您所在的位置: 上海有色 > 有色金属产品库 > 氧化镁脱硫工艺原理 > 氧化镁脱硫工艺原理百科

氧化镁脱硫工艺原理百科

氧化镁

2019-01-25 15:49:17

MgO俗称苦土,是一种白色粉末状固体。熔点3125K,沸点3873K,密度3.58g/cm3(298K),硬度6.50。MgO对水呈一定惰性,特别是高温煅烧后的MgO难溶于水。MgO溶于酸。    MgO的制备方法:   (1)金属镁在高温下燃烧。                              2Mg  +  O2  ==  2MgO    (2)工业上一般通过煅烧碳酸镁或氢氧化镁来生产氧化镁。                             MgCO3  ====  MgO  +  CO2                                Mg(OH)2  ==== MgO  +  H2O    煅烧温度在923K左右制成的为轻质MgO,煅烧温度在1923K以上时制成的为MgO。    MgO大量用于耐火材料、金属陶瓷、电绝缘材料,轻质MgO与MgCl2或MgSO4溶液混合后可制成镁质水泥。医疗上用MgO作抗酸药和轻泻药。常与易致便秘的CaCO3配合应用。在水处理、人造纤维织物加工、造纸、催化剂生产等方面MgO都有重要应用。

镍精矿降低氧化镁工艺技术

2019-01-21 18:04:33

一、概述     金川公司选矿厂一选矿车间处理龙首混合矿石,设计处理能力为1200t/d,有破矿、磨浮、精矿输送三道工序。其中,磨浮采用三段磨矿、三段浮选的阶段磨选流程。经80年代后期和90年代初期的系列改造,形成了1500t/d的生产能力。90年后期,经过不断挖潜改造,特别是2000年和2001年连续两次150t/d的扩能改造,现已形成2000t/d的生产能力。     目前所指的龙首混合矿石,是指龙首矿东、中、西部三个不同采区的矿石混合,而不是矿石工业类型上所所义的硫化率为45%~60%的混合矿石。其中一部分较富混合矿石(含Ni1.3%以上)由一选矿进行处理,另一部分较贫混合矿石(含Ni1.122%左右)由二选磨浮车间处理。     本文所探讨的就是Ni品位在1.30 %以上的由一选处理的龙首混合矿。     二、矿石性质及主要矿物选矿工艺特性     (一)龙首混合矿石中主要金属矿物及选矿工艺特性     龙首混合矿石中主要金属矿物有紫硫镍铁矿、镍黄铁矿、黄铁矿、磁黄铁矿、黄铜矿、方铜矿等;脉石矿物有蛇纹石、绿泥石、滑石及碳酸盐。紫硫镍铁矿被认为是最易浮选的硫化镍矿物。镍黄铁矿属比较好选的镍矿物,其选别效果仅次于紫硫镍铁矿,主要原因是其原生粒度比紫镍铁矿小,由于中细粒贫矿石中的镍黄铁矿和磁铁矿紧密共生呈网络状结构,磨矿过程中绝大部分不能单体解离,造成镍黄铁矿可浮性稍差。氧化会使紫硫镍铁矿的可浮性变差,因此对于以紫硫镍铁矿为主的硫化镍矿石要求快采、快运、快选,矿石存放越久越不利于选别。     一般的蛇纹石化矿石,用黄药做捕收剂,镍回收率和硫化率接近或比较接近,是比较好选的硫化镍矿石,使用调整剂可提高精矿品位,回收率无明显改善。蛇纹石具有一定的可浮性,所以精矿中30%左右脉石矿物中有相当部分是蛇纹石,致使精矿中金属品位降低,氧化镁含量高。强蚀变矿石中蛇纹石含量较少,在一般的浮选生产中,硫化物损失严重。     研究证明:各类厂矿中的硫化镍矿物可选性无明显差异,但矿石中脉石矿物对选别生产显著影响,因此,提高镍矿物选别指标或降低精矿中氧化镁的研究工作中,必须重视脉石矿物的抑制。     (二)含镁脉石矿物的浮选工艺性质     金川硫化铜、镍矿床中主要脉石矿物为含镁硅酸盐,由于地质蚀变作用,这些硅酸盐主要以蛇纹石、绿泥石、滑石的形式存在,这些脉石矿物对铜、镍的浮选影响较大。     1、主要脉石矿物的结构     蛇纹石是层状碳酸盐矿物中最简单的矿物,结构式为[Mg3Si2O3(OH)],在它的没一层结构中都含有一层硅氧四面体,水镁石层获得额外电荷,所以和另外一个硅氧四面体六方网成夹层结构,一旦在滑石层上没有净电荷而只有范德华力时,这个夹层就裂开,滑石也很软。     绿泥石也是层状硅酸盐矿物,结构式为(Mg·Al·Fe)12[(SiAl)8O22](OH12),它是在双层云母之间夹上一层水镁石而形成的,如果水镁石层价键遭到破坏,这个矿物就裂开。和前两种矿物比,它最松软。     2、脉石矿物的可浮性     蛇纹石大量存在于镍精矿中而影响精矿质量。在镍矿的生产实践中发现蛇纹石大量进入镍精矿而难以脱除,原因是蛇纹石在形成过程中具有较强的磁性,具有磁性的蛇纹石吸附与同样具有磁性的硫化物表面一起进入精矿;另外,带正电的蛇纹石易吸附与带负电的镍矿物表面而上浮。     绿泥石在镍矿物浮选中易浮难抑,另外,绿泥石疏松易碎,在磨矿过程中易泥化。绿泥石矿泥在镍矿物浮选中其行为与蛇纹石细泥基本一致。     滑石具有非极性表面,疏水性好,具有较强的天然可浮性,仅用起泡剂就能很好使之浮游,镍矿物浮选中,滑石极易进入精矿中。     三、降镁现状分析     (一)工艺流程及其特点     90年代,为了给闪速炉提供低镁合格精矿,弥补二矿区富矿精矿量的不足,金川公司选矿厂、金川镍钴研究设计院、中南工业大学、西北矿冶研究院等单位,针对龙首混合矿石低精矿中氧化镁进行了大量的试验研究,这些试验研究概括起来有三种:       1、通过改变工艺流程降镁;       2、通过新药剂达到活化有用矿物,抑制脉石矿物的药剂降镁;       3、采用改变工艺流程和添加新药剂相结合的方式降镁。       通过大量的试验研究,一选车间于1998年6月9月分别对2#系统和1#系统进行了流程改造,形成了目前的降镁工艺,产出的低镁精矿送闪速炉处理,新的降镁工艺主要是强化了精选作业,增加了粗选次数,通过提高精矿品位达到降镁的目的。现场生产实践证明三段磨矿、三段浮选的阶段磨选流程是选别金川龙首混合矿石的成功经验,既可使有用矿物达到充分单体解离得到有效回收,又可减少过磨和矿物表面污染。生产实践还证明,该流程适应性比较好,既可组织降镁生产,为二期闪速炉提供低镁精矿(精矿中氧化镁含量≤7%);又可以组织低精矿品位生产,为一期电炉生产提供原料,并且在这两种情况下,回收率都基本不受损失。一选磨浮工艺流程(框图)如图1。    图1  一造厂磨浮原则流程     (二)生产指标分类统计分析     对2000年1~8月选厂生产指标进行了分类统计,从统计结果得出如一结论。     1、原矿品位对指标有着直接的影响。随着原矿品位的升高,精矿品位、回收率均呈上升趋势,精矿中MgO含量逐渐降低。     2、原矿镍品位大于1.2%时,只要控制精矿镍品位大于6.5%,精矿中MgO含量即能低于7%,说明在现有工艺条件下,保证一定的精矿品位是降镁的首要条件。     3、原矿镍品位小于1.2%时,要保证精矿中MgO含量,必须将精矿品位提高到7%以上,回收率损失较多。     四、降镁问题分析     (一)矿石性质对降镁的影响     1、MgO赋存矿物的自然可浮性     大多数硅酸盐矿物有强的共价键或离子键,亲水性强,可浮性差,如橄榄石、辉石等。但蛇纹石、滑石、绿泥石等矿物是特殊的层状或双链状硅酸盐矿物,破碎后表面键力是分子键力,疏水性好,自然可浮性强,在浮选过程中容易进入精矿,致使精矿中MgO含量升高。金川矿区的矿石大多发生蚀变,原生的橄榄石、辉石大多蚀变为蛇纹石、滑石、绿泥石等,这些含镁矿物可浮性好,是MgO难以抑制的主要原因。     2、矿石硬度     矿石的硬度变小,在磨矿过程中更容易泥化,矿石的蚀变与矿石中构造挤压带的发育会加剧这一趋势,使蛇纹石、滑石、绿泥石矿泥包裹在金属矿物的表面进入精矿,造成MgO含量升高。     3、矿石品位     矿石中金属硫化物与含镁脉石矿物呈负相关,即矿石品位越低,MgO含量越高。2001年1~8月一选矿处理的龙首混合矿石累计Ni原矿品位1.333%,比计划Ni原矿品位1.35%低0.017%,比2000年同期的1.445%降低了0.112%,呈明显的下降趋势,增加了降镁工作的难度。     (二)降镁方案的局限性     针对龙首混合矿石改善镍铜指标,降低精矿中MgO的工作,各大专院校,科研院所做了大量的试验研究,对不同的矿石采用不同的技术措施都有一定的效果,但是一经生产应用,效果若显若隐。选矿过程很复杂,工业化生产又是一个连续性过程,因目前矿山尚无法实现配矿或稳定出矿,入选的矿石性质、品位波动很大,以不变(或说相对固定)的选矿设备、工艺流程处理多变化矿石,使过程控制更加复杂化,从而使一些看起来比较好的技术措施,在现场应用时就很难取得理想的效果。     五、降镁工作的研究方向     (一)工艺矿物学研究     一矿区龙首混合矿石矿物组成复杂,过去的矿物工艺学研究多侧重于考察原矿,对脉石矿物在选矿过程中各中间产品的赋存状态和工艺特性研究很少,而弄清楚含镁脉石矿物在整个浮选工艺过程中的走向及选矿过程中各中间产品中的脉石矿物的工艺特性,对降镁工艺与药剂的研究具有重要的指导意义,是降镁的关键所在。     (二)选矿新工艺研究     金种一矿区龙首混合矿石降镁工艺的研究晚于二矿区,但也取得了一定进展。但从生产实践来看,还需继续深入探索。     澳大利亚的G·D·Senior等人采用一种新的工艺流程处理镍硫化矿,可除去98%的含镁矿物,工艺要点为:预先浮选含镁矿物,然后将物料分别处理,分段抑制含镁矿物,最后活化含镍矿物,得到高品位镍精矿。金川一矿区混合矿石主要含镁矿物为蛇纹石,其良好的可浮性是造成精矿MgO含量高的重要原因,可以考虑预先浮选蛇纹石,并通过降镁药剂分段抑制其它含镁矿物来达到降镁的目的。另外,G·D·Senior等人认为,粒度不同的物料可浮性和对药剂的要求都有很大的差异,这一点也值得借鉴。     (三)浮选新药剂研究     在工艺流程确定的前提下,影响浮选过程和最终指标最为关键的因素就是浮选药剂的合理选择与使用。由于浮选过程中药剂之间存在着的交互作用,很难真正搞清楚选矿药剂的作用机理,现有的很多理论都是以假设和推测的形式出现,不能确定地描述药剂如何作用于矿物,怎样改变其浮选特性,这一点妨碍了浮选药剂研究的针对性。因此,深入研究各种药剂的作用机理,是降镁研究的重要组成部分。     (四)应注意整体指标的优化     各大专院样、科研院所以往对于金川矿石降低精矿中MgO的研究中,虽然部分地注意了对其它指标的影响,并且采取了一定的技术措施,但这种注意还是不够的。很多降镁方案都要通过不同程度地提高精矿品位来实现,而精矿品位的提高势必造成回收率的损失。若是为了降镁则大幅度提高精矿品位,导致过多地损失回收率,在经济上是不合理的,金川资源有限,在考虑降镁满足闪速炉要求的同时,不能过多损失镍、铜回收率,要特别注意整体指标的优化,这应在今后的降镁工艺研究中引足够重视。     六、结语     金川一矿区龙首混合矿石降镁工艺,经各大专院校、科研院所的大量研究,已取得了一定的进展,有些已应用于工业生产中,目前一选矿的降镁工艺就是在充分吸收各家研究成果的基础上形成的,生产实践也证明在矿石性质、品位相对稳定时,还要靠提高精矿品位来达到降鲜的目的;在矿石性质恶化时,精矿中MgO含量还不能满足要求等,因此,针对一矿区龙首混合矿石降低精矿中MgO含量的工作,还要进一步地探索研究。

氢氧化镁简单介绍

2019-02-14 10:39:59

碱土金属的氢氧化物都是白色固体,置于空气中就吸水潮解。其间Ca(OH)2就是常用的干燥剂。碱土金属氢氧化物在水中的溶解度比碱金属氢氧化物要小得多,从表中数据看,从Be到Mg,氢氧化物的溶解度顺次递加,它们的碱性也顺次递加。Be(OH)2和Mg (OH)2是难溶的氢氧化物。Be(OH)2是氢氧化物,Mg (OH)2归于中强碱,其他均归于强碱。表1  碱土金属氢氧化物的某些性质物质Be(OH)2Mg(OH)2Ca(OH)2Sr(OH)2Ba(OH)2性质色彩白白白白白熔点/K脱水分化脱水分化脱水分化脱水分化脱水分化水中溶解度/mol-dm-3(293K)8×10-1S×10-11.8×10-26.7×10-22×10-1酸碱性中强碱强碱强碱强碱 碱金属和部分碱土金属的焰色离子Li+Na-K+Rb+Cs+Ca2+Sr2+Ba2+焰色红黄紫紫红紫红紫红洋红黄绿波长/nm670.8589.6404.7629.8459.3616.2707553.6     Mg(OH)2的密度为2.36g/cm3,加热至623K即脱水分化:                                   Mg(OH)2  ====  MgO  +  H2O    Mg(OH)2易溶于酸或铵盐溶液:                               Mg(OH)2  +  2HCl  ====  MgCl2 +2H2O    这一反响可应用于分析化学中。    将海水和廉价的石灰乳反响,能够得到Mg(OH)2沉积,亦称氧化镁乳:                             Mg2+   +  Ca(OH)2  ==  Mg(OH)2  +  Ca2+    Mg(OH)2的乳状悬浊液在医药上用作抗酸药弛缓泻剂。

利用硼泥制备氢氧化镁

2019-02-18 15:19:33

硼泥是、硼砂出产过程中构成的固体废弃物。硼泥中含有氧化镁、氧化钙、等碱性物质,对环境造成了极大污染。截止到2006年仅辽宁省内的硼泥就已达1700万t,并正以每年130万t的速度添加。       现在,国内外对硼泥归纳利用的研讨有诸多方面,已取得了许多科研成果,但硼泥污染的现象依然存在,这首要是因为各类硼泥归纳利用技术落后,工业化程度较低。硼泥中含有镁等有价元素,极具开发利用价值。因而,开发利用这种二次资源,出产氢氧化镁,对进步经济效益、削减环境污染、促进资源再生都有重要意义。氢氧化镁作为典型的无卤阻燃剂,具有阻燃、消烟、阻滴、高热稳定性、高效的促基材成碳效果和强除酸才能等特性。       现在,出产氢氧化镁的首要办法有:合成法、白云石的挑选煅烧法和电解卤水法。合成法需以含有氯化镁的卤水为质料,白云石的挑选煅烧法和电解卤水法的能耗皆较高。本文选用高温下煅烧工业浓硫酸与硼泥混合物的办法收回氢氧化镁,此办法能耗低且易于完成工业化,不只能够处理硼泥对环境的污染问题,也为氢氧化镁的出产拓荒了一条新途径。       一、试验       (一)试验质料       硼泥取自辽宁省某地,首要化学组成见表1。硫酸为工业级,浓度98%,、及其它检测所用药品均为分析纯,试验用水为二次蒸馏水。   表1  硼泥的成分(质量分数)/%MgOCO2SiO2Fe2O3Al2O3CaOMnO其它39.030.219.74.562.991.840.0821.628       (二)试验内容       将硼泥与工业硫酸的混合泥浆在高温炉中煅烧必定时刻,取出后加水溶解、加热、过滤,得到母液。用0.01mol/L的EDTA滴定Mg2+,核算浸出率。重复加热、过滤母液至用(NH4)2C2O4溶液体会不到Ca2+。向滤液中参加将溶液中的Fe2+、Mn2+氧化成高价的Fe3+、Mn4+有利于完全除杂,加至用K3[Fe(CN)6]溶液查验不到Fe2+,用硝酸和NaBiO3查验不到Mn2+。在必定温度下加10%NaOH溶液将母液调理至pH=9.0,过滤,除掉杂质,得到镁精液。再向镁精液中参加5mol/L的NaOH溶液调理,pH=12.0,过滤、洗刷,然后将产品恒温烘干,得到氢氧化镁产品。产品的检测按标准HG/T3607—2000履行。       (三)工艺流程       工艺流程见图1。图1  硼泥制备氢氧化镁工艺流程       二、成果与评论       (一)煅烧温度对镁浸出率的影响       在煅烧时刻为1h,硫酸与硼泥液固比为1∶1的条件下,调查不同煅烧温度下镁的浸出率,试验成果如图2所示。由图2可知,在烧烧温度为300℃时,镁的浸出率最高,尔后跟着煅烧温度的升高镁的浸出率反而快速下降。这是因为浓硫酸在350℃时开端发作分化反响,温度过高时,生成的SO3烟气和氧气会快速逸出,使反响不能充沛进行,故镁的浸出率下降。一起高温效果黏结生成不溶于水的硅酸盐类也会使得镁的浸出率下降。图2  煅烧温度对镁浸出率的影响       (二)煅烧时刻对镁浸出率的影响       在硫酸与硼泥液固比为1∶1、煅烧温度为300℃条件下,别离调查不同煅烧时刻下镁的浸出率,试验成果如图3所示。由图3可知,跟着煅烧时刻添加,镁的浸出率逐步增大。反响时刻为2h时硫酸与硼泥的反响根本完毕,此刻镁的浸出率到达最大。图3  煅烧时刻对镁浸出率的影响       (三)硫酸与硼泥份额对镁浸出率的影响       在煅烧时刻为1h,煅烧温度为300℃条件下,调查不同液固比时镁的浸出率,试验成果如图4所示。由图4可知,跟着硫酸与硼泥液固比的增大,硫酸过量增多,硼泥能充沛与硫酸反响,镁浸出率趋于增大,但耗酸量增大。若硫酸与硼泥的份额太小,则硼泥中的矿藏不能与硫酸充沛反响,导致镁的浸出率不高。依据试验成果,硫酸与硼泥的液固比以2∶1为宜。图4  硫酸与硼泥份额对镁浸出率的影响       (四)归纳条件试验       依据试验成果及归纳考虑能耗、药品用量和硫酸分化温度对浸出率的影响,断定工艺条件为:煅烧温度为300℃、煅烧时刻为2h、硫酸与硼泥的液固比为2∶1,在此工艺条件下镁的浸出率为88%。将此条件下所制样品按1.2所述办法制备氢氧化镁,经测定镁精液中镁的收回率为91.17%。因而,硼泥中镁的归纳收回率可达80%左右。       (五)氢氧化镁的检测与分析       1、氢氧化镁的XRD分析  选用X射线衍射仪分析了产品物相组成,其成果见图5。由图5可知,该产品的峰方位和强度均与JDPDS卡上标准Mg(OH)2的衍射峰数据完全一致,且峰值规整,无杂峰出现,可知粉体为Mg(OH)2。图5  Mg(OH)2样品XRD图       2、氢氧化镁的检测  对氢氧化镁产品进行成分分析,检测成果如表2所示。   表2  氢氧化镁成分(质量分数)/%Mg(OH)2FeAlCaOMn99.540.0190.0150.4300.008       由表2可知,氢氧化镁的纯度为99.54%,换算成氧化镁纯度为68.64%,高于标准HG/T3607—2000的规则,其他杂质的含量也契合此标准。       3、氢氧化镁的SEM分析  用SEM对氢氧化镁粉末的表面描摹微观结构进行分析,其成果见图6。由图6能够看出,未烘干的Mg(OH)2颗粒出现聚会状况,晶体微粒十分小,颗粒直径不到1μm。将样品烘干后Mg(OH)2晶体微粒逐步长大,颗粒呈不规则球状,颗粒直径大约70~90μm。图6  氢氧化镁SEM相片                     (a)未烘干;(b)烘干后       三、定论       (一)依据单要素条件试验断定高温煅烧工业硫酸与硼泥混合物的工艺条件为:煅烧温度为300℃、煅烧时刻为2h、硫酸与硼泥的份额为2∶1。此刻镁的浸出率为88%。       (二)以为沉积剂制备氢氧化镁可使镁精液中镁的收回率到达91.17%,硼泥中镁的归纳收回率可达80%。经XRD检测断定沉积产品为氢氧化镁,产品质量契合标准HG/T3607—2000。       (三)由SEM检测能够看出,未烘干的Mg(OH)2晶体微粒十分小,颗粒直径不到1μm。氢氧化镁经烘干后晶粒长大,颗粒呈不规则球状,颗粒直径大约70~90μm。

氧化镁在电加热管方面的应用

2019-01-04 17:20:20

镁粉主要可用于火箭冲压发动机和去除推进剂燃气中氯化氢。另外还可用作还原剂、制闪光粉、铅合金,冶金中作去硫剂、有机合成、照明剂等。镁粉与铝粉一样,受潮会产生自燃、自爆。当每公升空气中含镁粉10-25毫克,遇到火源就会爆炸。因此工厂在储放镁粉时要格外的注意,一旦生产自然爆炸后果将不堪设想。镁粉做为炼钢不可缺少的材料之一,其需求也多来自于炼钢,因此钢市的好换对镁粉价格有一定的制约作用。 镁粉分为碳酸镁、雾化球形镁粉等。而氧化镁粉作为制作电加热管的主要材料之一,对其电加热管性能好坏的影响非常大。电工级氧化镁粉是指电熔结晶氧化镁块经破碎并对不同颗粒尺寸或数目按一定比例配合,直接或改性后用于管状电热元件中作为在高温下导热的绝缘介质。 电工级氧化镁粉可分为普通型、低温防潮型、中温防潮型以及高温型。氧化镁粉在工作温度的时候,其要具有较高的导热性能,以便能迅速把热量传递到管表面上去,使电阻与管壁温度更接近。当工作温度在1100摄氏度以内时,其具有较好的绝缘性能。其必要要具有一定的颗粒度,形状一般要求为圆状。并且要求其无论在常温还是高温状态下对发热丝材料和管材都应无腐蚀现象。 因氧化镁矿石经粉碎后,颗粒的大小不同,若按一定数量的配比具有以下优点,一是能提高粉密度,减少电阻丝的温度,从而提高电热元件的寿命。二是能克服“分筛”效应,提高mgo粉的利用率。

纳米氢氧化镁的用途及合成方法

2019-01-04 09:45:23

KR法铁水脱硫工艺的发展、脱硫的原理及其探讨

2019-03-07 11:06:31

铁水预处理已成为现代化的炼钢出产工艺:铁水预处理—复吹转炉—炉外精粹—全连铸和热装热送.当下用户对钢材质量要求越来越严苛,一般要求钢中的硫含量控制在0.015%以下,有的乃至要求到达“双零”的超低硫水平,并且考虑到减轻转炉的冶炼使命和削减转炉耗费目标,使各冶炼设备的使命愈加单一化、专业化,发挥各自的专长,因而近年来国内新建转炉钢厂都装备了铁水脱硫设备,老厂则经过改造装备了脱硫设备.拌和法作为一种干流脱硫工艺, 在国内许多钢厂得到了很好使用. 1拌和脱硫工艺 1.1拌和脱硫工艺在国内的开展 KR拌和法是日本新日铁广烟制铁所于1965年用于工业出产的铁水炉外脱硫技能[1],早在1976年武钢二炼钢就从日本新日铁引入了国内第一台拌和 法脱硫设备,单罐处理才能为70~80t,处理周期约85min,选用CaC2基作为脱硫剂,因为其时该套设备的耗费目标及运转本钱均较高,处理周期长,所以并没有在国内得到广泛推行.跟着时刻的推移,拌和法脱硫工艺经过近二十年的开展,已构成为一种老练安稳的脱硫工艺,不管耗费目标、运转本钱仍是处理周期都大大下降.2000年武钢二炼钢在消化了第一套拌和法脱硫工艺的基础上,联合原武汉钢铁研讨规划总院自主规划和缔造了第二套拌和脱硫设备.2001年宝钢集团一钢公司从日本川崎重工引入两套150t拌和脱硫设备,2002年原武汉钢铁研讨规划总院又在昆钢缔造了两套55t的拌和脱硫设备,2003年原上海冶金规划研讨院在宝钢集团上钢三厂缔造了两套40t的拌和脱硫设备.2007年在武钢新二炼钢新建两套200t、马钢四炼钢新建两套300t拌和脱硫设备.韶钢新一钢工程在建两套130t拌和脱硫设备,这样在国内已构成了300t、200t、150t、130t、80t、55t、40t的拌和脱硫大、中、小系列. 1. 2 拌和法脱硫工艺的原理 所谓拌和法脱硫工艺,是将浇铸耐火材料并经过烘烤的十字形拌和头,刺进到有一定量铁水的铁水罐中旋转,使铁水构成漩涡,然后将经过称量好的脱硫剂经过振荡给料(或旋转给料器)参加到旋转的铁水中.脱硫剂进入铁水罐后,敏捷被漩涡卷进铁水中,在不断的拌和过程中与铁水中的硫充沛反响,然后脱硫的. 影响脱硫速度的要素首要有二,一为脱硫剂品种,二为动力学条件.研讨证明,动力学条件的影响大于脱硫剂品种的影响,拌和速度高达120r/min,铁水充沛旋转,获得了杰出的冶金动力学条件,投入的脱硫剂能够充沛的反响,因而脱硫功率高达 95%以上. 现在拌和法脱硫工艺以石灰作为脱硫剂,再配入少量萤石、铝渣作为助熔剂. 当铁水中的硅含量在0. 05!以上时,脱硫反响为: 反响生成的 CO 气体对铁水起到拌和作用,愈加快了脱硫反响的进行.因为高炉铁水中的硅含量一般均大于 0. 05%,因而脱硫反响均为(1)式.在反响式(1)中生成的Ca 2 SiO 4层将石灰颗粒包住,此层质地严密,且熔点高,阻止了铁水中的硫透过它向深部分散,使脱硫速度变缓,且生成的细密层包住新参加的石灰,添加了石灰的耗费,因而向脱硫剂中配入萤石等助熔剂,生成低熔点物质,然后使铁水中的硫进一步与石灰反响,能进步脱硫功率约20%[2] . 因为下降氧势能够进步脱硫功率,因而部分钢厂向铁水中参加铝渣,经过铝脱氧来下降氧势 [3] . 1. 3 拌和法脱硫工艺的优缺陷 1. 3. 1 拌和法脱硫工艺的长处 1) 脱硫功率高而安稳 拌和法脱硫工艺因为其杰出的动力学条件及重现性,使脱硫功率高而安稳,且回硫少,国内某厂,选用拌和法一个班处理了 8 炉铁水,7 炉到达 0.001%,一炉为 0. 002%,而选用石灰加镁粉的喷吹规律较难到达这个水平,且回硫状况较严峻 [4] . 2) 脱硫剂 拌和法选用石灰基脱硫剂,运送与贮存无需特殊办法,镁基喷吹法脱硫工艺所用镁粉需钝化处理,且运送和贮存需有防护办法. 3) 运转本钱 不管是喷吹工艺仍是拌和工艺,首要运转本钱为脱硫剂和耐材. 拌和设备的拌和头经过多年的改善,寿数现已大大进步,现在一般大于 250 炉,在武钢高达 500多炉,而喷吹法喷的寿数一般在 60多炉;拌和设备选用石灰基的脱硫剂,来历广泛,报价低廉,而镁基脱硫剂报价很高,且受商场的动摇影响较大,经过对国内某厂出产数据的分析,在铁水结尾硫≤0.005%时,拌和法比喷吹法运转本钱低,而当铁水结尾硫 > 0. 005%,喷吹法比拌和法运转本钱低. 1. 3. 2 拌和法脱硫工艺的缺陷 1) 设备较大,占用面积较多. 2) 一次性出资较大. 3) 铁水的温降较大. 4) 铁损较大. 5) 处理周期较长. 1. 4 影响拌和法脱硫功率的要素 影响拌和法脱硫作用的首要要素如下. 1) 在进行拌和脱硫之前,铁水液面上的渣子不能太多,不然将会影响脱硫剂的充沛反响. 因而在拌和脱硫之前需进行前扒渣,以扒除70%的渣量为宜,或许选用已老练的捞渣工艺,韶钢 KR 脱硫设备中选用了山东烟台的新式捞渣设备. 2) 拌和桨的转速不能太低,不然达不到杰出的动力学条件,脱硫功率下降. 一般拌和作业时的正常转速为 100 ~120r/s,跟着拌和头的损耗,可恰当进步拌和桨的转速,以确保杰出的动力学条件. 3) 脱硫剂有必要是粉剂,以添加反响面积,使铁水中的硫与石灰充沛触摸. 假如脱硫剂颗粒太大,则脱硫剂无法充沛反响,且添加了单耗,直接影响脱硫作用.一般要求脱硫剂4)脱硫剂首要成分是石灰,因而石灰的质量对脱硫作用影响非常大,首要是石灰中的 CaO 含量、石灰的活性度及石灰中的硫含量. 5)拌和桨的刺进深度要恰当,刺进深度过深或过浅都会直接影响到脱硫作用,过浅,拌和时喷溅严峻,且铁水罐内下部铁水搅动作用差;过深,则上部的铁水搅动较差. 2 拌和法与喷吹法比较 2. 1 脱硫工艺比较 两种脱硫工艺的比较见表 1.2. 2 脱硫运转本钱预算比较 脱硫运转本钱预算的比较见表 2.2. 3 两种脱硫办法的分析点评 经过对两种脱硫工艺的脱硫作用和运转本钱归纳比较,可见拌和法在深脱硫和总本钱方面优势杰出. 关于大中钢铁厂商,从久远考虑并结合出产实践,KR拌和法铁水预脱硫应是更具有深远价值的挑选. 3 结 论  拌和法脱硫工艺作为一种高效,低本钱的脱硫工艺在国内外已得到广泛推行,在国内现已构成由小到大的系列产品.虽然拌和脱硫设备的一次性出资较大,但脱硫作用好,运转本钱低,回收出资快.因而拌和法脱硫将成为往后的一种干流脱硫工艺,得到更广泛的推行,并有向三脱处理工艺演化的趋势.

氢氧化镁产品分类及应用现状

2019-03-08 11:19:22

氢氧化镁产品从应用上分为阻燃级、中和级、医用、电子级、油品增加剂用氢氧化镁等;从结构上分为片状、超细、晶须、纳米级、重质氢氧化镁等。其间发展潜力较好的是超细氢氧化镁和氢氧化镁晶须。 片状氢氧化镁可作为增加型阻燃剂,碳化法即以菱镁矿或白云石为质料,经煅烧、消化、除杂、碳化、沉积制得产品。以白云石为质料,为沉积剂并参加表面改性剂十六烷基三甲基化铵,水热制得菱面片层氢氧化镁,该法镁、钙别离程度较高,镁的提取率为90.02%,产品收率为88.21%;沉积法以菱镁矿或白云石为质料,经煅烧、浸取、除杂、沉积制得产品。以白云石为质料,先后用和硫酸浸取,参加克己络合沉积剂和表面改性剂聚乙二醇可制得产品,收率为85.20%。酸解法以多种含镁矿藏为质料,经过酸解、除杂、沉积制得产品。以白云石为质料,经酸化、除杂,以白云石灰乳为沉积剂,产品纯度为98%,其间,白云石灰乳经过白云石煅烧消化制备。 超细氢氧化镁可作为复合材料的阻燃成分,参加不同的表面改性剂能够改动产品粒径。以氯化镁溶液为质料,为沉积剂,产品粒径 卤水替代。 氢氧化镁晶须是短纤维功能型材料,首要作为阻燃剂和补强材料增加到高分子材料中。沉积法,改善沉积进程能够改动长径比。以氯化镁溶液为质料,参加碱和表面改性剂,水热组成产品。以为沉积剂,丙三醇为表面改性剂,选用微波水热,直径为0.1~0.3μm,长度为80~110μm;改用和为沉积剂,酸为表面改性剂,直径为8~15nm,长度为50~150nm;中低浓度的和低浓度的氯化镁溶液,产品的分散性较好;以碱式硫酸镁晶须为前驱体,为沉积剂,油酸钾为表面改性剂,水热制得直径为1~2μm,长度为100~200μm的产品;参加表面改性剂不能减小粒径,反而会阻挠碱式硫酸镁晶须向氢氧化镁晶须转化。

从低品级菱镁矿中提取高纯氧化镁的研究

2019-01-24 09:36:25

Abstrac:The carbonization soakingof low2grade granularmagnesite is studied. Themineralproperty and light baking performance ofmagnesite, the digestingprocessofMgO aswell as the technologicalparametersof carbonization soaking are investigated. With the carbonization soaking of magnesite, high2grade MgO has been obtained, which contains 99% ofMgO。 我国镁矿资源非常丰富 ,采用碳化法生产轻质碳酸镁的工艺依据矿石性质不同而分为两种:白云石碳化法和菱镁矿碳化法。白云石碳化法生产工艺成熟,但由于碳化浸出过程存在钙含量较高的问题,所以该工艺生产高纯产品受到限制。随着冶炼技术的不断发展,冶金过程中的许多特殊作业趋向于使用高纯度镁砂来大幅度提高耐火制品的寿命,降低生产成本。同时由于高品级菱镁矿的大量出口,因此导致镁矿资源的综合利用问题日益显著。为此,笔者采用低品级菱镁矿粉矿进行碳化法提取高纯氧化镁 (wMgO大于 99%)的工艺研究。试验中,对菱镁矿的矿石性质及轻烧性能、氧化镁的消化过程和碳化浸出的工艺条件和参数进行了研究,并用所获高纯碱式碳酸镁生产出高纯镁砂。 一、矿石性质研究与工艺流程 试样的矿物组成比较简单 ,主要矿物为菱镁矿和白云石,次要矿物为滑石、绿泥石;微量矿物有石英、褐铁矿、黄铁矿、磷灰石等。MgO在矿石中主要作为独立矿物的基本组成形式存在于矿石矿物菱镁矿和脉石矿物白云石、滑石和斜绿泥石中。CaO以两种形式存在于矿物中:一种是以形成独立矿物的基本组成形式存在 ,如白云石、磷灰石 另外一种是以白云石微细包裹体形式存在于菱镁矿晶体中。SiO2亦以两种形式存在于石英、滑石、斜绿泥石、透闪石、方柱石等脉石矿物中,另一种是以石英和硅酸盐矿物细微机械包裹体形式存在于菱镁矿晶体中。 粒度筛析结果表明,wSiO2,wAl2O3在细粒级(-150目 )中略为偏高。wMgO,wCaO,wFe2O3在各粒级中变化不大,与多元素化学分析结果相近。化学分析结果见表1。本试验工艺流程见图1。二、试验结果与分析 (一)煅烧试验 天然菱镁矿在碳化过程中不能直接与二氧化碳起作用,碳酸仅对具有活性的氧化镁起反应,因此需将矿石在高温设备中轻烧,使菱镁矿逸出二氧化碳,生成具有活性的氧化镁。煅烧反应如下: 菱镁矿(WMgCO3约为90%) 轻烧料(WMgO大于90%)+CO2↑    (1) 为使氧化镁易于消化和碳化,对试样进行了差热分析。差热分析结果表明,试样中MgCO3的初始热分解温度为666℃。根据失重曲线可知,700℃以上。由于轻烧氧化镁的活性与煅烧温度和时间有关,故将温度控制在700~850℃之间,并在不同保温时间内进行煅烧条件试验。图2示出了温度和时间对菱镁矿灼减的影响。结果表明,菱镁矿的灼减随温度升高和时间延长而增大。为保证轻烧料不欠烧也不过烧,并具有较高的活性,最佳煅烧温度应控制在800℃,煅烧时间为1.5h。(二)消化试验 许多厂家的生产实践表明,采用白云石生产轻质碳酸镁的工艺中,白云石煅烧后,矿石中含量约30%的CaO与水反应生成Ca (OH)2,矿石自然 裂 解,wMgO为20 %也易与水作用生成Mg(OH)2,因而无需采用细磨工艺。本试验从节约能耗的角度出发 ,将菱镁矿破碎至较小粒级后进行煅烧、消化试验,以探索消化工艺的最佳工艺条件。消化过程的化学反应式如下: MgO+H2O→Mg(OH)2              (2) 轻烧料中的氧化镁在水溶液中转化为氢氧化镁的过程与反应浓度、温度、时间等因素有关,同时与粒度有关。本试验的消化试样为小于2mm粒级的轻烧粉料。 1、消化浓度 将试样放入80℃水中,搅拌4min后过滤,分析不同浓度对消化率的影响。由试验结果得知,消化过程浓度大,转化率低,当浓度低于20%时 ,消化率的变化不大 ,故取消化浓度为 20%进行下面的试验。 2、消化时间 由于浓度试验消化率较低 ,故消化时间试验时增强了搅拌 在消化温度为 ℃、浓度为,80 20%的条件下进行了试验。时间变化对消化率的影响见图3。图3中曲线表明,消化反应时间的增加,对消化率的影响比较明显。消化时间超过12min,消化率已达98%以上。3、消化温度 在试验浓度和时间相对稳定的条件下,温度对消化结果的影响见图4。由图4看出,氧化镁转化成氢氧化镁的过程受化学反应控制,提高反应温度,可加快反应速度,消化温度的提高,对消化过程的影响极为明显。适宜的消化温度应控制在80℃以上。(三)碳化浸出试验 将氢氧化镁转化成碳酸氢镁,是以适量的二氧化碳为浸出剂,在特定的浓度、温度条件下进行反应,不同的时间和压力对浸出结果影响较大。其化学反应式如下 Mg(OH)2+CO2+H2O→Mg(HCO3 )2+H2O          (3) 借鉴前期做过的工作,在常温常压条件下对消化后的试样进行了碳化浸出试验,进塔液nMgO为18.62g /L, cCO2为33%,在浸出过程中定时抽取泥浆过滤,分析碳酸氢镁溶液中WMgO,试验结果见图5。图5中下部曲线表明,试样粒径较大,碳化时间较长。超过90min后氧化镁的转化率增加不明显,浆液中nMgO为7.8g/L。为此,在上述浸出工艺条件相对稳定的条件下,降低进塔液中氧化镁的浓度进行了试验。由图5中上部曲线可知,随着进塔液中的氧化镁浓度的降低,转化率升幅较大,碳化反应至90 min时,MgO的转化率达84.01%,回收率为80.97%。(四)热水解试验 碳化浸出过程实现了目的组分由固相到液相的转移。经固液分离、滤去残渣,将滤液 (重镁水 )加热,使碳酸氢镁转型生成碱式碳酸镁。化学反应式如下: 5Mg(HCO3 )2→4Mg(OH)2·Mg(OH2 )·4 H2O+6 CO2 ↑    (4) 根据上式,在滤液加温至沸腾温度时进行了热水解时间对母液 (废镁水 ) 中氧化镁含量影响的试验。试验结果表明,随时间的延长,母液中氧化镁浓度随之降低。超过5 min后,母液中nMgO均为0.18 g/L,故热水解过程控制为滤液加热至沸腾温度后继续保温 5 min。过滤烘干后的碱式碳酸镁产品多元素化学分析及氧化镁回收率如表2所示。三、结论 (一)采用碳化法浸出工艺处理低品级菱镁矿粉矿,可获得灼减为零时wMgO为99.31%的高纯轻质碳酸镁。氧化镁回收率为80.97%。经烧结工艺处理 ,可获得氧化镁含量为 99.21%,体积密度为3.38g/cm的高纯烧结镁砂。 (二)常压二氧化碳浸出工艺生成的轻质碳酸镁中氧化钙含量较前期加压试验最终产品的CaO品位略有升高。 (三)由于菱镁矿碳化浸出过程中未采用磨矿工艺 ,试样粒径较大 ,故氧化镁的转化率和回收率不近人意。当粒度变小后进行研究,浸出液中氧化镁的转化率指标非常理想。

熔盐法制备氧化镁粉体及其反应机理

2019-02-21 11:21:37

跟着高技术陶瓷、橡胶、塑料、催化剂、环保材料、航天材料的不断发展,氧化镁晶体材料、特别是高纯氧材料(MgO含量不低于98%)的使用越来越广。例如用于医治胃酸过多及十二指肠溃疡患者,用作硅钢制作进程中的高温退火阻隔剂,用于制作电子管、滤光器、滤色器、滤波器等。此外作为灵敏型高效催化剂及功用体良的掺杂材料,高纯氧化镁有很多使用于工业催化及材料改性和高功用复合材料的制备。已报导的高纯氧化镁制备办法较多,例如菱镁矿(白云石)碳化法、卤水(海水)-石灰()法、卤水(海水)-碳按法及镁盐直接热解法等。     熔盐法选用一种或几种低熔点的盐类作为反响介质,在高温熔融盐中完结组成反响,然后选用适宜的溶剂将盐类溶解,经过滤、洗刷得到组成产品,它在高熔点氧化物粉体和电子陶瓷粉体及其它功用粉体材料组成等范畴广泛使用。熔盐法具有工艺简略、组成温度低、保温时刻短、本钱低价、组成粉体的化学成分安稳均匀等长处。     对熔盐法制备MgO粉体的不同熔盐系统进行了比照,发现NaCl-KCl盐类熔点适中,功用相对安稳,洗刷进程中NaCl、KCl溶解于水,滤液经枯燥后得到NaC1、KC1等盐类可回收使用,是一种优秀的反响介质。当选用NaN03-KN03盐类作反响介质时,与镁盐直接热解法相同,反响进程中发作腐蚀性气体,不适合工业化出产。可是NaN03 -KN03盐类熔点较低,有利于分析质料系统在熔盐中的反响进程,进而对反响机理进行评论,因而本文以MgCl2、 CaCO3和NaN03、KN03为质料制备Mg0粉体。     一、试验     (一)质料     试验所用无水氯化镁、碳酸钙、、、无水乙醇等均为分析纯。     (二)氧化镁粉体的制备     将MgCl2、CaCO3及NaN03、KN03按1.1︰1︰2︰2配比置于碾钵中碾磨,使质料混合均匀并磨细至-0.074mm粒级,550℃下保温3h热处理,经水浸泡、洗刷、减压过滤、110℃枯燥,再在600℃下保温3h热处理。     (三)反响机理分析     作CaCO3和MgCl2-CaCO3-NaN03-KN03的TG-DSC曲线,分析质料热反响进程;依据TG-DSC曲线,将质料在不同温度和保温时刻下热处理,断定产品组成,分析熔盐法制备氧化镁的反响机理。     (四)表征     用德国NETZSCH公司STA449/6/G型热重-差示扫描归纳热分析仪对试样进行热效应分析。     用荷兰Philips公司出产的X′Pert Pro型X射线衍射仪对产品进行物相判定。     用荷兰Philips公司出产的Nova400NanoSEM型场发射扫描电子显微镜调查粉体描摹及巨细。     二、成果及评论     (一)试样的组成与描摹分析    图1为S11试样和S12试样的XRD图谱,其间S11试样为质料在550℃下保温3h热处理,用水洗刷后经110℃枯燥的前驱物,S12试样为S11试样在600℃温3h热处理的产品。     从图1可见,质料在550℃下保温3h热处理,用水洗刷后的前驱物主要为氢氧化镁,其间尚有少数氧化镁没有水解,经600℃保温3h热处理,氢氧化镁分化为氧化镁。图2  试样TEM (a)S11;(b)S12     图2为S11试样和S12试样的SEM图。从图2可见,氢氧化镁前驱物主要为层状描摹,形状不规整,巨细散布不均匀,厚度介于0.03~0.05μm,直径介于0.2~1.0μm之间;氢氧化镁分化后得到的氧化镁为颗粒状描摹,巨细散布较均匀,粒径介于0.2~0.5μm之间。     表1为S12试样的化学成分分析成果。从表1可知,所制备的氧化镁粉体纯度高,可满意医药、冶金、工业催化、量子器材、微电子等职业要求。 表1  S12试样化学成分分析成果(质量分数)/%Mg0CaC03A1203Si02Fe203IL98.820.520.100.090.060.41     (二)反响机理分析     图3为CaCO3和MgC12-CaC03-NaN03-KN03质料的TG-DSC曲线。     由图3(a)可见,从700℃至800℃失重37.08%,CaC03分化为CaO和CO2,对应的DSC曲线在769.2℃有一个吸热峰。    由图3(b)可见,从室温至400℃失重18.90%,该温度范围内质料失掉悉数物理水及结构水,NaN03-KNO3熔融,对应的DSC曲线上有3个吸热峰;从400℃至530℃失重8.10%,对应的DSC曲线上在490.5℃有一个吸热峰,该温度范围内可能发作了分化反响;从530℃至700℃失重23.20%,对应的DSC曲线上在660.4℃有一个吸热峰,该温度范围内可能发作了分化反响;温度大于700℃后,失重持续加大,主要是熔盐在高温下加速蒸腾。对照图3(a),没有呈现CaCO3分化的吸热峰,阐明在700℃曾经CaCO3已彻底反响。     图4为试样的XRD图谱。其间M11试样为质料在320℃下保温48h热处理,水洗后经110℃枯燥的产品;Ml2试样为质料在320℃下保温360h热处理,水洗后经110℃枯燥的产品;M14试样为质料在900℃下保温3h热处理,用无水乙醇洗刷后产品的XRD图谱。由图4可见,质料在320℃下保温48h热处理,水洗后经110℃枯燥的产品主要为碳酸镁和白云石及少数的氢氧化镁;质料在320℃下保温360h热处理,水洗后经110℃枯燥的产品主要为碳酸镁;质料在900℃下保温3h热处理,用无水乙醇洗刷后产品悉数为氧化镁。    结合S11试样和S12试样的XRD图谱,以MgC12、CaCO3和NaNO3、KNO3为质料,选用熔盐法制备Mg0粉体的反响机理如下:     1、  熔盐环境下Mg2+与Ca2+发作置换反响,其产品组成与反响温度和反响时刻有关。     MgCl2←→Mg2++2Cl-     xMg2++CaCO3→MgxCa1-xCO3     当x<0.5时.产品为碳酸钙的置换型固溶体,当x=0.5时,产品为CaMg(C03)2,当0.5<x<1时,产品为CaMg(C03)2和MgC03混合物,跟着反响的不断进行,当x=1时,产品为MgC03。     2、碳酸镁分化。     MgC03→Mg0+C02↑     3、水洗进程中氧化镁水解。     Mg0+H20→Mg(OH)2     4、氢氢氧化镁分化。        三、结语     (一)MgCl2-CaC03-NaN03-KN03质料制备氧化镁进程中,在熔盐环境下Mg2+与Ca2+发作置换反响,生成白云石和碳酸镁等中间产品,跟着反响的不断进行,白云石终究转变为碳酸镁;550℃热处理碳酸镁分化为氧化镁,经水浸泡后氧化镁水解生成氢氧化镁,600℃热处理氢氧化镁分化为氧化镁。     (二)氢氧化镁前驱物为不规整的层状描摹,巨细散布不均匀,厚度介于0.03~0.05μm,直径介于0.2~1.0μm之间;产品氧化镁为颗粒状描摹,巨细散布较均匀,粒径介于0.2~0.5μm之间。

一种生产环保型氢氧化镁的新工艺

2019-02-22 09:16:34

跟着社会经济的开展,燃煤开释的二氧化硫、二氧化碳,燃油开释的硫化合物,氮化合物及采矿、冶金、印染、化工、制药等职业排放的工业废液对人类赖以生存的环境的污染日益严峻,怎么有用地处理这些污染要素,以削减它们给人类带来的巨大丢失,已成为需求火急处理的全球性重要问题之一。 依据对环境保护的需求,处理这些污染必定要用到具有以下特色的化工产品:无毒、温文、不腐蚀处理设备,廉价易得、处理本钱低,效率高,能力强、易操作,且易收回或综合利用、不构成二次污染。 料浆状氢氧化镁正是契合上述一切特色的最佳质料之一,它是一种首要运用于环保范畴的液相无机碱类产品,具有活性大、比表面积大、吸附能力强、缓冲和中和能力强、非沉积性、流动性好、运用和调理便利、温文、安全、无毒、无害、腐蚀性小、易操作、副产品易收回或综合利用等特色,被称为环境友好型“绿色安全中和剂”,运用于酸性废水中和、废液中重金属离子(Ni2+、Mn2+、Cd2+、Cu2+、Cr3+、Cr6+等)脱除、烟气脱硫、印染废液处理等环保范畴,具有其他碱性物质(氧化钙、氢氧化钙、、碳酸钠等)无与伦比的优越性,以往运用于酸性工业废水、含硫烟气处理范畴中的一些强碱物质,如:石灰、烧碱、纯碱等的运用逐渐遭到限制,而被兴起的弱碱氢氧化镁所代替。 因料浆状氢氧化镁运用于环保范畴的许多优势,20世纪90年代末,国外料浆状氢氧化镁料的出产和运用得到迅速开展;我国虽然具有丰厚的镁资源,可是氢氧化镁的出产和运用并未引起人们的满意注重,首要处于研讨开发阶段。近年来,国内虽然建设了一些中试或出产设备,但规划小、品种少、产品质量低、技能水平低,亟待进步职业全体水平。 一、现有料浆状氢氧化镁的首要出产办法 依据氢氧化镁用处和形状的不同,可分为粉末状、滤饼状、料浆状三种。用于环保范畴的料浆状氢氧化镁的纯度要求不是很高,一般在30%左右即可,首要是要求不含重金属等污染严峻的杂质,其出产办法相对简略,首要包含粗氧化镁(镁砂、粗制工业氧化镁等)水化法、海水或卤水-碱性物质(、石灰、氢氧化钙、等)沉积法等。 氧化镁水化法是一种非常陈旧的出产工艺,首要是将菱镁矿轻烧得到的轻烧氧化镁粉放入盛有热水的反响池中,边加边拌和,加料结束后保温沉化2h左右,然后进行固液别离、脱水,得到滤饼状及料浆状氢氧化镁。此工艺根本不具有除杂功用,产品质量受质料氧化镁的纯度和活性影响,氧化镁中的杂质除微量可溶性的盐类外,根本被带入产品中,因此,只能出产低层次的氢氧化镁。 海水或卤水-碱性物质(、石灰、氢氧化钙、等)沉积法是将海水或卤水经过简略的净化后,参加碱性沉积剂,发生氢氧化镁沉积,经过滤、洗刷、脱水得到滤饼状及料浆状氢氧化镁。虽然原理简略,但的挥发性强,易污染环境,操作难度大;石灰和氢氧化钙易生成硫酸钙,随氢氧化镁一同分出,构成产品杂质含量高,质量差;是强碱,易使生成的氢氧化镁构成胶体沉积,给产品功能操控带来困难,一起易带入较多的Na+和Cl-及其他杂质,也构成产品杂质含量高,纯度难以保证。 二、海水、卤水-轻烧白云石沉积法 氢氧化镁运用于环保范畴具有其它碱性物质无与伦比的优越性,在国外已被大量出产和广泛的运用,而我国氢氧化镁的出产办法较落后,本钱较高,杂质含量较多,质量较差,在环保范畴的运用更是屈指可数。鉴于此,咱们首要针对出产环保型氢氧化镁,研制了海水、卤水-轻烧白云石沉积法。 该办法归于沉积法的一种,以海水、卤水和轻烧白云石为质料,选用操控结晶一步组成工艺制取氢氧化镁,它克服了以往出产办法的不利要素,产品纯度高、杂质含量少、质量安稳。 (一)根本原理 将轻烧白云石水合生成含氢氧化钙和氢氧化镁的轻烧白云石乳,轻烧白云石乳中的氢氧化钙和质料海水、卤水中的镁离子在接连组成及别离一体化反响器中反响生成氢氧化镁。本工艺选用自主研制的接连组成及别离一体化反响器,在反响器中始终保持一定量的晶种,简化了传统的晶种回头增加工艺,并在反响器中将生成的氢氧化镁和杂质进行了有用地别离,氢氧化镁完结液经沉降、洗刷、别离、脱水得到滤饼状氢氧化镁,把滤饼加水谐和,并按份额增加分散剂,以防止氢氧化镁的聚会结核,然后制得不同浓度且功能安稳的料浆状氢氧化镁,反响方程式:(二)工艺流程(见图1)图1  海水、卤水-轻烧白云石沉积法工艺流程图 首要,用一种不同于韩利华说到的新处理技能,将质料水中影响产品质量的杂质除掉,得到净化质料水,将轻烧白云石加适量净化质料水水合消化后,加水制得契合组成要求的轻烧白云石乳。 然后,将制好的净化质料水和轻烧白云石乳按份额打入带拌和的接连组成及别离一体化反响器中,操控好反响时间和反响结尾,使二者充沛触摸、完全反响。因为氢氧化镁和不溶性较大粒径杂质沉降速度的不同,不溶性较大粒径杂质首要沉积到反响器底部,并由反响器底部排出。富含氢氧化镁的完结液从反响器中上部进入一级沉降器进行固液别离,固相经净化水洗刷除掉大部分可溶性杂质后进入二级沉积器进行二次固液别离,固相经脱水得到滤饼状产品,滤饼加水谐和,并按份额增加分散剂,以防止氢氧化镁的聚会结核,然后制得不同浓度且功能安稳的料浆状氢氧化镁。 (三)产品质量 氢氧化镁的技能方针多种多样,但用于环保范畴的料浆状和滤饼状氢氧化镁在我国没有见专门的质量标准,为适运用户需求,国外有关供应商对料浆状和滤饼状氢氧化镁产品均拟定了厂商标准,见表1。 表1  国外料浆状、滤饼状氢氧化镁厂商标准本工艺出产的氢氧化镁的首要方针:Mg(OH)230%~35%,CaO 0.5%~0.6%,Cl-≤0.1%,虽杂质氧化钙的含量稍高于日、美产品的质量方针,但已远低于瑞士的质量方针。且该质量的氢氧化镁已足以满意废水处理、烟气脱硫等环保范畴的质量要求咱们将在此基础上进一步改善工艺,进步产品质量,以满意更多职业更高运用要求的需求。 (四)工艺特色 该工艺的首要质料为海水、卤水和轻烧白云石,其来历广泛、报价低廉。 该工艺反响在常温下进行,整个进程不需求加压、加热,出产节能、本钱低。 该工艺进程无有毒、有害及有腐蚀性的物料投入和产出,对出产设备无特殊要求,首要设备为压滤机、普通工业泵和反响器、沉降器等碳钢槽罐,设备出资少,操作简略。 该工艺中,经过对质料水的预处理,有用地下降了产品中杂质含量,产品质量显着优于国内同类工艺产品,达到了沉积法出产高质量氢氧化镁的要求。 该工艺中,接连组成及别离一体化反响器的研制和运用,有用地操控了产品结晶,反响器中保留足量的晶种,防止了晶种的回头增加,完成了接连组成,并完成了方针产品和杂质的有用别离,产品质量较传统办法出产的产品杂质含量少、质量高。 三、结束语 污染正给人类构成巨大的损害,给经济构成巨大的丢失。就我国排放的二氧化硫一项,其构成的酸雨给我国经济构成的丢失每年大约在1100亿元在上,环境管理,已刻不容缓。 我国在酸性废水中和、重金属离子脱除和烟气脱硫等环保方面运用的处理工艺比较落后,操作杂乱,质料耗费高,运转本钱高,并且处理的不完全,副产品又构成二次污染。 跟着我国可持续开展战略的施行、世贸组织的参加、环保认识的增强和环保法律法规的逐渐健全、完善,运用于环保范畴的新技能、新工艺也被日益注重,对其研讨开发的力度正在加大,高效、无毒、优质的新产品或代替产品越来越遭到人们的注重。 我国海水、卤水资源、白云石、菱镁矿、水镁石等含镁资源适当丰厚,应充沛利用现有资源优势,经过改善现有落后工艺,研讨开发新工艺,大力开展多品种的氢氧化镁产品,并进步产品的质量和附加值、下降出产本钱,以满意环保及其他职业日益开展对氢氧化镁质量要求不断进步和用量不断增加的需求,促进经济健康快速地开展。

烧结矿不同碱度、氧化镁及二氧化硅含量水平试验研究

2019-01-24 09:38:21

Abstract:Based on the present material condition of N0.3 sintering plant of Magang, the effects of different basicitys and SiO2 and MgO contents in sinter on production and quality of sinter are studied. The results show that, with increas ing the sinter basicitys and SiO2 contents, the sinter strength is improved, but after increasing the MgO contents in sinter, all sinter technicaleconomic indexes are worsened. Therefore, the sinter basicity should be 2.0, SiO2 content should be 4.95%, MgO content should be reduced to the best of its ability in practical production. 烧结矿的碱度、MgO及SiO2含量水平直接影响着烧结矿品位、强度、产量及其冶金性能。为了了解其变化对烧结生产技术指标的影响,马鞍山钢铁股份有限公司(简称马钢)在烧结实验室进行了烧结矿不同MgO、SiO2含量及不同碱度水平的试验。 一、原料成分及烧结工艺制度 试验用含铁料均取自港务原料厂和马钢第三烧结厂生产现场,其化学成分列于表1。此次烧结试验在Φ300mm烧结杯上进行,料层高度为580mm,点火负压6kPa,点火时间1.5min,烧结抽风负压为12kPa。烧结饼经机上冷却后,进行落下和ISO转鼓试验,然后取样做化学分析和冶金性能检验。每组试验在相同的条件下反复进行多次,取在允许误差范围内的两次试验平均值为试验结果,以确保试验结果的重现性。 表1  含铁原料化学成分分析  %粉矿名称TFeFeOSiO2CaOAl2O3MgOTiO2SP烧损姑精57.410.5012.090.8231.150.2990.2250.0120.2502.25CVRD粉65.280.233.740.3550.780.0890.0540.0120.0190.72杨基粉58.710.314.350.1021.350.1040.0490.0030.05010.47天普乐粉62.361.763.840.0291.940.0670.1150.0030.0494.47恰那粉63.010.313.970.1302.120.0850.1040.0120.0653.19FTC粉66.010.313.100.0780.890.0430.1180.0090.0291.22MBR粉67.000.421.460.1201.200.0600.190.0100.0501.30 二、试验方案 本次试验共进行7组。所用的烧结含铁料配比设计基本与马钢第三烧结厂现行生产混匀矿配比相一致,主要是通过对含SiO2较高的姑精配比以及石灰石、白云石的添加量作调整,使得烧结矿的碱度、MgO及SiO2含量满足各个试验水平的要求。设计各组试验因素的水平见表2。各组混合料配比及编组见表3。混合料中含铁料配比为100%,燃料和熔剂百分数是外配的。 表2  各组试验因素的水平  %组号SiO2RMgO备  注14.951.852.10基准组24.951.652.10低碱度34.952.052.10高碱度44.951.852.40高MgO含量54.951.851.80低MgO含量64.801.852.10低SiO2含量75.151.852.10高SiO2含量 表3  混合料的配比及编组  %组号姑精CVRD粉杨基粉天普乐粉恰那粉FTC粉白云石石灰石113.63012111716.410.097.10213.23012111716.810.064.87314.03012111716.010.139.38413.73012111716.311.806.20513.53012111716.58.407.99611.73012111718.310.116.50716.23012111713.810.077.92 三、试验结果及分析 烧结矿化学成分列于表4,冶金性能试验结果见表5。 表4  烧结矿化学成分  %组号TFeFeOSiO2CaOMgOAl2O3TiO2SPC/S157.738.445.029.232.101.460.1060.0110.0651.84257.977.965.098.532.111.540.1030.0100.0631.67357.137.465.049.982.071.580.1200.0140.0681.98457.588.735.009.412.301.560.1040.0120.0691.88557.689.254.949.271.891.410.1070.0090.0651.88658.158.564.819.052.101.550.1020.0090.0651.88757.627.755.159.352.031.500.1170.0130.0711.82 表5  还原性、还原粉化及熔滴性能试验结果组号还原粉化试验结果/%不同还原时间的还原度(RI)/%开始软化温度Ts/℃开始熔化温度Tm/℃开始滴下温度TD/℃最高压差△Pmax/kPa透气性指标S/kPa.℃滴下量MD/gRDI+6.3RDI+3.15RDI-0.530min60min90min120min150min180min125.3658.767.5330.3646.2458.1566.4671.2075.141108133514954.60941841.5223.5654.928.3728.3944.9055.5260.9668.4771.981128132414402.15715780.3326.2459.637.5529.9645.1357.9367.9275.7181.091115134515203.5303421.5428.0961.796.6828.8843.3254.1463.7569.7574.131130133015052.15732085.0532.7862.717.4525.7741.2854.0064.3273.0579.391082132414654.70733979.1626.4159.557.4024.7939.5151.4461.7870.5278.061108131014807.74777843.1724.8057.428.1327.9644.3757.9868.3776.7681.931126134215103.13819741.4 (一)不同烧结矿碱度的影响 由第2组、第1组和第3组构成不同烧结矿碱度水平试验。从试验结果可以看出,当烧结矿SiO2含量一定时,随碱度的提高,烧结生产率及烧结矿强度指标均呈上升趋势。当碱度由1.65升至2.05时,垂直烧结速度稍微加快(由18.78mm/min升到19.51mm/min)、再加上烧结矿成品率的增加(由76.42%升到78.17%),使烧结生产率提高,由1.231t/m2.h增加到1.253t/m2.h,而且也改善了烧结矿的强度指标,转鼓指数也从65.39%提高到67.88%。这主要是因为碱度提高后,烧结矿粘结相中铁酸钙系得以进一步发展的缘故。同时,由于烧结成品率随碱度升高而提高,吨矿烧结固体燃耗由68.24kg下降到66.65kg。而烧结矿品位相应由57.97%降到57.13%。 随碱度升高,RDI+6.3不断升高,RDI+3.15亦升高,RDI-0.5有所降低,但1、3组极接近;还原性改善明显,碱度提高0.1,RI180min提高近3.2%,软化温度无明显变化,熔融和滴下温度不断升高,滴下量逐渐减少。 (二)同烧结矿SiO2含量的影响 由第6组、第1组和第7组构成烧结矿不同SiO2含量试验。在烧结矿碱度一定条件下,随着SiO2含量增加,烧结矿粘结相增加,强度指标变好。当烧结矿SiO2含量从4.80%提高到5.15%时,转鼓指数由64.80%升高到67.70%,提高幅度约2.9个百分点,烧结成品率亦提高1个百分点。而烧结生产率则呈下降趋势,从1.300t/m2.h降到1.247t/。造成生产率下降的原因是:当烧结矿粘结相增多时,烧结过程透气性变差,烧结速度会下降。此外,本次试验是通过调整含SiO2较高的姑精矿配量来满足烧结矿SiO2含量不同水平要求。提高烧结矿SiO2含量就需要配加更多的姑精矿,精粉率增大也直接影响了烧结矿生产率的提高。 随SiO2含量的升高,烧结矿品位由58.15%下降到57.62%。这是因为在原料中增加了高硅的自产姑精矿用量、并减少了进口高品位巴西FTC矿,同时石灰石的配比也有所提高。 6、1、7三组含SiO2由低到高,对应的还原粉化及还原性指标基本相近,而软化、熔融、滴下温度亦不断升高,TD-Ts、TD-Tm区间差异不大,最高压差和透气性S值不断降低,滴下量无明显差异。 (三)不同烧结矿MgO含量的影响 由第5组、第1组和第4组构成烧结矿不同MgO含量试验。从试验结果可知,随MgO含量的增加,烧结矿产量、转鼓强度均有所下降,固体燃耗上升。当烧结矿MgO含量从1.8%增加到2.4%时,生产率由1.281t/m2.h降至1.240t/m2.h,烧结矿转鼓强度由67.07%降到65.67%;而吨矿固体燃耗由68.04kg上升到69.20kg。造成烧结经济技术指标变差有以下原因: 1、白云石在烧结过程中的分解是吸热反应,因此对分解后的MgO矿化形成新的化合物不利,显微分析发现有不少未发生反应的圆粒状MgO被方镁石周围生成的铁酸镁(MgO·Fe2O3)液相所胶结。 2、本次烧结试验及现场生产均配用粗颗粒白云石(-4mm含量只有90%),导致烧结矿产生大量白云石“白点”。 3、白云石与硅酸盐矿物常混在一起,生成镁橄榄石和钙铁橄榄石,结晶细小,一般以玻璃质的物相存在,而玻璃相中发现有细微裂纹,随着白云石的添加,烧结矿玻璃相大量增加。 4、白云石中Mg++容易渗入Fe3O4晶格,稳定了Fe3O4矿相,造成Fe3O4难以向Fe2O3转变形成铁酸钙,MgO添加量愈多,将有更多Mg++渗入到Fe3O4晶格中,限制了铁酸钙系的发展。 由表5可见,随MgO含量上升,还原粉化指标略变差,还原度有所下降,软化、熔融、滴下温度逐渐上升。 四、结  语 (一)在烧结矿SiO2含量一定条件下,随着烧结矿碱度提高,烧结生产率及烧结矿强度指标均能得到提高,还原粉化指标得到改善。因此,在现有高炉用料碱度得到平衡的条件下,马钢第三烧结厂应按2.0的碱度组织生产以满足炼铁厂对烧结矿产、质量的要求。 (二)提高烧结矿SiO2含量亦能提高烧结矿强度,烧结矿软熔温度均有所上升,其它冶金性能无明显变化,但同时烧结矿品位及生产率皆呈下降趋势。因此,在目前条件下烧结矿SiO2含量应稳定在4.95%,以保证烧结矿的强度。 (三)当MgO含量增加时,烧结各项技术经济指标均变差,烧结矿还原性及还原粉化指标略变差。可见,在确保高炉炉渣流动性的前提下,应尽可能降低烧结矿中MgO含量。

铁精矿浮选脱硫工艺

2019-01-24 09:36:23

铁精矿浮选脱硫工艺:铁精矿中有害杂质硫一般以黄铁矿和磁黄铁矿的形式存在,以黄铁矿形式存在的硫可通过加黄药浮选或磁选即可脱除,而以磁黄铁矿形式存在的硫,因其具有强磁性,且其可浮性易受各种因素的影响,因此难于脱除。国内外研究和实践证明,磁黄铁矿表面易于氧化(生成铁的氢氧化物)、泥化、磁团聚等,大大降低了其可浮性,为此在浮选除硫时,一般采用加酸擦洗表面、加分散剂分散、脱磁、多段活化、强化捕收等措施来提高其脱除率。

球形氧化锌脱硫剂

2019-02-18 15:19:33

跟着我国资源的不断干涸,以煤、石油为质料的化工产品运用的质料越来越残次化,使化工出产过程越来越困难,为了进步经济功率在炼油工业中运用高含硫油、煤化工业中运用高含硫煤。这样在油制品、煤制品中硫、氮含量越来越高,严重影响产品的质量,为了进步产品的质量就必须在出产过程中除掉质猜中的硫。要除掉质料气中的硫,最有用、最经济的办法就是运用固体脱硫剂。氧化锌脱硫剂是固体脱硫剂的一种,跟着国家经济建设的加速,残次质料的运用也将越来越多。那么氧化锌脱硫剂的消耗量也会越来越大。因而产品有强有力的商场生命力。 氧化锌脱硫剂广泛应用于组成、制氢、组成甲醇、煤化工、制、石油化工等工业质料气(油)的净化。氧化锌与硫化物反响生成非常安稳的硫化锌,经脱硫剂处理后的各种质料气(油)含硫量可降至0.1PPm以下。对含有较杂乱成份的有机硫化物的质料气(油),氧化锌脱硫剂可与钴钼加氢转化催化剂联用,亦可使出口含硫量降至0.1PPm以下。因而有宽广的商场前景。现在国内商场需求量约好4000吨/年,近几年来氧化锌脱硫剂的商场成长率约为8%,CT140型脱硫剂专门为日本商场开发的专用氧化锌面貌一新脱硫剂,首要出口日本。估计每年100吨。 南京铅锌银矿业有限公司是具有锌矿产资源优势的厂商,而且相继开宣布锌焙砂,活性氧化锌系列产品,而氧化锌脱硫剂是氧化锌的后续加工产品,为了赶快完成产业化,2003年公司安排相关技能人员完成了氧化锌脱硫剂研发和出产规划作业,并出资500万元,建成了年产能力500吨出产线。 该出产线工艺的首要技能特点是选用络合法,出产的超细氧化锌来抽取脱硫剂,其中最要害的技能在于不同运用要求的产品配方,最要害工艺在于球形化技能。产品具有运用温度低,球化系数高,分量硫容大,然后节省了动力降低了工业运用运转本钱。 脱硫剂物化目标产品型号KT302KT305KT310KT140外观深灰色球白色球淡黄色球白色球外形尺寸mmФ3.5~4.5Ф3.0~5.0Ф3.0~5.0Ф3.0~5.0堆密度kg/l0.8~1.001.10~1.200.7~0.91.35~1.45比表面积㎡/g40~60≥28~100≥30孔容ml/g0.430.400.200.30均匀孔半径A215284  烧失重%≦2≤10≤2磨耗率%≤6≤5≤5≤5zno含量%80~85≥95≥80≥90径向抗压碎强度N/cm≥20≥35≥30≥30穿透硫容%≥20≥22≥10

太钢烧结烟气脱硫脱硝工艺实践

2019-02-25 13:30:49

1立项布景 SO2是大气首要污染物之一,它的排放严峻影响到人类的生存环境和经济开展。现在,钢铁职业的SO2排放量仅次于电力职业,居于全国排放量的第二位。在钢铁工业中,烧结工艺是钢铁出产流程中SO2发作的首要来历。 烧结烟气具有如下特色: 1)烟气量大; 2)受烧结机质料结构影响,烧结烟气成分动摇大,温度动摇大; 3)烟气中SO2浓度相对较低,一般发电厂排放烟气SO2浓度约5000mg/Nm3,而烧结烟气中SO2浓度一般低于1000mg/Nm3; 4)烟气成分杂乱,由于烧结进程运用多种原燃料,因而烧结烟气成分相对于电站锅炉杂乱,烟气中除含有SO2外,还含有NOx、HF等多种有害气态污染物及含铁粉尘、重金属等固态污染物; 5)烟气中含氧量相对较高,一般发电厂排放烟气中含氧量约8%,而烧结烟气中含氧量约15%。 正是由于烧结烟气存在上述特色,形成烧结烟气脱硫不能彻底参照发电厂烟气脱硫技能,有必要寻觅合适自身开展需求的脱硫工艺技能。 烟气脱硫办法有许多种,一般分为湿法、半干法、干法。自20世纪70年代起,烧结烟气脱硫技能开端逐步在日本、欧洲部分发达国家进入工业化运用,由于各国政府的环境方针和法律法规的差异,世界各地形成了具有各地域特色的烧结脱硫技能。在日本,前期以石灰石-石膏法和氧化镁法(湿法)为主,近年来建造的烧结烟气脱硫则以活性炭干法为主,而欧洲以循环流化床法为主。我国自20世纪末开端注重烧结烟气SO2污染问题。经过多年的引入吸收和不断的自主研制,呈现出百家争鸣的格式。现在国内各钢铁厂商选用的烧结烟气脱硫技能首要有:石灰石-石膏法、法、双碱法、循环流化床法等。 太钢450m2烧结机于2006年建成投用,烟气量为140万Nm3/h,年排放SO2约9800t、NOx3800t、粉尘1200t,经过3年多对国内外同职业烟气脱硫技能的盯梢、调研、比照,太钢终究以为活性炭法脱硫脱硝及制酸一体化设备是烧结烟气脱硫脱硝处理的最优计划。 2 太钢烧结烟气脱硫脱硝工艺体系组成 太钢烧结烟气脱硫脱硝工艺体系由烟气体系、脱硫体系、脱硝体系以及相应的电气、仪控(含监测设备)等体系组成。其工艺流程见图1。 烟气体系首要包含烟气体系和增压风机体系。 脱硫体系首要包含吸附体系、解吸体系、活性炭的运送体系、活性炭的补给、热风循环体系和凉风循环体系。 脱硝体系首要包含体系(包含液贮存、运送、蒸腾、混合注入等)。 2.1烟气体系 烟气体系总阻力按8000Pa考虑。 增压风机参数: 1)流量:3059760m3/h(工况); 2)全压:8000Pa; 3)功率:8500kW; 4)风机转速:745r/min; 5)额外电压:10kV。 2.2脱硫体系 脱硫体系分为:吸附体系、解吸体系、活性炭运送体系、活性炭补给体系、除尘体系和热风循环体系、凉风循环体系。 2.2.1吸附体系 吸附体系是整个工程中最重要的体系,首要设备由吸收塔、NH3增加体系等组成。在吸收塔内设置了进出口多孔板,使烟气流速均匀,进步净化功率。吸收塔内设置三层活性炭移动层,便于高效的脱硫。 2.2.2解吸体系 吸附了硫化物的活性炭,经过运送机送至解吸塔,在这里活性炭从上往下运转,首要经过加热段,被加热到超越450℃以上,将活性炭所吸附的物质解吸出来。富二氧化硫气体(SRG)排至后处理设备,制备硫酸。解吸后的活性炭,在冷却段中冷却到150℃以下,然后经过运送机再次送至吸附塔,循环运用。 2.2.3活性炭运送体系 活性炭再循环是经过两条链式运送机,确保活性炭在吸附塔和解吸塔之间循环运用。 No.2 AC 链式运送机坐落吸收塔的下部,将吸附了烟气中SO2的活性炭运送至解吸塔。 No.1 AC 链式运送机坐落解吸塔的下部,将解吸后的活性炭运送至吸附塔再次重复运用。 2.2.4活性炭补给体系 活性炭在脱硫进程中,会呈现破损,颗粒度下降,为确保脱硫功率,需将小颗粒的炭粉排出,这就需求不断的弥补新的活性炭。活性炭的消耗量为400kg/h。 在该体系中,外购活性炭经过皮带运送至活性炭储罐,储罐规格为Φ3.6m×16.5m,相当于7天用量。 2.2.5热风体系 热风体系首要供应解吸活性炭的热风。在此体系中,经过煤气发作器将空气加热至450℃,在经过循环风机送至加热段。 2.2.6凉风体系 将经过解吸后的活性炭,在冷却段中冷却到150℃以下。 2.3 脱硫首要设备 2.3.1 吸收塔 在此工程中,吸收塔是由六个相同的模块组成。 塔体规格:长:7m×6m,宽:9.28m,高:41.12m。 其间一个吸收塔模块是由两个彼此对称的面板所组成,每一个面板都是由活性炭床的多个小格所组成的。挑选恰当的吸收器模块及小格的数量,就能够处理必定的废气量。(一个吸收器模块处理废气的标准才能是150000-250000Nm3/h)。废气经过进口管道被分配到每一个吸收器模块中,气体经过左右两个活性炭床面板时得到净化。 活性炭床是由进口和出口格栅及阻隔板组成。这些格栅是经过特殊规划的,以便于避免被大颗粒和炭粉所塞满。该吸收塔由三个床组成,分为前床(“FB”),中间床(“MB”)和后床(“RB”)。每一个床都有辊式卸料器来操控活性炭排出的数量。 辊式卸料器的特色如下: 1)操控活性炭的下落速度,能够确保去除污染物质(如:SOx、NOx、尘埃及其他等)的功能到达最高。 2)经过操控活性炭的下降速度,能够避免吸收塔的压力降升高。 2.3.2解吸塔 解吸塔首要由加热器和冷却器组成,加热器和冷却器均为多管式热交换器。在加热器中,活性炭被加热到400℃以上,被活性炭所吸附的物质,经过解吸后排出,此处排出的气体被称为富二氧化硫气体。经过解吸后的活性炭,在冷却段中冷却到150℃以下。解吸塔排出的活性炭经振动筛筛分,筛上料由No.1AC链式运送机运回吸收塔运用。 为了确保活性炭下落量的均衡,在解吸塔的下部放置一个辊式卸料器。 为了确保有害气体不外泄,在解吸塔的上部和下部均设备双层旋转卸料阀。 活性炭的特色:活性炭(AC)自身是易燃物质。特别是在开始三个月的运用期,由于活性炭的吸附是放热反应,因而活性炭的温度将比烟气的温度高大约5℃,由于新的活性炭更简单氧化。 当烟气体系正常运转时,活性炭氧化的热量将被烟气带走。但是,当烟气体系呈现毛病,例如增压风机毛病,这时无法将热量带走,在吸收塔中的活性炭的温度将会持续地增高。当活性炭的温度超越165℃以上时,进口和出口的切断阀需求封闭,氮气喷入吸收塔内部以避免发作火灾,此刻活性炭持续下落运送到解吸塔中,解吸塔中充满了氮气能够救活。为了确保活性炭不焚烧,活性炭将有必要从吸收塔到解吸塔再到吸收塔这样循环一次(大约一周的时刻)。因而,在开始的三个月傍边,将烟气的温度操控在大约120℃左右。 2.4脱硝体系 脱硝体系首要包含气直销体系,液的卸车、蒸腾、调压及与空气混合直销至吸收塔喷洒。 气直销体系包含液储槽、气蒸腾器、压缩机、气稀释槽、气调压设备、气与空气混合设备及配套管道体系及操控设备。外购的液经过槽车运到用户区,用压缩机卸到液储槽,经蒸腾器汽化后,经过调压设备调到用户压力后送至混合单元。在混合单元设有操控阀门调节用气量及压力,设有火花捕集器避免爆破与回火,与加压后被加热到130℃的空气混合后供应工艺体系运用。 3 环保作用及副产品 3.1环保作用 本工程投产后,每年SO2外排量由6821t 削减为341t,每年削减外排SO26480t,脱硫功率95%;每年粉尘外排量由1050t削减为210t,每年削减外排粉尘840t,除尘功率80%;每年NOx外排量由2774t削减为1858t,每年削减外排NOx916t,脱硝功率33%。 3.2副产品 本工程浓缩的SO2废气经过废气净化体系及硫酸制备体系,制备98%(浓度)的浓硫酸,产值为9500t/a(按年运转8400h核算)。 4 出资 太钢炼铁厂450m2烧结机烟气脱硫脱硝工程初步规划,工程出资概算为33508.57万元,其间静态出资32320.57万元,建造期借款利息1188万元。 5 功能测验成果 功能测验成果见表1。 表1 功能测验成果 ———————————————————————————————— 项目 确保值 脱硫测验成果 ———————————————————————————————— SO2 ≤41mg/Nm3(干) 7.5mg/Nm3(干) 合格 脱硫率≧95% 98% 合格 NOx ≤213mg/Nm3(干) 101mg/Nm3(干) 合格 脱硝率≧33% 50% 合格 尘埃 ≤20mg/Nm3(干) 17.1mg/Nm3(干) 合格 PCDD/F ≤0.2ng/Nm3-TEQ(干) 0.15ng/Nm3-TEQ(干) 成果未出 NH3逃逸 ≤39.5ppm(干) 0.3ppm(干) 合格 制酸 硫酸98%一等品 一等品 合格 ———————————————————————————————— 6 结语 太钢烧结烟气活性炭法脱硫脱硝与制酸体系运转一年来,作业率到达95%以上,脱硫率到达95%以上,脱硝率到达40%以上。经太原市环境监测中心站检测,排放烟气SO2浓度7.53mg/Nm3,NOx浓度101.33mg/Nm3,粉尘浓度17.13mg/Nm3,环保目标明显改进。年产副产品浓硫酸9000t,全面用于太钢轧钢酸洗工序和焦化硫出产,变废为宝,为冶金烧结范畴完成循环经济产业链供应了成功典范。烧结烟气活性炭法脱硫脱硝与制酸技能值得在全国冶金职业推广运用。

铁矿脱硫汇编

2019-02-25 09:35:32

我国是世界上铁矿产资源总量丰厚、矿种完全、配套程度较高的少数几个国家之一,也是开发运用铁矿产资源前史最为悠长的矿业出产大国和矿产品消费大国之一,在铁矿石数量上有优势,但其硫、磷及二氧化硅等有害杂质含量高、嵌布粒度细,形成选矿难度大、功率低,质量和品种上处于下风,尤其是铁精矿中硫含量较高,在世界市场上缺少竞争力。近年来,优质铁矿石的很多进口对我国铁矿山的可持续展开形成了严峻的冲击,下降铁精矿的硫含量成为火急的科研任务,含硫铁矿石的开发与运用研讨对我国国民经济的展开有着不行忽视的重要效果。 1 伴生铁矿石脱硫选铁工艺技能 1.1 阶段磨矿、阶段选别脱硫选铁工艺 磨矿细度对选矿方针的影响十分大,不同的磨矿细度其产品有不同的粒度组成,然后影响矿藏的单体解离度和可选性,细粒嵌布的铁矿石,需求细磨才干使矿藏单体解离。关于嵌布粒度较细、含硫类型(黄铁矿和磁黄铁矿)单一的铁矿石,一般选用阶段磨矿、阶段选别工艺以完成提铁降硫的意图。 安徽某铁矿石中铁矿藏首要以磁铁矿方式存在,硫首要以黄铁矿方式存在,选用阶段磨矿、阶段弱磁选可得到档次为 65.25%、收回率为 80.33%的铁精矿。许开等用含 TFe 42.86%、含硫1.69%的某铁矿石作为研讨方针,经过阶段磨矿、阶段选别、合理操控磁场强度及精选次数等手法,成功地运用全磁选工艺取得铁档次为66.97%的铁精矿,铁收回率达80.3l%。 张彦明运用阶段磨矿、阶段选别工艺进行了系统的实验研讨,成果显现:铁收回率由之前的86.43% 前进到90.38%,铁中含硫量显着下降。云南某铁矿石中铁矿藏嵌布粒度较细,铁档次较低,为20.18%,有害元素硫超支,属较难选矿石。选用阶段磨矿、阶段选别工艺处理该矿石,得到档次为63.98%、收回率为 71.55%、含硫0.48%的铁精矿。 1.2 磁选 — 浮选联合脱硫选铁工艺 我国现在当选的磁铁矿因为粒度细,含有很多磁黄铁矿和黄铁矿,使得磁团聚在选别中的负面影响十分显着,依托单一的磁选法前进精矿档次越来越难。把磁选法与阴离子反浮选结合起来,完成磁铁矿石选别进程中的优势互补,有利于前进磁铁矿石选别精矿档次。磁选—浮选联合工艺是我国高硫铁矿提铁降硫较有用工艺之一。 王炬针对某进口高硫磁铁矿石 (其间硫化矿首要为磁黄铁矿和黄铁矿),选用先反浮选后磁选工艺流程对该矿石进行降硫提铁选矿实验,铁精矿硫档次由原矿含硫6.14%降至 0.30%以下,取得了较好的实验方针。邵伟华等人对云南某矿进行研讨,在含硫 5.71%、含铁 31.52%的条件下,选用先浮选后磁选的工艺流程,取得了铁精矿含铁 65.36%、含硫0.171%、铁收回率为81.67%的满足方针。郭活络等人对某尾矿中的硫、铁资源进行归纳收回,矿石中含有难选磁黄铁矿,选用浮选— 磁选 —浮选联合收回工艺,成功地取得了硫档次为38.77%的优质硫精矿及含铁 58.04%、含硫 0.547%的合格铁精矿。 杨等人对白音敖包高硫磁铁矿进行了研讨,原矿中含有 1.98%的硫,其间部分以磁黄铁矿方式存在,选用磁选—浮选联合工艺,有用下降了铁精矿中硫的含量,终究取得了全铁档次65.20%、含硫0.22%的优质铁精矿,尴尬处理铁矿资源开发运用提出了新的思路。青海省格尔木肯德可克铁矿石性质较杂乱,磁黄铁矿的存在搅扰了铁矿中有用矿藏的选别并影响终究的选别方针,杜玉艳经过先用磁选脱除大部分脉石和一部分硫(黄铁矿),然后用浮选脱除磁选粗精矿中的硫(磁黄铁矿),得到较好的方针。李冰等人对桓仁某铁矿进行了矿石物质成分分析,该铁矿石含硫高,铁矿藏在矿石中首要以磁铁矿及磁黄铁矿两种方式存在,选用了磁选—浮选联合选别工艺进行了实验研讨。成果标明,先磁选后浮选的工艺可取得 TFe 档次 64.97%,含硫 0.16%的合格铁精矿,铁总收回率可到达71.21%。 1.3 焙烧 — 磁选 — 浮选联合脱硫工艺 现在国内铁矿的复原焙烧磁选工艺因其本钱高和铁精矿档次低一级要素未能广泛运用,该工艺首要合适褐铁矿和菱铁矿等烧损较大的铁矿石。关于理论档次较低,含硫类型多样的弱磁性铁矿石,可经过焙烧—磁选— 浮选联合工艺取得低杂质含量的铁精矿,大起伏前进产品质量。 余俊等人针对西部铜业巴彦淖尔铁矿矿石硫含量高,断定了焙烧计划与焙烧条件,对焙烧矿进行磁选— 阳离子反浮选实验。实验标明,进行阳离子反浮选能够得到 TFe档次为 63.67%、收回率为 50.82%的铁精矿,硫含量由 2.74%降到 0.31%,完成了提质降杂的方针。 王雪松等人用反转窑焙烧硫铁矿烧渣的磁化焙烧实验,有用地将烧渣中弱磁性 F e2O3 复原成强磁性 Fe3O4,磁化率可达2.38%。经过球磨、磁选工艺,能够大起伏地前进精矿档次和金属收回率,一起烧渣在反转窑内脱硫效果显着,脱硫率可高达 85%以上。 刘占华等人针对经浮选流程发作的铁档次为17.75%、硫含量为 5.87%的高硫铁尾矿,选用直接复原焙烧— 磁选办法,可取得铁档次为93.57%、硫含量为0.39%、弱磁精矿收回率为 82.01%的直接复原铁产品,为有用前进资源归纳运用率供给了新的途径。 2 新式药剂的研讨及运用 选矿药剂的前进对我国含硫铁矿石选矿工艺的展开特别是提铁降硫作业的展开起到了重要效果,国内研发的浮选药剂首要有活化剂和捕收剂。 2.1 硫铁矿新式活化剂的研讨及运用 王炬针对某进口高硫磁铁矿石 (其间硫化矿首要为磁黄铁矿和黄铁矿),选用新式高效浮硫 MHH-1活化剂进行脱硫实验研讨,铁精矿硫档次由原矿含硫6.14%降至0.30%以下,取得了较好的实验方针。铁精矿脱硫特效活化剂 MHH-1对脱除铁精矿中的硫化矿特别是磁性较强、可浮性较差的磁黄铁矿具有显着效果。与其他活化剂比较,MHH-1用量少,本钱低,脱硫效果显着,该产品的研发为铁精矿提铁降硫供给了新途径。 胡定宝针对新桥矿业有限公司含硫磁铁矿中磁黄铁矿含量高的特色,选用了 HH-1 高效活化剂进行脱硫实验,取得铁精矿含硫 0.319%、TFe档次66.99%、TFe 收回率 47.68%与硫精矿硫 34.59%、硫含量收回率 99.23%的选别方针,各项方针均到达要求。 殷召阳针对冶山铁矿下部矿体原矿含硫量较高,特别是其间磁黄铁矿含量大,形成磁铁精矿含硫超支的实际情况,经过强化浮选进程、加大黄药用量、运用复合活化剂MS-1 等手法,使铁精矿硫含量由 0.8% 降至 0.4%,到达了供应要求。 2.2 硫铁矿新式捕收剂的研讨及运用 安庆铜矿磁选精矿中脉石夹藏严峻,影响了铁精矿档次的前进;其出产用水很多运用回水,且高pH值回水按捺磁黄铁矿,严峻下降了浮选的脱硫率;磁黄铁矿可浮性差,必须用强力捕收剂才干得到满足成果。安庆铜矿黄平和选用前进磨矿细度,改进选铁出产用水水质,调整捕收剂药剂品种(由以往单一的黄药变为柴油与黄药组合),脱硫效果显着,取得了极大的经济效益。 陈典助等人针对某厂尾矿中的高硫铁资源,选用 QY-309 混合捕收剂,对弱磁精矿直接反浮选脱硫除杂,取得了浮选精矿铁档次为 67.56%、硫含量仅为0.13% 的方针。杨柳毅等人[21]针对云南某低档次碳质含硫磁铁矿石进行了提硫实验研讨,实验成果标明,选用新药剂 402 作为提硫捕收剂,得到了硫档次为42.25%、收回率为 92.96%的硫精矿。 攀枝花选矿厂矿石中硫化物以磁黄铁矿为主,蒋方珂等人经过对攀枝花选矿厂次铁精矿中硫化物的工艺矿藏学和矿石性质分析,提出在酸性条件下,运用高档黄药来完成对磁黄铁矿的捕收,然后到达铁精矿降硫的意图,终究铁精矿中硫含量下降0.2% ~0.3%,其档次也有必定起伏的前进。 3 脱硫药剂与硫铁矿效果机理的理论研讨及展开 3.1 硫铁矿石晶体结构研讨现状 经过磁选工艺流程,不同晶系的磁黄铁矿得到有用富集,其间大部分黄铁矿进入尾矿,少数未完全单体解离的黄铁矿则随磁黄铁矿进入浮选;在浮选工艺流程中,不同晶系的磁黄铁矿可浮性不同较大,而不同晶体结构的黄铁矿的可浮性并无显着的差异。故对磁黄铁矿的晶体结构研讨现状作如下论述,磁黄铁矿(Fe1-xS,0对不同的晶体结构 (单斜和六方)的磁黄铁矿的可浮性进行了研讨,显现单斜和六方的可浮性有显着的差异[24]。蔡从光等人与梁冬云等人经过浮选实验证明了单晶系磁黄铁矿的可浮性优于六方晶系磁黄铁矿,跟着S 含量与 Fe 含量之比增大,磁黄铁矿的晶体结构由六方晶系变为单斜晶系,磁性由弱变强,可浮性由差变好。 刘之能等人经过丁铵黑药药剂用量对未活化和活化的六方磁黄铁矿进行浮选实验及表面电位ε,研讨了丁铵黑药系统下,六方磁黄铁矿的浮选行为及其表面吸附机理,成果标明,六方磁黄铁矿表面在中性条件下可浮性最好。李文娟等人经过单矿藏实验,研讨了单斜磁黄铁矿的浮选行为,成果标明:单斜磁黄铁矿在丁黄药或乙硫氮系统中的可浮性根本共同,矿浆电位对其浮选行为影响不大;碱性条件下,乙硫氮对单斜磁黄铁矿的捕收才能比丁黄药强。 磁黄铁矿的化学组成、物理性质和晶体结构决议其可浮性、表面易氧化程度以及性脆等特性。选用X线衍射、电子探针和浮选实验,调查了单斜磁黄铁矿和六方磁黄铁矿的结构成分及可浮性差异,成果标明:单斜比六方磁黄铁矿富含硫;单斜和六方磁黄铁矿的浮选收回率随矿浆pH 改变的规则相似,可是单斜磁黄铁矿的收回率比六方磁黄铁矿高,可浮性比六方磁黄铁矿好;酸性条件下,六方磁黄铁矿比单斜磁黄铁矿更简略被 Cu2+ 活化。 3.2 硫铁矿与药剂的效果机理研讨现状 近年来,国内外选矿作业者对选硫药剂与硫铁矿的反响机理进行了很多的研讨,并将研讨成果运用于辅导矿山的出产实践,取得了可观的经济效益。 覃武林等人研讨了硫酸和草酸对被石灰按捺后的磁黄铁矿的活化效果和活化机理。实验证明硫酸与草酸对磁黄铁矿的活化机理表现在两方面:一是前进磁黄铁矿表面本身氧化电位,阻止亲水物质进一步发作;二是去除吸附在磁黄铁矿表面的亲水物质,使之显露新鲜表面。现在磁黄铁矿的电化学研讨首要有磁黄铁矿的表面氧化、捕收剂与矿藏效果的电化学研讨以及铜离子对磁黄铁矿的活化等。 覃文庆经过紫外光谱分析,检测到丁黄药效果后的磁黄铁矿表面存在疏水性的双黄药。张芹经过磁黄铁矿红外光谱检测分析,推论乙黄药在磁黄铁矿表面生成双黄药。Bozkutr等人考察了吸附有异丁基黄药的磁黄铁矿的红外光谱,也证明其表面生成了双黄药。Rao等人观察到氮气气氛下,磁黄铁矿对黄药的吸附量很少,这或许是因为黄药氧化为双黄药需求较高的电位,而氮气气氛的电位显着过低形成的。由此可见,磁黄铁矿的浮选行为与矿浆的氧化还 原环境密切相关,即矿浆电位是磁黄铁矿浮选收回率与浮选速率的决议要素之一。 ZHANG Qin 等人在乙黄药浓度为 1×10-4 mol/L时经过乙黄药与磁黄铁矿效果机理的研讨得出了磁黄铁矿的可浮性与 pH值和矿浆电位存在着匹配联系,在某一 pH值下,只要在适合的矿浆电位区域,磁黄铁矿才可浮。Khant报导经过向矿浆中预先充气前进矿浆电位,能够有用地按捺磁黄铁矿,反之,不预先充气,则具有必定的活化效果。酸性条件下,铜离子与磁黄铁矿表面的铁离子发作交流,然后活化矿藏表面。磁黄铁矿表面氧化速度快,据报导在相同条件下,磁黄铁矿的氧化速度是黄铁矿的20~100 倍。磁黄铁矿在必定极限内氧化生成 FeSO4 与 Fe2(SO)3,时有单质硫发作,但泥化后其比表面积大,易严峻氧化,在表面生成 Fe(OH)3与 FeO(OH)亲水层,可浮性下降。 黄尔君等人经过对单矿藏及现场矿浆样的实验标明,硫酸铵和碳酸氢铵对被石灰按捺的黄铁矿具有杰出的活化效果,并且可在高碱度 (pH 达 11 ~ 12)下使黄铁矿活化浮游。硫酸铵对黄铁矿活化效果机理包含: (1) 沉积矿浆中的 Ca2+,恰当下降 pH 值; (2) 解吸矿藏表面的 Ca2+,并且比较完全; (3) 的活化效果以及矿藏表面吸附少数硫酸铵,有或许经过它络合 Cu2+; (4) 硫酸铵活化黄铁矿时,精矿档次高,与它能坚持矿泥絮凝不进入精矿有关。 4 定论 (1)综上所述,近年来在含硫磁铁矿石脱硫方面,国内外学者做了很多的研讨,不管是工艺流程、反浮选药剂仍是理论上都有很多的文献报导,现在在磁浮选工艺技能方面的研讨已取得了较好的发展,并在出产中取得了显着的经济效益。能够说,在资源日益趋于干涸的今日,加强理论的研讨、开宣布高效的脱硫新工艺技能和反浮选新式药剂仍是硫铁矿选矿研讨的要点和展开方向。 (2) 对脱硫新工艺技能的研讨向来是选矿作业者重视的课题:①考虑用全磁选工艺。在现阶段磨矿、弱磁选—细筛再磨再选工艺流程的基础上,再用高效细筛和高效磁选设备进行精选。与反浮选工艺比较,该流程简略,工艺牢靠,出资省、工期短、易操作;②考虑用弱磁选— 反浮选 —弱磁选联合工艺。该工艺先除去没有磁性的黄铁矿和脉石矿藏,再经过反浮选选别出磁黄铁矿,最终磁选确保铁精矿的档次,尽或许地脱掉含硫磁铁矿石中的硫,使铁矿石最大程度地具有挖掘运用价值。 (3)反浮选技能的研讨方向是研发高效、低耗、低毒的新式反浮选药剂、工艺和设备,以前进选矿功率,下降选矿本钱和对环境的污染。反浮选药剂的运用研讨包含开发捕收才能强、选择性高、耐低温的优秀捕收剂和无硫酸、高效廉价、节能省耗的新式活化剂,以期前进作业功率,削减经济本钱,防止设备腐蚀,下降对环境的污染。

阳极氧化的原理

2018-12-28 09:57:24

将金属或合金的制件作为阳极,采用电解的方法使其表面形成氧化物薄膜。金属氧化物薄膜改变了表面状态和性能,如表面着色,提高耐腐蚀性、增强耐磨性及硬度,保护金属表面等。例如铝阳极氧化,将铝及其合金置于相应电解液(如硫酸、铬酸、草酸等)中作为阳极,在特定条件和外加电流作用下,进行电解。阳极的铝或其合金氧化,表面上形成氧化铝薄层,其厚度为5~30微米,硬质阳极氧化膜可达25~150微米。阳极氧化后的铝或其合金,提高了其硬度和耐磨性,可达250~500千克/平方毫米,良好的耐热性,硬质阳极氧化膜熔点高达2320K,优良的绝缘性,耐击穿电压高达2000V,增强了抗腐蚀性能,在ω=0.03NaCl盐雾中经几千小时不腐蚀。氧化膜薄层中具有大量的微孔,可吸附各种润滑剂,适合制造发动机气缸或其他耐磨零件;膜微孔吸附能力强可着色成各种美观艳丽的色彩。有色金属或其合金(如铝、镁及其合金等)都可进行阳极氧化处理,这种方法广泛用于机械零件,飞机汽车部件,精密仪器及无线电器材,日用品和建筑装饰等方面。     一般来讲阳极都是用铝或者铝合金当作阳极,阴极则选取铅板,把铝和铅板一起放在水溶液,这里面有硫酸、草酸、铬酸等,进行电解,让铝和铅板的表面形成一种氧化膜。在这些酸中,最为广泛的是用硫酸进行的阳极氧化。

金属冷喷涂技术的工艺原理

2019-03-01 10:04:59

冷喷涂技能是在镁合金表面上生成厚的铝镀膜的一种有用办法,该办法对表面制备要求不高,并且对镀件的力学或热学特性无需顾及。铝镀膜表现出对镁元件具有避免各种以及电腐蚀的才能。许多时分,仅在钢紧固件周围需求进行电池腐蚀维护,而冷喷涂恰恰是一种对露出镁表面进行部分维护的立异技能。    冷喷涂的技能特色    冷喷涂防腐是一项性技能,凭借这项技能可直接、就地在镁合金上生成厚的铝镀膜到达下降或扫除常见或电腐蚀构成的损害。这项技能有望战胜原有镁合金防腐技能的缺陷,然后有助于将镁用于轿车的外部元件。    冷喷涂技能的的工艺原理    冷喷涂是一项锋芒毕露的固态工艺。该办法可将以超声加快的固体颗粒的动能在碰击到镀件表面时转变为热能,然后完结冶金焊接。该工艺的原理是:每种金属均有其特定的、与温度相关的临界颗粒速度,当颗粒运动超越这一速度时即会焊接于镀件之上。    在传统的热喷涂工艺中,因为温度较高,镀层与镀件材料均会被氧化、发作冶金形变和剩下张应力。反之,冷喷涂工艺制成的镀膜,孔隙度很低(<0.5%),并且防氧化、防相变,对多种金属、金属陶瓷或其他材料组合均可削减张应力。    在高压冷喷涂技能中,高压氦或氮(350~450磅/平方英寸)用作载气,可将喷涂材料加快到超声速度。气体被加热并强制经过一个聚集-发散喷头(deLaval),该处被加快至超声速度(大于1000米/秒)。喷涂颗粒在喷头上游方被沿轴向注入。    在低压冷喷涂技能中,氮或空气被加压至70~15磅/平方英寸,而喷涂粉末在喷头的发散部位的下游方沿径向注入。低压冷喷涂体系是手提式的、运作更经济,颗粒速度可达800米/秒。便携式冷喷涂机可用于铝、铜、锌及其他金属组合的喷涂。便于带着特性使低压冷喷涂机更适用于户外保养和修正。    冷喷涂技能是在镁合金表面上生成厚的铝镀膜的一种有用办法,该办法对表面制备要求不高,并且对镀件的力学或热学特性无需顾及。铝镀膜表现出对镁元件具有避免各种以及电腐蚀的才能。许多时分,仅在钢紧固件周围需求进行电池腐蚀维护,而冷喷涂恰恰是一种对露出镁表面进行部分维护的立异技能。    可是,为了了解和改进冷喷涂工艺有必要进行更充沛的研讨,尤其是关于多种材料组合以及冷喷涂工艺自身的不断开展立异,以及更佳的使用材料于未来技能,还需求进行许多的研讨工作。    热喷涂技能和冷喷涂技能的差异    热喷涂技能是把某种固体材料加热到熔融或半熔融状况并高速喷射到基体表面上构成具有期望功能的膜层,然后到达对基体表面改质意图的表面处理技能。因为热喷涂涂层具有特殊的层状结构和若干细小气孔,涂层与底材的结合一般是机械办法,其结合强度较低。在许多情况下,热喷涂能够引起相变、部分元素的分化和蒸发以及部分元素的氧化。    冷喷涂技能是相关于热喷涂技能而言,在喷涂时,喷涂粒子以高速(500~1000m/s)碰击基体表面,在整个过程中粒子没有熔化,坚持固体状况,粒子发作纯塑性变形聚合构成涂层。冷喷涂技能近年来在俄国、美国、德国等都得到了很快的开展    冷喷涂技能的适用材料规模    在冷喷涂过程中,因为喷涂温度较低,发作相变的驱动力较小,固体粒子晶粒不易长大,氧化现象很难发作。因此适合于喷涂温度灵敏材料如纳米相材料、非晶材料、氧灵敏材料(如铜、钛等)、相变灵敏材料(如碳化物等)。现在纳米粉末的研讨越来越广泛,其颗粒自身较小,在功能上与固体彻底不同,展现出许多优于本体结构的新的特有的性质。近年来,纳米涂层制备引起了人们的爱好。研讨标明因为晶粒尺度效应和许多晶界的存在,纳米涂层具有比传统涂层更优秀的功能]。表面纳米晶能够使材料表面(和全体)的机械和化学功能得到不同程度的改进。用传统的喷涂办法喷涂到基体表面上会引起其成分、功能与结构的改变;而用冷喷涂将会保存其根本的结构和性质,使得纳米涂层的喷涂能以完成。

镍冶金工艺及原理说明

2019-02-26 09:00:22

1 镍冶金的一般常识 1.1 概 述 镍在国际物质文明开展中十分重要的效果。人类发现镍的时刻不长,但运用镍的时刻可一向追溯到公元前300年左右。我国至迟在春秋战国时期就现已呈现了含镍成分的武器及合金器皿。古代云南出产的一种“白铜中,也含有很高的镍。1751年,瑞典科学家克朗斯塔特初次制取到了金属镍。直到十九世纪末,因为产值有限,镍被人们视为贵金属,用以制造首饰。二十世纪以来,人们发现了镍的多种用处及其在改进钢的功用方面所具有的共同功用,现代镍工业由此诞生并得到了敏捷开展。镍是一种银白色的金属。在公元前我国就知道运用镍锌,镍铜合金。 国外于1775年制得纯镍,在1825~1826年间瑞典开端了镍的工业出产。其时,因为技能条件等要素的约束,镍的出产长时间未得到明显的开展。直到发现将镍炼制成合金钢往后,镍工业才有了较快的开展,产值也敏捷上升。1910年国际镍产值只要2.3万吨,1960年为32.55万吨,1980年为74.28万吨,至2002年国际镍的年产值已到达117.59万吨,镍的消费量也将到达104.7万吨或更多.跟着我国经济开展速度的进一步加速和国民经济结构的调整,不锈钢职业,电池,电镀,触媒职业对镍的需求量将进一步添加。 1.1.1 国际镍资源 镍的矿藏资源首要有硫化镍矿和氧化镍矿,再就是贮存于深海底部的含镍锰结核。有关统计资料标明,至1990年,全国际已发现的陆地镍储量为5800万吨,储量根底为1.23亿吨,海洋锰结核矿的镍资源若以准鸿沟档次估量,约有689万吨.在全国际镍储量中,硫化镍矿占了30—40%,氧化硫矿占了60—70%。首要散布在古巴,加拿大,俄罗斯,新喀里多尼亚,印度尼西亚,南非,澳大利亚和我国,巴西,哥伦比亚,多米尼加,希腊,菲律宾等国。国际各国所产镍金属中,百分之七十左右来源于硫化镍矿。 1.1.2 国内镍资源 我国已探明的镍矿点有70余处,储量为800万吨,储量根底为1000万吨,在国际上占第八位.其间硫化镍矿占总储量的87%,氧化镍矿占13%。首要散布在甘肃,四川,云南,青海,新疆,陕西等15个省,自治区中,其间甘肃最多.金川镍矿已探明的镍储量为548万吨,占全国总储量的68.5%。其间次为云南,新疆,吉林和四川,其镍储量别离占全国总储量的9.1%,7.5%,5.2%和4.5%(见表1-2)。金川镍矿则因为镍金属储量会集,有价稀贵元素多等特色,成为国际同类矿床中稀有的,高等第的硫化镍矿床。 1.2 镍及其首要化合物的物理化学性质 镍是元素周期表中第Ⅷ族的元素,其在元素周期表中的方位决议了镍及其化合物的一系列物理化学特性,镍的许多物理化学特性与钴,铁近似;因为与铜比邻,因而在亲氧和亲硫性方面又较挨近铜。 1.2.1 金属镍的性质 1.2.1.1 物理性质 1.2.1.2 化学性质 1.2.1.1 物理性质 镍是一种银白色的金属,其物理性质与金属钴,铁有适当共同的当地,重要表现在: A.镍的比重:在20℃时为8.908,牢靠数值为8.9~8.908,熔点时液体镍的比重为7.9。 B.镍的比热:在0~1000℃的温度范围内改变于420~620焦耳/公斤.K,在居里点或其附连有一明显的顶峰,此温度下失掉铁磁性。 C.镍的电阻:在20℃时按其纯度99.99~99.8%改变于6.8~9.9微欧厘米(10-8Ωm)。镍基合金尽管广泛用于热电元件,但因为氧化联系纯镍实践上无此用处。 D.镍的热电性与铁,铜,银,金等金属不同,较铂为负,所以在冷端的电流由铂流向镍,因而,以镍作为热电元件时可发作高的电动势。 E.镍具有磁性,是许多磁性物料(由高导磁率的软磁合金至高矫顽力的永磁合金)的首要组成部分,其含量常为10~20%。 1.2.1.2 化学性质 金属镍是元素周期表第8副族铁磁金属之一,原子序数28,原子量58.71,熔点1453±1℃,沸点2800℃。天然生成的金属镍有五种安稳的同位素:Ni5867.7%,Ni6026.2%, Ni611.25%,Ni623.66%,Ni641.66% 。其首要化学性质有: A.在大气中不易生锈以及能反抗苛性碱的腐蚀。大气试验成果,99%纯度的镍在20年内不生锈痕,不管在水溶液或熔盐内镍反抗苛性碱的才能都很强,在50%欢腾苛性钠溶液中每年的腐蚀性速度不超越25微米,对盐类溶液只简单遭到氧化性盐类(如氯化高铁或次氯酸铁盐)的腐蚀.镍能反抗一切的有机化合物。 B.在空气中或氧气中,镍表面上构成一层NiO薄膜,可防止进一步氧化,含硫的气体对镍有严峻腐蚀,尤其在镍与硫化镍Ni3S2共晶温度在643℃以上时更是如此.在500℃以下时镍关于无明显效果。 C.20℃时镍的电极电位为-0.227伏,25℃镍的电极电位为-0.231伏,若溶液中有少数杂质,尤其是有硫存在时,镍即明显钝化。 1.2.2 镍的化合物及性质 在自然界里镍的化合物有三种根本形状 1:镍的氧化物 2:镍的硫化物 3:镍的砷化物. 1.2.2.1 镍的氧化物 镍有三种氧化物:即氧化亚镍(NiO),四氧化三镍(Ni3O4)及三氧化二镍(Ni2O3)。三氧化二镍仅在低温时安稳,加热至400~450℃,即离解为四氧化三镍,进一步进步温度终究变成氧化亚镍.镍可构成多种盐类,但与钴不同,只生成两价镍盐,因而,不安稳的三氧化二镍常作为较负电金属(如Co,Fe)的氧化剂,用于镍电解液净化除Co之用。氧化亚镍的熔点为1650∽1660℃,很简单被C或CO所复原.氧化亚镍与CoO,FeO相同,可构成MeO SiO2和2MeO SiO2两类硅酸盐化合物,但NiOSiO2不安稳.氧化亚镍具有触煤效果,可使SO2转变为SO3,而SO3与NiO又能够构成安稳的硫酸盐,并较铜,铁的硫酸盐安稳,加热到750~800℃才明显离解.氧化亚镍能溶于硫酸,,和硝酸等溶液中构成绿色的两价镍盐.当与石灰乳发作反响时,即构成绿色的氢氧化镍(Ni(OH)2)沉积。 1.2.2.2 镍的硫化物 镍的硫化物有:NiS2,NiS5,Ni3S2,NiS.硫化亚镍(NiS)在高温下不安稳,在中性和复原气氛下受热时按下式离解:3NiS = Ni3S2 +1/2S2在冶炼温度下,低硫化镍( Ni3S2 )是安稳的,其离解压比FeS小,但比Cu2S大。 1.2.2.3 镍的砷化物 镍的砷化物有砷化镍(NiAs)和二砷化三镍(Ni3As2)。前者在自然界中为红砷镍矿,在中性气氛中可按下式离解:3NiAs =Ni3As2+As在氧化气氛中红砷镍矿的砷一部分构成蒸发性的As2O3,一部分则构成无蒸发性的盐(NiOAs2O3)。因而,为了更彻底地脱砷,在氧化焙烧后还必须再进行复原焙烧,使盐转变为砷化物,进一步氧化焙烧中再使砷呈As2O3形状蒸发,即进行替换的氧化复原焙烧以完结脱砷进程。 1.3 镍的用处及其消费量 1.3.1 镍的用处 1.3.2 镍的消费量 1.3.1 镍的用处 镍与铂,钯类似,具有高度的化学安稳性,加热到700~800℃时仍不氧化.镍在化学试剂(碱液和其它试剂)中安稳.镍系磁性金属,具有杰出的耐性,有满意的机械强度,能饱尝各种类型的机械加工(压延,压磨,焊接等).纯镍特别是镍合金在国民经济中取得广泛的应有.镍具有杰出的磨光功用,故纯镍用于镀镍技能中.特别值得指出的是纯镍还用在雷达,电视,原子工业,远距离操控等现代新技能中.在火箭技能中,超级的镍或镍合金用作高温结构材料.镍粉是粉末冶金中制造各种含镍零件的质料,在化学工业中广泛用作催化剂.镍的化合物也有重要用处.硫酸镍首要用于制备镀镍的电解液,镍则用于油脂的氢化,氢氧化亚镍用于制备碱性电池.硝酸镍还能够在陶瓷工业中用作棕色颜料.可是,纯镍金属和镍盐在现代工业用处中耗费不多,而首要是制成合金运用.全国际耗镍最多的国家是美国和英国,占总产值的60~70%。其间用于合金的镍量到达80%以上。跟着我国改革开放,工业技能飞速开展,电气工业,机械工业,建筑业,化学工业等对镍的需求也愈来愈大。近十年我国的镍的工业又有了很大的开展.归纳起来镍的用处可分为六类: a.作金属材料,包含制造不锈钢,耐热合金钢和各种合金等3000多种,占镍消费量的70%以上。 b. 用于电镀,其用量约占镍消费量的15%。首要用在钢材及其他金属材料的基体上掩盖一层经用,耐腐蚀的表面层,其防腐功用要比镀锌层高20~15%。 c. 在石油化工的氢化进程中作催化剂.在煤的气化进程中,当用CO和H2组成时发作下列反响:CO + 3H2 →CH4 +H2O(温度800℃,催化剂)常用的催化剂为高度涣散在氧化铝基体上的镍复合材料(Ni25~27%)。这种催化剂不易被H2S,SO2所毒化。 d.用于用作化学电源,是制造电池的材料.如工业上已出产的Cd-Ni,Fe-Ni,Zn-Ni电池和H2-Ni密封电池。 e.制造颜料和染料。其最首要的是组成黄橙色颜料。 f.制造陶瓷和铁素体。如陶瓷上常用NiO作着色剂添加还能添加料坯与铁素体间的粘结性,并使料坯表面光洁细密。铁素体是一种较新的陶瓷材料,首要用于高频电器设备。 1.3.2 镍的消费量 镍的消费相对比较单一,首要会集在不锈钢,合金钢,电镀,电池,触媒,军工等范畴,其间不锈钢职业耗镍量最大,约占整个镍消费的60—70%。2001年我国不锈钢产值为75万吨左右,耗镍量约4.5万吨.非钢职业近年来开展迅猛,2001年耗镍量约3万吨,其间电镀及镍网职业耗镍最大,约为2万吨,电池职业5000吨,触媒职业1500吨,军工职业2000吨,其它职业1500吨,使全国镍的消费量到达7.5万吨左右,消费量迅猛添加。 我国镍的消费按商场细分准则和区域区分呈五大商场区域: A.以上海为中心的华东商场:包含江,浙,沪,皖三省一市.在此区域内有全国首要的金属期货交易所和长江,华通两个现货商场.现在该区域内年消费镍3万吨左右。未来几年内宝钢集团所属上钢一厂,三厂,五厂合计有150万吨的不锈钢产能将连续构成,镍的潜在消费惊人。150万吨产能估量含镍不锈钢为100-120万吨,理论计算耗镍量为8-10万吨,考虑其运用废钢要素,不锈钢添加的产能至少要耗费5万吨原镍,再加上电镀,合金,镍网,铸造等职业镍的消费,使该区域对镍的需求在未来将到达8万吨以上。 B.以太钢为要点的华北商场:包含太原,天津,北京三地.现在该区域镍的消费量约2.8万吨,有80%会集在太原钢铁公司。太钢在未来将构成100万吨不锈钢出产才能,到时原镍耗费估计到达5.2万吨左右,从而使华北商场镍的消费量到达5.6万吨水平,是一个极为重要的区域,并且该区域对钴,铂族金属的需求量也较大。 C.以电镀为要点的珠江三角洲及周边商场:该区域经济兴旺,镍的年消费量在6000—8000吨,但在往后适当一段时期内生长潜力不大。 D.以沈阳为中心的东北商场:首要是冶金,军工,电池职业,年消费镍约6000吨.跟着宝钢,太钢不锈钢方案的施行,东北地区的不锈钢出产会逐渐萎缩,优势将会集在高温合金和军工钢方面,消费量呈递减趋势。 E.以重庆为要点的西南商场:包含云,贵,川三省,首要是冶金,电镀职业,年消费镍量约4000吨。重庆市把轿车,摩托车做为支柱产业来规划和开展,电镀用镍呈添加趋势,估计未来西南商场对镍的需求将到达5000吨/年水平。 1.4 镍的出产值及其改变 我国镍工业起步于1953年。在金川镍矿被发现前,我国一向被外国视为“贫镍国”,一些国家也趁机对我国施行镍封闭,以此限制我国现代工业的开展。五十年代初,上海冶炼厂,沈阳冶炼厂,重庆冶炼厂等首要在铜电解液中和处理杂铜的进程中提取镍金属,以满意国家对镍的需求。此外,也从吉巴进口的氧化镍中制取镍金属。我国运用国内矿产质料提取镍是从四川会理镍矿开端的。1959年,四川会理镍矿投入出产。1963年和1964年,金川镍矿和吉林磐石镍矿又相继投入出产.特别是金川镍矿的发现和建成投产,不光使我国的镍资源储量跃居国际前列,并且大大进步了我国国产镍的产值,为我国现代工业的开展奠定了根底.特别是进入新世纪以来,金川公司不断加大对矿山的投入,使用新的探矿,找矿办法,在自有矿山的深部和外围进一步勘探,仅2001年就在龙首矿深部发现一出中型矿体,含镍,铜金属量别离到达6万多吨和3万多吨。 截止2003年,全国精镍的年出产才能约6.8万吨,其间:金川公司6万吨,成都电冶厂5000吨,重庆冶炼厂1500吨,新疆阜康冶炼厂2000吨。但实践产值达不到,只要6.2万吨(不包含镍盐含镍量),质料缺乏是限制达产的最首要要素。值得一提的是我国最大的镍出产厂商金川公司近几年通过技能改造和资源操控战略的施行,出产才能大为进步.依据该公司的开展方针,到2006年其产值将超越10万吨。

铁质活性滤膜接触氧化除铁原理

2019-01-21 18:04:24

一、前言 在我国地下水除铁技术中,广泛采用曝气接触氧化的除铁方法。曝气接触氧气除铁法,是使曝气地下水中的亚铁离子不经氧化与溶解氧一同进入接触滤层,在滤层的接触催化作用下完成亚铁离子的氧化和截留。天然锰砂除铁是在我国已得到广泛应用的一种接触氧化除铁法;人造锈砂和自然形成的锈砂除铁法,是七十年代在我国实验成功的另一种接触氧化除铁法。 过去,笔者曾对天然锰砂除铁法进行过系统的实验和研究。近些年来,国内外又对以石英砂为载体的人造锈砂和自然形成的锈砂的除铁过程进行了研究。这些研究成果,发展了接触氧化除铁工艺,提高了接触氧化除铁工艺的效能,促进了接触氧化除铁工艺的推广和应用。 人们对于接触氧化除铁机理的认识有一个发展过程。本世纪三十年代开始将软锰矿砂用作地下水的接触氧化除铁滤料以来,人们一直把二氧化锰当作催化剂,这被称作经典理论。早在六十年代初,笔者在研究天然锰砂除铁过程中就发现了“活性滤膜”的接触催化作用,后又经多次模型及生产试验检验证实,终于于1974年正式提出了活性滤膜接触氧化除铁原理,这使认识又深化了一步。近几年,笔者对铁质活性滤膜接触氧化除铁的基本特征又进行了研究。实验表明,新滤料初期皆有一定的除铁能力,但并不持久经过一段时间除铁能力便开始衰竭。滤后水的含铁浓度相应升高;随着运行时间的增长,滤料的除铁能力又逐渐提高,滤后水水质变好,最终滤料具有了稳定的除铁能力。最终具有稳定的除铁能力。最终具有稳定除铁能力的滤料,称为“成熟”的滤料;由新滤料到“成熟”滤料的转化过程,称为滤料的“成熟”过程。事实上,滤料的成熟过程,正是滤料表面铁质活性滤膜的形成和积累的过程。本文将对新滤料的除铁作用、活性滤膜的形成及积累过程,以及成熟滤层中活性滤膜的除铁特征等方面的问题进行探讨。  二、新滤料的除铁作用 用未经曝气的无氧含铁地下水经新滤料层过滤,发现滤层最初都有一定的去除亚铁离子的能力。图1为新天然锰砂去除水中亚铁离子的情况。新石英砂或无烟煤去除亚铁离子的情况,与天然锰砂类似。新滤料能在无氧条件下除铁,表明新滤料对水中的亚铁离子有吸附作用。 新滤料对水中亚铁离子的吸附能力,与滤料的品种有关,表1为几种新滤料在无氧条件下对水中亚铁离子的动态吸附容量。由表1可见,马山锰砂的吸附容量最大,石英矿砂最小。              表1  新滤料对亚铁离子的动态吸附容量滤料品种名称滤料粒径mm水的含铁浓度  mg/l水的pH水温(℃)吸附容量mg/l马山锰砂1.0~1.2514~186.165000锦西锰砂1.0~1.2514~186.161000阳泉无烟煤1.0~1.2514~186.16250黑龙江烟煤1.0~1.2514~186.16250松花江河砂1.0~1.2514~186.16250北戴河石英矿砂1.0~1.2514~186.1624 实验表明,吸附于新滤料表面的亚铁离子,在有溶解氧的情况下,能被氧化为高铁。但是,在新滤料表面生成的高铁氢氧化物,与在成熟滤料表面生成的具有强烈催化活性的铁质滤膜,在性质上有很大不同。首先,在新滤料表面生成的高铁氢氧化物具有非常密实的构造。新滤料层与成熟滤层的对比试验表明,在滤层都截留相同的铁量时(某次试验为2g),成熟滤层的水力阻抗竟比新滤层高40倍。所以,在新滤料表面生成的高铁氢氧化物比成熟滤料表面的活性滤膜要密实得多。其次,在新滤料表面生成的高铁氢氧化物并不具有强烈的接触催化活性。图2为三种新滤料成熟过程的对比试验。由图可见,由于新滤料具有一定的吸附能力,所以过滤初期都有一定的除铁效果,但当它们的吸附容量逐步耗尽,滤后水的含铁浓度便不断升高。随着过滤除铁过程的进行,在滤料表面开始生成具有接触催化活性的铁质滤膜,由于活性滤膜物质在滤料表面的积累,滤料渐趋成熟。滤层出水含铁浓度又开始降低,从而具有峰状特征。试验发现,虽然这三种新滤料的吸附容量有很大差别,但它们的成熟期却基本相同。如果新滤料表面生成的高铁氢氧化物具有接触催化活性。那么吸附容量大的新滤料截留下来的铁质较多,应该能较快地成熟,即具有较短的成熟期,但实际情况并非如此。所以,新滤料表面生成的高铁氢氧化物不具有强烈的接触催化活性,它与成熟滤料表面具有强烈接触催化活性的铁质滤膜物质的性质是不同的。 三、滤料的成熟过程 含铁地下水曝气充氧后,通过新滤料层过滤,由于新滤料具有吸附能力,所以具有一定的除铁能力。与此同时,滤料表面开始成生具有催化活性的铁质滤膜。所以,新滤料在成熟过程中,同时具有吸附除铁和接触氧化除铁两种作用。新滤料过滤初期,接触氧化除铁作用很小,所以以吸附除铁为主。随着滤料吸附能力的消耗,除铁能力降低,滤层出水含铁浓度逐渐增大。另一方面,在滤料表面生成的活性滤膜的除铁能力则不断增大,当活性滤膜除铁能力的增大速率超过了吸附除铁能力的减小速率时,滤层出水含铁浓度便开始出现下降趋势。由于活性滤膜的接触氧化除铁过程是一个自动催化过程,所以滤膜除铁能力的增大具有加速的特征,使滤层出水含铁浓度的变化过程线在峰值后略具上凸的形状,直至出水浓度降至要求值。之后,滤层出水的含铁浓度便稳定在很低的数值,它表明滤料已趋于成熟。这样,可以把滤料的成熟过程分为三个阶段,第一阶段为新滤料的吸附除铁作用占优势,称为吸附段;第二阶段为铁质活性滤膜的催化除铁作用占优势,并具有加速进行的特征,称为加速催化段;第三阶段表现为铁质活性滤膜的稳定催化除铁作用,称为稳定催化段,如图3。稳定催化除铁过程连续进行相当时间,滤料最终完全成熟。完全成熟的滤料表面被铁质活性滤膜覆盖而发黄,故常称为锈砂。滤料的吸附容量不同,它们的成熟过程也有差别;吸附容量小的滤料,吸附阶段比较短,且滤层出水浓度变化过程线的峰值也较大;吸附容量大的滤料,吸附阶段比较长,出水峰值也较小。当滤料的吸附容量较大,而地下水的含铁浓度又较小时,出水浓度峰值有可能降至水质标准要求值以下,这时滤池一投产便能供应合格的水质。 我们在图2所示条件下,还进行了北戴河石英矿砂、松花江河砂、黑龙江烟煤等滤料的成熟试验,试验结果与图2基本一致。上述六种滤料的吸附段和加速催化段的总长度,大致为4~5d,此时滤层出水含铁浓度都能降至0.3mg/l以下,但出水水质尚不够稳定,7d后则皆能稳定地除铁。 综上所述,滤料品种不同,只对除铁初期的出水水质有影响,基本上不影响滤料的成熟期和成熟滤料的除铁性能,即对成熟滤料而言,不同品种的滤料作为铁质活性滤膜的载体,其作用是没有区别的,这就为在接触氧化除铁工艺中采用石英砂、河砂、无烟煤等廉价滤料提供了理论依据,经济意义是很大的。但是,吸附容量大的滤料,如天然锰砂,在除铁初期出水水质较好,这在实用上是有重要意义的。石英砂、无烟煤等吸附容量小的滤料,投产初期出水水质差,需采取改善水质和加速滤料成熟的措施,是其缺点。 有人用滤料表面铁质的附着指数(附着于100mg滤料表面的铁质的mg数)作为滤料成熟的指标。前已述及,由于不同滤料具有不同的吸附容量,而在滤料表面吸附氧化的铁质并不具有催化活性。吸附容量大的滤料,在除铁初期就使附着指数达到相当数值,但这时滤料并不具有相应的“成熟”程度。所以,用附着指数作为滤料成熟的指标,对吸附容量不同的滤料不是普遍适用的。 人们习惯于以除铁滤层出水含铁浓度降至饮用水水质标准(0.3mg/l)以下作为滤料成熟的标志。由于滤层都是在一定的条件下进行工作的,这就使“成熟”与具体的工况有关,而不具有统一的标准,难于相互比较,所以也是不完善的。 我们认为,以单位滤料表面积所具有的接触氧化反应速度常数或滤层的接触催化活性系数作为滤料成熟的指标比较合理。 四、铁质活性滤膜的化学组成及其催化的基本特征 在去除亚铁离子的过程中,滤料表面上逐渐形成了铁质活性滤膜。在一个过滤周期里,如果滤膜在滤料表面上的附着量大于反冲洗中的剥落里,滤料表面上的铁质便增多,这使滤料颗粒逐渐变大。对含铁浓度较高的地下水除铁水厂,能观察到明显的滤层增厚和造粒现象,有的水厂,滤料使用一年,部分滤料的粒径可由0.6~2.0mm增大到5~6mm,体积增加几倍乃至几十倍,成为锈球。这种锈球湿时为棕黄色,表面上附着一层疏松的铁质氢氧化物(滤膜)。洗去滤膜,锈球表面光滑且有一定强度。剖开锈球,内部棕黑相间,为年轮状,比较密实。锈球内多有一个由细滤料构成的小的核心,但也有没有核心全由铁质组成的。 将由佳木斯水厂取来的锈球焙烧后,测得其中含Fe2O388%,SiO28%,此外还含有Ca、Mg、Mn等多种元素。锈球外部疏松的铁质滤膜的化学成分,与锈球相同。根据锈球形成的过程,可以断定内部那样密实的物质是由滤料表面这种疏松的铁质滤膜长期积累逐渐形成的。 我们还对新鲜滤膜和锈球内部物质进行了差热和热失重分析,测出它们的化学组成如表2。新鲜滤膜的试样为生产滤池反冲洗水沉淀下来的铁泥(测定前已存放一天)。由表2可见,铁质滤膜与锈球内部物质虽然化学成份相同,但化学组成却有不少差异。通过比较可以看出,由滤料表面铁质滤膜积累成锈球内部物质的过程,是结晶水逐渐脱离的过程,外观上则由疏松到密实。 为了了解滤膜与锈球内部物质催化活性的差别。进行了下面的对比试验。一支滤管装入附有新鲜滤膜的锈球作滤料,另一支滤管装入洗去滤膜的锈球作滤料,使它们在相同的条件下进行除铁试验。 表2  铁质活性滤膜的化学组成试样名称化学组成新鲜滤膜Fe2O3·5H2O或Fe(OH)3·H2O锈球内部物质Fe2O3·H2O或FeOOH新鲜滤膜Fe2O3·6H2O或Fe(OH)3·2H2O图4为试验结果。由图可见,有新鲜滤膜的锈球,降铁效果良好。而洗去滤膜的锈球则除铁效果很差,并且具有与新滤料相同的特征,它表明只有锈球表面疏松的滤膜物质才具有催化活性,而锈球内总密实的物质则没有催化活性。滤料表面这种具有催化活性的疏松的铁质滤膜,称为铁质活性滤膜。 地下水含铁浓度14mg/l;溶解氧浓度7~8mg/l;滤速10m/h。 实验表明,新鲜的铁质活性滤膜的催化活性最强,随着时间的延长,铁质滤膜逐渐老化,其催化活性也逐渐减退。实验是用成熟滤料进行的,实验结果如图5。由图可见,停运几天以后,成熟滤料的除铁效能已大大降低,表明铁质滤膜会随时间逐渐老化而丧失其催化活性。锈球内部的密实物质,正是由老化的铁质滤膜长期积累而成。所以,滤料表面铁质活性滤膜的催化作用只有在连续的除铁过程中才能实现。滤料表面的铁质活性滤膜在过滤除铁过程中得到新的补充,从而在原来的滤膜上不断覆盖上新的滤膜,这使滤膜始终保持新鲜而具有很高的催化活性。旧的滤膜则逐渐老化丧失催化活性,久之便成为滤料表面密实的附着物。滤料表面的铁质活性滤膜的不断更新,是锈砂接触氧化除铁过程正常进行的必要条件。已经明了,铁质活性滤膜接触氧化除铁的过程,首先是滤膜离子交换吸附水中的亚铁离子,可表示如下: Fe(OH)3·2H2O+Fe2+= Fe(OH)2(OFe) ·2H2O++H+ 当水中有溶解氧时,被吸附的亚铁离子在活性滤膜的催化下迅速地水解和氧化,从而使催化剂得到再生,反应生成物又作为催化剂参与反应,所以铁质活性滤膜接触氧化除铁是一个自动催化过程。 Fe(OH)2(Ofe) ·2H2O+1/4·O2+9/2 ·H2O= 2Fe(OH)3·2H2O+ H+ 收集反冲洗水中的铁泥进行分析,发现其中基本上不含亚铁化合物。它表明被活性滤膜吸附的亚铁离子能被迅速地氧化为高铁。 按照铁质活性滤膜接触氧化除铁是一个自动催化过程的概念,在过滤除铁过程中被截留于滤层中的铁质由于具有催化作用,应能使滤层的接触氧化除铁能力得到提高。情况确实如此。图6为除铁过程中,水的含铁浓度沿滤层深度方向分布的变化情况。其中曲线1为滤层反冲洗后1小时的浓度分布情况,曲线2为反冲洗后36小时的情况。由图可见,曲线2较曲线1的位置上移,表明随着铁质在滤层中的积累,滤层的接触氧化除铁能力有明显的提高,它证实了铁质活性滤膜接触氧化除铁是自动催化过程的结论。 五、成熟滤层的接触氧化除铁速率 水中的亚铁离子在成熟滤层中被去除,经历以下诸步骤:亚铁离子由水中向滤料表面扩散;亚铁离子被滤料表面的活性滤膜吸附;被吸附的亚铁离子水解并被氧化,生成高铁氢氧化物——铁质活性滤膜。上述诸步骤中,反应速度最慢者将成为除铁速率的控制步骤。实验表明,亚铁离子向滤料表面扩散可能是除铁速率的控制因素。实验还表明,滤料上活性滤膜只以外表面吸附水中的亚铁离子。根据菲克定律,亚铁离子向滤膜表面扩散时,扩散速率与水中和滤膜表面的亚铁离子浓度差(C-C’)成正比,与滤膜表面的边界层厚度σ成反比。如果将扩散速率作为除铁速率,并认为C’很小可忽略不计,则 -dc/dt=DS/D(C-C’)≈DS/σ·C        (1) 式中 t——时间,t=ml/u; l——滤层的厚度; m——滤层孔隙度; u——滤速; D——扩散系数; S——单位体积滤层中滤膜的外表面积,S=6a(1-m)/d; d——滤料粒径; a——滤料的形状系数; σ——边界层厚度; C’——滤膜表面上的亚铁离子浓度。 将上列各参数代入式(1)得 -dc/dι=βC               (2) β=6Dam(1-m)/ σdu           (3) 式中β称为滤层的接触催化活性系数。 当水在滤层中呈层流状态流动时,可以认为边界层厚度为一定值(σ=const),由式(3)可知,这时滤层的催化活性系数与滤速的一次方成反比例关系。 当水在滤层中呈紊流状态流动时可近似地认为边界层厚度与滤速成反比例关系, σ=a/u                 (4) 式中 a为比例系数。将式(4)代入式(3),得 β=6Dam(1-m)/ad             (5) 即紊流时,除铁效果与滤速无关,这可以看作与滤速的零次方成反比。 当水在滤层中低于层流和紊流之间的过渡区时,可以认为滤层的催化活性系数与滤速的p次方成反比, β=6Dam(1-m)/bdup            (6) 式中 b为比例系数;而0 由雷诺数可判别水在滤层中的流态。雷诺数按下式计算 Re=pdu/6μa(1-m)             (7) 则Re上述滤层除铁速率与滤料粒径以及滤速的关系,笔者早在天然锰砂除铁的研究中已经通过实验得到。现在,我们又从理论上作出了论证。 设亚铁离子在滤膜上的反应速率(吸附、氧化、水解)与表面上的亚铁离子浓度成正比,所以滤膜表面上的除铁速率为 -Dc/dt=KSC’                (8) 式中 K——单位面积滤膜上的反应速度常数。 当除铁过程稳定时,表面反应速率与扩散速率相等,即 KSC’=DS/σ(C-C’)              (9) 从而得  C’=C/(1+Kσ/D)            (10) 将式(10)代入式(8),得 -Dc/dl=[K/(1+Kσ/D)]·[6am(1-m)/du·C]   (11) 比较式(11)和式(2),可知 β=[K/(1+Kσ/D)]·[6am(1-m)/du]       (12) 由上式可知,β随K的增大而增大,所以两者都可用作判断滤料成熟程度的指标。 六、几点结论 1.通过对天然锰砂、石英砂、河砂、无烟煤等多种滤料的实验,发现新滤料对水中铁离子有吸附作用,吸附容量因滤料种类而异,但吸附于新滤料表面的铁质氧化后并不具有催化性能。新滤料的吸附容量大,过滤初期除铁水质较好。 2.实验表明,对亚铁离子氧化起催化作用的是除铁过程在滤料表面上自然形成的铁质活性滤膜,其形成速度一般与滤料种类无关。铁质活性滤膜的化学组成为Fe(OH)3·2H2O。实验证实,铁质活性滤膜接触氧化除铁过程是:水中亚铁离子先被滤膜吸附,然后被氧化和水解,生成新的活性滤膜,并作为新的催化剂参与反应,所以活性滤膜除铁是一个自动催化反应过程。实验表明,除铁过程中截留于滤层中的铁质,能使滤层的接触催化能力增大。 3.实验表明,新滤料的“成熟”过程,就是铁质活性滤膜在滤料表面逐步积累的过程。成熟滤料的除铁过程,实质上就是滤料表面铁质活性滤膜的除铁过程。对成熟滤料而言,不同品种的滤料作为铁质活性滤膜的载体,其作用基本上是没有区别的。滤料的成熟过程可分为吸附段、加速催化段和稳定催化段等三个区段。建议以单位滤料表面积上的反应速度常数K或滤层的接触催化活性系数β作为判别滤料成熟的指标。 4.实验研究表明,新鲜的铁质活性滤膜的催化活性最强,但随时间滤膜逐渐脱水老化,其催化活性也逐渐减弱,所以,滤料表面活性滤膜的催化作用只有在连续的过滤除铁过程中才能实现。 5.实验证实,滤层的接触氧化除铁速率由亚铁离子向滤膜表面的扩散速度控制。从扩散定律出发,理论推导出滤层除铁速率公式。

铝型材氧化的一般原理

2018-12-27 09:37:01

氧化铝材的一般原理     以铝或铝合金制品为阳极置于电解质溶液中, 利用电解作用, 使其表面形成氧化铝薄膜的过程。称为铝及铝合金的阳极氧化处理。铝阳极氧化的原理实质上就是水电解的原理。当电流通过时, 将发生以下的反应:  在阴极上, 按下列反应放出 H2:2H + +2e →   在阳极上, 4OH – 4e→ 2H2O + O2, 析出的氧不仅是分子态的氧 (O2), 还包括原子氧  以及离子氧(O-2), 通常在反应中以分子氧表示。作为阳极的铝被其上析出的氧所氧化, 形成无水的12O3膜:   2A12O3 + 3351J 应指出, 生成的氧并不是全部与铝作用。一部分以气态的形式析出。阳极氧化的种类阳极氧化早就在工业上得到广泛应用。冠以不同名称的方法繁多, 归纳起来有以下几种分类方 法:   按电流型式分有:直流电阳极氧化;交流电阳极氧化;以及可缩短达到要求厚度的生产时间,膜层既厚又均匀致密且抗蚀性显着提高的脉冲电流阳极氧化。按电解液分有:硫酸、草酸、铬酸、混合酸和以磺基有机酸为主溶液的自然着色阳极氧化。按膜层性质分有:普通膜、硬质膜(厚膜)、瓷质膜、光亮修饰层、半导体作用的阻挡层等阳极氧化。直流电硫酸阳极氧化法的应用最为普遍,这是因为它具有适用于铝及大部分铝合金的阳极氧化处理;膜层较厚、硬而耐磨、封孔后可获得更好的抗蚀性;膜层无色透明、吸附能力强极易着色;处理电压较低,耗电少;处理过程不必改变电压周期;有利于连续生产和实践操作自动化;硫酸对人身的危害较铬酸小, 货源广, 价格低等优点。近十年来我国的建筑业逐步使用铝门窗及其它装饰铝材, 它们的表面处理生产线都是采用这种方法。   阳极氧化膜结构、性质与应用   1) 阳极氧化膜的结构 阳极氧化膜由两层组成, 多孔的厚的外层是在具有介电性质的致密的内层上成长起来的后者称为阻挡层(亦称活性层)。   (1) 阻挡层 阻挡层是由无水的A12O3所组成, 薄而致密, 具有高的硬度和阻止电流通过的作用。   (2) 多孔的外层 氧化膜多孔的外层主要是由非晶型的A12O3及少量的r-A12O3。H2O还含有电解液的阴离子。氧化膜的絶大部分优良特性,如抗蚀、耐磨、吸附、绝缘等性能都是由多孔外层的厚度及孔隙率所决定的,然而这两者却与阳极氧化条件密切相关。因此可通过改变阳极化条件来获得满足不同使用要求的膜层。膜厚是阳极氧化制品一个很主要的性能指针,其值的大小直接影响着膜层耐蚀、耐磨、绝缘及化学着色能力。在常规的阳极氧化过程中, 膜层随着时间的增加而增厚。在逹到最大厚度之后则随着处理时间的延长而逐渐变薄, 有些合金如A1-Mg、A1-Mg-Zn合金表现得特别明显。因此氧化的时间一般控制在逹最大膜厚时间之内。   2) 阳极氧化膜的性质与应用   阳极氧化膜具有较高的硬度和耐磨性、极强的附着能力、较强的吸附能力、良好的抗蚀性和电绝缘性及高的热绝缘性。由于这些特异的性能使之在各方面都获得了广泛的应用。以铝或铝合金制品为阳极置于电解质溶液中, 利用电解作用, 使其表面形成氧化铝薄膜的过程称为铝及铝合金的阳极氧化处理。铝阳极氧化的原理实质上就是水电解的原理。当电流通过时, 将发生以下的反应:在阴极上按下列反应放出H2:2H ++2e → H2 在阳极上, 4OH – 4e→ 2H2O + O2,析出的氧不仅是分子态的氧还包括原子氧(O), 以及离子氧(O-2), 通常在反应中以分子氧表示。作为阳极的铝被其上析出的氧所氧化, 形成无水的A12O3膜:   4A1 + 3O2 = 2A12O3 + 3351J 应指出, 生成的氧并不是全部与铝作用, 一部分以气态的形式析出。   阳极氧化的种类阳极氧化早就在工业上得到广泛应用。冠以不同名称的方法繁多, 归纳起来有以下几种分类方法:   按电流型式分有:直流电阳极氧化;交流电阳极氧化;以及可缩短达到要求厚度的生产时间,膜层既厚又均匀致密, 且抗蚀性显着提高的脉冲电流阳极氧化。   按电解液分有:硫酸、草酸、铬酸、混合酸和以磺基有机酸为主溶液的自然着色阳极氧化。   按膜层性质分有:普通膜、硬质膜(厚膜)、瓷质膜、光亮修饰层、半导体作用的阻挡层等阳极氧化。   直流电硫酸阳极氧化法的应用最为普遍,这是因为它具有适用于铝及大部分铝合金的阳极氧化处理;膜层较厚、硬而耐磨、封孔后可获得更好的抗蚀性;膜层无色透明、吸附能力强极易着色;处理电压较低,耗电少;处理过程不必改变电压周期,有利于连续生产和实践操作自动化;硫酸对人身的危害较铬酸小, 货源广, 价格低等优点。  删除

铝用磷生铁脱硫方法

2019-02-28 10:19:46

项目研讨磷生铁脱硫机理,研讨适用于阳极浇注用磷生铁脱硫的脱硫剂和脱硫工艺技术条件,以到达既可防止脱硫剂对炉衬的较大危害,又可确保取得较好的脱硫作用的意图。本项目首要经过对磷生铁增加纯铁粉、CaO、对脱硫的影响研讨,开发创新出感应炉熔炼磷生铁的脱硫剂及脱硫工艺,使高硫回炉铁得到循环运用。研讨结果表明:  1、铝用磷生铁脱硫,可运用脱硫;  2、硫的脱除率达60%以上,磷生铁中硫含量可由0。25%下降至0。15%以下;  3、可削减磷生铁中硫含量,改进磷生铁的活动功能和浇注作用,降低了阳极铁碳压降,节省电耗;  4、可减小脱硫剂对感应炉内衬的损伤,较好地将脱硅和维护内衬结合起来。  该效果已在本公司得到使用,年节省原材料费用达17万元,降低了厂商生产成本,产生了杰出的经济效益。

硫铁矿烧渣脱硫

2019-01-30 10:26:27

一、硫的存在形式 硫铁矿烧渣中的硫主要有:未完全烧结的硫铁矿、硫酸盐、和部分可溶性硫化物。由于时间和经费的原因,该部分内容未进行深入研究。因此,只能根据指标判断。 二、机械脱S 由下表可以看出,原料粒度较细,-200目含量为57.8%,铁主要集中在-0.1~+0.019mm的粒级中,并且铁的品位较高。S则主要集中在粗粒级中,而+0.15mm级别中铁的品位较低,且+0.15mm级别仅占烧渣的3.9%。因此,将硫铁矿烧渣(干矿)用100目过筛,筛下产物S的含量将大大降低,筛上级别可考虑回收硫。 表  烧渣筛析分析结果粒级产率(%)品位(%)FeSPbZnSiO2+0.282.3826.202.660.751.2130.34-0.28+0.151.5628.121.080.361.1638.73-0.15+0.14.7347.480.460.230.8121.68-0.1+0.07418.4257.590.400.220.5911.43-0.074+0.03737.6460.220.200.180.448.29-0.037+0.01924.5053.360.220.360.5614.19-0.019+0.0104.9942.040.410.790.7923.00-0.010+0.0050.937.890.560.941.0125.50-0.0054.849.340.200.420.268.35 硫铁矿烧渣焙烧过程中所产生的S、SO2、SO3等吸附在烧渣孔隙中,与烧渣中的活性元索高温下生成盐类。这类游离态硫、SO42-和可溶性SO42-形态存在的硫均溶于水,选别时可用溶解和冲水法将此部分硫除去。经过磨矿后,会使矿物达到较高的单体解离。在选别前搅拌一定的时间,可使S的脱除率提高50%~60%,烧渣中S的含量降为0.35%左右。 烧渣在流程中经过螺旋溜槽的擦洗,会将烧渣中不溶于水的FeS和FeS2以及部分可溶性的硫酸盐脱除,自然降低烧渣中的硫和硅的含量。此时,烧渣中S的含量约为0.2%左右。 其他脱硫方法,由于时间和经费的原因,无法进行,而且硫的含量已经达到课题的要求,所以也没有进一步深入研究的必要。

工业脱硫应用石灰石制粉与双碱法脱硫

2019-02-28 11:46:07

因为近几年国家对环保要求的严厉,脱硫工程几乎是一切电厂建造的重要工程之一,现在世界上上烟气脱硫工艺达数百种之多。在这些脱硫工艺中,有的尚处于实验研讨阶段,有的技能较为老练,现已到达工业使用水平,今日,就拿最常见的两种脱硫办法做一下简略的比照和区别-石灰石制粉脱硫与双碱法脱硫。 石灰石制粉的原理是:将石灰石用拂晓重工超细磨粉机进行破坏加工,然后将石灰石粉加水(或石灰石磨制为石灰石浆)制成浆液作为吸收剂泵入吸收塔与烟气充沛触摸混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反响生成硫酸钙,硫酸钙到达必定饱和度后,结晶构成二水石膏。经洗刷脱出二氧化硫的烟气经加热(或不加热)由烟囱排入大气。 双碱法脱硫是指选用NaOH和石灰(氢氧化钙)两种碱性物质做脱硫剂的脱硫办法,其原理是:双碱法脱硫一般只要一个循环水池,NaOH、石灰与除尘脱硫进程中捕集下来的烟灰同在一个循环池内混合,在铲除循环水池内的灰渣时烟灰、反响生成物钙、硫酸钙及石灰渣和未彻底反响的石灰一同被铲除,清出的灰渣是一种混合物不易被使用而构成废渣。首要工艺进程是:清水池一次性参加溶剂制成脱硫液(循环水),用泵打入脱硫除尘器进行脱硫。3种生成物均溶于水。在脱硫进程中,烟气搀杂的烟道灰一同被循环水湿润而捕集进入循环水,从脱硫除尘器排出的循环水变为灰水(稀灰浆)。一同流入沉积池,烟道灰经沉积定时铲除,收回使用,如制内燃砖等。上清液溢流进入反响池与投加的石灰进行反响,置换出的溶解在循环水中,一同生成难溶解的钙、硫酸钙和碳酸钙等,可通过沉积铲除;能够收回,是制水泥的杰出质料。 石灰石制粉脱硫与双碱法脱硫区别是:石灰石粉脱硫法是将石灰石直接用拂晓重工超细磨粉机进行破坏,然后加水进行拌和成为石灰浆。而双碱法脱硫是将石灰石先加水使其与水反响变成氢氧化钙也就是使其成为碱性,然后和一同在反响池中使用其彼此的作用与其烟气中的有害气体反响。然后除掉有害气体维护大气环境。其两种办法的最大区别是石灰石粉脱硫简略快捷,出资少,作用好。

铝及其合金电镀硬铬工艺原理

2019-03-11 11:09:41

铝是一种化学活性很高的生动金属,它的电极电势很低(Φ=-1.67V),具有很强的亲氧性。一起又是一种金属,在空气中极易发作钝化,给铝合金电镀带来了困难。铸造铝合金因有砂眼、起泡等缺点,在电镀中简单停留残液和气体,会引起氢脆和镀层掉落等现象。     铝及其合金电镀的关键是镀层与基体金属的结合力问题;而影响结合力的关键是预镀是否合理。现在常用的工艺有两次浸锌法、化学镀镍 磷、浸锌后镀镍、浸锌后镀锌、磷酸阳极氧化法和浸蚀法等。这些工艺的进程大致附近,都是先去除表面的氧化膜,再经过不同办法取得安稳的中间层,最终进行电镀。安稳的中间层能够防止天然氧化膜的再生,在镀前保护好裸铝表面;一起构成具有超微观、均匀的凹凸结构以及较大的孔体积和较小的电阻;确保在电镀时堆积金属快,晶核构成多,附着好;并且能够防止高硬度的铬层与较软的铝基体直接触摸而或许引起开裂和洼陷。

难处理金矿石预氧化原理

2019-02-11 14:05:38

砷黄铁矿、黄铁矿等硫化物对金粒的包裹是化浸出作用欠安、金回收率低的首要原因。而某些无机自养微生物在浸矿溶液中,能以CO2为首要碳源、硫化物为首要动力进行成长。富金区的硫化物因为晶格摆放不完善(如变位、含杂质)是细菌腐蚀敏感区,总是被优先浸蚀。跟着细菌生理活动的进行,硫化层终究大部分不能彻底包覆金。通过细菌氧化前处理的金矿石,用惯例办法浸出,金浸出率可大大提高。 细菌氧化矿藏现在以为有直接作用和直接作用两种方法。如细菌氧化黄铁矿,直接作用时,细菌吸附到矿藏表面使之氧化;直接作用时,细菌将Fe2+氧化成Fe3+,然后Fe3+再氧化黄铁矿。整个氧化过程中,直接作用和直接作往往一起存在。 细菌直接作作反应为:也有一些观念以为不存在直接作用机理,理由是现在没有发现相应的酶系统,由此提出更精确的作作机理应该为触摸机理及非触摸机理,即微生物的作用仅为再生直接浸矿因子如三价铁离子和在触摸界面浓缩直接浸矿因子。某种意义上说,细菌对矿石的氧化机理研讨没有有普遍性定论。国外有研讨标明:异养菌也具有较好的预氧化作用,其间一部分腐蚀才能即为自于其代谢产品,如核酸,基酸等生物物质。

氧化铝材的一般原理

2018-12-27 09:37:01

以铝或铝合金制品为阳极置于电解质溶液中,利用电解作用,使其表面形成氧化铝薄膜的过程,称为铝及铝合金的阳极氧化处理。铝阳极氧化的原理实质上就是水电解的原理。当电流通过时,将发生以下的反应:   在阴极上,按下列反应放出 H2:2H + +2e → H2  在阳极上,4OH – 4e→ 2H2O + O2,析出的氧不仅是分子态的氧 (O2),还包括原子氧(O),以及离子氧(O-2),通常在反应中以分子氧表示。作为阳极的铝被其上析出的氧所氧化,形成无水的12O3膜:4A1 + 3O2 = 2A12O3 + 3351J 应指出,生成的氧并不是全部与铝作用。   一部分以气态的形式析出。阳极氧化的种类阳极氧化早就在工业上得到广泛应用。冠以不同名称的方法繁多,归纳起来有以下几种分类方法:   按电流型式分有:直流电阳极氧化;交流电阳极氧化;以及可缩短达到要求厚度的生产时间,膜层既厚又均匀致密,且抗蚀性显着提高的脉冲电流阳极氧化。按电解液分有:硫酸、草酸、铬酸、混合酸和以磺基有机酸为主溶液的自然着色阳极氧化。按膜层性质分有:普通膜、硬质膜(厚膜)、瓷质膜、光亮修饰层、半导体作用的阻挡层等阳极氧化。直流电硫酸阳极氧化法的应用最为普遍,这是因为它具有适用于铝及大部分铝合金的阳极氧化处理;膜层较厚、硬而耐磨、封孔后可获得更好的抗蚀性;膜层无色透明、吸附能力强极易着色;处理电压较低,耗电少;处理过程不必改变电压周期,有利于连续生产和实践操作自动化;硫酸对人身的危害较铬酸小,货源广,价格低等优点。近十年来,我国的建筑业逐步使用铝门窗及其它装饰铝材,它们的表面处理生产线都是采用这种方法。  阳极氧化膜结构、性质与应用  1) 阳极氧化膜的结构 阳极氧化膜由两层组成,多孔的厚的外层是在具有介电性质的致密的内层上成长起来的,后者称为阻挡层(亦称活性层)。   (1) 阻挡层 阻挡层是由无水的A12O3所组成,薄而致密,具有高的硬度和阻止电流通过的作用。    (2) 多孔的外层 氧化膜多孔的外层主要是由非晶型的A12O3及少量的r-A12O3.H2O还含有电解液的阴离子。氧化膜的絶大部分优良特性,如抗蚀、耐磨、吸附、绝缘等性能都是由多孔外层的厚度及孔隙率所决定的,然而这两者却与阳极氧化条件密切相关,   因此可通过改变阳极化条件来获得满足不同使用要求的膜层。膜厚是阳极氧化制品一个很主要的性能指针,其值的大小直接影响着膜层耐蚀、耐磨、绝缘及化学着色能力。在常规的阳极氧化过程中,膜层随着时间的增加而增厚。在逹到最大厚度之后,则随着处理时间的延长而逐渐变薄,有些合金如A1-Mg、A1-Mg-Zn合金表现得特别明显。因此,氧化的时间一般控制在逹最大膜厚时间之内。  2) 阳极氧化膜的性质与应用  阳极氧化膜具有较高的硬度和耐磨性、极强的附着能力、较强的吸附能力、良好的抗蚀性和电绝缘性及高的热绝缘性。由于这些特异的性能,使之在各方面都获得了广泛的应用。以铝或铝合金制品为阳极置于电解质溶液中,利用电解作用,使其表面形成氧化铝薄膜的过程,称为铝及铝合金的阳极氧化处理。铝阳极氧化的原理实质上就是水电解的原理。当电流通过时,将发生以下的反应:在阴极上,按下列反应放出H2:2H ++2e → H2 在阳极上,4OH – 4e→ 2H2O + O2,析出的氧不仅是分子态的氧 (O2),还包括原子氧(O),以及离子氧(O-2),通常在反应中以分子氧表示。作为阳极的铝被其上析出的氧所氧化,形成无水的A12O3膜:   4A1 + 3O2 = 2A12O3 + 3351J 应指出,生成的氧并不是全部与铝作用,一部分以气态的形式析出。  阳极氧化的种类阳极氧化早就在工业上得到广泛应用。冠以不同名称的方法繁多,归纳起来有以下几种分类方法:   按电流型式分有:直流电阳极氧化;交流电阳极氧化;以及可缩短达到要求厚度的生产时间,膜层既厚又均匀致密,   且抗蚀性显着提高的脉冲电流阳极氧化。  按电解液分有:硫酸、草酸、铬酸、混合酸和以磺基有机酸为主溶液的自然着色阳极氧化。  按膜层性质分有:普通膜、硬质膜(厚膜)、瓷质膜、光亮修饰层、半导体作用的阻挡层等阳极氧化。  直流电硫酸阳极氧化法的应用最为 普遍,   这是0因为它具有适用于铝及大部分铝合金的阳极氧化处理;膜层较厚、硬而耐磨、封孔后可获得更好的抗蚀性;膜层无色透明、吸附能力强极易着色;处理电压较低,耗电少;处理过程不必改变电压周期,   有利于连续生产和实践操作自动化;硫酸对人身的危害较铬酸小,货源广,价格低等优点。近十年来,   我国的建筑业逐步使用铝门窗及其它装饰铝材,它们的表面处理生产线都是采用这种方法。删除

氧化生产线工作原理及特点

2018-12-29 09:42:53

氧化生产线工作原理是将金属或合金的制件作为阳极,采用电解的方法使其表面形成氧化物薄膜,金属氧化物薄膜改变了表面状态和性能。  氧化生产线特点:  1、槽液成本低,成分简单,操作维护简便,一般只需将硫酸稀释到一定的浓度即可,无需添加其他  化学药品,推荐使用化学纯硫酸,杂质较少的工业级硫酸也可采用,所以成本特别低。    2、氧化膜透明度高。纯铝的硫酸阳极氧化膜,是无色透明的,对于铝合金,随着合金元素Si、Fe、Cu、Mn的增加,透明度会下降。相对其他电解液,硫酸阳极氧化膜的颜色是最浅的。  3、着色性高,硫酸氧化膜透明,多孔层吸附性强,易于染色和着色,着色鲜艳不易退去,有很强的装饰作用。  应用领域:  有色金属或其合金都可进行阳极氧化处理,这种方法广泛用于机械零件,飞机汽车部件,精密仪器及无线电器材,日用品和建筑装饰等方面。

湿法脱硫的主要方法有那些?

2019-03-07 10:03:00

一、液吸收法         用(NH3·H2O)作吸收剂吸收废气中的SO2,因为易挥发,实际上此法是用与SO2反响后生成的铵水溶液作为SO2吸收的吸收剂,首要反响如下:(NH4)2SO3对SO2有很好的吸收才能,跟着吸收进行,NH4HSO3增多,吸收才能下降,这时需要在吸收液中参加NH3·H2O,即再生反响:然后经空气氧化、浓缩、结晶等进程即可收回硫酸铵[(NH4)2SO4]。如再增加石灰或石灰石乳浊液,经反响后得到石膏。反响生成的NH3用水吸收从头回来作为吸收剂。如将(NH4)2SO3溶液加热分化,再以H2S复原,即可得到单体硫。        二、石灰—石灰石法该办法是当今燃煤电厂运用最为广泛的烟气脱硫工艺。此法是用石灰石、生石灰(CaO)或消石灰[Ca(OH)2]的乳浊液为吸收剂来吸收烟气中的二氧化硫,并得到副产品石膏。该办法的首要长处是:①脱硫功率高,可达95%以上;②吸收剂利用率高;③对煤种的适应性好,特别适用于高硫煤;④吸收剂来历广,报价低,用量小;⑤体系老练,运转可靠性高。首要缺陷是有一定量的废水排出,且出资费用高,占地面积较大。石灰吸收SO2的首要反响如下:而烟气中的氧会将生成的钙和氢钙氧化为硫酸钙:反响如下:石膏可用作建筑材料,而半水钙是一种用处广泛的钙塑材料。       三、钠碱法本办法是先用、碳酸钠或亚的水溶液作为吸收剂,与SO2反响生成的Na2SO3持续吸收SO2。该办法具有对SO2吸收速度快、管道和设备不易阻塞的特色,运用比较广泛。选用NaOH或Na2CO3作吸收剂时,吸收反响为:正盐NaSO3有吸收SO2的才能,持续反响:亚又能与碱反响:该办法首要的副反响为:因为氧化耗费Na2SO3,而生成的Na2SO4又不吸收SO2,导致吸收才能下降。该办法生成的吸收液为Na2SO3和NaHSO3的混合液,按其在工业上首要的吸收办法又能够分为钠法、钠循环法和钠石膏法。将吸收液中的NaHSO3用NaOH中和得到Na2SO3。因为Na2SO3溶解度较NaHSO3低,它会从溶液中结晶出来,经别离可得副产物Na2SO3。分出结晶的母液作为吸收剂循环运用。该法称为压硫酸钠法。若将吸收液中的NaHSO3加热再生,可得到高浓度的SO2作为副产物。而得到的Na2SO3结晶经别离溶解后回来吸收体系循环运用。此法称为钠循环法。此法可处理很多烟气,吸收功率可达90%以上。首要的湿法脱硫办法还包含氧化镁法、碱性硫酸铝—石膏法、海水法等等,这儿不逐个累述。

锡矿石冶炼工艺流程与原理

2019-01-04 17:20:15

锡的矿石是锡石(SnO2),有形成矿脉的山锡和由其流出 堆积而成的砂锡。经过选矿可得含Sn40-70%的锡精矿。铅、锡均采用火法冶炼,铅精矿须经焙烧、烧结成为氧化物,锡精矿则直接使用,均经还原冶炼制得铅、锡。在炼铅时难以除掉硫,而在炼锡时渣报失大,尚未采用湿法冶炼。 1,预处理锡精矿除含SnO2外,还含有WO3,S,Cu,Pb,Fe等,因此,在冶炼前尽可能将这些杂质去掉。在800-1150K进行氧化焙烧,则可除掉硫、锑、砷,然后加10%Na2CO3进行苏打焙烧,使钨变为水溶性的Na2WO4浸出除去。此浸出液经净化后添加CaCI2沉淀析出的CaWO4。作为金属钨的原料,在有铜、铅存在时加NaCI,在870K氯化焙烧后除去。 2,矿石冶炼在冶炼时锡易进入渣中,因此,进行两步还原熔炼。矿石冶炼首先不考虑回收率,只是为了得到高品位粗锡(含锡90%左右)可电炉或反射炉,此时,渣的组成为10-15%Sn,13-20%Fe, 20-28%SiO2,5-7%AL2O3 2-8%CaO.3,富锡护渣熔炼对来自矿石冶炼的炉渣添加焦炭、石灰石进行还原冶炼,制得含锡在1%以下的渣和硬头(例如46%Sn,44%Fe)。该硬头也可返回矿石冶炼。如加焦炭、硅砂,进一步在电炉中还原冶炼(1800K)时,则铁构成Fe-Si合金,可以和粗锡(约90%Sn)分离。 4,粗锡的精炼粗锡在小型反射炉于“500-800K熔析,则大部分铁和一部分同、砷残留为硬头。熔融锡取至铁锅,吹入空气或水蒸气进行氧化,则铁、锌、铅、砷形成浮渣而上浮。将其除掉,铸成阳极锡(97%Sn),送往电解精炼。冶炼含杂质少的砂锡·得到的锡可达99.8-99.9%,并能出售。电解精炼时,用SnSiF6+H2SiF6+H2SO4电解液(Sn20-30kg/m3,游离H2SiF635-40%kg/m3,游离H2S0440-45kg/m3)。电流密度随锡的品位不同而异,通常为50-70A/m2.电解祝的纯度为99,99%,阳极泥经洗涤后,用H2SO4浸出,电解提出锡.浸出残渣经焙烧、浸出而回收铜。