您所在的位置: 上海有色 > 有色金属产品库 > 水镁石

水镁石

抱歉!您想要的信息未找到。

水镁石价格

更多
抱歉!您想要的信息未找到。

水镁石厂家

更多

灵寿县嘉硕建材加工有限公司

水镁石百科

更多

水镁石(氢氧镁石)(Brucite)

2019-01-21 10:39:10

Mg(OH)2 【化学组成】成分中可有Fe、Mn、Zn类质同像替换Mg,有时含FeO可达10%,MnO可达20%,ZnO可达4%。 【晶体结构】三方晶系;a0=0.313 nm,c0=0.474 nm;Z=1。水镁石型结构为典型的层状结构之一(图Y-30):两层OH-呈六方最紧密堆积,Mg2+充填于全部八面体空隙,构成配位八面体的结构层;结构层与结构层之间相接触的两层OH-也呈近似六方最紧密堆积,但所形成的八面体空隙未充填阳离子。结构层内为离子键,结构层间以氢键相联。水镁石的层状结构决定了它主要以板片状形态出现并发育极完全的{0001}解理。   图Y-30水镁石的结构 (引自潘兆橹等,1993) 【形态】晶体常呈板状、鳞片状、叶片状、不规则粒状集合体(图Y-31),有时成纤维状集合体,称纤水镁石。   图Y-31水镁石呈片状或不规则粒状集合体 【物理性质】白色、灰白色,含有锰或铁者呈红褐色;断口现玻璃光泽。解理平行{0001}极完全;解理薄片具挠。硬度2.5。相对密度2.3~2.6。 【成因及产状】水镁石是蛇纹岩或白云岩中的典型低温热液蚀变矿物。 【鉴定特征】以其形态,低硬度和{0001}极完全解理为鉴定特征。根据易溶于酸与滑石、叶蜡石相区别。 【主要用途】大量产出时可作炼镁的矿物原料。纤维水镁矿是重要的非金属矿物材料,是温石棉的理想代用品。

三水铝石

2018-12-29 09:43:03

三水铝石的化学组成为Al(OH)3、晶体属单斜晶系 P21/n空间群的氢氧化物矿物。与拜三水铝石(bayerite)和诺三水铝石 (nordstrandite)成同质多象。旧称三水铝矿或水铝氧石。以矿物收藏家C.G.吉布斯(Gibbs)的姓于1822年命名。晶体结构与水镁石相似,由夹心饼干式的(OH)-Al-(OH)配位八面体层平行叠置而成,只是Al3+不占满夹层中的全部八面体空隙,仅占据其中的2/3。三水铝石的晶体一般极为细小,呈假六方片状,并常成双晶﹔通常以结核状、豆状、土状集合体产出。白色,或因杂质染色而呈淡红至红色。玻璃光泽,解理面显珍珠光泽。底面解理极完全。摩斯硬度2.5~3.5,比重2.40。三水铝石主要是长石等含铝矿物化学风化的次生产物,是红土型铝土矿的主要矿物成分。但也可为低温热液成因。俄罗斯南乌拉尔的兹拉托乌斯托夫斯克的热液脉中产出有达5厘米大小的晶体。用途见铝土矿。   三水铝石(Gibbsite)   Al(OH)3   [晶体化学] 理论组成(wB%):Al2O3 65.4,H2O 34.6。常见类质同像替代有Fe和Ga,Fe2O3可达2%,Ga2O3可达0.006%。此外,常含杂质CaO、MgO、SiO2等。   [结构与形态]单斜晶系,a0=0.864nm,b0=0.507nm,c0=0.972nm,β=94°34';Z=8。晶体结构与水镁石相似,属典型的层状结构。不同者是Al3 仅充填由OH-呈六方最紧密堆积层(∥(001))相间的两层OH-中2/3的八面体空隙,因为Al3具有比Mg2 高的电荷,故以较少的Al3 数即可平衡OH-的电荷。   斜方柱晶类,C2h-2/m(L2PC)。晶体呈假六方板状,极少见。主要单形:平行双面a、c,斜方柱m。常依(100)和(110)成双晶。常见聚片双晶。集合体呈放射纤维状、鳞片状、皮壳状、钟乳状或鲕状、豆状、球粒状结核或呈细粒土状块体。主要呈胶态非晶质或细粒晶质。 [物理性质]白色或因杂质呈浅灰、浅绿、浅红色调。玻璃光泽,解理面珍珠光泽。透明至半透明。解理极完全。硬度2.5~3.5。相对密度2.30~2.43。具泥土臭味。   偏光镜下:无色。二轴晶( ),2V=0°。Ng=1.587,Nm=Np=1.566。   [产状与组合] 主要由含铝硅酸盐经分解和水解而成。热带和亚热带气候有利于三水铝石的形成。在区域变质作用中,经脱水可转变为软水铝石、硬水铝石(140~200℃);随着变质程度的增高,可转变为刚玉。

铝土矿床的主要成分--三水铝石

2018-12-28 09:57:34

三水铝石(Gibbsite) Al(OH)3 三水铝石是铝的氢氧化物矿物,在铝土矿床中它是主要的成分。三水铝石的晶体极细小,晶体聚集在一起成结核状、豆状或土状,一般为白色,有玻璃光泽,如果含有杂质则发红色。它们主要是长石等含铝矿物风化后产生的次生矿物。   化学组成为Al(OH)3﹑晶体属单斜晶系 P21/n空间群的氢氧化物矿物。与拜三水铝石(bayerite)和诺三水铝石 (nordstrandite)成同质多象。旧称三水铝矿或水铝氧石。以矿物收藏家C.G.吉布斯 (Gibbs)的姓于1822年命名。晶体结构与水镁石相似﹐由夹心饼干式的(OH)-Al-(OH)配位八面体层平行叠置而成﹐只是Al3+不占满夹层中的全部八面体空隙﹐仅占据其中的2/3。三水铝石的晶体一般极为细小﹐呈假六方片状﹐并常成双晶﹔通常以结核状﹑豆状﹑土状集合体产出。白色﹐或因杂质染色而呈淡红至红色。玻璃光泽﹐解理面显珍珠光泽。底面解理极完全。摩斯硬度2.5~3.5﹐比重2.40。三水铝石主要是长石等含铝矿物化学风化的次生产物﹐是红土型铝土矿的主要矿物成分。但也可为低温热液成因。俄罗斯南乌拉尔的兹拉托乌斯托夫斯克的热液脉中产出有达5厘米大小的晶体。用途见铝土矿。   三水铝石[晶体化学] 理论组成(wB%):Al2O3 65.4,H2O 34.6。常见类质同像替代有Fe和Ga,Fe2O3可达2%,Ga2O3可达0.006%。此外,常含杂质CaO、MgO、SiO2等。   [结构与形态] 单斜晶系,a0=0.864nm,b0=0.507nm,c0=0.972nm;Z=8。晶体结构与水镁石相似,属典型的层状结构。不同者是Al3 仅充填由OH-呈六方最紧密堆积层(∥(001))相间的两层OH-中2/3的八面体空隙,因为Al3 具有比Mg2 高的电荷,故以较少的Al3 数即可平衡OH-的电荷。   斜方柱晶类,C2h-2/m(L2PC)。晶体呈假六方板状,极少见。主要单形:平行双面a、c,斜方柱m。常依(100)和(110)成双晶。常见聚片双晶。集合体呈放射纤维状、鳞片状、皮壳状、钟乳状或鲕状、豆状、球粒状结核或呈细粒土状块体。主要呈胶态非晶质或细粒晶质。     [物理性质] 白色或因杂质呈浅灰、浅绿、浅红色调。玻璃光泽,解理面珍珠光泽。透明至半透明。解理极完全。硬度2.5~3.5。相对密度2.30~2.43。具泥土臭味。   偏光镜下:无色。二轴晶。Ng=1.587,Nm=Np=1.566。   [产状与组合] 主要由含铝硅酸盐经分解和水解而成。热带和亚热带气候有利于三水铝石的形成。在区域变质作用中,经脱水可转变为软水铝石、硬水铝石(140~200℃);随着变质程度的增高,可转变为刚玉。

镁的性质

2019-01-31 11:05:59

一、镁的发现 (1) 1808年英国化学家戴维(H.Davy)电解和氧化镁的混合物制得镁齐,第一次取得金属镁。 (2) 1828年法国科学家比西(A.A.B.Bussy) 用钾复原熔融氯化镁得金属镁。 (3)1833年,英国科学家法拉第(M Faraday)又用电解熔融氯化镁的办法制得金属镁,但在其时镁仍然是实验室的珍品。 (4)1886年才在德国开端用后一种办法进行镁的工业出产。 (5)我国于20世纪50年代用熔盐电解法开端以工业规划出产镁。二、镁的性质 A.物理性质 镁是银白色的金属,密度1.738克/厘米3,熔点648.9℃。沸点1090℃。化合价+2,电离能7.646电子伏特,是轻金属之一,具有延展性,金属镁无磁性,且有杰出的热散失性。 B.化学性质 镁具有比较强的复原性,能与热水反响,放出,焚烧时能发作眩目的白光,镁与氟化物、和铬酸不发作效果,也不受苛性碱腐蚀,但极易溶解于有机和无机酸中,镁能直接与氮、硫和卤素等化合,包含烃、醛、醇、酚、胺、脂和大多数油类在内的有机化学药品与镁只是细微地或许底子不起效果。镁能在能和二氧化碳发作焚烧反响,因而镁焚烧不能用二氧化碳救活器救活。 三、镁资源 镁是10种常用有色金属之一,其蕴藏量丰厚,在地壳中的含量到达2.1%-2.7%,在所有元素中排第六位,是仅次于铝、铁、钙居第四位的金属元素。首要来自海水、天然盐湖水、白云岩、菱镁矿、水镁石和橄榄石等。据估量,全国际的菱镁矿资源量约为120亿吨,水镁石几百万吨,海水中的镁含量估量为6×10(16次方)吨,别的还有很多的白云石和盐湖镁资源 。 我国是国际上镁资源最为丰厚的国家之一,镁资源矿石类型全,散布广,总储量占国际的22.5%,居国际第一:菱镁矿储量居国际首位,已探明菱镁矿储量34亿吨,占国际菱镁矿总储量的28.3%;原镁产值居于国际第一位,占国际总产值的70%多。我国含镁白云石矿丰厚,白云石资源广泛我国各省区,特别是山西、宁夏、河南、吉林、青海、贵州等省区,现已探明储量40亿吨以上;我国4大盐湖区镁盐矿产资源的前景储量达数十亿吨其间,柴达木盆地内大小不等的33个卤水湖、半干枯盐湖和干枯盐湖,蕴藏着储量占全国第一位的镁盐资源;我国海域水中的镁合金到达0.13%。

陕西洛南县富康钼加工厂钼矿石选矿试验报告

2019-01-25 15:50:21

试验目的是通过选矿试验研究,为该矿提供合理的选矿工艺流程及经济技术指标,为资源开发利用提供参考依据。     该钼矿石采用钼一粗、二扫、八精,选钼尾矿综合回收黄铁矿,试验指标:钼精矿含钼42.75%,钼回收率76.04%,硫精矿含硫48.17%,硫回收率78.33%。     该钼矿石中金属矿物有七种:辉钼矿、黄铁矿、黄铜矿、斑铜矿、磁铁矿、赤铁矿、褐铁矿。脉石矿物十七种:石英、长石、透辉石、透闪石、阳起石、黑云母、绢云母、绿泥石、方解石、白云石、绿帘石、滑石、水镁石、海泡石、木屑石、锆石、石墨。    该钼矿石中由于碳和易浮脉石(绢云母、滑石、辉石)存在,在选矿过程中造成泡沫发粘,从而影响了选矿指标。    辉钼矿为本次试验的主要目的矿物,而辉钼矿又多以浸染状不均匀地散布在矿石中。单晶为主,少量呈聚晶堆积在一起,少量辉钼矿以细脉穿插在含矿岩石的裂隙中,部分辉钼矿可包裹在黄铁矿晶粒内,亦见对黄铁矿有穿插交代现象,矿物结晶粒度细小,这主要是影响钼精矿品位及回收率的主要原因。

三水铝石(Gibbsite)

2019-01-21 10:39:10

Al(OH)3 【化学组成】常有少量的Fe2+和Ga3+呈类质同像替换Al3+。 【晶体结构】单斜晶系, ;a0=0.864 nm,b0=0.507 nm,c0=0.972 nm,β=94°34′;Z=8。具水镁石型结构,但Al3+只充填于每两层相邻的OH-羟离子之间的2/3八面体空隙,组成配位八面体的结构层。 【形态】单晶呈假六方形极细片状。通常成结核状、豆状集合体或隐晶质块状集合体。     【物理性质】白色,常带灰、绿和褐色;玻璃光泽,解理面呈珍珠光泽,集合体和隐晶质者暗淡。解理平行{001}极完全。硬度2.5~3.5。相对密度2.30~2.43。 【成因及产状】主要是长石等铝硅酸盐经风化作用而形成。部分三水铝石为低温热液成因。在区域变质作用中,三水铝石经脱水作用变为一水硬铝石;而在更深的区域变质条件下,可变为刚玉;如有SiO2存在时则变为含铝硅酸盐矿物。 【主要用途】为铝的主要矿石矿物。也可用于制造耐火材料和高铝水泥原料。

镍精矿降低氧化镁工艺技术

2019-01-21 18:04:33

一、概述     金川公司选矿厂一选矿车间处理龙首混合矿石,设计处理能力为1200t/d,有破矿、磨浮、精矿输送三道工序。其中,磨浮采用三段磨矿、三段浮选的阶段磨选流程。经80年代后期和90年代初期的系列改造,形成了1500t/d的生产能力。90年后期,经过不断挖潜改造,特别是2000年和2001年连续两次150t/d的扩能改造,现已形成2000t/d的生产能力。     目前所指的龙首混合矿石,是指龙首矿东、中、西部三个不同采区的矿石混合,而不是矿石工业类型上所所义的硫化率为45%~60%的混合矿石。其中一部分较富混合矿石(含Ni1.3%以上)由一选矿进行处理,另一部分较贫混合矿石(含Ni1.122%左右)由二选磨浮车间处理。     本文所探讨的就是Ni品位在1.30 %以上的由一选处理的龙首混合矿。     二、矿石性质及主要矿物选矿工艺特性     (一)龙首混合矿石中主要金属矿物及选矿工艺特性     龙首混合矿石中主要金属矿物有紫硫镍铁矿、镍黄铁矿、黄铁矿、磁黄铁矿、黄铜矿、方铜矿等;脉石矿物有蛇纹石、绿泥石、滑石及碳酸盐。紫硫镍铁矿被认为是最易浮选的硫化镍矿物。镍黄铁矿属比较好选的镍矿物,其选别效果仅次于紫硫镍铁矿,主要原因是其原生粒度比紫镍铁矿小,由于中细粒贫矿石中的镍黄铁矿和磁铁矿紧密共生呈网络状结构,磨矿过程中绝大部分不能单体解离,造成镍黄铁矿可浮性稍差。氧化会使紫硫镍铁矿的可浮性变差,因此对于以紫硫镍铁矿为主的硫化镍矿石要求快采、快运、快选,矿石存放越久越不利于选别。     一般的蛇纹石化矿石,用黄药做捕收剂,镍回收率和硫化率接近或比较接近,是比较好选的硫化镍矿石,使用调整剂可提高精矿品位,回收率无明显改善。蛇纹石具有一定的可浮性,所以精矿中30%左右脉石矿物中有相当部分是蛇纹石,致使精矿中金属品位降低,氧化镁含量高。强蚀变矿石中蛇纹石含量较少,在一般的浮选生产中,硫化物损失严重。     研究证明:各类厂矿中的硫化镍矿物可选性无明显差异,但矿石中脉石矿物对选别生产显著影响,因此,提高镍矿物选别指标或降低精矿中氧化镁的研究工作中,必须重视脉石矿物的抑制。     (二)含镁脉石矿物的浮选工艺性质     金川硫化铜、镍矿床中主要脉石矿物为含镁硅酸盐,由于地质蚀变作用,这些硅酸盐主要以蛇纹石、绿泥石、滑石的形式存在,这些脉石矿物对铜、镍的浮选影响较大。     1、主要脉石矿物的结构     蛇纹石是层状碳酸盐矿物中最简单的矿物,结构式为[Mg3Si2O3(OH)],在它的没一层结构中都含有一层硅氧四面体,水镁石层获得额外电荷,所以和另外一个硅氧四面体六方网成夹层结构,一旦在滑石层上没有净电荷而只有范德华力时,这个夹层就裂开,滑石也很软。     绿泥石也是层状硅酸盐矿物,结构式为(Mg·Al·Fe)12[(SiAl)8O22](OH12),它是在双层云母之间夹上一层水镁石而形成的,如果水镁石层价键遭到破坏,这个矿物就裂开。和前两种矿物比,它最松软。     2、脉石矿物的可浮性     蛇纹石大量存在于镍精矿中而影响精矿质量。在镍矿的生产实践中发现蛇纹石大量进入镍精矿而难以脱除,原因是蛇纹石在形成过程中具有较强的磁性,具有磁性的蛇纹石吸附与同样具有磁性的硫化物表面一起进入精矿;另外,带正电的蛇纹石易吸附与带负电的镍矿物表面而上浮。     绿泥石在镍矿物浮选中易浮难抑,另外,绿泥石疏松易碎,在磨矿过程中易泥化。绿泥石矿泥在镍矿物浮选中其行为与蛇纹石细泥基本一致。     滑石具有非极性表面,疏水性好,具有较强的天然可浮性,仅用起泡剂就能很好使之浮游,镍矿物浮选中,滑石极易进入精矿中。     三、降镁现状分析     (一)工艺流程及其特点     90年代,为了给闪速炉提供低镁合格精矿,弥补二矿区富矿精矿量的不足,金川公司选矿厂、金川镍钴研究设计院、中南工业大学、西北矿冶研究院等单位,针对龙首混合矿石低精矿中氧化镁进行了大量的试验研究,这些试验研究概括起来有三种:       1、通过改变工艺流程降镁;       2、通过新药剂达到活化有用矿物,抑制脉石矿物的药剂降镁;       3、采用改变工艺流程和添加新药剂相结合的方式降镁。       通过大量的试验研究,一选车间于1998年6月9月分别对2#系统和1#系统进行了流程改造,形成了目前的降镁工艺,产出的低镁精矿送闪速炉处理,新的降镁工艺主要是强化了精选作业,增加了粗选次数,通过提高精矿品位达到降镁的目的。现场生产实践证明三段磨矿、三段浮选的阶段磨选流程是选别金川龙首混合矿石的成功经验,既可使有用矿物达到充分单体解离得到有效回收,又可减少过磨和矿物表面污染。生产实践还证明,该流程适应性比较好,既可组织降镁生产,为二期闪速炉提供低镁精矿(精矿中氧化镁含量≤7%);又可以组织低精矿品位生产,为一期电炉生产提供原料,并且在这两种情况下,回收率都基本不受损失。一选磨浮工艺流程(框图)如图1。    图1  一造厂磨浮原则流程     (二)生产指标分类统计分析     对2000年1~8月选厂生产指标进行了分类统计,从统计结果得出如一结论。     1、原矿品位对指标有着直接的影响。随着原矿品位的升高,精矿品位、回收率均呈上升趋势,精矿中MgO含量逐渐降低。     2、原矿镍品位大于1.2%时,只要控制精矿镍品位大于6.5%,精矿中MgO含量即能低于7%,说明在现有工艺条件下,保证一定的精矿品位是降镁的首要条件。     3、原矿镍品位小于1.2%时,要保证精矿中MgO含量,必须将精矿品位提高到7%以上,回收率损失较多。     四、降镁问题分析     (一)矿石性质对降镁的影响     1、MgO赋存矿物的自然可浮性     大多数硅酸盐矿物有强的共价键或离子键,亲水性强,可浮性差,如橄榄石、辉石等。但蛇纹石、滑石、绿泥石等矿物是特殊的层状或双链状硅酸盐矿物,破碎后表面键力是分子键力,疏水性好,自然可浮性强,在浮选过程中容易进入精矿,致使精矿中MgO含量升高。金川矿区的矿石大多发生蚀变,原生的橄榄石、辉石大多蚀变为蛇纹石、滑石、绿泥石等,这些含镁矿物可浮性好,是MgO难以抑制的主要原因。     2、矿石硬度     矿石的硬度变小,在磨矿过程中更容易泥化,矿石的蚀变与矿石中构造挤压带的发育会加剧这一趋势,使蛇纹石、滑石、绿泥石矿泥包裹在金属矿物的表面进入精矿,造成MgO含量升高。     3、矿石品位     矿石中金属硫化物与含镁脉石矿物呈负相关,即矿石品位越低,MgO含量越高。2001年1~8月一选矿处理的龙首混合矿石累计Ni原矿品位1.333%,比计划Ni原矿品位1.35%低0.017%,比2000年同期的1.445%降低了0.112%,呈明显的下降趋势,增加了降镁工作的难度。     (二)降镁方案的局限性     针对龙首混合矿石改善镍铜指标,降低精矿中MgO的工作,各大专院校,科研院所做了大量的试验研究,对不同的矿石采用不同的技术措施都有一定的效果,但是一经生产应用,效果若显若隐。选矿过程很复杂,工业化生产又是一个连续性过程,因目前矿山尚无法实现配矿或稳定出矿,入选的矿石性质、品位波动很大,以不变(或说相对固定)的选矿设备、工艺流程处理多变化矿石,使过程控制更加复杂化,从而使一些看起来比较好的技术措施,在现场应用时就很难取得理想的效果。     五、降镁工作的研究方向     (一)工艺矿物学研究     一矿区龙首混合矿石矿物组成复杂,过去的矿物工艺学研究多侧重于考察原矿,对脉石矿物在选矿过程中各中间产品的赋存状态和工艺特性研究很少,而弄清楚含镁脉石矿物在整个浮选工艺过程中的走向及选矿过程中各中间产品中的脉石矿物的工艺特性,对降镁工艺与药剂的研究具有重要的指导意义,是降镁的关键所在。     (二)选矿新工艺研究     金种一矿区龙首混合矿石降镁工艺的研究晚于二矿区,但也取得了一定进展。但从生产实践来看,还需继续深入探索。     澳大利亚的G·D·Senior等人采用一种新的工艺流程处理镍硫化矿,可除去98%的含镁矿物,工艺要点为:预先浮选含镁矿物,然后将物料分别处理,分段抑制含镁矿物,最后活化含镍矿物,得到高品位镍精矿。金川一矿区混合矿石主要含镁矿物为蛇纹石,其良好的可浮性是造成精矿MgO含量高的重要原因,可以考虑预先浮选蛇纹石,并通过降镁药剂分段抑制其它含镁矿物来达到降镁的目的。另外,G·D·Senior等人认为,粒度不同的物料可浮性和对药剂的要求都有很大的差异,这一点也值得借鉴。     (三)浮选新药剂研究     在工艺流程确定的前提下,影响浮选过程和最终指标最为关键的因素就是浮选药剂的合理选择与使用。由于浮选过程中药剂之间存在着的交互作用,很难真正搞清楚选矿药剂的作用机理,现有的很多理论都是以假设和推测的形式出现,不能确定地描述药剂如何作用于矿物,怎样改变其浮选特性,这一点妨碍了浮选药剂研究的针对性。因此,深入研究各种药剂的作用机理,是降镁研究的重要组成部分。     (四)应注意整体指标的优化     各大专院样、科研院所以往对于金川矿石降低精矿中MgO的研究中,虽然部分地注意了对其它指标的影响,并且采取了一定的技术措施,但这种注意还是不够的。很多降镁方案都要通过不同程度地提高精矿品位来实现,而精矿品位的提高势必造成回收率的损失。若是为了降镁则大幅度提高精矿品位,导致过多地损失回收率,在经济上是不合理的,金川资源有限,在考虑降镁满足闪速炉要求的同时,不能过多损失镍、铜回收率,要特别注意整体指标的优化,这应在今后的降镁工艺研究中引足够重视。     六、结语     金川一矿区龙首混合矿石降镁工艺,经各大专院校、科研院所的大量研究,已取得了一定的进展,有些已应用于工业生产中,目前一选矿的降镁工艺就是在充分吸收各家研究成果的基础上形成的,生产实践也证明在矿石性质、品位相对稳定时,还要靠提高精矿品位来达到降鲜的目的;在矿石性质恶化时,精矿中MgO含量还不能满足要求等,因此,针对一矿区龙首混合矿石降低精矿中MgO含量的工作,还要进一步地探索研究。

镁的资源储量分布

2019-10-24 17:34:24

镁在宇宙中含量第八,地壳丰度为2%,海水中含量第三,是地球上储量最丰富的轻金属元素之一 。镁主要以固体矿和液体矿的形式存在,在自然界分布广泛。固体矿主要有菱镁矿、白云石等;液体矿主要来自海水、天然盐湖水、地下卤水等。虽有逾60种矿物中均蕴含镁,但全球所利用的镁资源主要是白云石,菱镁矿,水镁石,光卤石,和橄榄石这几种矿物,其次为海水苦卤、盐湖卤水及地下卤水。全球镁资源储量分布除了储量丰富的固态含镁矿物,含镁蒸发型矿物(海水,卤水,盐湖)资源可谓是取之不尽。当前含镁资源储量完全可以满足人类对镁的需求量,甚至在未来的一段时间内都不成问题。天然卤水可以看作是一种可回收的资源,因而人类开采的镁在相对较短的时间内就会再生。全球菱镁矿储量根据美国地质调查局(USGS)2015年公布的数据显示,全球已探明的菱镁矿资源量达120亿吨,储量24亿吨。蕴藏丰富的国家包括:俄罗斯(6.5亿吨,占总量27%);中国(5亿吨,占总量21%);韩国(4.5亿吨)。我国镁资源储量分布情况中国是世界上镁资源最为丰富的国家之一,镁资源矿石类型全,分布广。中国菱镁矿储量中国的菱镁矿资源是继俄罗斯之后最为丰富的国家,特点是地区分布不广、储量相对集中,大型矿床多。世界菱镁矿储量的21%集中在中国,产量的67%由中国提供。菱镁矿探明储量的矿区27处,分布于9个省(区),以辽宁菱镁矿储量最为丰富,占全国的85.6%,此外,山东、西藏、新疆、甘肃等地区菱镁矿也较丰富。中国白云石矿资源中国含镁白云石矿也很丰富,现已探明储量40亿吨以上,白云石资源遍及我国各省区,特别是山西、宁夏、河南、吉林、青海、贵州等省区。白云岩矿床按性质分,主要有热液型和沉积型两种。热液矿主要在辽东、胶东地区广泛发育;沉积型主要分布于山西、河南、湖南、湖北、广西、贵州、宁夏、吉林、青海、云南、四川等省区。中国盐湖资源我国的盐湖镁盐主要分布于西藏自治区的北部和青海省柴达木盆地,柴达木盆地内的镁盐储量占全国已查明镁盐总量的99%,居全国第一位。盆地内的镁盐主要分布在察尔汗、一里坪、东、西台吉乃尔湖、大浪滩、昆特依、马海等盐湖。察尔汗、一里坪、东、西台吉乃尔湖为氯化镁,大浪滩、昆特依、马海、大柴旦等矿区氯化镁、硫酸镁均有,两种类型的镁储量基本相当,其中:氯化镁累计查明资源储量42.81亿吨,其中基础储量19.08亿吨;保有资源储量40.70亿吨,其中基础储量17.98亿吨。硫酸镁累计查明资源储量17.22亿吨,其中基础储量12.29亿吨。 

钼矿石中脉石矿物的抑制与抑制剂-泥化脉石影响和脱除

2019-02-19 12:00:26

细涣散的粘土质矿藏,以其很细的粒度(一般为数微米乃至小于lμm)、很高比表面积(可达数十乃至数百m2/g)、很强的离子交换才干,成为辉钼矿浮选的又一种难按捺脉石。     粘土质矿藏大多属层状硅酸盐,其结构比照见图1。它们由硅氧四面体与镁(或铝)-氧(或氢氧)八面体(水镁石)两种根本单层组成。可分作两层或三层状。依据1972年世界粘土协会及1975年日本粘土协会分类法分类,见表1。其间,高岭石、蒙脱石、伊利石、绿泥石较常见、海泡石等较少见。    图1  层状硅酸盐分类与侧视图   表1  粘土矿藏分类  晶     质结构单位层类型层间电荷族分  子  式种1:1层状x=0高岭石埃洛石(多水高岭石)Al4[Si4O10][OH]8高岭石、迪凯石、珍珠陶土Al4[Si4O10] [OH]84H2O埃洛石、变埃洛石2:1层状 2:1:1层状0.25<x<0.5蒙脱石(Al2Mg3)[Si4O10][OH]2nH2O蒙脱石、拜来石、绿脱石、皂石x—1伊利石(水云母)KAl2[(SiAl)4O10][OH]2nH2O伊利石、海绿石x不定绿泥石(Mg、Al、Fe)12[(Si,Al)8O20][OH]6各种绿泥石混合层有序伊利石-蒙脱石组合、绿泥石-蒙脱石组合无序伊利石-蒙脱石组合、伊利石-绿泥石组合、伊利石-蒙脱石-绿泥石组合2:1链状x~0.2海泡石 海泡石、凹凸棒石、绿坡缕石非晶质水铝英石       从表平分子式或以下差热曲线(图2~图6)脱水失重曲线不难看出,粘土质矿藏不只含有结构水(须在100~150℃才干脱除)还含有层间吸附水(只要在400℃以上才干脱除)。[next]     高岭石是曲型的二层状硅酸盐,依据弗士林德和杰克逊(Forslind and jacobssen)报道,高岭土结构见图7,简略高岭石只要结构水而不含层间吸附水。含有层间吸附水的多水高岭石叫埃洛石,它与高岭土结构附近。     蒙脱石因层间易吸附水后胀大又叫作膨润土。为Mg2+替代叶腊石中Al3+构成Si—O/Al (Mg)—OH/Si—O的三层状硅酸盐。Mg2+与Al3+电价不同,夹心层内非电中性叠加时,须由阳离子配平而键合。夹层和中和的阳离子间间隔较大,静电力弱,水易渗透进单个层片间。据弗士林德和杰克逊1975年的导报,蒙脱石结构见图8。   图2  高岭石差热曲线(R.E.格里姆)    图3  高岭石脱水失重曲线(据罗斯和凯尔)    图4  蒙脱石族差热曲线 [next]    图5  伊利石差热曲线(据格里姆)    图6  伊利石脱水曲线(据格里姆)    图7  高岭石结构图    图8  蒙脱石结构的两种概念变型 [next]       绿泥石化学通式为Y6 [Z8O20](OH)4+Y6(OH)12,其间Y首要为Mg、Fe、Al,有时也有少数Mn、Cr、Ni、Ti等。Z首要为Si、Al。于类质同象替代,使绿泥石改变得反常杂乱。绿泥石一般可写作,(Mg,A1,Fe)12[(Si、Al)8O20](OH)16,其结构由滑石的2:1层与水镁石层组成2:1:1的层状结构。见图9。   图9  绿泥石晶体在(010)面上投影       由表1可见,以上这些矿藏还会有序或无序交叉构成混合层,使泥化脉石变得更为杂乱。     片状泥化脉石的面上常带负电,而棱上常带正电。在周围介质中会吸附各种离子(阳离子或阴离子),一起又放出相应数量的另一些离子,进行离子交换。几种矿藏中蒙脱石离子交换才干最强,伊利石(水云母)次之,高岭石再次之。离子交换性能使泥化脉石在辉钼矿浮选中变得更难脱除。     泥化脉石对辉钼矿浮选的影响是多方面的,而首要表现在对粗粒辉钼矿的矿泥罩盖与细粒辉钼矿和矿泥间的聚会。     矿泥罩盖既可使辉钼矿作为载体,将很多脉石带入钼精矿(依据A.D.让德(Read)见图10)。而下降钼精矿质量;也会因脉石泥的污染,阻挠辉钼矿上浮(依据拉斯科斯基暗示法见图11),而下降辉钼矿回收率。   图10  辉钼矿载体带着泥化脉石    图11  矿泥罩盖阻挠辉钼矿粗粒上浮 (拉斯科斯基Laskowski暗示法)       对矿泥的影响,富尔斯汀瑙的研讨以为,不荷电或与欲浮矿藏荷相反电荷的矿泥损害最大。对细粒辉钼矿,比表面积很大,荷负电荷的“棱”数量大幅度上升。此刻,当介质中含有片状泥化脉石,脉石泥的面上常荷有负电,而棱上荷正电,两种荷反向电荷的“棱”的吸附,形成矿泥聚会。这对辉钼矿浮选回收率和档次都将形成严重影响。[next]     几种脉石泥对辉钼矿浮选影响见图12~图17。显着,易按捺的石英矿泥对辉钼矿影响最小,绢云母有影响但影响也不大。粘土质的高岭石、蒙脱石、绿泥石等与易浮脉石滑石类似,对辉钼矿浮选回收率和档次都有很大搅扰。     辉钼矿浮选中,泥化脉石往往与其它易浮脉石如滑石一起存在,并且几种粘土矿藏也常一起呈现。此刻,欲获合格钼精矿或较高钼回收率变得适当困难。   图12  石英泥对辉钼矿浮选的影响    图13  绢云母泥对辉钼矿浮选影响    图14  高岭土泥对辉钼矿浮选影响    图15  蒙脱石泥对辉钼矿浮选影响 [next]    图16  起泡剂对粘土矿藏向气化粘着影响    图17  脉石泥对辉钼矿浮选影响比照       前苏联巴尔哈什的出产发现泥化脉石对钼浮选影响很大。其影响次序:绢云母<高岭石<胶岭石,而石英简直无影响。它们很多耗费捕收剂,并无挑选性地絮凝,高岭石含水达50%,胶岭石更高达70%。矿浆粘度加大,乃至使空气吸入量显着削减.     巴尔哈什为改进矿浆物理特性,投入粒状石英、花岗岩等脉石,改进了铜钼棍合浮选的质量和回收率。在浮选回路中还参加硫酸铵、硫酸铝和硫酸锌也能改进浮选作用。巴尔哈什还新规划出低液面球磨机,以削减矿石的泥化。     避免泥化脉石使用较多的仍是泥、砂分选工艺:     秘鲁夸琼对粗磨矿浆进行泥、砂分级,分级后,别离进行粗、扫选。这样,避免了难选的矿泥对易选的粗粒级的搅扰,也便于难选的矿泥特别加工。选用泥、砂分级、粗选的还有中美洲的许多工厂。别离浮选所获精矿兼并后进行精选。     美国奎斯塔钼选厂在中矿(扫选泡沫)中含有一部分泥化脉石,并含有部分氧化钼矿藏。为避免难选物料对易选物料的搅扰。中矿不回来粗选而独自设立了中矿精选回路。     当泥化脉石与滑石等易浮脉石共存时,可在脱除滑石时将泥化脉石脱除。     美国银铃铜-钼选矿厂就是在焙烧铜-钼混合精矿,使辉钼矿遭到天然按捺。对焙砂调浆后只参加起泡剂,可将滑石和泥化脉石浮选进泡沫产品而脱除。     当辉钼矿及其它有价成份粒度与泥化脉石粒度差异较大(即有用矿藏很少过磨),可直接选用脱泥工艺、脱除掉泥化脉石。     泥化脉石对钼选矿的搅扰,视泥化脉石含量和矿藏品种而异。出产中,应慎重对待,经过研讨挑选较合理的计划。

金川镍铜矿精矿降镁研究与实践进展

2019-02-20 10:04:42

金川矿石属蛇纹石多金属硫化矿。为处理其浮选精矿降镁的难题,许多专家学者进行了长时间研讨,在磨浮工艺流程、酸法浮选、降镁药剂方面取得了必定展开。 金川有色金属公司是我国最大的镍出产厂商,所产金属镍占全国产值的80% 以上。其矿石属蛇纹石多金属硫化矿。共有四个矿区,一矿区镍储量占16.36%,该矿区从60年代中期投产,现年产值仍在100万吨以上。该矿区矿石为海绵晶铁状结构,其次为半海绵晶铁状、斑杂状结构。首要金属矿藏为:黄铁矿、紫硫镍铁矿、黄铜矿及少数磁黄铁矿、镍黄铁矿、白铁矿、墨铜矿等硫化物;此矿石通过选矿,所产精矿因为MgO含量高,精矿一向供矿热电炉作为质料。二矿区规划最大,镍储量占75.39%,二矿区有351个矿体,1号矿体镍储量占四个矿区的57.8%.2号矿体占17.08%,其他349个矿体总和仅占0.51%。该矿区从1983年出矿,一向是1、2号矿体混合出矿1996年2号矿体矿量削减到25%,1997年2号矿体出矿才干根本消失。现在,二矿区年出矿300万吨以上。二矿区富矿石为海绵晶铁状结构,贫矿石为浸染状结构。首要金属矿藏有:磁黄铁矿、镍黄铁矿、黄铜矿、黄铁矿、方黄铜矿、墨铜矿、紫硫镍铁矿、马基诺矿、磁铁矿、铬尖晶石等;首要脉石矿藏有橄榄石、蛇纹石、辉石、透闪石、碳酸盐、滑石、绿泥石、云母等。镍黄铁矿、黄铜矿、磁黄铁矿呈粗细粒不均匀嵌布,且互相细密共生。一矿区矿石蛇纹石化蚀变程度大于二矿区矿石,而二矿区1号矿体矿石的蚀变程度又大于2号矿体矿石[1—3]。 长时间以来,浮选精矿降镁就是一个难题,特别是自闪速炉投产以来显得更为严峻。闪速熔炼技能先进,比电炉节能25%左右,其烟气SO,浓度高易于制酸;一同,闪速炉与电炉比较还有产能大、对环境污染小等长处,但对精矿质量要求也更高。精矿中MgO含量有必要小于6.5%[4]。为此。国内许多高校、科研院所及现场工程技能人员作了许多的作业,取得了许多展开。因为一矿区矿石蛇纹石化太严峻,且镍矿藏以紫硫镍铁矿为主,如要将精矿中MgO含量降到6.5%以下,则镍的收回率将大幅下降,这关于镍资源较匮乏的我国是不现实的,因而。一矿区矿石经浮选后,精矿仍供矿热电炉熔炼。近年来,选矿降镁首要针对二矿区矿石。 一、磨浮工艺流程的实验与研讨 磨浮工艺流程通过很多单位长时间研讨。以为结合金川矿石特色。选用阶段磨浮流程较会集磨矿一浮选流程为好[5—10]。这样,粗粒级硫化镍矿藏、硫化铜矿藏就可先期收回以避免过磨引起矿泥罩盖等而影响这部矿藏的收回。 (一))闪速浮选 闪速浮选是近来展开较快的一种快速收回粗粒级有用矿藏的浮选技能,即在磨矿回路中间,经球磨机磨矿后的矿浆进入旋流器分级,沉砂进入闪速浮选机,优先浮选矿石中嵌布粒度粗、可浮性好的金属矿藏,完结早收多收,闪速浮选尾矿回来球磨机。其显着长处是,能削减因过磨而引起的矿泥罩盖然后可前进金属收回率,一同可减轻磨矿回路的循环负荷[11]。金川公司于1997年进行了闪速浮选工业实验,取得了较好的成果[12],镍、铜总收回率别离比不加闪速浮选机前进1.32%和0.75%。因闪速浮选机产出的精矿粒度较粗,使精矿中—0.074mm粒级含量比不开闪速浮选机低32%,进而使精矿脱水本钱下降。但闪速浮选也只能起到尽早收回已单体解离的粗粒矿藏、削减有用矿藏过磨丢失的作用,并不能大幅度改进精矿质量[12]。因为金川铜镍硫化矿的有用矿藏嵌布粒度粗细不均,细粒级部分的有用矿藏也有必要收回。而细粒级部分则有必要通过再磨才干到达有用矿藏与脉石矿藏单体解离,但此刻,因为蚀变蛇纹石易碎而引起的矿浆泥化现象难以避免,为了收回这部分细粒级有用矿藏,部分蛇纹石将不可避免地一同上浮而进入精矿;因而,为了前进镍、铜选矿收回率就难以大幅度前进终究浮选精矿中Ni、cu档次并大幅度下降MgO含量。工业实践标明,选矿收回率与精矿中Ni、cu档次及MgO含量有密切联系,要下降1%的精矿MgO含量。Ni收回率要丢失1.5%乃至更多。 (二)阶段磨浮粗精矿再磨工艺流程 针对二矿区富矿石,许多单位曾进行了一磨一选或两磨两选粗精矿再磨工艺流程的小型实验及工业实验研讨,都取得了较好的选别目标。在确保镍精矿档次>7%、精矿中镍收回率>88%的前提下。精矿中MgO含量可降到6.5%以下[6—10,13,14]。有人还针对一矿区矿石进行过两磨两选粗精矿再磨工艺流程的实验研讨[3,15,16],也取得了较好的选别目标。粗精矿再磨工艺流程中,粗选中所选出的粗精矿实践上是有用矿藏的连生体,这样就能大大减轻因过磨而引起的蛇纹石矿泥对浮选的影响,进而改进终究精矿质量。但是,因为粗精矿有必要通过再磨才干精选出合格的终究精矿。这样不光构成整个工艺设备多、能耗较高,并且导致终究精矿粒度变细。构成精矿脱水困难,压滤后水分达13% 以上,闪速炉前的气流枯燥难以处理如此高水分的精矿,因而到现在为止。粗精矿再磨工艺没有用于工业出产[2]。 (三)两产品计划 因为金川二矿区镍铜矿石中磁黄铁矿较多,约束了精矿中镍档次的进一步前进(在确保镍收回率前提下)及精矿中MgO含量的进一步下降。有的选矿学者以为,只要从混合精矿中别离出一个低镍磁黄铁矿精矿,才干取得更高镍档次、更低MgO含量的镍铜精矿。为此曾进行了两产品计划工艺的实验研讨[17]。成果标明,在天然pH条件下,选用较简略的工艺流程即可取得两个终究精矿—— 镍铜精矿和磁黄铁精矿。镍铜精矿中镍档次达11%以上。MgO含量降到5%以下,镍收回率达80%以上;磁黄铁精矿中镍档次为1%左右,MgO含量11%以上。镍收回率l0%左右。与一产品计划比较,镍铜精矿中镍档次大幅前进、MgO含量显着下降,且镍的总收回率有所前进;但至今没有找到经济有用处理磁黄铁精矿的办法。因而,两产品计划仍未在出产实践中运用。有人[5]还曾提出对精矿进行恰当分配以产出两个镍铜精矿,低镁高镍精矿供闪速炉熔炼。高镁低镍精矿供电炉熔炼。但其工艺流程、药剂准则杂乱。且对镍的总收回率前进不大,因而也未能用于出产实践。 二、酸法浮选 浮选介质是影响浮选的一个重要因素,许多单位曾进行过酸性、中性、碱性介质条件的比照浮选实验研讨,成果标明,铜镍收回率以酸性介质的浮选目标最高,碱性介质的次之,中性介质的最低[18]。酸法浮选的首要特色是:在酸性介质中,次生硫化镍矿藏—— 紫硫镍铁矿在氧化蚀变过程中构成的表面氢氧化铁薄膜可被溶去,使紫硫镍铁矿得以活化;一同,镍黄铁矿、含镍磁黄铁矿的矿藏表面能被及时清洗,避免其表面氧化,进而前进其可浮性;金川镍铜矿选矿中铜的收回率远比镍的收回率低,其首要原因是其间的墨铜矿可浮性低,而墨铜矿可浮性低的原因首要是因为墨铜矿中的水镁石层要比铜铁硫化物层松软,磨矿时墨铜矿易沿水镁石层开裂而具亲水性,在酸性介质中可溶去墨铜矿表面的水镁石层,显露铜铁硫化物表面进而可活化墨铜矿的浮选;矿石中钴、金、银及铂族元素等也可随铜镍矿藏浮出量的添加而前进其收回率[19]。但是,因为金川矿石属超基性岩型矿石,蚀变严峻,矿石自身呈碱性;且金川矿山选用胶结充填采矿法,使充填料或多或少地混入矿石中,而充填料碱性较强刨;因而酸法浮选的酸耗很大,且酸的参加易引起设备的腐蚀。因而,虽然酸法浮选目标较好,仍未能在出产实践中运用,选厂一向是选用在天然pH介质(pH=8,5~9.5)条件下进行浮选。 三、降镁药剂 为了处理精矿降镁难题,金川公司和许多高校、科研单位进行了多年攻关,进行了多种工艺条件及药剂准则的实验研讨,取得了显着前进。大都研讨者普遍以为[3、6、8、18],CMC、六偏磷酸钠、水玻璃均能有用地按捺以蛇纹石为主的含镁脉石矿藏,小型实验目标都较好,但是在工业出产中因各种因素,降镁办法都难以完结。 据报道[21],组合按捺剂EP对蛇纹石具有很好的按捺作用,单矿藏实验和实践矿石实验取得了较好的成果。 西北矿冶研讨院进行了许多的抑镁新药剂研讨作业。其间JCD降镁新药,由T-1140无机盐和29#有机聚合物及0#中性油三者组合而成。对镍黄铁矿和含镍磁黄铁矿等有活化作用;29#药剂是钙镁按捺剂,合作T-1140对蛇纹石有较强的按捺作用;0#油为T-1140和29#药剂的辅佐药剂,起消粘、调泡和帮忙降镁作用[9]。JCD新药剂1992年3月完结小型实验,同年6月完结工业实验[14]。实验目标见表1[9]。现场一向沿用至今,是现在工业实践中运用最成功的抑镁药剂组合。但工业出产中也发现,因药剂功能不稳定,矿石性质动摇等原因而引起精矿中MgO含量动摇较大。 电化学浮选是当时选矿技能的前沿浮选工艺,若能成功运用于出产实践,可较好地处理因当选物料性质杂乱多变引起选矿功率低的难题。“九五”期间,有的单位曾进行了电位调控浮选实验研讨,首要内容包含:浮选工艺优化;电控浮选工艺参数的自动检测;计算机在线操控。实验室实验作用较抱负,Ni收回率大于90% 的前提下,精矿中MgO含量小于6.5%u引。但现场工业实验未能成功。 按金川矿体圈定的工业等第,含镍0.3% ~0.99%的为贫矿,含镍≥1%的为富矿,至今仍是“采富留贫”。但有100多万吨镍金属藏于贫矿之中,覆盖于富矿体顶部,为下降采矿本钱,扩展可使用的镍资源,开发使用贫矿势在必行。但是贫矿性质不同于富矿,贫矿原矿Ni(0.55%)、Cu(0.35%)档次不到富矿(Nil.6%、Cu0,83%)的一半,贫矿MgO含量(28%)却比富矿(22%)高。贫矿的选矿要比富矿愈加困难,许多单位进行了贫矿选矿工艺的“九五”科技攻关,取得了很大展开,但是在确保精矿中MgO含量低于7%条件下,镍收回率只能到达75%左右 引。如要进一步前进镍的收回率,就难以确保精矿中MgO含量低于7%。 四、结语 因为金川镍矿石性质特别,原矿含硫低。磁黄铁矿含量较少,对下降镍精矿氧化镁含量难度大。因脉石矿藏含蛇纹石高且易浮;一同金川矿石性质动摇较大,不同矿区矿石性质差异较大,这给精矿降镁带来很大难度。即便浮选中运用象JCD这类特效降镁新药剂,处理其易选的二矿区矿石,也只能在确保较高收回率的一同下降精矿中MgO含量0.6%~1%左右[2]。从近几年现场出产实践成果看。对易处理的二矿区矿石,Ni收回率可达86%左右,精矿中Ni档次在7%左右,而精矿中MgO 含量在6.8%左右;关于原矿档次更低且含MgO更高更难处理的一矿区矿石,虽经多单位多年的联合攻关,选矿降镁难题仍未霸占。精矿中MgO含量仍在10%左右,不能用先进的闪速炉熔炼,只能送电炉冶炼。但电炉能耗高,出产本钱高,污染严峻,技能落后。镍精矿闪速熔炼体系已于1992年就建成投产,技能先进,能耗低,污染小,出产本钱低,出产才干大。本能够彻底替代电炉,但闪速炉对投入的精矿质量有严厉的要求(Ni>6.5%,MgO 参考文献: [1]金川镍钴研讨所,峨眉郑州矿产综合使用研讨所.金川镍矿工艺矿藏与工艺联系[R].1987. [2]孟悦礼.金川镍铜矿选矿降镁难易程度评论[J].有色金属(选矿部分),1996。(4):1-5. [3]康纪珊。周父执.前进金川镍精矿质量的研讨[J].甘肃有色金属。1988,(1):5—9. [4]杜万民。等.金川镍闪速炉建成投产[J].甘肃有色金属。1994。(1):17—21.5. [5]周积元.金川二矿区富矿石选矿工艺研讨[J].甘肃有色金属.1988,(4):7—13. [6]路长喜.前进二矿区富矿石精矿档次的研讨与实践[J].甘肃有色金属。1993,(1):16—19. [7]曾新民.金川镍矿二矿区富矿石选矿新工艺研讨[J].有色金属(选矿部分),1994。(2):6—10. [8]曾新民.金川镍矿二期选矿工艺研讨与出产实践[J].有色金属(选矿部分),1998。(2):1—5. [9]夏述良.金川二矿区富矿石前进镍精矿档次下降精矿氧化镁含量的研讨和运用[J].国外金属矿选矿,1998,(4):27—29. [10]张存福.金川二期工程选矿新工艺流程的研讨[A].全国第二届镍钴学术会议论文集第五册[C].1992. [11]法克清,等.运用闪速浮选技能处理某铜镍矿石的研讨[J].有色金属(选矿部分)。1998。(2):l1—14. [12]安.金川铜镍矿闪速浮选工业实验后的考虑[J].矿冶。1999。8(1):35—38。18. [13]周父执。方启学.金川二矿区矿石一产品计划选矿新工艺研讨[J].甘肃有色金属。1990。(2):17—19. [14]曾新民.金川镍铜矿选矿降镁工艺研讨与出产实践[J].有色金属(选矿部分)。1996.(1):1—5. [15]赵年光光阴.前进金川一矿区富矿石精矿档次下降氧化镁的实验研讨[A].全国第二届镍钴学术会议论文集第五册[C].1992. [16]方启学。等.前进金川一矿区矿石选矿精矿质量研讨[A].全国第二届镍钴学术会议论文集第五册[C].1992. [17]张新红,周父执.金川二矿区矿石两产品计划选矿新工艺研讨[J].甘肃有色金属,1990,(4):9—13. [18]彭先淦,等.金川镍矿选矿的技能前进[J].国外金属矿选矿,1998,(4):30一32. [19]刘振中.金川铜镍矿浮选工艺流程的研讨[J].有色金属(选矿部分)。1985,(6):19. [20]李建军.金川镍选矿受充填料影响的研讨[A].全国第二届镍钴学术会议论文集第六册[C].1992. [21]张国范,等.按捺剂EP下降镍精矿中氧化镁含量研讨[J].矿产维护与使用。1999。(3):28—31. [22]黄开国.甘肃金川镍矿可持续展开选矿问题浅谈[J].国外金属矿选矿。2001,(1):31—32. [23]甘经超,等.金川二矿区贫矿选矿工艺研讨的评论[J].有色金属(选矿部分)。1998。(4):1—5.