炼铁厂块矿筛分除尘器内迁设备技术改造小记
2019-01-17 13:33:11
2016年,炼铁厂以全员“居家理财”为载体,人人“交家底、想家事、聚家财”,处处深挖、事事细抠降本增效,特别是在烧结工序块矿直供系统配套除尘器设备“大迁移”改造过程中更是做足了降本“文章”。
曾经的“废管道”今朝的“香饽饽”。气割切、电焊补、大锤砸,从废铁堆和闲置备件库找来的两节废旧管道,被450㎡烧结作业区的维修班长老康带着2名维修工费了九牛二虎之力拼接成符合改造尺寸的除尘管道备件,他们又将找来的废旧弧板裁割成“小块头”,被当作“万能贴”,分别贴在除尘管道弯头易损部位,便成了自制耐磨弯头,可提高管道的使用寿命……,就这样曾经的废管道、废弧板,经过这群“居家理财”的维修工巧妙加工,如今变成了抢手的“香饽饽”。“灵感思维”为备件找“替身”。被改造除尘器的传动方式是电机三角带传动形式,由于闲置除尘器存放时间长、电机端小皮带轮缺失,为了降低改造成本,该厂技术主管老马带头在废铁堆、废旧备件库逐一寻找合适“替身”,经过他们一番“搜寻”后,找到了和风机端尺寸一致的废旧大皮带轮,当大家还继续寻找时,技术员小李的一句话:“大家快瞧!这边有个闲置六级电机,和我们除尘风机的电机一样,只是级数不同。”也就是这句话,让老马想到了改变风机电机的级数利用废旧大皮带这一妙招,老马说“我们现场的电机是四极电机,转速1450转/分钟,采用的是小皮带轮带动大皮带轮形式,而这台六级电机转速是960转/分钟,我们可以采用大皮带轮带动大皮带轮的形式进行替代改造,不是正好吗”说干就干,立即组织维修工对淘来的“宝”进行拆卸、安装、调整,最终风机调试成功,平稳的运转起来了。
“资源”变“财源”。赚回来的就是效益,该厂在这次技术改造中充分发挥铁前系统整合优势,让原本的外委项目“回归”。承担除尘器这种大型设备的拆卸、安装活,对炼铁厂原一、450㎡作业区维修工还是第一次,作业区设备主管耿继成、蒋邵峰主动请缨,分别揽下了设备安装和管道安装项目,为公司降低了外委检修费用。在改造中他们按照图纸,加班“连轴转”群策群力,开动脑筋,制定施工方案,使得改造工期提前完成,这样一来,既降低了外委拆卸、安装费用约10万余元,又通过实战练兵提高了维修人员业务技能,做到了把内部“资源”变为“财源”。
中频炼金炉
2019-03-07 10:03:00
中频炼金炉本产品首要应用于黄金矿山冶炼厂商。适用于全泥化和金精矿化锌粉置换金泥及电解精粹金泥的冶炼 制品金熔炼 铸锭工艺。该产品升温快 ,出产效率高;节能省电,冶炼成本低;炉温高 坩埚密度大,冶炼回收率高。在国内黄金厂商得到广泛应用。中频炼金炉首要技术参数1,额外输出功率100KW50KW2、输入电压(三相)380V380V4、输出中频电压700V700V5、输出直流电流250A200A6、逆变输出频率1250Hz1250Hz7、坩埚容积(L)30L(石墨粘土坩埚15L)15L(石墨粘土坩埚8L)顶升炉容积可根据需求调理8、作业最高温度1650-1700℃1650-1700℃石墨粘土坩埚1400-15000C9、熔炼时刻40-60分钟/埚40-60分钟/埚合质金10、金银精粹铸锭20-30分钟/埚20-30分钟/埚11、倾炉速度、[顶升速度]2°/s[15mm/s]4°/s [15mm/s]12、冷却水进水压力0.2mpa0.2mpa13、冷却水流量 10m3/h8m3/h
冶金电炉
2019-01-04 11:57:16
生产交流单相单、双极串联两用电渣炉结构合理,配置优化,有独特的短网单、双极大电流转换开关 , 操作方便 , 维护简单 , 运行稳定可靠。可实现化渣、单级冶炼、双级冶炼。其结构形式有:1. 双臂交替单工位 ( 结晶器固定 2. 双臂交替单工位 ( 结晶器底台车移动 等。传动方式有: 1. 液压传动 ( 升降、旋转、电极夹持、底台车移动、开关油缸 。 2 机械传动 ( 球形丝杠升降、悬臂伸缩、悬臂旋转、手动夹紧 。控制系统: 液压为电液伺伏系统,机械为变频调速。规格有: 0.5t 、 1t 、 1.5t 、 3t 、 5t 、 10t 、 15t 、 20t 等。变压器类型: 无载有级调压、带载有级调压、带载无级调压、 T 型变压器等。变压器功率和调压级数需根据工艺要求、电渣坯截面直径尺寸商定。此类型电渣炉已在实际生产过程中产生较高的生产效率和良好的经济效益。
电炉处理废铅
2019-02-20 09:02:00
电炉处理再生含铅质料是先进的工艺。电炉熔炼与鼓风炉熔炼处理废铅蓄电池及再生烧结质料比较,明显的长处是焦耗低。往炉猜中参加的焦炭量只确保炉中进行复原反响的需求。这样,使用空气焚烧焦炭已无必要,成果,生成的烟气少了,削减了炉尘的排出量和烟气净化的费用。电炉熔炼时,大大削减了热丢失,既随废气又随废渣的热丢失将削减60%。
图1 鼓风炉复原熔炼铅烧结块、再生质料和返料的工艺流程图
图2 鼓风炉熔炼废铅蓄电池的工艺流程图
电池法将含铅再生质料处理成铅锑合金的工艺是由全苏有色金属科研设计院等单位研发的。工业规划的苏打复原电熔炼法在列宁诺戈尔斯克铅厂首要选用。此法的特点是在熔炼再生物料时增加苏打、石灰石和含铁物料等熔剂,直接出产契合全苏标准的铅锑合金。
在电炉出产铅锑合金时,熔炼进程中一起进行铅硫酸盐和氧化物同苏打(或许苏打-硫酸盐混合物)及炉料的其它氧化物组分和碳复原剂交互反响。
炉料在电炉的复原环境中熔化并发生出液相;粗铅散布在炉子的下部;冰铜-炉渣的熔体呈较轻相,构成熔体上部。
在电炉中进行的氧化-复原进程的反响进程归结如下:炉猜中有铅的氧化物和硫酸盐化合物,在加热时,它们与固态碳和在碳酸钠存在的条件下发作效果;铅的氧化物、硫酸盐和硅酸盐与铅和钠的硫化物发作效果。[next]
在固相中进行的流程反响进程可用以下流程和反响式表明:
Pb+CO→PbO·CO吸离→PbCO2吸离→Pb+CO2 (1)
PbO·SiO2+CO→PbO·SiO2·CO吸离→Pb·SiO2·CO2吸离→Bb+SiO2+CO2 (2)
2PbO·SiO2+CO→2PbO·SiO2·CO吸离→Pb+Pb·SiO2·CO2→2Pb+SiO2+2CO2 (3)
C+CO2→C+CO2吸离→CO·CO→2CO (4)
PbO+Na2CO3+C→Pb+Na2O+CO2+CO (5)
PbSO4+Na2CO3+3C→Pb+Na2S+3CO2+CO (6)
PbSO4+2C→PbS+2CO2 (203)
Sb2O3+3CO→Sb2O3·3CO吸离→2Sb+3CO2 (7)
与氧化铅基本上是在液相中按下列反响相互效果:
Na2S+3PbO→3Pb+Na2O+SO2 (8)
Na2S+3(2PbO·SiO2)→6Pb+Na2O+SO2+3SiO2+1.5O2 (9)
Na2S+3(Pb·SiO2)→3Pb+Na2O+SO2+3SiO2 (10)
必定数量的氯化物跟着返尘进入炉料。氯化物与硫酸钠在有碳存在的条件下按下列反响相互效果:
PbCl2+Na2CO3+C→Pb+2NaCl+CO2+CO (11)
废钢是炉料的必要的组分,确保硫化铅和硫化锑与铁复原反响的进行:
PbS+Fe←→Pb+FeS (12)
Sb2S3+3Fe←→2Sb+3FeS (13)
冰铜熔体由未进行反响的硫化铅、硫化铁和硫化钢组成。熔体的渣组分由无矿岩的组分(SiO2、CaO、Al2O3)在与碳酸钠相互效果下构成:
Na2CO3+nSiO2←→Na2O·nSiO2+CO2 (14)
Na2SO4+nSiO2←→Na2O·nSiO2+SO3 (15)
mNa2O·nSiO2+CaO←→mNa2O·CaO·nSiO2 (16)
由于再生质猜中无矿岩石的组分含量不高,故单相渣未构成,而成为冰铜-渣熔体的成分。
熔炼产品的分化彻底取决于它的物理学性质。钠质硅酸盐渣熔体溶解极少量的铅和锑,因而熔炼时金属随硫化物渣熔体的丢失不大。铅和锑的化合物在钠质硅酸盐渣熔体中的的溶解度列于表1。
表1 铅和锑的化合物在钠质硅酸盐渣熔体中的溶解表渣的成分(%)温度(℃)铅和锑化合物的平衡浓度(%)PbPbSSbSb2S2SiO2 36.39000.030.270.091.35Na2O 39.510000.0380.290.0092.40CaO 24.212000.039—0.009—SiO2 26.29000.0780.280.211.85Na2O 45.010000.1000.290.193.80CaO 20.311000.16———FeO 20.012000.181.30——SiO2 37.49000.0250.200.303.0Na2O 32.410000.035——3.1CaO 20.311000.035——3.4FeO 9.9
铅和锑的平衡浓度跟着含这两种金属硫化物的体系中温度的升高而增大。二氧化硅含量增高则下降了平衡浓度,往渣体系中参加氧化铁则进步铅的平衡浓度。
熔炼产品的定性别离,考虑到铅和锑两种金属及其渣熔体的硫化物,经过调理炉膛深度而成为可能。依据熔体温度差确保铅、锑、铜的硫化物的熔析,并有用地与冰铜体交互反响。
电熔炼进程的技能指标定于渣熔体的粘度和电导率。二氧化硅含量的进步和渣中氧化钙和含量的下降使渣的粘度增大并使其出炉困难。此外,二氧化硅的含量增高还下降了电导率。[next]
下面列出渣熔体的粘度和电导率与温度的相关联系(SiO231.0%、Na2O35.25%、CaO8.75%、FeO29%):
温度(℃) 750 900 950 1000 1050 1100 1150 1200
粘度(帕·秒) 84 36 24 14 11 80 5.9 3.4 电导率(西·厘米-1) 0.76 1.11 1.61 1.91 — — — — 在工业实践中,对再生铅质料以苏打复原进程进行过电炉熔炼,生成含有SiO228~42%、Na2O28~40%、CaO15~24%、FeO10~20%的冰铜-渣熔体。这样的成分确保得到贫铅的冰铜-渣溶体并进步了铅和锑的回收率。
电炉熔炼的实践 按工艺流程图(图3)将再生质料用电热法处理成含锑的铅。再生质料应契合ГOCT1639~78的要求。用来电炉熔炼的再生质料有:铅和含锑的铅的废料、废铅蓄电池、铅渣、铅泥、拆解蓄铅蓄电池的金属产品。含铅物料的化学成分列于表2。
图3 电炉熔炼含铅再生质料的工艺流程图
表2 电炉熔炼的含铅物料的化学成分(%)物料PbSbCuSAsSnFeSiO2其它废铅块料97.0~99.00.25~0.5——————0.5~2.75含锑的铅废料及块料90.0~95.00.25~0.5————5.0—1.5~4.5废铅蓄电池73.5~88.51.2~4.13.4~3.63.2~7.00.02~0.010.01—1.0~2.01.6~19.2废铅蓄电池崩溃后的金属产品90.0~92.53.0~4.00.20.6~0.880.010.01——3.9~6.4
电炉熔炼成铅锑合金工艺对再生质料的备料提出高要求,这些要求在于要细心进行下列工序:检验、分选、崩溃、熔炼前的预备。在一年的冰冷期间,质料必定要枯燥,剩余水分不超越4%。
在一家工厂里用电炉熔炼的炉料100%是再生质料(铅含量不低于75%)。再生质料总量的4~6%是碳酸钠,1.5~2.0%是石灰石,2~3是铁屑,5~8%是冶金焦炭。焦碳的配比依据熔炼面上发生的厚度为50~100毫米的固定层核算而定。[next]
依据出产下列成分的冰铜-渣熔体的需求来断定炉料成分:Pb3~5%,Fe全23~30%。Cu1.2~3.0%,S12~15%,Na17~20%,SiO27~9%,CaO12~14%,其它7.3~16.0%。渣-冰铜中SiO2的含量在7~9%的水平上,并限于随焦碳灰、铅渣和废铅蓄电池渣棉中的填料而进入。
用板式进料器或许螺旋进料器把炉料装入炉内,送到均匀散布的渣面上,而不构成斜坡。
炉料进入熔体后,开端进行金属的复原反响和生成渣-冰铜熔体的反响。在4~4.5小时内周期性地装入和熔炼炉料。在这个时期,装入炉内27~32吨炉料和返料(尘粒和难熔浮渣)。
熔炼进程在三相三电极电炉里进行了(图4),电极直径为0.3米。电炉的参数如下:
电炉的功率(千伏安) 2300
炉料的单位出产率(吨/米2·昼夜) 9.8
每吨炉料电极耗费(吨) 0.0096~0.011
每吨炉料耗电量(千瓦小时) 600~650
炉底面积(米2) 7.37
熔炼区电炉的尺度(米)
图4 熔炼含铅再生质料的电炉
a-纵剖面;δ-横剖面
宽 1.86
长 3.96
烟气区电炉的尺度(米)
宽 2.1
长 4.2
炉内坚持必要的温度,既考虑到电流经过渣熔体时放出热量,也由于电极和炉料间发生电弧辐射热。
电流经过三根石墨电极进入电炉作业空间,电极终端深化到渣熔体180~450毫米处。
炉膛内的热交换依托渣熔体的对流搅动而得到确保。一起,熔体中的热场适当不均匀。在接近炉壁的当地,电极区确保有最高温度1250~1300℃,在炉底区温度为1000℃,而在炉底(床)温度下降到700℃。温度的不均匀决议了炉料装入的次序。大部分炉料约90%装入接近电极的空间,而少部分(10~15%)装入比较接近炉子的边上。熔池到达1.3~1.4米水平后,开端装入铁屑。熔池温度应不低于1200~1300℃。沉积后,出产出熔炼产品。粗铅放入容积0.7米3的浇包送入精粹车间。渣-冰铜熔体注入钢锭子模,冷却、分隔并入库。熔炼产品的产出率如下:粗铅73~76%,渣-冰铜12~16%,烟气5~7%,碱浮渣0.3%。
下面列出电炉熔炼的技能经济指标:
再生质料 100
苏打(占质料的%) 5.5
石灰石 1.5
废铁 2.9
焦炭 3.8
质料单位熔炼量(吨/米2·昼夜) 8.3
熔炼产品的产出率(占质料的%)
粗含锑铅 74.0
渣-冰铜 13.0
碱浮渣 0.3
在制品蓄电池合金中的回收率(%) 铅 94.2
锑 89.0
在渣-冰铜熔体中的回收率(%)
铅 0.65
锑 2.10
每吨质料耗费的电极(千克) 13.0
电能耗费(千瓦小时/吨质料) 600
温度(℃)
炉膛内 1500
炉顶 900
出产出的铅 860
炉顶下的负压(千帕) 3.0
电热苏打-复原进程是直接出产具有铅和锑回收率高的铅锑合金的有用办法。一起,从质料的综合使用来看,该工艺不能确保充沛提取固若金汤和锡。铜随渣-冰铜的丢失约为91%,锡的丢失约为8~10%。
电炉生产镍铁技术
2019-01-04 09:45:48
1)采用镁质材料筑炉,在筑炉过程中要配好粘合剂并控制用量;捣打时,每一层铺料厚度为40—60mm,并用风镐捣打紧密,捣打完扒毛后,方可铺料捣打下一层;在烘炉过程中要把水分烘干。
2)采用炭砖筑炉,改炭砖平放为竖放,并在炭砖中部打眼用小石墨电极连接成整体,砖缝用炭质材料填充,同时用风镐捣打紧密。
3)在筑炉时,两个出铁口要有一定高差,生产前期使用高位出铁口,当炉底侵蚀到一定程度时使用低位出铁口。
4)控制配碳量和提高二次人炉电压,控制电极下插深度,防止炉底侵蚀。
5)控制好渣型,尤其是渣中的FeO含量,其既影响渣的导电性,又影响渣的熔点,最终影响镍的回收率。
6)镍矿在人炉前需要预先经过干燥脱水,在干燥和预热时控制好配碳量和水分,有利于减少翻渣事故发生,同时也有利于因翻渣引起的电极事故。
7)电极压放时,要勤放、少放;有条件的也可改用炭素电极或石墨电极。
8)加强冶炼操作,勤观查,勤调节。
电炉熔炼的产物
2019-01-07 17:37:58
一、铜锍
不同铜锍品位及其组成见表1。
表1 不同铜锍品位及其组成,%序号CuFeSO211057.6625.86.5422049.3225.35.383304124.84.2144032.6824.33.0254528.51242.4965024.823.31.9076016.2123.090.7
注:本表资料系按X·K阿维齐祥算出的理论组成。
铜锍品位与原料中Cu/S有关。铜锍品位以40%~45%为适宜。品位过高时,铜锍中常含有一些金属(特别是加还原剂熔炼时)。铜锍品位高达55%以上时,会在炉底形成钢-铁合金,这种合金含硫低于5%,铜、铁含量在90%以上。近年来云冶铜锍品位与原料中Cu/S之关系见表2。
表2 云冶铜锍品位与原料中Cu/S之关系年份198119821983198419851986198719881989199019911992采样中Cu/S1.411.321.221.321.361.231.331.331.291.371.471.63铜锍品位,%47.0446.2344.594142.2343.2844.0943.3145.1041.9242.8442.38
云冶生产初期,原料中Cu/S较高,铜锍品位亦较高。近年来,原料中Cu/S基本稳定在1.2~1.3,铜锍品位稳定在42%~45%。
小型工厂,铜锍品位可以根据吹炼设备情况适当调整。
铜锍对金的捕集率为95%~97%,银为92%~97%。
铜锍具有良好的导电性,它受铜锍成分和温度的影响波动很大,液态铜锍的导电率一般为100~200Ω-1 ·cm-1,约为液态渣的400~800倍。
云冶铜锍化学成分见表3。
表3 云冶铜锍化学成分,%生产时间CuFeS渣Cu/铜锍Cu投产至60年代末53.8220.1521.370.870年代45.125.7322.430.9380年代44.7027.8622.930.871990~1992年42.3825.9123.310.94
国外工厂炉渣成分和铜锍品位见表4。
表4 国外工厂炉渣成分和铜锍成分,%厂别炉渣成分铜锍品位CuFeOCaOMgOAl2O3SiO2苏力切尔玛0.5445~5533~3625罗斯卡0.3838~424.1~4.52.98.137~38.545今贾0.63493.96.536.230皮尔多普0.5~0.750~5533~3630
二、炉渣
渣型应根据原料中各种成分合理选择,一般渣中主要成分为FeO+SiO2+CaO+MgO+Al2O3约为97%~98%;良好的电炉渣型SiO2+ FeO一般为75%~80%,其中SiO2=38%~40%,FeO32%~40%, SiO2∶FeO=1~1.2左右,硅酸度应为1.45~1.6。
云冶炉渣成分见表5。
表5 云冶炉渣成分,%年代CuFeOSiO2CaOMgOAl2O3SiO2/ FeO投产至60年代末0.4317.1639.6619.3310.436.742.3170年代0.4333.1536.7810.656.374.721.1180年代0.3937.8938.996.414.095.161.031990~1992年0.4039.3239.114.512.974.61
炉渣应是熔点低、粘度小、密度低及热含量低。
液态炉渣的电导率对电炉熔炼有重要意义,电炉渣的电导率主要取决于炉渣温度和炉渣成分。电导率随着氧化亚铁含量的增加而升高,随二氧化硅增加而降低。炉渣中氧化亚铁与电导率的关系见图1。图1 炉渣中氧化亚铁与电导率的关系
一般有色冶金炉渣在1350℃时电导率为0.1~2Ω-1·cm-1。
高钙镁炉渣电导率在1300~1320℃时为0.058~0.16Ω-1·cm-1;保加利亚皮尔多普厂高铁炉渣在1160~1250℃时,电导率为0.052~0.3Ω-1·cm-1。
炉渣的物理化学性质的测定数据列于表6、表7。
表6 高铁炉渣的物理化学性质测定数据(一)编号炉渣成分,%熔点℃热含1200℃ kJ/g粘度,10-1Pa·sSiO2FeOAl2O3CaOMgO1250℃1200℃1160℃134.0952.754.643.161.0710901.471.22.54.6236.3448.156.842.381.2310051.211.62.82.2337.7650.214.391.461.3511001.221.72.84.0440.0841.412.962.091.1011202.081.72.95.7542.1139.414.181.791.2511602.102.65.421.8
续表6 高铁炉渣的物理化学性质测定数据(二)编号电导率,Ω-1cm-1表面张力,N/m密度,t/m31250℃1200℃1160℃1250℃1200℃1160℃1250℃1200℃1160℃10.30.280.210.3500.3670.3983.353.433.5020.190.110.090.3300.3430.3603.153.283.3530.270.220.180.3270.3350.3483.253.323.4040.170.140.120.3050.3160.3243.153.203.3050.0060.0610.0520.2840.2860.2952.783.053.20
表7 高钙镁炉渣的物理化学性质测定数据(一)编号炉渣成分,%熔点℃热含1250℃ kJ/g硅酸度密度,t/m3FeOSiO2CaOMgOAl2O3111.5140.2217.3811.5510.4612001.441.763.27215.3741.7517.0911.399.7312201.391.733.32317.8443.2515.819.749.1611801.321.863.36419.6241.4915.775.569.1511701.431.743.55521.8639.2815.699.049.0911401.421.623.45611.4336.7620.8813.1711.3012001.411.423.29718.0934.4817.5211.7710.3612001.431.333.43820.0034.6719.2911.4610.2111701.331.323.46922.5133.7516.4710.4110.9311701.511.303.561024.6432.0315.7510.1810.3211801.381.223.571110.8441.8420.8012.408.3312101.511.493.261216.3243.1817.0911.218.0912201.431.783.331318.9942.4015.9210.957.4311701.471.723.371412.5438.2221.5913.389.1812001.511.203.291517.1337.7618.6612.638.5411951.481.423.421619.8537.4718.6111.658.0711751.391.373.411723.3835.3117.1612.757.5511701.501.193.51
续表7 高钙镁炉渣的物理化学性质测定数据(二)编号粘度,10-1Pa·s电导率,Ω-1cm-11260℃1280℃1300℃1320℃1330℃1340℃1260℃1280℃1300℃1320℃1330℃1340℃133.426.221.017.215.714.80.0440.0500.0580.0680.0780.10231.616.012.49.4329.013.810.79.49.19.00.0760.1020.1230.1380.1460.160416.011.37.85.24.43.60.0760.0830.1000.1280.1700.215517.414.010.98.67.97.20.0650.0710.0880.1390.193635.025.020.016.214.513.00.0480.0520.0540.0550.056720.814.510.98.88.30.0790.0980.1200.16587.45.03.62.60.0840.0940.1120.1430.165920.912.37.95.65.04.80.0820.0980.1230.1460.1651013.04.94.23.43.22.81116.012.09.57.67.06.41214.611.910.108.58.07.5139.88.57.26.05.44.81423.015.810.67.67.06.60.0760.0850.1101542.026.017.712.310.38.50.0840.112165.64.43.32.52.21.90.1320.172177.05.64.53.83.73.60.1020.1260.160 三、烟气
在理论上电炉熔炼每吨炉料产生烟气110~150m3,在熔炼烧结块时可低至45m3,实际上,炉顶密封不好时吸入大量空气,一般烟气量可增大到1000~1800m3/t炉料。在密封良好的情况下,实际可达500~600m3/t炉料。
烟气温度:炉顶密封不好时为170~250℃,采用密封炉顶时可达200~350℃,一般实际为300~500℃,开炉停炉或生产不正常时,温度可达800℃以上。
烟气量实例见表8。
云冶电炉烟气成分、数量见表9。
表8 烟气量实例项目依玛特拉罗斯卡茵斯皮雷森烟气量,m3/t炉料3000800~900638SO2,%2.01.0~1.24.0~6.0
表9 云冶电炉烟气成分、数量烟气成分,%电收尘进口烟气量
m3/t料电收尘出口烟气量m3/t料进口含尘g/m3出口含尘g/m3收尘效率%漏风率%SO2CO2COO2其它2.5~3.53.5~50.1~0.214~16~7573~625650~73030~400.5~194~9810~12
四、烟尘
烟尘的产出率和性质与炉料性质、物料准备、排烟系统的抽力、烟气速度、加料条件等有关。熔炼块矿时烟气含尘可少到0.2~1.3g / m3,烟尘率约为0.03%~0.05%;熔炼粉料时,烟气含尘量可高达60~120g /m3,烟尘率约为8%~10%;粒料作业时含尘量为40~60g/m3,烟尘率为6%~8%。电炉烟尘成分实例见表10。
电炉烟尘粒度组成实例见表11。
表10 电炉烟尘成分元素CuAsPbZnCd%11.173.861.351.890.06
表11 电炉烟尘粒度组成实例,%取样点粒度,μm-1.43+1.43+2.86+4.29+5.72+7.15+8.56+10.01+11.44+12.87旋风收尘器入口24.930.895.7812.6012.1717.2210.238.0023.564.60电收尘器入口12.120.273.6019.4621.5023.108.004.063.873.42电收尘器入口10.7314.0225.1016.979.2010.406.812.102.102.57电收尘器出口12.301.765.2715.2215.0821.5211.576.595.275.42电收尘器出口8.863.6213.8528.0014.3015.706.134.542.502.50
五、某些元素的分布
各种元素在电炉熔炼产物中的分布于炉料性质、炉渣成分和熔炼方法有关,电炉熔炼元素分布实例见表12。
表12 电炉熔炼元素的分布实例,%元素名称铜锍炉渣烟尘Pb82~873~610~15Zn65~807~2312~14Cd65~75约220~25Au90~98.50.3~6.00.1~1.0Ag90~990.3~6.00.1~1.0Re30~6035~70Se30~6020~4020~30Te50~7020~408~14
镍电炉结构(一)
2019-01-25 15:49:32
大型铜镍太熔炼电炉一般采用矩形电炉,它是由电炉本体和附属设备所组成。 1)炉体 矩形电炉炉体主要组成部分有:炉基和炉底、炉墙、炉顶、钢骨架、加料装置、熔体放出口、排烟系统、测温装置和供电系统等,如图所示。 (1)炉基和炉底。矿热电炉炉底温度较高,需要良好的通风冷却,所以电炉基由若干个(国内某厂为96个)耐热钢筋混凝土支柱组成,支柱一般高于1.7m,便于空气流通冷却和观察炉底情况。支柱地表面向安全坑一侧倾斜,以保证炉子发生事故时,高温熔体顺利流入安全坑内。支柱上方铺设成对的工字钢梁,其上铺设一层厚钢板(国内某厂使用40#工字钢,钢板厚度为40mm),钢板上砌筑镁质的粘土质耐火砖炉底,炉底为反拱形,以防止熔体侵入后,炉底砌体上浮。炉底反拱取每米炉宽升高100~200mm。炉底主要由粘土砖层与镁砖构成,两层之间留有30~50mm镁砂层。[next] (2)炉墙。炉墙的外壳一般采用30~40mm厚钢板制成,内砌耐火砖。由于电炉高温度区集中在电极附近,所以熔池区炉墙常用镁砖或铬镁砖砌筑,而最外层耐火粘土砖,渣线以上全用耐火粘土砖,炉墙砖均为湿砌,墙体留有一定的膨胀缝。为了延长炉寿命,近年来有些工厂没炉体四周外炉墙安装冷却水套,效果很好。由于炉子两端没有熔体放出口,炉衬易损坏,故端墙较侧墙厚。两侧墙设有工作门及防爆孔,便于开停炉、观察炉况的排泄炉内高压气体之用。 (3)炉顶。因矿热电炉的炉膛空间温度不高,拱形炉顶一般用300mm厚的楔形耐火高铝砖砌成。炉顶沿炉子中心线设有电极插入孔、转炉渣返回孔。中心线两侧还设有加料孔、排烟孔。由于炉顶开洞较多,这些部位用异形砖筑。先将炉顶砖砌好后,随即浇铸灌高铝质钢纤维低水泥浇注料。 2)钢骨架及紧固装置 为了使炉墙具有必要的刚性,在砖体的外面包一层厚30~40mm的钢壳板。围板外面用骨架加固。 电炉炉底的底板为带筋钢板,安在底梁上,底梁支撑在柱状基础上。 电炉内架由许多立柱组成,立柱相互之间的距离为1.5~20.m。两侧相互对立的柱子用拉杆拉紧,拉杆分别从炉顶上面和炉底下面通过,拉杆端头用螺母和销紧螺母达压紧在夹持立的柱的横梁上,横梁和螺母之间装有弹簧,以缓冲炉墙和炉顶受热膨胀时所产生的水平推力,拉杆是用直径50~70mm的圆钢制作的接头连接。 3)排烟系统 为使烟气从炉膛均匀排出,通常在炉顶设有多个烟孔,其配置视电极排列而定。烟气经烟道、旋风收尘器、电收尘器一系列净化设备后,根据烟气SO2浓度高低送去制酸或排空。 4)电炉加料装置 物料是从炉顶上的矿仓加到炉子 里去的,一般是利用炉顶两侧的刮板运输机,将物料运至小料仓,然后经加料管加到炉膛里,物料给料和配料,采用电振器来进行。 5)熔炼产物放出口 在炉子的一端设有2~4个放低镍锍口,位于炉底以上200~500mm的不同标高上。电炉熔炼的低镍锍,通常是稍许过热的(1200℃)。当放出过热低镍锍时,放过热镍锍时,放出口附近的砖体为低镍锍所浸透,而放出口本身因受蚀而直径变大。为了使放出口具有一定的直径,在孔的外面装有耐火衬套。耐火衬套是用耐高瘟铬镁质材料组成,也有用石墨衬套的,其孔径为30mm。衬套嵌入可拆卸放出口的锥孔中,要使衬套孔的中心和砖体上的低镍锍口中心相一致,使衬套对正中心并固定起来,所用的工具是最大的铸铁环、长箍和楔子,可拆卸的放出口板用连板或楔子固定在炉子外壳上。[next] 放渣口一般为2~4个,设在炉子另一端上,距离炉底的高度为1450~1750mm。放渣口的标高低于渣面,是渣含镍最低的部位。 6)测温装置 为了便于观察炉子的工作情况,在炉体的炉墙和炉顶等不同部位、不同熔池深度分别安装有热电偶,以测量指示各部位温室度变化情况。 7)设备的冷却与知短网防尘 (1)炉底冷却。电炉炉底和导电铜排设有通风冷却高施。电炉炉底由于镍锍 过热而有可能造 成炉底渗漏镍锍,采用处部强制通风进行冷却。每台电炉各用一台风机供风。炉底风机的运行视炉底温度高氏而定。当温底正常(400~500℃),可以不通冷却风;如温度过高(大于600℃),则必须通风。 (2)供电短网(铜排)冷却。由变压侧引出的导电铜排有两种型式:一种是水冷式管状铜管采用循环水冷,另一种是片状铜排采用通风冷却。片状铜排外部装有密封罩,因此必须对导电铜排加以密封,以防止因粉尘堆积而造成片间知短路。密封罩用厚1.5~2mm钢板制成,并用炉底冷却风向罩内供风进行冷却。 8)电极装置 为了向电极供电,每根电极都有一套夹持、供电及使电极活动的装置。电极活动的装置。电极夹持的构件主要为铜瓦,并通过铜瓦向电极供电。铜瓦为铜质弧形中空或预埋铜管冷却的长瓦状水套,其弧形与电极的外圆相吻合.在同一水平上沿电极壳环抱配置,一般为6~8块。电极的上下活动机构可分为机械式与液压式两种,机械式的方法是通过卷扬设备带动电极上下活动,液压式的方法是通过固定于楼板上的液压缸的柱塞升降,带动固定于电极的压放同样可以通过机械的方法和液压的方法来完成,前者通过钢带的续接,而后者是通过多组液压设备来完成。金川公司电炉的电极压放系统一直是采用洗衣液压方式,由以前的四组上下摩擦环、中间缸、二道 摩擦环及铜瓦楔紧起缸来完成,减少了中间缸,使设备更为简单。电极装置(包括夹持系统、升降压放系统)一个重要的问题是电极的绝缘,应给予充分的注意。应保证在任何已情况下绝缘都安全可靠。
电炉熔炼的技术经济指标电炉电耗
2019-01-07 07:51:21
一般电炉熔炼耗电量占粗铜系统用电量的70%~80%,电炉用电费用占粗铜加工费的55%左右。
电炉能源的构成,电力消耗分配、电炉电耗在全部生成过程中所占比例的实例分别见表1至表3。
表1 电炉能源构成实例项目能耗,kg标煤/t铜分配,%电力1009.499.9焦炭0.70.07木柴0.30.03合计1010.4100.00
表2 电炉电力消耗分配实例类别分配,%备注燃烧用电97.07炉料熔化及设备照明用电动力用电1.88压缩风用电0.15冷却水用电0.90合计100.00表3 电炉电耗在全生产过程中所占比例实例生产工序耗标煤,kg /t铜电耗,kW·h/t铜比例,%备料0.053127.203.31电炉熔炼0.9732335.2060.77转炉吹炼0.1843211.24火法精炼0.091218.45.68电解精炼0.246590.415.36工序损耗0.058139.23.64合计1.6013842.4100.00
电炉熔炼的电耗在生产加工费中大致为65%~75%。云冶1986年铜锍中每吨铜的加工费构成见表4。
熔炼不同物料的理论电耗和实际电耗见表5。
熔炼不同物料的电能单耗见表6。
云冶电炉熔炼耗电量见表7。
国外铜电炉熔炼电能消耗实例见表8。
表4 电炉每吨铜锍中铜的加工费构成项目元/t铜锍中铜分配比,%电费133.9267.64水费8.414.25折旧费20.8710.54工资2.601.31运输费8.554.32管理费13.844.99材料费9.814.95合计198.00100.00
表5 熔炼不同物料的理论电耗和实际电耗对照表物料种类成分,%每吨干料的理论消耗量实际消耗量
kW·h/tGJ/tkW·h/t硫化铜精矿Cu33
S281263351440铜焙烧矿(540℃)Cu30~33
S16~19703~740195~206285沉淀铜Cu92
Fe6949264500硫化铜镍精矿1158322400
注:每吨干料的理论消耗量kJ/t的数据相当于kW·h/t数据。
表6 熔炼不同物料的电能单耗物料种类入炉状况电能单耗,kW·h/t炉料铜硫化物精矿制粒(经干燥)400~450铜硫化物精矿焙烧370~400铜硫化物精矿热焙砂320~340铜硫化物精矿湿精矿(含水7%)460铜氧化物精矿焙烧580铜闪速炉渣熔渣贫化处理60~80
表7 云冶电炉熔炼耗电量年代电炉功率
kVA炉料准备情况炉渣成分,%吨炉料耗电量
kW·hSiO2FeOMgOCaOAl2O3投产至60年代末16500湿度为3%~5%干燥精矿球粒干燥焙烧矿39.6617.1610.4319.536.747211970~1977年
1978~1979年16500
30000球粒干燥焙烧矿36.7833.156.3710.654.7246180年代30000球粒干燥焙烧矿38.9937.894.096.415.164211990~1992年30000球粒干燥焙烧矿39.1139.322.974.514.6436
注:1、1960~1964年原料为含水3%~5%的干燥精矿,1965年后为球粒干燥焙烧矿;2、1960~1964年电耗平均值为812.4kW·h/t料,1965~1969年电耗平均值为598.8 kW·h/t料;3、1961年平均电耗达928 kW·h/t料。
表8 国外铜电炉熔炼电能消耗实例厂名电炉功率
kVA炉料特点炉渣成分,%耗电量
kW·h/t炉料SiO2FeOMgOCaOAl2O3苏利切尔玛3000生精矿(含水8%),石英石,返料,液态转炉渣33~3645~55620~700罗斯卡12000650~700℃焙烧矿50%,干燥精矿50%37~38.538~422.94.1~4.58.1320布利赫勒克3000焙烧矿70.5%,石英石17%,石灰石8.5%,返料3%,还原剂焦炭6%~7%30~3240~458.10520~667今贾5500生精矿(含水7%~7.5%)富矿石英石返料36.3493.96.5400~417皮尔多普24000550~600℃焙烧矿、返料、液态转炉渣33~3650~55400阿纳康达36000焙烧矿+返料230茵斯皮雷森51000干精矿(含水0.1%~0.3%)300~350杰兹卡兹干5000回转窑干燥粒料500马费利拉36000回转窑干燥粉料370~410
影响炉料耗电量的主要因素有:
1、炉料的化学成分对耗电量的影响:炉料中钙、镁的碳酸盐在熔炼过程中分解,吸收大量热能,加之产生的气体与炉料接触时间较短,不能与炉料充分热交换而随烟气带走大量热能。仅碳酸盐分解一项可节省的电量,计算表明:电炉炉料氧化钙下降1%,耗电降低5~6kW·h/t料;氧化镁下降1%,耗电降低4kW·h/t料。
2、炉料大量难熔脉右时,会增加耗电量,通常脉石是氧化镁、氧化钙、氧化硅。
云冶生产初期,MgO+CaO含量达36%~42%。放渣温度为1340~1380℃,低于1320℃则无法放出。这种炉渣不仅放出温度高,热焓也随氧化钙含量升高而增高。例如炉渣含CaO21%,MgO13.37%,SiO243.01 %,Fe4.61%,A12O310.8%,热焓为1884kJ/kg,电耗一般为600kW·h/t,最高达928kW·h/t。
当炉渣中含GaO+MgO大于40%时,热焓达2010~2093kJ/kg,温度高、热焓大的炉渣,不仅本身带走大量的热,而且使铜锍过热,在放出时带走大量的热,故耗电量显著增加。炉渣含MgO与耗电量的关系实例见图1,图2为炉渣中MgO和CaO的含量与耗电量的关系实例。图1 炼铜电炉炉渣中氧化镁含量与耗电量的关系实例图2 铜电炉炉渣中氧化镁和氧化钙的含量与耗电量的关系实例
3、炉料的物理性质对耗电的影响:电炉熔炼焙烧矿或粒矿比熔炼生精矿,尤其是湿精矿耗电量低,1kg水分在炉中蒸发、过热约耗电1~l.5 kW·h。
云冶的实践证明,仔细准备炉料,可显著降低耗电量。炉料物理性质与电耗的关系实例见表9。
表9 炉料物理性质与电耗的关系实例炉料特点耗电量kW·h/t炉料干燥粉料722球团粒焙烧料400~450(1970年后)600℃焙烧矿440生精矿600
多年来云冶为了阵低耗电量,提高床能率,采用粒矿入炉,熔炼粒矿具有下列优点:
(1)料坡可以控制。电极插入渣层深度可达700~900mm,炉顶温度低,热效率高。
(2)烟气量可以减少。
(3)生产能力可以达到6~8t/m2,单位功率100~500kV·A/m2。
当加料量不变时,炉料温度每升高l0℃,电耗降低约3kW·h/t料。炉料温度对耗电的关系见表10。
表10 炉料温度对耗电的关系炉料温度,℃冷料100200300400500600700耗电量系数10.950.930.870.8550.820.780.75
(4)作业条件对炉料耗电量的影响:料坡能否形成以及料坡的状况对耗电也有影响。料坡透气性好,则烟气与炉料热交换好,烟气温度低。透气性不好,水分高的炉料往往产生塌料现象,产生大量烟尘,炉顶温度显著升高。料坡高度与炉顶温度的关系见表11。
表11 料坡高度与炉顶温度的关系料坡高度,mm0100300500炉顶温度,℃800600400约250
电炉良好的操作条件下,炉顶温度一般可以保持低于400℃。
(5)炉子的密封程度对电耗的影响:密封较好的炉子,一般每吨炉料产生出的烟气量约为700~800m3,当炉子密封不严,炉料水分高或碳酸盐矿物含量大时,烟气量可达1000~1800m3/t料,从而增加电耗。云冶密封前后烟气量、烟气温度及耗电量见表12。
表12 云冶密封前后烟气量、烟气温度及耗电量实例时间烟气温度,℃烟气量,m3/h电耗,kW·h/t料密封前19640400512密封后20624200408
(6)熔池制度对电耗的影响:合适的电极插入深度,可以避免炉渣或铜锍过热,保持熔池正常的温度分布,促进炉料熔化,是操作上降低电耗的主要途 径。
(7)电炉容量和单位功率对耗电量的影响:对于同一炉子而言,提高单位功率有利于降低电耗。单位功率提高以后,可使热效率提高。
(8)床能率与耗电量的关系:在炉子额定功率负荷下,电炉的生产能力提高,单位炉料的耗电量相应下降。电炉床能率与耗电量的关系实例见图3,图4。图3 云冶电炉床能率与耗电量的关系图4 铜电炉熔炼床能率与耗电量的关系
1-熔炼生精矿(依玛特拉厂);2-熔炼焙烧矿(罗斯卡厂)
(9)电炉的作业率对电耗的影响:电炉作业率高,则电耗低。以云冶1986年某月平均电耗为426 kW·h/t料。如不计非生产时间,电耗为391kW·h/t料。由于非生产时间的影响电耗增加35kW·h/t料。表13列出该厂全月的非生产的时间及其对电耗上升的影响。
表13 非生产时间及其对电耗上升的影响实例项目非生产时间对电耗上升的影响h所占比例,%累计比例,%kW·h所占比例,%停料保湿21353512.525.57①设备事故1423588.323.21功率过高1226787.1220.34②例行停电1016945.9316.94其它461001.25.44合计6010010035100
①工序配合失调;②功率使用不当。
关于延长中频炉炉衬寿命的探讨
2019-01-04 15:16:46
近年来,随着国民经济的高速发展,推动了冶金等行业的快速发展。而中频炉因其操作简单、熔炼损耗少、成分易控制等优点被电解铝行业选为熔炼设备。由于炉衬寿命短以及漏炉事件时有发生,严重影响生产安全。为此如何延长炉衬寿命,确保中频炉安全运行成为中频行业一研究课题。
河南神火铝业股份有限公司从2003年开始,用中频炉取代冲天炉逐步进入电解铝行业,通过多年来对中频炉的实践和探索,积累了一定维护、管理经验,使炉衬寿命由开始的70炉次延长至110炉次以上,大大减少了筑炉次数,降低了生产成本。
一、2t中频炉概述
(一)产品型号及参数
该公司2t中频炉技术参数列于表1。
表1 产品型号及参数项目进线电压∕V额定容量∕t额定功率∕kW额定频率∕Hz熔化率∕t·h-1参数575212505001.72
(二)工作原理
2t中频炉是把三相工频交流经整流变成直流,再将直流通过逆变系统变成中频交流,经过电容升压后流入感应线圈,在线圈中产生磁力线,磁力线不断切割炉膛内金属材料,金属材料便产生很大热量,从而将炉料加热熔化的一种电加热设备。
(三)系统组成
该设备主要由炉体、固定支架、液压系统、供水系统、电控系统等五部分组成。
二、炉衬常见问题和补救措施
(一)炉膛衬层裂纹
1、纵向裂纹
补救措施:打结后的炉衬,应立刻烘炉,前一星期或半个月不能停炉,应连续熔炼和保温,让其形成较厚的烧结层,以抵挡冷却收缩引起的拉应力。
2、横向裂纹
补救措施:从筑炉工艺着手,每次筑炉所耗炉料重量保持一致,炉衬密度均匀,捣打结实;每层打结完毕后加另一层料前,用平铲将已打实的表面松20mm左右,使层与层之间充分咬合;筑炉前,炉料搅拌均匀,防止在筑炉时有杂物掉入炉料内。
(二)炉面衬层剥落
补救措施:改变坩埚模形状,将其设计成台体,并且在坩埚四周均匀地钻一些小孔,烘炉期间利于排出炉料内水分,孔间隔225mm,孔直径2~3mm;延长烘烤时间(室温至400℃),利于水分排出。
(三)炉面衬层磨损
1、工作面烧结不良
补救措施:改变炉料牌号,试验炉衬使用寿命,为避免只有一个试样而得出错误结论,可连续做两次实验(炉料牌号:F-150A,F-155A,F-165A);延长烘炉时间(如减慢烘炉加热速度),能提高炉膛工作面抗侵蚀能力。
2、底部磨损严重
补救措施:筑炉底时,将捣筑厚度比实际炉底厚度高出50~100mm,打结完后再刮至实际厚度,使工作表面更结实;筑炉臂时,每次加料厚度宜控制在80~100mm,避免造成炉衬打结不紧实;加大炉膛底部冷却水流量,定期除管道水垢。
3、底部角落部分磨损
补救措施:避免在金属液面低的情况下操作,若输入功率不变,金属熔化量不变,液面高(过容量的70%)比较经济;当金属液面过低时,要特别注意加料,如果加入大块料,而电炉有输入高功率,则底部将会严重过热,加剧侵蚀。
5、炉壁侧面磨损(硅石衬层过度磨损)
补救措施:保持高的待用金属液面,使炉壁侵蚀冲刷均匀;待浇注前开足功率,这样只需短时搅拌,而平时炉温保持在1300℃左右;尽量在1400℃以下熔化冷料,保持稳定的熔化速度;熔化时,勤扒渣,使金属很快进入熔流,减小熔渣对炉衬的冲刷;坩埚模放置时保持与感应线圈同心,确保炉衬厚度均匀,保持误差在3mm以内。
(四)熔渣形成
1、低熔点熔渣
补救措施:短时间提高温度,可避免熔渣形成;经常改变炉膛液面高度,避免熔渣在固定一点形成。
2、高熔点熔渣
补救措施:加料前炉膛内的砂子杂物清除干净;使用比较清洁的炉料或经抛丸清砂处理过的炉料;熔炼温度控制在1400℃左右。
三、延长炉衬寿命措施
(一)筑炉
1、筑炉材料
常用的筑炉材料有镁砂和硅砂,大多数使用硅砂,硅砂价格虽便宜,但易被侵蚀。
筑炉前炉料要经过人工检查,保证其干净清洁。首先经过手选,主要去除块状物及其它杂质,然后进行磁选,必须完全去除磁性杂质。
2、颗粒配比
由于干法捣固炉衬时不可避免地形成空隙,其大小和数量直接影响炉衬的紧实度。而当空隙的大小及数量达到一定程度就无法阻止钢液的渗透,最终导致漏炉事件发生,因此合理的砂粒配比至关重要,具体颗粒配比列于表2。
表2 炉料颗粒配比类别∕mm3.962~1.6510.833~0.3600.360~0.147比例∕%15~2540~5030~40
在实际操作中根据炉底、炉壁的工作情况分别作部分调整,底部由于高温时间长,要求炉底强度高,因此粗砂的比例取上限,而炉壁则取下限。
3、打结与检验
炉衬打结质量好坏直接影响烧结质量,打结后的砂层致密度高,烧结后产生裂纹的机率低,干式打结前,先在线圈绝缘层内铺设两层石棉纤维布,后铺一圈不锈钢丝网。
打结炉底:炉底厚约280mm,分四次填砂。严格控制加料厚度,一般填砂厚度不大于100mm/次,筑炉人员围绕炉子缓慢旋转换位,用力均匀,以免造成密度不均,炉底打结达到所需高度时刮平。保证坩埚模与感应圈同心,上下垂直,周边间隙相等后用三个木楔卡紧,中间吊重物压上,避免炉壁打结时石英砂产生上抬。
打结炉壁:炉衬厚度为110~120mm,分批加入干式打结料,填料厚度不大于60mm/次,打结15min,直至与感应圈上缘平齐。
(二)烘烤与烧结
为获得三层炉衬结构,烘烤工艺大致分为三个阶段,具体烘炉曲线如图1所示。图1 中频炉烘炉曲线图
烘烤阶段:分别以60℃/h的速度将坩埚模加热至600℃,保温2h,目的是低功率时,排除炉衬中的水分。
半烧结阶段:以70℃/h升温至1100℃,保温2h,必须控制升温速度,防止产生裂纹。
完全烧结阶段:高温烧结是提高炉膛寿命的基础,烧结温度不同,烧结层厚度不够,炉膛寿命明显降低。
另外,炉体烧结后要连续熔炼5~6炉,使炉体烧结层有足够的烧结强度和厚度。
(三)熔炼及保养
影响炉体寿命的因素还与熔炼过程中炉体损耗有关,这种损耗主要表现为化学性侵蚀,夹带有物理性侵蚀。其原理是:炉料与炉渣中的氧化物发生反应生成低熔点的化合物,在钢液的不断冲刷下使炉体变薄。
阶段性熔炼完毕后,炉口用石棉布盖上,防止炉体快速冷却而产生裂纹,下次熔炼时不能较好融合,从而产生穿钢现象。
四、结束语
结合多年来积累的中频炉管理工作经验,对炉衬常见问题所采取的措施经过实践证明是合理的、可行的;生产过程中应重点把握中频炉的筑炉、烘炉、熔炼及保养三个环节,可以有效延长炉衬使用寿命,降低筑炉次数。
可控硅中频感应炼金炉炼金
2019-01-08 09:52:41
可控硅中频感应炼金炉是吉林省冶金研究所生产的炼金专用电炉,由KGPS型1500Hz可控硅中频电源装置及GWLJ型中频感应炼金炉炉体两部分组成,是比较先进的炼金炉,目前有以下三种: (1)KGPS-30/1.5:30kW,用于合质金,成品金银熔铸及小型炭浆厂电解金泥冶炼; (2)KGPS-50/1.5:主要用于炭浆厂电解金泥或小型锌粉置换金泥的冶炼; (3)KGPS-100/1.5:主要用于锌粉置换金泥的冶炼。中频炉冶炼金泥的工艺流程见下图。
镍电炉的结构(二)
2019-01-25 15:49:32
国内外铜镍硫化矿熔炼电炉的技术参数见下表: 铜镍锍化矿熔炼电炉的主要参数项目国内某厂贝辰公司①北镍公司②诺里尔斯克公司汤普森公司炉膛内部尺寸(长×宽×高)/m21.5×5.5×4.022.74×5.54×5.111.2×5.2×4.023.2×6.0×5.127.4×6.71×3.96炉床面积/m2118.2512658139184电极直径/m11.11.21.21.22电极中心距/m33.233.23.76电极数目66366电炉变压器数目33133变压器容量(总容量)/kVA5500(16500)16667(50000)30000(30000)15000(45000)6000(18000)压侧线电压/V304~470800~475550~390743~551300~160功率强度/[kVA.m-2]14039651732498炉底砌砖镁砖粘土砖铬镁砖水泥、镁砖水泥镁质填料粘土砖铬镁砖渣线炉墙镁砖铬镁砖镁砖铬镁砖镁砖渣线以上炉墙砌砖粘土砖粘土砖粘土砖粘土砖粘土砖炉衬厚度/mm807 炉底(中心)/mm1250131092013101065出渣口端墙厚度/mm1040115092010401260出锍口端墙厚度/mm10401150121511501180侧墙厚度/mm80711506901040 炉顶厚度/mm300300300300950放锍口个数34343渣口个数34241渣口距炉底高度/mm13001750150014501525熔池深度/mm21000270025002700—镍锍深度/mm600~900600~800600~800600~900600~750电炉操作功率/kW 40000270004000012000-15000每根电极平均下降距离/(mm.d-1)250450~500400~500 吨炉料电能消耗/kWh600740780~815525~625400~430吨炉料电极消耗/kg5.7~7.84.12.92.8~3.41.75~1.9
①工作电压341V,电极深度700~1000mm;②工作电压500~550V,电极深度500~700mm。
黄铜分水器
2017-06-06 17:50:00
黄铜分水器在人们的日常生活中得到广泛的应用。了解黄铜分水器,对于更好的使用黄铜分水器具有重要的意义。 黄铜分、集水器(manifold)是水系统中,用于连接各路加热管供、回水的配、集水装置。按进回水分为黄铜分水器,黄铜集水器。所以称为黄铜分集水器或黄铜集分水器, 俗称黄铜分水器。地暖、空调系统中用的分水器材质宜为紫铜或黄铜 供回水均设排气阀,很多分水器供回水还设有泄水阀。 供水前端应设“Y”型过滤器。 供水分水管各支管均应设阀门,以调节水量的大小。 黄铜分水器常用于:1. 地板采暖系统中的,分集水器管理若干的支路管道,并在其上面安装有排气阀,自动恒温阀等,口径小,多位DN25-DN40之间。进口产品较多。 2. 空调水系统,或其它的工业水系统中的,同样管理若干的支路管道,分别包括回水支路和供水支路,但其较大多位DN350-DN1500不等,属于压力容器类专业制造公司,其需要安装压力表温度计,自动排气阀,安全阀,放空阀等,2个容器之间需要安装压力调节阀,且需要有自动旁通管路辅助。 黄铜分水器特点: 1、测试压力0.8MPa,适用于通水或气体、其它各类含酸类水等; 2、工作温度-10℃至110℃;高档黄铜本色分水器 流量计温控型,高度智能化 带排气阀 三通泻气阀; 3、分水器的各出水支路具备流量平衡的调节装置,集水器的各回水支路配有恒温调节装置,可加装电热执行器与房间温控器,实现独立的分室温度控制; 4、高密度锻造,一次成型。黄铜本色(亦可镀镍),支管接头无缝连接,杜绝漏水隐患,2/3/4路自由组合拼装。配支架,出水口1216或1620 更多关于黄铜分水器的资讯,请登录上海有色网查询。
变压器铝带
2017-07-04 16:55:35
变压器铝带是制造变压器绕组的关键原材料,是铝锭经压轧得到的带状物。变压器铝带介绍变压器铝带根据用途分不同的牌号、规格、状态。牌号有:1060、1050、1050A、1060、1070、1070A、1350,状态:O态。O表示软态,后面可以用数字表示软硬程度,及退火程度。厚度在0.08-3.00之间,被称作:干式变压器用铝带、箔材。干式变压器用铝带、箔材采用优质纯铝为原料,具有导电率高,质软等特点,表面光滑,无毛刺,是生产干式变压器的理想材料,是制造变压器绕组的关键原材料,它对铝带、箔材的电导率、毛刺卷边、侧弯、表面质量等多项技术指标要求很高。干式变压器用铝带、箔材一般选用1060铝板带,其含铝量达到99.6%以上又被称为纯铝板,在铝板带家族中属于一款常用的系列。此系列铝板的优势:最为常用的系列,生产过程比较单一,技术相对于比较成熟,价格相对于其它高档合金铝板有巨大优势。有良好的延伸率以及抗拉强度,完全能够满足常规的加工要求(冲压,拉伸)成型性高。为工业纯铝,具有高的可塑性、耐蚀性、导电性和导热性,但强度低,热处理不能强化可切削性不好;可气焊、氢原子焊和接触焊,不易钎焊;易承受各种压力加工和引伸、弯曲。1060O态,变压器铝带具有含铝量高(通常为99.6%-99.7%以上),而铝的导电性能和导热性能是仅仅低于铜的常规金属,金属导电性能依次为:银 铜 金 铝 镍 钢 合金。由于铜的价格远远高于铝,所以目前变压器带方面最为常用的材料为铝带。变压器铝带牌号主要有A1060(O),主要应用于干式变压器的高、低压绕组用作导电材料,铝带化学成分符合GB/T 3190-1996《变形铝及铝合金化学成分》的规定、技术要求及机械性能符合TUN900 069 1998年版 的线圈用成品铝箔供货技术条件。变压器铝铝带材、主要用于大型变压器,太阳能,电力行业。用途:干式变压器用铝带、铝箔材质:1060-O厚度:0.2mm--3.0mm,宽度:20mm-1650mm。描述:表面光滑,无划痕。边部可做倒角(圆角、圆边),无毛刺,优于国家标准。电阻率小于等于0.028。包装:木托盘,内径300mm或者500mm。变压器铝带采用的是高纯铝为原材料,铝含量能达到99.6%以上,具有其它系列铝带无可比拟的导电性能。变压器铝带应用及用途应用在上能使干式变压器具有体积小、重量轻、绝缘性能好,阻燃、无污染、局部放电小,耐潮湿,运行平稳可靠、噪音小、维护成本低等优点,在高层建筑、地下设施、商业中心、居民区、宾馆饭店及沿海潮湿地区等应用广泛。1060铝带、箔材的化学成分1060铝板的化学成份:铝 Al :99.60,硅 Si :0.25,铜 Cu :0.05,镁 Mg:0.03,锌 Zn:0.05,锰 Mn:0.03,钛 Ti :0.03 ,钒 V:0.05,铁 Fe: 0.350,注:单个:0.03。相关产品标准干式变压器铝带、箔材国家标准(YS/T 713-2009),适用于干式变压器铝带、箔材料的统一标准。
紫铜散热器
2017-06-06 17:50:11
紫铜散热器即是用紫铜做成的散热器。在铜及合金里,纯铜的散热最好。一般来说,越纯的铜合金散热越好。铜合金紫铜、青铜、黄铜,紫铜的纯度最高,它的散热效果最好。实际上,都是用铜的材质,重点还要看它的形状,表面积,散热风扇的性能等等。材质反而不是最重要的了。那么紫铜散热器与其他
金属
(如钢)元素制成的散热器又有什么区别呢?选择不同类型散热器需要注意的重点不同。一.钢制散热器:1材质:很多次我冒充消费者问JS,你这是什么材质的?都会有JS唾沫横飞地跟我喷,我们都是进口无缝钢管一次冲压成型的暖气管道。听到这个回答我就跟他要暖气片的切面来看,切面上一排整整齐齐的焊点告诉我——奸商在忽悠你。虽然经过打磨但是焊点的材质跟钢壁的材质还是有很大差别的一眼就能分辨出来。2焊接:焊接是散热器生产的最重要的环节,也是暖气质量的最根本的保障,因为暖气最薄弱最易出问题的地方就是焊点。影响焊接质量的因素非常多,如焊接的材料,焊接技术,甚至焊接工人的素质、心情等。(我曾经亲眼见到过某厂家的车间里数十名工人带着面罩手持焊接机焊接暖气片的情景,⊙﹏⊙b汗!就这样弄出来的暖气不漏水才是奇迹!)所以注重品质的厂家会购进自动焊接的流水线,这不是一般小厂家能负担的起的。另外应询问他的焊接工艺,目前最适合焊接散热器的技术应该是钎焊和激光高频焊(至于为什么是这两种自己到网上查很简单)。在选购的时候注意看他焊点是否整齐平滑,不同的做工很容易看出来。3壁厚:这个理由很简单,铸铁暖气时期的暖气生产工艺并不是很先进,但是为什么用几十年都很少有漏水的?难道铸铁的暖气不怕腐蚀不怕氧化?铸铁暖气之所以不漏就是因为一个字——厚。不要迷信JS所说的什么几遍防腐、什么无限防腐,信了你就被忽悠了,所有的防腐在暖气内部高温高压的环境下都会脱落,这只是个时间问题,如果真有他们吹得那么好的话何必千叮万嘱地强调必须满水保养?所以选钢制暖气最好选2个厚的也就是2mm厚的。二.铜铝散热器1细节:细节是最能看出品质的。每片间距是否明显不一致?每片长度是否有明显差异?表面喷漆是否有很多坑点?焊点是否不整齐?高品质产品不会出现任何细节上的瑕疵。 2材质:很多JS回说自己暖气是纯紫铜水道,如何分辨?还是看切面,真正的纯紫铜颜色是暗红的。想要了解更多关于紫铜散热器的信息,请继续浏览上海
有色
网。
铝线变压器
2017-06-06 17:50:04
铝线变压器,目前国内很多变压器厂家已经在用铝线或铝箔来生产变压器。铝导体在变压器中的使用在欧美非常普通。因为铝的
价格
比铜要便宜很多,且铝的密度要比铜小得多,这样相同截面的铝要比铜轻很多,但其导电率并不比铜低多少(铜:1.7*10-8 Ω·m/铝:2.9*10-8 Ω·m),只要选用截面更大的铝材,就可以实现和铜一样甚至更低的耗电量。而且对于环氧浇注干式变压器,由于铝的热胀冷缩系数要比铜的更接近环氧树脂的热胀冷缩系数,所以铝线圈的抗开裂能力要比铜线圈的更好一些。而且由于干式环氧树脂浇注线圈本身的强度就很好,所以铜铝之间机械强度方面的差距就没有实际意义了。只要变压器的技术参数一致,其线圈采用铜或铝对客户都是一样的。铝线变压器也是一种很好的选择。
金属破碎机旋风除尘技术的优势
2019-01-17 13:33:11
金属破碎机大家都知道肯定是对于金属破碎的一种设备,那么金属破碎机已经有多年的历史,通常用来破碎易拉罐,油漆桶,铁皮,车壳等物品。金属破碎机一个重要的;零配件就是旋风除尘器。那么今天小编要为广大用户介绍的就是金属破碎除尘技术的优势。今天我要为大家讲解的就是旋风除尘器,并且我们会详细简绍一下这种设备的一些优势。旋风除尘器大家从名字上就不难理解,就是金属破碎机设备在工作过程中起到除尘的作用。而除尘效率的好坏又离不开控制椎体直径的长度。椎体长度的特点主要有两方面:
一、一般用锥体长度为筒体直径的2.8倍,长锥体旋风除尘器的一个特点是直筒段的长度较短。当进口气速小于14M/S时,直筒段的长度与除尘效率无关:当进口气速大于14M/S时,除尘效率因直筒段长度的增加而提高。阻力系数随着直筒段长度的缩短面提高。
二、除尘效率随着锥体长度的增加而逐渐提高,阻力系数随着锥体长度的增加而下降,但这二者,当锥体到达一定长度时,效果则相反。
全球引发的环保热促进了资源再生相关产业的迅速发展,加工废钢铁所必须的设备涉及剪切机,金属打包机,金属破碎机生产线,以及配套的磁选,有色金属分选等等系列设备。相比铁矿石冶炼,破碎粉碎加工等,成品物料采用短流程冶炼是最节省能源、产出率最高的加工方法。所以金属破碎机在未来必然会成为大家追捧的热门设备。
金属破碎机的除尘问题一直使我们研究的一个课题,我们能做的就是把我们了解的比较先进的一些除尘技术运用到我们的产品中。无论是金属破碎机还是其他类型的破碎机,除尘装置都是必须安装的一种设备,所以除尘装置的提升是我们做好破碎机的基础。
镍矿及其电炉熔炼工业指标
2019-03-06 10:10:51
镍是一种银白色金属,首先是1751年由瑞典矿藏学家克朗斯塔特(A.F.Cronstedt)分离出来的。因为它具有杰出的机械强度和延展性,难熔耐高温,并具有很高的化学稳定性,在空气中不氧化等特征,因此是一种十分重要的有色金属质料,被用来制作不锈钢、高镍合金钢和合金结构钢,广泛用于飞机、雷达、、坦克、舰艇、宇宙飞船、原子反应堆等各种军工制作业。在民用工业中,镍常制成结构钢、耐酸钢、耐热钢等很多用于各种机械制作业。镍还可作陶瓷颜料和防腐镀层,镍钴合金是一种永磁材料,广泛用于电子遥控、原子能工业和超声工艺等范畴,在化学工业中,镍常用作氢化催化剂。近年来,在彩色电视机、磁带录音机和其他通讯器材等方面镍的用量也正在敏捷添加。总归,因为镍具有优秀功能,已成为开展现代航空工业、国防工业和树立人类高水平物质文化生活的现代化系统不行短少的金属。
一、镍矿质料特色
镍归于亲铁元素,在地球中的含量仅次于硅、氧、铁、镁,居第5位。在地核中含镍最高,是天然的镍铁合金。在地壳中铁镁质岩石含镍高于硅铝质岩石,例如橄榄岩含镍为花岗岩的1000倍,辉长岩含镍为花岗岩的80倍。
已知含镍矿藏约50余种,最首要的10多种含镍矿藏列于表3.10.1中。其间硫化物,如镍黄铁矿、紫硫镍铁矿等游离硫化镍形状存在,有适当一部分镍以类质同象赋存于磁黄铁矿中。而氧化镍矿中,镍红土矿含铁高,含硅镁低,含镍为1%~2%;硅酸镍所含铁低,含硅镁高,含镍为1.6%~4.0%。现在,氧化镍矿的开发利用是以镍红土矿为主,它是由超基性岩风化开展而成的,镍首要以镍褐铁矿(很少结晶到不结晶的氧化铁)方式存在。
Ni2+具激烈亲硫性。在岩浆结晶前期,在镍含量必定的前提下,镍在岩石中的富集程度取决于硫的逸度。当有满足的硫时,镍与硫及似硫物(砷、锑)构成含镍硫化物,在硅酸矿藏结晶前分离出来,构成镍的硫(或砷)化物(如针镍矿、磁黄铁矿、镍黄铁矿、红砷镍矿、砷镍矿、镍华)。一般所谓的镁硅镍矿(即硅酸镍矿)是从蛇纹石到相似粘土的水蛇纹石与皂石等镁矿藏的一系列混合物的总称,在氧化作用条件下,部分镁被镍置换。氧化镍和硫化镍相同,现在已成为镍的重要来历。
二、矿石工业要求
硫化镍矿床的矿石按硫化率,即呈硫化物状况的镍(SNi)与全镍(TNi)之比将矿石分为:
原生矿石:SNi/TNi>70%
混合矿石:SNi/TNi45%~70%
氧化矿石:SNi/TNi<45%
硅酸镍矿石按氧化镁含量分为:
铁质矿石:MgO<10%
铁镁质矿石:MgO 10%~20%
镁质矿石:MgO>20%
镍矿石的首要有害杂质有铜(在硅酸镍矿中)、铅、锌、砷、氟、锰、锑、铋、铬等。
硫化镍矿石按镍含量可分下列三个等第,特富矿石:Ni>3%;富矿石Ni 1%~3%;贫矿石:Ni 0.3%~1%。富矿石及贫矿石需经选矿,特富矿石可直接入炉冶炼。
硫化镍矿床遍及含铜,常称含铜硫化镍矿床。在镍矿体中铜无需独自拟定目标和圈定矿体,当镍档次达不到目标而铜可独自构成矿体时,其目标为按铜履行。除铜外,一般常伴生有铁、铬、钴、锰、铂族金属、金、银及硒和碲等,这些伴生有用组分的含量要求是:Pt、Pd为0.03g/t;Os、Ru、Rh、Ir为0.02g/t;Au为0.05~0.1g/t、Ag为1.0g/t、Co为0.01%;Se为0.0005%;Te为0.0002%。
在蛇纹岩、滑石等矿床中含有较高的镍,常有收回价值,在点评该类矿床时对镍要留意归纳点评。
三、矿业简史
古代埃及和我国都曾用含镍很高的陨铁作器物。我国公元前206年(汉朝)曾经就已把握了冶炼白铜(即铜镍锌合金,含Cu 52%~80%,Ni 5%~35%,Zn 10%~35%)的技能。
1865年法国加尼尔初次在新喀里多尼亚发现硅酸镍矿,今后被他命名为硅镁镍矿。1875年开端挖掘,因为当地燃料、熔剂缺少,劳力缺乏,矿石送往法国、德国冶炼,是国际上最早用鼓风炉炼镍的矿石。1856年A.P.萨尔得在加拿大定子午线时发现在萨德伯里区域罗盘读数显得偏斜,随后,墨累据此在邻近查看,从铁帽上(即克里斯顿矿体顶盘)采样分析发现含Ni 1%、Cu 2%的矿石,但因交通不便,未引起留意,至1883年才开展工作,于1886年发现克里斯顿矿床,然后发现了国际闻名的萨德伯里超大型铜镍硫化物矿床,1901年露采出矿。从此国际镍的冶炼
可探硅中频感应炼金炉炼金
2019-01-08 09:52:33
可控硅中频感应炼金炉是吉林省冶金研究所生产的炼金专用电炉,由KGPS型1500Hz可控硅中频电源装置及GWLJ型中频感应炼金炉炉体两部分组成,是比较先进的炼金炉,目前有以下三种: (1) KGPS-30/1.5:30kW,用于合质金,成品金银熔铸及小型炭浆厂电解金泥冶炼; (2) KGPS-50/1.5:主要用于炭浆厂电解金泥或小型锌粉置换金泥的冶炼; (3) KGPS-100/1.5:主要用于锌粉置换金泥的冶炼。中频炉冶炼金泥的工艺流程见下图。
硫化镍精矿电炉熔炼
2019-01-08 09:52:37
这是一种在电炉中熔炼镍精矿生产低镍锍的炼镍工艺。电炉炼镍不需要燃烧燃料,因而烟气量小,有利于环境保护;电热熔渣,容量过热,可促进镍锍与炉渣分离,提高镍回收率。采用电炉炼镍技术,要求供电充足、电价相对便宜的地区。中国的两处电炉炼镍工厂的主要参数列于下表。炼镍电炉的主要参数项目金川有色金属公司吉林镍业公司项目金川有色金属公司吉林镍业公司炉床面积/m2118,13275电耗/(kWh/t料)550~630740床能率/[t/(m2·d)]3~4.53.6精矿品位/%(Cu)2.70.85熔炼镍回收率/%94.795.8/%(Ni)5.96.8炉渣含镍/%0.18~0.210.13低镍铳品位/%(Cu)6.60.7硫利用率/% 92/%(Ni)13.2~1714
金川公司一台功率为16.5MW的电炉,采用直径lm的电极6根,炉子为矩形,尺寸为22m×6m×4.2m。电炉有3个放锍口,4个放渣口。熔池深度2.1m,控制低铳层0.6-0.9m。入炉镍精矿制粒后,进行焙烧脱除部分硫,产出焙砂进电炉熔炼。精矿焙烧在沸腾焙烧炉中完成,沸腾炉床面积7.5m2,床能率140t/(m2.d),脱硫率65%,烟气SO2浓度7%左右,可就地生产硫酸。
电炉镍铁冶炼技术措施
2018-12-07 10:48:14
炼钢技术的进步,原来采用纯镍类原料冶炼合金钢和不锈钢的钢厂,从经济角度考虑已改用非纯镍类,因此,火法冶炼发展很快。处理红土镍矿的火法冶炼有两种冶炼方法,一种方法是用鼓风炉生产,另一种方法是电炉还原熔炼得到镍铁。由于鼓风炉冶炼是最早的炼镍方法之一,随着生产规模扩大、冶炼技术进步、炼钢厂对镍类原料要求的提高,以及环境保护要求的提高,这一方法已逐步被淘汰。采用电炉熔炼:(1)熔池温度易于控制,可以达到较高的温度,可处理含难熔物较多的原料,炉渣易于过热,有利于四氧化三铁的还原,渣含有价金属较少;(2)炉气量较少,含尘量较低;(3)生产容易控制,便于操作,易于实现机械化和自动化。因此,电炉熔炼是发展趋势。
由于红土镍矿熔点在1600~1700K之间,组成红土镍矿的矿物氧化物稳定性依次为:CaO>SiO2>Fe203>NiO,氧化物稳定性大小决定该元素的还原性大小,因此,红土镍矿中各氧化物在还原性气氛中还原顺序为:NiO>Fe203>SiO2>CaO。为了提高镍铁产品质量,电炉镍铁冶炼采用选择性还原原理,即缺碳操作:在电炉还原熔炼的过程中几乎所有的镍氧化物都被还原成金属,而铁则不必全部还原成金属铁,铁的还原程度通过还原剂焦炭的加入量加以调整,镍的比重较大,在生产中容易造成炉墙和炉底被侵蚀或烧穿(生产周期短的不到1个月),电极事故频繁,产品含镍低。因此,电炉镍铁冶炼关键技术是:(1)延长炉龄,(2)减少电极事故,(3)提高产品含镍量和镍的回收率。
电炉镍铁冶炼技术措施:1)采用镁质材料筑炉,在筑炉过程中要配好粘合剂并控制用量;捣打时,每一层铺料厚度为40—60mm,并用风镐捣打紧密,捣打完扒毛后,方可铺料捣打下一层;在烘炉过程中要把水分烘干。
2)采用炭砖筑炉,改炭砖平放为竖放,并在炭砖中部打眼用小石墨电极连接成整体,砖缝用炭质材料填充,同时用风镐捣打紧密。
3)在筑炉时,两个出铁口要有一定高差,生产前期使用高位出铁口,当炉底侵蚀到一定程度时使用低位出铁口。
4)控制配碳量和提高二次人炉电压,控制电极下插深度,防止炉底侵蚀。
5)控制好渣型,尤其是渣中的FeO含量,其既影响渣的导电性,又影响渣的熔点,最终影响镍的回收率。
6)镍矿在人炉前需要预先经过干燥脱水,在干燥和预热时控制好配碳量和水分,有利于减少翻渣事故发生,同时也有利于因翻渣引起的电极事故。
7)电极压放时,要勤放、少放;有条件的也可改用炭素电极或石墨电极。
8)加强冶炼操作,勤观查,勤调节。
电炉高碳锰铁的生产(二)
2019-01-25 15:49:34
三、电炉锰铁冶炼用的原料 原料为锰矿、焦炭和熔剂 1.锰矿 锰矿的品种主要有氧化锰矿、烧结矿、焙烧矿和人选富锰渣等。 锰矿中除了主要成分Mn外,还含有一定数量的Fe,CaO,Al2O3,SiO2,P,S等杂质,应根据冶炼产品的要求进行控制。 锰矿中的锰铁比是决定产品含锰量的重要技术参数,秤不同牌号的高碳锰铁,对入炉锰矿的m(Mn)/m(Fe)要求不同,某厂采用熔剂法冶炼 时对入炉锰矿的含锰量、m(Mn)/m(Fe)、m(P)/m(Mn)要求见表2。表2 熔剂法治炼对入炉锰矿含锰量、m(Mn)/m(Fe)、m(P)/m(Mn)要求牌号Mn含量m(Mn)m(P)/m(Mn)m(Fe)ⅠⅡ≥≤FeMn78C8.040%8.80.0020.004FeMn74C7.535%6.40.0020.0042FeMn68C7.034%4.50.0030.0057
锰矿中的CaO,MgO均为碱性氧化物,对调整炉渣碱度和流动性有利,一般不予限制。锰矿中的Al2O3在一定范围内能控制渣中含锰量,但Al2O3过高,会使炉渣熔点升高,流动性变差,渣铁分离困难,影响冶炼技术经济指标。一般要求入炉锰矿中Al2O3含量不超过10%。采用熔剂法生产时入炉锰矿中的SiO2含量越低越好。因SiO2含量高,会增大石灰用量,增大渣量,电耗升高。锰矿中的硫一般以MnS,CaS的形式进入渣或挥发,只有约1%进入合金,一般不作限制。 对入炉锰矿的水分庆控制在8%以下,因水分太高,波动大会影响配料的准确性。在熔剂法生产时会使石灰吸水粉化,造成炉内透气性差,产生刺火、塌料,使炉况恶化,电耗增加。 入炉锰矿粒度根据电炉容量大小而定,对6000KVA以上电炉入炉粒度一般为10~80mm,小于10mm的粉矿不超过总量的10%。 2.焦炭 作为还原剂用的焦炭主要有冶金焦、气煤焦、半焦等。对入炉焦炭,要求固定碳含量高、电阻率大、灰分低、磷低。灰分低带入的渣量少,含磷相应减少,可降低冶炼电耗。电阻率大,容易使电极下插,对稳定操作有利。 入炉焦炭粒度一般为3~25mm,小于3mm的焦末不得入炉。焦炭所含水分不得超过7%,而且波动量应尽量小。 3.溶剂(石灰) 要求石灰中CaO含量高,SiO2及P,S杂质含量低。一般CaO含量大于80%,SiO2含量不超过6%,P,S应分别低于0.05%和0.8%。石灰入炉粒度一般为10~60mm.[next] 四、电炉高碳锰铁冶炼工艺操作 1.冶炼方法 电炉高碳锰铁的冶炼 是连续进行的,即连续加料冶炼,定时出铁。根据入炉锰矿品位的不同及炉渣碱度控制的不同,在电炉内生产高碳锰铁有熔剂法、无熔剂法、少熔剂法三种方法。 (1)熔剂法 采用碱性渣操作,炉料中除锰矿、焦炭外,还配入一定量的熔剂(石灰)并用足还原剂。采用高碱度渣操作,炉渣碱度n(CaO)/n(SiO2)控制在1.3~1.4,以便尽量降低渣中含锰量,提高锰回收率。 (2)无熔剂法 采用酸性渣操作,炉料中不配加石灰,在还原剂不足的条件下冶炼,用这种方法生产,既可获得高碳锰铁,又可获得生产硅锰合金和中、低锰铁的含Mn30%的低磷富锰渣。其优点是电耗低,锰的综合回收率高。其不足是采用酸性渣操作,对碳质炉衬侵蚀严重,炉衬寿命较短。 (3)少熔剂法 采用介乎熔剂法和无熔剂法之间的“偏酸性渣法”。该法是配料中加入少量石灰或白云石,将炉渣大碱度控制在0.6~0.8之间,在弱碳的条件下冶炼。生产出合格的高碳锰铁和含锰25%~40%及适量CaO低磷、低铁锰渣。此渣用于生产硅锰合金时既可减少石灰加入量又可减少因石灰潮解而增加的粉尘量,因而可改善炉料的透气性。 采用何种方法与入炉矿的品位有关。入炉矿石的品位较低一般采用熔剂法,入炉矿石的品位高(高品位进口矿)则用无熔剂法或少熔剂法生产高碳锰铁。 2.冶炼工艺操作 电炉高碳锰铁的生产操作过程主要有配料、加料、炉况维护及出铁浇铸等。 (1)配料及加料 根据配料计算得出配料比后,按锰矿石、焦碳、石灰(白云石)的顺序进行称量配料,然后通过运输系统将配好的料送到炉顶料仓或加料平台。根据炉内需要分批加入炉内。 (2)炉况维护 在电炉冶炼过程中,由于原料的波动、电气及机械设备等因素的影响,炉况难以长期保持稳定状态,总是在波动变化。因此要对炉况随时、监测,并根据其变化作出准确判断,及时采取措施调整和处理,使炉况恢复到正常状态。 (3)炉况判断及处理 炉况正常的标志是: ①操作电流稳定,电极插入深度合适,电极电压正常。 ②料面高度合适,冒火均匀,炉料化料均匀,电极周围刺火及塌炎现象少。 ③封闭炉内炉气压力、成分、温度正常。 ④炉渣成分稳定,产量稳定,各项技术经济指标良好。 ⑤合金成分稳定,产量稳定,各项技术经济指标良好。 炉况的变坏不多是由于还原剂配入过多或不足以及炉渣碱度过高或过低造成的。 还原剂过多时,由于炉料电阻率减小,电流增大,电极上抬,炉内化料速度减慢,电极周围刺火严重,炉气压力与温度上升,锰的挥发损失增大,炉底温度下降,出炉困难,产品含硅量增高。此时应向电极周围适量减碳,并调整料批中焦炭的配入量。 还原剂不足时,电极下插过深,电极消耗增大,负荷上不去,电流不稳定;炉口翻渣;炉渣中含锰量升高,产品中硅低磷高,渣多铁少。此时可向电极周围附加适量焦炭,并在料批中提高焦炭配比。 炉渣碱度过高时,在炉内表现为电极上抬;料面刺火,翻渣;炉渣流动性差,出铁量少,炉渣发暗百粗糙,断面孔,冷却后很快粉化。炉渣碱度过低时,电极插入深,炉渣稀,流动性好,渣表面皱纹少,渣中跑锰多。针对上述情况,应及时调整石灰配入量将渣碱度调整到正常范围。 (4)出铁及浇铸 正常生产电炉要按一定时间间隔定时出铁,出铁次数根据电炉大小容量而定。一般大电炉每班出铁4~5次,中小型电炉每班2~3次。根据一些厂的生产经验,在炉内冶炼状况正常的情况下,适当延长出铁间隔单间,对提高产品质量,降低焦比、电耗有较好作用。[next] 五、配料计算 在铁合金生产中因为生产中的诸多因素不可能精确测算。因此要做到精确的配料计算是不容易的。而且在实际中意义也不大。通常以原料成分、生产中的控制参数及经验数据为依据,进行初步测算,投入生产后再根据其炉内情况进行调整。计算条件如下: 冶炼合金成分为:Mn66%,SiO22%,C6.8%,P0.3%,Fe23%,其他0.9%。 原料成分为: 锰矿:(综合矿)Mn34%,Fe10%,P0.12%,SiO29%,CaO1.5% 焦矿:C80% 石灰:CaO80% 炉渣碱度:n(CaO)/n(SiO2)=1.4 各元素在冶炼产物中的分配如表3所示。焦炭利用率为90%。表3 锰矿中元素分配(%)元素入合金入渣挥发MN781012Fe955/P751015
以100kg锰矿为计算基础计算。 (1)焦炭用量计算 焦炭用量为锰、铁、硅还原用碳量及合金渗碳量之和: ①100kg锰矿还原得合金部量 锰、铁、磷总量为: 100×34%×78%+100×10%×95%+100×0.12%×75%=36.11kg 锰、铁、磷所占合金比例为: 100%-C含量-Si含量-其他=100%-6.8%-2%-0.9%=90.3% 100kg锰矿得合金总量为: 36.11kg÷90.3%=40.12kg 合金中的硅含量为: 40.12kg×2%≈0.824kg ②合金渗碳量 40.12kg×6.8%=2.728kg ③锰、铁、硅还原用碳量 还原MnO,用碳量为:MnO+C===Mn+CO 还原FeO用碳量为:FeO+C===Fe+CO 焦炭总用量(干基)为: (2.72+6.672+2.036+0.686)÷90%÷80%=16.83kg (2)石灰用量 渣中的SiO2含量为 石灰用量为:(6.22×1.4)÷80%=10.89kg (3)原料配比为:锰矿100kg;焦碳16.8kg;石灰10.89kg.
电炉高碳锰铁的生产(一)
2019-01-25 15:49:34
一、电炉高碳锰铁的牌号及用途 电炉高碳锰铁是含有少量硅、磷、硫杂质的Mn-Fe-C三元合金,锰铁中锰与铁之和为92%左右,含 碳6%~7%。锰、铁、碳在合金中通常以Mn3C,FeC的形式存在。高碳锰铁的溶点为1220~1270℃,密度为7.1~7.4g/cm3,抗压强度为70~90MPa.合金中锰与铁能以任意比例互溶,但锰含量超过82%时,易受空气中水分的侵蚀而消散成粉末;因此当含锰量超过82%的产品在运输中应注意防潮。 电炉高碳锰铁主要用于炼钢作脱氧剂、脱硫剂及合金添加剂。作为合金添加剂加入钢中能改善钢的力学性能,增加钢的强度、延展性、韧性及耐磨能力。随着中、低碳锰铁生产工艺的进步,高碳锰铁还可以用于生产低碳锰铁。 电炉高碳锰铁牌号及其化学成分如表1所示。表1 电炉高碳锰铁牌号及化学成分类别牌号化学成分(%)MnCSiPSⅠⅡⅠⅡ≤电炉高碳锰铁FeMn78C8.075.0~82.07.51.52.50.20.380.03FeMn74C7.570.0~77.07230.250.380.03FeMn68C7.065.0~72.072.54.50.250.40.03
二、电炉法高碳锰铁的冶炼原理 电炉法生产高碳锰铁是以电能为热源,焦炭为还原剂,在炉身较矮的还原电炉中生产高碳锰铁的一种方法。 冶炼原理:高碳锰铁冶炼主要是锰的高价氧化物受热分解为低价氧化物的低价氧化物进一步还原成锰金属的过程。 MnO2受热后极易分解。当温度高于753K时MnO2分解变成Mn2O3。 在正常生产过程 中锰的高价氧化物也可以被炉内反应生成的CO还原成低价氧化物,其反应式如下: MnO比较稳定,一般条件下不易分解(与氧接触在一定条件下易被重新氧化)。 在冶炼温度下,MnO不可能被CO还原。这样进入炉内高温区的锰氧化物均以MnO形式存在,只能通过碳直接接触MnO使其还原成锰。 碳还原MnO的反应式如下: 由以上反应式可以看出:碳还原MnO生成Mn3C所需的温度比生成锰所需的温度低,因而用碳作还原剂生产锰铁时,得到的不是单质锰而是锰的碳化物(Mn3C);合金中含碳量通常6%~7%。[next] MnO为金属氧化物,易与炉料中的SiO2结合生成硅酸盐: MnO+SiO2===MnO·SiO2 2MnO+SiO2===2MnO·SiO2 这些反应降低了渣中自由MnO的浓度,使得充分还原MnO变得困难。 为减少MnO在炉渣中的排弃损失,提高锰的回收率,可在炉料中配入碱性大于MnO的金属氧化物,比如石灰、白云石等,让石灰中的CaO与SiO2结合,生成相应的硅酸盐把MnO置换出来即: MnO·SiO2+CaO===CaSiO2+MnO 2MnO·SiO2+2CaO===2CaSiO2+2MnO 置换了来的MnO呈自由状态,易被碳直接还原。 冶炼用的锰矿石,通常都伴生有铁、硅、钙、镁、铝、磷等元素的氧化物,在加热还原锰氧化物的过程中,炉料带入的铁、磷、硅的氧化物也被碳还原: FeO+C===Fe+CO 还原出来的Fe与Mn组成锰铁的二元碳化物[(MnFe)3C],从而大大改善了MnO的还原条件;在有铁存在的条件下,当温度接近1100℃时,MnO的还原即可进行。 炉料中磷氧化物(P2O5)可以被碳和锰充分还原: 被还原出来的磷约75%进入合金,5%残留渣中,其余挥发。 炉料中带入的SiO2比MnO稳定,只有在较高温度下才能被碳还原。 控制高碳锰铁冶炼温度不超过1550℃,就可以有效地抑制SiO2的还原,使大部分SiO2进入炉渣。 炉料中的其他氧化物,如CaO,Al2O3,MgO等,则较MnO更稳定,在高碳锰铁冶炼条件下不可能被碳还原,几乎全部进入炉渣。 炉料中的硫主要来自焦炭。有机硫在高温下挥发。硫酸盐中的硫一般以MnS或CaS的形式熔于渣中。通常炉料中的硫只有1%左右熔于合金。
电炉熔炼技术操作条件电极
2019-03-06 09:01:40
大型电炉一般选用自焙电极,低于500kVA小型电炉也能够选用炭素电极或石墨电极。
一、电极壳
自焙电极的外壳用薄钢板焊接或轧制件铆接而成,外壳上钻有直径3~5mm的小孔以扫除壳内蒸发物(如用标准电极糊,可设必定数量排气孔;用密闭糊,则可不用开孔)。内设筋片若干片。
自焙电极壳的有关尺度见表1。
自焙电极的筋片方法见图1。
表1 自焙电极壳尺度,mm电极直径钢板厚度筋片个数筋片高度三角形尺度200~3000.6~0.92~3个45~6035×35×50300~6000.9~1.34~5个60~15080×80×100600~9001.3~1.45~7个150~200130×130×150900~12001.5~2.07~9个200~300170×170×200图1 自焙电极的筋片方法图
云冶电极壳规格为:
(一)材料规格
钢板类型:P-3F普通钢板
化学成分,%:C-0.18;Si-0.2;Mn-0.41;P-0.025;S-0.033。
物理规格:2000×1000×1.5mm (二)电极壳制造规格(mm)炉号直径长度筋片高筋片个数三角形筋片规格三角形个数1号110010002608个150×2003个2号120010003008个170×1703个
为加强电极的抗拉强度,在电极壳中心焊接两根直径18的螺纹钢。
自焙电机外壳用钢的耗量,一般为电极糊耗量的5%。
二、电极糊
电极糊用无烟煤、焦炭、和沥青制成。块状电极糊每块重约25~30kg,经破碎后装入电极壳内。其块度以能在相邻两筋片间自在落下为准,一般为20~40mm。国外有的工厂选用颚式破碎机破碎电极糊。
出产操作时,电极糊面高度即铜瓦上电极糊装料高度一般为0.5~1.5m。
电极糊要坚持清洁,避免泥沙等杂物混入。不同厂的电极糊要别离堆存。
现在国内几家工厂产电极糊物理化学性质列于表2。
表2 国产电极糊物理化学性质数据表(一)产地固定炭,%蒸发分,%水分,%灰分,%灰分成分,%SiO2FeAl2O3MgOCaO吉林69~70190.451036.0321.320.243.771.8贵阳76.2522.380.8214.3538.8320.1820.564.174.17上海79.2911.990.58.7229.0133.3816.628.923.12昆明71.6417.340.7210.3449.3713.3618.991.63.42
续表2 国产电极糊物理化学性质数据表(二)产地堆积密度,t/m3密度,t/m3软化点,℃烧结后气孔率,%物理规格,kg/块电阻率Ω,mm2/m抗压强度,MPa附注吉林1.511.88822012~1514925.49云冶运用贵阳1.611.93862524818.14上海1.571.81722430926.48昆明1.711.917516183 在作业进程中,电极上部焙烧的部分逐步下降,当挨近高温带时,逐步烧结。图2为前苏联北方镍公司矿热电炉的电极内电极糊在不同高度下的温度改变。图2 自焙电极糊沿电极高度的温度改变
在区间Ⅰ内,温度为50~70℃,电极糊软化并与原先参加的电极糊表面牢固地粘结起来;
在区间Ⅱ内,即在铜瓦区,电极糊的温度从70℃升到300℃,电极糊粘结剂中的蒸发物开端蒸发;
在区间Ⅲ内,电极烧结,很多蒸发物在400~540℃时蒸发出来。在730℃时,电极糊内的蒸发物悉数蒸发,烧结进程结束;
在区间Ⅳ内,电极以完结了进入作业状况的预备,其温度超越900℃。
不同温度下自焙电极,电极糊的物理性质列于表3。
表3 不同温度下自焙电极、电极糊的物理性质温 度 ℃电阻率 Ω·mm2/m极限抗压强度 MPa物理状况259000块状10016400流体20014800可塑性流体30010000流体400600011.7焦化进程500225029.42焦化进程600125042.17焦化进程70050053.94焦化基本完结80035053.94焦化基本完结90082.353.94焦化完结100064.753.94焦化完结120055.1焦化完结
三、电极钢带
云冶选用UR―63型炭素冷轧钢带和20号钢带。
其规格如下:
(一)元素含量,按部颁标准(%): C-0.2~0.3;Si-0.17~ 0.37;P-0.04 ;S-0.04;Cr-0.25;Ni-0.25。
(二)抗拉强度:20号钢带为550~800MPa,伸长率小于2%。
(三)物理规格:3000×300×1.5mm。
四、电极的升降
中小型电炉电极升降选用卷扬驱动,大型电炉电极升降选用液压设备。一般直径为1100~1200mm的自焙电极分量达18~20t,需用35t卷扬机。电极升降速度可按表4选取。
表4 自焙电极的升降速度自焙电极
mm5007009001100升降速度
m/min0.7~0.90.6~0.80.5~0.70.4~0.6
电极下降速度一般比提高速度慢20~25%,避免电极下降时电流发作过大的动摇。假如发作毛病时能较快的提高电极。
大型电炉每次下放电极的长度不超越150~200mm,下放相隔时刻一般不少于炉子全负荷作业6h,故每天的下放长度一般不超越400~600mm。下放操作时带电进行的,但一般要下降负荷40~60%,避免烧坏电极壳。下放结束后10~30min内逐步康复正常负荷。云冶每次下放不大于150mm,接连下放不超越400mm,下放时,每相电流不超越50A,下降负荷为本来的50%。
五、电极密封
电炉电炉熔炼时很多冷空气电极四周空地漏入炉内,致使烟气量增大,烟气中S02浓度下降。现在熔矿电炉电极密封方法较多,常用的有:
(一)选用接近炉子侧壁的循环气体密电极。该法系使用从炉子排出的气体经过支管将气体通入电极周围的喷嘴,把溢出的气体压人炉中。图3为循环气体密封示意图。图3 循环气体密封示意图
(二)折叠式密封设备 该设备由三个直径递加的钢制上、中、下部密封圈组成,其相对空隙为30~50mm。每段密封圈高度为350mm左右,三段总长为1050mm,略大于或等于电极行程。整个密封圈用三根吊链沿周边成120°角固定于夹紧圆环上,它随电极上升而上升,随电极摇摆而摇摆。始终将电极与炉顶触摸处的空隙密封。折叠式电极密封设备见图4。图4 折叠式电极密封设备结构示意图
1-下吊环;2-下密封圈;3-中密封圈;4-上密封圈;5-上部吊环;
6-密封填料;7-吊链;8-炉顶;9-电极;10-夹紧圆环;
11-电极夹持器
(三)选用在电极周围用填料圈密封,或选用水冷密封圈密封电极孔。图5为固定式水套密封设备结构图。经过绷簧和油缸的效果使锥形环上升时,锥形环的斜面就对颚板发生满足的压力以坚持与电极严密触摸。在锥形环上部用法兰和螺丝将密封材料(耐火砖)和玻璃丝布压紧,而密封水套和密封圈则固定在电炉炉顶上。当电极上下动作时,靠密封材料与密封水套及密封圈内表面的冲突而坚持杰出密封。为了避免发生涡流而添加电能的丢失,悉数密封件都用不锈钢制造。图5 固定式水套冷却电极密封设备
1-电极;2-导电颚板;3-压紧颚板的锥形环;4-密封材料;5-玻璃丝布;
6-密封水套;7-密封圈
铝合金卡线器
2017-06-06 17:50:10
铝合金卡线器的性能以及用途?用途:用于架空电力线路调整弧垂,拉紧导线特点:采用高强度铝合金材料段压成型,强度高、重量轻产品编号 型号 适用导线(LJ/LGS) 最大开口(MM) 额定负荷(KN) 极限负荷(KN) 重量(KG)G001 GK-1L 25-70 14 10 20 1.5G002 GK-2L 95-120 17 15 30 2.1G003 GK-3L 150-240 24 25 50 2.5G004 GK-4L 300-400 32 40 80 4.3G005 GK-5L 500-630 37 50 100 6.8铝合金卡线器用于绝缘导线的收紧或调整弧度垂用。铝合金卡线器采用高强度的铝钛合金锻造成形,自重轻。铝合金卡线器钳口部分经特殊网纹处理,无论冬夏都能牢牢卡住线缆且不伤内芯。1.铝镁合金卡线器用途:适用于架空电力线路的调整弧垂,拉紧导线。型号 适用导线 额定负荷(KN) 最大开口(mm) 重量(kg)YTK-1 25-70 10 14 1.05YTK-2 95-120 15 18 1.40YTK-3 150-240 25 24 2.9YTK-4 300-400 40 32 4.0YTK-5 500-630 50 37 6.7YTK-6 720-800 70 40 10.02.铝合金绝缘卡线器用途:适用于架空电力线路的调整弧垂,拉紧导线。型号 适用导线 额定负荷(KN) 电缆外径(mm) 重量(kg)YTK-1 25-70 10 13.8-17.8 1.55YTK-2 95-120 15 19.6-21.0 2.40YTK-3 150-240 25 22.6-26.4 3.60YTK-4 300-400 40 27.4-29.8 5.43.万能紧线器型号 使用范围 安全负荷ibs 重量kgYTX-1000c 输配电2.6-15钢绞线,钢丝线,裸铜线 1000 0.6YTX-3000c 输配电16-32钢绞线,钢丝线,裸铜线 3000 2.5YTX-2000c 输配电4-2钢绞线,钢丝线,裸铜线,铝绞线 2000 &nbs
电炉熔炼车间配置参考图
2019-01-07 07:51:26
电炉车间配置图实例见图1。图1 3000kVA电炉车间配置图实例
1-圆盘给料机;2-刮板加料机;3-电炉;4-电极卷扬机;5-转炉渣返回溜槽;6-桥式起重机;7-桥式单梁起重机;8-铜锍放出溜槽;9-炉渣放出溜槽;10-变压器;11-桥式抓斗起重机
电炉熔炼技术操作条件作业制度
2019-01-07 07:51:21
作业制度主要包括:加料制度、电力制度(功率和二次电压)、熔池深度控制。
一、加料制度
矿热电炉熔炼的加料方法应保证:
(一)获得最大的熔炼量,熔池表面应完全被炉料覆盖,尽可能减少热损失和金属在废渣中的损失。
(二)操作安全。
(三)料坡保护炉墙不受渣侵蚀,延长炉寿命。
(四)实现机械化和自动化进料以减轻劳动强度。
由于80%~90%电能在距电极中心1.5~2倍电极直径的区域内转化成热能,因此,70%~80%的炉料应直接加加在靠近电极的料坡上,其余20%~30%的炉料加在靠近炉墙处以保护炉墙。干燥-焙烧设施应尽可能靠近电炉,以缩短炉料输送距离。
加料管的设置 电炉加料管数量及其布置视炉子大小而异。大型电炉一般沿炉子纵向设置四排或二排。图1为加料孔布置示意图。图1 加料孔布置示意图
1-加料孔;2-烟道孔;3-电极孔;
加料漏斗和加料管的直径按炉料最大块度选择,加料管尺寸以及炉料块度与加料管尺寸对照表见表1。
表1 炉料块度与加料管尺寸对照表,mm炉料块度(最大的)加料管尺寸20φ30040φ35080φ400100φ450150500×750300750×1000下料管倾斜角一般不小于50°~65°。
10~15mm块料占80%以上,含水达3%时,渣面以上料坡高度为700~1200mm;用粉料时,渣面以上的料坡高度为300~500mm,粉料含水分高时,料坡易被破坏和翻倒。渣面以上料坡高度与渣面以下炉料陷人深度之比为1~1.5。粉料的比值接近1,块料的比值接近1.5。熔炼粉矿必须采用低料坡,不超过500mm。
二、电气制度
电气制度主要由运行功率、电压、电流等参数表示。熔炼每吨物料所消耗的电能最小而炉子生产能力最高的电气制度就是最佳的电气制度。
新建厂的电气制度参数一般要参照同类型电炉生产实践的电气制度选取。电气制度最重要的参数是电压。
(一)功率 供给炉子的电能按下式转化为热能:
Q= VIt式中Q-热能,J;
V-电压,V;
I-电流,A;
t-时间,s。
此公式表明,在电压一定时,为了提高炉子功率,必须增加电极插入深度以增加电流;为了降低功率,必须减少电极插入深度以减少电流。
电炉的操作功率须与加入物料量相适应,否则会造成熔池熔体过冷或过热。
(二)二次电压供给炉子的电能在熔池内的分配,即电极一炉渣接触处和渣层内放出热量的分配比例,直接影响到冶炼过程的正常进行和各项技术经济指标。
当熔炼粉料及堆积密度小(1.3~1.4t/m3)的球粒和烧结块时,料坡沉人渣池的深度较小,炉料主要在渣层上部,一般不超过500~700mm。在这种情况下,为了保证大的熔化量,熔炼作业主要在料坡沉入的深度区内进行。电极-炉渣接触处的放热量占总功率的70%~80%,以保证生成炉渣和铜锍所需的热。20%~30%的热量是在熔池的下层放出,用于进一步提高熔炼产物的温度和补偿炉子底部的散热。
当熔炼堆积密度较大(达3t/m3)的块料时,在熔池表面有圆锥形料坡形成,且料坡沉入渣池达1100~1300mm。在这种情况下,为了强化炉料的熔化,熔炼作业采用的电气制度必须保证将必要的热量传至沉入渣池深部的料坡,约占30%~50%的热量用于熔化渣层中的炉料,以造成炉渣的适当过热及铜锍与炉渣分离良好的条件,而电极与炉渣接触处的放热量占50%~70%。
如果功率分配失调,将导致炉顶温度过高而铜锍层温度不够(上部放热量太多),或者炉料熔化量降低,而铜锍层强烈过热(下部放热量太多),熔炼过程不正常。
决定电能分配的主要因素是电极在渣层中插入的深度,电极插入渣层深度与功率分配的关系见图2。图2 电极插入渣层中深度与功率分配的关系
在功率相同时,炉渣导电率(取决于炉渣成分和温度)、料坡高度、渣层厚度、电极距离、电极直径和电极工作端的形状等都影响电极插入深度,但是起决定作用的仍是工作电压(即二次电压)。电极插入深度与工作电压及功率分配的关系见图3。图3 电极插入深度与炉子工作电压及功率分配的关系
1-渣层厚度103cm; 2-铜锍层厚度;3-炉底
云冶当渣含SiO235%~38%,FeO30%~32%,SiO2/FeO1.15~1.20时,选择的二次电压为490~520V,此时电极插人深度约占渣层厚度的40%~60%
三、熔池深度
熔池深度对电炉熔炼制度的影响很大,最佳熔池深度应是:
(一)炉子热稳定性大,运行平稳。
(二)熔炼过程的电气制度比较稳定,减少电极接触铜锍造成短路的可能性。
(三)返回转炉渣时对渣成分影响小。
(四)炉渣中金属分离良好,以尽量减少金属在废渣中的损失。
(五)铜锍过热现象少,使热利用率提高、熔化量增加和电耗降低。
熔池深度高于最佳深度时引起炉渣底层和铜锍冷却,造成炉底结瘤及产生横膈膜现象,恶化铜锍颗粒额沉降条件,增加金属损失。
通常设计电炉时,一般铜锍层厚度为700~800mm,渣层厚度为1000~1500mm,故熔池深度为1700~2300mm。熔池深度实例见表2。
表2 熔池深度实例,mm厂别铜锍层厚度渣层厚度熔池深度云冶650~11001150~11001800~2200苏力切尔玛300~500500~1000800~1500依玛特拉180~430290~500590~790罗斯卡300~400800~10001100~1400今贾480~510600~7501100~1250茵斯皮雷森76015402300皮尔多普70010001700
变压器铜线
2017-06-06 17:50:09
变压器铜线一般都是紫铜的。国家标准规定:电工用铜纯度必须在99.5%以上。变压器线圈用的铜线、铜型材都属于电工用铜,所以黄铜做变压器一般用在小功率变压器上,且属于违规使用,是不合格产品。 变压器一般有2大损耗,一是铜损,二是铁损。这是变压器的2大敌人,如果用黄铜做变压器的线圈,无异于人为增加铜损,降低变压器的功率因素,是十分有害的。 变压器的功能主要有:电压变换;电流变换,阻抗变换;[1]隔离;稳压(磁饱和变压器);自耦变压器;高压变压器(干式和油浸式)等,变压器常用的铁芯形状一般有E型和C型铁芯,XED型,ED型CD型。 变压器按用途可以分为:配电变压器、电力变压器、 全密封变压器、组合式变压器、干式变压器、 单相变压器、电炉变压器、整流变压器、电抗器、抗干扰变压器、防雷变压器、箱式变电器 试验变压器 转角变压器 大电流变压器 励磁变压器 。变压器的制作原理:在发电机中,不管是线圈运动通过磁场或磁场运动通过固定线圈,均能在线圈中感应电势,此两种情况,磁通的值均不变,但与线圈相交链的磁通数量却有变动,这是互感应的原理。变压器就是一种利用电磁互感应,变换电压,电流和阻抗的器件。 镀银铜线在某些场合称之为镀银铜丝或镀银丝,是在无氧铜线或低氧铜线上镀银后,经过拉丝机拉细而成的细线。镀银铜线分为镀银软圆铜线和镀银硬圆铜线。镀银软圆铜线是经过退火,改变其物理特性,以达到变软的目的。好的镀银铜线镀层连续牢固地附在导体表面,经试样后样品表面不变黑。镀银的镀层表面应该光滑连续、没有银粒、毛刺、机械损伤等有害缺陷。 因为近年铜材涨价比较厉害,现在的确是有些厂家用铝线,或者是铜包铝线来代替铜线,不过我还没听说过有用铜铝合金的。对于大型变压器来说,必须要入厂监制,要是没有在制造过程中把住关,已经成变压器成品了再来判断是比较困难的。铝线的电阻率比铜线要高,但比重比铜小得多,相同情况下,铝线变压器的负载损耗高,要想把损耗降下来,变压器体积必然增大。可以通过测电阻、考核器身重、看变压器的体积等办法来测试一下,但在没有参照的情况下也是比较难以判断的。 变压器是我们日常生活中非常常见的一类电器,其在电力工业方面的用途也相当广泛。电压器铜线的需求量也将随着该
行业
的发展而不断扩大。
变压器铜线
2017-06-06 17:50:04
变压器的绕组都是紫铜的。国家标准规定:电工用铜纯度必须在99.5%以上。变压器线圈用的铜线、铜型材都属于电工用铜,所以黄铜做变压器一般用在小功率变压器上,且属于违规使用,是不合格产品。 变压器一般有2大损耗,一是铜损,二是铁损。这是变压器的2大敌人,如果用黄铜做变压器的线圈,无异于人为增加铜损,降低变压器的功率因素,是十分有害的。 因为近年铜材涨价比较厉害,现在的确是有些厂家用铝线,或者是铜包铝线来代替铜线,不过我还没听说过有用铜铝合金的。对于大型变压器来说,必须要入厂监制,要是没有在制造过程中把住关,已经成变压器成品了再来判断是比较困难的。铝线的电阻率比铜线要高,但比重比铜小得多,相同情况下,铝线变压器的负载损耗高,要想把损耗降下来,变压器体积必然增大。可以通过测电阻、考核器身重、看变压器的体积等办法来测试一下,但在没有参照的情况下也是比较难以判断的。 更多关于变压器铜线的资讯,请登录上海
有色
网查询。
变压器原理
2019-03-18 08:36:58
变压器的是一种常见的电气设备, 可用来把某种数值的交变电压变换为同频率的另一数值的交变电压,也可以改变交流电的数值及变换阻抗或改变相位。发电厂欲将P=3UIcosφ的电功率输送到用电的区域,在P、cosφ为一定值时,若采用的电压愈高,则输电线路中的电流愈小,因而可以减少输电线路上的损耗,节约导电材料。 所以远距离输电采用高电压是最为经济的。变压器原理 目前,我国交流输电的电压最高已达500kV。这样高的电压,无论从发电机的安全运行方面或是从制造成本方面考虑,都不允许由发电机直接生产。 发电机的输出电压一般有3.15kV、6.3kV、10.5 kV、 15.75 kV等几种,因此必须用升压变压器将电压升高才能远距离输送。电能输送到用电区域后,为了适应用电设备的电压要求,还需通过各级变电站(所)利用变压器将电压降低为各类电器所需要的电压值。在用电方面,多数用电器所需电压是380V、220V或36 V,少数电机也采用3kV、6kV等。变压器分类按其用途不同,有电源变压器、电力变压器,调压变压器,仪用互感器,隔离变压器。按结构分为双绕组变压器、三绕组变压器、多绕组变压器及自耦变压器。按铁心结构分为壳式变压器和心式变压器。按相数分为单相变压器、三相变压器和多相变压器。变压器的种类虽多,但基本原理和结构是一样的。变压器的基本结构(1)铁心变压器压器由套在一个闭合铁心上的两个或多个线圈(绕组)构成,铁心和线圈是变压器的基本组成部分。铁心构成了电磁感应所需的磁路。为了减少磁通变化时所引起的涡流损失,变压器的铁心要用厚度为0.35~0.5mm的硅钢片叠成。片间用绝缘漆隔开。铁心分为心式和客式两种。(2)线圈变压器和电源相连的线圈称为原绕组(或原边, 或初级绕组),其匝数为N 1 ,和负载相连的线圈称为副绕组(或副边, 或次级绕组),其匝数为N 2 。绕组与绕组及绕组与铁心之间都是互相绝缘的。 变压器几乎在所有的电子产品中都要用到,它原理简单但根据不同的使用场合(不同的用途)变压器的绕制工艺会有所不同的要求。变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E型和C型铁心。一、变压器的基本原理 图1是变压器的原理简体图,当一个正弦交流电压U1加在初级线圈两端时,导线中就有交变电流I1并产生交变磁通ф1,它沿着铁心穿过初级线圈和次级线圈形成闭合的磁路。在次级线圈中感应出互感电势U2,同时ф1也会在初级线圈上感应出一个自感电势E1,E1的方向与所加电压U1方向相反而幅度相近,从而限制了I1的大小。为了保持磁通ф1的存在就需要有一定的电能消耗,并且变压器本身也有一定的损耗,尽管此时次级没接负载,初级线圈中仍有一定的电流,这个电流我们称为“空载电流”。如果次级接上负载,次级线圈就产生电流I2,并因此而产生磁通ф2,ф2的方向与ф1相反,起了互相抵消的作用,使铁心中总的磁通量有所减少,从而使初级自感电压E1减少,其结果使I1增大,可见初级电流与次级负载有密切关系。当次级负载电流加大时I1增加,ф1也增加,并且ф1增加部分正好补充了被ф2所抵消的那部分磁通,以保持铁心里总磁通量不变。如果不考虑变压器的损耗,可以认为一个理想的变压器次级负载消耗的功率也就是初级从电源取得的电功率。变压器能根据需要通过改变次级线圈的圈 而改变次级电压,但是不能改变允许负载消耗的功率。二、变压器的损耗当变压器的初级绕组通电后,线圈所产生的磁通在铁心流动,因为铁心本身也是导体,在垂直于磁力线的平面上就会感应电势,这个电势在铁心的断面上形成闭合回路并产生电流,好象一个旋涡所以称为“涡流”。这个“涡流”使变压器的损耗增加,并且使变压器的铁心发热变压器的温升增加。由“涡流”所产生的损耗我们称为“铁损”。另外要绕制变压器需要用大量的铜线,这些铜导线存在着电阻,电流流过时这电阻会消耗一定的功率,这部分损耗往往变成热量而消耗,我们称这种损耗为“铜损”。所以变压器的温升主要由铁损和铜损产生的。由于变压器存在着铁损与铜损,所以它的输出功率永远小于输入功率,为此我们引入了一个效率的参数来对此进行描述,η=输出功率/输入功率。三、变压器的材料要绕制一个变压器我们必须对与变压器有关的材料要有一定的认识,为此这里我就介绍一下这方面的知识。1、铁心材料:变压器使用的铁心材料主要有铁片、低硅片,高硅片,的钢片中加入硅能降低钢片的导电性,增加电阻率,它可减少涡流,使其损耗减少。我们通常称为加了硅的钢片为硅钢片,变压器的质量所用的硅钢片的质量有很大的关系,硅钢片的质量通常用磁通密度B来表示,一般黑铁片的B值为6000-8000、低硅片为9000-11000,高硅片为12000-16000,2、绕制变压器通常用的材料有漆包线,沙包线,丝包线,最常用的漆包线。对于导线的要求,是导电性能好,绝缘漆层有足够耐热性能,并且要有一定的耐腐蚀能力。一般情况下最好用Q2型号的高强度的聚脂漆包线。3、绝缘材料在绕制变压器中,线圈框架层间的隔离、绕阻间的隔离,均要使用绝缘材料,一般的变压器框架材料可用酚醛纸板制作,层间可用聚脂薄膜或电话纸作隔离,绕阻间可用黄腊布作隔离。4、浸渍材料:变压器绕制好后,还要过最后一道工序,就是浸渍绝缘漆,它能增强变压器的机械强度 。
铜管散热器
2017-06-06 17:50:07
铜管对流散热器 1、概述 铜管对流散热器是指以铜管铝串片为散热元件的对流散热器。产品按结构型式分为单体型(独立安装并具有单体外罩)和连续型(外罩连续)。 2、主要控制参数 每米标准散热量,厚度、高度、长度,工作压力,水阻特性和工艺外观。 3、选用要点 1)、产品样本所标识的每米标准散热量是否符合或高于下表所列国家
行业
标准要求,工作压力是否适用。 单体型铜管对流散热器每米标准散热量表(引自JG221-2007标准) 项目 参数值规格尺寸 厚度(mm) 80~99 100~119 120以上高度(mm) 500~700长度(mm) 400~1800每米最小标准散热量W/m(热媒为热水,ΔT=64.5℃) 1100 1300 1650工作压力(MPa) 1.0注:连续型铜管对流散热器每米标准散热量应符合厂家样本给出的标准散热量值。 2)、依据厂家出具的由国家认定单位测试的产品“每米标准散热量检测报告”、“耐压试验报告”,对检测结果与产品样本标识的数据进行核对(要求被测产品为抽样品,近二年内的检测报告)。 3)、厂家应提供散热器水阻特性数据。 4)、对散热器进行外观查验。 5)、以钢板为外罩的产品,其外罩应光滑、无明显变形且与芯体配合牢固。 6)、产品外表面涂层应均匀、色泽一致,无漏喷和气孔。 4执行标准 1)、产品标准 JG 221-2007《铜管对流散热器》 GB/T 13754-92《采暖散热器散热量测定方法》 2)、工程标准 《建筑给水排水及采暖工程施工质量验收规范》GB 50242-2002 3)、相关标准图 K402-1~2《散热器系统安装》 05K405《新型散热器选用与安装》 5施工、安装要点 1)、应避免在轻型隔断墙面上直接挂装散热器。 2)、单体型散热器应装设放气阀。 3)、应带包装安装,待室内装修完成后或使用前再拆除包装物,以防散热器翅片着尘使散热量降低和漆面被损坏。 4)、更多安装技术参见K402-1~2《散热器系统安装》、05K405《新型散热器选用与安装》。