您所在的位置: 上海有色 > 有色金属产品库 > 氧化镁和碳反应 > 氧化镁和碳反应百科

氧化镁和碳反应百科

氧化镁

2019-01-25 15:49:17

MgO俗称苦土,是一种白色粉末状固体。熔点3125K,沸点3873K,密度3.58g/cm3(298K),硬度6.50。MgO对水呈一定惰性,特别是高温煅烧后的MgO难溶于水。MgO溶于酸。    MgO的制备方法:   (1)金属镁在高温下燃烧。                              2Mg  +  O2  ==  2MgO    (2)工业上一般通过煅烧碳酸镁或氢氧化镁来生产氧化镁。                             MgCO3  ====  MgO  +  CO2                                Mg(OH)2  ==== MgO  +  H2O    煅烧温度在923K左右制成的为轻质MgO,煅烧温度在1923K以上时制成的为MgO。    MgO大量用于耐火材料、金属陶瓷、电绝缘材料,轻质MgO与MgCl2或MgSO4溶液混合后可制成镁质水泥。医疗上用MgO作抗酸药和轻泻药。常与易致便秘的CaCO3配合应用。在水处理、人造纤维织物加工、造纸、催化剂生产等方面MgO都有重要应用。

熔盐法制备氧化镁粉体及其反应机理

2019-02-21 11:21:37

跟着高技术陶瓷、橡胶、塑料、催化剂、环保材料、航天材料的不断发展,氧化镁晶体材料、特别是高纯氧材料(MgO含量不低于98%)的使用越来越广。例如用于医治胃酸过多及十二指肠溃疡患者,用作硅钢制作进程中的高温退火阻隔剂,用于制作电子管、滤光器、滤色器、滤波器等。此外作为灵敏型高效催化剂及功用体良的掺杂材料,高纯氧化镁有很多使用于工业催化及材料改性和高功用复合材料的制备。已报导的高纯氧化镁制备办法较多,例如菱镁矿(白云石)碳化法、卤水(海水)-石灰()法、卤水(海水)-碳按法及镁盐直接热解法等。     熔盐法选用一种或几种低熔点的盐类作为反响介质,在高温熔融盐中完结组成反响,然后选用适宜的溶剂将盐类溶解,经过滤、洗刷得到组成产品,它在高熔点氧化物粉体和电子陶瓷粉体及其它功用粉体材料组成等范畴广泛使用。熔盐法具有工艺简略、组成温度低、保温时刻短、本钱低价、组成粉体的化学成分安稳均匀等长处。     对熔盐法制备MgO粉体的不同熔盐系统进行了比照,发现NaCl-KCl盐类熔点适中,功用相对安稳,洗刷进程中NaCl、KCl溶解于水,滤液经枯燥后得到NaC1、KC1等盐类可回收使用,是一种优秀的反响介质。当选用NaN03-KN03盐类作反响介质时,与镁盐直接热解法相同,反响进程中发作腐蚀性气体,不适合工业化出产。可是NaN03 -KN03盐类熔点较低,有利于分析质料系统在熔盐中的反响进程,进而对反响机理进行评论,因而本文以MgCl2、 CaCO3和NaN03、KN03为质料制备Mg0粉体。     一、试验     (一)质料     试验所用无水氯化镁、碳酸钙、、、无水乙醇等均为分析纯。     (二)氧化镁粉体的制备     将MgCl2、CaCO3及NaN03、KN03按1.1︰1︰2︰2配比置于碾钵中碾磨,使质料混合均匀并磨细至-0.074mm粒级,550℃下保温3h热处理,经水浸泡、洗刷、减压过滤、110℃枯燥,再在600℃下保温3h热处理。     (三)反响机理分析     作CaCO3和MgCl2-CaCO3-NaN03-KN03的TG-DSC曲线,分析质料热反响进程;依据TG-DSC曲线,将质料在不同温度和保温时刻下热处理,断定产品组成,分析熔盐法制备氧化镁的反响机理。     (四)表征     用德国NETZSCH公司STA449/6/G型热重-差示扫描归纳热分析仪对试样进行热效应分析。     用荷兰Philips公司出产的X′Pert Pro型X射线衍射仪对产品进行物相判定。     用荷兰Philips公司出产的Nova400NanoSEM型场发射扫描电子显微镜调查粉体描摹及巨细。     二、成果及评论     (一)试样的组成与描摹分析    图1为S11试样和S12试样的XRD图谱,其间S11试样为质料在550℃下保温3h热处理,用水洗刷后经110℃枯燥的前驱物,S12试样为S11试样在600℃温3h热处理的产品。     从图1可见,质料在550℃下保温3h热处理,用水洗刷后的前驱物主要为氢氧化镁,其间尚有少数氧化镁没有水解,经600℃保温3h热处理,氢氧化镁分化为氧化镁。图2  试样TEM (a)S11;(b)S12     图2为S11试样和S12试样的SEM图。从图2可见,氢氧化镁前驱物主要为层状描摹,形状不规整,巨细散布不均匀,厚度介于0.03~0.05μm,直径介于0.2~1.0μm之间;氢氧化镁分化后得到的氧化镁为颗粒状描摹,巨细散布较均匀,粒径介于0.2~0.5μm之间。     表1为S12试样的化学成分分析成果。从表1可知,所制备的氧化镁粉体纯度高,可满意医药、冶金、工业催化、量子器材、微电子等职业要求。 表1  S12试样化学成分分析成果(质量分数)/%Mg0CaC03A1203Si02Fe203IL98.820.520.100.090.060.41     (二)反响机理分析     图3为CaCO3和MgC12-CaC03-NaN03-KN03质料的TG-DSC曲线。     由图3(a)可见,从700℃至800℃失重37.08%,CaC03分化为CaO和CO2,对应的DSC曲线在769.2℃有一个吸热峰。    由图3(b)可见,从室温至400℃失重18.90%,该温度范围内质料失掉悉数物理水及结构水,NaN03-KNO3熔融,对应的DSC曲线上有3个吸热峰;从400℃至530℃失重8.10%,对应的DSC曲线上在490.5℃有一个吸热峰,该温度范围内可能发作了分化反响;从530℃至700℃失重23.20%,对应的DSC曲线上在660.4℃有一个吸热峰,该温度范围内可能发作了分化反响;温度大于700℃后,失重持续加大,主要是熔盐在高温下加速蒸腾。对照图3(a),没有呈现CaCO3分化的吸热峰,阐明在700℃曾经CaCO3已彻底反响。     图4为试样的XRD图谱。其间M11试样为质料在320℃下保温48h热处理,水洗后经110℃枯燥的产品;Ml2试样为质料在320℃下保温360h热处理,水洗后经110℃枯燥的产品;M14试样为质料在900℃下保温3h热处理,用无水乙醇洗刷后产品的XRD图谱。由图4可见,质料在320℃下保温48h热处理,水洗后经110℃枯燥的产品主要为碳酸镁和白云石及少数的氢氧化镁;质料在320℃下保温360h热处理,水洗后经110℃枯燥的产品主要为碳酸镁;质料在900℃下保温3h热处理,用无水乙醇洗刷后产品悉数为氧化镁。    结合S11试样和S12试样的XRD图谱,以MgC12、CaCO3和NaNO3、KNO3为质料,选用熔盐法制备Mg0粉体的反响机理如下:     1、  熔盐环境下Mg2+与Ca2+发作置换反响,其产品组成与反响温度和反响时刻有关。     MgCl2←→Mg2++2Cl-     xMg2++CaCO3→MgxCa1-xCO3     当x<0.5时.产品为碳酸钙的置换型固溶体,当x=0.5时,产品为CaMg(C03)2,当0.5<x<1时,产品为CaMg(C03)2和MgC03混合物,跟着反响的不断进行,当x=1时,产品为MgC03。     2、碳酸镁分化。     MgC03→Mg0+C02↑     3、水洗进程中氧化镁水解。     Mg0+H20→Mg(OH)2     4、氢氢氧化镁分化。        三、结语     (一)MgCl2-CaC03-NaN03-KN03质料制备氧化镁进程中,在熔盐环境下Mg2+与Ca2+发作置换反响,生成白云石和碳酸镁等中间产品,跟着反响的不断进行,白云石终究转变为碳酸镁;550℃热处理碳酸镁分化为氧化镁,经水浸泡后氧化镁水解生成氢氧化镁,600℃热处理氢氧化镁分化为氧化镁。     (二)氢氧化镁前驱物为不规整的层状描摹,巨细散布不均匀,厚度介于0.03~0.05μm,直径介于0.2~1.0μm之间;产品氧化镁为颗粒状描摹,巨细散布较均匀,粒径介于0.2~0.5μm之间。

氢氧化镁简单介绍

2019-02-14 10:39:59

碱土金属的氢氧化物都是白色固体,置于空气中就吸水潮解。其间Ca(OH)2就是常用的干燥剂。碱土金属氢氧化物在水中的溶解度比碱金属氢氧化物要小得多,从表中数据看,从Be到Mg,氢氧化物的溶解度顺次递加,它们的碱性也顺次递加。Be(OH)2和Mg (OH)2是难溶的氢氧化物。Be(OH)2是氢氧化物,Mg (OH)2归于中强碱,其他均归于强碱。表1  碱土金属氢氧化物的某些性质物质Be(OH)2Mg(OH)2Ca(OH)2Sr(OH)2Ba(OH)2性质色彩白白白白白熔点/K脱水分化脱水分化脱水分化脱水分化脱水分化水中溶解度/mol-dm-3(293K)8×10-1S×10-11.8×10-26.7×10-22×10-1酸碱性中强碱强碱强碱强碱 碱金属和部分碱土金属的焰色离子Li+Na-K+Rb+Cs+Ca2+Sr2+Ba2+焰色红黄紫紫红紫红紫红洋红黄绿波长/nm670.8589.6404.7629.8459.3616.2707553.6     Mg(OH)2的密度为2.36g/cm3,加热至623K即脱水分化:                                   Mg(OH)2  ====  MgO  +  H2O    Mg(OH)2易溶于酸或铵盐溶液:                               Mg(OH)2  +  2HCl  ====  MgCl2 +2H2O    这一反响可应用于分析化学中。    将海水和廉价的石灰乳反响,能够得到Mg(OH)2沉积,亦称氧化镁乳:                             Mg2+   +  Ca(OH)2  ==  Mg(OH)2  +  Ca2+    Mg(OH)2的乳状悬浊液在医药上用作抗酸药弛缓泻剂。

利用硼泥制备氢氧化镁

2019-02-18 15:19:33

硼泥是、硼砂出产过程中构成的固体废弃物。硼泥中含有氧化镁、氧化钙、等碱性物质,对环境造成了极大污染。截止到2006年仅辽宁省内的硼泥就已达1700万t,并正以每年130万t的速度添加。       现在,国内外对硼泥归纳利用的研讨有诸多方面,已取得了许多科研成果,但硼泥污染的现象依然存在,这首要是因为各类硼泥归纳利用技术落后,工业化程度较低。硼泥中含有镁等有价元素,极具开发利用价值。因而,开发利用这种二次资源,出产氢氧化镁,对进步经济效益、削减环境污染、促进资源再生都有重要意义。氢氧化镁作为典型的无卤阻燃剂,具有阻燃、消烟、阻滴、高热稳定性、高效的促基材成碳效果和强除酸才能等特性。       现在,出产氢氧化镁的首要办法有:合成法、白云石的挑选煅烧法和电解卤水法。合成法需以含有氯化镁的卤水为质料,白云石的挑选煅烧法和电解卤水法的能耗皆较高。本文选用高温下煅烧工业浓硫酸与硼泥混合物的办法收回氢氧化镁,此办法能耗低且易于完成工业化,不只能够处理硼泥对环境的污染问题,也为氢氧化镁的出产拓荒了一条新途径。       一、试验       (一)试验质料       硼泥取自辽宁省某地,首要化学组成见表1。硫酸为工业级,浓度98%,、及其它检测所用药品均为分析纯,试验用水为二次蒸馏水。   表1  硼泥的成分(质量分数)/%MgOCO2SiO2Fe2O3Al2O3CaOMnO其它39.030.219.74.562.991.840.0821.628       (二)试验内容       将硼泥与工业硫酸的混合泥浆在高温炉中煅烧必定时刻,取出后加水溶解、加热、过滤,得到母液。用0.01mol/L的EDTA滴定Mg2+,核算浸出率。重复加热、过滤母液至用(NH4)2C2O4溶液体会不到Ca2+。向滤液中参加将溶液中的Fe2+、Mn2+氧化成高价的Fe3+、Mn4+有利于完全除杂,加至用K3[Fe(CN)6]溶液查验不到Fe2+,用硝酸和NaBiO3查验不到Mn2+。在必定温度下加10%NaOH溶液将母液调理至pH=9.0,过滤,除掉杂质,得到镁精液。再向镁精液中参加5mol/L的NaOH溶液调理,pH=12.0,过滤、洗刷,然后将产品恒温烘干,得到氢氧化镁产品。产品的检测按标准HG/T3607—2000履行。       (三)工艺流程       工艺流程见图1。图1  硼泥制备氢氧化镁工艺流程       二、成果与评论       (一)煅烧温度对镁浸出率的影响       在煅烧时刻为1h,硫酸与硼泥液固比为1∶1的条件下,调查不同煅烧温度下镁的浸出率,试验成果如图2所示。由图2可知,在烧烧温度为300℃时,镁的浸出率最高,尔后跟着煅烧温度的升高镁的浸出率反而快速下降。这是因为浓硫酸在350℃时开端发作分化反响,温度过高时,生成的SO3烟气和氧气会快速逸出,使反响不能充沛进行,故镁的浸出率下降。一起高温效果黏结生成不溶于水的硅酸盐类也会使得镁的浸出率下降。图2  煅烧温度对镁浸出率的影响       (二)煅烧时刻对镁浸出率的影响       在硫酸与硼泥液固比为1∶1、煅烧温度为300℃条件下,别离调查不同煅烧时刻下镁的浸出率,试验成果如图3所示。由图3可知,跟着煅烧时刻添加,镁的浸出率逐步增大。反响时刻为2h时硫酸与硼泥的反响根本完毕,此刻镁的浸出率到达最大。图3  煅烧时刻对镁浸出率的影响       (三)硫酸与硼泥份额对镁浸出率的影响       在煅烧时刻为1h,煅烧温度为300℃条件下,调查不同液固比时镁的浸出率,试验成果如图4所示。由图4可知,跟着硫酸与硼泥液固比的增大,硫酸过量增多,硼泥能充沛与硫酸反响,镁浸出率趋于增大,但耗酸量增大。若硫酸与硼泥的份额太小,则硼泥中的矿藏不能与硫酸充沛反响,导致镁的浸出率不高。依据试验成果,硫酸与硼泥的液固比以2∶1为宜。图4  硫酸与硼泥份额对镁浸出率的影响       (四)归纳条件试验       依据试验成果及归纳考虑能耗、药品用量和硫酸分化温度对浸出率的影响,断定工艺条件为:煅烧温度为300℃、煅烧时刻为2h、硫酸与硼泥的液固比为2∶1,在此工艺条件下镁的浸出率为88%。将此条件下所制样品按1.2所述办法制备氢氧化镁,经测定镁精液中镁的收回率为91.17%。因而,硼泥中镁的归纳收回率可达80%左右。       (五)氢氧化镁的检测与分析       1、氢氧化镁的XRD分析  选用X射线衍射仪分析了产品物相组成,其成果见图5。由图5可知,该产品的峰方位和强度均与JDPDS卡上标准Mg(OH)2的衍射峰数据完全一致,且峰值规整,无杂峰出现,可知粉体为Mg(OH)2。图5  Mg(OH)2样品XRD图       2、氢氧化镁的检测  对氢氧化镁产品进行成分分析,检测成果如表2所示。   表2  氢氧化镁成分(质量分数)/%Mg(OH)2FeAlCaOMn99.540.0190.0150.4300.008       由表2可知,氢氧化镁的纯度为99.54%,换算成氧化镁纯度为68.64%,高于标准HG/T3607—2000的规则,其他杂质的含量也契合此标准。       3、氢氧化镁的SEM分析  用SEM对氢氧化镁粉末的表面描摹微观结构进行分析,其成果见图6。由图6能够看出,未烘干的Mg(OH)2颗粒出现聚会状况,晶体微粒十分小,颗粒直径不到1μm。将样品烘干后Mg(OH)2晶体微粒逐步长大,颗粒呈不规则球状,颗粒直径大约70~90μm。图6  氢氧化镁SEM相片                     (a)未烘干;(b)烘干后       三、定论       (一)依据单要素条件试验断定高温煅烧工业硫酸与硼泥混合物的工艺条件为:煅烧温度为300℃、煅烧时刻为2h、硫酸与硼泥的份额为2∶1。此刻镁的浸出率为88%。       (二)以为沉积剂制备氢氧化镁可使镁精液中镁的收回率到达91.17%,硼泥中镁的归纳收回率可达80%。经XRD检测断定沉积产品为氢氧化镁,产品质量契合标准HG/T3607—2000。       (三)由SEM检测能够看出,未烘干的Mg(OH)2晶体微粒十分小,颗粒直径不到1μm。氢氧化镁经烘干后晶粒长大,颗粒呈不规则球状,颗粒直径大约70~90μm。

镍精矿降低氧化镁工艺技术

2019-01-21 18:04:33

一、概述     金川公司选矿厂一选矿车间处理龙首混合矿石,设计处理能力为1200t/d,有破矿、磨浮、精矿输送三道工序。其中,磨浮采用三段磨矿、三段浮选的阶段磨选流程。经80年代后期和90年代初期的系列改造,形成了1500t/d的生产能力。90年后期,经过不断挖潜改造,特别是2000年和2001年连续两次150t/d的扩能改造,现已形成2000t/d的生产能力。     目前所指的龙首混合矿石,是指龙首矿东、中、西部三个不同采区的矿石混合,而不是矿石工业类型上所所义的硫化率为45%~60%的混合矿石。其中一部分较富混合矿石(含Ni1.3%以上)由一选矿进行处理,另一部分较贫混合矿石(含Ni1.122%左右)由二选磨浮车间处理。     本文所探讨的就是Ni品位在1.30 %以上的由一选处理的龙首混合矿。     二、矿石性质及主要矿物选矿工艺特性     (一)龙首混合矿石中主要金属矿物及选矿工艺特性     龙首混合矿石中主要金属矿物有紫硫镍铁矿、镍黄铁矿、黄铁矿、磁黄铁矿、黄铜矿、方铜矿等;脉石矿物有蛇纹石、绿泥石、滑石及碳酸盐。紫硫镍铁矿被认为是最易浮选的硫化镍矿物。镍黄铁矿属比较好选的镍矿物,其选别效果仅次于紫硫镍铁矿,主要原因是其原生粒度比紫镍铁矿小,由于中细粒贫矿石中的镍黄铁矿和磁铁矿紧密共生呈网络状结构,磨矿过程中绝大部分不能单体解离,造成镍黄铁矿可浮性稍差。氧化会使紫硫镍铁矿的可浮性变差,因此对于以紫硫镍铁矿为主的硫化镍矿石要求快采、快运、快选,矿石存放越久越不利于选别。     一般的蛇纹石化矿石,用黄药做捕收剂,镍回收率和硫化率接近或比较接近,是比较好选的硫化镍矿石,使用调整剂可提高精矿品位,回收率无明显改善。蛇纹石具有一定的可浮性,所以精矿中30%左右脉石矿物中有相当部分是蛇纹石,致使精矿中金属品位降低,氧化镁含量高。强蚀变矿石中蛇纹石含量较少,在一般的浮选生产中,硫化物损失严重。     研究证明:各类厂矿中的硫化镍矿物可选性无明显差异,但矿石中脉石矿物对选别生产显著影响,因此,提高镍矿物选别指标或降低精矿中氧化镁的研究工作中,必须重视脉石矿物的抑制。     (二)含镁脉石矿物的浮选工艺性质     金川硫化铜、镍矿床中主要脉石矿物为含镁硅酸盐,由于地质蚀变作用,这些硅酸盐主要以蛇纹石、绿泥石、滑石的形式存在,这些脉石矿物对铜、镍的浮选影响较大。     1、主要脉石矿物的结构     蛇纹石是层状碳酸盐矿物中最简单的矿物,结构式为[Mg3Si2O3(OH)],在它的没一层结构中都含有一层硅氧四面体,水镁石层获得额外电荷,所以和另外一个硅氧四面体六方网成夹层结构,一旦在滑石层上没有净电荷而只有范德华力时,这个夹层就裂开,滑石也很软。     绿泥石也是层状硅酸盐矿物,结构式为(Mg·Al·Fe)12[(SiAl)8O22](OH12),它是在双层云母之间夹上一层水镁石而形成的,如果水镁石层价键遭到破坏,这个矿物就裂开。和前两种矿物比,它最松软。     2、脉石矿物的可浮性     蛇纹石大量存在于镍精矿中而影响精矿质量。在镍矿的生产实践中发现蛇纹石大量进入镍精矿而难以脱除,原因是蛇纹石在形成过程中具有较强的磁性,具有磁性的蛇纹石吸附与同样具有磁性的硫化物表面一起进入精矿;另外,带正电的蛇纹石易吸附与带负电的镍矿物表面而上浮。     绿泥石在镍矿物浮选中易浮难抑,另外,绿泥石疏松易碎,在磨矿过程中易泥化。绿泥石矿泥在镍矿物浮选中其行为与蛇纹石细泥基本一致。     滑石具有非极性表面,疏水性好,具有较强的天然可浮性,仅用起泡剂就能很好使之浮游,镍矿物浮选中,滑石极易进入精矿中。     三、降镁现状分析     (一)工艺流程及其特点     90年代,为了给闪速炉提供低镁合格精矿,弥补二矿区富矿精矿量的不足,金川公司选矿厂、金川镍钴研究设计院、中南工业大学、西北矿冶研究院等单位,针对龙首混合矿石低精矿中氧化镁进行了大量的试验研究,这些试验研究概括起来有三种:       1、通过改变工艺流程降镁;       2、通过新药剂达到活化有用矿物,抑制脉石矿物的药剂降镁;       3、采用改变工艺流程和添加新药剂相结合的方式降镁。       通过大量的试验研究,一选车间于1998年6月9月分别对2#系统和1#系统进行了流程改造,形成了目前的降镁工艺,产出的低镁精矿送闪速炉处理,新的降镁工艺主要是强化了精选作业,增加了粗选次数,通过提高精矿品位达到降镁的目的。现场生产实践证明三段磨矿、三段浮选的阶段磨选流程是选别金川龙首混合矿石的成功经验,既可使有用矿物达到充分单体解离得到有效回收,又可减少过磨和矿物表面污染。生产实践还证明,该流程适应性比较好,既可组织降镁生产,为二期闪速炉提供低镁精矿(精矿中氧化镁含量≤7%);又可以组织低精矿品位生产,为一期电炉生产提供原料,并且在这两种情况下,回收率都基本不受损失。一选磨浮工艺流程(框图)如图1。    图1  一造厂磨浮原则流程     (二)生产指标分类统计分析     对2000年1~8月选厂生产指标进行了分类统计,从统计结果得出如一结论。     1、原矿品位对指标有着直接的影响。随着原矿品位的升高,精矿品位、回收率均呈上升趋势,精矿中MgO含量逐渐降低。     2、原矿镍品位大于1.2%时,只要控制精矿镍品位大于6.5%,精矿中MgO含量即能低于7%,说明在现有工艺条件下,保证一定的精矿品位是降镁的首要条件。     3、原矿镍品位小于1.2%时,要保证精矿中MgO含量,必须将精矿品位提高到7%以上,回收率损失较多。     四、降镁问题分析     (一)矿石性质对降镁的影响     1、MgO赋存矿物的自然可浮性     大多数硅酸盐矿物有强的共价键或离子键,亲水性强,可浮性差,如橄榄石、辉石等。但蛇纹石、滑石、绿泥石等矿物是特殊的层状或双链状硅酸盐矿物,破碎后表面键力是分子键力,疏水性好,自然可浮性强,在浮选过程中容易进入精矿,致使精矿中MgO含量升高。金川矿区的矿石大多发生蚀变,原生的橄榄石、辉石大多蚀变为蛇纹石、滑石、绿泥石等,这些含镁矿物可浮性好,是MgO难以抑制的主要原因。     2、矿石硬度     矿石的硬度变小,在磨矿过程中更容易泥化,矿石的蚀变与矿石中构造挤压带的发育会加剧这一趋势,使蛇纹石、滑石、绿泥石矿泥包裹在金属矿物的表面进入精矿,造成MgO含量升高。     3、矿石品位     矿石中金属硫化物与含镁脉石矿物呈负相关,即矿石品位越低,MgO含量越高。2001年1~8月一选矿处理的龙首混合矿石累计Ni原矿品位1.333%,比计划Ni原矿品位1.35%低0.017%,比2000年同期的1.445%降低了0.112%,呈明显的下降趋势,增加了降镁工作的难度。     (二)降镁方案的局限性     针对龙首混合矿石改善镍铜指标,降低精矿中MgO的工作,各大专院校,科研院所做了大量的试验研究,对不同的矿石采用不同的技术措施都有一定的效果,但是一经生产应用,效果若显若隐。选矿过程很复杂,工业化生产又是一个连续性过程,因目前矿山尚无法实现配矿或稳定出矿,入选的矿石性质、品位波动很大,以不变(或说相对固定)的选矿设备、工艺流程处理多变化矿石,使过程控制更加复杂化,从而使一些看起来比较好的技术措施,在现场应用时就很难取得理想的效果。     五、降镁工作的研究方向     (一)工艺矿物学研究     一矿区龙首混合矿石矿物组成复杂,过去的矿物工艺学研究多侧重于考察原矿,对脉石矿物在选矿过程中各中间产品的赋存状态和工艺特性研究很少,而弄清楚含镁脉石矿物在整个浮选工艺过程中的走向及选矿过程中各中间产品中的脉石矿物的工艺特性,对降镁工艺与药剂的研究具有重要的指导意义,是降镁的关键所在。     (二)选矿新工艺研究     金种一矿区龙首混合矿石降镁工艺的研究晚于二矿区,但也取得了一定进展。但从生产实践来看,还需继续深入探索。     澳大利亚的G·D·Senior等人采用一种新的工艺流程处理镍硫化矿,可除去98%的含镁矿物,工艺要点为:预先浮选含镁矿物,然后将物料分别处理,分段抑制含镁矿物,最后活化含镍矿物,得到高品位镍精矿。金川一矿区混合矿石主要含镁矿物为蛇纹石,其良好的可浮性是造成精矿MgO含量高的重要原因,可以考虑预先浮选蛇纹石,并通过降镁药剂分段抑制其它含镁矿物来达到降镁的目的。另外,G·D·Senior等人认为,粒度不同的物料可浮性和对药剂的要求都有很大的差异,这一点也值得借鉴。     (三)浮选新药剂研究     在工艺流程确定的前提下,影响浮选过程和最终指标最为关键的因素就是浮选药剂的合理选择与使用。由于浮选过程中药剂之间存在着的交互作用,很难真正搞清楚选矿药剂的作用机理,现有的很多理论都是以假设和推测的形式出现,不能确定地描述药剂如何作用于矿物,怎样改变其浮选特性,这一点妨碍了浮选药剂研究的针对性。因此,深入研究各种药剂的作用机理,是降镁研究的重要组成部分。     (四)应注意整体指标的优化     各大专院样、科研院所以往对于金川矿石降低精矿中MgO的研究中,虽然部分地注意了对其它指标的影响,并且采取了一定的技术措施,但这种注意还是不够的。很多降镁方案都要通过不同程度地提高精矿品位来实现,而精矿品位的提高势必造成回收率的损失。若是为了降镁则大幅度提高精矿品位,导致过多地损失回收率,在经济上是不合理的,金川资源有限,在考虑降镁满足闪速炉要求的同时,不能过多损失镍、铜回收率,要特别注意整体指标的优化,这应在今后的降镁工艺研究中引足够重视。     六、结语     金川一矿区龙首混合矿石降镁工艺,经各大专院校、科研院所的大量研究,已取得了一定的进展,有些已应用于工业生产中,目前一选矿的降镁工艺就是在充分吸收各家研究成果的基础上形成的,生产实践也证明在矿石性质、品位相对稳定时,还要靠提高精矿品位来达到降鲜的目的;在矿石性质恶化时,精矿中MgO含量还不能满足要求等,因此,针对一矿区龙首混合矿石降低精矿中MgO含量的工作,还要进一步地探索研究。

氧化镁在电加热管方面的应用

2019-01-04 17:20:20

镁粉主要可用于火箭冲压发动机和去除推进剂燃气中氯化氢。另外还可用作还原剂、制闪光粉、铅合金,冶金中作去硫剂、有机合成、照明剂等。镁粉与铝粉一样,受潮会产生自燃、自爆。当每公升空气中含镁粉10-25毫克,遇到火源就会爆炸。因此工厂在储放镁粉时要格外的注意,一旦生产自然爆炸后果将不堪设想。镁粉做为炼钢不可缺少的材料之一,其需求也多来自于炼钢,因此钢市的好换对镁粉价格有一定的制约作用。 镁粉分为碳酸镁、雾化球形镁粉等。而氧化镁粉作为制作电加热管的主要材料之一,对其电加热管性能好坏的影响非常大。电工级氧化镁粉是指电熔结晶氧化镁块经破碎并对不同颗粒尺寸或数目按一定比例配合,直接或改性后用于管状电热元件中作为在高温下导热的绝缘介质。 电工级氧化镁粉可分为普通型、低温防潮型、中温防潮型以及高温型。氧化镁粉在工作温度的时候,其要具有较高的导热性能,以便能迅速把热量传递到管表面上去,使电阻与管壁温度更接近。当工作温度在1100摄氏度以内时,其具有较好的绝缘性能。其必要要具有一定的颗粒度,形状一般要求为圆状。并且要求其无论在常温还是高温状态下对发热丝材料和管材都应无腐蚀现象。 因氧化镁矿石经粉碎后,颗粒的大小不同,若按一定数量的配比具有以下优点,一是能提高粉密度,减少电阻丝的温度,从而提高电热元件的寿命。二是能克服“分筛”效应,提高mgo粉的利用率。

纳米氢氧化镁的用途及合成方法

2019-01-04 09:45:23

氢氧化镁产品分类及应用现状

2019-03-08 11:19:22

氢氧化镁产品从应用上分为阻燃级、中和级、医用、电子级、油品增加剂用氢氧化镁等;从结构上分为片状、超细、晶须、纳米级、重质氢氧化镁等。其间发展潜力较好的是超细氢氧化镁和氢氧化镁晶须。 片状氢氧化镁可作为增加型阻燃剂,碳化法即以菱镁矿或白云石为质料,经煅烧、消化、除杂、碳化、沉积制得产品。以白云石为质料,为沉积剂并参加表面改性剂十六烷基三甲基化铵,水热制得菱面片层氢氧化镁,该法镁、钙别离程度较高,镁的提取率为90.02%,产品收率为88.21%;沉积法以菱镁矿或白云石为质料,经煅烧、浸取、除杂、沉积制得产品。以白云石为质料,先后用和硫酸浸取,参加克己络合沉积剂和表面改性剂聚乙二醇可制得产品,收率为85.20%。酸解法以多种含镁矿藏为质料,经过酸解、除杂、沉积制得产品。以白云石为质料,经酸化、除杂,以白云石灰乳为沉积剂,产品纯度为98%,其间,白云石灰乳经过白云石煅烧消化制备。 超细氢氧化镁可作为复合材料的阻燃成分,参加不同的表面改性剂能够改动产品粒径。以氯化镁溶液为质料,为沉积剂,产品粒径 卤水替代。 氢氧化镁晶须是短纤维功能型材料,首要作为阻燃剂和补强材料增加到高分子材料中。沉积法,改善沉积进程能够改动长径比。以氯化镁溶液为质料,参加碱和表面改性剂,水热组成产品。以为沉积剂,丙三醇为表面改性剂,选用微波水热,直径为0.1~0.3μm,长度为80~110μm;改用和为沉积剂,酸为表面改性剂,直径为8~15nm,长度为50~150nm;中低浓度的和低浓度的氯化镁溶液,产品的分散性较好;以碱式硫酸镁晶须为前驱体,为沉积剂,油酸钾为表面改性剂,水热制得直径为1~2μm,长度为100~200μm的产品;参加表面改性剂不能减小粒径,反而会阻挠碱式硫酸镁晶须向氢氧化镁晶须转化。

从低品级菱镁矿中提取高纯氧化镁的研究

2019-01-24 09:36:25

Abstrac:The carbonization soakingof low2grade granularmagnesite is studied. Themineralproperty and light baking performance ofmagnesite, the digestingprocessofMgO aswell as the technologicalparametersof carbonization soaking are investigated. With the carbonization soaking of magnesite, high2grade MgO has been obtained, which contains 99% ofMgO。 我国镁矿资源非常丰富 ,采用碳化法生产轻质碳酸镁的工艺依据矿石性质不同而分为两种:白云石碳化法和菱镁矿碳化法。白云石碳化法生产工艺成熟,但由于碳化浸出过程存在钙含量较高的问题,所以该工艺生产高纯产品受到限制。随着冶炼技术的不断发展,冶金过程中的许多特殊作业趋向于使用高纯度镁砂来大幅度提高耐火制品的寿命,降低生产成本。同时由于高品级菱镁矿的大量出口,因此导致镁矿资源的综合利用问题日益显著。为此,笔者采用低品级菱镁矿粉矿进行碳化法提取高纯氧化镁 (wMgO大于 99%)的工艺研究。试验中,对菱镁矿的矿石性质及轻烧性能、氧化镁的消化过程和碳化浸出的工艺条件和参数进行了研究,并用所获高纯碱式碳酸镁生产出高纯镁砂。 一、矿石性质研究与工艺流程 试样的矿物组成比较简单 ,主要矿物为菱镁矿和白云石,次要矿物为滑石、绿泥石;微量矿物有石英、褐铁矿、黄铁矿、磷灰石等。MgO在矿石中主要作为独立矿物的基本组成形式存在于矿石矿物菱镁矿和脉石矿物白云石、滑石和斜绿泥石中。CaO以两种形式存在于矿物中:一种是以形成独立矿物的基本组成形式存在 ,如白云石、磷灰石 另外一种是以白云石微细包裹体形式存在于菱镁矿晶体中。SiO2亦以两种形式存在于石英、滑石、斜绿泥石、透闪石、方柱石等脉石矿物中,另一种是以石英和硅酸盐矿物细微机械包裹体形式存在于菱镁矿晶体中。 粒度筛析结果表明,wSiO2,wAl2O3在细粒级(-150目 )中略为偏高。wMgO,wCaO,wFe2O3在各粒级中变化不大,与多元素化学分析结果相近。化学分析结果见表1。本试验工艺流程见图1。二、试验结果与分析 (一)煅烧试验 天然菱镁矿在碳化过程中不能直接与二氧化碳起作用,碳酸仅对具有活性的氧化镁起反应,因此需将矿石在高温设备中轻烧,使菱镁矿逸出二氧化碳,生成具有活性的氧化镁。煅烧反应如下: 菱镁矿(WMgCO3约为90%) 轻烧料(WMgO大于90%)+CO2↑    (1) 为使氧化镁易于消化和碳化,对试样进行了差热分析。差热分析结果表明,试样中MgCO3的初始热分解温度为666℃。根据失重曲线可知,700℃以上。由于轻烧氧化镁的活性与煅烧温度和时间有关,故将温度控制在700~850℃之间,并在不同保温时间内进行煅烧条件试验。图2示出了温度和时间对菱镁矿灼减的影响。结果表明,菱镁矿的灼减随温度升高和时间延长而增大。为保证轻烧料不欠烧也不过烧,并具有较高的活性,最佳煅烧温度应控制在800℃,煅烧时间为1.5h。(二)消化试验 许多厂家的生产实践表明,采用白云石生产轻质碳酸镁的工艺中,白云石煅烧后,矿石中含量约30%的CaO与水反应生成Ca (OH)2,矿石自然 裂 解,wMgO为20 %也易与水作用生成Mg(OH)2,因而无需采用细磨工艺。本试验从节约能耗的角度出发 ,将菱镁矿破碎至较小粒级后进行煅烧、消化试验,以探索消化工艺的最佳工艺条件。消化过程的化学反应式如下: MgO+H2O→Mg(OH)2              (2) 轻烧料中的氧化镁在水溶液中转化为氢氧化镁的过程与反应浓度、温度、时间等因素有关,同时与粒度有关。本试验的消化试样为小于2mm粒级的轻烧粉料。 1、消化浓度 将试样放入80℃水中,搅拌4min后过滤,分析不同浓度对消化率的影响。由试验结果得知,消化过程浓度大,转化率低,当浓度低于20%时 ,消化率的变化不大 ,故取消化浓度为 20%进行下面的试验。 2、消化时间 由于浓度试验消化率较低 ,故消化时间试验时增强了搅拌 在消化温度为 ℃、浓度为,80 20%的条件下进行了试验。时间变化对消化率的影响见图3。图3中曲线表明,消化反应时间的增加,对消化率的影响比较明显。消化时间超过12min,消化率已达98%以上。3、消化温度 在试验浓度和时间相对稳定的条件下,温度对消化结果的影响见图4。由图4看出,氧化镁转化成氢氧化镁的过程受化学反应控制,提高反应温度,可加快反应速度,消化温度的提高,对消化过程的影响极为明显。适宜的消化温度应控制在80℃以上。(三)碳化浸出试验 将氢氧化镁转化成碳酸氢镁,是以适量的二氧化碳为浸出剂,在特定的浓度、温度条件下进行反应,不同的时间和压力对浸出结果影响较大。其化学反应式如下 Mg(OH)2+CO2+H2O→Mg(HCO3 )2+H2O          (3) 借鉴前期做过的工作,在常温常压条件下对消化后的试样进行了碳化浸出试验,进塔液nMgO为18.62g /L, cCO2为33%,在浸出过程中定时抽取泥浆过滤,分析碳酸氢镁溶液中WMgO,试验结果见图5。图5中下部曲线表明,试样粒径较大,碳化时间较长。超过90min后氧化镁的转化率增加不明显,浆液中nMgO为7.8g/L。为此,在上述浸出工艺条件相对稳定的条件下,降低进塔液中氧化镁的浓度进行了试验。由图5中上部曲线可知,随着进塔液中的氧化镁浓度的降低,转化率升幅较大,碳化反应至90 min时,MgO的转化率达84.01%,回收率为80.97%。(四)热水解试验 碳化浸出过程实现了目的组分由固相到液相的转移。经固液分离、滤去残渣,将滤液 (重镁水 )加热,使碳酸氢镁转型生成碱式碳酸镁。化学反应式如下: 5Mg(HCO3 )2→4Mg(OH)2·Mg(OH2 )·4 H2O+6 CO2 ↑    (4) 根据上式,在滤液加温至沸腾温度时进行了热水解时间对母液 (废镁水 ) 中氧化镁含量影响的试验。试验结果表明,随时间的延长,母液中氧化镁浓度随之降低。超过5 min后,母液中nMgO均为0.18 g/L,故热水解过程控制为滤液加热至沸腾温度后继续保温 5 min。过滤烘干后的碱式碳酸镁产品多元素化学分析及氧化镁回收率如表2所示。三、结论 (一)采用碳化法浸出工艺处理低品级菱镁矿粉矿,可获得灼减为零时wMgO为99.31%的高纯轻质碳酸镁。氧化镁回收率为80.97%。经烧结工艺处理 ,可获得氧化镁含量为 99.21%,体积密度为3.38g/cm的高纯烧结镁砂。 (二)常压二氧化碳浸出工艺生成的轻质碳酸镁中氧化钙含量较前期加压试验最终产品的CaO品位略有升高。 (三)由于菱镁矿碳化浸出过程中未采用磨矿工艺 ,试样粒径较大 ,故氧化镁的转化率和回收率不近人意。当粒度变小后进行研究,浸出液中氧化镁的转化率指标非常理想。

烧结矿不同碱度、氧化镁及二氧化硅含量水平试验研究

2019-01-24 09:38:21

Abstract:Based on the present material condition of N0.3 sintering plant of Magang, the effects of different basicitys and SiO2 and MgO contents in sinter on production and quality of sinter are studied. The results show that, with increas ing the sinter basicitys and SiO2 contents, the sinter strength is improved, but after increasing the MgO contents in sinter, all sinter technicaleconomic indexes are worsened. Therefore, the sinter basicity should be 2.0, SiO2 content should be 4.95%, MgO content should be reduced to the best of its ability in practical production. 烧结矿的碱度、MgO及SiO2含量水平直接影响着烧结矿品位、强度、产量及其冶金性能。为了了解其变化对烧结生产技术指标的影响,马鞍山钢铁股份有限公司(简称马钢)在烧结实验室进行了烧结矿不同MgO、SiO2含量及不同碱度水平的试验。 一、原料成分及烧结工艺制度 试验用含铁料均取自港务原料厂和马钢第三烧结厂生产现场,其化学成分列于表1。此次烧结试验在Φ300mm烧结杯上进行,料层高度为580mm,点火负压6kPa,点火时间1.5min,烧结抽风负压为12kPa。烧结饼经机上冷却后,进行落下和ISO转鼓试验,然后取样做化学分析和冶金性能检验。每组试验在相同的条件下反复进行多次,取在允许误差范围内的两次试验平均值为试验结果,以确保试验结果的重现性。 表1  含铁原料化学成分分析  %粉矿名称TFeFeOSiO2CaOAl2O3MgOTiO2SP烧损姑精57.410.5012.090.8231.150.2990.2250.0120.2502.25CVRD粉65.280.233.740.3550.780.0890.0540.0120.0190.72杨基粉58.710.314.350.1021.350.1040.0490.0030.05010.47天普乐粉62.361.763.840.0291.940.0670.1150.0030.0494.47恰那粉63.010.313.970.1302.120.0850.1040.0120.0653.19FTC粉66.010.313.100.0780.890.0430.1180.0090.0291.22MBR粉67.000.421.460.1201.200.0600.190.0100.0501.30 二、试验方案 本次试验共进行7组。所用的烧结含铁料配比设计基本与马钢第三烧结厂现行生产混匀矿配比相一致,主要是通过对含SiO2较高的姑精配比以及石灰石、白云石的添加量作调整,使得烧结矿的碱度、MgO及SiO2含量满足各个试验水平的要求。设计各组试验因素的水平见表2。各组混合料配比及编组见表3。混合料中含铁料配比为100%,燃料和熔剂百分数是外配的。 表2  各组试验因素的水平  %组号SiO2RMgO备  注14.951.852.10基准组24.951.652.10低碱度34.952.052.10高碱度44.951.852.40高MgO含量54.951.851.80低MgO含量64.801.852.10低SiO2含量75.151.852.10高SiO2含量 表3  混合料的配比及编组  %组号姑精CVRD粉杨基粉天普乐粉恰那粉FTC粉白云石石灰石113.63012111716.410.097.10213.23012111716.810.064.87314.03012111716.010.139.38413.73012111716.311.806.20513.53012111716.58.407.99611.73012111718.310.116.50716.23012111713.810.077.92 三、试验结果及分析 烧结矿化学成分列于表4,冶金性能试验结果见表5。 表4  烧结矿化学成分  %组号TFeFeOSiO2CaOMgOAl2O3TiO2SPC/S157.738.445.029.232.101.460.1060.0110.0651.84257.977.965.098.532.111.540.1030.0100.0631.67357.137.465.049.982.071.580.1200.0140.0681.98457.588.735.009.412.301.560.1040.0120.0691.88557.689.254.949.271.891.410.1070.0090.0651.88658.158.564.819.052.101.550.1020.0090.0651.88757.627.755.159.352.031.500.1170.0130.0711.82 表5  还原性、还原粉化及熔滴性能试验结果组号还原粉化试验结果/%不同还原时间的还原度(RI)/%开始软化温度Ts/℃开始熔化温度Tm/℃开始滴下温度TD/℃最高压差△Pmax/kPa透气性指标S/kPa.℃滴下量MD/gRDI+6.3RDI+3.15RDI-0.530min60min90min120min150min180min125.3658.767.5330.3646.2458.1566.4671.2075.141108133514954.60941841.5223.5654.928.3728.3944.9055.5260.9668.4771.981128132414402.15715780.3326.2459.637.5529.9645.1357.9367.9275.7181.091115134515203.5303421.5428.0961.796.6828.8843.3254.1463.7569.7574.131130133015052.15732085.0532.7862.717.4525.7741.2854.0064.3273.0579.391082132414654.70733979.1626.4159.557.4024.7939.5151.4461.7870.5278.061108131014807.74777843.1724.8057.428.1327.9644.3757.9868.3776.7681.931126134215103.13819741.4 (一)不同烧结矿碱度的影响 由第2组、第1组和第3组构成不同烧结矿碱度水平试验。从试验结果可以看出,当烧结矿SiO2含量一定时,随碱度的提高,烧结生产率及烧结矿强度指标均呈上升趋势。当碱度由1.65升至2.05时,垂直烧结速度稍微加快(由18.78mm/min升到19.51mm/min)、再加上烧结矿成品率的增加(由76.42%升到78.17%),使烧结生产率提高,由1.231t/m2.h增加到1.253t/m2.h,而且也改善了烧结矿的强度指标,转鼓指数也从65.39%提高到67.88%。这主要是因为碱度提高后,烧结矿粘结相中铁酸钙系得以进一步发展的缘故。同时,由于烧结成品率随碱度升高而提高,吨矿烧结固体燃耗由68.24kg下降到66.65kg。而烧结矿品位相应由57.97%降到57.13%。 随碱度升高,RDI+6.3不断升高,RDI+3.15亦升高,RDI-0.5有所降低,但1、3组极接近;还原性改善明显,碱度提高0.1,RI180min提高近3.2%,软化温度无明显变化,熔融和滴下温度不断升高,滴下量逐渐减少。 (二)同烧结矿SiO2含量的影响 由第6组、第1组和第7组构成烧结矿不同SiO2含量试验。在烧结矿碱度一定条件下,随着SiO2含量增加,烧结矿粘结相增加,强度指标变好。当烧结矿SiO2含量从4.80%提高到5.15%时,转鼓指数由64.80%升高到67.70%,提高幅度约2.9个百分点,烧结成品率亦提高1个百分点。而烧结生产率则呈下降趋势,从1.300t/m2.h降到1.247t/。造成生产率下降的原因是:当烧结矿粘结相增多时,烧结过程透气性变差,烧结速度会下降。此外,本次试验是通过调整含SiO2较高的姑精矿配量来满足烧结矿SiO2含量不同水平要求。提高烧结矿SiO2含量就需要配加更多的姑精矿,精粉率增大也直接影响了烧结矿生产率的提高。 随SiO2含量的升高,烧结矿品位由58.15%下降到57.62%。这是因为在原料中增加了高硅的自产姑精矿用量、并减少了进口高品位巴西FTC矿,同时石灰石的配比也有所提高。 6、1、7三组含SiO2由低到高,对应的还原粉化及还原性指标基本相近,而软化、熔融、滴下温度亦不断升高,TD-Ts、TD-Tm区间差异不大,最高压差和透气性S值不断降低,滴下量无明显差异。 (三)不同烧结矿MgO含量的影响 由第5组、第1组和第4组构成烧结矿不同MgO含量试验。从试验结果可知,随MgO含量的增加,烧结矿产量、转鼓强度均有所下降,固体燃耗上升。当烧结矿MgO含量从1.8%增加到2.4%时,生产率由1.281t/m2.h降至1.240t/m2.h,烧结矿转鼓强度由67.07%降到65.67%;而吨矿固体燃耗由68.04kg上升到69.20kg。造成烧结经济技术指标变差有以下原因: 1、白云石在烧结过程中的分解是吸热反应,因此对分解后的MgO矿化形成新的化合物不利,显微分析发现有不少未发生反应的圆粒状MgO被方镁石周围生成的铁酸镁(MgO·Fe2O3)液相所胶结。 2、本次烧结试验及现场生产均配用粗颗粒白云石(-4mm含量只有90%),导致烧结矿产生大量白云石“白点”。 3、白云石与硅酸盐矿物常混在一起,生成镁橄榄石和钙铁橄榄石,结晶细小,一般以玻璃质的物相存在,而玻璃相中发现有细微裂纹,随着白云石的添加,烧结矿玻璃相大量增加。 4、白云石中Mg++容易渗入Fe3O4晶格,稳定了Fe3O4矿相,造成Fe3O4难以向Fe2O3转变形成铁酸钙,MgO添加量愈多,将有更多Mg++渗入到Fe3O4晶格中,限制了铁酸钙系的发展。 由表5可见,随MgO含量上升,还原粉化指标略变差,还原度有所下降,软化、熔融、滴下温度逐渐上升。 四、结  语 (一)在烧结矿SiO2含量一定条件下,随着烧结矿碱度提高,烧结生产率及烧结矿强度指标均能得到提高,还原粉化指标得到改善。因此,在现有高炉用料碱度得到平衡的条件下,马钢第三烧结厂应按2.0的碱度组织生产以满足炼铁厂对烧结矿产、质量的要求。 (二)提高烧结矿SiO2含量亦能提高烧结矿强度,烧结矿软熔温度均有所上升,其它冶金性能无明显变化,但同时烧结矿品位及生产率皆呈下降趋势。因此,在目前条件下烧结矿SiO2含量应稳定在4.95%,以保证烧结矿的强度。 (三)当MgO含量增加时,烧结各项技术经济指标均变差,烧结矿还原性及还原粉化指标略变差。可见,在确保高炉炉渣流动性的前提下,应尽可能降低烧结矿中MgO含量。

铜和什么反应,变黑?

2018-12-13 10:31:09

铜和氧气反应,变黑方程式:2Cu+O2===2CuO不是点燃是加热放火上烧一烧旧行了别用硝酸,浓的稀的都不行,会把铜溶解

一种生产环保型氢氧化镁的新工艺

2019-02-22 09:16:34

跟着社会经济的开展,燃煤开释的二氧化硫、二氧化碳,燃油开释的硫化合物,氮化合物及采矿、冶金、印染、化工、制药等职业排放的工业废液对人类赖以生存的环境的污染日益严峻,怎么有用地处理这些污染要素,以削减它们给人类带来的巨大丢失,已成为需求火急处理的全球性重要问题之一。 依据对环境保护的需求,处理这些污染必定要用到具有以下特色的化工产品:无毒、温文、不腐蚀处理设备,廉价易得、处理本钱低,效率高,能力强、易操作,且易收回或综合利用、不构成二次污染。 料浆状氢氧化镁正是契合上述一切特色的最佳质料之一,它是一种首要运用于环保范畴的液相无机碱类产品,具有活性大、比表面积大、吸附能力强、缓冲和中和能力强、非沉积性、流动性好、运用和调理便利、温文、安全、无毒、无害、腐蚀性小、易操作、副产品易收回或综合利用等特色,被称为环境友好型“绿色安全中和剂”,运用于酸性废水中和、废液中重金属离子(Ni2+、Mn2+、Cd2+、Cu2+、Cr3+、Cr6+等)脱除、烟气脱硫、印染废液处理等环保范畴,具有其他碱性物质(氧化钙、氢氧化钙、、碳酸钠等)无与伦比的优越性,以往运用于酸性工业废水、含硫烟气处理范畴中的一些强碱物质,如:石灰、烧碱、纯碱等的运用逐渐遭到限制,而被兴起的弱碱氢氧化镁所代替。 因料浆状氢氧化镁运用于环保范畴的许多优势,20世纪90年代末,国外料浆状氢氧化镁料的出产和运用得到迅速开展;我国虽然具有丰厚的镁资源,可是氢氧化镁的出产和运用并未引起人们的满意注重,首要处于研讨开发阶段。近年来,国内虽然建设了一些中试或出产设备,但规划小、品种少、产品质量低、技能水平低,亟待进步职业全体水平。 一、现有料浆状氢氧化镁的首要出产办法 依据氢氧化镁用处和形状的不同,可分为粉末状、滤饼状、料浆状三种。用于环保范畴的料浆状氢氧化镁的纯度要求不是很高,一般在30%左右即可,首要是要求不含重金属等污染严峻的杂质,其出产办法相对简略,首要包含粗氧化镁(镁砂、粗制工业氧化镁等)水化法、海水或卤水-碱性物质(、石灰、氢氧化钙、等)沉积法等。 氧化镁水化法是一种非常陈旧的出产工艺,首要是将菱镁矿轻烧得到的轻烧氧化镁粉放入盛有热水的反响池中,边加边拌和,加料结束后保温沉化2h左右,然后进行固液别离、脱水,得到滤饼状及料浆状氢氧化镁。此工艺根本不具有除杂功用,产品质量受质料氧化镁的纯度和活性影响,氧化镁中的杂质除微量可溶性的盐类外,根本被带入产品中,因此,只能出产低层次的氢氧化镁。 海水或卤水-碱性物质(、石灰、氢氧化钙、等)沉积法是将海水或卤水经过简略的净化后,参加碱性沉积剂,发生氢氧化镁沉积,经过滤、洗刷、脱水得到滤饼状及料浆状氢氧化镁。虽然原理简略,但的挥发性强,易污染环境,操作难度大;石灰和氢氧化钙易生成硫酸钙,随氢氧化镁一同分出,构成产品杂质含量高,质量差;是强碱,易使生成的氢氧化镁构成胶体沉积,给产品功能操控带来困难,一起易带入较多的Na+和Cl-及其他杂质,也构成产品杂质含量高,纯度难以保证。 二、海水、卤水-轻烧白云石沉积法 氢氧化镁运用于环保范畴具有其它碱性物质无与伦比的优越性,在国外已被大量出产和广泛的运用,而我国氢氧化镁的出产办法较落后,本钱较高,杂质含量较多,质量较差,在环保范畴的运用更是屈指可数。鉴于此,咱们首要针对出产环保型氢氧化镁,研制了海水、卤水-轻烧白云石沉积法。 该办法归于沉积法的一种,以海水、卤水和轻烧白云石为质料,选用操控结晶一步组成工艺制取氢氧化镁,它克服了以往出产办法的不利要素,产品纯度高、杂质含量少、质量安稳。 (一)根本原理 将轻烧白云石水合生成含氢氧化钙和氢氧化镁的轻烧白云石乳,轻烧白云石乳中的氢氧化钙和质料海水、卤水中的镁离子在接连组成及别离一体化反响器中反响生成氢氧化镁。本工艺选用自主研制的接连组成及别离一体化反响器,在反响器中始终保持一定量的晶种,简化了传统的晶种回头增加工艺,并在反响器中将生成的氢氧化镁和杂质进行了有用地别离,氢氧化镁完结液经沉降、洗刷、别离、脱水得到滤饼状氢氧化镁,把滤饼加水谐和,并按份额增加分散剂,以防止氢氧化镁的聚会结核,然后制得不同浓度且功能安稳的料浆状氢氧化镁,反响方程式:(二)工艺流程(见图1)图1  海水、卤水-轻烧白云石沉积法工艺流程图 首要,用一种不同于韩利华说到的新处理技能,将质料水中影响产品质量的杂质除掉,得到净化质料水,将轻烧白云石加适量净化质料水水合消化后,加水制得契合组成要求的轻烧白云石乳。 然后,将制好的净化质料水和轻烧白云石乳按份额打入带拌和的接连组成及别离一体化反响器中,操控好反响时间和反响结尾,使二者充沛触摸、完全反响。因为氢氧化镁和不溶性较大粒径杂质沉降速度的不同,不溶性较大粒径杂质首要沉积到反响器底部,并由反响器底部排出。富含氢氧化镁的完结液从反响器中上部进入一级沉降器进行固液别离,固相经净化水洗刷除掉大部分可溶性杂质后进入二级沉积器进行二次固液别离,固相经脱水得到滤饼状产品,滤饼加水谐和,并按份额增加分散剂,以防止氢氧化镁的聚会结核,然后制得不同浓度且功能安稳的料浆状氢氧化镁。 (三)产品质量 氢氧化镁的技能方针多种多样,但用于环保范畴的料浆状和滤饼状氢氧化镁在我国没有见专门的质量标准,为适运用户需求,国外有关供应商对料浆状和滤饼状氢氧化镁产品均拟定了厂商标准,见表1。 表1  国外料浆状、滤饼状氢氧化镁厂商标准本工艺出产的氢氧化镁的首要方针:Mg(OH)230%~35%,CaO 0.5%~0.6%,Cl-≤0.1%,虽杂质氧化钙的含量稍高于日、美产品的质量方针,但已远低于瑞士的质量方针。且该质量的氢氧化镁已足以满意废水处理、烟气脱硫等环保范畴的质量要求咱们将在此基础上进一步改善工艺,进步产品质量,以满意更多职业更高运用要求的需求。 (四)工艺特色 该工艺的首要质料为海水、卤水和轻烧白云石,其来历广泛、报价低廉。 该工艺反响在常温下进行,整个进程不需求加压、加热,出产节能、本钱低。 该工艺进程无有毒、有害及有腐蚀性的物料投入和产出,对出产设备无特殊要求,首要设备为压滤机、普通工业泵和反响器、沉降器等碳钢槽罐,设备出资少,操作简略。 该工艺中,经过对质料水的预处理,有用地下降了产品中杂质含量,产品质量显着优于国内同类工艺产品,达到了沉积法出产高质量氢氧化镁的要求。 该工艺中,接连组成及别离一体化反响器的研制和运用,有用地操控了产品结晶,反响器中保留足量的晶种,防止了晶种的回头增加,完成了接连组成,并完成了方针产品和杂质的有用别离,产品质量较传统办法出产的产品杂质含量少、质量高。 三、结束语 污染正给人类构成巨大的损害,给经济构成巨大的丢失。就我国排放的二氧化硫一项,其构成的酸雨给我国经济构成的丢失每年大约在1100亿元在上,环境管理,已刻不容缓。 我国在酸性废水中和、重金属离子脱除和烟气脱硫等环保方面运用的处理工艺比较落后,操作杂乱,质料耗费高,运转本钱高,并且处理的不完全,副产品又构成二次污染。 跟着我国可持续开展战略的施行、世贸组织的参加、环保认识的增强和环保法律法规的逐渐健全、完善,运用于环保范畴的新技能、新工艺也被日益注重,对其研讨开发的力度正在加大,高效、无毒、优质的新产品或代替产品越来越遭到人们的注重。 我国海水、卤水资源、白云石、菱镁矿、水镁石等含镁资源适当丰厚,应充沛利用现有资源优势,经过改善现有落后工艺,研讨开发新工艺,大力开展多品种的氢氧化镁产品,并进步产品的质量和附加值、下降出产本钱,以满意环保及其他职业日益开展对氢氧化镁质量要求不断进步和用量不断增加的需求,促进经济健康快速地开展。

氯化法生产四氯化钛的反应原理—加碳氯化反应

2019-01-25 13:37:59

无论是氯化法钛白生产还是海绵钛生产过程中,粗TiCI4的制取工艺基本相同。以氯化炉为主体设备可分为以下几种。    ①固定床氯化随着技术的进步已经被淘汰。    ②熔盐氯化哈萨克斯坦、中国锦州正在应用。    ③流化床氯化流化床氯化被普遍采用,快速循环流化床氯化正处于开发阶段。                      Ti02+2CI2===TiCI4+02         △G0T=184300-58T(T为409一1940K)    该反应即使T=2000K, △G0T>0由此可见,在标准状态下不能自发进行氯化反应。    只有在加碳的情况下,钛铁矿、金红石才能正常反应。其反应式如下:        Ti02(s)+2C(s)+2CI2(g)===TiCI4(g)+2C0(g)            △G2=48000-266T(T为409一1940K)        Ti02(s)+C(s)+2CI2(g)===TiCI4(g)+C02(g)            △G3=210000-58T(T为409一1940K)    在正常情况下以上两反应△G pco;当T>980K时,pco2Mn0>Mg0>Fe203>Fe0>Ti02>A1203>Si02。其中钛的低价物氯化优于Ti02,其顺序为:Ti0>Ti203>Ti305>Ti02。    各物质在800℃时的氯化率见下表。    由此可以看出,在沸腾炉未被氯化的床层料和熔盐氯化排出废盐之中以Si02、A1203为主,其次为CaO, MgO.因CaO, MgO熔点低,沸点高,可被氯化成CaCI2、MgCl2且挥发度低,所以在沸腾炉氯化床层料中的比例大时最易造成烧结,黏附在筛板上造成筛板堵塞,影响氯化炉正常运行,因此要求原料中CaO, MgO含量要低。

碳还原氧化铜

2017-06-06 17:50:00

碳还原氧化铜原理:在加热的条件下,碳能从氧化铜中夺取氧使氧化铜还原成铜。2CuO+C=2Cu+CO2↑用品:试管、单孔塞、酒精灯、铁架台、木炭、氧化铜、粉笔、石灰水。操作:1.把木炭放在研钵里,研磨成极细的粉末。按1:10的质量比称取木炭和氧化铜,放在研钵里搅拌半分钟,使两者充分研细混均。2.取一段玻管(直径10mm左右),把一端拉细。3.取干燥的15×150mm试管,按图1所示装置。在试管里放2g上述混合物,用干燥的粉笔,沿试管内壁放入,大端跟混合物接触,另一端跟单孔塞接触。4.用酒精灯先均匀加热,然后集中加热反应物。5.随着反应的进行。澄清的石灰水变浑浊,说明生成了二氧化碳。6.当反应放出的热量足以维持反应的进行时,管底的反应物开始发红。这时移去酒精灯,剧烈的放热反应在几秒钟内很快蔓延到管内所有反应物,使它发生红光。7.反应停止后,生成的铜在二氧化碳气氛中逐渐冷却到室温时,取出金属铜粒。备注:1.本实验用酒精灯加热,只需3~4min,就能生成较大的铜粒,实验现象明显。2.反应物木炭和氧化铜的用量比是做好本实验的关键之一。3.本实验所用的氧化铜中20%为工业品,80%为化学纯。如果全部用工业品,生成物中含有较多的氧化亚铜。如果全部用化学纯氧化铜,虽能生成铜粒,但需要高温,而且时间较长。4.所用的木炭和氧化铜都要烘干。5.本实验的装置中,把一端拉细的粗玻管装在石灰水液面的目的有两个:防止反应完毕因试管冷却而石灰水倒吸;保证还原出来的铜在未冷却前保持在二氧化碳的气氛中,不致被空气氧化。6.用粉笔是为了防止反应剧烈时,混合物冲出,如果一支不够,可以放两支。。 

氧化剂和金溶解反应的电动势

2019-02-19 10:03:20

依照电化学腐蚀理论,金的溶解反响首要取决于金粒微电池的反响电动势(E)。E值愈大,金溶解反响的自由能(△G=-nFE)改变愈小、反响的推动力愈大,金溶解反响的热力学条件就愈好。 也就是说,要加速金在溶液中的氧化溶解反响,则需求加大正极和负极反响的电位差(电动势)。用浸出金时,负极Au(SCN2H4)2+∕Au电对的反响电位0.38V(25℃时)是个定数,故只要选用电对电位高的氧化剂来加大正极反响电位,才干扩展正负极反响的电位差。且在酸性液中具有复原性质,要使金溶解进入溶液,也必须有氧化剂存在。 在选用氧化剂时,首要应该考虑它的报价便宜、易得、复原产品不与生成安稳络合物等条件,还应考虑它的电位应高于负极金、银溶解生成络离子的反响电位。一般来说,氧化剂的电位愈高,金、银溶解反响的推动力就愈大。但氧化剂的氧化才能太强,则会加重的氧化而分化生成S0、HSO4-、SO42-等,使的耗费增大乃至失效。 表1是一些常用氧化剂的标准氧化复原电位。И.Н.普拉克辛在进行浸金实验中,曾别离选用漂、、重氧化剂。实验中发现溶液中金的溶解量小,而很快呈现元素硫沉积。阐明这些氧化剂的氧化才能太强,它使很快被氧化分化。除此,就只能从电位适中的高价铁盐、氧和二氧化锰等氧化制中挑选了。表1  常用氧化剂的标准氧化复原电位电对H2O2∕H2OMnO4∕Mn2+CrO42-∕ Cr3+Cl2∕ClClO4∕Cl2Cr2O72-∕ Cr3+E0∕V1.7761.5071.4471.3961.3851.333电对O3∕H2OMnO2∕Mn2+NO3-∕HNO2Fe3-∕Fe2+SO42∕H2SO3E0∕V1.2281.2280.940.720.420.17 鉴于金矿石和精矿中总含有一些铁(黄铁矿、褐铁矿等),大都质料中常常含铁较高,在酸性浸金进程中必有一部分铁溶解进入溶液中,而为运用Fe3+作氧化剂供给了条件。且在正常作业条件下,溶液中含铁0.5~2.0g∕L就满意作氧化剂用,故在浸出矿石或精矿时只需向浸液中鼓风拌和,溶解于溶液中的氧就能使Fe2+氧化为Fe3+,并不断得到再生。且鼓入压缩空气溶解入溶液中的氧浓度约为8.2mg∕L,它本身就足以使金氧化进入溶液(式1)。故选用Fe3+和鼓风溶解的氧作混合氧化剂,有利于进步浓度,金粒表面也不会发作钝化,可强化浸出进程。因而,它已成为如今浸金最理想的氧化剂。 Au+2SCN2H4+H++ O2 Au(SCN2H4)2+ H2O  (1) 如上所述,金粒微电池的反响电动势(E)等于正极反响和负极反响电位之差(E=φ+-φ-)。当运用Fe3+作氧化剂时,反响式(2)~(4)的反响电位和电动势为: Fe3++e Fe2+                           (2) Au++2SCN2H4 Au(SCN2H4)2+             (3) Au+Fe3++2SCN2H4 Au(SCN2H4)2++Fe2+ (4) 式(2)电位φ+=Fe3+∕Fe2+=0.77V 式(3)电位φ-=Au(SCN2H4)2+∕Au=0.38V 式(4)电动势E=φ+-φ-=0.39V 从上式看出,运用Fe3+作溶金的氧化剂,其浸出反响具有较高的电动势,它完全可以满意溶金对氧化剂的要求,且廉价易得。 从式(5)反响阐明在室温文酸性溶液中易氧化为二硫甲脒。因为(SCN2H3)2/SCN2H4电对的电位为0.42V,比式(3)Au(SCN2H4)2+/Au电对电位0.38V高0.04V。故溶金进程中二硫甲脒实质上也成为氧化剂参加对金的氧化。且在作业pH1~1.5范围内,二硫甲脒对银的氧化比对金强。但在惯例情况下与Fe3+比较,二硫甲脒的氧化作用仍是很小的。 2SC(NH2)2 (SCN2H3)2+2H++2e      (5) 但是,R.G.舒尔策(Schulze)的实验则得出彼此对立的成果。他运用一片0.25cm2重45.8mg的金片,于1L的五颈玻璃反响器中,在pH=1.0、浓度0.5g∕L、温度40℃、拌和速度400r/min条件下,参加不同浓度的Fe3+作氧化剂进行金浸出时发现,只要在Fe3+浓度0.2~0.7g∕L时,金的溶解速度才跟着Fe3+浓度的增加而加速。当Fe3+浓度到达或超越3g∕L时,金的溶解速度则跟着浸出时刻延伸而呈下降趋势。这或许是因Fe3+浓度增大而导致氧化丢失所造成的。图1是不同Fe3+浓度在不同时刻溶解金量的曲线改变。从图中看到实验曲线呈现了相交现象。若以图中3h、6h和7h的数值来点评实验成果,就会得出彼此对立的定论。这一现实之所以被许多研究者忽视,显然是溶金的理论研究还较浅显所造成的。在T.格罗内瓦尔(Groenewald)的报导中也说到:尽管Fe3+的存在对金的初始溶解速度很大,但因它能与生成安稳的〔Fe2(SO4)3·SCN2H4〕+络离子,致使耗费过大,而使金的溶解速度随时刻的延伸而急剧下降。且他用南非的金矿石进行实验时,发现从矿浆中能释放出很多氧化剂,其数量足以氧化溶解矿石中三分之二的金。他以为:这是矿石中的某些物质在参加反响时生成的氧化剂,而使得向浸液中增加Fe3+并不一定必要。这些氧化剂,也或许就是被氧化生成的二硫甲脒,而在溶金进程中成为活性氧化剂: 2Au+(SCN2H3)2+2SCN2H4+2H+ 2Au(SCN2H4)2+图1  不同Fe3+浓度(g∕L)对金溶解速度的影响 长春黄金研究院对小巧金精矿(含S38%)、峪耳崖金精矿(含S28%)、四道淘金精矿(含S29%)进行的-铁浸置实验证明,不别的增加氧化剂,金的浸出率都大于96%,刺进矿浆中的铁板上金的沉积回收率大于或等于99.48%。他们的实验还标明,若采用上法处理已有适当氧化程度的低硫金精矿时,则需增加氧化剂。实验是在室温文拌和条件下进行的。当不加氧化剂时金的浸出率较低;而增加H2O20.22~0.31mol,浸出时刻4~16h,金的浸出率别离进步1.32~2.27倍(见表2)。且从表中看出,浸出时刻4h金的浸出率和进步倍数最大,它阐明浸金的初始溶解速度很大,并随H2O2的耗费而减慢。实验者还以为,参加适量H2O2,可使首要氧化生成二硫甲脒: 2SCN2H4 (SCN2H3)2+2H++2e 而进步金的氧化浸出率。但H2O2的氧化才能太强(见表2),增加过多会使激烈氧化而耗费丢失,而使金的浸出达不到结尾。表2  低硫氧化金精矿增加或不加氧化剂金的浸出率比较氧化剂增加浓度∕mol浸出时刻∕h金浸出率∕%浸出率进步倍数∕倍不加H2O2加H2O2H2O20.22428.5865.062.27H2O20.31843.7571.001.62H2O20.311657.5076.251.32

氟碳铝单板特点和应用范围

2018-12-26 11:40:42

氟碳铝单板特点:    1.板具有重量轻,钢性好、强度高的特点,3.0mm厚铝板每平方板重8kg,抗拉强度100-280n/mm2    2.板耐候性和耐腐蚀性好。采用kynar-500、hylur500为基料的pvdf氟碳漆可可使铝单板表面50年不褪色。    3.性好。采用先加工后喷漆工艺,铝板可加工成平面、弧型和球面等各种复杂几何形状。    4.板涂层均匀、色彩多样。先进静电喷涂技术使得油漆与铝板间附着均匀一致,颜色多样,选择空间大。    5.铝单板不易玷污,便于清洁保养。氟涂料膜的非粘着性,使表面很难附着污染物,更具有良好的自洁性。    6.施工方便快捷。铝板在工厂成型,施工现场不需裁切,固定在骨架上即可。    7.铝板可回收再利用,有利环保。铝板可100%回收,不同于玻璃,石材,陶瓷,铝塑板等装饰材料,回收残值高。    氟碳铝单板的应用范围:    1.物外墙、梁柱、阳台、吊顶    2.楼会议厅、歌剧院    3.场馆    4.大堂等等删除

浮选分离金矿石中的碳和砷

2019-02-19 11:01:57

选用选矿办法别离金矿石中的毒砂和碳质物早已进行了广泛的研讨和运用。这儿择其重要者叙说如下。 广西六岭金矿金粒77.84%嵌布于石英和黄铁矿中,22.11%存在于毒砂中。因为该矿床的含砷矿藏还有雄黄和雌黄。虽然雄黄和雌黄与金共存的矿床很步,且金粒与它们的联系不严密,但该矿石经磨矿和板混后加丁基黄药和2#油浮选,雄、雌黄进入精矿中,产出的精矿含Au 30~40g/t,As 8%~9%。供应困难。经探究后,改用磨矿粒度70%~80% -0.074mm(-200目)(不需细磨),参加选择性好的正丁基胺黑药(不另加起泡剂)100g∕t、石灰0.58kg∕t,在pH=8~9经三段浮选,雄、雌黄被按捺除掉,所产精矿含金上升至60~80g∕t,As下降至2.1%~2.4%,药剂费用也由1.74元降至0.29元/t矿石。 鉴于在碱和氧化剂共存下,毒砂比黄铁矿易氧化,因此选用加氧化剂从砷金矿中浮选别离毒砂的研讨也受到重视,国内外已有多例报导。朱红申等报导的向矿浆中加丁基黄药  (1×10-5mol/L)和(16×10-5mol∕L)在pH 7.5浮选,可使毒砂表面发作氧化除掉。进程中,S生成SO42-向溶液中分散,Fe生成Fe(OH)3胶质体,As生成的AsO43-被      Fe(OH)3胶体粘附。这时,毒砂表面载有的AsO42-被Fe(OH)3胶膜掩盖而发生亲水性,使之与黄铁矿别离。在对比实验中曾别离运用过三种氧化剂,其氧化才能为>>过硫酸钾。实验结果表明:氧化能太强,对毒砂和黄铁矿缺少选择性,后二者则较适中。 前苏联某含碳、砷金矿床粒16%呈单体,64%与硫化物共生,其他20%存在于碳质页岩中。金的粒度为8~32μm。为了除掉碳,在磨矿时参加适量火油使碳钝化后进行浮选。火油的参加,还使浮选进程黄药的耗费由300g∕t降至150g∕t。浮选出的混合精矿,再增加FeSO4,150g∕t、CuSO4 75g∕t进行浮选,别离产出毒砂精矿和黄铁矿精矿两种含金产品。 美国加利福尼亚主矿脉的含碳矿石,选用磨矿后先进行矿泥别离,使碳进入矿泥中。矿砂送化。含碳的矿泥经混捕收游离金粒后,再经浮选产出硫精矿。 加拿大一项专利提出加火油让碳表面钝化后送化,以下降已溶金在碳上的吸附丢失。此法可用于化逆流倾析洗刷工艺,当用于化炭浆法时,残存的火油会按捺活性炭而下降它对已溶金的吸附作用。 不管运用火油或其他石油产品对碳进行按捺,一般仅仅部分有用。这是因为各矿山含碳矿石的性质不同。有些矿石中所含的碳一部分或大部分呈烃类(或称腐植质)存在,这类沉积物中的金是不能被浸出的。对这种矿石选用加NaOCl或通Cl的化学氧化法,烃类物质则较易分化。 阿博特西(Abotsi)等研讨了碳对化提金的影响后承认:增加有机剂二壬基磺酸和等能有用地吸附在碳质物上,而避免碳对已溶金的吸附丢失。

电镀的反应机理

2018-12-19 09:49:46

A、电极电位 当金属电极浸入含有该金属离子的溶液中时,存在如下的平衡,即金属失电子而溶解于溶液的反应和金属离子得电子而析出金属的逆反应应同时存在:Mn++ne = M 平衡电位与金属的本性和溶液的温度,浓度有关。为了精确比较物质本性对平衡电位的影响,人们规定当溶液温度为250℃,金属离子的浓度为1mol/L时,测得的电位叫标准电极电位。标准电极电位负值较大的金属都易失掉电子被氧化,而标准电极电位正值较大的金属都易得到电子被还原。 B、极化 所谓极化就是指有电流通过电极时,电极电位偏离平衡电极电位的现象。所以,又把电流-电位曲线称为极化曲线。产生极化作用的原因主要是电化学极化和浓差极化。 1、电化学极化 由于阴极上电化学反应速度小于外电源供给电子的速度,从而使电极电位向负的方向移动而引起的极化作用。 2、浓差极化 由于邻近电极表液层的浓度与溶液主体的浓度发生差异而产生的极化称浓差极化,这是由于溶液中离子扩散速度小于电子运动造成的。 电镀过程是镀液中的金属离子在外电场的作用下,经电极反应还原成金属原子并在阴极上进行金属沉积的过程。 电镀原理简单而言,就是在含有欲镀金属的盐类溶液中,以被镀基体金属为阴极,通过电解作用,使镀液中欲镀金属的阳离子在基体金属表面沉积出来,形成镀层。 电镀的要素: 1.阴极:被镀物,指各种接插件端子。 2.阳极:若是可溶性阳极,则为欲镀金属。若是不可溶性阳极,大部分为贵金属(白金,氧化铱)。 3.电镀药水:含有欲镀金属离子的电镀药水。 4.电镀槽:可承受,储存电镀药水的槽体,一般考虑强度,耐蚀,耐温等因素。 5.整流器:提供直流电源的设备。 (磨光→抛光)→上挂→脱脂除油→水洗→(电解抛光或化学抛光)→酸洗活化→(预浸)→电镀→水洗→(后处理)→水洗→干燥→下挂→检验包装 电镀工作条件是指电镀时的操作变化因素,包括:电流密度、温度、搅拌和电源的波形等。

特种封闭抗氧化涂料为铝碳质高温防氧化延寿命

2019-01-09 10:13:40

连铸用铝碳质三大件制品(即整体塞棒、浸入式水口和长水口)具有优良的抗渣性、抗热震稳定性和高导热性。但在使用中,碳容易氧化,造成材料表面孔率增加,结构疏松,严重影响其使用寿命。通常在制品的外表面涂覆上一层志盛防氧化涂层,这种涂层在烧成或使用之前的烧烤过程中能够形成一层均匀的釉层,封闭气孔,保护制品不氧化。    现有的志盛高温防氧化涂料一般采用志盛威华特质的耐高温结合剂,因其不仅能起到结合剂的作用,还能起到降低涂料熔点,在低温下封闭气孔防止氧气进入的功能,但水玻璃有一个致使的缺点就是容易泛碱,特别是在夏天潮湿的天气里,泛碱现象尤其明显;而且水玻璃常常不稳定,导致在实际使用过程中常常会出现涂层无液相、滚釉、滴釉等缺陷,造成防氧化效果不佳。针对以上问题,北京志盛威华化工有限公司研制了一种特种防氧化涂料,采用志盛威华特质的高温溶液,即ZS-1021耐高温封闭抗氧化涂料,该涂料烧后涂层致密、光亮,无起泡现象,使用防氧化效果很好,更已是在生产线推广使用。    根据多年的研究开发,大量现场考察,丰台区东铁营北京志盛威华化工有限公司涂料研发人员,研发的耐高温抗氧化涂料,ZS-1021耐高温封闭涂料主要是由耐高温、抗氧化、抗腐蚀性的氧化物、碳化物组成,耐高温抗氧化是涂料的重要组成和技术的核心,涂料的粘合剂,采用志盛威华特制高温溶液,常温下能固化,在高温下能聚合成网状结构的耐高温粘结剂组成,只要材料是由能促进烧结作用的惰性氧化物,选用的氧化物在高温下能形成玻璃相,增强涂层气密性。ZS高温封闭涂料一方面能在室温下固化稳定,与耐高温结合能力强,并具有很耐高温相溶性,另一方面在高温下能与结合剂相互渗透,形成一定强度的整体结构,以隔绝氧气及其腐蚀气体的侵蚀,并且还能与基体石墨有一定渗透,以增强与基体的附着力和抗热震性。    在投入使用在铝碳生产线上并推广以来,ZS耐高温封闭涂料系列防氧化涂层在各铝碳制品上一直正常使用。喷涂好的制品在钢厂的烘烤和使用过程中,都没有出现氧化现象,使用寿命明显高于以前的制品。新涂层的研制,提高了制品的使用寿命,改善了制品的不稳定因素,提高了制品的性能。与原涂层相比,ZS耐高温封闭涂料涂层具有如下优点:    ⑴改善了产品的防氧化效果,扩大了涂层适应温度范围,使铝碳制品在600~1700℃的范围内部能有效地防止氧化。    ⑵同制品本体之间的结合强度高,使用时形成的釉层均匀、密实、光亮,极大地提高了产品的防氧化效果和使用性能,并能有效地保护制品。无龟裂,不起泡,无脱落现象。    ⑶新涂层中使用了新型结合剂,根除了原涂层受天气的影响容易出现的泛碱、泛潮等现象,提高了产品的质量。    ⑷涂料自身具有“愈合”功能,防止微裂纹的存在为氧扩散提供快速通道的同时也会随使用时间延长而扩大。    ⑸涂层具有一定的机械强度和防水性能。    ⑹在冶炼和炼钢过程中,涂层对钢质量无副作用。

氧化铜和盐酸

2017-06-06 17:50:02

氧化铜(CuO)是一种铜的黑色略显两性,氧化物,稍有吸湿性。相对分子质量为79.545,密度为6.3-6.9 g/cm,熔点1326℃。不溶于水和乙醇,溶于酸、氯化铵及氰化钾溶液,氨溶液中缓慢溶解。盐酸,学名氢氯酸,是氯化氢(化学式:HCl)的水溶液,是一元酸。盐酸是一种强酸,浓盐酸具有极强的挥发性,因此盛有浓盐酸的容器打开后能在上方看见酸雾,那是氯化氢挥发后与空气中的水蒸气结合产生的盐酸小液滴。氧化铜和盐酸反应是指氧化铜和稀盐酸反应氧化铜和稀盐酸反应属于复分解反应: 酸+ 金属 氧化物→盐+水氧化铜和稀盐酸的反应方程式为  CuO+2HCl=CuCl2+H2O反应速度:反应速度比较慢,要想加快反应速度,需要在加热的条件下进行。反应现象:氧化铜固体逐渐消失,溶液逐渐变蓝氧化铜和稀盐酸反应的实质是H+与CuO发生的离子反应:CuO+2H+==Cu2+ +H2O,CuO溶解并生成新物质。氧化铜无论与什么酸反应,不管生成什么铜盐,Cu元素都以Cu2+存在。 

氢气和氧化铜

2017-06-06 17:50:01

氧化铜(CuO),是一种黑褐色粉末固体,略显两性,可以与酸反应,也可以与碱反应。不溶于水,溶于稀酸,氯化铵和氰化钾。不溶于乙醇。氢气(Hydrogen)是世界上已知的最轻的气体。它的密度非常小,只有空气的1/14,即在标准大气压,0℃下,氢气的密度为0.0899g/L。所以氢气可作为飞艇的填充气体(由于氢气具有可燃性,安全性不高,飞艇现多用氦气填充)。灌好的氢气球,往往过一夜,第二天就飞不起来了。这是因为氢气能钻过橡胶上人眼看不见的小细孔,溜之大吉。不仅如此,在高温、高压下,氢气甚至可以穿过很厚的钢板。氢气主要用作还原剂。当氢气和氧化铜遇到一起,就会发生氧化还原反应。也就是我们所说的,氢气还原氧化铜。氢气是一种常用的还原剂,当氢气通入氧化铜固体时,再用酒精灯加热,氧化铜被还原成金属铜,颜色由原本的黑色变成红色。 

新技术利用水与铝和镓合金反应生产氢气

2019-02-28 09:01:36

美国印第安那州的科学家们正在开发一种新式的产氢技能,利用水与铝和镓合金反响出产。    普度大学的科学家们表明:是一种不会发作污染的清洁动力,它被广泛应用于从高尔夫球车到潜水艇等各个领域。当水与这种合金反响时,铝会招引氧、开释氢,从而将水分化。普度大学的研究人员们现在正在研发这种合金颗粒,以便能够放置在容器中,一旦需求就能够与水反响生成。    研究人员陈述称:镓是这种合金中的要害组分,由于铝在正常情况下与氧气触摸会发作反响而在其表面构成氧化膜,而镓会阻挠这种氧化膜的构成。发明晰这个工艺的电子和计算机工程教授JerryWoodall表明:镓能够削减氧化膜对铝的保护性,使得水与铝的反响得以继续,直到一切的铝都产氢反响彻底。    该项研究结果将于9月7日在加州举办的第二届动力纳米世界会议期间发布。

硝酸和氧化铜

2017-06-06 17:50:02

硝酸和氧化铜,一个是强酸,一个是略显两性的氧化物,当这两种化学物质碰到一起,会发生化学反应。硝酸同硫酸、盐酸一样,反应所得的生成物会随该物质的浓稀度而发生变化。稀硝酸和氧化铜反应,属于“碱性氧化物与酸的复分解反应”,产物都是“盐和水”CuO+2HNO3==Cu(NO3)2+H2OCuO是黑色固体,溶于稀HNO3后生成蓝色溶液。硝酸和氧化铜反应会产生少量的氮氧化物,这是因为硝酸的氧化性很强,而且,反应产生大量的热,促使硝酸分解,分解成了O2和氮氧化物。 

阳极氧化和化学氧化的区别

2018-12-19 17:40:03

★阳极氧化的概念:铝及其合金在相应的电解液和特定的工艺条件下,由于外加电流的作用下,在铝制品(阳极)上形成一层氧化膜的过程.阳极氧化如果没有特别指明,通常是指硫酸阳极氧  1、阳极氧化的作用  ☆防护性  ☆装饰性  ☆绝缘性  ☆提高与有机图层的结合力.  ☆提高与无机覆盖层的结合力  ☆开发中的其它功能  2、铝合金的化学转化膜处理(化学氧化,钝化,铬化)  ★铝合金的化学转化膜通过化学氧化取得,可参考美军标MIL-C-5541。  ★为什么要进行铝合金的化学转化膜处理  ☆加强铝合金的防锈能力。  ☆可以起稳定接触电阴的作用。(曾经一客户产品要求导电氧化,其目的就是起稳定接触电阻及导电作用)  ☆转化膜较薄(约0.5~4um),质软、导电、多孔,有良好的吸附能力,通常做为油漆或其他涂料的底层。  ☆不改变材料的机械性能。  ☆设备简单、操作方便、价格便宜。  ☆不影响工件尺寸。  ★转化膜厚度  铝合金表面的化学转化膜较薄约0.5~4um,转化膜是一种凝胶体,很难直接测量,通常只是称量工件化学氧化前后的重量,或以表面色泽和盐雾试验来判断氧化膜的耐蚀能力。  ★划伤后的防腐功能  铝合金表面的化学转化膜是一种凝胶体,此胶体在转化膜划伤后可以移动,划伤痕周围的凝胶会移动至划伤表面,结合在一起,继续、阻挡铝合金被腐蚀,仍然有防腐功能。  ★颜色  铝合金化学转化膜的色泽有灰色、白色、草绿色、金黄色、彩虹色,转化膜的最终色泽,由采用的转化膜药水、操作工艺条件有关。  3、阳极氧化与导电氧化的区别  1).阳极氧化是在通高压电的情况下进行的,它是一种电化学反应过程;导电氧化(又叫化学氧化)不需要通电,而只需要在药水里浸泡就行了,它是一种纯化学反应。  2).阳极氧化需要的时间很长,往往要几十分钟,而导电氧化只需要短短的几十秒。  3).阳极氧化生成的膜有几个微米到几十个微米,并且坚硬耐磨,而导电氧化生成的膜仅仅0.01—0.15微米左右。耐磨性不是很好,但是既能导电又耐大气腐蚀,这就是它的优点。  4).氧化膜本来都是不导电的,但因为导电氧化生成的膜实在是很薄,所以就是导电的了。

硫酸和氧化铜

2017-06-06 17:50:02

硫酸,分子式为H2SO4。是一种无色无味油状液体,是一种高沸点难挥发的强酸,易溶于水,能以任意比与水混溶。当硫酸和氧化铜遇到一起,就会发生化学反应。氧化铜与硫酸的反应取决于硫酸的浓度,氧化铜与稀硫酸是可以发生反应的,而氧化铜与浓硫酸一般不发生化学变化。稀硫酸与氧化铜反应氧化铜与稀硫酸反应属于复分解反应: 酸+ 金属 氧化物→盐+水氧化铜与稀硫酸的反应方程式为  CuO+H2SO4=CuSO4+H2O反应速度:反应速度比较慢,如果要在短时间内看到现象,须加热反应现象:氧化铜固体逐渐消失,溶液逐渐变蓝浓硫酸与氧化铜反应氧化铜与浓硫酸一般不反应。浓硫酸一般作为脱水剂和强氧化剂,在氧化还原或者脱水过程中稀释后才有酸的性质。在许多氧化铜还原反应中,浓硫酸起到了强氧化剂的作用,例如:一氧化碳还原氧化铜。 

铋矿浆电解阳极反应机理

2019-01-31 11:06:04

王成彦、邱定蕃等对辉铋矿在矿浆电解进程的阳极反响进行了比较深化的研讨。经过很多的实验研讨,以为辉铋矿的阳极浸出进程是一个杂乱的反响进程,辉铋矿在酸性氯化钠介质中呈悬浮状所发作的阳极浸出进程,能够经过下列几种途径来完结: (1)石墨相当于一个导体,辉铋矿相当于一个可溶阳极,当辉铋矿和石墨阳极发作磕碰而触摸时,将经过下面的反响被氧化:(2)石墨电极上或许发作其他氧化反响,如发作Cl2、O2气体分出,这样一些气体再氧化辉铋矿。(3)有关实验标明,在浸出渡中参加铁离子,辉铋矿的浸出反响速率显着进步,槽电压显着下降,阐明铁离子也参加了辉铋矿的阳极浸出进程。 为查明辉铋矿在矿浆电解阳极浸出进程的反响机理,实验测定了溶液中有辉铋矿和无辉铋矿时的i-E曲线以及在上列溶渣中参加4g∕L的Fe2+后有和无辉铋矿存鄙人的i-E曲线,见图1。图1  不同条件下的i-E曲线 1-HCl 1mol∕L+NaCl 200g∕L; 2-HCl (1mol∕L)+NaCl (200g∕L)+辉铋矿(-0.074mm、L∶S=10∶1); 3-HCl(1mol∕L)+NaCl(200g∕L)+Fe2+(4g∕L); 4-HCl(1mol∕L)+NaCl(200g∕L)+Fe2+(4g∕L) +辉铋矿(-0.074mm、L∶S=10∶1)。 HCl-NaCl溶液中没有辉铋矿和铁离子存在的状况下,石墨阳极只或许存鄙人列反响:    (1) E333(1)=1.177-0.066pH+0.0165lgPO2                (2) E333(2)=1.306=0.066lg[Cl-]+0.0333lg[Cl2] 矿浆电解条件下,pH=0、pO2=0.2×105Pa、[Cl-]=3mol∕L,代入以上两个方程得E333(1)=1.248V,E333(2)=1.255+0.0333lg[Cl2],因为溶液中[Cl2]很小,因而,E333(1)和E333(2)的不同不大,上述两种反响均有或许在阳极上发作。Arslan、Duby研讨了黄铁矿在溶液中的阳极氧化状况,在阳极电位1.4~1.5V(SCE),t=35~40℃下,阳极液中HClO的浓度可达0.15smol∕L,并以为HClO是由阳极上分出的Cl2发作的,阳极上水的氧化反响也一起发作并分管了部分电荷传输。Arslan在用石墨阳极研讨黄铁矿的阳极氧化时,发现阳极上有CO2生成并发作阳极蚀变现象。王成彦、邱定蕃在矿浆电解扩展实验中也发现石墨阳极存在蚀变现象。这些也能够证明,在矿浆电解进程中,当阳极电位较高时,阳极上能够发作Cl2和O2的一起分出。 关于反响考虑到铁离子在溶液中能够构成铁氯络合物,其实践电位会更低(如图2线23所示),因而,当件系中存在铁离子时,上述反响有或许是阳极的首要反响。图2  Bi2S3-Cl--H2O系E-lg[Cl-]图图1中,线1是无辉铋矿、无铁离子潜液中测得的i-E曲线,其电流只能是因为反响式(1)和式(2)发作,且电流巨细应表明该反响的速度。从图中看到,当阳极电位高于~1.10V(SCE)时,电流便急剧上升,而低于该电位时,阳极电流极低且动摇很小。因而能够以为在实验用溶液中,当阳极电位高于-1.10V(SCE),石器阳极上开端很多分出气体,此电位正处于和氧气的理论分出电位邻近。 线2是有辉铋矿、无铁离子溶被中测得的i-E曲线,此刻阳极上的电流应是辉铋矿直接与电极磕碰的氧化反响、和氧气分出反响一起发作的,比较线1和线2,在电位低于-1.10V(SCE)的规模之内,电流能够以为是因为辉铋矿在石墨阳极上直接电氧化发作的,这个电流较线1升高了许多,阐明辉铋矿的直接电氧化是能够发作的;电位大于-1.10V(SCE)二线根本重合,析氯析氧反响起了主导作用。 线3是无辉铋矿、有二价铁离子的溶液中测得的i-E曲线,从图中能够看到,当阳极电位高于0.5V(SCE),电流便显着增大,该电位正处于反响的标准电位邻近,因而能够以为此电流是因为二价铁离子的阳极氧化发作的。在固定电流密度小于300A∕m2的条件下,阳极不会发作析氯析氧反响,只要在电解后期,二价铁的氧化挨近结束,才或许发作析氯析氧反响,此刻槽电压将显着上升。 线4是在有辉铋矿、有二价铁离子的溶液中测得的i-E曲线,它较线3的电流大。此电流的发作能够以为是二价铁离子的阳极氧化和辉铋矿与阳极磕碰的触摸氧化一起发作的。但线4并不是线2和线3的简略加合,它仅仅略高于线3并类似于线3,因而能够以为此刻的首要反响仍旧足二价铁离子的阳极氧化反响、而辉铋矿的直接电氧化则是非必须的。因为有辉铋矿存在,在阳极上生成的三价铁将Bi2S3氧化后自身还原为二价,二价铁又在阳极氧化为三价。如此重复,直至辉铋矿的氧化浸出挨近彻底。 如果在固定电流密度200A/m2的条件下,由图1能够比较看出,线2和线4的阳极电位相差0.7V左右,也就是说,要取得相同的浸出反响速度,在有铁离子存存的溶液中,其阳极电位要比无铁离子溶液的阳极电位低0.7V,相应的槽电压也要下降0.7V左右,然后下降了电解进程的电耗。 图3是在固定电流密度200A∕m2、Fe2+为4.0g∕L、Cl-为150g∕L、H+为1.0g∕L、Bi3+为10g∕L、100g辉铋矿、粒度<0.038mm为96%、L∶S=3∶1的状况下测得的石墨阳极电位(SCE)和槽电压随时刻的改变曲线。图3  恒电位电解槽电压和阳极电位随时刻的改变 图3阐明,在辉铋矿的理论浸出电解时刻内,槽电压被迫在0.8~0.9V的规模之内,阳极电位动摇在-0.5~-0.6V(SCE)的规模之内,正处于二价铁离子的标准氧化电位邻近。能够以为,在此刻间内的阳极反响首要是二价铁离子的氧化反响,铋精矿的浸出首要是因为三价铁的氧化作用。 在铋的理论浸出电解时刻今后,槽电压和阳极电位都急剧上升,槽电压升至1.6~1.8V,阳极电位动摇在-1.2V(SCE)左右,此刻,辉铋矿的浸出巳挨近彻底,二价铁也简直悉数氧化为三价铁,阳极开端发作析氯反响,槽电压也跟着阳极电位的进步和阴极的极化而升高。 由以上的分析,能够得出以下的定论: (1)在实验选用的条件下,溶液中无铁离子存在时,在阳极电位为-0.2V到-1.0V的规模内,阳极反响首要是辉铋矿在石墨阳极上直接电氧化,当阳极电位大于-1.10V时,析氯析氧反响起主导作用。 (2)在有铁离子存在的状况下,阳极上发作的首要反响是二价铁离子的氧化反响,辉铋矿的氧化能够以为是由三价铁离子完结的,三价铁被坯原为二价,二价铁又在石墨阳极上氧化,如此重复循环。当然,在浸出进程中从头到尾也存在着辉铋矿与阳极的磕碰触摸氧化。 (3)在有铁离子存在的状况下,阳极电位可较无铁离子的阳极电位下降0.7V左右,过对下降电耗是有利的。

碳的知识

2019-03-12 11:03:26

碳是一种非金属元素,坐落元素周期表的第二周期IVA族。它的化学符号是C,它的原子序数是6,电子构型为[He]2s22p2。碳是一种很常见的元素,它以多种方法广泛存在于大气和地壳之中。碳单质很早就被人知道和运用,碳的一系列化合物——有机物更是生命的底子。拉丁语为Carbonium,意为“煤,木炭”。汉字“碳”字由木炭的“炭”字加表固体非金属元素的石字旁构成,从 炭字音。性状碳单质通常是无臭无味的固体。单质碳的物理和化学性质取决于它的晶体结构,外观、密度、熔点等各自不同。 碳的单质已知以多种同素异形体的方法存在:石墨莫氏硬度:石墨1-2 金刚石 10金刚石富勒烯(Fullerenes,也被称为巴基球)无定形碳(Amorphous,不是真的异形体,内部结构是石墨)碳纳米管(Carbon nanotube)六方金刚石(Lonsdaleite,与金刚石有相同的键型,但原子以六边形摆放,也被称为六角金刚石)赵石墨(Chaoite,石墨与陨石磕碰时发生,具有六边形图画的原子摆放)黝矿结构(Schwarzite,因为有七边形的呈现,六边形层被歪曲到“负曲率”鞍形中的设想结构)纤维碳(Filamentous carbon,小片堆生长链而构成的纤维)碳气凝胶(Carbon aerogels,密度极小的多孔结构,相似于熟知的硅气凝胶)碳纳米泡沫(Carbon nanofoam,蛛网状,有分形结构,密度是碳气凝胶的百分之一,有铁磁性)最常见的两种单质是高硬度的金刚石和柔软滑腻的石墨,它们晶体结构和键型都不同。金刚石每个碳都是四面体4配位,相似脂肪族化合物;石墨每个碳都是三角形3配位,能够看作无限个环稠合起来。常温下单质碳的化学性质比较安稳,不溶于水、稀酸、稀碱和有机溶剂。同位素现在已知的同位素共有十二种,有碳8至碳19,其间碳12和碳13属安稳型,其他的均带放射性,傍边碳14的半衰期长达五千多年,其他的均全缺乏半小时。在地球的自然界里,碳12在全部碳的含量占98.93%,碳13则有1.07%。C的原子量取碳12、13两种同位素丰度加权的均匀值,一般核算时取12.01。碳12是国际单位制中界说摩尔的规范,以12克碳12中含有的原子数为1摩尔。碳14因为具有较长的半衰期,被广泛用来测定古物的时代。成键碳原子一般是四价的,这就需求4个单电子,可是其基态只要2个单电子,所以成键时总是要进行杂化。最常见的杂化方法是sp3杂化,4个价电子被充分运用,均匀散布在4个轨迹里,归于等性杂化。这种结构彻底对称,成键今后是安稳的σ键,并且没有孤电子对的排挤,十分安稳。金刚石中全部碳原子都是这种以此种杂化方法成键。烷烃的碳原子也归于此类。根据需求,碳原子也能够进行sp2或sp杂化。这两种方法呈现在成重键的情况下,未经杂化的p轨迹垂直于杂化轨迹,与邻原子的p轨迹成π键。烯烃中与双键相连的碳原子为sp 2杂化。因为sp2杂化能够使原子共面,当呈现多个双键时,垂直于分子平面的全部p轨迹就有或许相互堆叠构成共体系。是最典型的共体系,它现已失去了双键的一些性质。石墨中全部的碳原子都处于一个大的共体系中,每一个片层有一个。化合物碳的化合物中,只要以下化合物归于无机物:碳的氧化物、硫化物:(CO)、二氧化碳(CO2)、(CS2)、碳酸盐、碳酸氢盐、一系列拟卤素及其拟卤化物、拟卤酸盐:(CN)2、氧,硫。其它含碳化合物都是有机化合物。因为碳原子构成的键都比较安稳,有机化合物中碳的个数、摆放以及替代基的品种、方位都具有高度的随意性,因而造成了有机物数量极端繁复这一现象,现在人类发现的化合物中有机物占绝大多数。有机物的性质与无机物大不相同,它们一般可燃、不易溶于水,反响机理杂乱,现已构成一门独立的分科 有机化学。散布碳存在于自然界中(如以金刚石和石墨方法),是煤、石油、沥青、石灰石和其它碳酸盐以及全部有机化合物的最主要的成分,在地壳中的含量约0.027%。碳是占生物体干重份额最多的一种元素。碳还以二氧化碳的方法在地球上循环于大气层与平流层。在大多数的天体及其大气层中都存在有碳。发现金刚石和石墨史前人类就现已知道。 富勒烯则于1985年被发现,此后又发现了一系列摆放方法不同的碳单质。同位素碳14由美国科学家马丁·卡门和塞缪尔·鲁宾于1940年发现。单质的精粹金刚石金刚石即钻石能够找到会集的块状矿产,挖掘出来时一般都有杂质。用别的的钻石粉末将杂质削去,并打磨成形,即得制品。一般在切削、打磨过程中要损耗掉一半的质量。石墨用处在工业上和医药上,碳和它的化合物用处极为广泛。丈量古物中碳14的含量,能够得知其时代,这叫做碳14断代法。石墨能够直接用作炭笔,也能够与粘土按必定份额混合做成不同硬度的铅芯。金刚石除了装修之外,还可使切削用具更尖利。无定形碳因为具有极大的表面积,被用来吸收毒气、废气。富勒烯和碳纳米管则对纳米技术极为有用。碳是钢的成分之一。碳能在化学上自我结合而构成很多化合物,在生物上和商业上是重要的分子。生物体内大多数分子都含有碳元素。碳化合物一般从化石燃猜中取得,然后再别离并进一步组成出各种生发日子所需的产品,如乙烯、塑料等。理化特性整体特性元素称号:碳元素符号:C元素类型:非金属元素原子量:12.01质子数:6中子数:7原子序数:6所属周期:2所属族数:IVA电子层散布:2-4密度、硬度 密度为3.513 g/cm3(金刚石)、2.260 g/cm3(石墨)(20 ℃)、0.5 (石墨)10.0 (钻石)色彩和表面 黑色(石墨)无色(钻石)地壳含量 无数据原子特点原子量 12.0107 原子量单位原子半径(核算值) 70(67)pm共价半径 77 pm范德华半径 170 pm电子构型 [氦]2s22p2电子在每能级的排布 2,4氧化价(氧化物) 4,3,2(弱酸性)晶体结构 六方(石墨)立方(钻石)物理特点物质状况 固态(反磁性)熔点 熔点约为3 550 ℃(金刚石)沸点 沸点约为4 827 ℃(提高)摩尔体积 5.29×10-6m3/mol汽化热 355.8 kJ/mol(提高)熔化热 无数据(提高)蒸气压 0 帕声速 18350 m/s其他性质电负性 2.55(鲍度)比热 710 J/(kg·K)电导率 0.061×10-6/(米欧姆)热导率 129 W/(m·K)榜首电离能 1086.5 kJ/mol第二电离能 2352.6 kJ/mol第三电离能 4620.5 kJ/mol第四电离能 6222.7 kJ/mol第五电离能 37831 kJ/mol第六电离能 47277.0 kJ/mol最安稳的同位素同位素 丰度 半衰期 衰变方式 衰变能量MeV 衰变产物12C 98.9 % 安稳13C 1.1 % 安稳14C 微量 5730年β衰变 0.156 14N在没有特别注明的情况下运用的是国际标准基准单位单位和标准气温和气压碳,原子序数6,原子量12.011。元素名来历拉丁文,情愿是“炭”。碳是自然界中散布很广的元素之一,在地壳中的含量约0.27%。碳的存在方法是多种多样的,有晶态单质碳如金刚石、石墨;有无定形碳如煤;有杂乱的有机化合物如动植物等;碳酸盐如大理石等。单质碳的物理和化学性质取决于它的晶体结构。高硬度的金刚石和柔软滑腻的石墨晶体结构不同,各有各的外观、密度、熔点等。常温下单质碳的化学性质比较安稳,不溶于水、稀酸、稀碱和有机溶剂;不同高温下与氧反响,生成二氧化碳或;在卤素中只要氟能与单质碳直接反响;在加热下,单质碳较易被酸氧化;在高温下,碳还能与许多金属反响,生成金属碳化物。

碳还原积块法冶炼钼铁的工艺和实践

2019-01-29 10:09:51

采用碳粉作还原剂,在电炉中还原钼焙砂以生产钼铁的方法叫作碳还原积块法或电碳法。炉内主反应为:   2MoO3+C=2Mo+2CO↑       △Z0=208707-309.2T(J)33       从反应自由能△Z0看冶炼,须在T>675℃(△Z0<0)后才能进行。在电炉内加热到675℃后,这一反应是很容易进行的。但同时,还会产生副反应:    2MoO3+7Mo2C+2CO↑33   △Z0=214560-315.6T(J)       Mo2C的生成使钼铁含碳量偏高,熔点上升(Mo2C熔点为2405℃)。艾柳金等认为碳还原氧化钼经历了两步:首先,加温后三氧化钼微粒以蒸气状迅速扩散向碳粉,吸附在碳粒表面,被CO还原,反应生成中间氧化物Mo4O11生成CO2逸出;第二步,中间氧化物Mo4O11扩散进碳粒内继续还原成Mo。反应式为:   4MoO3+CO=Mo4O11+CO2↑   △x0298=-294.7kj/mol    1Mo4O11+C=4Mo+CO↑1111       碳还原积块法须在电炉中冶炼。所用电炉容量通常都不大:单相电炉容量为300~500KV A,三相电炉容量为500~1500KVA。电的单耗约为4450kW·h/t。炉料是由钼焙砂和碳粉制成的压块,石灰及铁屑组成。熔炼由高碳压块熔炼(还原过程,所用碳量高于反应理论值)和亏碳压块熔炼(精炼过程,所加碳量低于反应理论值)交替进行,待炼成的钼铁在炉底积块后,炉子停电,钼铁冷却后出炉精整、包装。回收的废料须经回收电炉熔炼。

简单的金属电极反应

2019-02-20 14:07:07

这类反响的特征是系统电位与pH值无关,仅与溶液中的离子活度有关。反响的通式为:系统的E值越大,系统中的离子被复原而分出金属的趋势越大;反之,若系统的E值越小,金属被氧化的趋势越大,假如氧化反响的终究产品是易溶的,则金属溶解。 在堆浸中,铜、金、银的溶解浸出和大多数金属的溶解进程,均归于这一类反响。关于矿石中含有天然铜的堆浸而言,当有氧化剂存在时,其反响可表示为:当选用铁屑置换浸出液中的铜离子而构成海绵铜时,其反响式如下:这个反响包含了两个简略的金属电极反响,铜的溶解反响如前所述,另一个电极反响及其电位关系式如下:置换反响的电动式:当有足量的铁存在时,反响一向进行到简直一切的铜离子堆积完停止。由于当ε=0时,aCu2+/aFe2+=10-26.3。 关于金矿石堆浸而言,矿石中的金基本上是天然金,它的浸出反响可表示为:其电位为:                         E=1.3+0.0591lgaAu+    (9) 如此高的电位,标明在水溶液顶用氧气或其他氧化剂,不行能将金氧化而浸出。在生产实践中,人们经过金与、氯化物的络合作用,下降溶液中的金属离子浓度(活度),进而下降系统的电位。络合反响如下:由表1和表2可知,上述反响的标准复原电位为-0.68V,络离子的安稳常数为2×1038,可见当有游离CN-存在时,可明显下降溶液中的金属离子的活度。此刻,金的化堆浸的电位为:   表1  常见的一价金的络合物构成电位络离子电极反响复原电位(V)Au(CN)2-Au(CN)2-  Au+2CN--0.686Au(S2O3)23--0.007Au[CS(NH2)2]2+Au[CS(NH2)2]2++e  Au+2CS(NH2)2+0.223Au(SCN)2-Au(SCN)2-+e  Au+2SCN-+0.72AuBr2-AuBr2-+e  Au+2Br-+1.02AuCl2-AuCl2-+e  Au+2Cl-+1.20 表2  常用的金的结离子安稳常数Au+络离子安稳常数Au3+络离子安稳常数Au(CN)2-2×1038Au(CN)4-~1×1056Au(S2O3)23-5×1028AuI4-5×1047AuI2-4×1019Au(SCN)4-1×1042Au(SCN)2-1.3×1017AuBr4-1×1032AuBr2-1×1012AuCl4-1×1026AuCl2-1×109AuCl2-1×109对化堆浸液中的金络离子,有部分堆浸场选用锌置换工艺,其化学反响如下:这个反响中包含的另一个金属电极反响及其电位关系式如下:还应该指出,金、铜、银等矿石堆浸进程中,高品位氧化铜矿石的浸出液经过萃取-反萃取,取得含铜量很高(35~50g/L)的反萃取液;金矿石经过炭吸附-解吸,取得含金量很高(0.3~8g/L)的解吸液,这些溶液经过电积,别离得到电解铜、金泥。这些电积进程,也归于金属电极反响。

金属氧化物的酸溶和金属离子水解反应

2019-01-24 11:10:32

在这类反应中不发生电子迁移,溶液中的离子活度仅与溶液的pH值有关,而与电位无关。铀矿堆浸中氧化铀(六价)的溶解,金属离子的水解反应均属于此类反应。其通式如下:由于此类反应的热焓为零,水的活度为l,所以反应的标准吉布斯自由能变为:当体系中的A离子和B离子的活度均等于1时,式(2)变为:从式(4)看到,此时的pH值仅与反应的标准吉布斯自由能变有关。我们称此pH值为标准pH值,用pH标表示。它的物理含义是:在标准状态下,体系中的反应物与生成物的活度均为1时的pH值。它是表示金属离子水解程度的一个重要标志。当介质的pH值大于标准pH值时,金属离子就水解,金属的氢氧化物就会沉淀;当介质的pH值小于标准pH值时,金属离子的活度便大于1,即金属氢氧化物的沉淀溶解。这类反应的平衡条件为:在用硫酸作溶浸剂堆浸铀矿石或铜矿石时,往往出现底部的渣品位高于中上层渣品位,个别时候,甚至出现底部的渣品位高出入浸矿石的品位就是由于pH值控制不当,致使已浸出的离子水解反应平衡时UO22+的浓度与pH值的关系如下:铀矿堆浸时,矿石中的UO3的溶解浸出反应为:很显然,UO3的溶解依赖于溶浸液的酸度,其关系如下:  铜矿石中的黑铜矿(CuO),硅孔雀石(CuSiO2·2H2O)等氧化铜矿石,硫酸堆浸时的反应可表示为:这类浸出反应平衡时的Cu2+浓度与pH值的关系式如下:在堆浸工艺中,除了铀、金、铜、银等有价值的金属外,脉石矿物中的某些元素,如铁、铝、钙、镁等也同时与溶浸剂(特别是在采用酸性溶浸剂时)发生化学反应,因而Fe2+,Fe3+,Al3+,Mg2+,Ca2+等离子进入浸出液,其中高价的铁、铝离子经常引起结垢,妨碍生产的顺利进行。这类结垢,与溶液的pH值紧密相关。例如,用硫酸堆浸铀、铜矿石时,往往有大量的亚铁和高铁离子进入浸出液,经过若干个循环,亚铁氧化成高铁,由于Fe3+的水解沉淀pH值低于Fe2+,因而引起大量沉淀。Fe3+,Fe2+水解反应,及与pH值的关系如下:溶液中的Al3+在pH值为3.1时,也因水解而沉淀,反应如下:则                    当矿石中的黑云母[H2K(Mg,Fe)3Al(SiO2)3]及碱性硅酸盐矿物的含量高时,矿石中的铁、铝、镁等元素很容易被酸性溶浸剂所浸出,如不采取防结垢措施,矿堆的结垢是不可避免的。