您所在的位置: 上海有色 > 有色金属产品库 > 三氯氢硅

三氯氢硅

抱歉!您想要的信息未找到。

三氯氢硅价格

更多
抱歉!您想要的信息未找到。

三氯氢硅厂家

更多

武汉泰特沃斯科技有限公司

三氯氢硅百科

更多

含氯纤维的类别

2019-03-08 11:19:22

含氯纤维是合成纤维的一类。指以氯乙烯为质料的纤维。其耐酸碱腐蚀的功能,比聚酰胺、聚酯、聚腈等纤维都好。但耐热性较差,一般只能在70℃以下运用。本钱低价,是现在最廉价的一类合成纤维。 以氯乙烯和偏氯乙烯为质料制得的含有氯元素的合成纤维,包含聚氯乙烯纤维、偏氯乙烯纤维、过氯乙烯纤维、氯乙烯—腈共聚纤维、氯乙烯—醋酸乙烯共聚纤维、偏氯乙烯—氯乙烯共聚纤维、聚氯乙烯—聚乙烯醇双组分纤维。 类别 以氯乙烯和偏氯乙烯为根本质料的一系列含氯元素的合成纤维。含氯纤维有很好的阻燃性(极限氧指数35~48)、保暖性和耐化学腐蚀性。缺陷是耐热性差(热收缩温度60~11O℃),易分化,分化时放出有毒的氯化体。成形办法有干法、湿法和热增塑挤出法。溶剂有、、二甲基甲酰胺、四氢等。首要用于制作阻燃纺织品、防火掩盖物、人造毛皮、毛线毛毯、过滤布、筛网、绳子等。

氯氧化铋的生产

2019-01-31 11:06:04

氯氧化铋是三氯化铋的水解产品,首要用于塑料工业,使塑料制品具有美丽的珍球光泽。用量一般为氯氧化铋:树脂为0.4%~0.8%,可根据种类要求适量增减。 一、工艺流程。 如图1,包含溶解、转化水解、洗滤、烘干等工序。图1  氯氧化铋出产工艺流程 二、首要技能条件。 水淬后的铋粒,用稀释一倍的硝酸溶液溶解,生成溶液。 食盐转化:将溶液参加到饱满食盐水(密度1.2克/厘米3)中,拌和均匀,若发生白色水解物,则稍加稀溶化。 水解:将相当于氯化铋溶液体积4倍的稀释水加热至95℃,参加相当于稀释水体积0.7%~0.8%的于稀释液中,在拌和下将铋液倒入,再用热水稀释至pH=2.3,弄清后,与上清液别离,用蒸馏水洗刷BiOCl至pH>5。 枯燥:BiOCl在95~100℃下恒温枯燥脱水,枯燥后经过80目。 三、首要设备。 不锈钢溶解罐一个:硬聚氯乙烯塑料焊制转化槽一个;水解槽一个:离心机一台。 四、产品质量。 产出之氯氧化铋成分为(%):BiOCl>98.5,H2O<0.5,酸不溶物低于0.1。

水氯法提金

2019-03-05 10:21:23

水氯化法又称为化法。氯是一种强氧化剂,能与大多数元素反响。对金来说,氯既是氧化剂又是合作剂。金在饱满有Cl2的酸性氯化物溶液中被氧化,构成三价金的合作物阴离子,其化学反响为: 2Au+3Cl2+2HCl→2HAuCl4 2Au+3Cl2+2NaCl→2NaAuCl4 这一反响在溶液中氯浓度明显提高和pH值低的条件下,可以快速进行。水氯化法的特点是廉价、浸出速度快、不存在金粒表面的钝化问题,并且从浸出液中收回金相对简单。 在19世纪末,水氯化法曾被单个矿山用于从矿石中提金。后来因为化法的开展,此法停止运用。这是因为氯很生动,它能与大数硫化矿藏发作反响,氯的耗费量大,选择性差,再加上存在有Cl2的激烈气味与腐蚀性的问题。但到20世纪80年代后,因为水氯化法对难处理的微细粒碳质金矿可以获得较好的作用,因此再次引起了人们的重视,并获得了相应的开展。所用的氯化浸出剂,包含的、氯酸盐和次氯酸盐,还有HCl-NaCl和FeCl3等系统。 针对广东河台硫化物金精矿(Au50g/t,Ag25g/t,S20.59%,Cu3.19%)的非化法提金,选用水氯化浸出-树脂在浆提金的工艺流程,处理该硫化物金精矿经氧化焙烧后的焙砂,研讨了用量、增加氯盐、浸出时刻和树脂在浆等要素的影响,进行了公斤级扩展实验。结果表明,当所用焙砂含硫0.46%,通入量为21g/t时,耗费量约为35g/t,金的浸出率可达97.9%,浸渣含金降到1.3g/t以下。在矿浆中参加型强碱性阴离子交流树脂进行在浆吸附,可以加速金的浸出速度;载金树脂用筛分法从矿浆中别离出来,可省去冗杂的固液别离过滤洗刷工序;为削减树脂的磨损,延伸树脂的运用寿命,可在浸出后期参加树脂吸附已浸出的AuCl4-;筛分出的载金树脂,用3%的溶液进行金解吸,再用电积法得出金产品。 次氯酸盐是一种强氧化剂,它在氯化钠与FeCl3中可用于浸金,总反响可表示为: 3ClO-+2Au+5Cl-+6H+→2AuCl4-+3H2O 选用次溶液浸出贵州紫木凼金矿获得了较好的作用,该矿归于超微细型含碳质难处理金矿(含Au3.9~4.1g/t,S1.16%,C0.1%~0.6%),金的粒度小于0.01μm,原矿直接化浸出时金浸出率低于30%,而用3%有效氯浓度的次溶液在常温下两段浸出的金浸出率可达85%。在碱性条件下用次溶液浸出金时,通常是用碳酸钠调理pH值为8~13。也可在酸性条件下用溶液浸出金,但有必要增加适量的氯化合作剂,如氯化钠。 用HCl-NaCl系统处理含硫低的氧化型金矿作用较好。例如,新疆伊犁河区域小阿西金矿归于地表氧化型含银高的金矿石(含Au13.4g/t,Ag452.4g/t,Fe4.95%,S0.147%,Cu0.11%),在HCl-NaCl系统有氧化剂存在时,于温度80~90℃、浸出时刻6h、液固比10∶1的条件下,可以一起浸出金和银,金的浸出率96%,银的浸出率大于99%,银的浸出率大于99%。 用FeCl3系统浸出金也归于水氯化法浸出的一种。Fe3+不能直接将Au氧化成Au3+,但在有氯离子存在的条件下,坚持满足浓度的Fe3+和Cl-(参加HCl或NaCl),在常温(25℃)和pH=1.0时,就会有如下的浸出反响: Au+3Fe3++4Cl-→AuCl4-+3Fe2+ 例如,运用酸性FeCl3溶液浸出湖南龙山砷锑金矿渣的焙砂,金的浸出率可达98%~99%,比化法的浸出率高4%~6%,浸渣含金由3~5g/t降到0.75~1.5g/t。 电氯化法浸出金是水氯化法的进一步开展,它是使用电解氯化钠溶液发生的氯来直接浸出矿石中金的一种办法。按电解浸出设备不同,又可分为有隔阂电解槽的电氯化浸出和无隔阂电解槽的电氯化浸出两种。电氯化法所用的试剂是价廉的氯化钠,但需耗费电能,电解槽浸出设备相对比较复杂,并且受金矿的性质及赋存状况的影响较大。电氯化法较适合于处理金呈游离态而无氯吸附物的石英脉金矿、铁帽型含金氧化矿以及含硫化物少的金矿,而对含硫化物高的金矿、含碳酸盐脉石多的金矿以及含砷、锑高和含硒、碲与含有碳质物的金矿则不适宜于电氯化法。此法已进行半工业实验,但尚未在工业上使用。

美开发出合金制氢新工艺

2019-03-13 10:03:59

美国普度大学的研究人员最近开宣布一种运用铝镓合金加水制作的新工艺。将水添加到铝镓合金时,铝经过吸收氧气分化水,在此进程中发作。合金中的镓是要害成分,由于铝和氧结合后在铝的表面构成一层氧化铝膜,而镓能阻挠这个膜的构成,使反响继续下去,直到一切的铝都被用来发作。专家以为,运用此项技能制氢,将战胜氢贮存和运送两大妨碍,因而具有广泛的运用远景。  收回质料降低本钱  铝镓合金与水反响,铝变成氧化铝,废氧化铝可收回再处理成铝。再生铝要比挖掘铝土矿出产铝廉价得多。研究人员发现,运用标准工业技能设备收回氧化铝的本钱远低于原先的估量,将纯氧化铝收回成铝的本钱为每公斤44美分,这与汽油比较极具竞争力。  例如,一辆装备标准内燃发动机的中型轿车跑完350英里的旅程,假如运用汽油,将花费66美元(汽油报价以0.73美元/升计),而运用铝镓合金反响器时,则只需花费70美元。假如在运用铝镓合金反响器时,再装备一个50%%效能的燃料电池,其本钱能够下降到28美元。  合金中的镓是慵懒金属,这意味着它也能够被收回和重复运用。这一点特别重要,由于现在镓比铝要贵得多。此外,在用铝土矿出产铝的一起,镓一般作为废弃物被浪费了,因而低本钱的镓能够作为铝土矿废品来购买。反响进程能够运用低纯度的镓,低纯度镓的本钱要比用于电子职业的高纯度的镓低好多倍。  别的,改动合金制成工艺可使合金中的金属成分的份额发作改动,也可大大降低本钱。研究人员发现,经过缓慢冷却熔体合金而制成的颗粒中,含有80%%的铝和20%%的镓,而原先运用快速冷却的办法制成的颗粒中铝和镓的份额简直正好相反。这种颗粒在枯燥的空气中具有很好的稳定性,能和水快速反响发作氢。用这样的合金颗粒分化水,具有很好的商业可行性。  按此工艺,美国现存的铝可发作100亿瓦的能量,能满意美国35年的电力需求。假如运用报价低于22美元/公斤的不纯镓来制氢,已知镓的储量也满足10亿辆轿车的运转需求。.

铝合金使氢燃料走向实用

2019-02-28 11:46:07

氢包括巨大潜力,可用作可再生能源。它惊人地丰厚,是世界中最丰厚的元素,并且环保,用于燃料电池,只排放水。不幸的是,贮存和运送氢供个人运用,是一个严重的工程应战。   现在,达拉斯(Dallas)得克萨斯大学(University of Texas)和华盛顿州普尔曼(Pullman)华盛顿州立大学(Washington State University)的一组研讨人员,做出了违背直觉的发现,他们发现,铝稍作改善,就能够分化和捕捉单个氢原子,然后有望制成强壮而廉价的燃料贮存体系。   在自然界中,两个氢原子相遇,就会结合起来,构成个十分安稳的分子(H2)。可是,氢分子的存储有必要选用高压,并且要在极低的温度,这是不切实际的,由于你是要驱动车辆,或给家庭供电。一个更好的解决办法是找到一种材料,要有易于保护的温度和压力,能够有用存储单个氢原子,并在需求时开释它们。   这个工艺的第一步是氢的活化,就是打破衔接两个氢原子的化学键,一般的做法是使氢分子露出于一种催化剂。现在,现有的最佳催化材料都包括所谓的“贵金属”(如钯金和铂金)。这些元素能够有用地活化氢,但很稀缺,贵重得令人生畏,难以广泛运用。   为了找到一种相同有用但较廉价的代替办法,达拉斯得克萨斯大学的首席研讨员伊夫J.?沙巴尔(Yves J. Chabal),以及华盛顿州立大学的散坦努?乔德赫瑞(Santanu Chaudhuri)断定了一种潜在的氢活化新办法,这种办法有一个额定的优势,就是能够作为有用的氢存储介质。他们提出的体系选用的是铝,这是一种丰厚的慵懒金属,在正常情况下,不与氢分子发作反响。   要害是要发掘铝的潜力,研讨人员估测,需求在表面浸渍其他一些金属,以有利于催化反响。在这种情况下,研讨人员测试了钛(titanium),钛很丰厚,远远超越贵金属,并且仅仅很少量地用于制备掺钛铝合金表面。   选用严格控制的温度和压力,研讨人员研讨了铝表面,特别是在钛原子邻近的痕迹,由于指示器阐明有催化反响发作。“确凿证据”见于(CO)光谱特征(spectroscopic signature),它被添加到体系中,有助于断定氢活动区域。假如氢原子存在,那么,在催化金属中心捆绑的所吸收的光,波长就会变短,这就阐明这种催化剂在起作用。   “咱们结合一种新的根据红外反射吸收的表面分析办法,以及根据第一种准则的猜测模型,分析催化功率和光谱呼应,其间,分子用作勘探剂,用于辨认氢活化,选用的单晶铝表面包括催化掺杂剂,”乔德赫瑞说。   他们的研讨显现,在掺钛区域,的红外特征转变为较短的波长,即便在十分低的温度下也是这样。这种“蓝移”(blue shift)痕迹,阐明氢原子正在发生,就在铝表面催化中心周围。   作为氢存储体系的一部分,铝催化剂具有其他的优势,胜过更贵重的金属。假如这样的技术进步能够供给一条途径,使铝与氢结合起来,构成(这种安稳固体的构成份额是一个铝原子配三个氢原子),并把贮存为一种高密度固态物质,那么,开发有用燃料体系的要害一步就能够完成。   钛能够进一步推动这一进程,由于它有助于铝氢结合,构成。假如用作一种燃料存储设备,就能够开释它贮存的氢,只需求进步它的温度。   “尽管钛或许不是最佳的催化中心,用于彻底可逆的构成,可是,成果初次证明,掺钛铝合金可激活氢,选用的方法可比美贵重而不太丰厚的金属催化剂,比方钯和其他近地表合金,它们都包括相似的贵金属和双金属相似物,”乔德赫瑞解说说。

液氯法提金及其氯化原理

2019-02-14 10:39:49

在溶液中,选用作氧化剂,使金氧化溶解的办法称为法提金,又称为水溶化法提金。    其氯化原理是在氧化剂的效果下,金氧化并与氯离子络合而生成AuCl4-离子进入溶液,所发作的化学反应为: 2Au+3Cl2+2HCl →2HAuCl4     氯化液中的金可选用复原剂钠、硫酸亚铁、二氧化硫及草酸等使金复原沉积,所得产品含金可达99.5%。    法早在化法面世之前就已被用来提金,但因为化法的成功使用才使该法被替代。近十几年因为黄金报价上涨和对环保要求严厉,又重新考虑选用此法提取金、银。

浮选方法提高三水铝石铝硅比的研究

2019-01-24 09:38:19

Abstract The flotation experiments of Indonesia gibbsite ore were conducted using oxidized paraffin soap and tall oil as the collectors and sodium carbonate, sodium silicate and sodium hexametaphosphate as the regulators. Through the con- ditional experiments of multi-factors such as grinding fineness, collector and regulator dosage and pulp concentration, the factors influencing the improvement of the silicon-aluminum ratio of gibbsite and the suitable flotation conditions were inves- tigated. The experiment results show that a flotation concentrate having a recovery of 63.49% and an aluminum to silicon ratio of 11.18 could be obtained at a grinding fineness of 75% -200 mesh, sodium carbonate dosage of 4000g/t, sodium silicate dosage of 2kg/t, sodium hexametaphosphate dosage of 250g/t , collector dosage of 700g/t and pulp concentration of28.57%. 铝土矿是生产氧化铝、耐火材料及建材的主要原料,随着经济的快速发展,金属铝的消耗量将日益增加。随着铝土矿高品位矿石急剧减少,对中低铝硅比铝土矿采用选矿一拜尔法是生产氧化铝的有效方法,即采用选矿方法脱除矿石中的含硅矿物,获得高铝硅比精矿作为拜尔法生产氧化铝的原料。目前国内外都在探索铝土矿选矿脱硅的方法和工艺。 根据铝土矿的化学组成和晶体结构不同,可分为三水铝石、-水软铝石和-水硬铝石等。铝土矿的分子式为Al203·nH2O,属氢氧化物类。主要形成于外生风化和沉积作用中,与褐铁矿、碳页岩、粘土矿物密切共生,含杂质较多。三水铝石又名水铝氧石、氢氧铝石,分子式为A1203·3H2O,晶体结构属层状。氢氧离子成六方最紧密堆积,铝离子填充于邻接的两层氢氧离子之间的2/3八面体空隙,组成配位八面体的结构层。结构层内属离子键,结构层间属分子键,其层状结构决定了它的片状形态。三水铝石通常与高岭石、针铁矿、赤铁矿、伊利石等共生。三水铝石脱水可变成一水软铝石、一水硬铝石和α刚玉,可以被高岭石、多水高岭石等交代。高岭石为主要含硅矿物,分子式Al4(Si4010)(OH)8,因本身含铝,在选矿脱除高岭石时,会造成少量铝的损失。 浮选的方法包括正浮选和反浮选两种。正浮选一般采用脂肪酸或磺酸盐类捕收剂浮选铝土矿,反浮选则采用胺类捕收剂,以六偏磷酸钠、水玻璃、丹宁和苏打等作为调整剂。早在20世纪30—40年代,美国采用浮选法选别阿肯色地区的三水铝石铝土矿,可以将铝土矿的铝硅比由3—8提高到10~19,不足之处是回收率较低。70年代初,针对含高岭石、石英的三水铝石型铝土矿采用塔尔油、机油和油酸的混合物作捕收剂,硅酸钠、六偏磷酸盐作调整剂进行了浮选回收三水铝石的研究,同样精矿回收率很低[1]。Weston等人的专利提出,将NaOH(或 KOH)、Na2CO3和分散剂六偏磷酸钠等加入球磨机中进行湿磨,pH保持在9.5~12.5进行调浆浮选,可获得满意的结果。前苏联处理乌克兰境内的维考波里斯克铝土矿时,采用塔尔油脂肪酸和阳离子药剂AH lI一14的混合物作捕收剂,并添加苏打和0II-7型药剂,可使铝硅比由原矿的5左右提高到9左右。前苏联对三水铝石铝土矿采用筛洗一脱泥一浮选流程,铝硅比由4.7提高到9.00,回收率为58.80%[2.3 J。V.V.Ishchenko[4]等使用十二胺对铝硅比为2.4~2.7的原矿进行反浮选,获得铝硅比>7的精矿。N.M.Anishchenko[5]等使用月桂胺成功地实现了鲕绿泥石与三水铝石的分离。 近年来,我国主要是对一水硬铝石型铝土矿浮选脱硅进行了研究,而对三水铝石型铝土矿的选矿研究很少。20世纪90年代,正浮选铝硅分离研究获得进展,具代表性的是选择性磨矿一选择性聚团浮选分离工艺和阶段磨浮分离工艺。根据铝土矿中各种矿物可磨性差异,通过选择性磨矿+分级获得部分粗粒级合格产品,再脱泥后对剩余窄级别物料进行浮选[6]。针对我国一水硬铝石型铝土矿含硅矿物硬度低、密度小、易磨,一水硬铝石嵌布粒度细等特点,近年来开展了铝土矿反浮选研究[78]。本研究以印尼的三水铝土矿为原料,通过磨矿细度、捕收剂和调整剂用量、浮选浓度等多因素条件试验,探讨正浮选方法脱硅影响因素和适宜工艺条件。 一、矿石性质与试验方法 印尼三水铝石型铝土矿主要含铝矿物为三水铝石,含硅矿物主要为高岭石和石英,并含赤铁矿、钛针铁矿、锐钛矿等。原矿矿物含量和化学组成如表1和表2所示。原矿粒度组成如表3所示。 表1  原矿矿物含量       %矿物名称三水铝石高岭石石英赤铁矿钛针铁矿锐钛矿含量759~102542表2  原矿化学组成       %矿物名称SiO2Al2O3Fe2O3TiO2MgOCaO含量5.6550.317.341.180.100.17原矿铝硅比为8.67。为了分析+200目、-200目级别的铝硅比,原矿用-200目筛子分为+200目和-200目两个级别,分别进行了化学分析。其分析结果见表4。从表4可看出,原矿中+200目和-200目级别铝硅比明显不同,+200目级别的铝硅比达到10以上。 浮选试验采用XFDl-63型单槽式浮选机,浮选槽容量500mL,浮选温度32℃,调浆时间3min,浮选时间为10min。试验以氧化石蜡皂和塔尔油作为捕收剂,碳酸钠、水玻璃、六偏磷酸钠作为调整剂。碳酸钠在磨矿过程中加入。 二、试验结果与分析 (一)磨矿细度对浮选精矿铝硅比和回收率的影响。不同磨矿细度的浮选试验结果如表5所示。其中碳酸钠用量5kg/t,捕收剂用量0.5kg/t,矿浆浓度28.6%。从表5可看出,浮选精矿A1203品位和铝硅比随着磨矿细度的增加而逐渐增加,在磨矿细度为75%-200目时分别达到最大值50.67%和10.92;当磨矿细度大于75%-200目时精矿A12O3品位和铝硅比开始下降。精矿A1203回收率则随着磨矿细度的增加不断增加,磨矿细度为一200目含量92%时精矿中A1203的回收率达到66.19%。可认为磨矿细度为75%一200目时铝土矿中含铝矿物基本达到单体解离,随着磨矿细度继续增大,脉石矿物产生泥化,从而使浮选精矿中夹杂了更多脉石矿物,导致精矿的铝硅比降低。 (二)碳酸钠用量对浮选的影响。在磨矿细度为75%一200目条件下,进行了不同碳酸钠用量浮选试验。试验结果如表6所示。从表6可见,随着碳酸钠用量从3000g/t增加到7000g/t,精矿A1203品位和铝硅比变化不大, A1203品位介于50.03%~50.54%,铝硅比介于10.52-lO.88;而精矿A1203回收率随着碳酸钠用量增加先增大而后逐渐降低,在4000g/t时达到最大值64.07%。因为精矿Al203品位和铝硅比受碳酸钠用量影响不大,所以可认为碳酸钠主要是起调整矿浆pH的作用,而在矿浆中的分散作用并不明显。碳酸钠用量增大使捕收剂在高碱性条件下有更强的捕收性,从而提高精矿A1203回收率。

镁精炼(三)

2019-03-04 16:12:50

电解法炼镁进程中从电解槽取出的镁和热复原法炼镁进程中从复原炉取出的镁,均称为粗镁,都达不到质量标准,有必要去除镁中杂质,才干到达质量标准。    电解法粗镁含有金属杂质和非金属杂质。金属杂质有Fe、Si、Al、Ni、Mn、Cu、K、Na和Ca。这些金属杂质,有的是电解进程中在阴极上分出的,有的是其氯化物或氧化物被镁复原出的。非金属杂质物质有MgCl2、NaCl、KCI、CaCl2、Mg3N2、MgO、SiO2、Fe2O3,CaO。非金属杂质中氯化物是出镁时从电解槽带出的电解质;Mg3N2是镁在空气中焚烧生成的;MgO是质料和电解质含有的,也有镁焚烧生成的;其他氧化物是从槽衬耐火材料磨损下来的。热复原法粗镁也含有金属杂质和非金属杂质。金属杂质有Si、Al、Fe、Mn、Ni、Zn、K和Na。金属杂质中Si、Fe、A1、Mn首要来源于复原剂硅铁粉尘;其他金属杂质是被复原出来的。非金属杂质有MgO、CaO、Fe2O3、 SiO2、CaF2,来源于球团料粉尘。不管电解法粗镁仍是热复原法粗镁,金属杂质含量较少,小于或等于重熔镁锭标准中较低等第的规定值;非金属杂质含量较多。    镁精粹办法有熔剂精粹、沉降精粹、添加剂精粹、真空蒸馏、区域熔炼和电解精粹。熔剂精粹和沉降精粹是精粹粗镁的办法。各镁厂或选用熔剂精粹办法或选用沉降精粹办法精粹粗镁。通过其间一种办法精粹过的镁称为精镁,镁质量到达了一般用处的重熔镁锭质量标准,铸成镁锭供应。添加剂精粹是去除一种或几种杂质的办法,是前两种精粹办法的弥补。真空蒸馏、区域熔炼和电解精粹是将精镁再精粹,进一步去除杂质,制取特殊用处的简直不含杂质的高纯镁,这儿不介绍了。    熔剂精粹是在熔融状态下用熔剂去除镁中杂质。熔剂精粹首要作用是去除非金属杂质,又能通过化学作用除掉碱金属K和Na。熔剂应具有以下性质:熔剂与镁和坩埚不起化学反响;熔剂熔点低于镁的熔点;熔剂与杂质间界面张力小,与液体镁界面张力大,因此熔剂既可以吸附杂质,又能与液体镁别离;熔剂与液体镁密度不同。按用处区分,有精粹熔剂和掩盖熔剂。精粹熔剂密度大于液体镁密度,用作去除杂质。掩盖熔剂密度小于液体镁密度,用作掩盖于液体镁表面,阻隔空气,避免镁氧化。    熔剂由碱金属和碱土金属氯化物与氟化物组成。各镁厂的熔剂配方不同。我国镁厂精粹粗镁用的熔剂成分见表2。表2   我国镁厂精粹熔剂成分/%熔剂称号MgCl2KClNaClCaCl2BaCl2MgO根底熔剂38±337±38±38±39±3精粹熔剂根底熔剂90~95+CaF26~10掩盖熔剂根底熔剂75~80+硫黄粉20~25[next]     熔剂精粹选用坩埚精粹炉。精粹炉由普通耐火砖砌筑,由电、天然气或煤气加热。坩埚有铸钢的,也有耐热钢板焊接的。首先把熔剂参加精粹炉坩埚,并开端加热,熔剂熔化后参加粗镁。待粗镁熔化、温度到达700℃时,用拌和器拌和液体镁,使液体镁与熔剂充沛触摸、吸附杂质,拌和时刻约20min,再升温至730-750℃,静置5-15min,使杂质和熔剂沉降,与液体镁别离。在以上进程中,经常向坩埚内撒些掩盖熔剂,避免液体镁焚烧。精粹进程中,非金属杂质被熔剂吸附、沉降,与镁别离。一起,碱金属K和Na与熔剂中MgCl2反响生成KCl和NaCl,进入熔剂而被除掉。静置期间,精粹炉中止加热。当液体镁温度降到680-710℃时,用气动泵抽取液体镁注入铸锭机铸成镁锭。精粹1t电解粗镁(液体镁)耗电300kW·h,熔剂30kg。精粹1t皮江法粗镁(结晶镁)耗电600kW·h,熔剂120kg。    热复原法镁厂均选用熔剂精粹法精粹粗镁。小型电解法镁厂也选用此法。    (二)沉降精粹    沉降精粹是大型电解镁厂精粹粗镁的办法。该法是在电加热熔盐炉(为接连精粹炉)中通过沉降去除镁中杂质。精粹炉见图,精粹炉为圆形,钢壳内衬耐火砖;炉顶直径约5.5m,炉底直径约3m,高约4.5m;炉中心部位是集渣井,炉体下部均匀分布6根石墨电极,加热功率300kW;加热介质氯盐温度720-730℃,氯盐成分为MgCl2 8%-12%、KCl 55%-65%、NaCl 18%-22%、CaCl2 0.5%-2%、BaCl2 5%-8%、CaF2 0.3%-1%。其密度大于液体镁的密度,因此坐落液体镁层下面。 [next]     电解槽中抽取出的液体镁,用台包运到精粹车间,从粗镁参加口注入接连精粹炉。因为加料管伸入氯盐熔体基层,液体镁从加料管出来后通过氯盐熔体层上浮到镁液层。这一进程与熔剂精粹进程相同。镁液层储存镁8-10t,温度710-720℃。镁在炉内逗留2h以上,镁中非金属杂质充沛沉降别离。精粹渣聚集于炉底中部集渣井内,定时翻开井盖用抓斗抓取渣。铸锭用的虹吸管从炉盖上刺进镁液层,开端铸锭时用真空泵将虹吸管抽成负压、使液体镁流出。为了避免液体镁焚烧,向炉内充氩气。接连精粹炉每天产精镁50-100t。精粹1t镁耗电50-100 kW·h,氯盐60kg。    (三)添加剂精粹    该办法是通过向液体镁中参加某种单质或化合物除掉镁中某些杂质的办法。添加剂精粹是对熔剂精粹或沉降精粹过的镁进一步精粹。    电解法粗镁和热复原法粗镁,通过熔剂精粹或沉降精粹,除掉了非金属杂质和碱金属K和Na,不能除掉其他金属杂质Fe、Si、Al、Mn、Cu和Ni。因为粗镁中金属杂质含量较少,通过熔剂精粹或沉降精粹,镁的质量一般能到达重熔用镁锭质量标准中我国标准Mg 99.90等第,可以满意普通用处要求。若要求镁含Fe 0.04%-0.003%、Si 0.01%-0.005%,应对熔剂精粹或沉降精粹的镁进行添加剂精粹。添加剂精粹除掉杂质最多的是Fe和Si,其次是Al和Mn,也能除掉一部分Cu和Ni。    用作精粹添加剂的有锰、钛和锆。锰以镁锰合金方式参加,钛和锆可以金属或氯化物方式参加。这几种添加剂可以与Fe、Si等金属杂质构成难溶于镁的金属间化合物,然后沉降别离出来。其间,钛和锆的精粹作用好,锆报价贵,因此常用的是钛。用钛添加剂精粹过的镁的杂质含量为Fe 0.004%、Si 0.005、Al 0.005%、Mn 0.01%、Cu 0.003%、Ni 0.0007%。镁的质量到达了我国标准Mg 99.95等第,行将熔剂精粹或沉降精粹过的镁进步一个等第或更高等第。    用钛添加剂精粹镁,运用的设备是坩埚精粹炉。先制备含钛熔剂,在坩埚精粹中熔化氯盐,氯盐成分为KCl 40%-70%、NaCl 20%-50%、MgCl2 10%,待氯盐熔化后参加粒度为18-60目海绵钛粉,拌和混合均匀。将熔剂精粹或沉降精粹过的镁参加坩埚精粹炉,然后参加含钛熔剂,当温度到达700-720℃时,用拌和器拌和5-15min,使钛与Fe等金属杂质充沛触摸、吸附、构成金属间化合物,静置沉降15-30min,最终进行铸锭。氯盐参加量为镁的20%,钛参加量为镁的0.05%-0.3%。    也可以用作添加剂。与镁反响生成钛,然后由所生成的钛吸附镁中金属杂质。但选用作添加剂精粹设备比较复杂。

三氯化锑

2017-06-06 17:50:12

三氯化锑   1英文名称 Antimony trichloride   别 名 氯化亚锑   分子式 SbCl3 外观与性状 白色易潮解的透明斜方结晶体,在空气中发烟   分子量 228.11 蒸汽压 0.13kPa(49.2℃)   熔 点 73.4℃ 沸点:223.5℃ 溶解性 溶于醇、苯、丙酮等   密 度 相对密度(水=1)3.14 稳定性 稳定   危险标记 20(酸性腐蚀品) 主要用途 用作分析试剂、催化剂及用于有机合成三氯化锑 对环境的影响:一、健康危害  侵入途径:吸入、食入、经皮吸收。   健康危害:吸入、摄入或经皮肤吸收对身体有害。高浓度的三氯化锑对眼睛、皮肤、粘膜和呼吸道有强烈的刺激作用。可引起支气管炎、肺水肿。   慢性影响:实验表明有诱变作用。二、毒理学资料及环境行为  急性毒性:LD50525mg/kg(大鼠经口)   危险特性:受热或遇水分解放热,放出有毒的腐蚀性烟气。具有较强的腐蚀性。   燃烧(分解)产物:氯化物。三氯化锑 应急处理处置方法:一、泄漏应急处理  隔离泄漏污染区,周围设警告标志,建议应急处理人员戴自给式呼吸器,穿化学防护服。不要直接接触泄漏物,用沙土、干燥石灰或苏打灰混合,转移到安全场所。如大量泄漏,收集回收或无害处理后废弃。二、防护措施  呼吸系统防护:可能接触其粉尘时,应该佩带防尘口罩。必要时佩带防毒面具。   眼睛防护:戴化学安全防护眼镜。   防护服:穿工作服(防腐材料制作)。   手防护:戴橡皮手套。   其它:工作后,淋浴更衣。单独存放被毒物污染的衣服,洗后再用。保持良好的卫生习惯。三、急救措施  皮肤接触:立即脱去污染的衣着,用大量流动清水彻底冲洗。若有灼伤,就医治疗。   眼睛接触:立即提起眼睑,用流动清水冲洗10分钟或用2%碳酸氢钠溶液冲洗。   吸入:迅速脱离现场至空气新鲜处。注意保暖,保持呼吸道通畅。必要时进行人工呼吸。就医。   食入:患者清醒时立即漱口,给饮牛奶或蛋清。立即就医。   灭火方法:干粉、砂土。

氢还原钨氧化物制取钨粉的工艺

2019-03-05 09:04:34

金属钨粉是制取碳化钨基硬质合金及金属钨材的首要质料,当时制取金属钨粉的首要办法为钨氧化物氢复原法,WO3氢复原制取钨粉的反响为:有关进程的热力学和动力学原理,前人已进行了全面的研讨,积累了很多研讨成果,但考虑到当时钨粉的粒度和描摹是生产中的关键问题,为确保必定的粒度,复原进程往往是在远离平衡的条件下、依据制备特定粒度的要求,以操控工艺参数,因而这儿侧重介绍影响钨粉粒度的要素及其操控,有关热力学和动力学原理可参阅有关教科书。 一、钨氧化物复原进程中影响粒度的要素 (一)复原进程中颗粒长大的机理 在复原进程中生成钨粉的粒度随复原条件而异,即在某些条件,如高温、高湿度的条件下将发作长大,关于其长大机理,现在有多种观念,下面是两种首要的观念。 1、化学气相搬迁长大机理 水合钨氧化物具有比纯氧化钨高得多的挥发性。复原进程中首要水蒸气与氧化钨或细粒钨粉效果构成水合氧化钨,它通过气相搬迁到其他颗粒上再复原,然后导致颗粒长大。高温文湿氢复原具有最有利的化学气相搬迁条件。 2、氧化-复原机理 粉末颗粒愈细,比表面以及表面活性愈大,因而,细颗粒粉末有或许被气相的水蒸气或氧气氧化并生成挥发性水合氧化钨,然后进行化学气相搬迁,在较粗颗粒上被复原,使颗粒长大。 (二)影响粉末粒度和粒形改变的首要要素 1、温度 升高温度可加速复原反响,相应地添加水蒸气的生成速度,促进化学气相搬迁反响。促进颗粒长大和团粒化。 2、水蒸气分压 水蒸气是化学气相搬迁反响的基本条件,其量包含中含有的和复原反响中发生的水蒸气。它在复原进程中不是一个稳定值。对反响速度起效果的一切要素和影响分散进程的一切要素(如温度、粒层厚度、的流向和流速、粉末的粒度、舟皿的几许形状等)、推舟速度都影响水蒸气的实践分压进而影响到粉末粒度和描摹。温度及湿度(氢的露点)对WO2相对增长速度的影响见表1。 表1  在不同温度和温度下,WO2粒度的相对增长速度3、质料粉末的性状 研讨标明,氧化钨的复原活性对钨粉的粒度有显着的效果。复原活性大的质料简单得到细粒度钨粉。 4、杂质和添加剂 杂质元素对钨粉颗粒改变的影响,可分为三类: 第一类以碱金属为代表,它们能起氧的载体效果,延伸氧在粉末层内的停留时刻,促进化学气相搬迁反响,增强钨粉的颗粒长大。 第二类以钙、镁、硅为代表,它们对钨粉颗粒长大的效果不显着。 第三类以铝为代表,它们能在钨的晶体表面生成稳定性很高的氧化物薄层,按捺钨粉颗粒的长大。 5、操作准则 因为颗粒长大进程首要是发作在WO3复原成WO2的进程中,为得到细颗粒,必定要确保在复原的初期处于低温、低水蒸气分压状况。因而推舟速度过快,一方面使物料敏捷进入高温区,有利于WO2.9等颗粒长大,一起使复原速度加速,H2O蒸气浓度添加,这些都有利于颗粒的长大,因而为得到细颗粒一般要求推舟速度慢。一起炉内温度较低,温度梯度较小。 装舟量过多,料层过厚,将导致内部的水蒸气难以排出,使内部颗粒长大,一起导致上基层粒度不均匀。 二、氢复原钨氧化物制取钨粉的工艺 现在复原进程通常在回转式管状炉、四管马弗炉及多管炉中进行,相对而言,后者的温度均匀,产品粒度简单操控,且粒度均匀。 详细工艺有: (一)黄钨工艺,即以WO3为复原的质料。 (二)蓝钨工艺,即以蓝色氧化钨为质料。蓝色氧化钨是指WO3或APT在300~420℃下,在转炉内部分复原所得的产品,它的成分首要为WO2.9或铵钨青铜(ATB),亦或许含少数WO2.72乃至钨酸盐,用蓝色氧化钨作质料的特电是其粒度较黄钨易于操控。 (三)紫钨工艺,即用WO2.72(W18O49)为质料进行复原,用以制取超细颗粒钨粉,其实质是首要将APT在回转炉内、在必定温度和弱复原气氛下制备W18O49,此刻,在原APT晶粒内构成W18O49的棒状晶体的集合物,当原APT晶粒为50~60μm时,则晶粒中构成的W18O4,棒状晶体直径小于2μm,这种W18O49进一步在四管复原炉中复原,得超细钨粉,其BET直径约0.08~0.9  μm,这些超细钨粉的粒度远比黄色WO3或蓝钨复原的产品粒度细,且均匀。一起它们在进一步碳化制取WC的进程中亦小易长大,例如用其制备的钨粉其BET粒往为0.084μm。在1460℃下碳化2h,所得的超细碳化钨粉的BET粒径仅0.214μm,与国外的先进水平适当。碳化进程中颗粒长大的趋势远小于从蓝钨复原的产品。 唐新和展开的从有机胺钨酸盐热分化制得钨及碳化钨超细粉末。获得非常有意义的成果。这种从所谓“自复原钨酸盐”制得的粉末,功能优秀,现已获得国家专利。