您所在的位置: 上海有色 > 有色金属产品库 > 氢氧化镁和盐酸反应离子方程式 > 氢氧化镁和盐酸反应离子方程式百科

氢氧化镁和盐酸反应离子方程式百科

氢氧化镁简单介绍

2019-02-14 10:39:59

碱土金属的氢氧化物都是白色固体,置于空气中就吸水潮解。其间Ca(OH)2就是常用的干燥剂。碱土金属氢氧化物在水中的溶解度比碱金属氢氧化物要小得多,从表中数据看,从Be到Mg,氢氧化物的溶解度顺次递加,它们的碱性也顺次递加。Be(OH)2和Mg (OH)2是难溶的氢氧化物。Be(OH)2是氢氧化物,Mg (OH)2归于中强碱,其他均归于强碱。表1  碱土金属氢氧化物的某些性质物质Be(OH)2Mg(OH)2Ca(OH)2Sr(OH)2Ba(OH)2性质色彩白白白白白熔点/K脱水分化脱水分化脱水分化脱水分化脱水分化水中溶解度/mol-dm-3(293K)8×10-1S×10-11.8×10-26.7×10-22×10-1酸碱性中强碱强碱强碱强碱 碱金属和部分碱土金属的焰色离子Li+Na-K+Rb+Cs+Ca2+Sr2+Ba2+焰色红黄紫紫红紫红紫红洋红黄绿波长/nm670.8589.6404.7629.8459.3616.2707553.6     Mg(OH)2的密度为2.36g/cm3,加热至623K即脱水分化:                                   Mg(OH)2  ====  MgO  +  H2O    Mg(OH)2易溶于酸或铵盐溶液:                               Mg(OH)2  +  2HCl  ====  MgCl2 +2H2O    这一反响可应用于分析化学中。    将海水和廉价的石灰乳反响,能够得到Mg(OH)2沉积,亦称氧化镁乳:                             Mg2+   +  Ca(OH)2  ==  Mg(OH)2  +  Ca2+    Mg(OH)2的乳状悬浊液在医药上用作抗酸药弛缓泻剂。

利用硼泥制备氢氧化镁

2019-02-18 15:19:33

硼泥是、硼砂出产过程中构成的固体废弃物。硼泥中含有氧化镁、氧化钙、等碱性物质,对环境造成了极大污染。截止到2006年仅辽宁省内的硼泥就已达1700万t,并正以每年130万t的速度添加。       现在,国内外对硼泥归纳利用的研讨有诸多方面,已取得了许多科研成果,但硼泥污染的现象依然存在,这首要是因为各类硼泥归纳利用技术落后,工业化程度较低。硼泥中含有镁等有价元素,极具开发利用价值。因而,开发利用这种二次资源,出产氢氧化镁,对进步经济效益、削减环境污染、促进资源再生都有重要意义。氢氧化镁作为典型的无卤阻燃剂,具有阻燃、消烟、阻滴、高热稳定性、高效的促基材成碳效果和强除酸才能等特性。       现在,出产氢氧化镁的首要办法有:合成法、白云石的挑选煅烧法和电解卤水法。合成法需以含有氯化镁的卤水为质料,白云石的挑选煅烧法和电解卤水法的能耗皆较高。本文选用高温下煅烧工业浓硫酸与硼泥混合物的办法收回氢氧化镁,此办法能耗低且易于完成工业化,不只能够处理硼泥对环境的污染问题,也为氢氧化镁的出产拓荒了一条新途径。       一、试验       (一)试验质料       硼泥取自辽宁省某地,首要化学组成见表1。硫酸为工业级,浓度98%,、及其它检测所用药品均为分析纯,试验用水为二次蒸馏水。   表1  硼泥的成分(质量分数)/%MgOCO2SiO2Fe2O3Al2O3CaOMnO其它39.030.219.74.562.991.840.0821.628       (二)试验内容       将硼泥与工业硫酸的混合泥浆在高温炉中煅烧必定时刻,取出后加水溶解、加热、过滤,得到母液。用0.01mol/L的EDTA滴定Mg2+,核算浸出率。重复加热、过滤母液至用(NH4)2C2O4溶液体会不到Ca2+。向滤液中参加将溶液中的Fe2+、Mn2+氧化成高价的Fe3+、Mn4+有利于完全除杂,加至用K3[Fe(CN)6]溶液查验不到Fe2+,用硝酸和NaBiO3查验不到Mn2+。在必定温度下加10%NaOH溶液将母液调理至pH=9.0,过滤,除掉杂质,得到镁精液。再向镁精液中参加5mol/L的NaOH溶液调理,pH=12.0,过滤、洗刷,然后将产品恒温烘干,得到氢氧化镁产品。产品的检测按标准HG/T3607—2000履行。       (三)工艺流程       工艺流程见图1。图1  硼泥制备氢氧化镁工艺流程       二、成果与评论       (一)煅烧温度对镁浸出率的影响       在煅烧时刻为1h,硫酸与硼泥液固比为1∶1的条件下,调查不同煅烧温度下镁的浸出率,试验成果如图2所示。由图2可知,在烧烧温度为300℃时,镁的浸出率最高,尔后跟着煅烧温度的升高镁的浸出率反而快速下降。这是因为浓硫酸在350℃时开端发作分化反响,温度过高时,生成的SO3烟气和氧气会快速逸出,使反响不能充沛进行,故镁的浸出率下降。一起高温效果黏结生成不溶于水的硅酸盐类也会使得镁的浸出率下降。图2  煅烧温度对镁浸出率的影响       (二)煅烧时刻对镁浸出率的影响       在硫酸与硼泥液固比为1∶1、煅烧温度为300℃条件下,别离调查不同煅烧时刻下镁的浸出率,试验成果如图3所示。由图3可知,跟着煅烧时刻添加,镁的浸出率逐步增大。反响时刻为2h时硫酸与硼泥的反响根本完毕,此刻镁的浸出率到达最大。图3  煅烧时刻对镁浸出率的影响       (三)硫酸与硼泥份额对镁浸出率的影响       在煅烧时刻为1h,煅烧温度为300℃条件下,调查不同液固比时镁的浸出率,试验成果如图4所示。由图4可知,跟着硫酸与硼泥液固比的增大,硫酸过量增多,硼泥能充沛与硫酸反响,镁浸出率趋于增大,但耗酸量增大。若硫酸与硼泥的份额太小,则硼泥中的矿藏不能与硫酸充沛反响,导致镁的浸出率不高。依据试验成果,硫酸与硼泥的液固比以2∶1为宜。图4  硫酸与硼泥份额对镁浸出率的影响       (四)归纳条件试验       依据试验成果及归纳考虑能耗、药品用量和硫酸分化温度对浸出率的影响,断定工艺条件为:煅烧温度为300℃、煅烧时刻为2h、硫酸与硼泥的液固比为2∶1,在此工艺条件下镁的浸出率为88%。将此条件下所制样品按1.2所述办法制备氢氧化镁,经测定镁精液中镁的收回率为91.17%。因而,硼泥中镁的归纳收回率可达80%左右。       (五)氢氧化镁的检测与分析       1、氢氧化镁的XRD分析  选用X射线衍射仪分析了产品物相组成,其成果见图5。由图5可知,该产品的峰方位和强度均与JDPDS卡上标准Mg(OH)2的衍射峰数据完全一致,且峰值规整,无杂峰出现,可知粉体为Mg(OH)2。图5  Mg(OH)2样品XRD图       2、氢氧化镁的检测  对氢氧化镁产品进行成分分析,检测成果如表2所示。   表2  氢氧化镁成分(质量分数)/%Mg(OH)2FeAlCaOMn99.540.0190.0150.4300.008       由表2可知,氢氧化镁的纯度为99.54%,换算成氧化镁纯度为68.64%,高于标准HG/T3607—2000的规则,其他杂质的含量也契合此标准。       3、氢氧化镁的SEM分析  用SEM对氢氧化镁粉末的表面描摹微观结构进行分析,其成果见图6。由图6能够看出,未烘干的Mg(OH)2颗粒出现聚会状况,晶体微粒十分小,颗粒直径不到1μm。将样品烘干后Mg(OH)2晶体微粒逐步长大,颗粒呈不规则球状,颗粒直径大约70~90μm。图6  氢氧化镁SEM相片                     (a)未烘干;(b)烘干后       三、定论       (一)依据单要素条件试验断定高温煅烧工业硫酸与硼泥混合物的工艺条件为:煅烧温度为300℃、煅烧时刻为2h、硫酸与硼泥的份额为2∶1。此刻镁的浸出率为88%。       (二)以为沉积剂制备氢氧化镁可使镁精液中镁的收回率到达91.17%,硼泥中镁的归纳收回率可达80%。经XRD检测断定沉积产品为氢氧化镁,产品质量契合标准HG/T3607—2000。       (三)由SEM检测能够看出,未烘干的Mg(OH)2晶体微粒十分小,颗粒直径不到1μm。氢氧化镁经烘干后晶粒长大,颗粒呈不规则球状,颗粒直径大约70~90μm。

纳米氢氧化镁的用途及合成方法

2019-01-04 09:45:23

氢氧化镁产品分类及应用现状

2019-03-08 11:19:22

氢氧化镁产品从应用上分为阻燃级、中和级、医用、电子级、油品增加剂用氢氧化镁等;从结构上分为片状、超细、晶须、纳米级、重质氢氧化镁等。其间发展潜力较好的是超细氢氧化镁和氢氧化镁晶须。 片状氢氧化镁可作为增加型阻燃剂,碳化法即以菱镁矿或白云石为质料,经煅烧、消化、除杂、碳化、沉积制得产品。以白云石为质料,为沉积剂并参加表面改性剂十六烷基三甲基化铵,水热制得菱面片层氢氧化镁,该法镁、钙别离程度较高,镁的提取率为90.02%,产品收率为88.21%;沉积法以菱镁矿或白云石为质料,经煅烧、浸取、除杂、沉积制得产品。以白云石为质料,先后用和硫酸浸取,参加克己络合沉积剂和表面改性剂聚乙二醇可制得产品,收率为85.20%。酸解法以多种含镁矿藏为质料,经过酸解、除杂、沉积制得产品。以白云石为质料,经酸化、除杂,以白云石灰乳为沉积剂,产品纯度为98%,其间,白云石灰乳经过白云石煅烧消化制备。 超细氢氧化镁可作为复合材料的阻燃成分,参加不同的表面改性剂能够改动产品粒径。以氯化镁溶液为质料,为沉积剂,产品粒径 卤水替代。 氢氧化镁晶须是短纤维功能型材料,首要作为阻燃剂和补强材料增加到高分子材料中。沉积法,改善沉积进程能够改动长径比。以氯化镁溶液为质料,参加碱和表面改性剂,水热组成产品。以为沉积剂,丙三醇为表面改性剂,选用微波水热,直径为0.1~0.3μm,长度为80~110μm;改用和为沉积剂,酸为表面改性剂,直径为8~15nm,长度为50~150nm;中低浓度的和低浓度的氯化镁溶液,产品的分散性较好;以碱式硫酸镁晶须为前驱体,为沉积剂,油酸钾为表面改性剂,水热制得直径为1~2μm,长度为100~200μm的产品;参加表面改性剂不能减小粒径,反而会阻挠碱式硫酸镁晶须向氢氧化镁晶须转化。

氧化铝方程式

2017-06-06 17:50:09

氧化铝常识AL2O3        概要  氧化铝通常称为“铝氧”,是一种白色粉状物,属共价化合物,熔点为2050℃,沸点为3000℃,真密度为3.6g/cm3。  它的流动性好,不溶于水,能溶解在熔融的冰晶石中。它是铝电解生产的中的主要原料。  名称 氧化铝;刚玉;白玉;红宝石;蓝宝石;刚玉粉;corundum  化学式 Al2O3  外观 白色晶状粉末或固体  物理属性  式量 101.96 amu  熔点 2303 K  沸点 3250 K  密度 3.97 kg/m..  晶体结构 三方晶系 (hex)  热化学属性  ΔfH0liquid -1620.57 kJ/mol  ΔfH0solid -1675.69 kJ/mol  S0liquid, 1 bar 67.24 J/mol·K  S0solid 50.9 J/mol·K  安全性  食入 低危险  吸入 可能造成刺激或肺部伤害  皮肤 低危险  眼睛 低危险  在没有特别注明的情况下,使用SI单位和标准气温和气压。  氧化铝是铝和氧的化合物,分子式为Al2O3。在矿业、制陶业和材料科学上又被称为矾土。  应急处理  隔离泄漏污染区,限制出入。建议应急处理人员戴防尘面具(全面罩),穿防毒服。避免扬尘,小心扫起,置于袋中转移至安全场所。若大量泄漏,用塑料布、帆布覆盖。收集回收或运至废物处理场所处置。  制备  强热氢氧化铝,可得无定形之白色氧化铝粉末。 2Al(OH) 3 → Al 2 O 3 +3H 2 O  用途  1. 红宝石、蓝宝石的主成份皆为氧化铝,因为其它杂质而呈现不同的色泽。红宝石含有氧化铬而呈红色,蓝宝石则含有氧化铁及氧化钛而呈蓝色。  2. 在铝矿的主成份铁铝氧石中,氧化铝的含量最高。工业上,铁铝氧石经由Bayer process纯化为氧化铝,再由Hall-Heroult process转变为铝 金属 。  3. 氧化铝是 金属 铝在空气中不易被腐蚀的原因。纯净的 金属 铝极易与空气中的氧气反应,生成一层薄的氧化铝薄膜覆盖在暴露于空气中铝表面。这层氧化铝薄膜能防止铝被继续氧化。这层氧化物薄膜的厚度和性质都能通过一种称为阳极处理(阳极防腐)的处理过程得到加强。  4. 铝为电和热的良导体。铝的晶体形态金刚砂因为硬度高,适合用作研磨材料及切割工具。  5. 氧化铝粉末常用作色层分析的媒介物。  6. 2004年8月,在美国3M公司任职的科学家开发出以铝及稀土元素化合成的合金制造出称为transparent alumina的强化玻璃。  资料刚玉粉硬度大可用作磨料,抛光粉,高温烧结的氧化铝,称人造刚玉或人造宝石,可制机械轴承或钟表中的钻石。氧化铝也用作高温耐火材料,制耐火砖、坩埚、瓷器、人造宝石等,氧化铝也是炼铝的原料。煅烧氢氧化铝可制得γ-Al2O3。γ-Al2O3具有强吸附力和催化活性,可做吸附剂和催化剂。刚玉主要成分α-Al2O3。桶状或锥状的三方晶体。有玻璃光泽或金刚光泽。密度为3.9~4.1g/cm3,硬度9,熔点2000±15℃。不溶于水,也不溶于酸和碱。耐高温。无色透明者称白玉,含微量三价铬的显红色称红宝石;含二价铁、三价铁或四价钛的显蓝色称蓝宝石;含少量四氧化三铁的显暗灰色、暗黑色称刚玉粉。可用做精密仪器的轴承,钟表的钻石、砂轮、抛光剂、耐火材料和电的绝缘体。色彩艳丽的可做装饰用宝石。人造红宝石单晶可制激光器的材料。除天然矿产外,可用氢氧焰熔化氢氧化铝制取。  氧化铝化学式Al2O3,分子量101.96。矾土的主要成分。白色粉末。具有不同晶型,常见的是α-Al2O3和γ-Al2O3。自然界中的刚玉为α-Al2O3,六方紧密堆积晶体,α-Al2O3的熔点2015±15℃,密度3.965g/cm3,硬度8.8,不溶于水、酸或碱。γ-Al2O3属立方紧密堆积晶体,不溶于水,但能溶于酸和碱,是典型的两性氧化物。  Al2O3+6H+=2Al3++3H2O  Al2O3+2OH-=2AlO2-+H2O 

铅蓄电池放电反应方程式的原理

2019-03-13 09:04:48

当两极板放置在浓度为27%~37%的硫酸(H2SO4)水溶液中时,极板的铅和硫酸发作化学反应,二价的铅正离子(Pb2+)转移到电解液中,在负极板上留下两个电子(2e-)。因为正负电荷的引力,铅正离子集合在负极板的周围,而正极板在电解液中水分子效果下有少数的(PbO2)进入电解液,其间两价的氧离子和水化合,使分子变成可离解的一种不稳定的物质——氢氧化铅〔Pb(OH)4)。氢氧化铅由4价的铅正离子(Pb4+)和4个氢氧根〔4(OH)-〕组成。4价的铅正离子(Pb4+)留在正极板上,使正极板带正电。因为负极板带负电,因此两极板间就产生了必定的电位差,这就是电池的电动势。当接通外电路,电流即由正极流向负极。在放电过程中,负极板上的电子不断经外电路流向正极板,这时在电解液内部因硫酸分子电离成氢正离子(H+)和硫酸根负离子(SO42-),在离子电场力效果下,两种离子分别向正负极移动,硫酸根负离子抵达负极板后与铅正离子结组成硫酸铅(PbSO4)。在正极板上,因为电子自外电路流入,而与4价的铅正离子(Pb4+)化组成2价的铅正离子(Pb2+),并当即与正极板邻近的硫酸根负离子结组成硫酸铅附着在正极上。

电解铝方程式

2017-06-06 17:49:53

电解铝方程式主要分为阳极和阴极两头进行化学反应。具体电解铝方程式分析如下:1.阳极反应:通常的阳极反应写成C+2O2--4e=CO2但是电解质中无O2-,主要含氧离子的形式为Al2OF62-和Al2O2F42-从Al2O2F42-中移出第一个氧比移出第二个氧或比从Al2OF62-中移出氧所需能量小得多故正常情况下,阳极反应为:Al2O2F42-+C-4e=CO2+2Al2OF4消耗掉的Al2O2F42-通过下列反应补充Al2OF4+Al2OF62-=Al2O2F42-+2AlF32.阳极一次气体产物:当用炭做阳极时,阳极上的一次气体产物为100%的CO2,只有在阳极电流非常低,极化电压小于1.1V或阳极过电压小于0.1V时,才有可能在炭阳极上有CO生成。Calandra等人用三角波电位扫描了相对铝参比电极的石墨电极上的阳极过程,发现在电压1.1V,1.8V,2.55V和3.6V时出现4个峰值,几个峰值与如下几个反应进行比较:Al2O3+3C=2Al+3CO   E0=1.02V    ①2Al2O3+3C=4Al+3CO2   E0=1.16V    ②2Na3AlF6+Al2O3+3C=4Al+6NaF+3COF2 E0=1.8V    ③4Na3AlF6+3C=3CF4+12NaF+4Al   E0=2.55V    ④2Na3AlF6+C+CF4+6NaF+2Al+F2    E0=3.48V   ⑤A.阳极极化后的电压(平衡电压+阳极过电压)在1.6~1.65V之间时,产物是CO2B.当阳极附近缺Al2O3,极化电压:2.6~3.6时,产物CF4C.极化电压超过3.6V时,产物F2+CF4D.阳极附近Al2O3浓度很低时,极化电位1.8~3.6V,产物COF2工业中:极化电压一般在1.65V左右,很少超过1.75V3.阳极过电压:阳极过电压ηCA与阳极电流密度Ia的关系ηCA=a+b㏒Ia①        Haupin研究得出:阳极过电压主要由反应过电压构成     ηRA =  *ln  ,R:气体常数,F:法拉第常数,n=2a:电荷传递系数,io:交换电流密度,iA:阳极电流密度;②当电解质中的氧化铝浓度较低时,阳极表面还有一种扩散过电压ηcAηcA=- ln ,icr:浓度极限电流密度;③欧姆过电压:阳极表面附近气泡会提高这部分电解质的电阻,并且增加了阳极表面没有被气泡覆盖了的 部分区域的 阳极电流密度,而使阳极过电压升高,这部分电压升高称为欧姆过电压4.阳极过电压机理:①首先,铝—氧—氟络离子Al2O2F62-穿过双电层并在阳极表面放电,这个过程几乎不产生过电压;②Al2O2F62-放电后产生的氧被化学吸附在炭阳极表面Al2O2F42--e+xC(表面)=Cx*O-(表面)+Al2OF4;Cx*O-(表面)-e=Cx*O(表面吸附),C—C之间键不会断裂生成CO,这一过程也不产生过电压;③已被一个氧占有的炭不太容易让一个氧在此位置放电,后续的氧的放电只能发生在活性较小的炭的位置上,这需要增加一些能量即过电压;④一旦阳极的有效表面都被Cx*O(表面)化合物所覆盖,那么下一步的氧就必须在已经键合了一个氧的炭上放电。,Cx*O(表面)+Al2O2F42--e=CxO2-(表面)+Al2OF4,Cx*O2-(表面)-e=Cx*O2这一步需要较高的能量——过电压,这是造成阳极过电压的主要原因,也是阳极电解反应的律速步骤。⑤Cx*O2表面化合物炭—炭之间的结合很容易分裂,形成解吸的CO2和新的炭表面。Cx*O2(表面)=CO2(气)+(x-1)C(表面)新的阳极表面提供了Al2O2F42-放电的新位置。其实本身电解铝方程式是十分复杂的,如果一步一步很细的分析的话会很麻烦,总而言之,电解铝就是通过电解得到的铝。重要通过这个方程进行:2Al2O3==4Al+3O2。   阳极:2O2ˉ-4eˉ=O2↑   阴极:Al3+ +3eˉ=Al 

氧化镁

2019-01-25 15:49:17

MgO俗称苦土,是一种白色粉末状固体。熔点3125K,沸点3873K,密度3.58g/cm3(298K),硬度6.50。MgO对水呈一定惰性,特别是高温煅烧后的MgO难溶于水。MgO溶于酸。    MgO的制备方法:   (1)金属镁在高温下燃烧。                              2Mg  +  O2  ==  2MgO    (2)工业上一般通过煅烧碳酸镁或氢氧化镁来生产氧化镁。                             MgCO3  ====  MgO  +  CO2                                Mg(OH)2  ==== MgO  +  H2O    煅烧温度在923K左右制成的为轻质MgO,煅烧温度在1923K以上时制成的为MgO。    MgO大量用于耐火材料、金属陶瓷、电绝缘材料,轻质MgO与MgCl2或MgSO4溶液混合后可制成镁质水泥。医疗上用MgO作抗酸药和轻泻药。常与易致便秘的CaCO3配合应用。在水处理、人造纤维织物加工、造纸、催化剂生产等方面MgO都有重要应用。

一种生产环保型氢氧化镁的新工艺

2019-02-22 09:16:34

跟着社会经济的开展,燃煤开释的二氧化硫、二氧化碳,燃油开释的硫化合物,氮化合物及采矿、冶金、印染、化工、制药等职业排放的工业废液对人类赖以生存的环境的污染日益严峻,怎么有用地处理这些污染要素,以削减它们给人类带来的巨大丢失,已成为需求火急处理的全球性重要问题之一。 依据对环境保护的需求,处理这些污染必定要用到具有以下特色的化工产品:无毒、温文、不腐蚀处理设备,廉价易得、处理本钱低,效率高,能力强、易操作,且易收回或综合利用、不构成二次污染。 料浆状氢氧化镁正是契合上述一切特色的最佳质料之一,它是一种首要运用于环保范畴的液相无机碱类产品,具有活性大、比表面积大、吸附能力强、缓冲和中和能力强、非沉积性、流动性好、运用和调理便利、温文、安全、无毒、无害、腐蚀性小、易操作、副产品易收回或综合利用等特色,被称为环境友好型“绿色安全中和剂”,运用于酸性废水中和、废液中重金属离子(Ni2+、Mn2+、Cd2+、Cu2+、Cr3+、Cr6+等)脱除、烟气脱硫、印染废液处理等环保范畴,具有其他碱性物质(氧化钙、氢氧化钙、、碳酸钠等)无与伦比的优越性,以往运用于酸性工业废水、含硫烟气处理范畴中的一些强碱物质,如:石灰、烧碱、纯碱等的运用逐渐遭到限制,而被兴起的弱碱氢氧化镁所代替。 因料浆状氢氧化镁运用于环保范畴的许多优势,20世纪90年代末,国外料浆状氢氧化镁料的出产和运用得到迅速开展;我国虽然具有丰厚的镁资源,可是氢氧化镁的出产和运用并未引起人们的满意注重,首要处于研讨开发阶段。近年来,国内虽然建设了一些中试或出产设备,但规划小、品种少、产品质量低、技能水平低,亟待进步职业全体水平。 一、现有料浆状氢氧化镁的首要出产办法 依据氢氧化镁用处和形状的不同,可分为粉末状、滤饼状、料浆状三种。用于环保范畴的料浆状氢氧化镁的纯度要求不是很高,一般在30%左右即可,首要是要求不含重金属等污染严峻的杂质,其出产办法相对简略,首要包含粗氧化镁(镁砂、粗制工业氧化镁等)水化法、海水或卤水-碱性物质(、石灰、氢氧化钙、等)沉积法等。 氧化镁水化法是一种非常陈旧的出产工艺,首要是将菱镁矿轻烧得到的轻烧氧化镁粉放入盛有热水的反响池中,边加边拌和,加料结束后保温沉化2h左右,然后进行固液别离、脱水,得到滤饼状及料浆状氢氧化镁。此工艺根本不具有除杂功用,产品质量受质料氧化镁的纯度和活性影响,氧化镁中的杂质除微量可溶性的盐类外,根本被带入产品中,因此,只能出产低层次的氢氧化镁。 海水或卤水-碱性物质(、石灰、氢氧化钙、等)沉积法是将海水或卤水经过简略的净化后,参加碱性沉积剂,发生氢氧化镁沉积,经过滤、洗刷、脱水得到滤饼状及料浆状氢氧化镁。虽然原理简略,但的挥发性强,易污染环境,操作难度大;石灰和氢氧化钙易生成硫酸钙,随氢氧化镁一同分出,构成产品杂质含量高,质量差;是强碱,易使生成的氢氧化镁构成胶体沉积,给产品功能操控带来困难,一起易带入较多的Na+和Cl-及其他杂质,也构成产品杂质含量高,纯度难以保证。 二、海水、卤水-轻烧白云石沉积法 氢氧化镁运用于环保范畴具有其它碱性物质无与伦比的优越性,在国外已被大量出产和广泛的运用,而我国氢氧化镁的出产办法较落后,本钱较高,杂质含量较多,质量较差,在环保范畴的运用更是屈指可数。鉴于此,咱们首要针对出产环保型氢氧化镁,研制了海水、卤水-轻烧白云石沉积法。 该办法归于沉积法的一种,以海水、卤水和轻烧白云石为质料,选用操控结晶一步组成工艺制取氢氧化镁,它克服了以往出产办法的不利要素,产品纯度高、杂质含量少、质量安稳。 (一)根本原理 将轻烧白云石水合生成含氢氧化钙和氢氧化镁的轻烧白云石乳,轻烧白云石乳中的氢氧化钙和质料海水、卤水中的镁离子在接连组成及别离一体化反响器中反响生成氢氧化镁。本工艺选用自主研制的接连组成及别离一体化反响器,在反响器中始终保持一定量的晶种,简化了传统的晶种回头增加工艺,并在反响器中将生成的氢氧化镁和杂质进行了有用地别离,氢氧化镁完结液经沉降、洗刷、别离、脱水得到滤饼状氢氧化镁,把滤饼加水谐和,并按份额增加分散剂,以防止氢氧化镁的聚会结核,然后制得不同浓度且功能安稳的料浆状氢氧化镁,反响方程式:(二)工艺流程(见图1)图1  海水、卤水-轻烧白云石沉积法工艺流程图 首要,用一种不同于韩利华说到的新处理技能,将质料水中影响产品质量的杂质除掉,得到净化质料水,将轻烧白云石加适量净化质料水水合消化后,加水制得契合组成要求的轻烧白云石乳。 然后,将制好的净化质料水和轻烧白云石乳按份额打入带拌和的接连组成及别离一体化反响器中,操控好反响时间和反响结尾,使二者充沛触摸、完全反响。因为氢氧化镁和不溶性较大粒径杂质沉降速度的不同,不溶性较大粒径杂质首要沉积到反响器底部,并由反响器底部排出。富含氢氧化镁的完结液从反响器中上部进入一级沉降器进行固液别离,固相经净化水洗刷除掉大部分可溶性杂质后进入二级沉积器进行二次固液别离,固相经脱水得到滤饼状产品,滤饼加水谐和,并按份额增加分散剂,以防止氢氧化镁的聚会结核,然后制得不同浓度且功能安稳的料浆状氢氧化镁。 (三)产品质量 氢氧化镁的技能方针多种多样,但用于环保范畴的料浆状和滤饼状氢氧化镁在我国没有见专门的质量标准,为适运用户需求,国外有关供应商对料浆状和滤饼状氢氧化镁产品均拟定了厂商标准,见表1。 表1  国外料浆状、滤饼状氢氧化镁厂商标准本工艺出产的氢氧化镁的首要方针:Mg(OH)230%~35%,CaO 0.5%~0.6%,Cl-≤0.1%,虽杂质氧化钙的含量稍高于日、美产品的质量方针,但已远低于瑞士的质量方针。且该质量的氢氧化镁已足以满意废水处理、烟气脱硫等环保范畴的质量要求咱们将在此基础上进一步改善工艺,进步产品质量,以满意更多职业更高运用要求的需求。 (四)工艺特色 该工艺的首要质料为海水、卤水和轻烧白云石,其来历广泛、报价低廉。 该工艺反响在常温下进行,整个进程不需求加压、加热,出产节能、本钱低。 该工艺进程无有毒、有害及有腐蚀性的物料投入和产出,对出产设备无特殊要求,首要设备为压滤机、普通工业泵和反响器、沉降器等碳钢槽罐,设备出资少,操作简略。 该工艺中,经过对质料水的预处理,有用地下降了产品中杂质含量,产品质量显着优于国内同类工艺产品,达到了沉积法出产高质量氢氧化镁的要求。 该工艺中,接连组成及别离一体化反响器的研制和运用,有用地操控了产品结晶,反响器中保留足量的晶种,防止了晶种的回头增加,完成了接连组成,并完成了方针产品和杂质的有用别离,产品质量较传统办法出产的产品杂质含量少、质量高。 三、结束语 污染正给人类构成巨大的损害,给经济构成巨大的丢失。就我国排放的二氧化硫一项,其构成的酸雨给我国经济构成的丢失每年大约在1100亿元在上,环境管理,已刻不容缓。 我国在酸性废水中和、重金属离子脱除和烟气脱硫等环保方面运用的处理工艺比较落后,操作杂乱,质料耗费高,运转本钱高,并且处理的不完全,副产品又构成二次污染。 跟着我国可持续开展战略的施行、世贸组织的参加、环保认识的增强和环保法律法规的逐渐健全、完善,运用于环保范畴的新技能、新工艺也被日益注重,对其研讨开发的力度正在加大,高效、无毒、优质的新产品或代替产品越来越遭到人们的注重。 我国海水、卤水资源、白云石、菱镁矿、水镁石等含镁资源适当丰厚,应充沛利用现有资源优势,经过改善现有落后工艺,研讨开发新工艺,大力开展多品种的氢氧化镁产品,并进步产品的质量和附加值、下降出产本钱,以满意环保及其他职业日益开展对氢氧化镁质量要求不断进步和用量不断增加的需求,促进经济健康快速地开展。

铝的化学方程式

2018-04-19 17:37:15

铝土矿的化学成分主要为Al 2 O 3 、SiO 2 、Fe 2 O 3 、TiO 2 、H 2 O + ,五者总量占成分的95%以上,一般>98%,次要成分有S、CaO、MgO、K 2 O、Na 2 O、CO 2 、MnO 2 、有机质、碳质等,微量成分有Ga、Ge、Nb、Ta、TR、Co、Zr、V、P、Cr、Ni等。Al 2 O 3 主要赋存于铝矿物—水铝石、一水软铝石、三水铝石中,其次赋存于硅矿物中(主要是高岭石类矿物)。 

湿法炼铜的化学方程式

2018-12-13 10:31:09

Fe+CuSO4=FeSO4+Cu其实不一定用铁,金属活动性比铜强就行.也不一定用硫酸铜,可溶性的铜盐就可以.

氢氧化锌和氧化锌

2019-02-21 12:00:34

在Zn2+的可溶盐的溶液中参加适量的碱,能够沉积出白色的氢氧化锌: Zn2++2NaOH=Zn(OH)2↓+2Na+     成四羟基合锌酸Zn(OH)2是的氢氧化物,既可溶于酸生成锌盐,又可溶于强碱生成配离子,或称为锌酸盐: Zn(OH)2+2H+= Zn2++2H2O Zn(OH)2+2OH-=[ Zn(OH)4]2-     Zn(OH)2还能溶于NH3水中生成四合锌酸根配离子,而Al(OH)3则不溶于NH3水: Zn(OH)2+4NH3 == [ Zn(NH3)4]2++2OH-     这也是差异Al(OH)3和Zn(OH)2的办法之一。    Zn(OH)2受热时易脱水生成白色的氧化锌ZnO: Zn(OH)2 加热  ZnO+H2O     [Zn(OH)4]2-和[Zn(NH3)4]2+ 在加热或加酸的条件下,配离子崩溃,又生成Zn(OH)2: [Zn(NH3)4]2++2OH-  加热  Zn(OH)2↓+4NH3↑     Zn(OH)2和ZnO都是共价型的化合物。Zn(OH)2常常用作造纸的填料。    ZnO是一种闻名的白色的颜料,俗名叫锌白。它的长处是遇到H2S气体不变黑,由于ZnS也是白色的。在加热时,ZnO由白、浅黄逐渐变为柠檬黄色,当冷却后黄色便退去,运用这一特性,把它掺入油漆或参加温度计中,做成变色油漆或变色温度计。    因ZnO有收敛性和必定的灭菌才能,在医药上常调制成软膏运用,ZnO还可用作催化剂。    在Zn2+盐中参加Na2CO3溶液,得到的是碱式碳酸锌的白色沉积,而不是Zn(OH)2: 2Zn2++3CO32-+2H2O === Zn2(OH)2CO3↓+2HCO3-

熔盐法制备氧化镁粉体及其反应机理

2019-02-21 11:21:37

跟着高技术陶瓷、橡胶、塑料、催化剂、环保材料、航天材料的不断发展,氧化镁晶体材料、特别是高纯氧材料(MgO含量不低于98%)的使用越来越广。例如用于医治胃酸过多及十二指肠溃疡患者,用作硅钢制作进程中的高温退火阻隔剂,用于制作电子管、滤光器、滤色器、滤波器等。此外作为灵敏型高效催化剂及功用体良的掺杂材料,高纯氧化镁有很多使用于工业催化及材料改性和高功用复合材料的制备。已报导的高纯氧化镁制备办法较多,例如菱镁矿(白云石)碳化法、卤水(海水)-石灰()法、卤水(海水)-碳按法及镁盐直接热解法等。     熔盐法选用一种或几种低熔点的盐类作为反响介质,在高温熔融盐中完结组成反响,然后选用适宜的溶剂将盐类溶解,经过滤、洗刷得到组成产品,它在高熔点氧化物粉体和电子陶瓷粉体及其它功用粉体材料组成等范畴广泛使用。熔盐法具有工艺简略、组成温度低、保温时刻短、本钱低价、组成粉体的化学成分安稳均匀等长处。     对熔盐法制备MgO粉体的不同熔盐系统进行了比照,发现NaCl-KCl盐类熔点适中,功用相对安稳,洗刷进程中NaCl、KCl溶解于水,滤液经枯燥后得到NaC1、KC1等盐类可回收使用,是一种优秀的反响介质。当选用NaN03-KN03盐类作反响介质时,与镁盐直接热解法相同,反响进程中发作腐蚀性气体,不适合工业化出产。可是NaN03 -KN03盐类熔点较低,有利于分析质料系统在熔盐中的反响进程,进而对反响机理进行评论,因而本文以MgCl2、 CaCO3和NaN03、KN03为质料制备Mg0粉体。     一、试验     (一)质料     试验所用无水氯化镁、碳酸钙、、、无水乙醇等均为分析纯。     (二)氧化镁粉体的制备     将MgCl2、CaCO3及NaN03、KN03按1.1︰1︰2︰2配比置于碾钵中碾磨,使质料混合均匀并磨细至-0.074mm粒级,550℃下保温3h热处理,经水浸泡、洗刷、减压过滤、110℃枯燥,再在600℃下保温3h热处理。     (三)反响机理分析     作CaCO3和MgCl2-CaCO3-NaN03-KN03的TG-DSC曲线,分析质料热反响进程;依据TG-DSC曲线,将质料在不同温度和保温时刻下热处理,断定产品组成,分析熔盐法制备氧化镁的反响机理。     (四)表征     用德国NETZSCH公司STA449/6/G型热重-差示扫描归纳热分析仪对试样进行热效应分析。     用荷兰Philips公司出产的X′Pert Pro型X射线衍射仪对产品进行物相判定。     用荷兰Philips公司出产的Nova400NanoSEM型场发射扫描电子显微镜调查粉体描摹及巨细。     二、成果及评论     (一)试样的组成与描摹分析    图1为S11试样和S12试样的XRD图谱,其间S11试样为质料在550℃下保温3h热处理,用水洗刷后经110℃枯燥的前驱物,S12试样为S11试样在600℃温3h热处理的产品。     从图1可见,质料在550℃下保温3h热处理,用水洗刷后的前驱物主要为氢氧化镁,其间尚有少数氧化镁没有水解,经600℃保温3h热处理,氢氧化镁分化为氧化镁。图2  试样TEM (a)S11;(b)S12     图2为S11试样和S12试样的SEM图。从图2可见,氢氧化镁前驱物主要为层状描摹,形状不规整,巨细散布不均匀,厚度介于0.03~0.05μm,直径介于0.2~1.0μm之间;氢氧化镁分化后得到的氧化镁为颗粒状描摹,巨细散布较均匀,粒径介于0.2~0.5μm之间。     表1为S12试样的化学成分分析成果。从表1可知,所制备的氧化镁粉体纯度高,可满意医药、冶金、工业催化、量子器材、微电子等职业要求。 表1  S12试样化学成分分析成果(质量分数)/%Mg0CaC03A1203Si02Fe203IL98.820.520.100.090.060.41     (二)反响机理分析     图3为CaCO3和MgC12-CaC03-NaN03-KN03质料的TG-DSC曲线。     由图3(a)可见,从700℃至800℃失重37.08%,CaC03分化为CaO和CO2,对应的DSC曲线在769.2℃有一个吸热峰。    由图3(b)可见,从室温至400℃失重18.90%,该温度范围内质料失掉悉数物理水及结构水,NaN03-KNO3熔融,对应的DSC曲线上有3个吸热峰;从400℃至530℃失重8.10%,对应的DSC曲线上在490.5℃有一个吸热峰,该温度范围内可能发作了分化反响;从530℃至700℃失重23.20%,对应的DSC曲线上在660.4℃有一个吸热峰,该温度范围内可能发作了分化反响;温度大于700℃后,失重持续加大,主要是熔盐在高温下加速蒸腾。对照图3(a),没有呈现CaCO3分化的吸热峰,阐明在700℃曾经CaCO3已彻底反响。     图4为试样的XRD图谱。其间M11试样为质料在320℃下保温48h热处理,水洗后经110℃枯燥的产品;Ml2试样为质料在320℃下保温360h热处理,水洗后经110℃枯燥的产品;M14试样为质料在900℃下保温3h热处理,用无水乙醇洗刷后产品的XRD图谱。由图4可见,质料在320℃下保温48h热处理,水洗后经110℃枯燥的产品主要为碳酸镁和白云石及少数的氢氧化镁;质料在320℃下保温360h热处理,水洗后经110℃枯燥的产品主要为碳酸镁;质料在900℃下保温3h热处理,用无水乙醇洗刷后产品悉数为氧化镁。    结合S11试样和S12试样的XRD图谱,以MgC12、CaCO3和NaNO3、KNO3为质料,选用熔盐法制备Mg0粉体的反响机理如下:     1、  熔盐环境下Mg2+与Ca2+发作置换反响,其产品组成与反响温度和反响时刻有关。     MgCl2←→Mg2++2Cl-     xMg2++CaCO3→MgxCa1-xCO3     当x<0.5时.产品为碳酸钙的置换型固溶体,当x=0.5时,产品为CaMg(C03)2,当0.5<x<1时,产品为CaMg(C03)2和MgC03混合物,跟着反响的不断进行,当x=1时,产品为MgC03。     2、碳酸镁分化。     MgC03→Mg0+C02↑     3、水洗进程中氧化镁水解。     Mg0+H20→Mg(OH)2     4、氢氢氧化镁分化。        三、结语     (一)MgCl2-CaC03-NaN03-KN03质料制备氧化镁进程中,在熔盐环境下Mg2+与Ca2+发作置换反响,生成白云石和碳酸镁等中间产品,跟着反响的不断进行,白云石终究转变为碳酸镁;550℃热处理碳酸镁分化为氧化镁,经水浸泡后氧化镁水解生成氢氧化镁,600℃热处理氢氧化镁分化为氧化镁。     (二)氢氧化镁前驱物为不规整的层状描摹,巨细散布不均匀,厚度介于0.03~0.05μm,直径介于0.2~1.0μm之间;产品氧化镁为颗粒状描摹,巨细散布较均匀,粒径介于0.2~0.5μm之间。

氢氧化高镍

2017-06-06 17:49:58

中文名称:氧化高镍   英文名称:nickelic hydroxide; nickel (Ⅲ) hydroxide   性状:  黑色粉末。   溶解情况:   不溶于水和碱溶液。溶于酸和氨水。   用途:   用于制碱蓄电池等。   制备或来源:  由氢氧化镍用次氯酸盐氧化而得。   其他:   在熔点分解。氢氧化高镍采用水溶液氧化沉淀法,试制了Ni(OH)3粉末材料。实验选用Na2O2等多种氧化剂与无水NiCO3,NiSO4·6H2O等四种镍盐发生反应,比较了制取高纯氢氧化高镍的反应效果及结果,并从中确立了较合理的氧化剂和镍盐配方。在此基础上,分析了反应液温度和反应液pH值两个主要参数对氢氧化高镍生成的影响,确立了制取氢氧化高镍的基本方法。 

氢氧化锰

2017-06-06 17:50:07

氢氧化锰是什么?氢氧化锰分子式:Mn(OH)2 化合属性:一个分子含有2个共价键,2个离子键 化合物类型:离子化合物 酸碱属性:中强碱 为锰的+2价氧化物对应水化物。氢氧化锰的化学性质与酸反应:Mn(OH)2+2HCl=MnCl2+2H2O氢氧化锰物理性质形状颜色:白色到浅桃红色结晶,六方晶体   密度:3.258g/cm3 热稳定性:加热到140℃分解   溶解性:溶于酸和铵盐,不溶于水和碱   制取:由可溶性锰盐与氢氧化钠、氢氧化钾或氨水(一水合氨)反应制得。用软锰矿粉的浆料,与二氧化硫气体接触,再与石灰乳反应也可制得 用处:用作陶瓷颜料,制造其他锰化合物,油漆催干剂以及用于锌电解车间含有机酸废水的处理。氢氧化锰的酸碱性:氢氧化锰白色到浅桃红色结晶,六方晶体,由可溶性锰盐与氢氧化钠、氢氧化钾或氢氧化铵反应制得。锰酸,由于mno4―仅能存在于强碱溶液中,在酸性溶液中迅速发生歧化,分解为高锰酸和二氧化锰,故一般条件下不存在。常用其盐。用作强氧化剂。可以由高锰酸制得.  高锰酸紫色晶体。很不稳定。加热则分解为二氧化锰和氧气。是强氧化剂,与有机物接触即很快地分解。制法:(1)在高锰酸钡中加入定量的硫酸,滤出硫酸钡后将滤液蒸浓得紫色晶体。(2)将七氧化二锰溶于水得紫色高锰酸溶液。因其不稳定,故不直接使用而常用其盐。更多有关氢氧化锰信息请详见于上海 有色 网

制氢氧化铜

2017-06-06 17:50:01

实验室制氢氧化铜的化学方法是用饱和硫酸铜溶液滴加氢氧化钠的方法制备氢氧化铜。CuSO4+NaOH = Cu(OH)2+Na2SO4   属于典型的复分解反应,盐+碱 = 碱+盐有人说氢氧化铜是氧化铜对应的水化物,那为什么不可以直接用氧化铜和水反应制氢氧化铜呢?原因有两点:一、因为氧化铜不溶于水,就算对氧化铜水溶液加热,也不会使之溶解。氧化铜都不溶于水,又怎么和水发生反应呢?二、化学反应中有一规则,氧化物对应的水化物难溶于水,则该氧化物就不与水反应。氢氧化铜难溶于水,则氧化铜就不能与水反应,类似的还有氢氧化铁、氢氧化铝、氢氧化锌、氢氧化亚铁等都不溶于水,它们对应的氧化物(氧化铁、氧化铝、氧化锌、氧化亚铁)也不能与水反应。所以说用氧化铜和水反应制氢氧化铜是个错误的说法。

新制氢氧化铜

2017-06-06 17:50:01

英文名称 Cupic Hydroxide化学式 Cu(OH)2相对分子质量 97.56密度3.368g/cm3CAS 号 20427-59-2  理化性状 蓝色或蓝绿色凝胶或淡蓝色结晶粉末,难溶于水,微显两性,溶于酸、氨水和氰化钠,受热至60-80℃变暗,温度再高分解为黑色氧化铜和水。  实验室使用硫酸铜溶液与氢氧化钠溶液混合过滤制取氢氧化铜,反应如下:CuSO4+2NaOH=Na2SO4+Cu(OH)2  产品用途 用作分析试剂,还用于医药、农药等。可作为催化剂、媒染剂、颜料、饲料添加剂、纸张染色剂灯等。氢氧化铜用作农药。危险特性:按我国农药毒性分类标准,可杀得属中毒杀菌剂。  作用机理与特点:它的杀菌作用主要靠铜离子,铜离子被萌发的孢子吸收, 当达到一定浓度时,就可以杀死孢子细胞,从而起到杀菌作用,但此作用仅限于阻止孢子萌发,也即仅有保护作用 。注意:1.本剂对眼粘膜有一定的刺激作用,施药时应注意对眼睛的防护;2.对铜敏感的作物如桃、李、梨、苹果、柿子树、白菜、大豆等品种,要先进行试验,要慎用。3.稀释后及时、均匀、全面喷洒。   4.高温高湿及对铜敏感作物慎用,果树花期或幼果期禁止使用。   5.避免药液及废液流入鱼塘、河流等水域。   6.质量保证期2年。   7.施药前请详细阅读产品标签,按说明使用。   8.施药时要穿戴防护用具,避免与药剂直接接触。9.施药后换洗被污染的衣物,妥善处理废弃包装物。配置新制氢氧化铜时,加入的氢氧化钠的物质的量要远多于加入的硫酸铜的物质的量,这是因为1.氢氧化钠价格低,节省价格高硫酸铜2.在检验醛基、葡萄糖等需要新制氢氧化铜试验要求碱性环境,剩余氢氧化钠提供碱性环境 。新制氢氧化铜,生物上称为菲林试剂,用来检测醛基,醛基和新制氢氧化铜水浴加热(50℃~60℃),生成砖红色的氧化亚铜沉淀。葡萄糖和氢氧化铜水浴加热,生成砖红色沉淀。乙醇与氢氧化铜不反应,无现象。乙酸与氢氧化铜反应,蓝色沉淀消失(酸碱中和反应)。

氧化铜和盐酸

2017-06-06 17:50:02

氧化铜(CuO)是一种铜的黑色略显两性,氧化物,稍有吸湿性。相对分子质量为79.545,密度为6.3-6.9 g/cm,熔点1326℃。不溶于水和乙醇,溶于酸、氯化铵及氰化钾溶液,氨溶液中缓慢溶解。盐酸,学名氢氯酸,是氯化氢(化学式:HCl)的水溶液,是一元酸。盐酸是一种强酸,浓盐酸具有极强的挥发性,因此盛有浓盐酸的容器打开后能在上方看见酸雾,那是氯化氢挥发后与空气中的水蒸气结合产生的盐酸小液滴。氧化铜和盐酸反应是指氧化铜和稀盐酸反应氧化铜和稀盐酸反应属于复分解反应: 酸+ 金属 氧化物→盐+水氧化铜和稀盐酸的反应方程式为  CuO+2HCl=CuCl2+H2O反应速度:反应速度比较慢,要想加快反应速度,需要在加热的条件下进行。反应现象:氧化铜固体逐渐消失,溶液逐渐变蓝氧化铜和稀盐酸反应的实质是H+与CuO发生的离子反应:CuO+2H+==Cu2+ +H2O,CuO溶解并生成新物质。氧化铜无论与什么酸反应,不管生成什么铜盐,Cu元素都以Cu2+存在。 

氢氧化铝的沉淀

2019-01-24 17:45:48

从铝土矿生产氧化铝的拜耳法经浓碱高温浸出得到铝酸钠浓溶液,从中沉淀析出氢氧化铝是其极其重要的一个步骤。拜耳溶液中的Al呈[Al(OH)4]-配离子形式存在,它不稳定,经水解析出氢氧化铝沉淀,其反应如下:    (1) 沉淀的氢氧化铝可能呈晶态,也可能为胶体状,其形态取决于沉淀的条件,包括母液组成、温度和有无晶种等。典型的拜耳溶液含Al2O380kg∕m3左右,Na2O∕Al2O3比(指摩尔比,下同)在1.5~2.5之间,简单的稀释或降温只能得到胶状氢氧化铝,难于分离和洗涤。实践上加晶种帮助结晶分离,习惯上称为“种分”,做法是将前一循环中新生成的5~150μm氢氧化铝晶体作为晶种,大大过量地带入新的结晶循环中,降温并缓缓搅拌大约4d,得到粗粒的氢氧化铝晶体。沉淀的初始阶段,结晶速度与晶种表面积成正比。有效的搅拌是必要的,否则细小的晶种容易聚结而降低结晶速度。在25~35℃下搅拌36h可结晶出约70%的铝。某些组分如溶解的铁、钒和钙盐对结晶有负面影响,因而通常称为抑制剂或中毒剂。这些抑制剂应限制在规定的低水平以保证必要的结晶速度。沉淀的氢氧化铝沉降至槽底,经过滤、洗涤后煅烧成氧化铝产品。母液蒸发浓缩至密度1.45kg·m-3后返回浸出。 从铝酸钠浓溶液中结晶氢氧化铝的另一个方法是通入二氧化碳中和过量的碱,习惯上称为“碳分”,一般在70℃下进行,相关的中和反应如下式:    (2)

镍精矿降低氧化镁工艺技术

2019-01-21 18:04:33

一、概述     金川公司选矿厂一选矿车间处理龙首混合矿石,设计处理能力为1200t/d,有破矿、磨浮、精矿输送三道工序。其中,磨浮采用三段磨矿、三段浮选的阶段磨选流程。经80年代后期和90年代初期的系列改造,形成了1500t/d的生产能力。90年后期,经过不断挖潜改造,特别是2000年和2001年连续两次150t/d的扩能改造,现已形成2000t/d的生产能力。     目前所指的龙首混合矿石,是指龙首矿东、中、西部三个不同采区的矿石混合,而不是矿石工业类型上所所义的硫化率为45%~60%的混合矿石。其中一部分较富混合矿石(含Ni1.3%以上)由一选矿进行处理,另一部分较贫混合矿石(含Ni1.122%左右)由二选磨浮车间处理。     本文所探讨的就是Ni品位在1.30 %以上的由一选处理的龙首混合矿。     二、矿石性质及主要矿物选矿工艺特性     (一)龙首混合矿石中主要金属矿物及选矿工艺特性     龙首混合矿石中主要金属矿物有紫硫镍铁矿、镍黄铁矿、黄铁矿、磁黄铁矿、黄铜矿、方铜矿等;脉石矿物有蛇纹石、绿泥石、滑石及碳酸盐。紫硫镍铁矿被认为是最易浮选的硫化镍矿物。镍黄铁矿属比较好选的镍矿物,其选别效果仅次于紫硫镍铁矿,主要原因是其原生粒度比紫镍铁矿小,由于中细粒贫矿石中的镍黄铁矿和磁铁矿紧密共生呈网络状结构,磨矿过程中绝大部分不能单体解离,造成镍黄铁矿可浮性稍差。氧化会使紫硫镍铁矿的可浮性变差,因此对于以紫硫镍铁矿为主的硫化镍矿石要求快采、快运、快选,矿石存放越久越不利于选别。     一般的蛇纹石化矿石,用黄药做捕收剂,镍回收率和硫化率接近或比较接近,是比较好选的硫化镍矿石,使用调整剂可提高精矿品位,回收率无明显改善。蛇纹石具有一定的可浮性,所以精矿中30%左右脉石矿物中有相当部分是蛇纹石,致使精矿中金属品位降低,氧化镁含量高。强蚀变矿石中蛇纹石含量较少,在一般的浮选生产中,硫化物损失严重。     研究证明:各类厂矿中的硫化镍矿物可选性无明显差异,但矿石中脉石矿物对选别生产显著影响,因此,提高镍矿物选别指标或降低精矿中氧化镁的研究工作中,必须重视脉石矿物的抑制。     (二)含镁脉石矿物的浮选工艺性质     金川硫化铜、镍矿床中主要脉石矿物为含镁硅酸盐,由于地质蚀变作用,这些硅酸盐主要以蛇纹石、绿泥石、滑石的形式存在,这些脉石矿物对铜、镍的浮选影响较大。     1、主要脉石矿物的结构     蛇纹石是层状碳酸盐矿物中最简单的矿物,结构式为[Mg3Si2O3(OH)],在它的没一层结构中都含有一层硅氧四面体,水镁石层获得额外电荷,所以和另外一个硅氧四面体六方网成夹层结构,一旦在滑石层上没有净电荷而只有范德华力时,这个夹层就裂开,滑石也很软。     绿泥石也是层状硅酸盐矿物,结构式为(Mg·Al·Fe)12[(SiAl)8O22](OH12),它是在双层云母之间夹上一层水镁石而形成的,如果水镁石层价键遭到破坏,这个矿物就裂开。和前两种矿物比,它最松软。     2、脉石矿物的可浮性     蛇纹石大量存在于镍精矿中而影响精矿质量。在镍矿的生产实践中发现蛇纹石大量进入镍精矿而难以脱除,原因是蛇纹石在形成过程中具有较强的磁性,具有磁性的蛇纹石吸附与同样具有磁性的硫化物表面一起进入精矿;另外,带正电的蛇纹石易吸附与带负电的镍矿物表面而上浮。     绿泥石在镍矿物浮选中易浮难抑,另外,绿泥石疏松易碎,在磨矿过程中易泥化。绿泥石矿泥在镍矿物浮选中其行为与蛇纹石细泥基本一致。     滑石具有非极性表面,疏水性好,具有较强的天然可浮性,仅用起泡剂就能很好使之浮游,镍矿物浮选中,滑石极易进入精矿中。     三、降镁现状分析     (一)工艺流程及其特点     90年代,为了给闪速炉提供低镁合格精矿,弥补二矿区富矿精矿量的不足,金川公司选矿厂、金川镍钴研究设计院、中南工业大学、西北矿冶研究院等单位,针对龙首混合矿石低精矿中氧化镁进行了大量的试验研究,这些试验研究概括起来有三种:       1、通过改变工艺流程降镁;       2、通过新药剂达到活化有用矿物,抑制脉石矿物的药剂降镁;       3、采用改变工艺流程和添加新药剂相结合的方式降镁。       通过大量的试验研究,一选车间于1998年6月9月分别对2#系统和1#系统进行了流程改造,形成了目前的降镁工艺,产出的低镁精矿送闪速炉处理,新的降镁工艺主要是强化了精选作业,增加了粗选次数,通过提高精矿品位达到降镁的目的。现场生产实践证明三段磨矿、三段浮选的阶段磨选流程是选别金川龙首混合矿石的成功经验,既可使有用矿物达到充分单体解离得到有效回收,又可减少过磨和矿物表面污染。生产实践还证明,该流程适应性比较好,既可组织降镁生产,为二期闪速炉提供低镁精矿(精矿中氧化镁含量≤7%);又可以组织低精矿品位生产,为一期电炉生产提供原料,并且在这两种情况下,回收率都基本不受损失。一选磨浮工艺流程(框图)如图1。    图1  一造厂磨浮原则流程     (二)生产指标分类统计分析     对2000年1~8月选厂生产指标进行了分类统计,从统计结果得出如一结论。     1、原矿品位对指标有着直接的影响。随着原矿品位的升高,精矿品位、回收率均呈上升趋势,精矿中MgO含量逐渐降低。     2、原矿镍品位大于1.2%时,只要控制精矿镍品位大于6.5%,精矿中MgO含量即能低于7%,说明在现有工艺条件下,保证一定的精矿品位是降镁的首要条件。     3、原矿镍品位小于1.2%时,要保证精矿中MgO含量,必须将精矿品位提高到7%以上,回收率损失较多。     四、降镁问题分析     (一)矿石性质对降镁的影响     1、MgO赋存矿物的自然可浮性     大多数硅酸盐矿物有强的共价键或离子键,亲水性强,可浮性差,如橄榄石、辉石等。但蛇纹石、滑石、绿泥石等矿物是特殊的层状或双链状硅酸盐矿物,破碎后表面键力是分子键力,疏水性好,自然可浮性强,在浮选过程中容易进入精矿,致使精矿中MgO含量升高。金川矿区的矿石大多发生蚀变,原生的橄榄石、辉石大多蚀变为蛇纹石、滑石、绿泥石等,这些含镁矿物可浮性好,是MgO难以抑制的主要原因。     2、矿石硬度     矿石的硬度变小,在磨矿过程中更容易泥化,矿石的蚀变与矿石中构造挤压带的发育会加剧这一趋势,使蛇纹石、滑石、绿泥石矿泥包裹在金属矿物的表面进入精矿,造成MgO含量升高。     3、矿石品位     矿石中金属硫化物与含镁脉石矿物呈负相关,即矿石品位越低,MgO含量越高。2001年1~8月一选矿处理的龙首混合矿石累计Ni原矿品位1.333%,比计划Ni原矿品位1.35%低0.017%,比2000年同期的1.445%降低了0.112%,呈明显的下降趋势,增加了降镁工作的难度。     (二)降镁方案的局限性     针对龙首混合矿石改善镍铜指标,降低精矿中MgO的工作,各大专院校,科研院所做了大量的试验研究,对不同的矿石采用不同的技术措施都有一定的效果,但是一经生产应用,效果若显若隐。选矿过程很复杂,工业化生产又是一个连续性过程,因目前矿山尚无法实现配矿或稳定出矿,入选的矿石性质、品位波动很大,以不变(或说相对固定)的选矿设备、工艺流程处理多变化矿石,使过程控制更加复杂化,从而使一些看起来比较好的技术措施,在现场应用时就很难取得理想的效果。     五、降镁工作的研究方向     (一)工艺矿物学研究     一矿区龙首混合矿石矿物组成复杂,过去的矿物工艺学研究多侧重于考察原矿,对脉石矿物在选矿过程中各中间产品的赋存状态和工艺特性研究很少,而弄清楚含镁脉石矿物在整个浮选工艺过程中的走向及选矿过程中各中间产品中的脉石矿物的工艺特性,对降镁工艺与药剂的研究具有重要的指导意义,是降镁的关键所在。     (二)选矿新工艺研究     金种一矿区龙首混合矿石降镁工艺的研究晚于二矿区,但也取得了一定进展。但从生产实践来看,还需继续深入探索。     澳大利亚的G·D·Senior等人采用一种新的工艺流程处理镍硫化矿,可除去98%的含镁矿物,工艺要点为:预先浮选含镁矿物,然后将物料分别处理,分段抑制含镁矿物,最后活化含镍矿物,得到高品位镍精矿。金川一矿区混合矿石主要含镁矿物为蛇纹石,其良好的可浮性是造成精矿MgO含量高的重要原因,可以考虑预先浮选蛇纹石,并通过降镁药剂分段抑制其它含镁矿物来达到降镁的目的。另外,G·D·Senior等人认为,粒度不同的物料可浮性和对药剂的要求都有很大的差异,这一点也值得借鉴。     (三)浮选新药剂研究     在工艺流程确定的前提下,影响浮选过程和最终指标最为关键的因素就是浮选药剂的合理选择与使用。由于浮选过程中药剂之间存在着的交互作用,很难真正搞清楚选矿药剂的作用机理,现有的很多理论都是以假设和推测的形式出现,不能确定地描述药剂如何作用于矿物,怎样改变其浮选特性,这一点妨碍了浮选药剂研究的针对性。因此,深入研究各种药剂的作用机理,是降镁研究的重要组成部分。     (四)应注意整体指标的优化     各大专院样、科研院所以往对于金川矿石降低精矿中MgO的研究中,虽然部分地注意了对其它指标的影响,并且采取了一定的技术措施,但这种注意还是不够的。很多降镁方案都要通过不同程度地提高精矿品位来实现,而精矿品位的提高势必造成回收率的损失。若是为了降镁则大幅度提高精矿品位,导致过多地损失回收率,在经济上是不合理的,金川资源有限,在考虑降镁满足闪速炉要求的同时,不能过多损失镍、铜回收率,要特别注意整体指标的优化,这应在今后的降镁工艺研究中引足够重视。     六、结语     金川一矿区龙首混合矿石降镁工艺,经各大专院校、科研院所的大量研究,已取得了一定的进展,有些已应用于工业生产中,目前一选矿的降镁工艺就是在充分吸收各家研究成果的基础上形成的,生产实践也证明在矿石性质、品位相对稳定时,还要靠提高精矿品位来达到降鲜的目的;在矿石性质恶化时,精矿中MgO含量还不能满足要求等,因此,针对一矿区龙首混合矿石降低精矿中MgO含量的工作,还要进一步地探索研究。

氧化镁在电加热管方面的应用

2019-01-04 17:20:20

镁粉主要可用于火箭冲压发动机和去除推进剂燃气中氯化氢。另外还可用作还原剂、制闪光粉、铅合金,冶金中作去硫剂、有机合成、照明剂等。镁粉与铝粉一样,受潮会产生自燃、自爆。当每公升空气中含镁粉10-25毫克,遇到火源就会爆炸。因此工厂在储放镁粉时要格外的注意,一旦生产自然爆炸后果将不堪设想。镁粉做为炼钢不可缺少的材料之一,其需求也多来自于炼钢,因此钢市的好换对镁粉价格有一定的制约作用。 镁粉分为碳酸镁、雾化球形镁粉等。而氧化镁粉作为制作电加热管的主要材料之一,对其电加热管性能好坏的影响非常大。电工级氧化镁粉是指电熔结晶氧化镁块经破碎并对不同颗粒尺寸或数目按一定比例配合,直接或改性后用于管状电热元件中作为在高温下导热的绝缘介质。 电工级氧化镁粉可分为普通型、低温防潮型、中温防潮型以及高温型。氧化镁粉在工作温度的时候,其要具有较高的导热性能,以便能迅速把热量传递到管表面上去,使电阻与管壁温度更接近。当工作温度在1100摄氏度以内时,其具有较好的绝缘性能。其必要要具有一定的颗粒度,形状一般要求为圆状。并且要求其无论在常温还是高温状态下对发热丝材料和管材都应无腐蚀现象。 因氧化镁矿石经粉碎后,颗粒的大小不同,若按一定数量的配比具有以下优点,一是能提高粉密度,减少电阻丝的温度,从而提高电热元件的寿命。二是能克服“分筛”效应,提高mgo粉的利用率。

从低品级菱镁矿中提取高纯氧化镁的研究

2019-01-24 09:36:25

Abstrac:The carbonization soakingof low2grade granularmagnesite is studied. Themineralproperty and light baking performance ofmagnesite, the digestingprocessofMgO aswell as the technologicalparametersof carbonization soaking are investigated. With the carbonization soaking of magnesite, high2grade MgO has been obtained, which contains 99% ofMgO。 我国镁矿资源非常丰富 ,采用碳化法生产轻质碳酸镁的工艺依据矿石性质不同而分为两种:白云石碳化法和菱镁矿碳化法。白云石碳化法生产工艺成熟,但由于碳化浸出过程存在钙含量较高的问题,所以该工艺生产高纯产品受到限制。随着冶炼技术的不断发展,冶金过程中的许多特殊作业趋向于使用高纯度镁砂来大幅度提高耐火制品的寿命,降低生产成本。同时由于高品级菱镁矿的大量出口,因此导致镁矿资源的综合利用问题日益显著。为此,笔者采用低品级菱镁矿粉矿进行碳化法提取高纯氧化镁 (wMgO大于 99%)的工艺研究。试验中,对菱镁矿的矿石性质及轻烧性能、氧化镁的消化过程和碳化浸出的工艺条件和参数进行了研究,并用所获高纯碱式碳酸镁生产出高纯镁砂。 一、矿石性质研究与工艺流程 试样的矿物组成比较简单 ,主要矿物为菱镁矿和白云石,次要矿物为滑石、绿泥石;微量矿物有石英、褐铁矿、黄铁矿、磷灰石等。MgO在矿石中主要作为独立矿物的基本组成形式存在于矿石矿物菱镁矿和脉石矿物白云石、滑石和斜绿泥石中。CaO以两种形式存在于矿物中:一种是以形成独立矿物的基本组成形式存在 ,如白云石、磷灰石 另外一种是以白云石微细包裹体形式存在于菱镁矿晶体中。SiO2亦以两种形式存在于石英、滑石、斜绿泥石、透闪石、方柱石等脉石矿物中,另一种是以石英和硅酸盐矿物细微机械包裹体形式存在于菱镁矿晶体中。 粒度筛析结果表明,wSiO2,wAl2O3在细粒级(-150目 )中略为偏高。wMgO,wCaO,wFe2O3在各粒级中变化不大,与多元素化学分析结果相近。化学分析结果见表1。本试验工艺流程见图1。二、试验结果与分析 (一)煅烧试验 天然菱镁矿在碳化过程中不能直接与二氧化碳起作用,碳酸仅对具有活性的氧化镁起反应,因此需将矿石在高温设备中轻烧,使菱镁矿逸出二氧化碳,生成具有活性的氧化镁。煅烧反应如下: 菱镁矿(WMgCO3约为90%) 轻烧料(WMgO大于90%)+CO2↑    (1) 为使氧化镁易于消化和碳化,对试样进行了差热分析。差热分析结果表明,试样中MgCO3的初始热分解温度为666℃。根据失重曲线可知,700℃以上。由于轻烧氧化镁的活性与煅烧温度和时间有关,故将温度控制在700~850℃之间,并在不同保温时间内进行煅烧条件试验。图2示出了温度和时间对菱镁矿灼减的影响。结果表明,菱镁矿的灼减随温度升高和时间延长而增大。为保证轻烧料不欠烧也不过烧,并具有较高的活性,最佳煅烧温度应控制在800℃,煅烧时间为1.5h。(二)消化试验 许多厂家的生产实践表明,采用白云石生产轻质碳酸镁的工艺中,白云石煅烧后,矿石中含量约30%的CaO与水反应生成Ca (OH)2,矿石自然 裂 解,wMgO为20 %也易与水作用生成Mg(OH)2,因而无需采用细磨工艺。本试验从节约能耗的角度出发 ,将菱镁矿破碎至较小粒级后进行煅烧、消化试验,以探索消化工艺的最佳工艺条件。消化过程的化学反应式如下: MgO+H2O→Mg(OH)2              (2) 轻烧料中的氧化镁在水溶液中转化为氢氧化镁的过程与反应浓度、温度、时间等因素有关,同时与粒度有关。本试验的消化试样为小于2mm粒级的轻烧粉料。 1、消化浓度 将试样放入80℃水中,搅拌4min后过滤,分析不同浓度对消化率的影响。由试验结果得知,消化过程浓度大,转化率低,当浓度低于20%时 ,消化率的变化不大 ,故取消化浓度为 20%进行下面的试验。 2、消化时间 由于浓度试验消化率较低 ,故消化时间试验时增强了搅拌 在消化温度为 ℃、浓度为,80 20%的条件下进行了试验。时间变化对消化率的影响见图3。图3中曲线表明,消化反应时间的增加,对消化率的影响比较明显。消化时间超过12min,消化率已达98%以上。3、消化温度 在试验浓度和时间相对稳定的条件下,温度对消化结果的影响见图4。由图4看出,氧化镁转化成氢氧化镁的过程受化学反应控制,提高反应温度,可加快反应速度,消化温度的提高,对消化过程的影响极为明显。适宜的消化温度应控制在80℃以上。(三)碳化浸出试验 将氢氧化镁转化成碳酸氢镁,是以适量的二氧化碳为浸出剂,在特定的浓度、温度条件下进行反应,不同的时间和压力对浸出结果影响较大。其化学反应式如下 Mg(OH)2+CO2+H2O→Mg(HCO3 )2+H2O          (3) 借鉴前期做过的工作,在常温常压条件下对消化后的试样进行了碳化浸出试验,进塔液nMgO为18.62g /L, cCO2为33%,在浸出过程中定时抽取泥浆过滤,分析碳酸氢镁溶液中WMgO,试验结果见图5。图5中下部曲线表明,试样粒径较大,碳化时间较长。超过90min后氧化镁的转化率增加不明显,浆液中nMgO为7.8g/L。为此,在上述浸出工艺条件相对稳定的条件下,降低进塔液中氧化镁的浓度进行了试验。由图5中上部曲线可知,随着进塔液中的氧化镁浓度的降低,转化率升幅较大,碳化反应至90 min时,MgO的转化率达84.01%,回收率为80.97%。(四)热水解试验 碳化浸出过程实现了目的组分由固相到液相的转移。经固液分离、滤去残渣,将滤液 (重镁水 )加热,使碳酸氢镁转型生成碱式碳酸镁。化学反应式如下: 5Mg(HCO3 )2→4Mg(OH)2·Mg(OH2 )·4 H2O+6 CO2 ↑    (4) 根据上式,在滤液加温至沸腾温度时进行了热水解时间对母液 (废镁水 ) 中氧化镁含量影响的试验。试验结果表明,随时间的延长,母液中氧化镁浓度随之降低。超过5 min后,母液中nMgO均为0.18 g/L,故热水解过程控制为滤液加热至沸腾温度后继续保温 5 min。过滤烘干后的碱式碳酸镁产品多元素化学分析及氧化镁回收率如表2所示。三、结论 (一)采用碳化法浸出工艺处理低品级菱镁矿粉矿,可获得灼减为零时wMgO为99.31%的高纯轻质碳酸镁。氧化镁回收率为80.97%。经烧结工艺处理 ,可获得氧化镁含量为 99.21%,体积密度为3.38g/cm的高纯烧结镁砂。 (二)常压二氧化碳浸出工艺生成的轻质碳酸镁中氧化钙含量较前期加压试验最终产品的CaO品位略有升高。 (三)由于菱镁矿碳化浸出过程中未采用磨矿工艺 ,试样粒径较大 ,故氧化镁的转化率和回收率不近人意。当粒度变小后进行研究,浸出液中氧化镁的转化率指标非常理想。

石灰石法氢氧化锂车间设计

2019-02-25 15:59:39

石灰石法氢氧化锂车间规划(design of lithium hydrate shop by calcite process)以锂辉石或锂云母精矿为质料,选用石灰石法出产单水氢氧化锂的锂冶炼厂车问规划。 工艺流程由细磨配料、烧成、浸出、蒸腾浓缩、结晶、精制、枯燥、包装和母液处理等工序组成,工艺流程见图。一般锂辉石精矿含Li2O≥6%;锂云母精矿含Li2O4.3%~4.8%;辅助材料石灰石含CaO≥54%、SiO2≤1%。精矿经配料湿磨,制备成细度小于0.074mm,含水34%~36%的料浆,在料浆槽内分配后取得含CaO40%~42%的合格生料浆,生料浆在1150~1250℃温度下经回转窑煅烧成熟料,熟料按液固比3:1加洗液湿磨至小于0.074mm,并在95℃温度下浸出3h。浸出料浆过滤渣经用水在95℃温度下反向洗刷三次后送渣场堆存,浸出液沉清、蒸腾浓缩至含LiOH130g/L并过滤后,在40℃温度下冷却结晶。别离得到的单水氢氧化锂粗品,再用纯水重溶并再浓缩、结晶或许用氢氧化锂饱满液洗刷除掉钾钠杂质,别离得到的单水氢氧化锂在130~140温度下真空枯燥为产品。提锂终母液可供造纸厂作为烧碱用;以锂云母为质料的终母液亦可进一步收回锂钾等元素化合物。 设备挑选首要设备有球磨机、配料槽、回转窑、过滤机、蒸腾器、结晶槽和枯燥机等。煅烧选用回转窑,湿法喂料,用重油或粉煤直接加热,单位产能:按熟料计为10~12kg/(m2•h)或32~38kg/(m3•h),亦可用下列经历公式核算。G=0.552D2.88式中G为窑产能,t/h;D为窑内径,m。浸出液浓缩用蒸腾器,为天然循环外加热式,两效或三效,其产能按蒸腾水量计为15~20kg/(m2•h)。 车间装备按工艺特色,分火法(质料至煅烧成熟料)和湿法(熟料浆至产品)两部分,宜选用分片安置。为下降能耗,便于操作和削减机械丢失,回转窑窑尾和产品工序装备于高层。 技能特色浓缩机和回转窑在出产中须接连运转,要求有牢靠的供电及供水,真空蒸腾进程末效蒸汽冷凝耗水量大,一般均将冷却水循环运用;每吨产品产出的锂渣中含碱水量为7~13t,堆积时要避免渣中含碱液污染土壤及水体。 首要技能经济指标 以锂精矿出产单水氢氧化锂的出产技能指标为: 产品质量 LiOH 不小于/% 56.5 CO2不大于/%0.35 Cl– 不大于/%0.003 SO4–– 不大于/%0.01 Na 不大于/%0.002 CaO 不大于/% 0.02 酸不溶物(在HCl中) 不大于/% 0.002以锂辉石精矿为质料 总收回率/% 78~80 单耗(1t产品计) 锂辉石精矿(Li2O 6%计)/t 6.85~7.12 石灰石(CaO54%)/t 19~21水/t 200~300 电/kW•h 6000~6500 蒸汽/t 70~80 以锂云母精矿为质料 总收回率/% 62~65 单耗(1t产品计)锂云母精矿(Li2O4.5%计)/t 12.6~12 石灰石(CaO54%)/t 36~38 水/t 300~350 电/kW•h 8000~8500蒸汽/t110~120

超细氢氧化铝的制备方法

2019-01-10 13:40:32

一种超细氢氧化铝的制备办法,将铝酸钠NaAlO2溶液和含二氧化碳的气体触摸,在超重力条件下碳化反响制备氢氧化铝凝胶,然后再得到不一样晶型的超细氢氧化铝,首要由碳化、过滤、洗刷、枯燥过程构成。本发明可利用中心商品NaAlO2溶液和CO2废气,采用螺旋通道型旋转床RBHC进行碳化反响为首要技术制备纳米级超细氢氧化铝的办法,解决了传统拌和槽法对CO2气体吸收率低,碳化时间长,商品纯度低、粒度不均匀和旋转填充床RPB碳化反响时易于堵塞等技术问题。别离制备出不一样晶型的纳米级超细纤维状和颗粒状氢氧化铝。本发明制备出约10nm颗粒状氢氧化铝可用作杰出的无机阻燃剂;制备出的粒径约5nm、长200~300nm纳米纤维状拟薄水铝石在催化范畴可广泛使用。   1、一种超细氢氧化铝的制备办法,将铝酸钠NaAlO2溶液和含二氧化碳的气体触摸,在超重力条件下以碳化反响方法制备拟薄水铝石凝胶,然后再得到不一样晶型的超细氢氧化铝,首要由碳化、过滤、洗刷、枯燥过程构成,其特征在于: 1)操控铝酸钠NaAlO2溶液浓度为0.05~2mol/L; 2)在铝酸钠NaAlO2溶液中参加质量含量为1~2%的有机高分子分散剂; 3)于反响器(4)中投入上述混合物,开机运转反响器(4),待反响器(4)内液体流量稳定后,向反响器(4)内通入含浓度的CO2气体,操控反响器(4)转速为200~3000rpm,气液比为0.5~20,碳化反响温度操控在0~100℃,守时记载温度和pH值,使pH值到达9~12时中止通入CO2气体,下降反响器(4)转速再循环一段时间,得氢氧化铝前驱体; 4)持续将上述商品作合适不一样晶型的进一步处置,如是不是需求老化的过程;上述的反响器(4)为旋转床超重力反响器(4),首要包含转子(5)、设置于转子(5)中心的散布器(15)以及进液口(8)、进气口(3、9)、废气排口(7)、出料口(14、16)。

钴的氧化物及氢氧化物

2019-01-31 11:06:04

一、钴的氧化物 钴能生成三种氧化物:CoO,Co3O4,Co2O3。前两种安稳,后者只能在低于3oO℃下存在。而CoO2只能在阳极氧化法中制得,常呈含水的氢氧化物呈现。 (一) CoO:它是钴的碳酸盐或钴的其它氧化物或Co(OH)3在中性或微复原性气氛中煅烧的终究产品。纯CoO在室温下易于吸收氧而生成高价的氧化物Co2O3,Co3O4,煅烧温度越高,吸收的氧越少。如要获得适当纯的CoO,煅烧温度有必要高于1050℃,且煅烧后须在慵懒气氛或弱复原性气氛中冷却。高于850℃时CoO是安稳的,1000℃时离解压为3.36×10-12大气压。随制取办法不同,CoO呈灰绿色至暗灰色,CoO分子量为94.97,理论上含钴为78.65%,用于冶金和化学方面的多为灰色CoO,一般含Co76%,常含有少数Co3O4。 CoO晶体为面心立方体,晶格参数为4.2sA,比重6.2~6.6,生成热为55.6~57.5千卡/摩尔分子,熔点为1810℃。钴氧化成CoO在不同的温度规模内的自由焓改变式分别为:   当温度在120~200℃时,高价氧化钴开端被H2和CO复原。CoO复原反响的平衡常数跟着温度的改变如下:     CoO水化物的分子式为Co(OH)2,溶度积约为1.6×10-18,它极易溶解于热酸中。 (二)Co2O3:分子量为165.88,理论含钴量为71.03%。许多人在氧压为100大气压下氧化CoO或低温从Co(N3O)3,CoCl3中制得含氧量挨近或等于Co2O3计量式中的含氧量再经结构分析依然不是Co2O3。但只在阳极氧化法中制得含水的Co2O3,在低于200℃时脱水得到Co2O3。 (三)Co3O4:理论含钴量为73.43%,分子量为240.82,黑色。在400~900℃的空气中或在300~400℃的氧气中氧化CoO时生成Co3O4。Co3O4于250~400℃的氧气中,因为接连氧化或或许因为化学吸附,而变为Co2O3,但仍坚持Co3O4的尖晶石结构。当高于450℃时离解或脱吸,氧化物的成分可回复或Co3O4。 当CoCO3或含水三氧化二钴在空气中加热到高于265℃而不超越800℃时,构成Co3O4。 因为钴的氧化物相互间易于生成固溶体,因此,难于测定各自的离解压及安稳温度规模,一般以为Co2O3·nH2O在250~280℃彻底分解为Co3O4。Co3O4的离解压可按lg Po2=- +13.3636算出,故知空气中Co3O4在910~920℃内大部分离解为CoO,至980℃可按下式离解彻底,生成的CoO仍具有原Co3O4的尖晶石结构。  Co3O4极难溶干稀硫酸中。 图1是600℃~1490℃间氧在固体金属钴中的溶解度。875℃时氧的溶解度急剧下降是因为钴发生了晶形改变。当溶解O20.26%(适当于CoO1%)时则呈现共晶,其温度为1446℃。与含CoO3.3%和CoO14.6%相对应的凝结温度为1600℃和1700℃。图1  Co-O系状态图 二、钴的氢氧化物 (一)Co(OH)2:它是弱的化合物,极易溶解于酸,而难溶于水。  溶度积为1.6×10-18。当NaOH参加钴盐溶液中,则生成Co(OH)2,因颗粒、吸附离子、时刻、温度和碱度等要素的不同,可呈蓝色、绿色和赤色。pH=6~7和室温时,开始分出的蓝色沉淀物为α-Co(OH)2。老化变为安稳的玫瑰色β-Co(OH)2,两者的溶度积均约为10-12.8。 Co(OH)2在常温下易被空气中的氧部分地氧化成Co(OH)3:Co(OH)2在无机酸和有机酸中能很好溶解并生成相应的盐。多种氧化剂在有碱存在的情况下,能将Co(OH)2和二价钴盐的溶液氧化成Co(OH)3。 (二)Co(OH)3:这是一种易吸水的不安稳化合物,难溶于水,溶度积为2.5×10-43。较易溶于和中,难溶于硫酸中。

烧结矿不同碱度、氧化镁及二氧化硅含量水平试验研究

2019-01-24 09:38:21

Abstract:Based on the present material condition of N0.3 sintering plant of Magang, the effects of different basicitys and SiO2 and MgO contents in sinter on production and quality of sinter are studied. The results show that, with increas ing the sinter basicitys and SiO2 contents, the sinter strength is improved, but after increasing the MgO contents in sinter, all sinter technicaleconomic indexes are worsened. Therefore, the sinter basicity should be 2.0, SiO2 content should be 4.95%, MgO content should be reduced to the best of its ability in practical production. 烧结矿的碱度、MgO及SiO2含量水平直接影响着烧结矿品位、强度、产量及其冶金性能。为了了解其变化对烧结生产技术指标的影响,马鞍山钢铁股份有限公司(简称马钢)在烧结实验室进行了烧结矿不同MgO、SiO2含量及不同碱度水平的试验。 一、原料成分及烧结工艺制度 试验用含铁料均取自港务原料厂和马钢第三烧结厂生产现场,其化学成分列于表1。此次烧结试验在Φ300mm烧结杯上进行,料层高度为580mm,点火负压6kPa,点火时间1.5min,烧结抽风负压为12kPa。烧结饼经机上冷却后,进行落下和ISO转鼓试验,然后取样做化学分析和冶金性能检验。每组试验在相同的条件下反复进行多次,取在允许误差范围内的两次试验平均值为试验结果,以确保试验结果的重现性。 表1  含铁原料化学成分分析  %粉矿名称TFeFeOSiO2CaOAl2O3MgOTiO2SP烧损姑精57.410.5012.090.8231.150.2990.2250.0120.2502.25CVRD粉65.280.233.740.3550.780.0890.0540.0120.0190.72杨基粉58.710.314.350.1021.350.1040.0490.0030.05010.47天普乐粉62.361.763.840.0291.940.0670.1150.0030.0494.47恰那粉63.010.313.970.1302.120.0850.1040.0120.0653.19FTC粉66.010.313.100.0780.890.0430.1180.0090.0291.22MBR粉67.000.421.460.1201.200.0600.190.0100.0501.30 二、试验方案 本次试验共进行7组。所用的烧结含铁料配比设计基本与马钢第三烧结厂现行生产混匀矿配比相一致,主要是通过对含SiO2较高的姑精配比以及石灰石、白云石的添加量作调整,使得烧结矿的碱度、MgO及SiO2含量满足各个试验水平的要求。设计各组试验因素的水平见表2。各组混合料配比及编组见表3。混合料中含铁料配比为100%,燃料和熔剂百分数是外配的。 表2  各组试验因素的水平  %组号SiO2RMgO备  注14.951.852.10基准组24.951.652.10低碱度34.952.052.10高碱度44.951.852.40高MgO含量54.951.851.80低MgO含量64.801.852.10低SiO2含量75.151.852.10高SiO2含量 表3  混合料的配比及编组  %组号姑精CVRD粉杨基粉天普乐粉恰那粉FTC粉白云石石灰石113.63012111716.410.097.10213.23012111716.810.064.87314.03012111716.010.139.38413.73012111716.311.806.20513.53012111716.58.407.99611.73012111718.310.116.50716.23012111713.810.077.92 三、试验结果及分析 烧结矿化学成分列于表4,冶金性能试验结果见表5。 表4  烧结矿化学成分  %组号TFeFeOSiO2CaOMgOAl2O3TiO2SPC/S157.738.445.029.232.101.460.1060.0110.0651.84257.977.965.098.532.111.540.1030.0100.0631.67357.137.465.049.982.071.580.1200.0140.0681.98457.588.735.009.412.301.560.1040.0120.0691.88557.689.254.949.271.891.410.1070.0090.0651.88658.158.564.819.052.101.550.1020.0090.0651.88757.627.755.159.352.031.500.1170.0130.0711.82 表5  还原性、还原粉化及熔滴性能试验结果组号还原粉化试验结果/%不同还原时间的还原度(RI)/%开始软化温度Ts/℃开始熔化温度Tm/℃开始滴下温度TD/℃最高压差△Pmax/kPa透气性指标S/kPa.℃滴下量MD/gRDI+6.3RDI+3.15RDI-0.530min60min90min120min150min180min125.3658.767.5330.3646.2458.1566.4671.2075.141108133514954.60941841.5223.5654.928.3728.3944.9055.5260.9668.4771.981128132414402.15715780.3326.2459.637.5529.9645.1357.9367.9275.7181.091115134515203.5303421.5428.0961.796.6828.8843.3254.1463.7569.7574.131130133015052.15732085.0532.7862.717.4525.7741.2854.0064.3273.0579.391082132414654.70733979.1626.4159.557.4024.7939.5151.4461.7870.5278.061108131014807.74777843.1724.8057.428.1327.9644.3757.9868.3776.7681.931126134215103.13819741.4 (一)不同烧结矿碱度的影响 由第2组、第1组和第3组构成不同烧结矿碱度水平试验。从试验结果可以看出,当烧结矿SiO2含量一定时,随碱度的提高,烧结生产率及烧结矿强度指标均呈上升趋势。当碱度由1.65升至2.05时,垂直烧结速度稍微加快(由18.78mm/min升到19.51mm/min)、再加上烧结矿成品率的增加(由76.42%升到78.17%),使烧结生产率提高,由1.231t/m2.h增加到1.253t/m2.h,而且也改善了烧结矿的强度指标,转鼓指数也从65.39%提高到67.88%。这主要是因为碱度提高后,烧结矿粘结相中铁酸钙系得以进一步发展的缘故。同时,由于烧结成品率随碱度升高而提高,吨矿烧结固体燃耗由68.24kg下降到66.65kg。而烧结矿品位相应由57.97%降到57.13%。 随碱度升高,RDI+6.3不断升高,RDI+3.15亦升高,RDI-0.5有所降低,但1、3组极接近;还原性改善明显,碱度提高0.1,RI180min提高近3.2%,软化温度无明显变化,熔融和滴下温度不断升高,滴下量逐渐减少。 (二)同烧结矿SiO2含量的影响 由第6组、第1组和第7组构成烧结矿不同SiO2含量试验。在烧结矿碱度一定条件下,随着SiO2含量增加,烧结矿粘结相增加,强度指标变好。当烧结矿SiO2含量从4.80%提高到5.15%时,转鼓指数由64.80%升高到67.70%,提高幅度约2.9个百分点,烧结成品率亦提高1个百分点。而烧结生产率则呈下降趋势,从1.300t/m2.h降到1.247t/。造成生产率下降的原因是:当烧结矿粘结相增多时,烧结过程透气性变差,烧结速度会下降。此外,本次试验是通过调整含SiO2较高的姑精矿配量来满足烧结矿SiO2含量不同水平要求。提高烧结矿SiO2含量就需要配加更多的姑精矿,精粉率增大也直接影响了烧结矿生产率的提高。 随SiO2含量的升高,烧结矿品位由58.15%下降到57.62%。这是因为在原料中增加了高硅的自产姑精矿用量、并减少了进口高品位巴西FTC矿,同时石灰石的配比也有所提高。 6、1、7三组含SiO2由低到高,对应的还原粉化及还原性指标基本相近,而软化、熔融、滴下温度亦不断升高,TD-Ts、TD-Tm区间差异不大,最高压差和透气性S值不断降低,滴下量无明显差异。 (三)不同烧结矿MgO含量的影响 由第5组、第1组和第4组构成烧结矿不同MgO含量试验。从试验结果可知,随MgO含量的增加,烧结矿产量、转鼓强度均有所下降,固体燃耗上升。当烧结矿MgO含量从1.8%增加到2.4%时,生产率由1.281t/m2.h降至1.240t/m2.h,烧结矿转鼓强度由67.07%降到65.67%;而吨矿固体燃耗由68.04kg上升到69.20kg。造成烧结经济技术指标变差有以下原因: 1、白云石在烧结过程中的分解是吸热反应,因此对分解后的MgO矿化形成新的化合物不利,显微分析发现有不少未发生反应的圆粒状MgO被方镁石周围生成的铁酸镁(MgO·Fe2O3)液相所胶结。 2、本次烧结试验及现场生产均配用粗颗粒白云石(-4mm含量只有90%),导致烧结矿产生大量白云石“白点”。 3、白云石与硅酸盐矿物常混在一起,生成镁橄榄石和钙铁橄榄石,结晶细小,一般以玻璃质的物相存在,而玻璃相中发现有细微裂纹,随着白云石的添加,烧结矿玻璃相大量增加。 4、白云石中Mg++容易渗入Fe3O4晶格,稳定了Fe3O4矿相,造成Fe3O4难以向Fe2O3转变形成铁酸钙,MgO添加量愈多,将有更多Mg++渗入到Fe3O4晶格中,限制了铁酸钙系的发展。 由表5可见,随MgO含量上升,还原粉化指标略变差,还原度有所下降,软化、熔融、滴下温度逐渐上升。 四、结  语 (一)在烧结矿SiO2含量一定条件下,随着烧结矿碱度提高,烧结生产率及烧结矿强度指标均能得到提高,还原粉化指标得到改善。因此,在现有高炉用料碱度得到平衡的条件下,马钢第三烧结厂应按2.0的碱度组织生产以满足炼铁厂对烧结矿产、质量的要求。 (二)提高烧结矿SiO2含量亦能提高烧结矿强度,烧结矿软熔温度均有所上升,其它冶金性能无明显变化,但同时烧结矿品位及生产率皆呈下降趋势。因此,在目前条件下烧结矿SiO2含量应稳定在4.95%,以保证烧结矿的强度。 (三)当MgO含量增加时,烧结各项技术经济指标均变差,烧结矿还原性及还原粉化指标略变差。可见,在确保高炉炉渣流动性的前提下,应尽可能降低烧结矿中MgO含量。

氢氧化钠分解独居石稀土精矿的工业实例

2019-02-11 14:05:38

一、分化 分化独居石稀土精矿的进程在钢板卷制并带有蒸气加热夹层的圆形分化槽中进和地。在工业生产中,分化进程能够选用间歇方法或接连方法。间歇方法是指参加质料-分化-出料进程在一个分化槽中完结,而接连方法是在几个串联在一起的分化槽中完结这一进程。相比之下,接连方法具有生产能力大、稀土和钍的分化率高、操作便利等长处。 分化的工艺条件: 精矿粒度   -320目≥99%,其间-360目≥95%; 精矿含水   26%~30%; 矿碱比     1∶(0.95~1); 碱浓度     45%~50%; 反响温度   135~140℃; 反响时刻   8~12h; 碱分化率   REO≥95%,ThO2≥98%,U3O8≥98%。 二、水洗 碱分化底浆(氢氧化物沉积)在装备有拌和体系钢制圆形的槽中完结,为了便于收回碱和节约水能够选用逆流洗刷的方法。 水洗的工艺条件及要求为: 底浆与水比  比1∶(4~5) 水洗温度>90℃; 水洗完毕操控条件   洗水pH值7~8,P2O5<1.2g/L。 三、优溶 优溶在玻璃钢制的具有拌和功用的容器中进行。其工艺条件及要求如下: 酸溶反响温度   80~95℃; 全溶反响pH值   2.0~2.5; 优溶反响pH值   4.0~4.5。 四、氯化稀土溶液除镭工艺条件及要求 反响温度   80~90℃; 加料次序  先加硫酸铵溶液,后加氯化溶液; 拌和时刻  加氯化后拌和10min,加聚酰胺后持续拌和2min; 氯化稀土溶液要求  REO≥160g/L,SO42-/REO≤0.03%,放射性强度≤3.7×104Bq/L。 五、蒸腾浓缩制备结晶氯化稀土 蒸腾浓缩进程在蒸汽夹套加热、内衬珐琅的蒸腾罐内进行。蒸腾进程的技术参数如下: 罐内真空度    6×104Pa; 蒸腾温度      108~115℃; 蒸汽压力      0.3~0.4MPa; 结晶氯化稀土中REO≥45%。

氢氧化钠浓度对溶解铝金属的影响

2019-03-11 11:09:41

取5支圆柱状小铝棒(直径D=21mm,长度L=100mm),分量为92.3±0.1g,装备5份500mL质量浓度依次为210g/L、240g/L、270g/L、300g/L、330g/L的溶液,取5支铝棒别离置于溶液中,马上用记号笔在烧杯壁上的液面高度处作符号。每距离1小时,取出铝棒,用滤纸轻擦洁净后,称取铝棒分量。然后将铝棒从头置于溶液中,参加室温的自来水至符号处。   铝棒分量如表1所示:图1  浓度对铝棒削减分量的影响   由图1可知,浓度越高,铝棒分量的削减速度越快。由反响时间对溶解铝金属的影响可知,反响时间控制在3小时左右,溶解铝金属的功率较高。当反响时间为3小时的时分,上述浓度为210g/L、240g/L、270g/L、300g/L、330g/L的5支铝棒削减分量依次为26.84g、37.82g、42.19g、49.91g、53.63g。取相邻浓度的反响3小时的铝棒削减分量相减,取绝对值,依次为:10.98g、4.37g、7.72g、3.72g。当反响时间为3小时的时分,240g/L浓度的溶液的铝棒削减分量,比照210g/L浓度的溶液的铝棒削减分量提高较大(10.98g),因而,主张选用浓度≥240g/L的溶液进行溶解铝金属;当反响时间为3小时的时分,330g/L浓度的溶液的铝棒削减分量,比照300g/L浓度的溶液的铝棒削减分量提高较小(3.72g),因而,主张选用浓度≤300g/L的溶液进行溶解铝金属。实践生产中,衡量废铝的溶解速度与生产成本,主张选用质量浓度为240g/L~300g/L的溶液进行煲模。

铜和什么反应,变黑?

2018-12-13 10:31:09

铜和氧气反应,变黑方程式:2Cu+O2===2CuO不是点燃是加热放火上烧一烧旧行了别用硝酸,浓的稀的都不行,会把铜溶解

稀土选矿技术之氢氧化物溶解度

2019-01-21 09:41:30

氢氧化物溶解度