氧化镁
2019-01-25 15:49:17
MgO俗称苦土,是一种白色粉末状固体。熔点3125K,沸点3873K,密度3.58g/cm3(298K),硬度6.50。MgO对水呈一定惰性,特别是高温煅烧后的MgO难溶于水。MgO溶于酸。 MgO的制备方法: (1)金属镁在高温下燃烧。 2Mg + O2 == 2MgO (2)工业上一般通过煅烧碳酸镁或氢氧化镁来生产氧化镁。 MgCO3 ==== MgO + CO2 Mg(OH)2 ==== MgO + H2O 煅烧温度在923K左右制成的为轻质MgO,煅烧温度在1923K以上时制成的为MgO。 MgO大量用于耐火材料、金属陶瓷、电绝缘材料,轻质MgO与MgCl2或MgSO4溶液混合后可制成镁质水泥。医疗上用MgO作抗酸药和轻泻药。常与易致便秘的CaCO3配合应用。在水处理、人造纤维织物加工、造纸、催化剂生产等方面MgO都有重要应用。
球形氧化锌脱硫剂
2019-02-18 15:19:33
跟着我国资源的不断干涸,以煤、石油为质料的化工产品运用的质料越来越残次化,使化工出产过程越来越困难,为了进步经济功率在炼油工业中运用高含硫油、煤化工业中运用高含硫煤。这样在油制品、煤制品中硫、氮含量越来越高,严重影响产品的质量,为了进步产品的质量就必须在出产过程中除掉质猜中的硫。要除掉质料气中的硫,最有用、最经济的办法就是运用固体脱硫剂。氧化锌脱硫剂是固体脱硫剂的一种,跟着国家经济建设的加速,残次质料的运用也将越来越多。那么氧化锌脱硫剂的消耗量也会越来越大。因而产品有强有力的商场生命力。
氧化锌脱硫剂广泛应用于组成、制氢、组成甲醇、煤化工、制、石油化工等工业质料气(油)的净化。氧化锌与硫化物反响生成非常安稳的硫化锌,经脱硫剂处理后的各种质料气(油)含硫量可降至0.1PPm以下。对含有较杂乱成份的有机硫化物的质料气(油),氧化锌脱硫剂可与钴钼加氢转化催化剂联用,亦可使出口含硫量降至0.1PPm以下。因而有宽广的商场前景。现在国内商场需求量约好4000吨/年,近几年来氧化锌脱硫剂的商场成长率约为8%,CT140型脱硫剂专门为日本商场开发的专用氧化锌面貌一新脱硫剂,首要出口日本。估计每年100吨。
南京铅锌银矿业有限公司是具有锌矿产资源优势的厂商,而且相继开宣布锌焙砂,活性氧化锌系列产品,而氧化锌脱硫剂是氧化锌的后续加工产品,为了赶快完成产业化,2003年公司安排相关技能人员完成了氧化锌脱硫剂研发和出产规划作业,并出资500万元,建成了年产能力500吨出产线。
该出产线工艺的首要技能特点是选用络合法,出产的超细氧化锌来抽取脱硫剂,其中最要害的技能在于不同运用要求的产品配方,最要害工艺在于球形化技能。产品具有运用温度低,球化系数高,分量硫容大,然后节省了动力降低了工业运用运转本钱。
脱硫剂物化目标产品型号KT302KT305KT310KT140外观深灰色球白色球淡黄色球白色球外形尺寸mmФ3.5~4.5Ф3.0~5.0Ф3.0~5.0Ф3.0~5.0堆密度kg/l0.8~1.001.10~1.200.7~0.91.35~1.45比表面积㎡/g40~60≥28~100≥30孔容ml/g0.430.400.200.30均匀孔半径A215284 烧失重%≦2≤10≤2磨耗率%≤6≤5≤5≤5zno含量%80~85≥95≥80≥90径向抗压碎强度N/cm≥20≥35≥30≥30穿透硫容%≥20≥22≥10
氢氧化镁简单介绍
2019-02-14 10:39:59
碱土金属的氢氧化物都是白色固体,置于空气中就吸水潮解。其间Ca(OH)2就是常用的干燥剂。碱土金属氢氧化物在水中的溶解度比碱金属氢氧化物要小得多,从表中数据看,从Be到Mg,氢氧化物的溶解度顺次递加,它们的碱性也顺次递加。Be(OH)2和Mg (OH)2是难溶的氢氧化物。Be(OH)2是氢氧化物,Mg (OH)2归于中强碱,其他均归于强碱。表1 碱土金属氢氧化物的某些性质物质Be(OH)2Mg(OH)2Ca(OH)2Sr(OH)2Ba(OH)2性质色彩白白白白白熔点/K脱水分化脱水分化脱水分化脱水分化脱水分化水中溶解度/mol-dm-3(293K)8×10-1S×10-11.8×10-26.7×10-22×10-1酸碱性中强碱强碱强碱强碱 碱金属和部分碱土金属的焰色离子Li+Na-K+Rb+Cs+Ca2+Sr2+Ba2+焰色红黄紫紫红紫红紫红洋红黄绿波长/nm670.8589.6404.7629.8459.3616.2707553.6
Mg(OH)2的密度为2.36g/cm3,加热至623K即脱水分化: Mg(OH)2 ==== MgO + H2O Mg(OH)2易溶于酸或铵盐溶液: Mg(OH)2 + 2HCl ==== MgCl2 +2H2O 这一反响可应用于分析化学中。 将海水和廉价的石灰乳反响,能够得到Mg(OH)2沉积,亦称氧化镁乳: Mg2+ + Ca(OH)2 == Mg(OH)2 + Ca2+ Mg(OH)2的乳状悬浊液在医药上用作抗酸药弛缓泻剂。
利用硼泥制备氢氧化镁
2019-02-18 15:19:33
硼泥是、硼砂出产过程中构成的固体废弃物。硼泥中含有氧化镁、氧化钙、等碱性物质,对环境造成了极大污染。截止到2006年仅辽宁省内的硼泥就已达1700万t,并正以每年130万t的速度添加。
现在,国内外对硼泥归纳利用的研讨有诸多方面,已取得了许多科研成果,但硼泥污染的现象依然存在,这首要是因为各类硼泥归纳利用技术落后,工业化程度较低。硼泥中含有镁等有价元素,极具开发利用价值。因而,开发利用这种二次资源,出产氢氧化镁,对进步经济效益、削减环境污染、促进资源再生都有重要意义。氢氧化镁作为典型的无卤阻燃剂,具有阻燃、消烟、阻滴、高热稳定性、高效的促基材成碳效果和强除酸才能等特性。
现在,出产氢氧化镁的首要办法有:合成法、白云石的挑选煅烧法和电解卤水法。合成法需以含有氯化镁的卤水为质料,白云石的挑选煅烧法和电解卤水法的能耗皆较高。本文选用高温下煅烧工业浓硫酸与硼泥混合物的办法收回氢氧化镁,此办法能耗低且易于完成工业化,不只能够处理硼泥对环境的污染问题,也为氢氧化镁的出产拓荒了一条新途径。
一、试验
(一)试验质料
硼泥取自辽宁省某地,首要化学组成见表1。硫酸为工业级,浓度98%,、及其它检测所用药品均为分析纯,试验用水为二次蒸馏水。
表1 硼泥的成分(质量分数)/%MgOCO2SiO2Fe2O3Al2O3CaOMnO其它39.030.219.74.562.991.840.0821.628
(二)试验内容
将硼泥与工业硫酸的混合泥浆在高温炉中煅烧必定时刻,取出后加水溶解、加热、过滤,得到母液。用0.01mol/L的EDTA滴定Mg2+,核算浸出率。重复加热、过滤母液至用(NH4)2C2O4溶液体会不到Ca2+。向滤液中参加将溶液中的Fe2+、Mn2+氧化成高价的Fe3+、Mn4+有利于完全除杂,加至用K3[Fe(CN)6]溶液查验不到Fe2+,用硝酸和NaBiO3查验不到Mn2+。在必定温度下加10%NaOH溶液将母液调理至pH=9.0,过滤,除掉杂质,得到镁精液。再向镁精液中参加5mol/L的NaOH溶液调理,pH=12.0,过滤、洗刷,然后将产品恒温烘干,得到氢氧化镁产品。产品的检测按标准HG/T3607—2000履行。
(三)工艺流程
工艺流程见图1。图1 硼泥制备氢氧化镁工艺流程
二、成果与评论
(一)煅烧温度对镁浸出率的影响
在煅烧时刻为1h,硫酸与硼泥液固比为1∶1的条件下,调查不同煅烧温度下镁的浸出率,试验成果如图2所示。由图2可知,在烧烧温度为300℃时,镁的浸出率最高,尔后跟着煅烧温度的升高镁的浸出率反而快速下降。这是因为浓硫酸在350℃时开端发作分化反响,温度过高时,生成的SO3烟气和氧气会快速逸出,使反响不能充沛进行,故镁的浸出率下降。一起高温效果黏结生成不溶于水的硅酸盐类也会使得镁的浸出率下降。图2 煅烧温度对镁浸出率的影响
(二)煅烧时刻对镁浸出率的影响
在硫酸与硼泥液固比为1∶1、煅烧温度为300℃条件下,别离调查不同煅烧时刻下镁的浸出率,试验成果如图3所示。由图3可知,跟着煅烧时刻添加,镁的浸出率逐步增大。反响时刻为2h时硫酸与硼泥的反响根本完毕,此刻镁的浸出率到达最大。图3 煅烧时刻对镁浸出率的影响
(三)硫酸与硼泥份额对镁浸出率的影响
在煅烧时刻为1h,煅烧温度为300℃条件下,调查不同液固比时镁的浸出率,试验成果如图4所示。由图4可知,跟着硫酸与硼泥液固比的增大,硫酸过量增多,硼泥能充沛与硫酸反响,镁浸出率趋于增大,但耗酸量增大。若硫酸与硼泥的份额太小,则硼泥中的矿藏不能与硫酸充沛反响,导致镁的浸出率不高。依据试验成果,硫酸与硼泥的液固比以2∶1为宜。图4 硫酸与硼泥份额对镁浸出率的影响
(四)归纳条件试验
依据试验成果及归纳考虑能耗、药品用量和硫酸分化温度对浸出率的影响,断定工艺条件为:煅烧温度为300℃、煅烧时刻为2h、硫酸与硼泥的液固比为2∶1,在此工艺条件下镁的浸出率为88%。将此条件下所制样品按1.2所述办法制备氢氧化镁,经测定镁精液中镁的收回率为91.17%。因而,硼泥中镁的归纳收回率可达80%左右。
(五)氢氧化镁的检测与分析
1、氢氧化镁的XRD分析 选用X射线衍射仪分析了产品物相组成,其成果见图5。由图5可知,该产品的峰方位和强度均与JDPDS卡上标准Mg(OH)2的衍射峰数据完全一致,且峰值规整,无杂峰出现,可知粉体为Mg(OH)2。图5 Mg(OH)2样品XRD图
2、氢氧化镁的检测 对氢氧化镁产品进行成分分析,检测成果如表2所示。
表2 氢氧化镁成分(质量分数)/%Mg(OH)2FeAlCaOMn99.540.0190.0150.4300.008
由表2可知,氢氧化镁的纯度为99.54%,换算成氧化镁纯度为68.64%,高于标准HG/T3607—2000的规则,其他杂质的含量也契合此标准。
3、氢氧化镁的SEM分析 用SEM对氢氧化镁粉末的表面描摹微观结构进行分析,其成果见图6。由图6能够看出,未烘干的Mg(OH)2颗粒出现聚会状况,晶体微粒十分小,颗粒直径不到1μm。将样品烘干后Mg(OH)2晶体微粒逐步长大,颗粒呈不规则球状,颗粒直径大约70~90μm。图6 氢氧化镁SEM相片
(a)未烘干;(b)烘干后
三、定论
(一)依据单要素条件试验断定高温煅烧工业硫酸与硼泥混合物的工艺条件为:煅烧温度为300℃、煅烧时刻为2h、硫酸与硼泥的份额为2∶1。此刻镁的浸出率为88%。
(二)以为沉积剂制备氢氧化镁可使镁精液中镁的收回率到达91.17%,硼泥中镁的归纳收回率可达80%。经XRD检测断定沉积产品为氢氧化镁,产品质量契合标准HG/T3607—2000。
(三)由SEM检测能够看出,未烘干的Mg(OH)2晶体微粒十分小,颗粒直径不到1μm。氢氧化镁经烘干后晶粒长大,颗粒呈不规则球状,颗粒直径大约70~90μm。
镍精矿降低氧化镁工艺技术
2019-01-21 18:04:33
一、概述
金川公司选矿厂一选矿车间处理龙首混合矿石,设计处理能力为1200t/d,有破矿、磨浮、精矿输送三道工序。其中,磨浮采用三段磨矿、三段浮选的阶段磨选流程。经80年代后期和90年代初期的系列改造,形成了1500t/d的生产能力。90年后期,经过不断挖潜改造,特别是2000年和2001年连续两次150t/d的扩能改造,现已形成2000t/d的生产能力。
目前所指的龙首混合矿石,是指龙首矿东、中、西部三个不同采区的矿石混合,而不是矿石工业类型上所所义的硫化率为45%~60%的混合矿石。其中一部分较富混合矿石(含Ni1.3%以上)由一选矿进行处理,另一部分较贫混合矿石(含Ni1.122%左右)由二选磨浮车间处理。
本文所探讨的就是Ni品位在1.30 %以上的由一选处理的龙首混合矿。
二、矿石性质及主要矿物选矿工艺特性
(一)龙首混合矿石中主要金属矿物及选矿工艺特性
龙首混合矿石中主要金属矿物有紫硫镍铁矿、镍黄铁矿、黄铁矿、磁黄铁矿、黄铜矿、方铜矿等;脉石矿物有蛇纹石、绿泥石、滑石及碳酸盐。紫硫镍铁矿被认为是最易浮选的硫化镍矿物。镍黄铁矿属比较好选的镍矿物,其选别效果仅次于紫硫镍铁矿,主要原因是其原生粒度比紫镍铁矿小,由于中细粒贫矿石中的镍黄铁矿和磁铁矿紧密共生呈网络状结构,磨矿过程中绝大部分不能单体解离,造成镍黄铁矿可浮性稍差。氧化会使紫硫镍铁矿的可浮性变差,因此对于以紫硫镍铁矿为主的硫化镍矿石要求快采、快运、快选,矿石存放越久越不利于选别。
一般的蛇纹石化矿石,用黄药做捕收剂,镍回收率和硫化率接近或比较接近,是比较好选的硫化镍矿石,使用调整剂可提高精矿品位,回收率无明显改善。蛇纹石具有一定的可浮性,所以精矿中30%左右脉石矿物中有相当部分是蛇纹石,致使精矿中金属品位降低,氧化镁含量高。强蚀变矿石中蛇纹石含量较少,在一般的浮选生产中,硫化物损失严重。
研究证明:各类厂矿中的硫化镍矿物可选性无明显差异,但矿石中脉石矿物对选别生产显著影响,因此,提高镍矿物选别指标或降低精矿中氧化镁的研究工作中,必须重视脉石矿物的抑制。
(二)含镁脉石矿物的浮选工艺性质
金川硫化铜、镍矿床中主要脉石矿物为含镁硅酸盐,由于地质蚀变作用,这些硅酸盐主要以蛇纹石、绿泥石、滑石的形式存在,这些脉石矿物对铜、镍的浮选影响较大。
1、主要脉石矿物的结构
蛇纹石是层状碳酸盐矿物中最简单的矿物,结构式为[Mg3Si2O3(OH)],在它的没一层结构中都含有一层硅氧四面体,水镁石层获得额外电荷,所以和另外一个硅氧四面体六方网成夹层结构,一旦在滑石层上没有净电荷而只有范德华力时,这个夹层就裂开,滑石也很软。
绿泥石也是层状硅酸盐矿物,结构式为(Mg·Al·Fe)12[(SiAl)8O22](OH12),它是在双层云母之间夹上一层水镁石而形成的,如果水镁石层价键遭到破坏,这个矿物就裂开。和前两种矿物比,它最松软。
2、脉石矿物的可浮性
蛇纹石大量存在于镍精矿中而影响精矿质量。在镍矿的生产实践中发现蛇纹石大量进入镍精矿而难以脱除,原因是蛇纹石在形成过程中具有较强的磁性,具有磁性的蛇纹石吸附与同样具有磁性的硫化物表面一起进入精矿;另外,带正电的蛇纹石易吸附与带负电的镍矿物表面而上浮。
绿泥石在镍矿物浮选中易浮难抑,另外,绿泥石疏松易碎,在磨矿过程中易泥化。绿泥石矿泥在镍矿物浮选中其行为与蛇纹石细泥基本一致。
滑石具有非极性表面,疏水性好,具有较强的天然可浮性,仅用起泡剂就能很好使之浮游,镍矿物浮选中,滑石极易进入精矿中。
三、降镁现状分析
(一)工艺流程及其特点
90年代,为了给闪速炉提供低镁合格精矿,弥补二矿区富矿精矿量的不足,金川公司选矿厂、金川镍钴研究设计院、中南工业大学、西北矿冶研究院等单位,针对龙首混合矿石低精矿中氧化镁进行了大量的试验研究,这些试验研究概括起来有三种:
1、通过改变工艺流程降镁;
2、通过新药剂达到活化有用矿物,抑制脉石矿物的药剂降镁;
3、采用改变工艺流程和添加新药剂相结合的方式降镁。
通过大量的试验研究,一选车间于1998年6月9月分别对2#系统和1#系统进行了流程改造,形成了目前的降镁工艺,产出的低镁精矿送闪速炉处理,新的降镁工艺主要是强化了精选作业,增加了粗选次数,通过提高精矿品位达到降镁的目的。现场生产实践证明三段磨矿、三段浮选的阶段磨选流程是选别金川龙首混合矿石的成功经验,既可使有用矿物达到充分单体解离得到有效回收,又可减少过磨和矿物表面污染。生产实践还证明,该流程适应性比较好,既可组织降镁生产,为二期闪速炉提供低镁精矿(精矿中氧化镁含量≤7%);又可以组织低精矿品位生产,为一期电炉生产提供原料,并且在这两种情况下,回收率都基本不受损失。一选磨浮工艺流程(框图)如图1。
图1 一造厂磨浮原则流程
(二)生产指标分类统计分析
对2000年1~8月选厂生产指标进行了分类统计,从统计结果得出如一结论。
1、原矿品位对指标有着直接的影响。随着原矿品位的升高,精矿品位、回收率均呈上升趋势,精矿中MgO含量逐渐降低。
2、原矿镍品位大于1.2%时,只要控制精矿镍品位大于6.5%,精矿中MgO含量即能低于7%,说明在现有工艺条件下,保证一定的精矿品位是降镁的首要条件。
3、原矿镍品位小于1.2%时,要保证精矿中MgO含量,必须将精矿品位提高到7%以上,回收率损失较多。
四、降镁问题分析
(一)矿石性质对降镁的影响
1、MgO赋存矿物的自然可浮性
大多数硅酸盐矿物有强的共价键或离子键,亲水性强,可浮性差,如橄榄石、辉石等。但蛇纹石、滑石、绿泥石等矿物是特殊的层状或双链状硅酸盐矿物,破碎后表面键力是分子键力,疏水性好,自然可浮性强,在浮选过程中容易进入精矿,致使精矿中MgO含量升高。金川矿区的矿石大多发生蚀变,原生的橄榄石、辉石大多蚀变为蛇纹石、滑石、绿泥石等,这些含镁矿物可浮性好,是MgO难以抑制的主要原因。
2、矿石硬度
矿石的硬度变小,在磨矿过程中更容易泥化,矿石的蚀变与矿石中构造挤压带的发育会加剧这一趋势,使蛇纹石、滑石、绿泥石矿泥包裹在金属矿物的表面进入精矿,造成MgO含量升高。
3、矿石品位
矿石中金属硫化物与含镁脉石矿物呈负相关,即矿石品位越低,MgO含量越高。2001年1~8月一选矿处理的龙首混合矿石累计Ni原矿品位1.333%,比计划Ni原矿品位1.35%低0.017%,比2000年同期的1.445%降低了0.112%,呈明显的下降趋势,增加了降镁工作的难度。
(二)降镁方案的局限性
针对龙首混合矿石改善镍铜指标,降低精矿中MgO的工作,各大专院校,科研院所做了大量的试验研究,对不同的矿石采用不同的技术措施都有一定的效果,但是一经生产应用,效果若显若隐。选矿过程很复杂,工业化生产又是一个连续性过程,因目前矿山尚无法实现配矿或稳定出矿,入选的矿石性质、品位波动很大,以不变(或说相对固定)的选矿设备、工艺流程处理多变化矿石,使过程控制更加复杂化,从而使一些看起来比较好的技术措施,在现场应用时就很难取得理想的效果。
五、降镁工作的研究方向
(一)工艺矿物学研究
一矿区龙首混合矿石矿物组成复杂,过去的矿物工艺学研究多侧重于考察原矿,对脉石矿物在选矿过程中各中间产品的赋存状态和工艺特性研究很少,而弄清楚含镁脉石矿物在整个浮选工艺过程中的走向及选矿过程中各中间产品中的脉石矿物的工艺特性,对降镁工艺与药剂的研究具有重要的指导意义,是降镁的关键所在。
(二)选矿新工艺研究
金种一矿区龙首混合矿石降镁工艺的研究晚于二矿区,但也取得了一定进展。但从生产实践来看,还需继续深入探索。
澳大利亚的G·D·Senior等人采用一种新的工艺流程处理镍硫化矿,可除去98%的含镁矿物,工艺要点为:预先浮选含镁矿物,然后将物料分别处理,分段抑制含镁矿物,最后活化含镍矿物,得到高品位镍精矿。金川一矿区混合矿石主要含镁矿物为蛇纹石,其良好的可浮性是造成精矿MgO含量高的重要原因,可以考虑预先浮选蛇纹石,并通过降镁药剂分段抑制其它含镁矿物来达到降镁的目的。另外,G·D·Senior等人认为,粒度不同的物料可浮性和对药剂的要求都有很大的差异,这一点也值得借鉴。
(三)浮选新药剂研究
在工艺流程确定的前提下,影响浮选过程和最终指标最为关键的因素就是浮选药剂的合理选择与使用。由于浮选过程中药剂之间存在着的交互作用,很难真正搞清楚选矿药剂的作用机理,现有的很多理论都是以假设和推测的形式出现,不能确定地描述药剂如何作用于矿物,怎样改变其浮选特性,这一点妨碍了浮选药剂研究的针对性。因此,深入研究各种药剂的作用机理,是降镁研究的重要组成部分。
(四)应注意整体指标的优化
各大专院样、科研院所以往对于金川矿石降低精矿中MgO的研究中,虽然部分地注意了对其它指标的影响,并且采取了一定的技术措施,但这种注意还是不够的。很多降镁方案都要通过不同程度地提高精矿品位来实现,而精矿品位的提高势必造成回收率的损失。若是为了降镁则大幅度提高精矿品位,导致过多地损失回收率,在经济上是不合理的,金川资源有限,在考虑降镁满足闪速炉要求的同时,不能过多损失镍、铜回收率,要特别注意整体指标的优化,这应在今后的降镁工艺研究中引足够重视。
六、结语
金川一矿区龙首混合矿石降镁工艺,经各大专院校、科研院所的大量研究,已取得了一定的进展,有些已应用于工业生产中,目前一选矿的降镁工艺就是在充分吸收各家研究成果的基础上形成的,生产实践也证明在矿石性质、品位相对稳定时,还要靠提高精矿品位来达到降鲜的目的;在矿石性质恶化时,精矿中MgO含量还不能满足要求等,因此,针对一矿区龙首混合矿石降低精矿中MgO含量的工作,还要进一步地探索研究。
氧化镁在电加热管方面的应用
2019-01-04 17:20:20
镁粉主要可用于火箭冲压发动机和去除推进剂燃气中氯化氢。另外还可用作还原剂、制闪光粉、铅合金,冶金中作去硫剂、有机合成、照明剂等。镁粉与铝粉一样,受潮会产生自燃、自爆。当每公升空气中含镁粉10-25毫克,遇到火源就会爆炸。因此工厂在储放镁粉时要格外的注意,一旦生产自然爆炸后果将不堪设想。镁粉做为炼钢不可缺少的材料之一,其需求也多来自于炼钢,因此钢市的好换对镁粉价格有一定的制约作用。
镁粉分为碳酸镁、雾化球形镁粉等。而氧化镁粉作为制作电加热管的主要材料之一,对其电加热管性能好坏的影响非常大。电工级氧化镁粉是指电熔结晶氧化镁块经破碎并对不同颗粒尺寸或数目按一定比例配合,直接或改性后用于管状电热元件中作为在高温下导热的绝缘介质。
电工级氧化镁粉可分为普通型、低温防潮型、中温防潮型以及高温型。氧化镁粉在工作温度的时候,其要具有较高的导热性能,以便能迅速把热量传递到管表面上去,使电阻与管壁温度更接近。当工作温度在1100摄氏度以内时,其具有较好的绝缘性能。其必要要具有一定的颗粒度,形状一般要求为圆状。并且要求其无论在常温还是高温状态下对发热丝材料和管材都应无腐蚀现象。
因氧化镁矿石经粉碎后,颗粒的大小不同,若按一定数量的配比具有以下优点,一是能提高粉密度,减少电阻丝的温度,从而提高电热元件的寿命。二是能克服“分筛”效应,提高mgo粉的利用率。
纳米氢氧化镁的用途及合成方法
2019-01-04 09:45:23
氢氧化镁产品分类及应用现状
2019-03-08 11:19:22
氢氧化镁产品从应用上分为阻燃级、中和级、医用、电子级、油品增加剂用氢氧化镁等;从结构上分为片状、超细、晶须、纳米级、重质氢氧化镁等。其间发展潜力较好的是超细氢氧化镁和氢氧化镁晶须。
片状氢氧化镁可作为增加型阻燃剂,碳化法即以菱镁矿或白云石为质料,经煅烧、消化、除杂、碳化、沉积制得产品。以白云石为质料,为沉积剂并参加表面改性剂十六烷基三甲基化铵,水热制得菱面片层氢氧化镁,该法镁、钙别离程度较高,镁的提取率为90.02%,产品收率为88.21%;沉积法以菱镁矿或白云石为质料,经煅烧、浸取、除杂、沉积制得产品。以白云石为质料,先后用和硫酸浸取,参加克己络合沉积剂和表面改性剂聚乙二醇可制得产品,收率为85.20%。酸解法以多种含镁矿藏为质料,经过酸解、除杂、沉积制得产品。以白云石为质料,经酸化、除杂,以白云石灰乳为沉积剂,产品纯度为98%,其间,白云石灰乳经过白云石煅烧消化制备。
超细氢氧化镁可作为复合材料的阻燃成分,参加不同的表面改性剂能够改动产品粒径。以氯化镁溶液为质料,为沉积剂,产品粒径
卤水替代。
氢氧化镁晶须是短纤维功能型材料,首要作为阻燃剂和补强材料增加到高分子材料中。沉积法,改善沉积进程能够改动长径比。以氯化镁溶液为质料,参加碱和表面改性剂,水热组成产品。以为沉积剂,丙三醇为表面改性剂,选用微波水热,直径为0.1~0.3μm,长度为80~110μm;改用和为沉积剂,酸为表面改性剂,直径为8~15nm,长度为50~150nm;中低浓度的和低浓度的氯化镁溶液,产品的分散性较好;以碱式硫酸镁晶须为前驱体,为沉积剂,油酸钾为表面改性剂,水热制得直径为1~2μm,长度为100~200μm的产品;参加表面改性剂不能减小粒径,反而会阻挠碱式硫酸镁晶须向氢氧化镁晶须转化。
从低品级菱镁矿中提取高纯氧化镁的研究
2019-01-24 09:36:25
Abstrac:The carbonization soakingof low2grade granularmagnesite is studied. Themineralproperty and light baking performance ofmagnesite, the digestingprocessofMgO aswell as the technologicalparametersof carbonization soaking are investigated. With the carbonization soaking of magnesite, high2grade MgO has been obtained, which contains 99% ofMgO。
我国镁矿资源非常丰富 ,采用碳化法生产轻质碳酸镁的工艺依据矿石性质不同而分为两种:白云石碳化法和菱镁矿碳化法。白云石碳化法生产工艺成熟,但由于碳化浸出过程存在钙含量较高的问题,所以该工艺生产高纯产品受到限制。随着冶炼技术的不断发展,冶金过程中的许多特殊作业趋向于使用高纯度镁砂来大幅度提高耐火制品的寿命,降低生产成本。同时由于高品级菱镁矿的大量出口,因此导致镁矿资源的综合利用问题日益显著。为此,笔者采用低品级菱镁矿粉矿进行碳化法提取高纯氧化镁 (wMgO大于 99%)的工艺研究。试验中,对菱镁矿的矿石性质及轻烧性能、氧化镁的消化过程和碳化浸出的工艺条件和参数进行了研究,并用所获高纯碱式碳酸镁生产出高纯镁砂。
一、矿石性质研究与工艺流程
试样的矿物组成比较简单 ,主要矿物为菱镁矿和白云石,次要矿物为滑石、绿泥石;微量矿物有石英、褐铁矿、黄铁矿、磷灰石等。MgO在矿石中主要作为独立矿物的基本组成形式存在于矿石矿物菱镁矿和脉石矿物白云石、滑石和斜绿泥石中。CaO以两种形式存在于矿物中:一种是以形成独立矿物的基本组成形式存在 ,如白云石、磷灰石 另外一种是以白云石微细包裹体形式存在于菱镁矿晶体中。SiO2亦以两种形式存在于石英、滑石、斜绿泥石、透闪石、方柱石等脉石矿物中,另一种是以石英和硅酸盐矿物细微机械包裹体形式存在于菱镁矿晶体中。
粒度筛析结果表明,wSiO2,wAl2O3在细粒级(-150目 )中略为偏高。wMgO,wCaO,wFe2O3在各粒级中变化不大,与多元素化学分析结果相近。化学分析结果见表1。本试验工艺流程见图1。二、试验结果与分析
(一)煅烧试验
天然菱镁矿在碳化过程中不能直接与二氧化碳起作用,碳酸仅对具有活性的氧化镁起反应,因此需将矿石在高温设备中轻烧,使菱镁矿逸出二氧化碳,生成具有活性的氧化镁。煅烧反应如下:
菱镁矿(WMgCO3约为90%) 轻烧料(WMgO大于90%)+CO2↑ (1)
为使氧化镁易于消化和碳化,对试样进行了差热分析。差热分析结果表明,试样中MgCO3的初始热分解温度为666℃。根据失重曲线可知,700℃以上。由于轻烧氧化镁的活性与煅烧温度和时间有关,故将温度控制在700~850℃之间,并在不同保温时间内进行煅烧条件试验。图2示出了温度和时间对菱镁矿灼减的影响。结果表明,菱镁矿的灼减随温度升高和时间延长而增大。为保证轻烧料不欠烧也不过烧,并具有较高的活性,最佳煅烧温度应控制在800℃,煅烧时间为1.5h。(二)消化试验
许多厂家的生产实践表明,采用白云石生产轻质碳酸镁的工艺中,白云石煅烧后,矿石中含量约30%的CaO与水反应生成Ca (OH)2,矿石自然 裂 解,wMgO为20 %也易与水作用生成Mg(OH)2,因而无需采用细磨工艺。本试验从节约能耗的角度出发 ,将菱镁矿破碎至较小粒级后进行煅烧、消化试验,以探索消化工艺的最佳工艺条件。消化过程的化学反应式如下:
MgO+H2O→Mg(OH)2 (2)
轻烧料中的氧化镁在水溶液中转化为氢氧化镁的过程与反应浓度、温度、时间等因素有关,同时与粒度有关。本试验的消化试样为小于2mm粒级的轻烧粉料。
1、消化浓度
将试样放入80℃水中,搅拌4min后过滤,分析不同浓度对消化率的影响。由试验结果得知,消化过程浓度大,转化率低,当浓度低于20%时 ,消化率的变化不大 ,故取消化浓度为 20%进行下面的试验。
2、消化时间
由于浓度试验消化率较低 ,故消化时间试验时增强了搅拌 在消化温度为 ℃、浓度为,80 20%的条件下进行了试验。时间变化对消化率的影响见图3。图3中曲线表明,消化反应时间的增加,对消化率的影响比较明显。消化时间超过12min,消化率已达98%以上。3、消化温度
在试验浓度和时间相对稳定的条件下,温度对消化结果的影响见图4。由图4看出,氧化镁转化成氢氧化镁的过程受化学反应控制,提高反应温度,可加快反应速度,消化温度的提高,对消化过程的影响极为明显。适宜的消化温度应控制在80℃以上。(三)碳化浸出试验
将氢氧化镁转化成碳酸氢镁,是以适量的二氧化碳为浸出剂,在特定的浓度、温度条件下进行反应,不同的时间和压力对浸出结果影响较大。其化学反应式如下
Mg(OH)2+CO2+H2O→Mg(HCO3 )2+H2O (3)
借鉴前期做过的工作,在常温常压条件下对消化后的试样进行了碳化浸出试验,进塔液nMgO为18.62g /L, cCO2为33%,在浸出过程中定时抽取泥浆过滤,分析碳酸氢镁溶液中WMgO,试验结果见图5。图5中下部曲线表明,试样粒径较大,碳化时间较长。超过90min后氧化镁的转化率增加不明显,浆液中nMgO为7.8g/L。为此,在上述浸出工艺条件相对稳定的条件下,降低进塔液中氧化镁的浓度进行了试验。由图5中上部曲线可知,随着进塔液中的氧化镁浓度的降低,转化率升幅较大,碳化反应至90 min时,MgO的转化率达84.01%,回收率为80.97%。(四)热水解试验
碳化浸出过程实现了目的组分由固相到液相的转移。经固液分离、滤去残渣,将滤液 (重镁水 )加热,使碳酸氢镁转型生成碱式碳酸镁。化学反应式如下:
5Mg(HCO3 )2→4Mg(OH)2·Mg(OH2 )·4 H2O+6 CO2 ↑ (4)
根据上式,在滤液加温至沸腾温度时进行了热水解时间对母液 (废镁水 ) 中氧化镁含量影响的试验。试验结果表明,随时间的延长,母液中氧化镁浓度随之降低。超过5 min后,母液中nMgO均为0.18 g/L,故热水解过程控制为滤液加热至沸腾温度后继续保温 5 min。过滤烘干后的碱式碳酸镁产品多元素化学分析及氧化镁回收率如表2所示。三、结论
(一)采用碳化法浸出工艺处理低品级菱镁矿粉矿,可获得灼减为零时wMgO为99.31%的高纯轻质碳酸镁。氧化镁回收率为80.97%。经烧结工艺处理 ,可获得氧化镁含量为 99.21%,体积密度为3.38g/cm的高纯烧结镁砂。
(二)常压二氧化碳浸出工艺生成的轻质碳酸镁中氧化钙含量较前期加压试验最终产品的CaO品位略有升高。
(三)由于菱镁矿碳化浸出过程中未采用磨矿工艺 ,试样粒径较大 ,故氧化镁的转化率和回收率不近人意。当粒度变小后进行研究,浸出液中氧化镁的转化率指标非常理想。
熔盐法制备氧化镁粉体及其反应机理
2019-02-21 11:21:37
跟着高技术陶瓷、橡胶、塑料、催化剂、环保材料、航天材料的不断发展,氧化镁晶体材料、特别是高纯氧材料(MgO含量不低于98%)的使用越来越广。例如用于医治胃酸过多及十二指肠溃疡患者,用作硅钢制作进程中的高温退火阻隔剂,用于制作电子管、滤光器、滤色器、滤波器等。此外作为灵敏型高效催化剂及功用体良的掺杂材料,高纯氧化镁有很多使用于工业催化及材料改性和高功用复合材料的制备。已报导的高纯氧化镁制备办法较多,例如菱镁矿(白云石)碳化法、卤水(海水)-石灰()法、卤水(海水)-碳按法及镁盐直接热解法等。
熔盐法选用一种或几种低熔点的盐类作为反响介质,在高温熔融盐中完结组成反响,然后选用适宜的溶剂将盐类溶解,经过滤、洗刷得到组成产品,它在高熔点氧化物粉体和电子陶瓷粉体及其它功用粉体材料组成等范畴广泛使用。熔盐法具有工艺简略、组成温度低、保温时刻短、本钱低价、组成粉体的化学成分安稳均匀等长处。
对熔盐法制备MgO粉体的不同熔盐系统进行了比照,发现NaCl-KCl盐类熔点适中,功用相对安稳,洗刷进程中NaCl、KCl溶解于水,滤液经枯燥后得到NaC1、KC1等盐类可回收使用,是一种优秀的反响介质。当选用NaN03-KN03盐类作反响介质时,与镁盐直接热解法相同,反响进程中发作腐蚀性气体,不适合工业化出产。可是NaN03 -KN03盐类熔点较低,有利于分析质料系统在熔盐中的反响进程,进而对反响机理进行评论,因而本文以MgCl2、 CaCO3和NaN03、KN03为质料制备Mg0粉体。
一、试验
(一)质料
试验所用无水氯化镁、碳酸钙、、、无水乙醇等均为分析纯。
(二)氧化镁粉体的制备
将MgCl2、CaCO3及NaN03、KN03按1.1︰1︰2︰2配比置于碾钵中碾磨,使质料混合均匀并磨细至-0.074mm粒级,550℃下保温3h热处理,经水浸泡、洗刷、减压过滤、110℃枯燥,再在600℃下保温3h热处理。
(三)反响机理分析
作CaCO3和MgCl2-CaCO3-NaN03-KN03的TG-DSC曲线,分析质料热反响进程;依据TG-DSC曲线,将质料在不同温度和保温时刻下热处理,断定产品组成,分析熔盐法制备氧化镁的反响机理。
(四)表征
用德国NETZSCH公司STA449/6/G型热重-差示扫描归纳热分析仪对试样进行热效应分析。
用荷兰Philips公司出产的X′Pert Pro型X射线衍射仪对产品进行物相判定。
用荷兰Philips公司出产的Nova400NanoSEM型场发射扫描电子显微镜调查粉体描摹及巨细。
二、成果及评论
(一)试样的组成与描摹分析 图1为S11试样和S12试样的XRD图谱,其间S11试样为质料在550℃下保温3h热处理,用水洗刷后经110℃枯燥的前驱物,S12试样为S11试样在600℃温3h热处理的产品。
从图1可见,质料在550℃下保温3h热处理,用水洗刷后的前驱物主要为氢氧化镁,其间尚有少数氧化镁没有水解,经600℃保温3h热处理,氢氧化镁分化为氧化镁。图2 试样TEM
(a)S11;(b)S12
图2为S11试样和S12试样的SEM图。从图2可见,氢氧化镁前驱物主要为层状描摹,形状不规整,巨细散布不均匀,厚度介于0.03~0.05μm,直径介于0.2~1.0μm之间;氢氧化镁分化后得到的氧化镁为颗粒状描摹,巨细散布较均匀,粒径介于0.2~0.5μm之间。
表1为S12试样的化学成分分析成果。从表1可知,所制备的氧化镁粉体纯度高,可满意医药、冶金、工业催化、量子器材、微电子等职业要求。
表1 S12试样化学成分分析成果(质量分数)/%Mg0CaC03A1203Si02Fe203IL98.820.520.100.090.060.41
(二)反响机理分析
图3为CaCO3和MgC12-CaC03-NaN03-KN03质料的TG-DSC曲线。
由图3(a)可见,从700℃至800℃失重37.08%,CaC03分化为CaO和CO2,对应的DSC曲线在769.2℃有一个吸热峰。 由图3(b)可见,从室温至400℃失重18.90%,该温度范围内质料失掉悉数物理水及结构水,NaN03-KNO3熔融,对应的DSC曲线上有3个吸热峰;从400℃至530℃失重8.10%,对应的DSC曲线上在490.5℃有一个吸热峰,该温度范围内可能发作了分化反响;从530℃至700℃失重23.20%,对应的DSC曲线上在660.4℃有一个吸热峰,该温度范围内可能发作了分化反响;温度大于700℃后,失重持续加大,主要是熔盐在高温下加速蒸腾。对照图3(a),没有呈现CaCO3分化的吸热峰,阐明在700℃曾经CaCO3已彻底反响。
图4为试样的XRD图谱。其间M11试样为质料在320℃下保温48h热处理,水洗后经110℃枯燥的产品;Ml2试样为质料在320℃下保温360h热处理,水洗后经110℃枯燥的产品;M14试样为质料在900℃下保温3h热处理,用无水乙醇洗刷后产品的XRD图谱。由图4可见,质料在320℃下保温48h热处理,水洗后经110℃枯燥的产品主要为碳酸镁和白云石及少数的氢氧化镁;质料在320℃下保温360h热处理,水洗后经110℃枯燥的产品主要为碳酸镁;质料在900℃下保温3h热处理,用无水乙醇洗刷后产品悉数为氧化镁。 结合S11试样和S12试样的XRD图谱,以MgC12、CaCO3和NaNO3、KNO3为质料,选用熔盐法制备Mg0粉体的反响机理如下:
1、 熔盐环境下Mg2+与Ca2+发作置换反响,其产品组成与反响温度和反响时刻有关。
MgCl2←→Mg2++2Cl-
xMg2++CaCO3→MgxCa1-xCO3
当x<0.5时.产品为碳酸钙的置换型固溶体,当x=0.5时,产品为CaMg(C03)2,当0.5<x<1时,产品为CaMg(C03)2和MgC03混合物,跟着反响的不断进行,当x=1时,产品为MgC03。
2、碳酸镁分化。
MgC03→Mg0+C02↑
3、水洗进程中氧化镁水解。
Mg0+H20→Mg(OH)2
4、氢氢氧化镁分化。
三、结语
(一)MgCl2-CaC03-NaN03-KN03质料制备氧化镁进程中,在熔盐环境下Mg2+与Ca2+发作置换反响,生成白云石和碳酸镁等中间产品,跟着反响的不断进行,白云石终究转变为碳酸镁;550℃热处理碳酸镁分化为氧化镁,经水浸泡后氧化镁水解生成氢氧化镁,600℃热处理氢氧化镁分化为氧化镁。
(二)氢氧化镁前驱物为不规整的层状描摹,巨细散布不均匀,厚度介于0.03~0.05μm,直径介于0.2~1.0μm之间;产品氧化镁为颗粒状描摹,巨细散布较均匀,粒径介于0.2~0.5μm之间。
烧结矿不同碱度、氧化镁及二氧化硅含量水平试验研究
2019-01-24 09:38:21
Abstract:Based on the present material condition of N0.3 sintering plant of Magang, the effects of different basicitys and SiO2 and MgO contents in sinter on production and quality of sinter are studied. The results show that, with increas ing the sinter basicitys and SiO2 contents, the sinter strength is improved, but after increasing the MgO contents in sinter, all sinter technicaleconomic indexes are worsened. Therefore, the sinter basicity should be 2.0, SiO2 content should be 4.95%, MgO content should be reduced to the best of its ability in practical production.
烧结矿的碱度、MgO及SiO2含量水平直接影响着烧结矿品位、强度、产量及其冶金性能。为了了解其变化对烧结生产技术指标的影响,马鞍山钢铁股份有限公司(简称马钢)在烧结实验室进行了烧结矿不同MgO、SiO2含量及不同碱度水平的试验。
一、原料成分及烧结工艺制度
试验用含铁料均取自港务原料厂和马钢第三烧结厂生产现场,其化学成分列于表1。此次烧结试验在Φ300mm烧结杯上进行,料层高度为580mm,点火负压6kPa,点火时间1.5min,烧结抽风负压为12kPa。烧结饼经机上冷却后,进行落下和ISO转鼓试验,然后取样做化学分析和冶金性能检验。每组试验在相同的条件下反复进行多次,取在允许误差范围内的两次试验平均值为试验结果,以确保试验结果的重现性。
表1 含铁原料化学成分分析 %粉矿名称TFeFeOSiO2CaOAl2O3MgOTiO2SP烧损姑精57.410.5012.090.8231.150.2990.2250.0120.2502.25CVRD粉65.280.233.740.3550.780.0890.0540.0120.0190.72杨基粉58.710.314.350.1021.350.1040.0490.0030.05010.47天普乐粉62.361.763.840.0291.940.0670.1150.0030.0494.47恰那粉63.010.313.970.1302.120.0850.1040.0120.0653.19FTC粉66.010.313.100.0780.890.0430.1180.0090.0291.22MBR粉67.000.421.460.1201.200.0600.190.0100.0501.30
二、试验方案
本次试验共进行7组。所用的烧结含铁料配比设计基本与马钢第三烧结厂现行生产混匀矿配比相一致,主要是通过对含SiO2较高的姑精配比以及石灰石、白云石的添加量作调整,使得烧结矿的碱度、MgO及SiO2含量满足各个试验水平的要求。设计各组试验因素的水平见表2。各组混合料配比及编组见表3。混合料中含铁料配比为100%,燃料和熔剂百分数是外配的。
表2 各组试验因素的水平 %组号SiO2RMgO备 注14.951.852.10基准组24.951.652.10低碱度34.952.052.10高碱度44.951.852.40高MgO含量54.951.851.80低MgO含量64.801.852.10低SiO2含量75.151.852.10高SiO2含量
表3 混合料的配比及编组 %组号姑精CVRD粉杨基粉天普乐粉恰那粉FTC粉白云石石灰石113.63012111716.410.097.10213.23012111716.810.064.87314.03012111716.010.139.38413.73012111716.311.806.20513.53012111716.58.407.99611.73012111718.310.116.50716.23012111713.810.077.92
三、试验结果及分析
烧结矿化学成分列于表4,冶金性能试验结果见表5。
表4 烧结矿化学成分 %组号TFeFeOSiO2CaOMgOAl2O3TiO2SPC/S157.738.445.029.232.101.460.1060.0110.0651.84257.977.965.098.532.111.540.1030.0100.0631.67357.137.465.049.982.071.580.1200.0140.0681.98457.588.735.009.412.301.560.1040.0120.0691.88557.689.254.949.271.891.410.1070.0090.0651.88658.158.564.819.052.101.550.1020.0090.0651.88757.627.755.159.352.031.500.1170.0130.0711.82
表5 还原性、还原粉化及熔滴性能试验结果组号还原粉化试验结果/%不同还原时间的还原度(RI)/%开始软化温度Ts/℃开始熔化温度Tm/℃开始滴下温度TD/℃最高压差△Pmax/kPa透气性指标S/kPa.℃滴下量MD/gRDI+6.3RDI+3.15RDI-0.530min60min90min120min150min180min125.3658.767.5330.3646.2458.1566.4671.2075.141108133514954.60941841.5223.5654.928.3728.3944.9055.5260.9668.4771.981128132414402.15715780.3326.2459.637.5529.9645.1357.9367.9275.7181.091115134515203.5303421.5428.0961.796.6828.8843.3254.1463.7569.7574.131130133015052.15732085.0532.7862.717.4525.7741.2854.0064.3273.0579.391082132414654.70733979.1626.4159.557.4024.7939.5151.4461.7870.5278.061108131014807.74777843.1724.8057.428.1327.9644.3757.9868.3776.7681.931126134215103.13819741.4
(一)不同烧结矿碱度的影响
由第2组、第1组和第3组构成不同烧结矿碱度水平试验。从试验结果可以看出,当烧结矿SiO2含量一定时,随碱度的提高,烧结生产率及烧结矿强度指标均呈上升趋势。当碱度由1.65升至2.05时,垂直烧结速度稍微加快(由18.78mm/min升到19.51mm/min)、再加上烧结矿成品率的增加(由76.42%升到78.17%),使烧结生产率提高,由1.231t/m2.h增加到1.253t/m2.h,而且也改善了烧结矿的强度指标,转鼓指数也从65.39%提高到67.88%。这主要是因为碱度提高后,烧结矿粘结相中铁酸钙系得以进一步发展的缘故。同时,由于烧结成品率随碱度升高而提高,吨矿烧结固体燃耗由68.24kg下降到66.65kg。而烧结矿品位相应由57.97%降到57.13%。
随碱度升高,RDI+6.3不断升高,RDI+3.15亦升高,RDI-0.5有所降低,但1、3组极接近;还原性改善明显,碱度提高0.1,RI180min提高近3.2%,软化温度无明显变化,熔融和滴下温度不断升高,滴下量逐渐减少。
(二)同烧结矿SiO2含量的影响
由第6组、第1组和第7组构成烧结矿不同SiO2含量试验。在烧结矿碱度一定条件下,随着SiO2含量增加,烧结矿粘结相增加,强度指标变好。当烧结矿SiO2含量从4.80%提高到5.15%时,转鼓指数由64.80%升高到67.70%,提高幅度约2.9个百分点,烧结成品率亦提高1个百分点。而烧结生产率则呈下降趋势,从1.300t/m2.h降到1.247t/。造成生产率下降的原因是:当烧结矿粘结相增多时,烧结过程透气性变差,烧结速度会下降。此外,本次试验是通过调整含SiO2较高的姑精矿配量来满足烧结矿SiO2含量不同水平要求。提高烧结矿SiO2含量就需要配加更多的姑精矿,精粉率增大也直接影响了烧结矿生产率的提高。
随SiO2含量的升高,烧结矿品位由58.15%下降到57.62%。这是因为在原料中增加了高硅的自产姑精矿用量、并减少了进口高品位巴西FTC矿,同时石灰石的配比也有所提高。
6、1、7三组含SiO2由低到高,对应的还原粉化及还原性指标基本相近,而软化、熔融、滴下温度亦不断升高,TD-Ts、TD-Tm区间差异不大,最高压差和透气性S值不断降低,滴下量无明显差异。
(三)不同烧结矿MgO含量的影响
由第5组、第1组和第4组构成烧结矿不同MgO含量试验。从试验结果可知,随MgO含量的增加,烧结矿产量、转鼓强度均有所下降,固体燃耗上升。当烧结矿MgO含量从1.8%增加到2.4%时,生产率由1.281t/m2.h降至1.240t/m2.h,烧结矿转鼓强度由67.07%降到65.67%;而吨矿固体燃耗由68.04kg上升到69.20kg。造成烧结经济技术指标变差有以下原因:
1、白云石在烧结过程中的分解是吸热反应,因此对分解后的MgO矿化形成新的化合物不利,显微分析发现有不少未发生反应的圆粒状MgO被方镁石周围生成的铁酸镁(MgO·Fe2O3)液相所胶结。
2、本次烧结试验及现场生产均配用粗颗粒白云石(-4mm含量只有90%),导致烧结矿产生大量白云石“白点”。
3、白云石与硅酸盐矿物常混在一起,生成镁橄榄石和钙铁橄榄石,结晶细小,一般以玻璃质的物相存在,而玻璃相中发现有细微裂纹,随着白云石的添加,烧结矿玻璃相大量增加。
4、白云石中Mg++容易渗入Fe3O4晶格,稳定了Fe3O4矿相,造成Fe3O4难以向Fe2O3转变形成铁酸钙,MgO添加量愈多,将有更多Mg++渗入到Fe3O4晶格中,限制了铁酸钙系的发展。
由表5可见,随MgO含量上升,还原粉化指标略变差,还原度有所下降,软化、熔融、滴下温度逐渐上升。
四、结 语
(一)在烧结矿SiO2含量一定条件下,随着烧结矿碱度提高,烧结生产率及烧结矿强度指标均能得到提高,还原粉化指标得到改善。因此,在现有高炉用料碱度得到平衡的条件下,马钢第三烧结厂应按2.0的碱度组织生产以满足炼铁厂对烧结矿产、质量的要求。
(二)提高烧结矿SiO2含量亦能提高烧结矿强度,烧结矿软熔温度均有所上升,其它冶金性能无明显变化,但同时烧结矿品位及生产率皆呈下降趋势。因此,在目前条件下烧结矿SiO2含量应稳定在4.95%,以保证烧结矿的强度。
(三)当MgO含量增加时,烧结各项技术经济指标均变差,烧结矿还原性及还原粉化指标略变差。可见,在确保高炉炉渣流动性的前提下,应尽可能降低烧结矿中MgO含量。
一种生产环保型氢氧化镁的新工艺
2019-02-22 09:16:34
跟着社会经济的开展,燃煤开释的二氧化硫、二氧化碳,燃油开释的硫化合物,氮化合物及采矿、冶金、印染、化工、制药等职业排放的工业废液对人类赖以生存的环境的污染日益严峻,怎么有用地处理这些污染要素,以削减它们给人类带来的巨大丢失,已成为需求火急处理的全球性重要问题之一。
依据对环境保护的需求,处理这些污染必定要用到具有以下特色的化工产品:无毒、温文、不腐蚀处理设备,廉价易得、处理本钱低,效率高,能力强、易操作,且易收回或综合利用、不构成二次污染。
料浆状氢氧化镁正是契合上述一切特色的最佳质料之一,它是一种首要运用于环保范畴的液相无机碱类产品,具有活性大、比表面积大、吸附能力强、缓冲和中和能力强、非沉积性、流动性好、运用和调理便利、温文、安全、无毒、无害、腐蚀性小、易操作、副产品易收回或综合利用等特色,被称为环境友好型“绿色安全中和剂”,运用于酸性废水中和、废液中重金属离子(Ni2+、Mn2+、Cd2+、Cu2+、Cr3+、Cr6+等)脱除、烟气脱硫、印染废液处理等环保范畴,具有其他碱性物质(氧化钙、氢氧化钙、、碳酸钠等)无与伦比的优越性,以往运用于酸性工业废水、含硫烟气处理范畴中的一些强碱物质,如:石灰、烧碱、纯碱等的运用逐渐遭到限制,而被兴起的弱碱氢氧化镁所代替。
因料浆状氢氧化镁运用于环保范畴的许多优势,20世纪90年代末,国外料浆状氢氧化镁料的出产和运用得到迅速开展;我国虽然具有丰厚的镁资源,可是氢氧化镁的出产和运用并未引起人们的满意注重,首要处于研讨开发阶段。近年来,国内虽然建设了一些中试或出产设备,但规划小、品种少、产品质量低、技能水平低,亟待进步职业全体水平。
一、现有料浆状氢氧化镁的首要出产办法
依据氢氧化镁用处和形状的不同,可分为粉末状、滤饼状、料浆状三种。用于环保范畴的料浆状氢氧化镁的纯度要求不是很高,一般在30%左右即可,首要是要求不含重金属等污染严峻的杂质,其出产办法相对简略,首要包含粗氧化镁(镁砂、粗制工业氧化镁等)水化法、海水或卤水-碱性物质(、石灰、氢氧化钙、等)沉积法等。
氧化镁水化法是一种非常陈旧的出产工艺,首要是将菱镁矿轻烧得到的轻烧氧化镁粉放入盛有热水的反响池中,边加边拌和,加料结束后保温沉化2h左右,然后进行固液别离、脱水,得到滤饼状及料浆状氢氧化镁。此工艺根本不具有除杂功用,产品质量受质料氧化镁的纯度和活性影响,氧化镁中的杂质除微量可溶性的盐类外,根本被带入产品中,因此,只能出产低层次的氢氧化镁。
海水或卤水-碱性物质(、石灰、氢氧化钙、等)沉积法是将海水或卤水经过简略的净化后,参加碱性沉积剂,发生氢氧化镁沉积,经过滤、洗刷、脱水得到滤饼状及料浆状氢氧化镁。虽然原理简略,但的挥发性强,易污染环境,操作难度大;石灰和氢氧化钙易生成硫酸钙,随氢氧化镁一同分出,构成产品杂质含量高,质量差;是强碱,易使生成的氢氧化镁构成胶体沉积,给产品功能操控带来困难,一起易带入较多的Na+和Cl-及其他杂质,也构成产品杂质含量高,纯度难以保证。
二、海水、卤水-轻烧白云石沉积法
氢氧化镁运用于环保范畴具有其它碱性物质无与伦比的优越性,在国外已被大量出产和广泛的运用,而我国氢氧化镁的出产办法较落后,本钱较高,杂质含量较多,质量较差,在环保范畴的运用更是屈指可数。鉴于此,咱们首要针对出产环保型氢氧化镁,研制了海水、卤水-轻烧白云石沉积法。
该办法归于沉积法的一种,以海水、卤水和轻烧白云石为质料,选用操控结晶一步组成工艺制取氢氧化镁,它克服了以往出产办法的不利要素,产品纯度高、杂质含量少、质量安稳。
(一)根本原理
将轻烧白云石水合生成含氢氧化钙和氢氧化镁的轻烧白云石乳,轻烧白云石乳中的氢氧化钙和质料海水、卤水中的镁离子在接连组成及别离一体化反响器中反响生成氢氧化镁。本工艺选用自主研制的接连组成及别离一体化反响器,在反响器中始终保持一定量的晶种,简化了传统的晶种回头增加工艺,并在反响器中将生成的氢氧化镁和杂质进行了有用地别离,氢氧化镁完结液经沉降、洗刷、别离、脱水得到滤饼状氢氧化镁,把滤饼加水谐和,并按份额增加分散剂,以防止氢氧化镁的聚会结核,然后制得不同浓度且功能安稳的料浆状氢氧化镁,反响方程式:(二)工艺流程(见图1)图1 海水、卤水-轻烧白云石沉积法工艺流程图
首要,用一种不同于韩利华说到的新处理技能,将质料水中影响产品质量的杂质除掉,得到净化质料水,将轻烧白云石加适量净化质料水水合消化后,加水制得契合组成要求的轻烧白云石乳。
然后,将制好的净化质料水和轻烧白云石乳按份额打入带拌和的接连组成及别离一体化反响器中,操控好反响时间和反响结尾,使二者充沛触摸、完全反响。因为氢氧化镁和不溶性较大粒径杂质沉降速度的不同,不溶性较大粒径杂质首要沉积到反响器底部,并由反响器底部排出。富含氢氧化镁的完结液从反响器中上部进入一级沉降器进行固液别离,固相经净化水洗刷除掉大部分可溶性杂质后进入二级沉积器进行二次固液别离,固相经脱水得到滤饼状产品,滤饼加水谐和,并按份额增加分散剂,以防止氢氧化镁的聚会结核,然后制得不同浓度且功能安稳的料浆状氢氧化镁。
(三)产品质量
氢氧化镁的技能方针多种多样,但用于环保范畴的料浆状和滤饼状氢氧化镁在我国没有见专门的质量标准,为适运用户需求,国外有关供应商对料浆状和滤饼状氢氧化镁产品均拟定了厂商标准,见表1。
表1 国外料浆状、滤饼状氢氧化镁厂商标准本工艺出产的氢氧化镁的首要方针:Mg(OH)230%~35%,CaO 0.5%~0.6%,Cl-≤0.1%,虽杂质氧化钙的含量稍高于日、美产品的质量方针,但已远低于瑞士的质量方针。且该质量的氢氧化镁已足以满意废水处理、烟气脱硫等环保范畴的质量要求咱们将在此基础上进一步改善工艺,进步产品质量,以满意更多职业更高运用要求的需求。
(四)工艺特色
该工艺的首要质料为海水、卤水和轻烧白云石,其来历广泛、报价低廉。
该工艺反响在常温下进行,整个进程不需求加压、加热,出产节能、本钱低。
该工艺进程无有毒、有害及有腐蚀性的物料投入和产出,对出产设备无特殊要求,首要设备为压滤机、普通工业泵和反响器、沉降器等碳钢槽罐,设备出资少,操作简略。
该工艺中,经过对质料水的预处理,有用地下降了产品中杂质含量,产品质量显着优于国内同类工艺产品,达到了沉积法出产高质量氢氧化镁的要求。
该工艺中,接连组成及别离一体化反响器的研制和运用,有用地操控了产品结晶,反响器中保留足量的晶种,防止了晶种的回头增加,完成了接连组成,并完成了方针产品和杂质的有用别离,产品质量较传统办法出产的产品杂质含量少、质量高。
三、结束语
污染正给人类构成巨大的损害,给经济构成巨大的丢失。就我国排放的二氧化硫一项,其构成的酸雨给我国经济构成的丢失每年大约在1100亿元在上,环境管理,已刻不容缓。
我国在酸性废水中和、重金属离子脱除和烟气脱硫等环保方面运用的处理工艺比较落后,操作杂乱,质料耗费高,运转本钱高,并且处理的不完全,副产品又构成二次污染。
跟着我国可持续开展战略的施行、世贸组织的参加、环保认识的增强和环保法律法规的逐渐健全、完善,运用于环保范畴的新技能、新工艺也被日益注重,对其研讨开发的力度正在加大,高效、无毒、优质的新产品或代替产品越来越遭到人们的注重。
我国海水、卤水资源、白云石、菱镁矿、水镁石等含镁资源适当丰厚,应充沛利用现有资源优势,经过改善现有落后工艺,研讨开发新工艺,大力开展多品种的氢氧化镁产品,并进步产品的质量和附加值、下降出产本钱,以满意环保及其他职业日益开展对氢氧化镁质量要求不断进步和用量不断增加的需求,促进经济健康快速地开展。
酞莆钴脱硫催化剂合成方法
2019-03-14 10:38:21
本发明归于化工组成办法$将4水磺酸铵,均本四二酐,工业尿素,6水氯化钴和钼酸铵以100∶10∶90∶21∶7∶2的分量比混合均匀,放于铁锅中熔融均匀,发泡并成兰色后,移于250℃的高温炉中枯燥2小时,得松脆、多孔、易溶于水的兰色产品。$该产品适用于天然气、组成气、焦炉气、裂解气、煤气及汽油、含硫化物废水等需求脱出无机硫和有机硫的工业。
铁矿脱硫汇编
2019-02-25 09:35:32
我国是世界上铁矿产资源总量丰厚、矿种完全、配套程度较高的少数几个国家之一,也是开发运用铁矿产资源前史最为悠长的矿业出产大国和矿产品消费大国之一,在铁矿石数量上有优势,但其硫、磷及二氧化硅等有害杂质含量高、嵌布粒度细,形成选矿难度大、功率低,质量和品种上处于下风,尤其是铁精矿中硫含量较高,在世界市场上缺少竞争力。近年来,优质铁矿石的很多进口对我国铁矿山的可持续展开形成了严峻的冲击,下降铁精矿的硫含量成为火急的科研任务,含硫铁矿石的开发与运用研讨对我国国民经济的展开有着不行忽视的重要效果。
1 伴生铁矿石脱硫选铁工艺技能
1.1 阶段磨矿、阶段选别脱硫选铁工艺
磨矿细度对选矿方针的影响十分大,不同的磨矿细度其产品有不同的粒度组成,然后影响矿藏的单体解离度和可选性,细粒嵌布的铁矿石,需求细磨才干使矿藏单体解离。关于嵌布粒度较细、含硫类型(黄铁矿和磁黄铁矿)单一的铁矿石,一般选用阶段磨矿、阶段选别工艺以完成提铁降硫的意图。
安徽某铁矿石中铁矿藏首要以磁铁矿方式存在,硫首要以黄铁矿方式存在,选用阶段磨矿、阶段弱磁选可得到档次为 65.25%、收回率为 80.33%的铁精矿。许开等用含 TFe 42.86%、含硫1.69%的某铁矿石作为研讨方针,经过阶段磨矿、阶段选别、合理操控磁场强度及精选次数等手法,成功地运用全磁选工艺取得铁档次为66.97%的铁精矿,铁收回率达80.3l%。
张彦明运用阶段磨矿、阶段选别工艺进行了系统的实验研讨,成果显现:铁收回率由之前的86.43% 前进到90.38%,铁中含硫量显着下降。云南某铁矿石中铁矿藏嵌布粒度较细,铁档次较低,为20.18%,有害元素硫超支,属较难选矿石。选用阶段磨矿、阶段选别工艺处理该矿石,得到档次为63.98%、收回率为 71.55%、含硫0.48%的铁精矿。
1.2 磁选 — 浮选联合脱硫选铁工艺
我国现在当选的磁铁矿因为粒度细,含有很多磁黄铁矿和黄铁矿,使得磁团聚在选别中的负面影响十分显着,依托单一的磁选法前进精矿档次越来越难。把磁选法与阴离子反浮选结合起来,完成磁铁矿石选别进程中的优势互补,有利于前进磁铁矿石选别精矿档次。磁选—浮选联合工艺是我国高硫铁矿提铁降硫较有用工艺之一。
王炬针对某进口高硫磁铁矿石 (其间硫化矿首要为磁黄铁矿和黄铁矿),选用先反浮选后磁选工艺流程对该矿石进行降硫提铁选矿实验,铁精矿硫档次由原矿含硫6.14%降至 0.30%以下,取得了较好的实验方针。邵伟华等人对云南某矿进行研讨,在含硫 5.71%、含铁 31.52%的条件下,选用先浮选后磁选的工艺流程,取得了铁精矿含铁 65.36%、含硫0.171%、铁收回率为81.67%的满足方针。郭活络等人对某尾矿中的硫、铁资源进行归纳收回,矿石中含有难选磁黄铁矿,选用浮选— 磁选 —浮选联合收回工艺,成功地取得了硫档次为38.77%的优质硫精矿及含铁 58.04%、含硫 0.547%的合格铁精矿。
杨等人对白音敖包高硫磁铁矿进行了研讨,原矿中含有 1.98%的硫,其间部分以磁黄铁矿方式存在,选用磁选—浮选联合工艺,有用下降了铁精矿中硫的含量,终究取得了全铁档次65.20%、含硫0.22%的优质铁精矿,尴尬处理铁矿资源开发运用提出了新的思路。青海省格尔木肯德可克铁矿石性质较杂乱,磁黄铁矿的存在搅扰了铁矿中有用矿藏的选别并影响终究的选别方针,杜玉艳经过先用磁选脱除大部分脉石和一部分硫(黄铁矿),然后用浮选脱除磁选粗精矿中的硫(磁黄铁矿),得到较好的方针。李冰等人对桓仁某铁矿进行了矿石物质成分分析,该铁矿石含硫高,铁矿藏在矿石中首要以磁铁矿及磁黄铁矿两种方式存在,选用了磁选—浮选联合选别工艺进行了实验研讨。成果标明,先磁选后浮选的工艺可取得 TFe 档次 64.97%,含硫 0.16%的合格铁精矿,铁总收回率可到达71.21%。
1.3 焙烧 — 磁选 — 浮选联合脱硫工艺
现在国内铁矿的复原焙烧磁选工艺因其本钱高和铁精矿档次低一级要素未能广泛运用,该工艺首要合适褐铁矿和菱铁矿等烧损较大的铁矿石。关于理论档次较低,含硫类型多样的弱磁性铁矿石,可经过焙烧—磁选— 浮选联合工艺取得低杂质含量的铁精矿,大起伏前进产品质量。
余俊等人针对西部铜业巴彦淖尔铁矿矿石硫含量高,断定了焙烧计划与焙烧条件,对焙烧矿进行磁选— 阳离子反浮选实验。实验标明,进行阳离子反浮选能够得到 TFe档次为 63.67%、收回率为 50.82%的铁精矿,硫含量由 2.74%降到 0.31%,完成了提质降杂的方针。
王雪松等人用反转窑焙烧硫铁矿烧渣的磁化焙烧实验,有用地将烧渣中弱磁性 F e2O3 复原成强磁性 Fe3O4,磁化率可达2.38%。经过球磨、磁选工艺,能够大起伏地前进精矿档次和金属收回率,一起烧渣在反转窑内脱硫效果显着,脱硫率可高达 85%以上。
刘占华等人针对经浮选流程发作的铁档次为17.75%、硫含量为 5.87%的高硫铁尾矿,选用直接复原焙烧— 磁选办法,可取得铁档次为93.57%、硫含量为0.39%、弱磁精矿收回率为 82.01%的直接复原铁产品,为有用前进资源归纳运用率供给了新的途径。
2 新式药剂的研讨及运用
选矿药剂的前进对我国含硫铁矿石选矿工艺的展开特别是提铁降硫作业的展开起到了重要效果,国内研发的浮选药剂首要有活化剂和捕收剂。
2.1 硫铁矿新式活化剂的研讨及运用
王炬针对某进口高硫磁铁矿石 (其间硫化矿首要为磁黄铁矿和黄铁矿),选用新式高效浮硫 MHH-1活化剂进行脱硫实验研讨,铁精矿硫档次由原矿含硫6.14%降至0.30%以下,取得了较好的实验方针。铁精矿脱硫特效活化剂 MHH-1对脱除铁精矿中的硫化矿特别是磁性较强、可浮性较差的磁黄铁矿具有显着效果。与其他活化剂比较,MHH-1用量少,本钱低,脱硫效果显着,该产品的研发为铁精矿提铁降硫供给了新途径。
胡定宝针对新桥矿业有限公司含硫磁铁矿中磁黄铁矿含量高的特色,选用了 HH-1 高效活化剂进行脱硫实验,取得铁精矿含硫 0.319%、TFe档次66.99%、TFe 收回率 47.68%与硫精矿硫 34.59%、硫含量收回率 99.23%的选别方针,各项方针均到达要求。
殷召阳针对冶山铁矿下部矿体原矿含硫量较高,特别是其间磁黄铁矿含量大,形成磁铁精矿含硫超支的实际情况,经过强化浮选进程、加大黄药用量、运用复合活化剂MS-1 等手法,使铁精矿硫含量由 0.8% 降至 0.4%,到达了供应要求。
2.2 硫铁矿新式捕收剂的研讨及运用
安庆铜矿磁选精矿中脉石夹藏严峻,影响了铁精矿档次的前进;其出产用水很多运用回水,且高pH值回水按捺磁黄铁矿,严峻下降了浮选的脱硫率;磁黄铁矿可浮性差,必须用强力捕收剂才干得到满足成果。安庆铜矿黄平和选用前进磨矿细度,改进选铁出产用水水质,调整捕收剂药剂品种(由以往单一的黄药变为柴油与黄药组合),脱硫效果显着,取得了极大的经济效益。
陈典助等人针对某厂尾矿中的高硫铁资源,选用 QY-309 混合捕收剂,对弱磁精矿直接反浮选脱硫除杂,取得了浮选精矿铁档次为 67.56%、硫含量仅为0.13% 的方针。杨柳毅等人[21]针对云南某低档次碳质含硫磁铁矿石进行了提硫实验研讨,实验成果标明,选用新药剂 402 作为提硫捕收剂,得到了硫档次为42.25%、收回率为 92.96%的硫精矿。
攀枝花选矿厂矿石中硫化物以磁黄铁矿为主,蒋方珂等人经过对攀枝花选矿厂次铁精矿中硫化物的工艺矿藏学和矿石性质分析,提出在酸性条件下,运用高档黄药来完成对磁黄铁矿的捕收,然后到达铁精矿降硫的意图,终究铁精矿中硫含量下降0.2% ~0.3%,其档次也有必定起伏的前进。
3 脱硫药剂与硫铁矿效果机理的理论研讨及展开
3.1 硫铁矿石晶体结构研讨现状
经过磁选工艺流程,不同晶系的磁黄铁矿得到有用富集,其间大部分黄铁矿进入尾矿,少数未完全单体解离的黄铁矿则随磁黄铁矿进入浮选;在浮选工艺流程中,不同晶系的磁黄铁矿可浮性不同较大,而不同晶体结构的黄铁矿的可浮性并无显着的差异。故对磁黄铁矿的晶体结构研讨现状作如下论述,磁黄铁矿(Fe1-xS,0对不同的晶体结构 (单斜和六方)的磁黄铁矿的可浮性进行了研讨,显现单斜和六方的可浮性有显着的差异[24]。蔡从光等人与梁冬云等人经过浮选实验证明了单晶系磁黄铁矿的可浮性优于六方晶系磁黄铁矿,跟着S 含量与 Fe 含量之比增大,磁黄铁矿的晶体结构由六方晶系变为单斜晶系,磁性由弱变强,可浮性由差变好。
刘之能等人经过丁铵黑药药剂用量对未活化和活化的六方磁黄铁矿进行浮选实验及表面电位ε,研讨了丁铵黑药系统下,六方磁黄铁矿的浮选行为及其表面吸附机理,成果标明,六方磁黄铁矿表面在中性条件下可浮性最好。李文娟等人经过单矿藏实验,研讨了单斜磁黄铁矿的浮选行为,成果标明:单斜磁黄铁矿在丁黄药或乙硫氮系统中的可浮性根本共同,矿浆电位对其浮选行为影响不大;碱性条件下,乙硫氮对单斜磁黄铁矿的捕收才能比丁黄药强。
磁黄铁矿的化学组成、物理性质和晶体结构决议其可浮性、表面易氧化程度以及性脆等特性。选用X线衍射、电子探针和浮选实验,调查了单斜磁黄铁矿和六方磁黄铁矿的结构成分及可浮性差异,成果标明:单斜比六方磁黄铁矿富含硫;单斜和六方磁黄铁矿的浮选收回率随矿浆pH 改变的规则相似,可是单斜磁黄铁矿的收回率比六方磁黄铁矿高,可浮性比六方磁黄铁矿好;酸性条件下,六方磁黄铁矿比单斜磁黄铁矿更简略被 Cu2+ 活化。
3.2 硫铁矿与药剂的效果机理研讨现状
近年来,国内外选矿作业者对选硫药剂与硫铁矿的反响机理进行了很多的研讨,并将研讨成果运用于辅导矿山的出产实践,取得了可观的经济效益。
覃武林等人研讨了硫酸和草酸对被石灰按捺后的磁黄铁矿的活化效果和活化机理。实验证明硫酸与草酸对磁黄铁矿的活化机理表现在两方面:一是前进磁黄铁矿表面本身氧化电位,阻止亲水物质进一步发作;二是去除吸附在磁黄铁矿表面的亲水物质,使之显露新鲜表面。现在磁黄铁矿的电化学研讨首要有磁黄铁矿的表面氧化、捕收剂与矿藏效果的电化学研讨以及铜离子对磁黄铁矿的活化等。
覃文庆经过紫外光谱分析,检测到丁黄药效果后的磁黄铁矿表面存在疏水性的双黄药。张芹经过磁黄铁矿红外光谱检测分析,推论乙黄药在磁黄铁矿表面生成双黄药。Bozkutr等人考察了吸附有异丁基黄药的磁黄铁矿的红外光谱,也证明其表面生成了双黄药。Rao等人观察到氮气气氛下,磁黄铁矿对黄药的吸附量很少,这或许是因为黄药氧化为双黄药需求较高的电位,而氮气气氛的电位显着过低形成的。由此可见,磁黄铁矿的浮选行为与矿浆的氧化还
原环境密切相关,即矿浆电位是磁黄铁矿浮选收回率与浮选速率的决议要素之一。
ZHANG Qin 等人在乙黄药浓度为 1×10-4 mol/L时经过乙黄药与磁黄铁矿效果机理的研讨得出了磁黄铁矿的可浮性与 pH值和矿浆电位存在着匹配联系,在某一 pH值下,只要在适合的矿浆电位区域,磁黄铁矿才可浮。Khant报导经过向矿浆中预先充气前进矿浆电位,能够有用地按捺磁黄铁矿,反之,不预先充气,则具有必定的活化效果。酸性条件下,铜离子与磁黄铁矿表面的铁离子发作交流,然后活化矿藏表面。磁黄铁矿表面氧化速度快,据报导在相同条件下,磁黄铁矿的氧化速度是黄铁矿的20~100 倍。磁黄铁矿在必定极限内氧化生成 FeSO4 与 Fe2(SO)3,时有单质硫发作,但泥化后其比表面积大,易严峻氧化,在表面生成 Fe(OH)3与 FeO(OH)亲水层,可浮性下降。
黄尔君等人经过对单矿藏及现场矿浆样的实验标明,硫酸铵和碳酸氢铵对被石灰按捺的黄铁矿具有杰出的活化效果,并且可在高碱度 (pH 达 11 ~ 12)下使黄铁矿活化浮游。硫酸铵对黄铁矿活化效果机理包含:
(1) 沉积矿浆中的 Ca2+,恰当下降 pH 值;
(2) 解吸矿藏表面的 Ca2+,并且比较完全;
(3) 的活化效果以及矿藏表面吸附少数硫酸铵,有或许经过它络合 Cu2+;
(4) 硫酸铵活化黄铁矿时,精矿档次高,与它能坚持矿泥絮凝不进入精矿有关。
4 定论
(1)综上所述,近年来在含硫磁铁矿石脱硫方面,国内外学者做了很多的研讨,不管是工艺流程、反浮选药剂仍是理论上都有很多的文献报导,现在在磁浮选工艺技能方面的研讨已取得了较好的发展,并在出产中取得了显着的经济效益。能够说,在资源日益趋于干涸的今日,加强理论的研讨、开宣布高效的脱硫新工艺技能和反浮选新式药剂仍是硫铁矿选矿研讨的要点和展开方向。
(2) 对脱硫新工艺技能的研讨向来是选矿作业者重视的课题:①考虑用全磁选工艺。在现阶段磨矿、弱磁选—细筛再磨再选工艺流程的基础上,再用高效细筛和高效磁选设备进行精选。与反浮选工艺比较,该流程简略,工艺牢靠,出资省、工期短、易操作;②考虑用弱磁选— 反浮选 —弱磁选联合工艺。该工艺先除去没有磁性的黄铁矿和脉石矿藏,再经过反浮选选别出磁黄铁矿,最终磁选确保铁精矿的档次,尽或许地脱掉含硫磁铁矿石中的硫,使铁矿石最大程度地具有挖掘运用价值。
(3)反浮选技能的研讨方向是研发高效、低耗、低毒的新式反浮选药剂、工艺和设备,以前进选矿功率,下降选矿本钱和对环境的污染。反浮选药剂的运用研讨包含开发捕收才能强、选择性高、耐低温的优秀捕收剂和无硫酸、高效廉价、节能省耗的新式活化剂,以期前进作业功率,削减经济本钱,防止设备腐蚀,下降对环境的污染。
氧化锌捕收剂
2019-02-26 11:59:27
性能及长处:该产品系经多种表面活性剂制造而成。呈黄色糊状或液体,易溶解于水,溶解后的溶液能激烈地改动矿藏表面的疏水性,下降表面势能,对金属矿石具有较好的选择性,促进矿藏粒子依附在空气泡上到达浮选意图,而且无毒、无害、无腐蚀、属先进的环保产品,是当今氧化锌矿的换代捕收剂。
产品用处:该系列产品首要针对氧化锌矿,如锌脉矿、菱锌矿、硅锌矿等氧化矿藏的浮选均有较强的捕收性和杰出的选择性,并对氧化铁矿如褐铁矿、赤铁矿等矿的反浮选也有较好的作用。
运用方法:按每吨原矿参加本品含量100g-300g浮选。运用前先将本品用温水溶解再运用,用一至二种调度剂调度,参加ZN6081的一起用或石灰、纯碱调理PH。一般氧化锌矿粉控制在85%-200目过筛。
包装及规格:200公斤/塑料桶。
常见氧化剂及其性质
2019-01-04 09:45:40
氧化剂是氧化还原反应里得到电子或有电子对偏向的物质,也即由高价变到低价的物质。氧化剂从还原剂处得到电子自身被还原变成还原产物。氧化剂和还原剂是相互依存的。
氧化剂在反应里表现氧化性。氧化能力强弱是氧化剂得电子能力的强弱,不是得电子数目的多少,如浓硝酸的氧化能力比稀硝酸强,得到电子的数目却比稀硝酸少。含有容易得到电子的元素的物质常用作氧化剂,在分析具体反应时,常用元素化合价的升降进行判断:所含元素化合价降低的物质为氧化剂。
典型氧化剂;Cl2,Br2,O2.元素(如Mn等)处于高化合价时的氧化物,如MnO2等.元素(如S,N等)处于高化合价时的含氧酸,如浓硫酸,HNO3等,元素(如Mn,Cl,Fe等)处于高化合价时的盐,如KMnO4,KClO3,FeCl3等,过氧化物,如Na2O2,H2O2等.在氧化还原反应里,遵循这样一个规律,升失氧还氧,降得还氧还。因为初学者一般无法较为准确的把握氧化还原反应的如乱麻一样的对氧化剂和还原剂的判读,固有这样一个绕口令,什么意思呢,就是说在氧化还原反应里,化合价升高的物质失去电子,被氧化,做还原剂(有还原性)所得的产物是氧化产物,具有氧化性,化合价降低的物质得到电子,在反应中被还原,做氧化剂,(有氧化性)产物为还原产物,据有还原性。在这里要注意一点反应规律,及还原剂的还原性应该强于还原产物的还原性,氧化剂的氧化性要强于氧化产物的氧化性。
KR法铁水脱硫工艺的发展、脱硫的原理及其探讨
2019-03-07 11:06:31
铁水预处理已成为现代化的炼钢出产工艺:铁水预处理—复吹转炉—炉外精粹—全连铸和热装热送.当下用户对钢材质量要求越来越严苛,一般要求钢中的硫含量控制在0.015%以下,有的乃至要求到达“双零”的超低硫水平,并且考虑到减轻转炉的冶炼使命和削减转炉耗费目标,使各冶炼设备的使命愈加单一化、专业化,发挥各自的专长,因而近年来国内新建转炉钢厂都装备了铁水脱硫设备,老厂则经过改造装备了脱硫设备.拌和法作为一种干流脱硫工艺,
在国内许多钢厂得到了很好使用.
1拌和脱硫工艺
1.1拌和脱硫工艺在国内的开展
KR拌和法是日本新日铁广烟制铁所于1965年用于工业出产的铁水炉外脱硫技能[1],早在1976年武钢二炼钢就从日本新日铁引入了国内第一台拌和
法脱硫设备,单罐处理才能为70~80t,处理周期约85min,选用CaC2基作为脱硫剂,因为其时该套设备的耗费目标及运转本钱均较高,处理周期长,所以并没有在国内得到广泛推行.跟着时刻的推移,拌和法脱硫工艺经过近二十年的开展,已构成为一种老练安稳的脱硫工艺,不管耗费目标、运转本钱仍是处理周期都大大下降.2000年武钢二炼钢在消化了第一套拌和法脱硫工艺的基础上,联合原武汉钢铁研讨规划总院自主规划和缔造了第二套拌和脱硫设备.2001年宝钢集团一钢公司从日本川崎重工引入两套150t拌和脱硫设备,2002年原武汉钢铁研讨规划总院又在昆钢缔造了两套55t的拌和脱硫设备,2003年原上海冶金规划研讨院在宝钢集团上钢三厂缔造了两套40t的拌和脱硫设备.2007年在武钢新二炼钢新建两套200t、马钢四炼钢新建两套300t拌和脱硫设备.韶钢新一钢工程在建两套130t拌和脱硫设备,这样在国内已构成了300t、200t、150t、130t、80t、55t、40t的拌和脱硫大、中、小系列.
1. 2 拌和法脱硫工艺的原理
所谓拌和法脱硫工艺,是将浇铸耐火材料并经过烘烤的十字形拌和头,刺进到有一定量铁水的铁水罐中旋转,使铁水构成漩涡,然后将经过称量好的脱硫剂经过振荡给料(或旋转给料器)参加到旋转的铁水中.脱硫剂进入铁水罐后,敏捷被漩涡卷进铁水中,在不断的拌和过程中与铁水中的硫充沛反响,然后脱硫的. 影响脱硫速度的要素首要有二,一为脱硫剂品种,二为动力学条件.研讨证明,动力学条件的影响大于脱硫剂品种的影响,拌和速度高达120r/min,铁水充沛旋转,获得了杰出的冶金动力学条件,投入的脱硫剂能够充沛的反响,因而脱硫功率高达 95%以上.
现在拌和法脱硫工艺以石灰作为脱硫剂,再配入少量萤石、铝渣作为助熔剂. 当铁水中的硅含量在0. 05!以上时,脱硫反响为:
反响生成的 CO 气体对铁水起到拌和作用,愈加快了脱硫反响的进行.因为高炉铁水中的硅含量一般均大于 0. 05%,因而脱硫反响均为(1)式.在反响式(1)中生成的Ca 2 SiO 4层将石灰颗粒包住,此层质地严密,且熔点高,阻止了铁水中的硫透过它向深部分散,使脱硫速度变缓,且生成的细密层包住新参加的石灰,添加了石灰的耗费,因而向脱硫剂中配入萤石等助熔剂,生成低熔点物质,然后使铁水中的硫进一步与石灰反响,能进步脱硫功率约20%[2] . 因为下降氧势能够进步脱硫功率,因而部分钢厂向铁水中参加铝渣,经过铝脱氧来下降氧势 [3] .
1. 3 拌和法脱硫工艺的优缺陷
1. 3. 1 拌和法脱硫工艺的长处
1) 脱硫功率高而安稳
拌和法脱硫工艺因为其杰出的动力学条件及重现性,使脱硫功率高而安稳,且回硫少,国内某厂,选用拌和法一个班处理了 8 炉铁水,7 炉到达 0.001%,一炉为 0. 002%,而选用石灰加镁粉的喷吹规律较难到达这个水平,且回硫状况较严峻 [4] .
2) 脱硫剂
拌和法选用石灰基脱硫剂,运送与贮存无需特殊办法,镁基喷吹法脱硫工艺所用镁粉需钝化处理,且运送和贮存需有防护办法.
3) 运转本钱
不管是喷吹工艺仍是拌和工艺,首要运转本钱为脱硫剂和耐材. 拌和设备的拌和头经过多年的改善,寿数现已大大进步,现在一般大于 250 炉,在武钢高达 500多炉,而喷吹法喷的寿数一般在 60多炉;拌和设备选用石灰基的脱硫剂,来历广泛,报价低廉,而镁基脱硫剂报价很高,且受商场的动摇影响较大,经过对国内某厂出产数据的分析,在铁水结尾硫≤0.005%时,拌和法比喷吹法运转本钱低,而当铁水结尾硫 > 0. 005%,喷吹法比拌和法运转本钱低.
1. 3. 2 拌和法脱硫工艺的缺陷
1) 设备较大,占用面积较多.
2) 一次性出资较大.
3) 铁水的温降较大.
4) 铁损较大.
5) 处理周期较长.
1. 4 影响拌和法脱硫功率的要素
影响拌和法脱硫作用的首要要素如下.
1) 在进行拌和脱硫之前,铁水液面上的渣子不能太多,不然将会影响脱硫剂的充沛反响. 因而在拌和脱硫之前需进行前扒渣,以扒除70%的渣量为宜,或许选用已老练的捞渣工艺,韶钢 KR 脱硫设备中选用了山东烟台的新式捞渣设备.
2) 拌和桨的转速不能太低,不然达不到杰出的动力学条件,脱硫功率下降. 一般拌和作业时的正常转速为 100 ~120r/s,跟着拌和头的损耗,可恰当进步拌和桨的转速,以确保杰出的动力学条件.
3) 脱硫剂有必要是粉剂,以添加反响面积,使铁水中的硫与石灰充沛触摸. 假如脱硫剂颗粒太大,则脱硫剂无法充沛反响,且添加了单耗,直接影响脱硫作用.一般要求脱硫剂4)脱硫剂首要成分是石灰,因而石灰的质量对脱硫作用影响非常大,首要是石灰中的 CaO 含量、石灰的活性度及石灰中的硫含量.
5)拌和桨的刺进深度要恰当,刺进深度过深或过浅都会直接影响到脱硫作用,过浅,拌和时喷溅严峻,且铁水罐内下部铁水搅动作用差;过深,则上部的铁水搅动较差.
2 拌和法与喷吹法比较
2. 1 脱硫工艺比较
两种脱硫工艺的比较见表 1.2. 2 脱硫运转本钱预算比较
脱硫运转本钱预算的比较见表 2.2. 3 两种脱硫办法的分析点评
经过对两种脱硫工艺的脱硫作用和运转本钱归纳比较,可见拌和法在深脱硫和总本钱方面优势杰出. 关于大中钢铁厂商,从久远考虑并结合出产实践,KR拌和法铁水预脱硫应是更具有深远价值的挑选.
3 结 论
拌和法脱硫工艺作为一种高效,低本钱的脱硫工艺在国内外已得到广泛推行,在国内现已构成由小到大的系列产品.虽然拌和脱硫设备的一次性出资较大,但脱硫作用好,运转本钱低,回收出资快.因而拌和法脱硫将成为往后的一种干流脱硫工艺,得到更广泛的推行,并有向三脱处理工艺演化的趋势.
铁精矿浮选脱硫工艺
2019-01-24 09:36:23
铁精矿浮选脱硫工艺:铁精矿中有害杂质硫一般以黄铁矿和磁黄铁矿的形式存在,以黄铁矿形式存在的硫可通过加黄药浮选或磁选即可脱除,而以磁黄铁矿形式存在的硫,因其具有强磁性,且其可浮性易受各种因素的影响,因此难于脱除。国内外研究和实践证明,磁黄铁矿表面易于氧化(生成铁的氢氧化物)、泥化、磁团聚等,大大降低了其可浮性,为此在浮选除硫时,一般采用加酸擦洗表面、加分散剂分散、脱磁、多段活化、强化捕收等措施来提高其脱除率。
双核酞菁钴砜脱硫脱氰催化剂的生产方法
2019-03-14 10:38:21
本发明为化工出产中液相催化氧化法的脱硫脱催化剂的出产办法。以水杨酸、邻二铵磺酸铵、均四二酐、氯化钴等为质料,选用磺化、缩合、络合、烘干、破坏等工艺。适用于液相催化氧化法的各种低、高硫气体和低粘度液体的脱硫脱。是替代世界通用的ADA法和国内常用的TV法的新工艺。本法克服了ADA法和TV法不能脱有机硫,化氢脱除率低,溶液组份杂乱,仍属有毒工艺,易堵塔及运转本钱高级缺陷。
铝用磷生铁脱硫方法
2019-02-28 10:19:46
项目研讨磷生铁脱硫机理,研讨适用于阳极浇注用磷生铁脱硫的脱硫剂和脱硫工艺技术条件,以到达既可防止脱硫剂对炉衬的较大危害,又可确保取得较好的脱硫作用的意图。本项目首要经过对磷生铁增加纯铁粉、CaO、对脱硫的影响研讨,开发创新出感应炉熔炼磷生铁的脱硫剂及脱硫工艺,使高硫回炉铁得到循环运用。研讨结果表明: 1、铝用磷生铁脱硫,可运用脱硫; 2、硫的脱除率达60%以上,磷生铁中硫含量可由0。25%下降至0。15%以下; 3、可削减磷生铁中硫含量,改进磷生铁的活动功能和浇注作用,降低了阳极铁碳压降,节省电耗; 4、可减小脱硫剂对感应炉内衬的损伤,较好地将脱硅和维护内衬结合起来。 该效果已在本公司得到使用,年节省原材料费用达17万元,降低了厂商生产成本,产生了杰出的经济效益。
硫铁矿烧渣脱硫
2019-01-30 10:26:27
一、硫的存在形式
硫铁矿烧渣中的硫主要有:未完全烧结的硫铁矿、硫酸盐、和部分可溶性硫化物。由于时间和经费的原因,该部分内容未进行深入研究。因此,只能根据指标判断。
二、机械脱S
由下表可以看出,原料粒度较细,-200目含量为57.8%,铁主要集中在-0.1~+0.019mm的粒级中,并且铁的品位较高。S则主要集中在粗粒级中,而+0.15mm级别中铁的品位较低,且+0.15mm级别仅占烧渣的3.9%。因此,将硫铁矿烧渣(干矿)用100目过筛,筛下产物S的含量将大大降低,筛上级别可考虑回收硫。
表 烧渣筛析分析结果粒级产率(%)品位(%)FeSPbZnSiO2+0.282.3826.202.660.751.2130.34-0.28+0.151.5628.121.080.361.1638.73-0.15+0.14.7347.480.460.230.8121.68-0.1+0.07418.4257.590.400.220.5911.43-0.074+0.03737.6460.220.200.180.448.29-0.037+0.01924.5053.360.220.360.5614.19-0.019+0.0104.9942.040.410.790.7923.00-0.010+0.0050.937.890.560.941.0125.50-0.0054.849.340.200.420.268.35
硫铁矿烧渣焙烧过程中所产生的S、SO2、SO3等吸附在烧渣孔隙中,与烧渣中的活性元索高温下生成盐类。这类游离态硫、SO42-和可溶性SO42-形态存在的硫均溶于水,选别时可用溶解和冲水法将此部分硫除去。经过磨矿后,会使矿物达到较高的单体解离。在选别前搅拌一定的时间,可使S的脱除率提高50%~60%,烧渣中S的含量降为0.35%左右。
烧渣在流程中经过螺旋溜槽的擦洗,会将烧渣中不溶于水的FeS和FeS2以及部分可溶性的硫酸盐脱除,自然降低烧渣中的硫和硅的含量。此时,烧渣中S的含量约为0.2%左右。
其他脱硫方法,由于时间和经费的原因,无法进行,而且硫的含量已经达到课题的要求,所以也没有进一步深入研究的必要。
工业脱硫应用石灰石制粉与双碱法脱硫
2019-02-28 11:46:07
因为近几年国家对环保要求的严厉,脱硫工程几乎是一切电厂建造的重要工程之一,现在世界上上烟气脱硫工艺达数百种之多。在这些脱硫工艺中,有的尚处于实验研讨阶段,有的技能较为老练,现已到达工业使用水平,今日,就拿最常见的两种脱硫办法做一下简略的比照和区别-石灰石制粉脱硫与双碱法脱硫。
石灰石制粉的原理是:将石灰石用拂晓重工超细磨粉机进行破坏加工,然后将石灰石粉加水(或石灰石磨制为石灰石浆)制成浆液作为吸收剂泵入吸收塔与烟气充沛触摸混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反响生成硫酸钙,硫酸钙到达必定饱和度后,结晶构成二水石膏。经洗刷脱出二氧化硫的烟气经加热(或不加热)由烟囱排入大气。
双碱法脱硫是指选用NaOH和石灰(氢氧化钙)两种碱性物质做脱硫剂的脱硫办法,其原理是:双碱法脱硫一般只要一个循环水池,NaOH、石灰与除尘脱硫进程中捕集下来的烟灰同在一个循环池内混合,在铲除循环水池内的灰渣时烟灰、反响生成物钙、硫酸钙及石灰渣和未彻底反响的石灰一同被铲除,清出的灰渣是一种混合物不易被使用而构成废渣。首要工艺进程是:清水池一次性参加溶剂制成脱硫液(循环水),用泵打入脱硫除尘器进行脱硫。3种生成物均溶于水。在脱硫进程中,烟气搀杂的烟道灰一同被循环水湿润而捕集进入循环水,从脱硫除尘器排出的循环水变为灰水(稀灰浆)。一同流入沉积池,烟道灰经沉积定时铲除,收回使用,如制内燃砖等。上清液溢流进入反响池与投加的石灰进行反响,置换出的溶解在循环水中,一同生成难溶解的钙、硫酸钙和碳酸钙等,可通过沉积铲除;能够收回,是制水泥的杰出质料。
石灰石制粉脱硫与双碱法脱硫区别是:石灰石粉脱硫法是将石灰石直接用拂晓重工超细磨粉机进行破坏,然后加水进行拌和成为石灰浆。而双碱法脱硫是将石灰石先加水使其与水反响变成氢氧化钙也就是使其成为碱性,然后和一同在反响池中使用其彼此的作用与其烟气中的有害气体反响。然后除掉有害气体维护大气环境。其两种办法的最大区别是石灰石粉脱硫简略快捷,出资少,作用好。
氧化铜矿浮选活化剂
2019-02-26 16:24:38
氧化铜矿浮选活化剂
组成:三巯基三嗪钠盐 ,噻二唑钠盐等活性基团
技术目标 性状:淡黄色液态 比重:1.10-1.30(30℃)低温稳定性:-20℃ pH值:7.0-8.5
简介:二巯基-1,3,4-噻二唑(DMTD),三巯基均三嗪(TMT)钠盐的分子结构中具有噻二唑,三嗪杂环一起还有高度酸性的巯基,巯基离子与噻二唑杂环形成了共效应,因而噻二唑,均三嗪钠盐对一些含铜含金矿石具有必定的电荷招引能够作为铜矿的浮选药剂.噻二唑,均三嗪盐类关于氧化铜矿藏的浮选具有显着的活化效果。运用DMTD的碱金属盐作为活化剂,黄药作捕收剂,浮选氧化铜矿石,制成了一种浮选新药剂——活化剂TMTN-2。在此基础上进行了很多的推广应用作业,现已批量生产氧化铜矿浮选剂TMTN-2供矿山运用。DMTD盐类,三嗪盐已成功用于氧化铜矿的浮选生产中,使选厂取得较好效益。
目标 规模 实测
有用物质含量 大于98% 98.5%
外观 淡黄色液体 淡黄色液体
色度 80-100 90
PH值 6.5-8.0 7.2
包装:25公斤/桶保质期:常温密封保存一年
湿法脱硫的主要方法有那些?
2019-03-07 10:03:00
一、液吸收法
用(NH3·H2O)作吸收剂吸收废气中的SO2,因为易挥发,实际上此法是用与SO2反响后生成的铵水溶液作为SO2吸收的吸收剂,首要反响如下:(NH4)2SO3对SO2有很好的吸收才能,跟着吸收进行,NH4HSO3增多,吸收才能下降,这时需要在吸收液中参加NH3·H2O,即再生反响:然后经空气氧化、浓缩、结晶等进程即可收回硫酸铵[(NH4)2SO4]。如再增加石灰或石灰石乳浊液,经反响后得到石膏。反响生成的NH3用水吸收从头回来作为吸收剂。如将(NH4)2SO3溶液加热分化,再以H2S复原,即可得到单体硫。
二、石灰—石灰石法该办法是当今燃煤电厂运用最为广泛的烟气脱硫工艺。此法是用石灰石、生石灰(CaO)或消石灰[Ca(OH)2]的乳浊液为吸收剂来吸收烟气中的二氧化硫,并得到副产品石膏。该办法的首要长处是:①脱硫功率高,可达95%以上;②吸收剂利用率高;③对煤种的适应性好,特别适用于高硫煤;④吸收剂来历广,报价低,用量小;⑤体系老练,运转可靠性高。首要缺陷是有一定量的废水排出,且出资费用高,占地面积较大。石灰吸收SO2的首要反响如下:而烟气中的氧会将生成的钙和氢钙氧化为硫酸钙:反响如下:石膏可用作建筑材料,而半水钙是一种用处广泛的钙塑材料。 三、钠碱法本办法是先用、碳酸钠或亚的水溶液作为吸收剂,与SO2反响生成的Na2SO3持续吸收SO2。该办法具有对SO2吸收速度快、管道和设备不易阻塞的特色,运用比较广泛。选用NaOH或Na2CO3作吸收剂时,吸收反响为:正盐NaSO3有吸收SO2的才能,持续反响:亚又能与碱反响:该办法首要的副反响为:因为氧化耗费Na2SO3,而生成的Na2SO4又不吸收SO2,导致吸收才能下降。该办法生成的吸收液为Na2SO3和NaHSO3的混合液,按其在工业上首要的吸收办法又能够分为钠法、钠循环法和钠石膏法。将吸收液中的NaHSO3用NaOH中和得到Na2SO3。因为Na2SO3溶解度较NaHSO3低,它会从溶液中结晶出来,经别离可得副产物Na2SO3。分出结晶的母液作为吸收剂循环运用。该法称为压硫酸钠法。若将吸收液中的NaHSO3加热再生,可得到高浓度的SO2作为副产物。而得到的Na2SO3结晶经别离溶解后回来吸收体系循环运用。此法称为钠循环法。此法可处理很多烟气,吸收功率可达90%以上。首要的湿法脱硫办法还包含氧化镁法、碱性硫酸铝—石膏法、海水法等等,这儿不逐个累述。
氧化锌浮选新型捕收剂
2019-01-17 09:44:01
“难处理金属矿高效浮选捕收剂的分子组装与合成”,系统地进行了多种结构类型的氧化锌矿浮选捕收剂的研究。涉及的阳离子捕收剂包括:直链脂肪胺、季铵盐、Gemini阳离子捕收剂和新型有机硅阳离子捕收剂。涉及的阴离子捕收剂主要为油酸、烷基双羧酸DSA和烷基芳基羟肟酸TBBA。主要研究内容与结果如下:(1)通过单矿物浮选实验,比较了离子基团类型、烃类长度等结构性因素对药剂捕收能力的影响。结果表明:直链脂肪胺和新型有机硅捕收剂对菱锌矿的浮选效果明显优于常规季铵盐和Gemini型阳离子捕收剂。脂肪胺捕收剂中,十二胺的捕收能力最强。新型有机硅阳离子捕收剂TAS101对菱锌矿的捕收能力与十二胺相当,而选择性更好。(2)通过单矿物浮选实验,考查了传统阴离子捕收剂油酸与新型阴离子捕收剂DSA和TBBA对菱锌矿的捕收性能。DSA在广泛的pH范围内对菱锌矿的浮选效果明显优于油酸和TBBA,捕收能力顺序为:DSA油酸TBBA。对原矿品位为9.70%左右的某氧化锌矿石,进行浮选实验,得到了精矿品位为36.28%、回收率为55.45%的良好开路指标。(3)通过浮选溶液化学分析、矿物的Zeta-电位测定和红外光谱分析等手段,探讨了有机硅阳离子捕收剂TAS101和油酸对菱锌矿的作用机理。结果表明,有机硅阳离子捕收剂TAS101与菱锌矿的作用主要是静电吸附和胺盐化学吸附,而油酸与菱锌矿的作用则主要是化学吸附。氧化锌捕收剂
代号 ZNY
有效物质含量 90(%),外观为淡黄色膏状
主要用途:氧化锌矿浮选(菱锌矿等氧化锌矿)
浮选性能:具有良好的浮锌选择性能,耐低温性能(最低温度5℃)。
使用方法:将药剂用水兑成2%水溶液使用,用40℃温水溶解即可。
适用范围:菱锌矿等,锌10%左右的氧化矿可以选到含锌40%的锌精粉,锌回收率70%以上。
环保性能:药剂无毒无害,易生物降解,对环境友好,符合环保要求。
产品特点:
1.不脱泥优先浮选方法;
2.可常温浮选,节能降耗;
3.泡沫适中,浮选稳定,易于生产操作;
4.对各类氧化锌矿有特效,可实现氧化锌矿资源加工工业化。
产品质量标准:
Q/HS001-2008
项目 质量标准 试验方法
外观(250C) 粘稠物 目测
活性物含量,% ,≥ 90
PH值(5%水溶液) 8-9 PH试纸法
包装规格:200公斤/桶。
运输与贮存: 不燃不爆,按一般化工产品运输。
活性氧化铝干燥剂
2019-01-15 09:51:32
活性氧化铝干燥剂◆ 简介:
活性氧化铝球具有吸附性能、催化活性的多孔性、高分散度、大比表面积等特点。活性氧化铝按内部主晶相组成分为Y型和X-P型,按照其用途可分为活性氧化铝吸附剂、活性氧化铝干燥剂和活性氧化铝催化剂载体。
◆适用范围:
适用于多种气体和液体的干燥,在石油、化肥、化工等许多反应过程中作吸附剂、干燥剂、催化剂及其载体。
◆ 主要技术参术及规格:品种性能
活性氧化铝吸附剂
活性氧化铝干燥剂
活性氧化铝催化剂载体通用型
高强型
通用型
空分用型晶相类型
Y型
X-P型
Y型化学成分%
Al2O3
≥92
≥93
≥90
≥95Na2O
≤0.3其余
6-8
5-7
<10
<5物理性能
外形尺寸mm
φ2-3
φ5-8
φ2-3
φ2-3φ3-5
φ3-5
φ3-5φ4-6
φ4-6
φ4-6比表面积m2/g
≥300
300-325
≥300
350±20
280-360孔容率ml/g
≥0.35
≥0.5
0.4±0.05
0.4±0.03
0.4-0.6静态吸水量%
≥15
17-19
≥15
≥19
≥28堆积密度g/cm3
0.68-0.72
0.74-0.77
0.68-0.72磨耗率%
≤0.04点压碎强度N/颗
φ2-3
≥70
222-311
φ2-3
≥70
φ2-3
≥70φ3-5
≥100
φ3-5
≥100
φ3-5
≥100φ4-6
≥100
φ4-6
≥100
φ4-6
≥10
黄铜抗氧化剂工艺是什么
2019-05-29 17:34:47
黄铜抗氧化剂技术是什么?黄铜?黄铜抗氧化剂技术有哪些?黄铜抗氧化剂技术怎样表明?咱们都知道,黄铜长时刻空气放着容易发生氧化,这时分就需求抗氧化了,黄铜抗氧化剂技术能够有用防护效果,尤其能防止铜表面变色,黄铜抗氧化剂还适用于红铜、紫铜、磷铜、铍铜、青铜等各种铜合金,能坚持铜表面光亮度长达八个月以上,不影响导电,环保无毒,好了,接下来铜材黄工接着来说下“黄铜抗氧化剂技术是什么”吧。抗氧化黄铜毛细管 黄铜防变色剂配槽办法? 1.容器:主张选用各种塑料容器或铜质容器,其他金属容器禁用。 2、配比份额:JPL-008抗氧化剂10%-20%,参加去离子水即纯水90%-80%,视详细技术要求而定。 3.温度:本品能够常温下和加温情况下进行钝化,可是主张加温条件下运用,这样加工功率更高,并且效果更好。可是宜挑选合理加温方法,假如选用内置方法,加温管必定要是铜质,或许选用石英及聚四氟乙烯(特氟龙)加热管,假如是其它金属原料加温管,将改动药液功能,不宜选用。 黄铜抗氧化剂技术适用规模? 1、用于铜零件、铜管件镀铜件、铜技术品等工序间等工序间防变色,抗氧化。不影响铜产品导电性和导热性。 2、本产品不含亚硝酸根离子,六价铬离子,不含强酸,强碱,对皮肤没有影响。本产品现已经过SGS,契合ROHS指令 黄铜抗氧化剂技术流程? 抛光后或清洗洁净工件→甩干水分(应用于杂乱工件)→JPL-008铜防变色剂处理→活动水洗洁净→热水浸泡(100℃左右,用要用于工件升温,意图让水份自行蒸发或许枯燥)→烘干(80-100度,时刻为30分钟)→JPL-004关闭(针对于高耐蚀要求产品) 黄铜抗氧化剂技术注意事项? 盛装铜抗氧化剂容器应为塑料或玻璃钢容器。 尽量防止酸碱类物质带入保护剂中,坚持浸泡液清新。 保护剂长时刻重复运用变混浊后就要替换新药水。 本品不宜与酸碱类物质混放。应防止触摸皮肤,眼睛及衣服,如有触摸,应当即用很多水冲刷洁净。运用过程中请带橡胶手套,防止赤手操作。 黄铜抗氧化剂技术优点? 1、环保:肯定不含铬酸及亚硝酸 2、抗盐雾才能好:紫铜NSS测验32小时不变色; 3、经济:可重复运用,本钱仅为防锈油40%。 黄铜抗氧化剂技术槽液保护? 1.铜防变色剂寿数很大程度上取决于作业前清洗洁净程度。经酸洗零件要水洗洁净,不能有残酸带入钝化液中。(溶液酸度增高,使铜件上膜层溶解,起不到防护效果)。因而,钝化液要与酸洗溶液分隔,防止六价铬、三价铬离子进入,并且杂乱产品进入防变色槽中前,要防止有剩余药液存在,长时刻如此,才能使溶液寿数到达最佳状况。 2.设备选用:设备选材至为要害,容器一般以塑料为主,加温管有必要铜材,或许选用外置加热方法。 3.不要让其它金属零件进入溶液中。 4.溶液寿数判别一般以PH值为标准,新配槽液PH值一般为6±1,近中性,当溶液PH超出6-7±3时,溶液应予以作废,假如防变色要求时刻不高,能够以实验为标准,一般情况下,本液PH2-9情况下都是有杰出钝化效果,假如质量要求高时分,能够将PH控制在5-7和4-8规模以内。 5.别的,防变色槽液前清水槽需求经常用PH试纸查看其PH数值,假如发现清水脱离中性,主张当即替换清水,不然防变色剂将受到影响。 以上关于黄铜抗氧化剂技术是什么相关文章,期望对您有所协助!
太钢烧结烟气脱硫脱硝工艺实践
2019-02-25 13:30:49
1立项布景
SO2是大气首要污染物之一,它的排放严峻影响到人类的生存环境和经济开展。现在,钢铁职业的SO2排放量仅次于电力职业,居于全国排放量的第二位。在钢铁工业中,烧结工艺是钢铁出产流程中SO2发作的首要来历。
烧结烟气具有如下特色:
1)烟气量大;
2)受烧结机质料结构影响,烧结烟气成分动摇大,温度动摇大;
3)烟气中SO2浓度相对较低,一般发电厂排放烟气SO2浓度约5000mg/Nm3,而烧结烟气中SO2浓度一般低于1000mg/Nm3;
4)烟气成分杂乱,由于烧结进程运用多种原燃料,因而烧结烟气成分相对于电站锅炉杂乱,烟气中除含有SO2外,还含有NOx、HF等多种有害气态污染物及含铁粉尘、重金属等固态污染物;
5)烟气中含氧量相对较高,一般发电厂排放烟气中含氧量约8%,而烧结烟气中含氧量约15%。
正是由于烧结烟气存在上述特色,形成烧结烟气脱硫不能彻底参照发电厂烟气脱硫技能,有必要寻觅合适自身开展需求的脱硫工艺技能。
烟气脱硫办法有许多种,一般分为湿法、半干法、干法。自20世纪70年代起,烧结烟气脱硫技能开端逐步在日本、欧洲部分发达国家进入工业化运用,由于各国政府的环境方针和法律法规的差异,世界各地形成了具有各地域特色的烧结脱硫技能。在日本,前期以石灰石-石膏法和氧化镁法(湿法)为主,近年来建造的烧结烟气脱硫则以活性炭干法为主,而欧洲以循环流化床法为主。我国自20世纪末开端注重烧结烟气SO2污染问题。经过多年的引入吸收和不断的自主研制,呈现出百家争鸣的格式。现在国内各钢铁厂商选用的烧结烟气脱硫技能首要有:石灰石-石膏法、法、双碱法、循环流化床法等。
太钢450m2烧结机于2006年建成投用,烟气量为140万Nm3/h,年排放SO2约9800t、NOx3800t、粉尘1200t,经过3年多对国内外同职业烟气脱硫技能的盯梢、调研、比照,太钢终究以为活性炭法脱硫脱硝及制酸一体化设备是烧结烟气脱硫脱硝处理的最优计划。
2 太钢烧结烟气脱硫脱硝工艺体系组成
太钢烧结烟气脱硫脱硝工艺体系由烟气体系、脱硫体系、脱硝体系以及相应的电气、仪控(含监测设备)等体系组成。其工艺流程见图1。
烟气体系首要包含烟气体系和增压风机体系。
脱硫体系首要包含吸附体系、解吸体系、活性炭的运送体系、活性炭的补给、热风循环体系和凉风循环体系。
脱硝体系首要包含体系(包含液贮存、运送、蒸腾、混合注入等)。
2.1烟气体系
烟气体系总阻力按8000Pa考虑。
增压风机参数:
1)流量:3059760m3/h(工况);
2)全压:8000Pa;
3)功率:8500kW;
4)风机转速:745r/min;
5)额外电压:10kV。
2.2脱硫体系
脱硫体系分为:吸附体系、解吸体系、活性炭运送体系、活性炭补给体系、除尘体系和热风循环体系、凉风循环体系。
2.2.1吸附体系
吸附体系是整个工程中最重要的体系,首要设备由吸收塔、NH3增加体系等组成。在吸收塔内设置了进出口多孔板,使烟气流速均匀,进步净化功率。吸收塔内设置三层活性炭移动层,便于高效的脱硫。
2.2.2解吸体系
吸附了硫化物的活性炭,经过运送机送至解吸塔,在这里活性炭从上往下运转,首要经过加热段,被加热到超越450℃以上,将活性炭所吸附的物质解吸出来。富二氧化硫气体(SRG)排至后处理设备,制备硫酸。解吸后的活性炭,在冷却段中冷却到150℃以下,然后经过运送机再次送至吸附塔,循环运用。
2.2.3活性炭运送体系
活性炭再循环是经过两条链式运送机,确保活性炭在吸附塔和解吸塔之间循环运用。
No.2 AC 链式运送机坐落吸收塔的下部,将吸附了烟气中SO2的活性炭运送至解吸塔。
No.1 AC 链式运送机坐落解吸塔的下部,将解吸后的活性炭运送至吸附塔再次重复运用。
2.2.4活性炭补给体系
活性炭在脱硫进程中,会呈现破损,颗粒度下降,为确保脱硫功率,需将小颗粒的炭粉排出,这就需求不断的弥补新的活性炭。活性炭的消耗量为400kg/h。
在该体系中,外购活性炭经过皮带运送至活性炭储罐,储罐规格为Φ3.6m×16.5m,相当于7天用量。
2.2.5热风体系
热风体系首要供应解吸活性炭的热风。在此体系中,经过煤气发作器将空气加热至450℃,在经过循环风机送至加热段。
2.2.6凉风体系
将经过解吸后的活性炭,在冷却段中冷却到150℃以下。
2.3 脱硫首要设备
2.3.1 吸收塔
在此工程中,吸收塔是由六个相同的模块组成。
塔体规格:长:7m×6m,宽:9.28m,高:41.12m。
其间一个吸收塔模块是由两个彼此对称的面板所组成,每一个面板都是由活性炭床的多个小格所组成的。挑选恰当的吸收器模块及小格的数量,就能够处理必定的废气量。(一个吸收器模块处理废气的标准才能是150000-250000Nm3/h)。废气经过进口管道被分配到每一个吸收器模块中,气体经过左右两个活性炭床面板时得到净化。
活性炭床是由进口和出口格栅及阻隔板组成。这些格栅是经过特殊规划的,以便于避免被大颗粒和炭粉所塞满。该吸收塔由三个床组成,分为前床(“FB”),中间床(“MB”)和后床(“RB”)。每一个床都有辊式卸料器来操控活性炭排出的数量。
辊式卸料器的特色如下:
1)操控活性炭的下落速度,能够确保去除污染物质(如:SOx、NOx、尘埃及其他等)的功能到达最高。
2)经过操控活性炭的下降速度,能够避免吸收塔的压力降升高。
2.3.2解吸塔
解吸塔首要由加热器和冷却器组成,加热器和冷却器均为多管式热交换器。在加热器中,活性炭被加热到400℃以上,被活性炭所吸附的物质,经过解吸后排出,此处排出的气体被称为富二氧化硫气体。经过解吸后的活性炭,在冷却段中冷却到150℃以下。解吸塔排出的活性炭经振动筛筛分,筛上料由No.1AC链式运送机运回吸收塔运用。
为了确保活性炭下落量的均衡,在解吸塔的下部放置一个辊式卸料器。
为了确保有害气体不外泄,在解吸塔的上部和下部均设备双层旋转卸料阀。
活性炭的特色:活性炭(AC)自身是易燃物质。特别是在开始三个月的运用期,由于活性炭的吸附是放热反应,因而活性炭的温度将比烟气的温度高大约5℃,由于新的活性炭更简单氧化。
当烟气体系正常运转时,活性炭氧化的热量将被烟气带走。但是,当烟气体系呈现毛病,例如增压风机毛病,这时无法将热量带走,在吸收塔中的活性炭的温度将会持续地增高。当活性炭的温度超越165℃以上时,进口和出口的切断阀需求封闭,氮气喷入吸收塔内部以避免发作火灾,此刻活性炭持续下落运送到解吸塔中,解吸塔中充满了氮气能够救活。为了确保活性炭不焚烧,活性炭将有必要从吸收塔到解吸塔再到吸收塔这样循环一次(大约一周的时刻)。因而,在开始的三个月傍边,将烟气的温度操控在大约120℃左右。
2.4脱硝体系
脱硝体系首要包含气直销体系,液的卸车、蒸腾、调压及与空气混合直销至吸收塔喷洒。
气直销体系包含液储槽、气蒸腾器、压缩机、气稀释槽、气调压设备、气与空气混合设备及配套管道体系及操控设备。外购的液经过槽车运到用户区,用压缩机卸到液储槽,经蒸腾器汽化后,经过调压设备调到用户压力后送至混合单元。在混合单元设有操控阀门调节用气量及压力,设有火花捕集器避免爆破与回火,与加压后被加热到130℃的空气混合后供应工艺体系运用。
3 环保作用及副产品
3.1环保作用
本工程投产后,每年SO2外排量由6821t 削减为341t,每年削减外排SO26480t,脱硫功率95%;每年粉尘外排量由1050t削减为210t,每年削减外排粉尘840t,除尘功率80%;每年NOx外排量由2774t削减为1858t,每年削减外排NOx916t,脱硝功率33%。
3.2副产品
本工程浓缩的SO2废气经过废气净化体系及硫酸制备体系,制备98%(浓度)的浓硫酸,产值为9500t/a(按年运转8400h核算)。
4 出资
太钢炼铁厂450m2烧结机烟气脱硫脱硝工程初步规划,工程出资概算为33508.57万元,其间静态出资32320.57万元,建造期借款利息1188万元。
5 功能测验成果
功能测验成果见表1。
表1 功能测验成果
————————————————————————————————
项目 确保值 脱硫测验成果
————————————————————————————————
SO2 ≤41mg/Nm3(干) 7.5mg/Nm3(干) 合格
脱硫率≧95% 98% 合格
NOx ≤213mg/Nm3(干) 101mg/Nm3(干) 合格
脱硝率≧33% 50% 合格
尘埃 ≤20mg/Nm3(干) 17.1mg/Nm3(干) 合格
PCDD/F ≤0.2ng/Nm3-TEQ(干) 0.15ng/Nm3-TEQ(干) 成果未出
NH3逃逸 ≤39.5ppm(干) 0.3ppm(干) 合格
制酸 硫酸98%一等品 一等品 合格
————————————————————————————————
6 结语
太钢烧结烟气活性炭法脱硫脱硝与制酸体系运转一年来,作业率到达95%以上,脱硫率到达95%以上,脱硝率到达40%以上。经太原市环境监测中心站检测,排放烟气SO2浓度7.53mg/Nm3,NOx浓度101.33mg/Nm3,粉尘浓度17.13mg/Nm3,环保目标明显改进。年产副产品浓硫酸9000t,全面用于太钢轧钢酸洗工序和焦化硫出产,变废为宝,为冶金烧结范畴完成循环经济产业链供应了成功典范。烧结烟气活性炭法脱硫脱硝与制酸技能值得在全国冶金职业推广运用。
某铝土矿选矿脱硫试验研究
2019-01-24 09:38:21
铝是地壳中丰度最高的金属元素,从20世纪50年代起,铝超越了铜成为消耗量仅次于铁的金属元素,用于制备氧化铝的主要原料是由一水硬铝石、一水软铝石或三水铝石组成的铝土矿[1-3]。我国西南地区存在大量的铝土矿资源,但由于铝土矿中含硫偏高,资源未得到有效地利用。随着我国铝工业的发展,高铝硅比的铝土矿资源越来越少,开发和利用含硫较高的铝土矿将显得尤其重要[4-7]。为此对西南某含硫铝土矿进行了脱硫试验研究。
一、矿石性质
对西南某铝土矿进行工艺矿物学研究,矿石中主要元素的化学分析结果见表1。由表1看出,矿石中硅的含量较高,铝硅比(A/S)较低,矿石中杂质元素Fe2O3、TiO2、硫的含量较高。由于该矿石除硫外,其余杂质能满足现氧化铝生产工艺的要求,所以仅进行了脱硫试验。
矿石中铝矿物主要由一水硬铝石、一水软铝石、三水铝石和铝凝胶组成;含硅脉石矿物主要由高岭石、绿泥石、伊利石组成;硫化矿物主要由黄铁矿、白铁矿、黄铜矿、方铅矿组成;铁矿物主要由针铁矿、水针铁矿、菱铁矿、赤铁矿组成;钛矿物主要由锐钛矿、金红石组成;此外还有少量电气石、锆石、石英、绿帘石、榍石、方解石等脉石矿物。
黄铁矿、白铁矿是矿石中最主要的硫化矿物,主要呈斑块状、结核状、不规则粒状、环状、微细粒状等形式产出。部分黄铁矿被压碎成微粒状嵌布在脉石矿物中。也有少量黄铁矿呈微细粒浸染状不均匀地分布在脉石矿物中。此外还有少量黄铁矿沿脉石矿物的裂隙充填成脉状、细脉状分布。在黄铁矿中常有金红石、锆石等矿物的细粒包裹体。黄铁矿的粒度为10~300μm,其中+74μm占65.52%,而粒度小于10μm占4.67%。
二、选矿试验
该铝土矿中含硫矿物t要为黄铁矿和白铁矿,对该矿进行了浮选流程试验研究。
(一)pH条件试验
该矿矿浆自然pH值为5.80,加碳酸钠调矿浆pH值,捕收剂为丁基黄药,用量50g/t,起泡剂为BK201,用量60g/t。pH条件试验结果见图1。图1表明,脱硫以矿浆自然pH值为5.80时最佳,加入碳酸钠对脱硫是不利。
(二)抑制剂条件试验
矿浆自然pH值为5.80,捕收剂为丁基黄药,用量50g/t,起泡剂为BK201,用量60g/t。抑制剂BK313条件试验结果见图2。图2表明,抑制剂BK313对脱硫的影响是明显的,随着BK313用量的增加,尾矿脱硫率迅速增加,当用量为360g/t时,硫精矿中硫的回收率达到最高,脱硫后的尾矿经一次粗选其硫含量即可降至0.43%。再增加用量硫精矿中硫的回收率有下降趋势。因此抑制剂BK313最佳用量为360g/t。
(三)捕收剂用量条件试验
矿浆自然pH值为5.80,起泡剂BK201用量60g/t,抑制剂BK313用量360g/t,捕收剂用量条件试验结果见图3。在用量为50~70g/t即可获得较理想的试验结果,确定捕收剂用量为50g/t。
(四)泡剂用量条件试验
矿浆自然pH值为5.80,捕收剂丁基黄药用量50g/t,调整剂BK313用量360g/t,起泡剂用量条件试验结果见图4。图4结果表明,随起泡剂用量增加,硫精矿硫的回收率增加,当用量为60g/t时,尾矿硫品位降至0.55%,再增加用量,尾矿硫品位不变,硫精矿硫的回收率增加幅度很小。因此将起泡剂用量定为60g/t。
(五)磨矿细度条件试验
完成上述各种条件试验后,在最佳条件下,进行了脱硫的磨矿细度试验,试验结果见图5。脱硫磨矿细度不宜太细,当磨矿细度大于75%-74 m时,脱硫尾矿硫含量又趋于上升,且硫精矿品位及其硫的回收率随磨矿细度增加有下降趋势。按合同要求(脱硅精矿含硫量小于0.50%)以及下一步浮选脱硅工艺的条件,最佳脱硫磨矿细度(粗磨细度)应在65%~75%-74μm之间(脱硫尾矿含硫量小于0.40%),粗磨细度可根据脱硅工艺的变化而变化。
(六)脱硫浮选开路试验
在条件试验的基础上,按图6所示流程及条件进行了全开路脱硫浮选试验,试验结果列于表2。开路试验结果表明,在一次扫选条件下,可获得含硫0.29%的脱硫尾矿。硫粗精矿经一次精选可获得含硫34.87%的硫精矿,硫精矿中A12O3损失率为0.56%。
(七)脱硫浮选闭路试验
按图7流程进行了闭路试验。试验结果见表3。
获得了铝精矿铝硅比4.18、A12O3回收率为96.57%、含硫量为0.37%的选别指标,达到氧化铝生产要求。
三、结语
矿样中含硫矿物主要是黄铁矿及少量白铁矿,脱硫浮选矿浆是酸性矿浆,自然pH值为5~6,通过一次粗选、一次扫选和一次精选,即可将铝精矿中含硫降至0.37%,满足铝精矿含硫低于0.5%的要求。
氧化剂和金溶解反应的电动势
2019-02-19 10:03:20
依照电化学腐蚀理论,金的溶解反响首要取决于金粒微电池的反响电动势(E)。E值愈大,金溶解反响的自由能(△G=-nFE)改变愈小、反响的推动力愈大,金溶解反响的热力学条件就愈好。
也就是说,要加速金在溶液中的氧化溶解反响,则需求加大正极和负极反响的电位差(电动势)。用浸出金时,负极Au(SCN2H4)2+∕Au电对的反响电位0.38V(25℃时)是个定数,故只要选用电对电位高的氧化剂来加大正极反响电位,才干扩展正负极反响的电位差。且在酸性液中具有复原性质,要使金溶解进入溶液,也必须有氧化剂存在。
在选用氧化剂时,首要应该考虑它的报价便宜、易得、复原产品不与生成安稳络合物等条件,还应考虑它的电位应高于负极金、银溶解生成络离子的反响电位。一般来说,氧化剂的电位愈高,金、银溶解反响的推动力就愈大。但氧化剂的氧化才能太强,则会加重的氧化而分化生成S0、HSO4-、SO42-等,使的耗费增大乃至失效。
表1是一些常用氧化剂的标准氧化复原电位。И.Н.普拉克辛在进行浸金实验中,曾别离选用漂、、重氧化剂。实验中发现溶液中金的溶解量小,而很快呈现元素硫沉积。阐明这些氧化剂的氧化才能太强,它使很快被氧化分化。除此,就只能从电位适中的高价铁盐、氧和二氧化锰等氧化制中挑选了。表1 常用氧化剂的标准氧化复原电位电对H2O2∕H2OMnO4∕Mn2+CrO42-∕
Cr3+Cl2∕ClClO4∕Cl2Cr2O72-∕
Cr3+E0∕V1.7761.5071.4471.3961.3851.333电对O3∕H2OMnO2∕Mn2+NO3-∕HNO2Fe3-∕Fe2+SO42∕H2SO3E0∕V1.2281.2280.940.720.420.17
鉴于金矿石和精矿中总含有一些铁(黄铁矿、褐铁矿等),大都质料中常常含铁较高,在酸性浸金进程中必有一部分铁溶解进入溶液中,而为运用Fe3+作氧化剂供给了条件。且在正常作业条件下,溶液中含铁0.5~2.0g∕L就满意作氧化剂用,故在浸出矿石或精矿时只需向浸液中鼓风拌和,溶解于溶液中的氧就能使Fe2+氧化为Fe3+,并不断得到再生。且鼓入压缩空气溶解入溶液中的氧浓度约为8.2mg∕L,它本身就足以使金氧化进入溶液(式1)。故选用Fe3+和鼓风溶解的氧作混合氧化剂,有利于进步浓度,金粒表面也不会发作钝化,可强化浸出进程。因而,它已成为如今浸金最理想的氧化剂。
Au+2SCN2H4+H++ O2 Au(SCN2H4)2+ H2O (1)
如上所述,金粒微电池的反响电动势(E)等于正极反响和负极反响电位之差(E=φ+-φ-)。当运用Fe3+作氧化剂时,反响式(2)~(4)的反响电位和电动势为:
Fe3++e Fe2+ (2)
Au++2SCN2H4 Au(SCN2H4)2+ (3)
Au+Fe3++2SCN2H4 Au(SCN2H4)2++Fe2+ (4)
式(2)电位φ+=Fe3+∕Fe2+=0.77V
式(3)电位φ-=Au(SCN2H4)2+∕Au=0.38V
式(4)电动势E=φ+-φ-=0.39V
从上式看出,运用Fe3+作溶金的氧化剂,其浸出反响具有较高的电动势,它完全可以满意溶金对氧化剂的要求,且廉价易得。
从式(5)反响阐明在室温文酸性溶液中易氧化为二硫甲脒。因为(SCN2H3)2/SCN2H4电对的电位为0.42V,比式(3)Au(SCN2H4)2+/Au电对电位0.38V高0.04V。故溶金进程中二硫甲脒实质上也成为氧化剂参加对金的氧化。且在作业pH1~1.5范围内,二硫甲脒对银的氧化比对金强。但在惯例情况下与Fe3+比较,二硫甲脒的氧化作用仍是很小的。
2SC(NH2)2 (SCN2H3)2+2H++2e (5)
但是,R.G.舒尔策(Schulze)的实验则得出彼此对立的成果。他运用一片0.25cm2重45.8mg的金片,于1L的五颈玻璃反响器中,在pH=1.0、浓度0.5g∕L、温度40℃、拌和速度400r/min条件下,参加不同浓度的Fe3+作氧化剂进行金浸出时发现,只要在Fe3+浓度0.2~0.7g∕L时,金的溶解速度才跟着Fe3+浓度的增加而加速。当Fe3+浓度到达或超越3g∕L时,金的溶解速度则跟着浸出时刻延伸而呈下降趋势。这或许是因Fe3+浓度增大而导致氧化丢失所造成的。图1是不同Fe3+浓度在不同时刻溶解金量的曲线改变。从图中看到实验曲线呈现了相交现象。若以图中3h、6h和7h的数值来点评实验成果,就会得出彼此对立的定论。这一现实之所以被许多研究者忽视,显然是溶金的理论研究还较浅显所造成的。在T.格罗内瓦尔(Groenewald)的报导中也说到:尽管Fe3+的存在对金的初始溶解速度很大,但因它能与生成安稳的〔Fe2(SO4)3·SCN2H4〕+络离子,致使耗费过大,而使金的溶解速度随时刻的延伸而急剧下降。且他用南非的金矿石进行实验时,发现从矿浆中能释放出很多氧化剂,其数量足以氧化溶解矿石中三分之二的金。他以为:这是矿石中的某些物质在参加反响时生成的氧化剂,而使得向浸液中增加Fe3+并不一定必要。这些氧化剂,也或许就是被氧化生成的二硫甲脒,而在溶金进程中成为活性氧化剂:
2Au+(SCN2H3)2+2SCN2H4+2H+ 2Au(SCN2H4)2+图1 不同Fe3+浓度(g∕L)对金溶解速度的影响
长春黄金研究院对小巧金精矿(含S38%)、峪耳崖金精矿(含S28%)、四道淘金精矿(含S29%)进行的-铁浸置实验证明,不别的增加氧化剂,金的浸出率都大于96%,刺进矿浆中的铁板上金的沉积回收率大于或等于99.48%。他们的实验还标明,若采用上法处理已有适当氧化程度的低硫金精矿时,则需增加氧化剂。实验是在室温文拌和条件下进行的。当不加氧化剂时金的浸出率较低;而增加H2O20.22~0.31mol,浸出时刻4~16h,金的浸出率别离进步1.32~2.27倍(见表2)。且从表中看出,浸出时刻4h金的浸出率和进步倍数最大,它阐明浸金的初始溶解速度很大,并随H2O2的耗费而减慢。实验者还以为,参加适量H2O2,可使首要氧化生成二硫甲脒:
2SCN2H4 (SCN2H3)2+2H++2e
而进步金的氧化浸出率。但H2O2的氧化才能太强(见表2),增加过多会使激烈氧化而耗费丢失,而使金的浸出达不到结尾。表2 低硫氧化金精矿增加或不加氧化剂金的浸出率比较氧化剂增加浓度∕mol浸出时刻∕h金浸出率∕%浸出率进步倍数∕倍不加H2O2加H2O2H2O20.22428.5865.062.27H2O20.31843.7571.001.62H2O20.311657.5076.251.32