高。
6、1、7三组含SiO2由低到高,对应的还原粉化及还原性指标基本相近,而软化、熔融、滴下温度亦不断升高,TD-Ts、TD-Tm区间差异不大,最高压差和透气性S值不断降低,滴下量无明显差异。
(三)不同烧结矿MgO含量的影响
由第5组、第1组和第4组构成烧结矿不同MgO含量试验。从试验结果可知,随MgO含量的增加,烧结矿产量、转鼓强度均有所下降,固体燃耗上升。当烧结矿MgO含量从1.8%增加到2.4%时,生产率由1.281t/m2.h降至1.240t/m2.h,烧结矿转鼓强度由67.07%降到65.67%;而吨矿固体燃耗由68.04kg上升到69.20kg。造成烧结经济技术指标变差有以下原因:
1、白云石在烧结过程中的分解是吸热反应,因此对分解后的MgO矿化形成新的化合物不利,显微分析发现有不少未发生反应的圆粒状MgO被方镁石周围生成的铁酸镁(MgO·Fe2O3)液相所胶结。
2、本次烧结试验及现场生产均配用粗颗粒白云石(-4mm含量只有90%),导致烧结矿产生大量白云石“白点”。
3、白云石与硅酸盐矿物常混在一起,生成镁橄榄石和钙铁橄榄石,结晶细小,一般以玻璃质的物相存在,而玻璃相中发现有细微裂纹,随着白云石的添加,烧结矿玻璃相大量增加。
4、白云石中Mg++容易渗入Fe3O4晶格,稳定了Fe3O4矿相,造成Fe3O4难以向Fe2O3转变形成铁酸钙,MgO添加量愈多,将有更多Mg++渗入到Fe3O4晶格中,限制了铁酸钙系的发展。
由表5可见,随MgO含量上升,还原粉化指标略变差,还原度有所下降,软化、熔融、滴下温度逐渐上升。
四、结 语
(一)在烧结矿SiO2含量一定条件下,随着烧结矿碱度提高,烧结生产率及烧结矿强度指标均能得到提高,还原粉化指标得到改善。因此,在现有高炉用料碱度得到平衡的条件下,马钢第三烧结厂应按2.0的碱度组织生产以满足炼铁厂对烧结矿产、质量的要求。
(二)提高烧结矿SiO2含量亦能提高烧结矿强度,烧结矿软熔温度均有所上升,其它冶金性能无明显变化,但同时烧结矿品位及生产率皆呈下降趋势。因此,在目前条件下烧结矿SiO2含量应稳定在4.95%,以保证烧结矿的强度。
(三)当MgO含量增加时,烧结各项技术经济指标均变差,烧结矿还原性及还原粉化指标略变差。可见,在确保高炉炉渣流动性的前提下,应尽可能降低烧结矿中MgO含量。
一种生产环保型氢氧化镁的新工艺
2019-02-22 09:16:34
跟着社会经济的开展,燃煤开释的二氧化硫、二氧化碳,燃油开释的硫化合物,氮化合物及采矿、冶金、印染、化工、制药等职业排放的工业废液对人类赖以生存的环境的污染日益严峻,怎么有用地处理这些污染要素,以削减它们给人类带来的巨大丢失,已成为需求火急处理的全球性重要问题之一。
依据对环境保护的需求,处理这些污染必定要用到具有以下特色的化工产品:无毒、温文、不腐蚀处理设备,廉价易得、处理本钱低,效率高,能力强、易操作,且易收回或综合利用、不构成二次污染。
料浆状氢氧化镁正是契合上述一切特色的最佳质料之一,它是一种首要运用于环保范畴的液相无机碱类产品,具有活性大、比表面积大、吸附能力强、缓冲和中和能力强、非沉积性、流动性好、运用和调理便利、温文、安全、无毒、无害、腐蚀性小、易操作、副产品易收回或综合利用等特色,被称为环境友好型“绿色安全中和剂”,运用于酸性废水中和、废液中重金属离子(Ni2+、Mn2+、Cd2+、Cu2+、Cr3+、Cr6+等)脱除、烟气脱硫、印染废液处理等环保范畴,具有其他碱性物质(氧化钙、氢氧化钙、、碳酸钠等)无与伦比的优越性,以往运用于酸性工业废水、含硫烟气处理范畴中的一些强碱物质,如:石灰、烧碱、纯碱等的运用逐渐遭到限制,而被兴起的弱碱氢氧化镁所代替。
因料浆状氢氧化镁运用于环保范畴的许多优势,20世纪90年代末,国外料浆状氢氧化镁料的出产和运用得到迅速开展;我国虽然具有丰厚的镁资源,可是氢氧化镁的出产和运用并未引起人们的满意注重,首要处于研讨开发阶段。近年来,国内虽然建设了一些中试或出产设备,但规划小、品种少、产品质量低、技能水平低,亟待进步职业全体水平。
一、现有料浆状氢氧化镁的首要出产办法
依据氢氧化镁用处和形状的不同,可分为粉末状、滤饼状、料浆状三种。用于环保范畴的料浆状氢氧化镁的纯度要求不是很高,一般在30%左右即可,首要是要求不含重金属等污染严峻的杂质,其出产办法相对简略,首要包含粗氧化镁(镁砂、粗制工业氧化镁等)水化法、海水或卤水-碱性物质(、石灰、氢氧化钙、等)沉积法等。
氧化镁水化法是一种非常陈旧的出产工艺,首要是将菱镁矿轻烧得到的轻烧氧化镁粉放入盛有热水的反响池中,边加边拌和,加料结束后保温沉化2h左右,然后进行固液别离、脱水,得到滤饼状及料浆状氢氧化镁。此工艺根本不具有除杂功用,产品质量受质料氧化镁的纯度和活性影响,氧化镁中的杂质除微量可溶性的盐类外,根本被带入产品中,因此,只能出产低层次的氢氧化镁。
海水或卤水-碱性物质(、石灰、氢氧化钙、等)沉积法是将海水或卤水经过简略的净化后,参加碱性沉积剂,发生氢氧化镁沉积,经过滤、洗刷、脱水得到滤饼状及料浆状氢氧化镁。虽然原理简略,但的挥发性强,易污染环境,操作难度大;石灰和氢氧化钙易生成硫酸钙,随氢氧化镁一同分出,构成产品杂质含量高,质量差;是强碱,易使生成的氢氧化镁构成胶体沉积,给产品功能操控带来困难,一起易带入较多的Na+和Cl-及其他杂质,也构成产品杂质含量高,纯度难以保证。
二、海水、卤水-轻烧白云石沉积法
氢氧化镁运用于环保范畴具有其它碱性物质无与伦比的优越性,在国外已被大量出产和广泛的运用,而我国氢氧化镁的出产办法较落后,本钱较高,杂质含量较多,质量较差,在环保范畴的运用更是屈指可数。鉴于此,咱们首要针对出产环保型氢氧化镁,研制了海水、卤水-轻烧白云石沉积法。
该办法归于沉积法的一种,以海水、卤水和轻烧白云石为质料,选用操控结晶一步组成工艺制取氢氧化镁,它克服了以往出产办法的不利要素,产品纯度高、杂质含量少、质量安稳。
(一)根本原理
将轻烧白云石水合生成含氢氧化钙和氢氧化镁的轻烧白云石乳,轻烧白云石乳中的氢氧化钙和质料海水、卤水中的镁离子在接连组成及别离一体化反响器中反响生成氢氧化镁。本工艺选用自主研制的接连组成及别离一体化反响器,在反响器中始终保持一定量的晶种,简化了传统的晶种回头增加工艺,并在反响器中将生成的氢氧化镁和杂质进行了有用地别离,氢氧化镁完结液经沉降、洗刷、别离、脱水得到滤饼状氢氧化镁,把滤饼加水谐和,并按份额增加分散剂,以防止氢氧化镁的聚会结核,然后制得不同浓度且功能安稳的料浆状氢氧化镁,反响方程式:(二)工艺流程(见图1)图1 海水、卤水-轻烧白云石沉积法工艺流程图
首要,用一种不同于韩利华说到的新处理技能,将质料水中影响产品质量的杂质除掉,得到净化质料水,将轻烧白云石加适量净化质料水水合消化后,加水制得契合组成要求的轻烧白云石乳。
然后,将制好的净化质料水和轻烧白云石乳按份额打入带拌和的接连组成及别离一体化反响器中,操控好反响时间和反响结尾,使二者充沛触摸、完全反响。因为氢氧化镁和不溶性较大粒径杂质沉降速度的不同,不溶性较大粒径杂质首要沉积到反响器底部,并由反响器底部排出。富含氢氧化镁的完结液从反响器中上部进入一级沉降器进行固液别离,固相经净化水洗刷除掉大部分可溶性杂质后进入二级沉积器进行二次固液别离,固相经脱水得到滤饼状产品,滤饼加水谐和,并按份额增加分散剂,以防止氢氧化镁的聚会结核,然后制得不同浓度且功能安稳的料浆状氢氧化镁。
(三)产品质量
氢氧化镁的技能方针多种多样,但用于环保范畴的料浆状和滤饼状氢氧化镁在我国没有见专门的质量标准,为适运用户需求,国外有关供应商对料浆状和滤饼状氢氧化镁产品均拟定了厂商标准,见表1。
表1 国外料浆状、滤饼状氢氧化镁厂商标准本工艺出产的氢氧化镁的首要方针:Mg(OH)230%~35%,CaO 0.5%~0.6%,Cl-≤0.1%,虽杂质氧化钙的含量稍高于日、美产品的质量方针,但已远低于瑞士的质量方针。且该质量的氢氧化镁已足以满意废水处理、烟气脱硫等环保范畴的质量要求咱们将在此基础上进一步改善工艺,进步产品质量,以满意更多职业更高运用要求的需求。
(四)工艺特色
该工艺的首要质料为海水、卤水和轻烧白云石,其来历广泛、报价低廉。
该工艺反响在常温下进行,整个进程不需求加压、加热,出产节能、本钱低。
该工艺进程无有毒、有害及有腐蚀性的物料投入和产出,对出产设备无特殊要求,首要设备为压滤机、普通工业泵和反响器、沉降器等碳钢槽罐,设备出资少,操作简略。
该工艺中,经过对质料水的预处理,有用地下降了产品中杂质含量,产品质量显着优于国内同类工艺产品,达到了沉积法出产高质量氢氧化镁的要求。
该工艺中,接连组成及别离一体化反响器的研制和运用,有用地操控了产品结晶,反响器中保留足量的晶种,防止了晶种的回头增加,完成了接连组成,并完成了方针产品和杂质的有用别离,产品质量较传统办法出产的产品杂质含量少、质量高。
三、结束语
污染正给人类构成巨大的损害,给经济构成巨大的丢失。就我国排放的二氧化硫一项,其构成的酸雨给我国经济构成的丢失每年大约在1100亿元在上,环境管理,已刻不容缓。
我国在酸性废水中和、重金属离子脱除和烟气脱硫等环保方面运用的处理工艺比较落后,操作杂乱,质料耗费高,运转本钱高,并且处理的不完全,副产品又构成二次污染。
跟着我国可持续开展战略的施行、世贸组织的参加、环保认识的增强和环保法律法规的逐渐健全、完善,运用于环保范畴的新技能、新工艺也被日益注重,对其研讨开发的力度正在加大,高效、无毒、优质的新产品或代替产品越来越遭到人们的注重。
我国海水、卤水资源、白云石、菱镁矿、水镁石等含镁资源适当丰厚,应充沛利用现有资源优势,经过改善现有落后工艺,研讨开发新工艺,大力开展多品种的氢氧化镁产品,并进步产品的质量和附加值、下降出产本钱,以满意环保及其他职业日益开展对氢氧化镁质量要求不断进步和用量不断增加的需求,促进经济健康快速地开展。
圆钢符号
2019-03-18 10:05:23
钢材理论重量计算的计量单位为公斤( kg )。其基本公式为: W (重量, kg ) = F (断面积 mm2 )× L (长度, m )×ρ(密度, g/cm3 )× 1/1000 钢的密度为: 7.85g/cm3 园的面积=r*r*3.14=D/2*d/2*3.14=D*D*1/4*3.14 圆钢W (重量, kg ) = F (D*D*1/4*3.14 )× L (长度, m )×ρ(密度, g/cm3 )× 1/1000 = D*D*(1/4*3.14*1*7.85*1/1000)钢的密度为: 7.85g/cm3 长度为:1m 其中(1/4*3.14*1*7.85*1/1000)=0.006165 所以圆钢的计算公式W=0.006165*D*D 符号的意义 D=直径mm钢的密度为: 7.85g/cm3 圆钢符号钢材理论重量计算 钢材理论重量计算的计量单位为公斤( kg )。其基本公式为: W(重量,kg )=F(断面积 mm2)×L(长度,m)×ρ(密度,g/cm3)×1/1000 各种钢材理论重量计算公式如下: 名称(单位) 计算公式 符号意义 计算举例 圆钢 盘条(kg/m) W= 0.006165 ×d×d d = 直径mm 直径100 mm 的圆钢,求每m 重量。每m 重量= 0.006165 ×1002=61.65kg 螺纹钢(kg/m) W= 0.00617 ×d×d d= 断面直径mm 断面直径为12 mm 的螺纹钢,求每m 重量。每m 重量=0.00617 ×12 2=0.89kg 方钢(kg/m) W= 0.00785 ×a ×a a= 边宽mm 边宽20 mm 的方钢,求每m 重量。每m 重量= 0.00785 ×202=3.14kg 扁钢 (kg/m) W= 0.00785 ×b ×d b= 边宽mm d= 厚mm 边宽40 mm ,厚5mm 的扁钢,求每m 重量。每m 重量= 0.00785 ×40 ×5= 1.57kg 六角钢 (kg/m) W= 0.006798 ×s×s s= 对边距离mm 对边距离50 mm 的六角钢,求每m 重量。每m 重量= 0.006798 ×502=17kg 八角钢 (kg/m) W= 0.0065 ×s ×s s= 对边距离mm 对边距离80 mm 的八角钢,求每m 重量。每m 重量= 0.0065 ×802=41.62kg 等边角钢 (kg/m) = 0.00785 ×[d (2b – d )+0.215 (R2 – 2r 2 )] b= 边宽 d= 边厚 R= 内弧半径 r= 端弧半径 求20 mm ×4mm 等边角钢的每m 重量。从冶金产品目录中查出4mm ×20 mm 等边角钢的R 为3.5 ,r 为1.2 ,则每m 重量= 0.00785 ×[4 ×(2 ×20 – 4 )+0.215 ×(3.52 – 2 ×1.2 2 )]=1.15kg 不等边角钢 (kg/m) W= 0.00785 ×[d (B+b – d )+0.215 (R2 – 2 r 2 )] B= 长边宽 b= 短边宽 d= 边厚 R= 内弧半径 r= 端弧半径 求30 mm ×20mm ×4mm 不等边角钢的每m 重量。从冶金产品目录中查出30 ×20 ×4 不等边角钢的R 为3.5 ,r 为1.2 ,则每m 重量= 0.00785 ×[4 ×(30+20 – 4 )+0.215 ×(3.52 – 2 ×1.2 2 )]=1.46kg 槽钢 (kg/m) W=0.00785 ×[hd+2t (b – d )+0.349 (R2 – r 2 )] h= 高 b= 腿长 d= 腰厚 t= 平均腿厚 R= 内弧半径 r= 端弧半径 求80 mm ×43mm ×5mm 的槽钢的每m 重量。从冶金产品目录中查出该槽钢t 为8 ,R 为8 ,r 为4 ,则每m 重量=0.00785 ×[80 ×5+2 ×8 ×(43 – 5 )+0.349 ×(82–4 2 )]=8.04kg 工字钢(kg/m) W= 0.00785 ×[hd+2t (b – d )+0.615 (R2 – r 2 )] h= 高 b= 腿长 d= 腰厚 t= 平均腿厚 R= 内弧半径 r= 端弧半径 求250 mm ×118mm ×10mm 的工字钢每m 重量。从金属材料手册中查出该工字钢t 为13 ,R 为10 ,r 为5 ,则每m 重量= 0.00785 ×[250 ×10+2 ×13 ×(118 –10 )+0.615 ×(102 –5 2 )]=42.03kg 钢板(kg/m2) W= 7.85 ×d d= 厚 厚度 4mm 的钢板,求每m2 重量。每m2 重量=7.85 ×4=31.4kg 钢管(包括无 缝钢管及焊接 钢管(kg/m) W= 0.02466 ×S (D – S ) D= 外径 S= 壁厚 外径为60 mm 壁厚4mm 的无缝钢管,求每m 重量。每m 重量= 0.02466 ×4 ×(60 –4 )=5.52kg
阳极氧化及化学氧化的区别
2018-12-28 09:57:31
★阳极氧化的概念:铝及其合金在相应的电解液和特定的工艺条件下,由于外加电流的作用下,在铝制品(阳极)上形成一层氧化膜的过程.阳极氧化如果没有特别指明,通常是指硫酸阳极氧
1、阳极氧化的作用:
☆防护性
☆装饰性
☆绝缘性
☆提高与有机图层的结合力.
☆提高与无机覆盖层的结合力
☆开发中的其它功能
2、铝合金的化学转化膜处理(化学氧化,钝化,铬化)
★铝合金的化学转化膜通过化学氧化取得,可参考美军标MIL-C-5541。
★为什么要进行铝合金的化学转化膜处理?
☆加强铝合金的防锈能力。
☆可以起稳定接触电阴的作用。(曾经一客户产品要求导电氧化,其目的就是起稳定接触电阻及导电作用)
☆转化膜较薄(约0.5~4um),质软、导电、多孔,有良好的吸附能力,通常做为油漆或其他涂料的底层。
☆不改变材料的机械性能。
☆设备简单、操作方便、价格便宜。
☆不影响工件尺寸。
★转化膜厚度
铝合金表面的化学转化膜较薄约0.5~4um,转化膜是一种凝胶体,很难直接测量,通常只是称量工件化学氧化前后的重量,或以表面色泽和盐雾试验来判断氧化膜的耐蚀能力。
★划伤后的防腐功能
铝合金表面的化学转化膜是一种凝胶体,此胶体在转化膜划伤后可以移动,划伤痕周围的凝胶会移动至划伤表面,结合在一起,继续、阻挡铝合金被腐蚀,仍然有防腐功能。
★颜色
铝合金化学转化膜的色泽有灰色、白色、草绿色、金黄色、彩虹色,转化膜的最终色泽,由采用的转化膜药水、操作工艺条件有关。
3、阳极氧化与导电氧化的区别
1).阳极氧化是在通高压电的情况下进行的,它是一种电化学反应过程;导电氧化(又叫化学氧化)不需要通电,而只需要在药水里浸泡就行了,它是一种纯化学反应。
2).阳极氧化需要的时间很长,往往要几十分钟,而导电氧化只需要短短的几十秒。
3).阳极氧化生成的膜有几个微米到几十个微米,并且坚硬耐磨,而导电氧化生成的膜仅仅0.01—0.15微米左右。耐磨性不是很好,但是既能导电又耐大气腐蚀,这就是它的优点。
4).氧化膜本来都是不导电的,但因为导电氧化生成的膜实在是很薄,所以就是导电的了。
阳极氧化和化学氧化的区别
2018-12-19 17:40:03
★阳极氧化的概念:铝及其合金在相应的电解液和特定的工艺条件下,由于外加电流的作用下,在铝制品(阳极)上形成一层氧化膜的过程.阳极氧化如果没有特别指明,通常是指硫酸阳极氧 1、阳极氧化的作用 ☆防护性 ☆装饰性 ☆绝缘性 ☆提高与有机图层的结合力. ☆提高与无机覆盖层的结合力 ☆开发中的其它功能 2、铝合金的化学转化膜处理(化学氧化,钝化,铬化) ★铝合金的化学转化膜通过化学氧化取得,可参考美军标MIL-C-5541。 ★为什么要进行铝合金的化学转化膜处理 ☆加强铝合金的防锈能力。 ☆可以起稳定接触电阴的作用。(曾经一客户产品要求导电氧化,其目的就是起稳定接触电阻及导电作用) ☆转化膜较薄(约0.5~4um),质软、导电、多孔,有良好的吸附能力,通常做为油漆或其他涂料的底层。 ☆不改变材料的机械性能。 ☆设备简单、操作方便、价格便宜。 ☆不影响工件尺寸。 ★转化膜厚度 铝合金表面的化学转化膜较薄约0.5~4um,转化膜是一种凝胶体,很难直接测量,通常只是称量工件化学氧化前后的重量,或以表面色泽和盐雾试验来判断氧化膜的耐蚀能力。 ★划伤后的防腐功能 铝合金表面的化学转化膜是一种凝胶体,此胶体在转化膜划伤后可以移动,划伤痕周围的凝胶会移动至划伤表面,结合在一起,继续、阻挡铝合金被腐蚀,仍然有防腐功能。 ★颜色 铝合金化学转化膜的色泽有灰色、白色、草绿色、金黄色、彩虹色,转化膜的最终色泽,由采用的转化膜药水、操作工艺条件有关。 3、阳极氧化与导电氧化的区别 1).阳极氧化是在通高压电的情况下进行的,它是一种电化学反应过程;导电氧化(又叫化学氧化)不需要通电,而只需要在药水里浸泡就行了,它是一种纯化学反应。 2).阳极氧化需要的时间很长,往往要几十分钟,而导电氧化只需要短短的几十秒。 3).阳极氧化生成的膜有几个微米到几十个微米,并且坚硬耐磨,而导电氧化生成的膜仅仅0.01—0.15微米左右。耐磨性不是很好,但是既能导电又耐大气腐蚀,这就是它的优点。 4).氧化膜本来都是不导电的,但因为导电氧化生成的膜实在是很薄,所以就是导电的了。
稀土元素符号
2019-03-18 08:36:58
稀土元素是元素周期表的一整个稀土族元素的总称 包括镧(La) 铈(Ce)镨(Pr) 钕(Nd) 钷(Pm) 钐(Sm)铕(Eu)钆(Gd) 铽(Tb) 镝(Dy)钬(Ho) 铒(Er)铥(Tm)镱(Yb)钇(Y) 钪(Sc) 稀土元素符号当然,因为稀土英文是rare earth metals,也可以统称为RE 由于稀土元素之间性质相近,分离困难,所以经常以混合物形式加入合金中。 比如说Mg-Al-RE(AE)系合金,加的是富Ce混合稀土,Mg-Y-RE(WE)系合金则加的是Y和其他混合稀土土镁合金种类繁多,没有固定化学式,常用的一种高强耐热稀土镁合金: 高强耐热稀土镁合金 高强耐热稀土镁合金,这种稀土镁合金包括2~10%重量比的钆(Gd)、 3~12%重量比的钇(Y),其余为镁。本发明的相结构特征类似于耐热的Mg-Th系合金,是一种高度抗粒子粗化、能提供高度强化和蠕变抗力的析出结构,在300℃应用条件下,短时(10 分钟以上)极限拉伸强度σb≥180MPa。即可以作为铸造镁合金使用,又可以作为变形镁合金加工。因此能应用于航空航天领域和汽车工业要求高温环境服役条件的结构件,满足航空航天及汽车工业的需要。 稀土镁合金并不是一种化学物质,而是由很多种化合物组成的结晶体,一般只用各成份的含量百分比来表示,如稀土金属总量6%-15%、镁2.5%-5%、钙5%-10%。其中稀土也分很多种元素,如镧,铈,镨,钕,钐,铕,钆,铽,镝,钬,铒,铥,镱,镥,钇等,所以很难用化学式来表示。
铝及铝合金化学氧化
2019-03-11 09:56:47
铝及铝合金化学氧化原理 铝及铝合金的化学氧化是在含有氧化剂的弱酸性或弱碱性溶液中进行,在弱碱性溶液中A13+与溶液中的OH-构成可溶性的Al00H,然后转化尴尬溶的r一Al203·H20附着在铝及铝合金的表面;在含有磷酸、铬酸和氟化物的弱酸性溶液中,Al与H3P04、Cr2072-反响生成Al203及AlP04、CrP04薄膜。
由化学反响生成的膜厚达必定值(0.5~4μm)时,因为膜无松孔,阻止了溶液与基体金属的触摸,使膜成长中止,为了坚持必定的孔隙,使膜持续增厚,需向溶液中参加弱酸或弱碱,所以酸和碱是化学氧化成膜的主要成分;再者,为了按捺酸和碱对膜的过度溶解腐蚀,还向溶液中参加氧化剂铬酐或铬酸盐,使膜的成长和溶解坚持必定的平衡,以到达较厚的膜层(碱性液中厚度可到达2~39m;酸性溶液中厚度可到达3~4μm)。
铝及铝合金化学氧化工艺
铝及铝合金化学氧化工艺见表7-1。
铝及铝合金化学氧化后关闭处理
化学氧化膜可在30~60g/L的重溶液中关闭处理,温度90~95℃,时刻5~10min;或铬酐5g/L,温度40~45℃,时刻l0~15s,以进步其耐蚀性。作为涂装底层时则不进行关闭。合金元素含量不高的铝合金,转化处理后能够上色,然后用清漆或蜡关闭。7.1.2铝及铝合金的电化学氧化
将铝及铝合金置于恰当的电解液中作为阳极电解处理,称为阳极氧化。铝及铝合金阳极氧化膜层厚度可达几十至几百微米,其耐蚀性、耐磨性及装饰性等比原金属或合金有显着的进步。选用不同的电解液和工艺条件,可获得不同功能的氧化膜层。表7-1铝及铝合金的化学氧化工艺
注:配方l适用于纯铝及铝锰、铝镁等合金,但不合适含铜量高于4%的铝合金,膜0.5~1μm;
配方2适用于含铜的铝合金,但不合适含镁量高于5%的铝合金;
配方3适用于大多数铝合金,也适用于硬铝合金;
配方4膜呈无色至带黄绿的灰蓝色,厚0.5~5μm,细密,硬度及耐蚀性高,需关闭处理,适于各种铝及铝合金;
配方5膜薄,呈无色至彩虹色,适用于处理后需变形的零件,也合适铝铸件,不需关闭处理;
配方6制取铬酸盐膜转化工艺,适用于转化膜后需涂装处理的铝薄板卷材。
冷拔钢筋符号
2019-03-18 08:36:58
混凝土强度标准值(N/mm2) 注:①冷拔低碳钢丝用作预应力钢筋时,应按表2.2.2-2规定的钢丝强度标准值逐盘进行检验,其强度设计值应按甲级采用,乙级冷拔低碳钢丝可按分批检验,并宜用作焊接骨架、焊接网、架立筋、箍筋和构造钢筋; ②用作预应力钢筋的甲级冷拔低碳钢丝经机械调直后,抗拉强度设计值应降低50N/ mm2。且抗压强度设计值不应大于相应的抗拉强度设计值;冷拔钢筋符号 ③当碳素钢丝、刻痕钢丝、钢绞线的强度标准值不符合表2.2.2-2的规定时,其强度设计值应进行换算; ④表中括号内的数值系根据国家标准GB5224—35生产、现尚在延期使用的钢绞线强度标准值和设计值。 3.1.4 结构构件的承载力(包括压屈失稳)计算和倾覆、滑移验算,均应采用荷载设计值;疲劳、变形、抗裂及裂缝宽度验算,均应采用相应的荷载代表值;直接承受动力荷载的结构构件,在计算承载力、疲劳、抗裂时,应考虑动力荷载的动力系数。预制构件尚应按制作、运输及安装时的荷载设计值进行施工阶段的验算。预制构件本身吊装的验算,应将构件自重乘以动力系数,动力系数可取1.5,但根据构件吊装时受力情况,可适当增减。对现浇结构,必要时应进行施工阶段的验算。3.1.5 下列结构在进行承载力计算时,其内力应按弹性体系计算,不应考虑塑性内力重分布: 一、直接承受动荷载作用的结构; 二、要求不出现裂缝的结构构件。3.2.2 一切构件的安全等级在各个阶段均不得低于三级。 注:①屋架、托架的安全等级应提高一级; ②承受恒载为主的轴心受压柱、小偏心受压柱,其安全等级应提高一级; ③预制构件在施工阶段的安全等级,可较其使用阶段的安全等级降低一级。3.3.3 结构构件设计时,应根据使用要求选用不同的裂缝控制等级,裂缝控制等级的划分应符合下列规定: 一级——严格要求不出现裂缝的构件,按荷载短期效应组合进行计算时,构件受拉边缘混凝土不应产生拉应力; 二级——一般要求不出现裂缝的构件,按荷载长期效应组合进行计算时,构件受拉边缘混凝土不应产生拉应力,而按荷载短期效应组合进行计算时,构件受拉边缘混凝土允许产生拉应力,但拉应力不应超过axyfx,此处,ax为混凝土拉应力限制系数,y为受拉区混凝土塑性影响系数,fx为混凝土抗拉强度标准值; 三级——允许出现裂缝的构件,最大裂缝宽度按荷载的短期效应组合并考虑长期效应组合的影响进行计算,其计算值不应超过允许值。3.3.4 钢筋混凝土和预应力混凝土结构构件的裂缝控制等级、混凝土拉应力限制系数ox及最大裂缝宽度允许值,根据结构构件的工作条件和钢筋种类按表3.3.4采用。 强度种类 符号 混凝土强度等级 C7.5 C10 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 轴心抗压弯曲抗压抗 拉 fckfcmkftk 55.50.75 6.77.50.9 10111.2 13.5151.5 1718.51.75 20222 23.5262.25 2729.52.45 29.532.52.6 32352.75 3437.52.85 3639.52.95 2.1.4 混凝土强度设计值应按表2.1.4采用。 混凝土强度标准值(N/mm2) 表2.1.4 强度种类 符号 混凝土强度等级 C7.5 C10 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 轴心抗压弯曲抗压抗 拉 fcfcmft 3.74.10.55 55.50.65 7.58.50.9 10111.1 12.513.51.3 1516.51.5 17.5191.65 19.521.51.8 21.523.51.9 23.5262 25.527.52.1 26.5292.2 注:计算现浇钢筋混凝土轴心受压及偏心受压构件时,如截面的长边或直径小于300mm,则表中混凝土的强度设计值应乘以系数0.8。 2.2.2 钢筋的强度标准值应具有不小于95%的保证率。 钢筋的强度标准值应按表2.2.2-1采用,钢丝、钢绞线的强度标准值应按表2.2.2-2采用。 钢筋强度标准值(N/mm2) 表2.2.2-1 种 类 fyk或fpyk或fatk或fptk 热轧钢筋 I级(Q235) 235 II级(20Mnsi、20MnNb(b)) 335 III级(20MnsiV、20MnTi、K20Mnsi) 400 IV级(40Si2MnV、45SiMnV、45Si2MnTi) 540 冷拉钢筋 I级(d≤12) 280 II级 d≤25d=28~40 450430 III级 500 IV级 700 冷轧带肋钢筋 LL550(d=4~12) 550 LL650(d=4、5、6) 650 LL800(d=5) 800 热处理钢筋 40Si2Mn(d=6)48Si2Mn(d=8.2) 45Si2Cr(d=10) 1470 钢丝钢绞线强度标准值(N/mm2) 表2.2.2-2 种 类 fatk或fptk 碳素钢丝 φ4、φ5 1770、1670、1570、1470 φ6 1670、1570 φ7、φ8、φ9 1570、1470 刻痕钢丝 φ5、φ7 1570、1470 冷 拔低碳钢丝 甲级:φ4φ5 I组700650 II组650600 乙级:φ3~φ5 550 钢绞线 二 股 d=10.0d=12.0 1720 三 股 d=10.8d=12.9 1720 七 股 d=9.5d=11.1d=12.7d=15.2 1860186018601860、1820、1720 (d=9.0) (1770、1670) (d=12.0) (1670、1570) (d=15.0) (1470、1470)
铸铝零件的化学氧化
2019-02-28 09:01:36
1 前语 铸造铝合金是现在广泛使用的工程材料之一,可分为铝-硅,钨-铜,铝-镁和铝-锌等品种,其间以铝-硅系铸铝合金的使用较广。铸铝合金很多使用于轿车、摩托车工业,航空航天工业、船只、潜艇工业,特别是作为结构、支架等结构件以及外装零件如机匣壳体等。 铸铝零件加工成型后,往往要求进行装饰性表面处理。铸铝合金零件表面情况遍地不同,有的部位对错加工表面,表面生成氧化皮膜,油污重,有的部位是机加工表面,表面情况杰出。铸造铝合金,特别是铝铜含量较高的铸铝合金,硅铜的参加大大进步了铝合金的强度,却增加了表面精饰加工困难。某些类型的铸铝合金是不能进行电镀或阳极氧化处理的。比如对含Cu2%~2.5%Si7.5%~12%的铸铝合金,不管电镀或阳极氧化处理都是适当困难的,要确保电镀或阳极氧化的顺利进行,往往要有特殊的前处理。 某产品壳匣类零件,是硅铜含量较高的压铸铝合金,通过机械加工成型。依据产品零件规划要求,产品零件需表面精饰加工和强化。咱们通过重复工艺实验,挑选了无色化学氧化办法取得膜层质量杰出。 2 工艺流程 化学氧化办法首要分为4个过程: ①喷丸处理。 ②活化处理。 ③无色化学氧化成膜。 ④查验入库。工艺流程如下: 喷丸前查验→喷丸处理→活化处理→活动水洗→无色化学氧化→活动水洗→吹干→查验入库。 2.1 喷丸处理 ①喷丸强化并为化学氧化成膜做好前处理预备对铸铝零件表面进行喷砂处理,尽管可以去除铸铝零件表面油污、氧化皮及毛刺等,并使表面发作压应力而得到强化。但表面粗糙而无金属光泽。 铸铝零件表面在70~90℃碱性除油腐蚀溶液处理虽可以有效地清洁零件表面,但由于零件表面情况不同,有非加工表面、有经加工的表面,除油腐蚀时刻不易操控。假如除油腐蚀时刻过长,往往发作不均匀腐蚀。并且除油腐蚀过度,也会使零件表面粗糙且无金属光泽,不能发作压应力而强化表面。 本工艺选用玻璃球丸进行喷丸处理。球状玻璃丸喷发到铸铝零件表面不只能有效地去除油斑污迹,氧化皮等,并且在零件表面构成许多细小半圆形表面,经光线反射,出现金属光泽,表面粗糙度得到显着的改观。并且喷丸处理还能使表面发作压应力,进步表面的疲惫寿数,下降表面对应力腐蚀的敏感性,大大强化了零件表面。经化学氧化处理的表面可生成细密而亮光的氧化膜层,彻底满意产品规划要求。因而咱们选用了喷丸强化处理作为化学氧化成膜的前处理工序。 玻璃球喷丸处理一般操控喷发间隔为200~350mm,喷发角60~70℃,喷发压力5kg/mm2,留意防止零件表面部分区域长时刻喷发。 2.2 活化处理 ②为坚持零件表面压应力层不受损坏,对现已喷丸强化处理的铸铝零件表面进行活化处理。 活化处理溶液成分: HNO3(d=1.42) 60% HF(40%) 20% 室温活化浸渍时刻 1~5s 2.3 化学氧化成膜 铸铝合金零件经喷丸强化、活化处理后应及时进行化学氧化处理。以生成均匀、无色通明的氧化膜层。 化学氧化有以下A、B两配方,可任选其一: 配方A: (Na2Cr2O7) 3~3.5g/L 铬酐(CrO3) 3~5g/L (NaF) 0.5~0.8g/L 氧化温度 室温 氧化时刻 3~5min 配方B: 重(K2Cr2O7) 0.8~lg/L (HF40%) 0.25~0.5ml/L 非离子型表面活性剂 适量 pH 2.7~3.5 氧化温度 20~40℃ 氧化时刻 30~90s 配方中、铬酐、重、及、供给重铬酸根离子和氟离子,在化学氧化成膜过程中起重要效果。重铬酸根离子是氧化剂,是促进氧化膜生成的首要成分。氟离子是活化剂,它与重铬酸根离子一起效果,有利于生成细密的氧化膜层,须严格操控二者的含量和份额。化学氧化溶液的pH 值要操控在规则的规模内,用稀HNO3或NaOH溶液调整。 氧化溶液中增加适量的非离子型表面活性剂有利于增强溶液和零件表面的潮湿性,有效地进步产品零件表面的氧化膜质量。 当温度低时,氧化成膜反响较慢,温度升高则反响速度加速。溶液温度超越40℃时,氧化膜将粉化,所以,氧化成膜温度以25~30℃为佳。 当氧化溶液中铝离子含量不断升高,pH 值上升超越操控规模时,氧化膜质量低质。这时应该及时部份或悉数替换氧化溶液。 2.4 查看查验 铸铝零件化学氧化处理后,清洗吹干,接着对氧化膜层进行查看。氧化膜不完整或膜层疏松、挂灰的零件,要进行返修,从头氧化。
氧化铜化学式
2017-06-06 17:50:01
氧化铜化学式为:CuO 铜元素为+2价,氧一般为-2价我们有时候会看到Cu2O,这个是氧化亚铜的化学式,这个化学式里面的铜元素为+1价;Cu02,这个是过氧化铜的化学式,这个化学是里面的氧元素为-1价,铜元素不变。所以,我们要区别氧化铜、氧化亚铜和过氧化铜,从三者化学式就可以了。氧化铜化学式是CuO,氧化亚铜化学式是Cu2O,过氧化铜化学式是CuO2
铝阳极氧化与化学氧化,谁更强?
2018-12-19 11:14:20
铝及其合金的氧化处理分为化学氧化和电化学氧化(俗称阳极氧化)两大类。用于装饰的目的往往需进行着色处理,着色的方法有化学着色和电解着色之分。 化学氧化处理所获得的膜层比较薄,一般厚度为0.5μm——4μm,质软不耐磨,抗蚀能力低于阳极氧化膜,一般不宜单独使用。由于化学氧化膜吸附能力较好,主要作用油漆的底层。 阳极氧化的氧化膜厚度约为5——20微米(硬质阳极氧化膜厚度可达60——200微米),拥有较高硬度,良好的耐热和绝缘性,抗蚀能力高于化学氧化膜,多孔,有很好的吸附能力。 化学氧化处理所需设备简单、操作方便,生产效率高而成本低,适用范围广,不受零件大小和形状的限制,可以氧化大型零件和组合件(如点焊件、铆接件、细长管子等)。经化学氧化后涂装,可有效地提高零件的耐蚀能力。 铝阳极氧化膜综合性能优于化学氧化膜,应用更为广泛,主要用途有: (1)防护性。提高零件的耐磨、耐蚀、耐气候腐蚀。 (2)装饰性。制成本色光亮膜,看成彩色膜。 (3)绝缘性。作为电容器介质膜,铝线卷绝缘膜,每微米厚度可耐25V电压。 (4)提高与有机涂层的结合力,作涂装底层。 (5)提高与无机覆盖层的结合力,作电镀、搪瓷的底层。 (6)开发中的其他功能用途,在多孔膜中沉积磁性合金作记忆元件、太阳能吸收板、超高硬质膜、干润滑膜、触媒膜等。 因此铝及其合金的氧化处理在建筑业、航空和航天工业、电气和电子工业、食品工业、化工和医药工业、交通运输业等领域获得了广泛应用。同时随着这些行业的发展,它们对阳极氧化的要求也越来越高。
抗拉强度符号_抗拉强度的定义
2019-05-29 18:51:08
抗拉强度的界说及表明符号------抗拉强度符号试样拉断前接受的最大标称拉应力。抗拉强度是金属由均匀塑性变形向部分会集塑性变形过渡的临界值,也是金属在静拉伸条件下的最大承载才能。关于塑性材料,它表征材料最大均匀塑性变形的抗力,拉伸试样在接受最大拉应力之前,变形是均匀共同的,但超出之后,金属开端呈现缩颈现象,即发作会集变形;抗拉强度符号关于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的开裂抗力。符号为RM,单位为MPa。试样在拉伸过程中,材料通过屈从阶段后进入强化阶段后跟着横向截面尺度显着缩小在拉断时所接受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或许强度极限(σb),单位为N/mm2(MPa)。它表明金属材料在拉力效果下反抗损坏的最大才能。计算公式为:σ=Fb/So式中:Fb--试样拉断时所接受的最大力,N(牛顿); So--试样原始横截面积,mm。抗拉强度( Rm)指材料在拉断前接受最大应力值。当钢材屈从到必定程度后,因为内部晶粒从头排列,抗拉强度符号其反抗变形才能又从头进步,此刻变形尽管开展很快,但却只能跟着应力的进步而进步,直至应力达最大值。尔后,钢材反抗变形的才能显着下降,并在最单薄处发作较大的塑性变形,此处试件截面敏捷缩小,呈现颈缩现象,直至开裂损坏。钢材受拉开裂前的最大应力值称为强度极限或抗拉强度。单位:N/mm2(单位面积接受的公斤力)抗拉强度:Tensile strength.抗拉强度=Eh,其间E为杨氏模量,h为材料厚度抗拉强度符号目前国内丈量抗拉强度比较遍及的办法是选用全能材料试验机等来进行材料抗拉/压强度的测定!
氧化铝化学式
2017-06-06 17:50:12
氧化铝化学式既三氧化二铝的化学式:Al2O3,分子量101.96。 氧化铝,通常称为“铝氧”,是一种白色无定形粉状物,俗称矾土。矾土的主要成分。白色粉末。具有不同晶型,常见的是α-Al2O3和γ-Al2O3。自然界中的刚玉为α-Al2O3,六方紧密堆积晶体,α-Al2O3的熔点2015±15℃,密度3.965g/cm3,硬度8.8,不溶于水、酸或碱。γ-Al2O3属立方紧密堆积晶体,不溶于水,但能溶于酸和碱,是典型的两性氧化物。 氧化铝,刚玉型晶体接近于原子晶体,其它晶型的基本上是离子晶体,熔点为2050℃,沸点为3000℃,真密度为3.6g/cm。它的流动性好,难溶于水,能溶解在熔融的冰晶石中。它是铝电解生产中的主要原料。有四种同素异构体β-氧化铝 δ- 氧化铝 γ-氧化铝 α-氧化铝 ,主要有α型和γ型两种变体,工业上可从铝土矿中提取。 刚玉粉硬度大可用作磨料,抛光粉,高温烧结的氧化铝,称人造刚玉或人造宝石,可制机械轴承或钟表中的钻石。氧化铝也用作高温耐火材料,制耐火砖、坩埚、瓷器、人造宝石等,氧化铝也是炼铝的原料。煅烧氢氧化铝可制得γ-Al2O3。γ-Al2O3具有强吸附力和催化活性,可做吸附剂和催化剂。刚玉主要成分α-Al2O3。桶状或锥状的三方晶体。有玻璃光泽或金刚光泽。密度为3.9~4.1g/cm3,硬度9,熔点2000±15℃。不溶于水,也不溶于酸和碱。耐高温。无色透明者称白玉,含微量三价铬的显红色称红宝石;含二价铁、三价铁或四价钛的显蓝色称蓝宝石;含少量四氧化三铁的显暗灰色、暗黑色称刚玉粉。可用做精密仪器的轴承,钟表的钻石、砂轮、抛光剂、耐火材料和电的绝缘体。色彩艳丽的可做装饰用宝石。人造红宝石单晶可制激光器的材料。除天然矿产外,可用氢氧焰熔化氢氧化铝制取。 在α型氧化铝的晶格中,氧离子为六方紧密堆积,Al3+对称地分布在氧离子围成的八面体配位中心,晶格能很大,故熔点、沸点很高.α型氧化铝不溶于水和酸,工业上也称铝氧,是制
金属
铝的基本原料;也用于制各种耐火砖、耐火坩埚、耐火管、耐高温实验仪器;还可作研磨剂、阻燃剂、填充料等;高纯的α型氧化铝还是生产人造刚玉、人造红宝石和蓝宝石的原料;还用于生产现代大规模集成电路的板基。 γ型氧化铝是氢氧化铝在140-150℃的低温环境下脱水制得,工业上也叫活性氧化铝、铝胶.其结构中氧离子近似为立方面心紧密堆积,Al3+不规则地分布在由氧离子围成的八面体和四面体空隙之中.γ型氧化铝不溶于水,能溶于强酸或强碱溶液,将它加热至1200℃就全部转化为α型氧化铝.γ型氧化铝是一种多孔性物质,每克的内表面积高达数百平方米,活性高吸附能力强.工业品常为无色或微带粉红的圆柱型颗粒,耐压性好.在石油炼制和石油化工中是常用的吸附剂、催化剂和催化剂载体;在工业上是变压器油、透平油的脱酸剂,还用于色层分析;在实验室是中性强干燥剂,其干燥能力不亚于五氧化二磷,使用后在175℃以下加热6-8h还能再生重复使用。 了解更多有关氧化铝化学式的信息,请关注上海
有色
网。
电解铝添加氟化镁的作用
2018-12-19 17:39:35
①氟化镁能降低电解质的熔点。 ②氟化镁能增加电解质的表面张力,这对减少铝的再溶解损失,促进电解质中的碳渣分离起到有益的作用;所以MgF2间接地起了提高电解质导电性的作用,MgF2在这方面的作用比氟化钙更大些。 ③氟化镁是一种矿化剂,能加速a—Al2O3的矿比作用,这对于在电解槽侧壁上形成稳定的结壳起到有益的作用。④此外,添加MgF2的电解质结壳酥松好打。 但是缺点是氟化镁会在一定程度上减小氧化铝的溶解度和溶解速度,增大电解质密度,稍稍降低导电率等,所以MgF2只在沿炉帮附近处添加,而不添加在里边,以免在阳极底下产生多量沉淀。我国铝厂推行“勤加工,少下料”作业法,可以弥补因添加MgF2而带来的缺点。因此,氟化镁是一种有益的添加剂。一般添加为4—6%,添加氟化钙的作用基本上与MgF2一致。
铝化学氧化各成分和工艺参数的影响
2019-03-08 12:00:43
1.磷酸——是成膜的主要成分,若不含磷酸则不能成膜。含量低于50g/l和高于80g/l时膜薄,抗饰才干较低。 2.铬酐——是氧化剂,是成膜的必要成分,若溶液中不含铬酐,溶液的服饰性就加强,很难成膜。铬酐到达7g/l以上可成膜,但不宜超越28g/l。 3.——是溶液的活化剂,与磷酸.铬酐相互协同而生成细密的膜层。若含量低于1.5g/l不能成膜,3g/l以上才干取得抗饰性好的膜层。可是含量过高,成膜太快太厚反而导致膜层疏松。 4——参加是为了操控氧化反应速度和改进膜层的外观,使膜层更为密致。 5.磷酸氢二铵——起安稳效果,进一步改进镀层温度。 6.温度——当溶液作业正常时,温度是决议膜层质量的最好要素。低于20摄氏度膜薄而耐饰性差,高于40摄氏度膜过厚而疏松,最好在30-35摄氏度下进行。 7时刻——要根据溶液的氧化才干和温度来决议氧化时刻。若温度较高,溶液氧化才干较强,氧化时刻要恰当缩短,反之则相对延伸。
铝合金化学氧化膜如何退除
2019-02-28 10:19:46
独自选用水溶液退除化学氧化膜往往会作用欠安。。首要表现在表面不均匀、发花。如果在退膜之前先在含有表面活性剂的脱脂剂中浸5~10min后,直接(不经水洗)进人25~50g/L的溶液中(30~40℃),即可快速退去化学氧化膜,表面粗糙度不受影响,且均匀共同。
铁矿石的术语、符号和矿物组成
2019-01-25 10:19:13
目前还没有含铁硅质岩石和其它含铁岩石与贫铁矿的变质相当的统一国际术语。因此在许多国家中用各种不同的术语来表示同样的岩石;反之,对各种不同的含铁岩石却使用相同的术语。苏联用的术语与其他国家用的术语有很大差别。 有鉴于此,最好是分析一下苏联和其他国家研究矿石的物质组成和可选性时使用的常用术语。 在美国和加拿大、澳大利亚和南美对于沉积成因的条带状含铁硅质岩石使用了历史上形成的术语“含铁层系”(ironformat-ion)。术语“ 碧玉铁质岩”(jaspilite)最初用来表示苏必利尔湖含铁层系的氧化相,其中的二氧化硅是碧玉。在美国地质学会的辞典中碧玉铁质岩按照“主要由碧玉和氧化铁交互层组成的岩石”而下的定义。 术语“含铁角石”与术语“碧玉铁质岩”不同,用来表示含有细粒石英* 角石的硅酸盐型含铁硅质宽条带状岩石。许多国家的专家认为“含铁碧玉”是含铁角石的同义词。铁英岩———巴西的未语,广泛地用于南美、西非和其他一些地方,这些地方的含铁层系的氧化相变质达到在岩石中个别晶体可以用肉眼分辨的程度。 有关专家认为铁英岩本身是粗粒岩石变质的碧玉铁质岩。 铁燧岩———是除了石英和氧化铁外还含有硅酸盐和碳酸盐的变质很深的粗粒岩石(与铁英岩不同),是硅酸盐型含铁石英岩的同义词(按照H.п.谢米年科的意见)。同时按照许多美国和加拿大地质工作者的意见,铁燧岩和铁英岩是同义术语。 “带状赤铁石英岩”———印度、澳大利亚和其它国家广泛用来表示含铁层系中的氧化相。带状赤铁石英岩的部分物料经受了巨大的变质作用,相当于铁英岩;其它部分相当于苏必利尔湖地区的碧玉铁质岩。 “含铁石英岩”在苏联是指具有带状结构的,非金属矿石部分由石英组成的贫质含铁岩石。 “含铁石英岩”(ferruginous guartite)在其他国家用于表示碎屑成因的岩石,尽管它们的化学组成和含铁层系的岩石相同。 铁矿石中主要金属矿物、非金属矿物和伴生矿物的特性列于表1。[next]
[next]
[next]
就大多数金属矿物而言,贫铁矿石可分为磁铁矿、赤铁矿、菱铁矿、含水氧化矿和硅酸盐矿。 原生矿物经受了相应的地质变化(变质、氧化等等),结果形成了呈连续层系而存在的次生矿物,例如:磁铁矿-赤铁矿,菱铁矿-氢氧化物,等等。把矿石分成各种类型是按标准规定的,仅仅说明该种类型矿石中某种矿物占压倒的优势。较详细的分类可根据矿石的矿物组成来进行,根据每种类型矿石的矿物组成可分成许多主要变种(表2)
[next]
可以用矿石中工业铁矿物的含量作为把矿石分成矿物学上各种变种的准则,属于工业铁矿物的有磁铁矿、赤铁矿(假像赤铁矿)、菱铁矿(镁菱铁矿、菱镁铁矿)、氢氧化铁和硅酸盐铁矿物等。 在上述情况下,各种铁矿石的类型均称为工业铁矿物,与工业铁矿物相结合的铁量在这种类型矿石中占多数。铁矿石种类名称中的其它铁矿物的含量应当考虑以词冠的形式加在主要名称之上。在地质矿物学术语中采用的词冠的顺序应当反映出矿石中这些矿物含量的递增。显然,为了使术语简单起见,组成变种名称的各种矿物的含量应当限于一定的数量。该数量按照地质矿物学下怍的实际活动,根据一次近似法可取大于与代表性矿物结合的相对铁量的10%。例如,含30%磁铁矿(Mr)、15%赤铁矿(Гт)、10%含铁硅酸盐和2%菱铁矿(Сп)的矿石应当属于赤铁-磁铁矿变种。 根据化合物的相似性,铁矿的矿物组成对一定类型的矿石及其变种来说,金属矿物和非金属矿物按照特有的比例呈物理连生体或机械混合物的形式而存在。此时在用符号表示金属矿物、非金属矿物和伴生矿物时,各种矿物的含量以数字指数来表示。铁矿的各种矿物的符号列于表1。
某银矿床氧化矿中银的化学浸出实验
2019-03-05 12:01:05
查干银矿床坐落内蒙古自治区新巴尔虎右旗,是一大型银、铅、锌多金属矿床。因为地处草原荒漠区域,该矿床地点地表氧化带保存较好,氧化带一般厚度为 3~4 m,部分区域达 6-7 m,其间银的含量恰当可观,为了有用地收回氧化带中的银 ,笔者进行了氧化带中银的赋存状况研讨及其化学浸出实验。
一、银的赋存状况研讨
为确保银的赋存状况研讨的成果具有代表性 ,所用试样为收集于该矿床氧化带中的组合样品。研讨进程中对所选样品首要进行了全分析、物相分析等。
(一)试样的化学组成和全分析
为全面了解样品的化学组成和矿藏组成 ,首要进行了样品的全分析和矿藏判定。值得指出的是,全分析成果标明试样中银含量很高 (见表1),但在光学显微镜下 ,银矿藏很难找到,据此分析以为其矿藏颗粒太细,或是非独立矿藏而呈涣散状况。表1 试样的全分析成果成分含量成分含量SiO268.210Pb0.980Al2O311.470Zn0.550CaO0.720Cu0.028MgO0.500As0.060TFe6.670S0.500TMn6.590C0.240K2O3.280Ag464(g/t)Na2O0.290烧损6.150TiO20.420 (二)矿藏组成和物相分析 因为铁锰矿藏物化性质近似,别离测定铁和锰矿藏中的银无法完结,因而,兼并测定铁和锰矿藏中的银。矿藏组成见表2。考虑到银矿藏颗粒多微细以及“被包裹”的原因,化学物相分析用样为-200目,分析成果见表3。表2 试样矿藏组成矿藏组成含量矿藏组成含量石英(少数长石)50.7白铅矿1.0白云母25.5黄铁矿0.8褐铁矿10.1其他2.5硬锰矿9.4表 3 试样中银的物相分析成果项目Ag/g·l-1散布/%项目Ag/g·l-1散布/%硫化银中的银31265.21铁锰矿中的银6112.76卤化银中的银8417.57方铅矿中的银81.67天然中的银51.06算计478100.00硅酸盐矿藏中的银81.67 银的物相分析成果标明,试样中硫化银占银矿藏的大部分,卤化银也占恰当大的份额,二者 占总银的82%以上。铁锰矿藏中的银尽管约占总银的10%,但这并不是铁锰矿自身含的银,是因为存在着未被挑选溶出的被包裹的银矿藏。
(三)银与重要元素的相关联系 为了解银是否与某些元素存在着彼此依存的规则,然后进一步查明银的赋存状况,有必要从微观上研讨银与有关重要元素的相关联系。依据矿床成因特色和前人的材料,试样中含量最多的元素硅和铝所组成的矿藏相中不可能含有很多的银,而铁、锰、铅矿藏则最有可能与银存在着亲近的联系,因而,关键在于查明 Ag—Fe、Ag—Mn和 Ag-Pb之间的相关联系。为此 ,在双简显微镜下挑选出含量规模尽量广大又具有代表性特征的各种矿藏样品和部分筛析样,进行有关元素的化学分析 ,成果标明,Ag-Mn和 Ag-Pb之间的含量联系是彻底无规则的,只要铁与银的含量体现出了显着的相关性,即样品中银含量的凹凸跟着铁的含量而相应地有规则改变。依据分析数据对两元素一元回归,回归直线见图1,回归方程为 (分析样品数n=17,核算得到的相联系数R=0.9725),Fe(%)=0.0068Ag(g/t)+2.594。
由回归方程可知,Ag-Fe的相联系数高达0.97,阐明它们呈显着正相关。显微镜下矿藏判定等作业业已证明,铁的绝大部分组成为褐铁矿,其他矿藏含铁甚低,所以,褐铁矿是银的最重要载体矿藏。 归纳上述研讨,在查干银矿床的氧化带中,银首要赋存在褐铁矿中,以银的硫化物和卤化物独立存在。 银矿藏的产出形状根本可分为两类,即不规则粒度和胶体同心环带——带状 ,前者以单晶粒为主,多为或疏或密浸染状散布;后者以隐晶质集合体为主。上述两类产出形状的银矿藏在褐铁矿中均可见到,但白铅矿和锰矿藏等其他矿藏只见到不规则粒状一种状况。 此外,除硫化银能够呈两种形状外,其他银矿藏也只要不规则粒度一种形状,不同银矿藏很少彼此连生。
二、银的化学浸出实验
因为查干银矿床氧化带中的银矿藏以硫化银、卤化银为主,银矿藏嵌布粒度细,载体矿藏多,其间恰当一部分银矿藏与铁、锰矿藏严密共生,甚至于被微细粒包裹,故该矿床氧化带中的银矿石归于难选冶的矿石类型,所以,研讨决议在其选矿工艺流程中第一步选用化学办法——化浸出。在进入正式化浸出实验之前,笔者进行了一系列探究实验,探究实验的成果,一是银的浸出率与入浸细度联系亲近;二是选用CaO碱浸作为预处理手法。探究性实验之后,对化浸出中各首要工艺参数进行较为系统的实验研讨,以调查这些工艺参数对化目标的影响趋势,这些工艺参数包含用量、入浸细度、浸出时刻、CaO用量、通氧量、浸出矿浆浓度等。然后断定适合于该矿石的最佳化条件及目标。
(一)用置实验 是化浸出的主试剂,所以,首要进行用量实验。为了有利于银的浸出,将入浸细度进步到-200目98%(-320目89%),一起,还将浸出时刻由24 h延伸至36 h。别的考虑到细磨后,细粒级产率的添加,泥化倾向的加大,矿浆黏度必定添加,会影响浸出进程中试剂分子及在浸出后生成 Ag(CN)2-络合物分散作用 ,故又将浸出矿浆浓度由本来的40%下降为 30%。实验成果见表 4。
表4 用量实验成果NaCN用量/kg·t-1浸出率/%NaCN用量/kg·t-1浸出率/%13.869.053.062.789.268.592.060.314.067.240.539.76
注:人浸细度为-200目98%;矿浆浓度为 30%;pH=10.5~11.0碱浸时刻为1h;浸出时刻为36h。
表4标明:用量添加,银的浸出率进步。但用量4 kg/t以上时银的浸出率添加起伏不大;过低的用量将使浸出率急剧下降。故操控用量为4 kg/t时即可满意浸出的要求。
(二)入浸细度实验 矿石的入浸细度与化浸出作用有着非常亲近的联系。不同矿藏组成,不同矿藏结构都要求不同的入浸细度以取得抱负的浸出目标。该矿石的不同入浸细度与银浸出率联系见表5。
表5 入浸细度实验成果入浸细度浸出率/%入浸细度浸出率/%-500目92%80.90-200目98%-320目97%73.49-320目72%59.28-320目93%70.22-200目89%-320目89%67.63-200目63%56.03
注:NaCN用量为4kg/t,矿浆浓度为 30%;pH=10.5~11.0;碱浸时刻为l h;浸出时刻为36h
表5标明:银浸出率的进步与入浸细度的添加成正比。磨得越细,银浸出率越高,这是因为跟着入浸细度的添加,本来被包裹的银矿藏得以更多的露出而被浸出。当入浸细度为-200目63%时,银的浸出率为56.03%;在工业上可完结的-200目98%细磨条件下银的浸出率为67.63%;而要使银的浸出率进步到80%以上,则必须将矿石超细磨至-500目92%以上。显着这在工业上难以完结,何况也是不经济的。由此可见,该矿石归于难浸的矿石类型,假如只选用单一的化浸出,则工业上很难取得高收回率目标。
(三)CaO用量实验 化浸出一般是在pH>10的状况下进行,石灰以其价廉来历广而被作为维护碱广泛应用于化浸出工艺中。另据材料陈述,石灰在必定状况下还能够起到强化浸出进程的络合作用。CaO的用量实验成果见表6。
表6 CaO用量实验成果CaO用量/kg·t-1矿浆pH值浸出率/%1.810.067.373.310.567.785.111.066.577.511.562.07
注:入浸细度为-200目98%;NaCN用量为4 kg/t,矿浆浓度为30%;碱浸时刻为1 h;浸出时刻为36h。
表 6标明:CaO用量在 1.8~7.5 kg/t改变时,浸出矿浆的pH值为l0.0~11.5。CaO用量太高,银的浸出作用欠好,当CaO用量为7.5kg时,银的浸出率下降到62%左右。CaO用量操控在 1.8~3.3 kg/t为好,此刻矿浆的pH值在 10.0~10.5。但考虑到浸出进程中pH值的动摇,在以下实验中CaO用量选用 3 kg/t。 (四)通氧量实验
银的浸出进程需求氧的参与,而氧在溶液中具有必定的溶解度。只要溶液中所溶解的氧量与根浓度到达必定份额时,才干到达最佳的浸出作用。也就是说用量添加,根浓度越高,所需溶解氧量也要求越多,反之亦然。打开于空气中的浸出系统,矿浆的自身就溶解有必定量的氧。在用量较低的状况下这部分溶解氧足以保持浸出进程的完结,而不要别的的补加。但当用量较高时,为了到达最佳的浸出作用,往往选用向浸出系统中通氧(或空气)来进步矿浆中的含氧量。该实验是选用通入纯氧的方法(氧气瓶通氧),其流量用微型气体流量计调理。比照用量别离在2 kg/t和4 kg/t时,通氧量的改变对浸出率的影响,其成果见表7。
表7 通氧量的实验成果通氧量/(min·L)-1浸出率/%NaCN用量2kg/tNaCN用量4kg/t060.3167.240.459.2868.800.857.6568.601.556.0266.34
注:入浸细度为-200目98%;NaCN用量为4kg/t;矿浆浓度为30%CaO用量为3 kg/t;碱浸时刻为1h;浸出时刻为36h。
表7标明:用量的不同,所要求矿浆中含氧量也不同,确实存在一个份额问题。太低或太高的含氧量均未能到达最佳的浸出作用。当用量为2kg/t时,则不需求外界再补加氧,靠矿浆在拌和进程中矿浆的天然吸氧即可保持浸出进程的完结;但当用量进步到4kg/t时,则需求外界补加部分氧气以添加矿浆的含氧量。实验标明,通氧量以0.4~0.8(rain·L) 为宜。当然,因为整个浸出系统是打开的,所通入的氧气绝大部分又从矿浆中逸出而损失掉。
2.5 浸出浓度实验 矿浆的浸出浓度是决议浸出设备单位处理量的首要参数之一,一起也是影响试剂耗费以及浸出作用的首要要素。因而,着重在细磨 (-200目98%),和粗磨(-200目63%)两种入浸细度条件下探究浓度对浸出率影响的比照实验,一起,也对下降试剂用量的可能性做进一步的探究,其成果见表8。
表8 浸出浓度实验成果NaCN用量/kg·l-1矿浆浓度/%入浸率/%-200目98%-200目63%43066.7956.254060.6556.6833062.7852.134058.8454.7423060.31-4056.9451.72
注:CaO用量为3 kg/t;pH=10.0~10.5;碱浸时问为l h;浸出时刻为36h。
表8标明:在两种入浸细度下,矿浆浓度的改变对银浸出率的影响是不相同的,矿浆浓度的进步,一方面进步了试剂的初始浓度,能够加速浸出反响速度,使络合反响平衡向生成物[Ag(CN)2-]方向移动,对浸出有利,一起也进步了设备的单位处理量;但另一方面,跟着矿浆浓度的进步,其矿浆黏度也随之添加,这对CN分散到银矿藏表面并与之作用生成 Ag(cN)2-及其络合物分散等作用显着晦气,此外,还会下降矿浆中的溶解氧量。从实验成果来看,粗磨时,前者要素占主导地位,矿浆浓度的进步,使银浸出略有进步;而细磨时,因为矿泥量的必定添加,然后使后者要素居主导地位,进步矿浆浓度反而恶化浸出作用,使浸出率下降。所以,粗磨时能够选用40%较高的浸出浓度,以减小浸出槽的体积 ;而细磨时选用 30%较稀的矿浆浓度,以确保取得更好的浸出作用。用量仍以4kg/t为宜,仅仅粗磨时用量4 kg/t与 3 kg/t比较,银的浸出率只相差2%左右,从本钱上考虑 ,能够恰当的将用量降至3 kg/t。
(六)浸出时刻实验 相对而言,Ag(CN)2-的络合常数远远小于 Au(CN)2-。因而,体现为银矿藏较金矿藏难浸一些,往往需求更长的浸出时刻才干到达浸出意图。为此,对粗磨和细磨两种不同入浸细度的矿石进行浸出时刻的实验比照,以断定出最佳的浸出时刻规模,其成果见表9。表9 浸出时刻实验成果浸出时刻/h浸出率/%浸出时刻/h浸出率/%-200目98%-200目63%-200目98%-200目63%2461.7950.116068.9356.703667.2454.127269.4759.584868.2155.02 注:CaO用量为3 kg/t;pH=l0.1~10.5;碱浸时刻为1h。粗磨时:矿浆浓度为 40%,NaCN用量为3 kg/t;细磨时:矿浆浓度为 30%。NaCN用量为 4kg/t。
表9标明:跟着浸出时刻的延伸,浸出率一向处于上升趋势。当浸出时刻达72 h,银的浸出率别离由24h的61.79%和50.11%进步到69.47%和59.58%,阐明延伸浸出时刻对银的浸出有利。24h的浸出时刻显着缺乏,至少应确保36 h以上的浸出时刻。
三、定论 (一)该矿石归于难浸的“顽银”矿石。只要在超细磨-500目92%以上,才干取得80%以上较好的化目标,但这在工业大将无法完结,假如选用单一的化手法,工业上也难以取得较高的收回率目标。 (二)选用工业上可到达的磨矿细度,即-200目63%~98%时,银的浸出率为 54%~67%。 (三)粗磨时能够选用40%较高的浸出浓度;而细磨时只能选用30%较低的浸出浓度,不然将会恶化浸出作用。 (四)CaO用量3 kg/t左右为宜;用量应操控在4kg/t,如粗磨浸出时,因为可选用稍高的矿浆浓度,用量可恰当削减到3 kg/t;浸出时刻延伸对浸出率进步有利,浸出时刻至少要到达36 h。 (五)碱浸可作为有用的预处理手法,碱浸时刻为 l h,恰当的通氧对浸出有利。
电解铝加工中添加氟化镁的作用
2019-01-03 09:37:04
①氟化镁能降低电解质的熔点。
②氟化镁能增加电解质的表面张力,这对减少铝的再溶解损失,促进电解质中的碳渣分离起到有益的作用;所以MgF2间接地起了提高电解质导电性的作用,MgF2在这方面的作用比氟化钙更大些。
③氟化镁是一种矿化剂,能加速a—Al2O3的矿比作用,这对于在电解槽侧壁上形成稳定的结壳起到有益的作用。④此外,添加MgF2的电解质结壳酥松好打。
但是缺点是氟化镁会在一定程度上减小氧化铝的溶解度和溶解速度,增大电解质密度,稍稍降低导电率等,所以MgF2只在沿炉帮附近处添加,而不添加在里边,以免在阳极底下产生多量沉淀。我国铝厂推行“勤加工,少下料”作业法,可以弥补因添加MgF2而带来的缺点。因此,氟化镁是一种有益的添加剂。一般添加为4—6%,添加氟化钙的作用基本上与MgF2一致。
来说说中国化学品氧化铝与国外化学品氧化铝的差距
2019-03-11 13:46:31
化学品氧化铝是除冶金级氧化铝之外的各种氧化铝、氢氧化铝和含铝化合物的总称,在国际上总称非冶金级氧化铝,在我国又俗称多种类氧化铝,其间通过特殊加工进程在性能上与冶金级氧化铝有必定不同的又常称为特种氧化铝。 化学品氧化铝种类繁复,依据有色金属行业标准YS/吨619-2007《化学品氧化铝种类及牌号命名》,按化学成分将化学品氧化铝分为5类:氢氧化铝系列、特种氧化铝系列、拟薄水铝石系列、沸石系列和铝酸钙水泥系列。现在,聚合、含水铝硅酸钠、氟化盐等铝盐、铝酸钠、镓及镓的化合物、部分氧化铝陶瓷和刚玉耐火材料等也被纳入了化学品氧化铝的领域。 1910年,美国铝业公司(Alcoa)出产供应了国际上第一批煅烧氧化铝,作为出产白刚玉磨料的质料,开国际化学品氧化铝工业的先河,距氧化铝工业面世已24年。化学品氧化铝的特点是种类多,附加值高,技术含量高,使用领域广且不断扩大,报价相对安稳,对环境友好,因而,已成为铝工业的一个非常重要的分支。国际各国纷繁投巨资开展化学品氧化铝工业,美国铝业公司曾是国际最大的化学品氧化铝出产商,其具有24个出产厂商,遍及国际各首要国家区域,出产的种类有220多个,产值超越1000k吨/a。后于2007年将化学品氧化铝板块转让给荷兰安迈公司。 日本也是国际化学品氧化铝出产消费大国,2012年其产值约1000k吨,并且在继续地慢慢上升,种类也是全球最多的,日本不出产冶金级氧化铝,但在化学品氧化铝出产方面却完成了规模化、系列化、高科技化、环保化与本钱合理化,产品除满意国内需求以外,出口量到达25%左右。日本化学品氧化铝产值的85%以上为住友化学工业公司、电工公司、日本轻金属公司所出产。 1940年前后,美国、日本及欧洲对化学品氧化铝进行了大规模的研讨,到20世纪70年代,在国外的一些工业发达国家得到巨大开展。据国际铝业协会的计算,1975年,西方国家氧化铝总产值约20344k吨,化学品氧化铝产值1699k吨,占总产值的8.3%;2000年,全球氧化铝总产值约51200k吨,而化学品氧化铝的产值为4800k吨,占总产值的9.4%;2008年,全球冶金级氧化铝产值60496k吨,化学品氧化铝产值4638k吨,占总产值的7.12%;2012年,国际氧化铝总产值95705k吨,化学品氧化铝产值8580k吨,占总产值的9%。2008年~2012年,国际化学品氧化铝的年平均增长率为16.6%,比原铝的年平均增长率约高11个百分点。 我国化学品氧化铝工业起步较晚,1961年前后,为了处理电子工业质料匮乏的局势,山东铝厂(现名山东铝业股份有限公司)首要研制成功低纳α型氧化铝,自此开端了我国化学品氧化铝的研制和出产。上世纪70年代,为了满意石油、化工、耐火材料、陶瓷、制药、环保、武器、航空航天等工业对化学品氧化铝的需求,山东铝厂、郑州轻金属研讨院等又先后研制和出产了活性氧化铝、除砷除氟剂氧化铝、低铁氢氧化铝、高纯氧化铝、陶瓷用α-Al2O3、喷涂用氧化铝等24种新产品;上世纪80年代,我国的化学品氧化铝出产进入高速开展时期,新产品不断涌现,以郑州轻金属研讨院、山东铝业股份有限公司、我国长城铝业公司为代表,建成了约60条特种氧化铝出产线。在一些大型氧化铝厂商周边区域先后建成了一批批出产化学品氧化铝的民营厂商,它们使用国产的或进口的质料出产各种化学品氧化铝。 我国是氧化铝出产大国,选用的出产工艺比任何一个国家的都多,易于完成工艺流程中嫁接出产化学品氧化铝的支线,尤其是烧结法出产的氢氧化铝,其具有高的天然白度。我国的化学品氧化铝工业通过50多年的开展,在国内外商场上具有相当大的影响力,氢氧化铝填料等产品还享誉国际商场。 不过,与美国、德国、日本比较,我国化学品氧化铝不管产品质量、种类、出产规模均存在着较大距离,其底子原因是在出产技术与配备相对落后,对出产与使用方面的根底理论研讨不行,立异才能弱,商场开发力度不行。 我国化学品氧化铝质量与国外先进水平比较的距离首要表现为:化学纯度、晶型、粒度散布、颗粒描摹、孔结构、比表面积、缩短率等物理化学目标不能有用安稳地操控,不能很好地满意用户的需求,特别是不能满意那些高科技工业的要求。
铝合金型材质别符号
2018-12-27 16:26:15
基本质别符号 :