铅渣处理方法
2018-12-19 09:49:16
1英文(disposal of lead slag)
2概念消除炼铅过程中排出的渣的污染并使其中的有价组分得到综合利用的过程叫做铅渣处理。3成分铅渣是由各种金属和非金属的氧化物组成,渣的主要化学成分是SiO2、FeO、CaO和ZnO,占铅渣总量的90%。ZnO的含量随CaO和SiO2的含量增加而减少,ZnO的含量约为5%~25%,ZnO的含量低时渣的正常成分一般是:SiO230%,FeO37%,CaO18%。
4处理方法含锌高的铅渣可以提取其中的锌及铅。处理铅渣的方法有烟化法、团渣熔炼法和回转窑挥发法。中国多采用烟化法处理。烟化法是在烟化炉中用少量的空气把煤粉吹过熔融的渣层,生成的CO还原PbO和ZnO,被还原的金属以气体状态随炉气进入烟道又被空气氧化成PbO和ZnO,经收尘器回收。团渣熔炼法是将铅渣破碎后与焦粉混合,配以粘合剂(液态焦油、水玻璃等),压制为团块,随焦炭一同在鼓风炉中熔炼,铅、锌等挥发性金属气体进入烟气,然后被回收。
回转窑挥发法是在回转窑内进行PbO和ZnO的还原反应。含锌高的渣不宜用回转窑挥发法。当炼铅炉料含砷、锑较高,又有铁、钴、镍存在时,还将产出黄渣(FeAs、NiAs、CoAs、FeSb等)。黄渣需综合回收砷、锑、铅。烟化法处理后的炉渣主要是玻璃体结构,对金属离子有很强的固定能力,使易溶于水的有害元素得以高温固化,延缓了有害的金属离子从渣中向外迁移。消除了对环境的潜在危害。铅烟气炉的水淬渣可用来生产水泥,或作为骨料制作灰渣砖,调整成分后的铅渣还可制得铸石,其性能不亚于标准铸石。
氯化铅渣湿法生产黄丹
2019-01-31 11:06:04
一、工艺流程。
如图1所示。包含浸出、净化、结晶、转化、烘干等工序。图1 氯化铅渣湿法出产黄丹流程
二、首要技能条件。
浸出:氯化铅渣经球磨后,用饱满食盐水浸出,液固比10∶1,浸出温度109℃,浸出液pH3~5,浸出液含铅高于65克/升。
净化除铜:加Na2S或海绵铅除铜,液温为90℃,除铜后液含铜低于0.001克/升。
净化除铁:加或次除铁(次用通入30%液碱中制得),除铁后液含铁低于0.0001克/升。
冷却结晶:选用夹套式循环冷水冷却,机械拌和,使用氯化铅在氯化钠溶液中溶解度随温度下降而下降,使PbCl2晶体分出。母液再回来浸出。
转化:PbCl2结晶用蒸馏水洗刷后参加30%的液碱中。其反应为:
PbCl2+2NaOH=PbO+2NaCl+H2O
所用工业液碱先用MgCl2除铁,一般每吨液碱加MgCl2 1~5千克,除铁后液碱加热至95℃,供转化用,坚持转化后液含NaOH不小于2.5N,避免生成其它碱式铅盐。
洗刷枯燥:含碱的PbO用离心机过滤,滤后母液浓缩成30%的液碱,回来转化用。PbO结晶用热蒸馏水洗至pH为8,用蒸汽直接加热至105℃,烘干过筛包装,即为制品黄丹。
三、首要设备。
球磨机一台:浸出罐,除铜罐、除铁罐,冷却罐,转化罐各一个,选用夹套式珐琅反应釜;离心过滤机一台;转筒式烘干机一台;贮液槽与泵若干。
四、产品用处。
黄丹在油漆中作催干剂:陶瓷工业作釉料;用于出产光学玻璃、光导纤维、电子真空玻璃等含铅玻璃;还可制,,作铅铬黄料;并用于蓄电池工业。
五、产出质量(%)。
一级品含PbO不低于99,金属铅不高于0.1,PbO2不高于0.2,硝酸不溶物不高于0.2,筛余物(-200日)不高于0.2;二级品含PbO不低于97,Pb不高于0.3,PbO2不高于0.5,硝酸不溶物不高于0.5,筛余物(-200目)不高于0.5。
氯化铅渣的还原熔炼
2019-01-24 09:37:16
一、工艺流程。
如图1。图1 氯化铅渣还原熔炼工艺流程
二、主要技术条件。
配料时,将氯化铅渣破碎至小于10毫米,配入渣量40%~50%的石灰石和6%的还原煤粉,装入反射炉内进行还原熔炼,炉内发生如下反应:
PbCl2+CaCO3+C=Pb+CaCl2+CO2+CO
PbCl2+CaCO3+CO=Pb+CaCl2+2CO2
升温至950℃左右,待反应完成后再升温至1250℃左右,高温沉淀4小时以上,至渣含铅在1%以下。产出粗铅与氯化钙渣。粗铅含铅97%~98%,可直接送铅电解精炼,氯化钙渣可用来制粗CaCI2,作氧化剂或合成白钨用。
三、主要设备。
颚式破碎机一台;球磨机一台;5米2反射炉一台;浸出罐,浓缩罐各一个、采用夹套式搪瓷反应釜;转筒式干燥机一台。
氯化铅渣生产三盐基硫酸铅
2019-01-24 09:38:17
一、生产流程。
如图1。图1 PbCl3渣生产三盐工艺流程图
二、主要技术条件。
将氯化铅渣球磨至-20目浸出,浸出液成分:NaCl3 20~340克/升,HCl 10~15克/升;液固比8∶1;浸出温度高于90℃;机械搅拌;浸出时间2小时;过滤温度高于60℃。
稀释结晶;用水稀释一倍,pH为1~3;稀释沉淀时间24小时:室温冷却,PbCl2结晶用水洗至洗水pH为5左右,稀释液中和浓缩后返回浸出。
碳酸转化:将相当于PhCl2结晶量40~45%的纯碱在80℃热水中溶化,搅拌中慢慢加入氯化铅结晶进行转化,液固比2∶1,转化温度100℃以上,转化时间约2.5小时,水洗至中性,过滤得碳酸铅。
硝酸溶解:用3倍水稀释硝酸,搅拌中将浆化的碳酸铅慢慢加入,完全溶解至无碳酸铅。
硫酸转化:加入稀释一倍的稀硫酸,硫酸用量稍低于计算值,转化为PbSO4后水洗去游离酸根,直至pH为7时停洗。
固碱转化:将PbSO4浆化成液固比2.5∶1,搅拌下加入40~50%的NaOH,加完碱后搅拌3小时以上,NaOH用量控制在按分析SO3达7.5%~8.5%。
三盐调整:在固碱转化中,产品可能含SO3过低或过高,所以还需要进一步调整;当SO3过低时,再加入硫酸,当SO3过高时,加入NaoH,调整产出合格产品。经离心过滤,蒸馏水洗涤除尽硫酸根,然后在150~250℃烘箱内烘干,经风磨机粉碎后,真空吸滤包装。
三、主要设备。
球磨机一台;浸出罐、稀释罐、碳酸转化罐、硝酸溶解罐、硫酸转化罐、固碱转化罐各一个,采用夹套式搪瓷反应釜,机械搅拌;离心机二台;烘箱一台;风磨机一台。
四、产品用途。
主要用作聚氯乙烯塑料、电气绝缘材料和人造革的热稳定剂。
五、产品质量(%)。
PbO 89±1,SO3 8±0.5,水分不高于0.4,细度(-200目)99.5以上,外观为白色粉末。
金利自主研发液态高铅渣还原炉成功运行
2018-12-11 11:23:06
2月6日,金利冶炼有限责任公司自主研发的液态高铅渣还原炉成功实现5个月稳定生产运行,这一技术的成功运用不仅有效解决了铅冶炼的能耗问题,而且让金利公司拥有了我国第一个完全自主知识产权的铅冶炼技术。 有效实施能耗限额标准,推动有效金属企业节能工作。推进建设节能型企业是有色冶炼企业的责任和义务,更是我国有色金属工业发展的客观要求。公司常务副总杨华锋介绍说:“粗铅单位产品综合能耗国家发改委现在执行的标准是每吨粗铅折合标准煤380公斤,国家发改委要求降低到280公斤,可我们公司自主研发的液态高铅渣还原炉生产出的粗铅单位产品综合能耗下降到了每吨消耗标准煤167.28公斤,粗铅冶炼回收率98.5%。其它有价金属的回收也得到了相应提高。” 据了解,液态高铅渣直接还原技术是金利冶炼公司与中国有色设计研究总院在2007年共同申报的项目,这个项目也是经国家发改委审批的冶金建材类唯一一个国家扶持资金项目。这个项目是以底吹炉的液态高铅渣与焦炉煤气、碎煤等辅料相互反应,产出粗铅和含铅量小于3%的炉渣,此项目还具有投资成本低、工作环境好、污染小、工人劳动强度小等优点,相对鼓风炉废气减少了90%,不仅解决了高铅渣高温显热无法利用问题,而且还符合国家节能减排、环保的产业政策。 高铅渣还原炉项目在建设初期,金利冶炼公司面对的是侧吹熔池熔炼这一全新课题,尚无成功的经验和数据可以借鉴,项目建设可谓是困难重重,但是金利公司为发展循环经济,实现铅锌互补,克服资金等困难,先后投入4000多万元实施技改,公司技术人员也多次对设计研究院所提供的还原炉图纸方案进行研究推敲,论证审查,并广泛学习借鉴国内外先进的各种铅冶炼的经验,科研小组成员夜以继日、苦心钻研、反复试验,一次次失败,又一次次技改,历经半年之久的苦研,在公司领导的鼓励和支持下,终于在2009年5月份研发成功,并投入试生产。经过近3个月的调试,目前液态高铅渣炉已稳定生产5个多月,各项指标达到预期目标,主要技术指标好于国内国际同类技术水平。这一新工艺的运用,对解决铅熔炼过程中热能浪费、降低综合能耗以及金属综合回收利用等具有良好作用,不仅提高了资源利用率,而且也有效降低环境污染。 底吹炉解决了二氧化硫回收问题,金利公司的还原炉则有效解决了能耗问题。这项技术的使用,标志着金利公司的发展又跨上了一个新的台阶。公司总经理助理翁永生说,液态高铅渣侧吹还原炉试产成功后,仅对公司8万吨溶池熔炼项目来说,每年可用6300吨煤粒来代替22680吨工业焦炭,仅此一项年可节约资金2344万元,每年还可减排二氧化硫504吨,所以能取得可观的经济和环境效益,这一技术已达到世界一流的水平,并弥补国内与底吹炉配套的热渣直接还原工艺的空缺。 金利公司作为河南省优秀民营企业和我市重点工业企业,多年来致力于金属冶炼产业的发展壮大,努力打造国内一流水平的铅锌冶炼企业。公司先后建设8万吨电铅熔池熔炼项目、14万吨废旧蓄电池综合回收分离等项目,在努力实现可持续发展的同时,加大节能减排力度,努力使能耗和污染物排放水平达到国内一流水平。
铋冶炼的综合回收-氯化铅渣的处理
2019-01-31 11:06:04
铅是粗铋中的首要杂质,选用氯化精粹法除铅产出的氯化铅渣含铅在70%左右,对其处理一般有三条途径:还原熔炼成粗铅;出产三盐基硫酸铅;湿法出产黄丹。
一、氯化铅渣的还原熔炼
(一)工艺流程。如图1。图1 氯化铅渣还原熔炼工艺流程
(二)首要技能条件。配料时,将氯化铅渣破碎至小于10毫米,配入渣量40%~50%的石灰石和6%的还原煤粉,装入反射炉内进行还原熔炼,炉内发作如下反响:
PbCl2+CaCO3+C=Pb+CaCl2+CO2+CO
PbCl2+CaCO3+CO=Pb+CaCl2+2CO2
升温至950℃左右,待反响完成后再升温至1250℃左右,高温沉积4小时以上,至渣含铅在1%以下。产出粗铅与氯化钙渣。粗铅含铅97%~98%,可直接送铅电解精粹,氯化钙渣可用来制粗CaCI2,作氧化剂或组成白钨用。
(三)首要设备。颚式破碎机一台;球磨机一台;5米2反射炉一台;浸出罐,浓缩罐各一个、选用夹套式珐琅反响釜;转筒式枯燥机一台。
二、湿法出产黄丹
(一)工艺流程。如图2所示。包含浸出、净化、结晶、转化、烘干等工序。图2 氯化铅渣湿法出产黄丹流程
(二)首要技能条件。浸出:氯化铅渣经球磨后,用饱满食盐水浸出,液固比10∶1,浸出温度109℃,浸出液pH3~5,浸出液含铅高于65克/升。
净化除铜:加Na2S或海绵铅除铜,液温为90℃,除铜后液含铜低于0.001克/升。
净化除铁:加或次除铁(次用通入30%液碱中制得),除铁后液含铁低于0.0001克/升。
冷却结晶:选用夹套式循环冷水冷却,机械拌和,使用氯化铅在氯化钠溶液中溶解度随温度下降而下降,使PbCl2晶体分出。母液再回来浸出。
转化:PbCl2结晶用蒸馏水洗刷后参加30%的液碱中。其反响为:
PbCl2+2NaOH=PbO+2NaCl+H2O
所用工业液碱先用MgCl2除铁,一般每吨液碱加MgCl2 1~5千克,除铁后液碱加热至95℃,供转化用,坚持转化后液含NaOH不小于2.5N,避免生成其它碱式铅盐。
洗刷枯燥:含碱的PbO用离心机过滤,滤后母液浓缩成30%的液碱,回来转化用。PbO结晶用热蒸馏水洗至pH为8,用蒸汽直接加热至105℃,烘干过筛包装,即为制品黄丹。
(三)首要设备。球磨机一台:浸出罐,除铜罐、除铁罐,冷却罐,转化罐各一个,选用夹套式珐琅反响釜;离心过滤机一台;转筒式烘干机一台;贮液槽与泵若干。
(四)产品用处。黄丹在油漆中作催干剂:陶瓷工业作釉料;用于出产光学玻璃、光导纤维、电子真空玻璃等含铅玻璃;还可制,,作铅铬黄料;并用于蓄电池工业。
(五)产出质量(%)。一级品含PbO不低于99,金属铅不高于0.1,PbO2不高于0.2,硝酸不溶物不高于0.2,筛余物(-200日)不高于0.2;二级品含PbO不低于97,Pb不高于0.3,PbO2不高于0.5,硝酸不溶物不高于0.5,筛余物(-200目)不高于0.5。
三、出产三盐基硫酸铅
(一)出产流程。如图3。图3 PbCl3渣出产三盐工艺流程图
(二)首要技能条件。将氯化铅渣球磨至-20目浸出,浸出液成分:NaCl3 20~340克/升,HCl 10~15克/升;液固比8∶1;浸出温度高于90℃;机械拌和;浸出时刻2小时;过滤温度高于60℃。
稀释结晶;用水稀释一倍,pH为1~3;稀释沉积时刻24小时:室温冷却,PbCl2结晶用水洗至洗水pH为5左右,稀释液中和浓缩后回来浸出。
碳酸转化:将相当于PhCl2结晶量40~45%的纯碱在80℃热水中溶化,拌和中渐渐参加氯化铅结晶进行转化,液固比2∶1,转化温度100℃以上,转化时刻约2.5小时,水洗至中性,过滤得碳酸铅。
硝酸溶解:用3倍水稀释硝酸,拌和中将浆化的碳酸铅渐渐参加,彻底溶解至无碳酸铅。
硫酸转化:参加稀释一倍的稀硫酸,硫酸用量稍低于核算值,转化为PbSO4后水洗去游离酸根,直至pH为7时停洗。
固碱转化:将PbSO4浆化成液固比2.5∶1,拌和下参加40~50%的NaOH,加完碱后拌和3小时以上,NaOH用量操控在按分析SO3达7.5%~8.5%。
三盐调整:在固碱转化中,产品或许含SO3过低或过高,所以还需要进一步调整;当SO3过低时,再参加硫酸,当SO3过高时,参加NaoH,调整产出合格产品。经离心过滤,蒸馏水洗刷除尽硫酸根,然后在150~250℃烘箱内烘干,经风磨机破坏后,真空吸滤包装。
(三)首要设备。球磨机一台;浸出罐、稀释罐、碳酸转化罐、硝酸溶解罐、硫酸转化罐、固碱转化罐各一个,选用夹套式珐琅反响釜,机械拌和;离心机二台;烘箱一台;风磨机一台。
(四)产品用处。首要用作聚氯乙烯塑料、电气绝缘材料和人造革的热稳定剂。
(五)产品质量(%)。PbO 89±1,SO3 8±0.5,水分不高于0.4,细度(-200目)99.5以上,外观为白色粉末。
铅精矿与富铅渣交互反应的还原熔炼技术
2019-01-07 17:38:09
传统烧结-鼓风炉熔炼工艺中,按硫化铅精矿中硫的质量分数为12%~24%计算,每冶炼1t粗铅有0.6~1.1t的SO2排空。
新的炼铅技术的共同特点是将焙烧与熔炼结合为一个过程,实现铅精矿直接处理,充分利用硫化铅氧化放出的大量热将炉料迅速熔化,产出液态铅和熔渣。直接炼铅仍需要将冶金过程分为氧化和还原两个阶段,在氧化段充分氧化获得低硫铅,在还原段充分还原产出低铅炉渣。本实验探讨熔池熔炼还原段,利用铅精矿和富铅渣之间的交互反应,考察还原段的终渣含铅量、铅回收率(按渣计)、烟气烟尘率、粗铅产率等各工艺指标的影响因素及条件。对其反应机理进行了初步的探讨。
一、试验理论基础
铅精矿和富铅渣之间的主要交互反应如下:
PbS+2PbO→3Pb+SO2(1)
PbS+PbSO4→2Pb+2SO2 (2)
这两个反应在一般高温1000℃时,△G已经很负了。随着温度的升高,△G越来越负,说明从热力学角度来说,交互反应很容易发生。渣中铅化合物的溶化温度低,其熔体的流动牲好,而且与SiO2结合的Pb0挥发性要比纯Pb0小。PbS溶化后流动性大;PbSO4在800℃便开始分解,至950℃以上分解进行的很快。反应式(1)在860℃时的平衡压力达101325Pa;反应式(2)在723℃时的平衡分压为98000Pa。即在较低温度下,两个反应可以剧烈的向右进行。从动力学角度看,熔渣的熔点一般为1200℃左右,试验温度只要能高于渣熔点,则在渣熔融状态下,各种化合物之间接触良好,反应能很好的进行。
二、试验原料及方法
(一)试验原料
本试验所用原料为某厂艾萨炉出来的富铅渣和铅精矿。铅精矿为黑色粉末,粒度小于1mm。化学成分(%):Pb 45.44、Zn 6.46、Fe 8.82、SiO25.34、CaO 1.57、MgO 0.48、Al2O3 1.00、S 17.86、Cu 2.43、Ag 0.266。定性物相分析结果表明:铅精矿主要含PbS、ZnS、FeS、SiO2、FeS2、PbSO4。
富铅渣为浅粉色块状,化学成分(%):Pb53.97、Zn 6.46、Fe 8.64、SiO2 8.31、CaO 3.07、MgO 0.75、Al203 1.78、S 0.17、Cu 0.73、Ag0.0197,堆密度3.05 g/cm3。XRD分析表明:铅物相以PbZnSiO4、PbO、Pb存在。其中PbZnSi04在高温下发生如下反应分解成PbO:
PbZnSiO4→PbO+ZnO+SiO2
故本试验可将富铅渣中的Pb看做以Pb0形式存在,并以此进行配料计算,确定各种料的加入量。
试验所用熔剂为:石灰石(CaO 51.2%,MgO3.17%);石英砂(SiO2 93.83%)。
(二)试验方法
根据可能发生的交互反应方程式,先计算出富铅渣和铅精矿所需的理论量,再以富铅渣与铅精矿中FeO成分含量的总和为渣型选择的计算基础,然后根据选定的渣型计算所需各溶剂的质量。将富铅渣、铅精矿、石灰石、石英砂分别先经破碎,磨细后,再充分混合均匀,加水湿润后制团,最后烘干12h以上。每次称2kg左右的混合料加人高15cm,内径14 cm的碳化硅坩埚中,从电炉底部进料。用一个Pt/Pt-13%Rh型热电偶检测炉内试验样料的温度,通人高纯氩气排除炉内空气并起轻微的搅拌作用;通过调节电炉的程序参数,设定好每次试验反应温度和时间;反应结束后,观察形成的铅渣表面现象,判断是否产生了泡沫渣,再称量铅渣和粗铅,并分析各主要成分含量。由于试验条件有限,未能检测SO2浓度和烟尘率,本试验将烟气烟尘率看做一个技术指标,计算式为:
烟气烟尘率=(加入坩埚的炉料总量-反应后粗铅和铅渣的量)÷加入坩埚的炉料总量
三、试验结果及讨论
(一)渣型对终渣含铅量和烟尘率的影响
炼铅炉渣是个非常复杂的高温熔体体系,它由SiO2、FeO、CaO、MgO、Al2O3、ZnO等多种氧化物组成,并且它们之间可相互结合形成化合物、固熔体、共晶混合物。为了讨论渣型与结晶相的关系,将多元系简化为三元系:FeO-CaO-SiO2。将渣中该三相的成分换算为100%,再查看FeO-CaO-SiO2三元系相图,根据图中渣温度1 100~1 300℃区域,选择试验3个成分含量。A Perillo提供了维斯麦港基夫赛特法炼铅厂的投产与生产指标,炉渣的化学成分:FeO39%,SiO2 38%,CaO 23%。
试验条件:固定温度1250℃,时间5h,配料比1.0。试验编号分别为(1)-FeO 40%,SiO2 35%,CaO 25%;(2)-FeO 37.5%,SiO2 37.5%,CaO25%;(3)-FeO 35%,SiO2 40%,CaO 25%;(4)-FeO 35%,SiO2 37.5%,CaO 27.5%;(5)-FeO35%,SiO2 35%,CaO 30%。
试验结果表明CaO含量保持为25%,相应的SiO2含量减小时,试验(1),(2),(3)的渣含铅分别为3.48%,4.76%,5.87%;烟气烟尘率分别为36.9%,32.6%,28.1%。FeO含量固定为35%时,相应的SiO2含量减小时,试验(3),(4),(5)的渣含铅分别为5.87%,1.41%,3. 86%;烟气烟尘率分别为28.1%,42.25%,35.6%。
根据熔渣结构的离子理论,适当增加碱性氧化物有利降低炉渣黏度。但碱性氧化物过高时可能生成各种高熔点化合物,使炉渣难熔,渣黏度升高。对于FeO-CaO-SiO2三元系炉渣,但CaO含量超过30%时,黏度将随CaO含量的增加而迅速加大。SiO2/Fe过大,黏度高,排放困难,提高Ca0/SiO2,可降低渣的黏度。从试验结果数据可看出:当炉渣组成为FeO 35%、SiO2 37. 5%、CaO 27. 5%时,烟气烟尘率为42.25%,渣含铅1.41%为最低。
(二)配料比对终渣含铅量和烟尘率的影响
渣型FeO 35%,SiO2 37.5%,CaO 27.5%,保温时间定为3h,温度为1250℃的条件下。以100 g富铅渣为计算基础,理论需要消耗铅精矿71.297g,试验中铅精矿用量分别为理论量的0.9、0.95、1.0、1.05、1.1、1.15和1.2倍。
从图1可看出,在其他条件不变的情况下,随配料比增加,渣含铅呈先减小后增大的趋势,在配料比为1.0有最小值;烟气烟尘率呈先增大后减小的趋势,与渣含铅趋势相反,即渣含铅低时则烟气烟尘率高。鉴于两者的矛盾关系,折中取定试验条件,故此后试验定配料比为 1.1,此条件下渣含铅2.61%,烟气烟尘率33.63%,能基本满足工业上对工艺指标的要求。图1 配料比对终渣含铅和烟尘率的影响
(三)反应温度对终渣含铅和烟尘率的影响
为减少烟尘量,必须严格控制炉内温度。如果能抑制铅及化合物的挥发,烟尘中氧化锌含量就会提高,就可以进入氧化锌系统进行处理。从沸点和平衡蒸气压分析,锌的挥发要比铅容易得多。如果试验中还原温度真正控制在1150~1200℃,Pb和PbO的蒸气压都只有1.3~6.7kPa,铅的挥发率不会如此高。
渣型FeO 35%,SiO2 37.5%,CaO 27.5%,保温时间5h,配料比1.1。试验结果见图2。图2 反应温度对降低终渣含铅量,烟气烟尘率的影响
从图2可看出,其它试验条件不变时,渣含铅随温度的升高而降低,在1250℃有最小值,1300℃时反而渣含铅比其高。观察1300℃的试验现象,渣孔(从粗铅到渣表面)多,推测温度较高于渣熔点时,渣熔体流动性大,反应产生的气体更容易从渣孔隙跑出液面,同时使得渣中的铅及其化合物未能很好的沉降分离,所以渣含铅偏高;烟气烟尘率随温度升高而逐渐增大,1300℃时,烟气烟尘率高达48.82%。烟气烟尘率太高,对后续的收尘系统是个负担,会导致生产成本增加,严重时,会造成烟尘积压。综合考虑后选定温度为1250℃。
(四)反应时间对终渣含铅量和烟尘率的影响
渣型FeO 35%,SiO2 37.5%,CaO 27.5%,温度1250℃,配料比1.1。试验结果见图3。图3 反应时间对终渣含铅量和烟尘率的影响
从图3可以看出,随着反应时间的延长,交互反应进行得越彻底,渣、铅分离沉降时间长,分离效果更好,则渣含铅逐渐减少;而烟气烟尘率逐渐增加。反应时间短,能缩短排渣周期时间,能提高床能率。试验时间为3h条件下,渣含铅2.61%,烟气烟尘率33.63%。
(五)反应温度对粗铅产率和渣产率的影响
渣型FeO 35%,SiO2 37.5%,CaO 27.5%,时间3h,配料比1.1。试验结果见图4。图4 反应温度对粗铅产率和渣产率的影响
从图4可看出,随反应温度的升高,各种化合物和金属的挥发量增多,粗铅产率从27.23%降至14.62%,产渣率也逐渐减小。故反应温度不易过高,折中选择1250℃为较好,此条件下,粗铅产率22.76%,产渣率43.61%。
(六)反应时间对粗铅产率和渣产率的影响
固定渣型FeO 35%,SiO2 37.5%,CaO 27.5%,温度1250℃,配料比1.1。反应时间对粗铅产率(占点炉料)和渣产率的影响结果见图5。图5 反应时间对粗铅产率和渣产率的影响
从图5可以看出:(1)随着反应时间的增加,粗铅产率从19.23%升至25.83%。时间长有利于渣铅沉降分离,同时能让其它各种金属化合物有足够时间发生还原反应,再以金属状态进入粗铅;(2)渣产率逐渐减少。时间长,渣中易挥发的化合物及被产出的气体气泡带走的物质则更多的进入烟气烟尘中,增加了收尘负荷。时间为3h时,粗铅产率22.76%,渣产率43.61%。
(七)其它反应效果的比较及分析
不同试验条件下,反应后,其它各成分含量变化不大。粗铅中的铅含量95.01%~96.12%;Ag含量0.28%~0.36%;S含量0.11%~0.19%;铜含量0.31%~0.56%。铅渣其它成分含量:S含量1.89%~2.37%;Zn含量2.47%~6.33%。且呈现渣含铅低,则含Zn亦低的试验现象。推测在相同工艺条件下,原料中铅化合物和锌化合物与其它物质之间发生的反应机理相似,故两者在铅渣和烟尘中呈正比例含量关系。随着反应时间的延长和反应温度的提高,各种化合物逐渐分解,易挥发物更多的进人烟尘,渣中较难挥发物SiO2、FeO、CaO的含量都有稍微增加的趋势。在渣含铅
四、结论
在熔池熔炼还原段采用铅精矿和富铅渣的交互反应可满足工业实践的各项经济技术指标。最优工艺条件:渣型三主要组成含量折算为FeO 35%,SiO2 37.5%,CaO 27.5%,温度1250℃,时间3h,配料比1.1。在此条件下可得到渣含铅2.61%,铅的回收率(以渣计98.21%,脱硫率91.5%,烟气烟尘率33.63%,粗铅产率22.76%,渣产率43.61%。
铋的氯化精炼除锌、铅
2019-03-04 11:11:26
一、氯化精粹机理
加锌除银后的铋液中,还溶解有约2%的锌,有必要在精粹中除掉。而铅是粗铋中的首要杂质,其分量比约为Bi∶Pb=4∶1。
图1为Pb-Bi系状态图。图1 Pb-Bi系状态图
从图1可见,当温度高于液相线时,铅与铋能溶组成一个液相,阐明粗铋中能溶解很多铅。只有当反响温度低于液相线时才能够构成有限固溶体,具有Pb、β、Bi、L四相。图中q为共晶点,p为包晶点,β为铋与铅构成的化合物,只在固态存在,加热到184℃时就发作使其分化的包晶反响。
从铋液中别离铅与锌的有用办法是实施氯化别离,各种金属的氯化次第,能够参看图2,依据其氯化物的自由焓与温度的联系来判别。图2 氯化物自由焓与温度的联系
从图可见,坐落图下方的氯化锌和氯化铅的直线,比图上方的氯化铋的直线更安稳。当向熔融铋液通入,能够有用地除掉锌与铅: 在氯化除锌、铅过程中,生成的氯化铋又会被锌与铅复原:氯化铅也会被锌复原:从图2还能够看到,银的氯化物与铋的氯化物的自由焓非常挨近,这也是当选用先氧化除铅后加锌除银工序时,在氯化精粹后期,贵金属银被氯化而很多进入氯化铅渣的原因。
氯化精粹由氯化除锌与氯化除铅两部分组成。当向熔融铋液通入时,首要锌被氯化,生成灰白色氯化锌渣,当大部分锌氯化入渣后,捞去氯化锌渣,持续通氯脱铅,产出深灰色的氯化铅渣。
某厂测定氯化精粹时锌与铅的氯化程度如图3所示。图3 锌、铅的氯化程度
氯化精粹首要受动力学条件分配。为了加速氯化速度,有必要增大与铋液中锌与铅的接触面,并使生成的氯化锌与氯化铅敏捷与铋液别离。依据质量效果定律,通入之首要生成BiCl3,饱满后氯化铋再将锌与铅氯化。
二、氯化精粹实践
将除银后铋液用泵转入4号锅进行氯化精粹。降温至320~340℃通入,每锅刺进通氯管4~8根,刺进深度为300~400毫米。插管太浅,易逸出蒸发,基层含铅高的液体难以氯化,插管太深,则通氯阻力大,钢锅易被腐蚀。
氯化锌熔点283℃,因为密度小(2.9克/厘米3),上浮至液面而有掩盖效果,锅面构成灰白色薄膜,当开端呈现深灰色渣时,则为除锌结尾,此刻将液态的氯化锌渣舀出,作为出产ZnCl2的质料。
然后氯化除铅。因为铅是铋液中首要杂质,为了加速氯化除铅的速度和进步利用率,操作温度一般控制在350~400℃。PhCl2的密度5.9克/厘米3,熔点498℃,较铋液轻而上浮,呈固态浮渣掩盖铋液表面,避免的蒸发丢失和污染环境。除铅过程中要抓取氯化铅渣数次,捞渣时先停氯,升温至500℃以上,使呈液态舀出,以削减渣中夹藏金属铋丢失。半途捞渣不用捞净,每次捞完后仍降温至350~400℃,持续通氯,直至除铅结尾。氯化锌渣量约为料重的3%~5%,氯化铅渣量约为料重的13%~20%,其成分于下表。
表 氯化精粹渣成分(%)氯化除铅结尾的判别极为重要。判别过早,因除铅不完全而添加出锅前弥补脱铅工序,判别过晚,就会添加铋被氯化入渣丢失量。判别结尾可依据粗铋中杂质铅含量概算氯化铅渣产出量,而大略估量除铅结尾。在出产实践中首要经过取试样目测判别:当试样表面发黑,不冒金属小珠,试祥断面贯穿细密的笔直条纹状结晶,呈金属光泽,无灰色斑驳,则为除铅结尾,此刻之铋液含铅小于0.01%,然后持续通氯一小时左右,取样分析铅,此刻之含铅量动摇在0.0005%~0.001%之间。
剧毒,激烈影响人的呼吸系统,吸入过量会引起肺水肿,乃至引起逝世。
电解铅
2017-06-06 17:49:52
电解铅有多种多样的方法。其中电解海绵铅的生产为湿法,粗铅置入电解槽内,投加浓度约17%的稀硫酸,在固有相电还原设备电极条件下电解,电解出的产品为纯度极高的海绵铅。电解过程产生电解泥S6,回用于粗铅熔炼过程。电解槽产生废气G4,主要成分为硫酸雾,经“碱液喷淋”处理后可达标排放。电解产生纯度极高的海绵铅入自动铸锭机铸造,铸造后即为电解铅,因海绵铅纯度极高,不再考虑废气和废渣的产生。粗铅、烧碱、硫磺等置入精炼炉内熔炼。烧碱、硫磺等投加物通过反应去除粗铅中的杂质,熔炼后的产品即为2号铅。熔炼过程产生下脚料铅渣S7,回用于粗铅熔炼过程。熔炼过程产生废气G5经“布袋除尘+活性炭”处理后可达标排放。粗铅、稀有金属元素锡、镍、锑等稀有金属置入精炼炉内熔炼。熔炼后的产品即为多元素铅。熔炼过程产生下脚料铅渣S8,回用于粗铅熔炼过程。熔炼过程产生废气G6经“布袋除尘+活性炭”处理后可达标排放。 可见电解铅的流程还是相当复杂的,当然我们在电解铅的同时也要注意对环境的保护,尽量避免我们的环境受到污染。
海绵铅的定义和生产
2019-03-13 09:04:48
海绵铅是指:电解铅出产电解铅的出产为湿法,粗铅置入电解槽内,投加浓度约17%的稀硫酸,在固有相电复原设备电极条件下电解,电解出的产品为纯度极高的海绵铅。那它是怎样出产的呢?电解海绵铅的出产为湿法,粗铅置入电解槽内,投加浓度约17%的稀硫酸,在固有相电复原设备电极条件下电解,电解出的产品为纯度极高的海绵铅。电解进程发生电解泥S6,回用于粗铅熔炼进程。电解槽发生废气G4,主要成分为硫酸雾,经“碱液喷淋”处理后可合格排放。电解发生纯度极高的海绵铅入主动铸锭机铸造,铸造后即为电解铅,因海绵铅纯度极高,不再考虑废气和废渣的发生。粗铅、烧碱、等置入精炼炉内熔炼。烧碱、等投加物经过反响去除粗铅中的杂质,熔炼后的产品即为2号铅。熔炼进程发生下脚料铅渣S7,回用于粗铅熔炼进程。熔炼进程发生废气G5经“布袋除尘+活性炭”处理后可合格排放。粗铅、稀有金属元素锡、镍、锑等稀有金属置入精炼炉内熔炼。熔炼后的产品即为多元素铅。熔炼进程发生下脚料铅渣S8,回用于粗铅熔炼进程。熔炼进程发生废气G6经“布袋除尘+活性炭”处理后可合格排放。
低品位氧化铅锌矿的烟化法富集工艺
2019-02-21 10:13:28
锗没有独立的可供挖掘的矿产 ,而是伴生于有色金属矿和煤矿等矿藏中 ,只能在提取主金属的一起从中收回伴生金属锗。贵州省低档次含锗氧化铅锌矿资源比较丰富。地质材料标明:贵州榨子厂矿铅锌金属储量 201565 万 t ,锗金属储量 178t ,均匀档次 Zn 4.26 %,Pb 2.36 %,Ge 55g/ t ;猫猫厂矿铅锌储量 6.901 万 t ,均匀档次 Zn 8.16 %, Pbl.47 %;张口峒矿铅锌储量 0.7013 万 t ,档次 Zn1.5 %~10.54 %,Pb 0.12 %~1.84 %。这些矿以氧化物方式存在 ,选矿比较困难。现在工业上选用氧化矿制团 ,参加熔剂(铅渣)在鼓风炉内熔炼 ,其炉渣经烟比炉吹炼的工艺 ,出产富含锗的氧化锌铅精矿-锗烟尘 ,作为下一步湿法处理收回锌、铅、锗、银等有价金属的质料。
一、冶炼进程
(一)质料、燃料与产品的化学组成
火法富集进程中的质料首要是矿砂 ,熔剂是铅渣和少数石灰石。鼓风炉选用焦碳作燃料及复原剂 ,烟化炉用粉煤作燃料及复原剂。矿砂、铅渣以及产品的首要成份列于下表 ,焦碳含固定碳 68 %~73 %、灰分 12 %~25 %、蒸发分 2.5 %~4.0 %、水分2 %~8 %、发热量 25 100~27 200kJ/ kg;原煤含固定碳 60 %~68 %、灰分 15 %~20 %、蒸发分 14 %~25 %、水分鼓风炉入炉配料份额为团矿∶铅渣∶焦炭 =4∶1∶0.9 ,其间团矿含复原煤 7 %。正常情况下 ,鼓风炉渣率约 73 %,烟化炉渣率约 89 %,总渣率 63 %~67 %。
(二)冶炼进程原理
富集氧化铅锌矿的进程 ,因为包含了鼓风炉化矿、熔炼和烟化炉吹炼 ,进程中的复原反响一般皆为多相反响而使进程变得复杂。首要发作下列反响:
反响(1)为碳的气化反响 ,为体系供给复原剂。反响(2)~(4)是可逆反响 ,在高温下正向进行 ,在低温下逆向进行。反响(7)为鼓风炉炉缸积铁的反响 ,反响(8)是消除和避免炉缸积铁的反响研讨标明:当熔融炉渣中 ZnO 含量超越3 %时 ,可以有用避免鼓风炉炉缸积铁。复原产品锌、铅、氧化铅、一氧化锗在高温下都具有很高的蒸汽压或进步压 ,在冶炼富集进程中以气态进入烟气中。(三)冶炼工艺
贵州某厂选用鼓风炉熔炼、配以烟化炉吹炼的冶炼富集工艺处理低档次氧化铅锌矿。烟化进程的本质是以空气和粉煤的混合物通入熔融的炉渣中进行复原吹炼。在高温下 ,炉渣中的铅、锌、锗、银等金属呈金属或氧化铅、一氧化锗等方式蒸发 ,并富集于烟尘中而加以收回。工艺简述如下:
矿砂经枯燥后配入 7 %的复原煤制成团矿;原煤经枯燥、球磨、力量分级与运送制得粉煤 ,供烟化炉用。每批料按焦碳、铅渣(熔剂) 、团矿次序参加鼓风炉熔炼 ,其熔渣经溜槽直接流入烟化炉进行吹炼鼓风炉、烟化炉烟气经过水冷烟巷和表面冷却器冷却 ,进入布袋收尘器收尘 ,即得到富集产品-锗烟尘。
鼓风炉选用低料柱作业 ,料柱高度为 1.8~2.2m。因而它具有蒸发金属及熔化矿料两层作用在 1 200~1 280 ℃的高温下 ,锌、锗蒸发率大于0 %,铅大于 70 %。鼓风炉烟气进入冷却体系 ,熔融炉渣经过渣溜槽直接流入烟化炉中吹炼。鼓风炉2炉床面积 414m ,正常批料为:焦炭 450kg ,铅渣500kg ,团矿 2 000kg;每天加料 40~45 次。
鼓风炉炉渣中首要金属的档次为( %) :Zn 4.3~4.5、Pb 0.82~0.84、Ge 0.0037~0.004。当鼓风炉炉况不正常 ,尤其是炉缸积铁时 ,炉渣的活动功能很差 ,不能进入烟化炉吹炼。炉渣直接用水淬弃去 ,形成有价金属的丢失。一般情况下 ,鼓风炉渣率约为 73 %。
二、烟化炉吹炼
烟化炉吹炼的意图是进一步蒸发富集鼓风炉炉渣中的有价金属。1 台鼓风炉装备两台烟化炉。每2台烟化炉炉床面积为 1.2m2。鼓风炉和烟化炉之间直接用渣溜槽衔接 ,即鼓风炉熔渣直接流入烟化炉。吹炼进程选用连续作业 ,2 台炉替换进行。烟化炉选用粉煤作燃料和复原剂 用可控硅操控电机速度来调理粉煤量 ,以操控炉温及复原气氛。烟化炉作业温度一般为 1 100~1 150 ℃,每炉进料时刻为 10~15min、放渣时刻为5~10min ,复原吹炼时刻为70~90min。熔渣层厚度约为 0.8~0.9m ,每炉处理渣量约为 4t ,每日吹炼炉数 9~10 炉。烟化炉渣率约89 %。弃渣中首要金属的成分为( %) :Zn l.0~1.5、Pb 0.1~0.15、Ge三、冷却与收尘
鼓风炉、烟化炉高温炉气(1 000 ℃左右)经水冷烟巷冷却 ,温度降至 300~400 ℃。在冷却进程中一起使烟气中的锌、铅、一氧化锗等从头氧化为 ZnO、PbO及 GeO2 粉末。为使烟气适合于布袋收尘的需求 ,经水冷烟巷冷却的烟气进入表面冷却器进一步冷却至 150~200 ℃,烟气温度小于 100 ℃后进入布袋收尘体系。布袋收尘的过滤介质为玻璃纤维。这种收尘设备结构简略 ,操作简洁 ,收尘功率较高 ,一般可达 95 %~98 %。废气经过滤袋直接排入大气。
四、汽化冷却设备
鼓风炉及其配套的烟化炉水套都选用汽化冷却水套。汽化冷却设备首要由冷却元件、汽包、上升管、下降管、排污管、上联箱、下联箱等组成。汽化冷却要求运用软水 ,并按规则定时进行排污 ,使汽包水含盐量和碱度符合要求。汽化冷却设备有以下特色:可以发生蒸汽 ,供出发生活用 ,进步炉子的热利用率;节省很多工业用水 ,下降能耗;汽水体系设备简略 ,操作保护简略。
五、首要设备
鼓风炉:为下小上大的长方体竖式结构 ,炉底用耐火砖砌筑并用耐火捣打料捣打筑实 ,炉身为水套。水套内壁用锅炉钢板焊接制造 ,外壁用普通钢板焊接制造 ,水套上设有进出水管、排污管、加强筋、调理阀。加料门设在炉体中部两边 ,炉体中部为斜坡水套。炉子上部用耐火砖砌筑 ,排烟口为长方形 ,直接与水平的燃烧室相连。炉子下部有环风管 ,与炉子进风口相连。
烟化炉:为长方体竖式结构 ,炉底为铸铁件;炉身与鼓风炉类似 ,也为水套。水套内壁锅炉钢板焊接制造 ,外壁用普通钢板焊接制造 ,水套上设有进出水管、排污管、加强筋、调理阀。水套分为风口水套、熔渣注入口水套、放渣水套、斜坡水套、炉顶水套。还有风口设备以及支架等等。
收尘设备:选用布袋收尘器 ,结构简略 ,收尘功率高。
其他设备:枯燥窑 ,用于原煤及矿砂的枯燥;制团机 ,用于限制团矿;球磨机 ,用于出产粉煤;供风、抽风设备 ,如空气压缩机、叶式风机、罗茨风机、离心风机;各型水泵及其它辅佐设备。
六、首要技能指标
烟化法富集氧化铅锌矿工艺简略 ,操作简洁 ,设备少 ,占地面积小 ,便于管理。其首要金属收回率为( %) :Zn 70、Ge 72、Pb 85;每吨产品能耗为:电耗1 600~1 800 kW·h、焦炭 2.2~2.6t、原煤 1.6~1.8t ;鼓风炉、烟化炉配开率一般 75 %~80 %。
七、相关技能问题
选用烟化法处理低档次氧化铅锌矿 ,合理的配料是正常出产的条件 ,确保鼓风炉、烟化炉有较高的配开率才干取得较好的技能经济指标。熔融炉渣的物理化学性质对整个工艺的技能经济指标影响很大。它不只关系到铅、锌、锗的蒸发率和收回率 ,并且关系到整个冶炼进程能否顺利进行。配料不妥 ,易引起鼓风炉操作的一系列毛病 ,如炉渣熔点高 ,炉缸积铁、挂壁、炉渣黏度大、活动性差等 ,形成鼓风炉、烟化炉配开率下降 ,然后下降有价金属的收回率。研讨标明:冶炼进程合理的炉渣组成是( %) :CaO 12~16 、SiO2 18~22、FeO 25~30、Al2O3510、MgO 110。在这一组成范围内 ,炉渣的熔点、黏度都较低 ,熔渣活动功能好 ,有利于进步鼓风炉、烟化炉的配开率 ,进而进步整个工艺技能经济指标。
铋的氯化精炼实例
2019-02-18 15:19:33
将除银后铋液用泵转入4号锅进行氯化精粹。降温至320~340℃通入,每锅刺进通氯管4~8根,刺进深度为300~400毫米。插管太浅,易逸出蒸发,基层含铅高的液体难以氯化,插管太深,则通氯阻力大,钢锅易被腐蚀。
氯化锌熔点283℃,因为密度小(2.9克/厘米3),上浮至液面而有掩盖效果,锅面构成灰白色薄膜,当开端呈现深灰色渣时,则为除锌结尾,此刻将液态的氯化锌渣舀出,作为出产ZnCl2的质料。
然后氯化除铅。因为铅是铋液中首要杂质,为了加速氯化除铅的速度和进步利用率,操作温度一般控制在350~400℃。PhCl2的密度5.9克/厘米3,熔点498℃,较铋液轻而上浮,呈固态浮渣掩盖铋液表面,避免的蒸发丢失和污染环境。除铅过程中要抓取氯化铅渣数次,捞渣时先停氯,升温至500℃以上,使呈液态舀出,以削减渣中夹藏金属铋丢失。半途捞渣不用捞净,每次捞完后仍降温至350~400℃,持续通氯,直至除铅结尾。氯化锌渣量约为料重的3%~5%,氯化铅渣量约为料重的13%~20%,其成分于下表。
表 氯化精粹渣成分(%)氯化除铅结尾的判别极为重要。判别过早,因除铅不完全而添加出锅前弥补脱铅工序,判别过晚,就会添加铋被氯化入渣丢失量。判别结尾可根据粗铋中杂质铅含量概算氯化铅渣产出量,而大略估量除铅结尾。在出产实践中首要经过取试样目测判别:当试样表面发黑,不冒金属小珠,试祥断面贯穿细密的笔直条纹状结晶,呈金属光泽,无灰色斑驳,则为除铅结尾,此刻之铋液含铅小于0.01%,然后持续通氯一小时左右,取样分析铅,此刻之含铅量动摇在0.0005%~0.001%之间。
剧毒,激烈影响人的呼吸系统,吸入过量会引起肺水肿,乃至引起逝世。
粗铋和火法精炼
2019-01-04 09:45:43
表1列举几种不同成分的粗铋。
表1 粗铋成分(%)分析表1列举的几种粗铋,可以发现存在如下规律:
火法生产的粗铋中,砷与锑含量均较高。因为在用碳还原铋的过程中,部分砷、锑也还原进入粗铋,精炼中必须将其分离除去;
火法生产的粗铋中银含量较高,所以在精炼过程中,必须优先回收银,以防银的分散与损失;
火法生产的粗铋中铅含量较高,铅是粗铋中的主要杂质,必须采取有效措施分离铅、铋,并应考虑回收大量铅渣;
湿法生产的粗铋中杂质含量较少,这是因为在湿法处理过程中已分离出铅、银、铜、砷等杂质,为精炼创造了有利条件;
Pb-Bi合金中铋含量太低,在火法精炼前必须经过预处理富集铋。
铋的火法精炼在精炼锅内进行。火法精炼一般包括以下工序:熔析及加硫除铜;氧化精炼除砷、锑;碱性精炼除锡、碲;加锌除银;氯化精炼除铅、锌;最终精炼。
各工序的确定以及工序次序的安排,因各厂粗铋原料成分的不同和操作习惯的不同而有差异,但一般有如下规律:
当粗铋含碲高时,为了回收碲,常将除碲工序安排在除砷、锑工序之后,使碲富集存碲渣中以利于回收;当粗铋含碲低时,常省略除碲工序,粗铋中微量的碲经最终碱性精炼除去,此时最终精炼时间将较常规延长2小时左右。
当粗铋含砷、锑低时,常省去除砷、锑工序,粗铋中微量的砷、锑,将在最终碱性精炼中除去;当砷、锑含量高时,必须首先氧化挥发除砷、锑。
当粗铋含银高时,为了回收贵金属银,应将除银工序安排在除铅工序之前,以免银分散入氯化铅渣中;当粗铋含银低含铅高时,也可考虑将除银工序安排在除铅工序之后。有些工厂由于操作上的习惯,或因产出的氯化铅渣可返回铅系统处理,贵金属银仍可回收等原因,而将除铅工序安排在除银工序之前。但从有利于回收富集银着想,为了防止银的分散,先除银是合理的。
当处理铅高铋低的Pb-Bi合金时,常将氯化除铅分两次进行:一次氯化除铅是为了提高铋的含量;二次氯化才是为了除去剩余的杂质铅与锌。
下面介绍几个火法精炼工艺流程实例:
流程一,如图1,这种流程的特点是由于粗铋含铅高(Pb 20~25%),并且由于产出的氯化铅渣返回铅系统回收铅、银,而将除铅工序放在除银工序之前。从回收银的角度考虑,这种安排是不合理的。图1 铋火法精炼工艺流程图(一)
流程二,如图2。此流程的特点是将除银工序放在前面,以利于回收银;并且粗铋含砷、锑,碲低,因而省略了除砷、除锑、除碲工序。图2 铋火法精炼工艺流程图(二)
流程三,如图3,为直接火法精炼处理Pb-Bi合金,这个流程有三十特点:一是由于合金含砷低,含锑高,所以采用碱性除砷与氧化挥锑,锑以Sb2O3烟尘状态回收;二是氯化除铅产出的大量氯化铅渣,用湿法制取黄丹;二是精铋在铸型前加入NH4Cl作表面,使铋锭呈银白色。图3 Pb-Bi合金火法精炼工艺流程
流程四,图4介绍了国外一些厂炼铋的工艺流程,如日本住友金属矿山公司国富冶炼厂铋火法精炼工艺流程,秘鲁中部矿业公司奥罗亚冶炼厂铋火法精炼工艺流程。这种流程的安排是比较合理的。目前国内一些厂也在改革流程,以利于综合回收。图4 国外铋火法精炼工艺流程图
国内外铅冶炼技术状况
2019-03-05 12:01:05
铅的冶炼办法能够简略概括为传统法和直接冶铅法二大类。传统法即烧结—鼓风炉熔炼法(包含烧结机、烧结锅、烧结盘等);直接炼铅法即撤销硫化铅精矿烧结进程,生精矿直接入炉熔炼的办法。多年来传统的烧结—鼓风炉熔炼法一直是铅的首要出产办法,即便到现在,其产值仍旧占国际铅产值的60%以上。但随着人类对环保、节能知道和要求的不断进步,烧结—鼓风炉熔炼法的缺点日显杰出,新建的铅冶炼厂已大都选用了直接炼铅工艺来出产。
直接炼铅法可概括为一段炉法,首要有前苏联开发的基夫赛特法和瓦纽科夫法、德国鲁奇公司开发的QSL法、瑞典波利顿公司开发的卡尔多法等,在一台炉中完结粗铅的冶炼进程。两段炉法有澳大利亚开发的氧气顶吹浸没熔炼法(又称澳斯麦特法、艾萨法),以及我国在20世纪80年代开发的水口山法(又称氧气底吹熔炼法—SKS),在两台炉中完结粗铅出产进程。
一、烧结—鼓风炉熔炼法
烧结—鼓风炉熔炼法运用时间长远、技能老练牢靠、出产安稳、建造出资少、收回率高。近年来又对鼓风烧结机和烧结操作准则作了许多改进,如烧结机选用刚性滑道,以削减漏风;选用返烟烧结进步SO2浓度—非稳态制酸等。但就全体工艺而言,在环保要求日益严厉的现状下,烧结—鼓风炉熔炼法仍存在一些较难持续承受的缺点:
(1)不管怎样改进,烧结烟气SO2浓度仍旧偏低,难以达到常规制酸工艺的要求;
(2)不管选用何种烧结办法,烧结块依然含有2%~3%的残硫,鼓风炉烟气的SO2浓度一般高达4g/m3,难以经济管理,对环境污染严峻;
(3)烧结返料量大(~80%),设备巨大,随烟气逸散的粉尘量大,这是导致铅污染事情时有发作的首要原因;
(4)烧结进程中很多氧化反响热不能得到收回运用,而烧结块冷却后在鼓风炉熔炼又要耗费很多的冶金焦,能耗高;
(5)操作环境差、劳作、工业卫生条件差、对员工身体健康有较大损害。
二、基夫赛特法
基夫赛特法研制于原苏联,1986年在哈萨克斯坦建成了日处理400~500t炉料的乌斯季—卡缅诺戈思克铅冶炼厂;1987年在意大利的埃尼利索斯公司建成了日处理600t炉料的威斯麦港铅冶炼厂,年出产粗铅80kt。1994年,加拿大科明科公司抛弃原QSL炉开端选用基夫赛特法建造规划为100kt/a的特雷尔铅冶炼厂,并于1996年12月投产。
基夫赛特法是一种一部闪速熔炼法。基夫赛特炉由两个反响区组成,炉内设以隔墙,隔墙一侧为氧化反响区,另一侧为复原区。氧化区设有方形反响塔,粒度<1mm,含水<1%的炉料由设于塔顶的四个喷嘴喷入,在高氧位、高温的条件下,自上而下呈悬浮状漂浮下落,经过传热,传质和气—固、气—液反响,完结炉料的氧化脱硫和造渣。熔融物料经过反响塔下的熔池焦炭层完结第一阶段的复原,超越80%的金属铅在氧化熔体中滤出。铅渣混合物再进入液相连通的电炉复原区,在电炉中参加焦炭,炉渣中的铅锌氧化物在强复原气氛下被二次复原,锌蒸汽在电炉出口段氧化为氧化锌,经过收尘收回,基夫赛特炉气相被隔墙分隔,氧化段烟气含SO2高,经过余热锅炉降温及收尘后送往制酸。炉渣与粗铅由复原区不同高位的出口放出。
基夫赛特法的特色如下:
(1)质料适应性强。含铅20%~70%,硫13.5%~28%,银100~8000g/t的质料都可用基夫赛特法处理,并可处理含锌炉料和锌冶炼渣料;
(2)炉子在运转接连安稳,炉寿长,维修费省;
(3)首要金属的收回率高,铅收回率可达98%,金银可达99%,质猜中的锌收回可达60%以上;
(4)烟气量小,烟气SO2浓度高(30%~40%),余热锅炉和电收尘小、热量丢失少;
(5)烟尘率低,仅为5%~6%;
(6)氧化复原在一台炉中完结,反响热运用充沛,加之热量丢失少,因而能耗很低;
(7)炉体密闭,易于完结自动化、机械化,炉体烟尘烟气逸散少、操作条件好、劳作安全、工业卫生条件好;
(8)基夫赛特炉能够处理湿法炼锌渣,收回铅锌、银、铟。基夫赛特炉产出的氧化锌可送炼锌体系处理作到铅锌互补,对铅锌联合厂商更具优势。
基夫赛特法有许多长处,但基夫赛特炉的隔墙因为二面受热,炉衬腐蚀比较快,并常常导致事端的发作。别的,在处理高锌物料时,因为氧化锌烟尘的堆积,常导致烟道的阻塞。
三、QSL法
QSL法为富氧底吹熔池熔炼,其QSL炉为可滚动的卧式长圆筒型炉,并向放铅口方向歪斜0.5%,并分为氧化区和复原区。在氧化和复原两个区域,别离配有浸没式氧气喷嘴和粉煤喷嘴。铅精矿经制粒后由顶部参加氧化区,与氧喷入的氧气在熔池中反响生成氧化铅和SO2,完结自热熔炼;氧化铅与硫化铅在氧化区发作交互反响生成一次粗铅由底部放出。炉渣由氧化区进入复原区,其间的PbO被粉煤喷嘴喷入的粉煤复原,渣含铅逐步下降,一同还产出铅锌氧化物烟尘和二次粗铅。二次粗铅和一次粗铅兼并一同放出,炉渣逆向运动由反响器的另一端放出。为处理铅渣混流,在氧化段与复原段之间增设一道隔墙,耐火材料选用熔铸铬镁砖。
QSL法曾在德国斯托尔伯格、韩国温山、我国西北冶炼厂、加拿大特雷尔建厂运用,因为一个炉内氧化、复原气氛操控困难,加之操作难度大,炉衬冲刷腐蚀快,氧寿数短,结渣阻塞,烟尘率高(约25%)等问题,我国西北冶炼厂1992年投产,十多年间试车3次算计运转缺乏12个月而停产至今。特雷尔冶炼厂1989年建成,投产后呈现了一系列的工艺和设备问题,喷寿数仅2~4天,内衬腐蚀严峻,投产3个月就被逼停产,后改造为基夫赛特法。韩国温山经过试车改造,将氧化与复原分隔为双室,至今出产正常。德国斯托尔伯格10年来历经屡次技能改造,正常至今出产。韩国和德国的出产实践证明,QSL仍是一种成功的直接炼铅办法。特色如下:
(1)设备简略,粗铅出产在一台设备内完结;
(2)质料适应性较好,可调配处理电池糊、铅银渣等含铅较高的二次物料。
四、卡尔多炼铅法
卡尔多炼铅法是瑞典波利顿公司开发一项铅冶炼技能。1979年用来处理含铅烟尘的首台有色金属卡尔多熔炼炉在瑞典的隆斯卡尔冶炼厂诞生。1992年伊朗曾姜铅锌总公司用卡尔多炉处理氧化铅精矿出产铅,年出产能力4.1万t。到现在为止,国际上已有12台卡尔多炉投产。我国西部矿业公司引进的卡尔多炉于2006年在青海建成投产,设计能力60kt/a粗铅。
卡尔多炉有多种类型,但根本结构相似,其炉子本体与炼钢氧气顶吹转炉的形状相似,由圆桶形的下部炉缸和喇叭形的炉口两部分组成,内衬为铬镁砖。炉子本体在电机、减速传动机的驱动下,可沿炉缸轴作反转运动。在正常作业的倾角部位,设有烟罩和烟道,将炉气引进收尘体系,运送燃油和氧气的焚烧喷以及运送精矿的加料喷经过烟罩从炉口刺进炉内。
卡尔多炉是一台歪斜氧气顶吹转炉,加料、氧化、复原、放渣/放铅四个冶炼进程在一台炉内完结,周期性作业。复原期炉烟气SO2很少,不得不在氧化期吸收、紧缩冷凝一部分SO2为液体,在复原期再气化后补充到烟气中以坚持烟气制酸体系的接连运转,操作费事。
五、氧化顶吹浸没熔炼法(澳斯麦特法、艾萨法)
氧化顶吹浸没熔炼法是20世纪70年代澳大利亚开发成功的铜冶炼技能,后移植于铅的冶炼。该熔炼技能是在一个圆桶形的炉内,经过炉子顶端斜烟道的开孔,刺进一支由空气冷却的钢制喷。喷坐落内衬耐火材料的炉膛中心,头部埋于熔体中,燃料和空气经过喷直接喷射到高温熔融渣层中,发生焚烧反响并构成熔体的剧烈搅动,进行物料的氧化脱硫,产出部分粗铅和富铅渣。这样,在一个小空间内参加的炉料被敏捷加热熔化并完结化学反响。调整喷的刺进深度能够操控熔体拌和强度,操作灵敏,炉子能在较长时间内坚持热安稳。熔炼产出的富铅渣经过铸渣机浇注成渣块,再送入鼓风炉复原熔炼,出产粗铅和炉渣。
喷是该炉子的核心部件,它为双层套管结构,上段质料为45#钢,下段喷口为不锈钢。内管经过燃料即油或用定量空气带着的煤粉。表里管间设有螺旋形导流片,助燃空气(或富氧空气)从此通道中以大于两倍音速呈旋涡状流出,加大了体与气体间的传热,然后在喷外表面构成一层冷却的渣壳,此渣壳维护喷,延长了喷的运用寿数。顶吹熔池熔炼炉对入炉物料要求不高,不论是粒状物料仍是粉状精矿、烟尘返料等,只需水分小于10%,均可直接入炉。若为粉状物料,经配料、制粒后入炉有利于下降烟尘率。该法因为主体设备结构简略,辅佐、附属设备不杂乱,与基夫赛特法、QSL法比较,基建出资较低。
氧气顶吹浸没熔炼法归于二段炉炼铅法,用氧化炉熔炼替代了传统炼铅工艺的烧结,氧化炉烟气量小、烟气SO2浓度高,处理了烧结进程低浓度SO2的污染问题,90%以上的硫得到收回运用,对环境污染小,且劳作卫生条件比传统法有很大改进。但因为氧化段只有约40%的铅以粗铅方式产出,富铅渣不能直接复原而有必要浇注成渣块,高温富铅渣的很多显热无法运用,而在鼓风炉复原熔炼又需求配入很多的焦炭,因而其能耗很高。
氧气顶吹浸没熔炼法根本上归于熔池熔炼法,熔池气、固、液搅动剧烈,对炉体冲刷严峻,炉寿较短。别的,艾萨炉喷造价很高。
两段炉直接炼铅不是完全、完善的直接炼铅工艺,假如澳斯麦特法进一步改进完结熔融物料搬运在第2台竖炉中复原,不必鼓风炉复原,则可进一步改进劳作条件,减轻污染,节省能耗,但直至现在一些澳斯麦特法炼铅供应商对竖炉复原未予认同,依然选用鼓风炉复原。所以从炉寿数、能耗、出产操作条件方面考虑,现阶段的氧气顶吹浸没熔炼法还不是抱负的直接炼铅计划。
值得重视的是,澳斯麦特公司再印度锌公司已用1台澳斯麦特炉进行氧化熔炼、复原熔炼、炉渣烟化处理,1炉3用,粗铅出产能力达50kt/a,获得工业化成功,已开端实践原研制主旨。这种1炉多用的澳斯麦特炉,质料适应性广、备料简略、工序少,出资省,是一种较好的工艺技能,但复原期、烟化期烟气要配入SO2方能接连制酸是其美中缺乏的当地。
六、水口山炼铅法
水口山炼铅法又称氧气底吹熔炼法,是我国20世纪80年代在学习QSL法的基础上开发出来的。运用的反响器保留了QSL法的氧化段,而撤销了复原段,氧气由熔池底部吹入,产出富铅渣和部分粗铅,富铅渣相同需求经铸渣机浇注成渣块,再送入鼓风炉复原熔炼,产出粗铅和炉渣。
但和氧气顶吹浸没熔炼法不同,氧气底吹熔炼法的炉体结构简略,建造出资较小。
和烧结—鼓风炉复原熔炼工艺比较,氧气底吹熔炼尽管较好地处理了氧化段烟气SO2的污染问题,但因为氧气底吹熔炼技能自身的缺点,大部分铅只能以铅的我氧化物形状和石英、石灰石等溶剂一同造渣,铅一次复原率不到40%。因为高铅液态渣直接复原技能现在尚不老练,然后不得不把约1200℃的高温熔融渣冷却成熔渣块后,再送鼓风炉内用焦炭加热至约1250℃进行高温复原熔炼,热能运用极不合理。一同,氧气底吹熔炼只适用于含铅大于50%的高铅精矿的处理,而关于含铅40%左右或以下的低档次铅精矿,因为不能自热熔炼和无法再氧气底吹炉直接出产出粗铅,导致炉衬腐蚀严峻,是炉体运用寿数大为缩短。别的,和QSL相相似,氧气底吹熔炼的烟尘率相同较高,一般为25%。
铋的氧化精炼实例
2019-01-21 18:04:55
除铜后之铋液,升温至680~750℃,鼓入压缩空气,使砷、锑氧化挥发,作业时间根据粗铋中砷、锑含量而定,一般为4~12小时,至白烟稀薄,铋液表面出现氧化铅渣时,则为除砷、锑的终点。在操作中如渣覆盖液面时,可酌情捞出,以免影响气体挥发逸出,渣稀时,可加入少量固体碱或谷壳、木屑,使渣变干,便于捞渣。除砷、锑氧化渣量,约为料重的4%~8%。氧化渣组成列于下表。
表 氧化精炼渣成分(%)
云冶粗铅冶炼新技术国际领先
2018-12-17 14:19:53
云南冶金集团总公司历时8年攻克粗铅冶炼技术难题,自主研发出高效、节能、清洁炼铅新技术“富氧顶吹熔炼—鼓风炉还原炼铅工艺”,在世界上首次采用该技术在曲靖实施工业化应用获得成功。 云冶集团已建成年产8万吨的粗铅生产线,从投产至今累计生产粗铅10万吨,实现销售收入12.28亿元,新增利润5.78亿元,自2005年在曲靖实现工业化应用以来节约资金达500万元。将该技术应用于粗铅冶炼首获成功,是我国粗铅冶炼的重大技术突破,标志着我国粗铅冶炼技术达到世界领先水平。 长期以来,世界80%以上的粗铅均采用传统的烧结—鼓风炉熔炼工艺从硫化铅精矿中提取,但该工艺能耗高、污染严重,并造成硫资源的浪费,因此,被国家列为限期淘汰的生产工艺。而“富氧顶吹强化熔炼技术”作为世界上先进的冶炼技术,虽已成功应用于铜、锡的熔炼,但在铅精矿的粗铅冶炼上一直未能实现工业化应用。 在国家发改委和省发改委、省科技厅支持下,云南冶金集团总公司引进国外先进的艾萨炉“富氧顶吹强化熔炼技术”,在消化吸收再创新的基础上,与集团自主研发的“富铅渣鼓风炉还原熔炼技术”及“鼓风炉强化熔炼技术”进行集成创新,形成了国际独创、具有自主知识产权的“富氧顶吹熔炼— 鼓风炉还原炼铅工艺”,为产业化提供了经济效益好、环境污染小、能源消耗低的全套生产工艺技术。与传统技术工艺相比,该技术既发挥了富氧顶吹熔炼环保、节能的特点,又发挥了鼓风炉还原熔炼处理量大、投资低、工艺简单、操作维护方便的优点,具有广阔的推广应用前景。应用该技术,粗铅冶炼过程中排放的烟气可回收制酸,解决了烟气直接排放对环境的污染问题,且每吨粗铅可减排0.6至0.8吨二氧化硫,总硫利用率达98.5%,粗铅直收率为50%,烟尘率被控制在15%左右;通过余热回收等技术,使每吨粗铅的冶炼综合能耗为423吨标准煤,比传统工艺少消耗212吨标准煤;该技术适应性广,在高杂质铅精矿、不同返料比例、各种铅渣等的冶炼中均可应用。.
水口山炼铅法
2019-01-07 17:37:58
水口山炼铅法又称氧气底吹熔炼法,是我国20世纪80年代在借鉴QSL法的基础上开发出来的。使用的反应器保留了QSL法的氧化段,而取消了还原段,氧气由熔池底部吹入,产出富铅渣和部分粗铅,富铅渣同样需要经铸渣机浇注成渣块,再送入鼓风炉还原熔炼,产出粗铅和炉渣。
但和氧气顶吹浸没熔炼法不同,氧气底吹熔炼法的炉体结构简单,建设投资较小。
和烧结—鼓风炉还原熔炼工艺相比,氧气底吹熔炼虽然较好地解决了氧化段烟气SO2的污染问题,但由于氧气底吹熔炼技术本身的缺陷,大部分铅只能以铅的我氧化物形态和石英、石灰石等溶剂一起造渣,铅一次还原率不到40%。由于高铅液态渣直接还原技术目前尚不成熟,从而不得不把约1200℃的高温熔融渣冷却成熔渣块后,再送鼓风炉内用焦炭加热至约1250℃进行高温还原熔炼,热能利用极不合理。同时,氧气底吹熔炼只适用于含铅大于50%的高铅精矿的处理,而对于含铅40%左右或以下的低品位铅精矿,由于不能自热熔炼和无法再氧气底吹炉直接生产出粗铅,导致炉衬腐蚀严重,是炉体使用寿命大为缩短。另外,和QSL相类似,氧气底吹熔炼的烟尘率同样较高,通常为25%。
氧化顶吹浸没熔炼法
2019-03-07 10:03:00
氧化顶吹浸没熔炼法是20世纪70年代澳大利亚开发成功的铜冶炼技能,后移植于铅的冶炼。
该熔炼技能是在一个圆桶形的炉内,经过炉子顶端斜烟道的开孔,刺进一支由空气冷却的钢制喷。喷坐落内衬耐火材料的炉膛中心,头部埋于熔体中,燃料和空气经过喷直接喷射到高温熔融渣层中,发生焚烧反响并构成熔体的剧烈搅动,进行物料的氧化脱硫,产出部分粗铅和富铅渣。这样,在一个小空间内参加的炉料被敏捷加热熔化并完结化学反响。调整喷的刺进深度能够操控熔体拌和强度,操作灵敏,炉子能在较长时间内坚持热安稳。熔炼产出的富铅渣经过铸渣机浇注成渣块,再送入鼓风炉复原熔炼,出产粗铅和炉渣。
喷是该炉子的核心部件,它为双层套管结构,上段质料为45#钢,下段喷口为不锈钢。内管经过燃料即油或用定量空气带着的煤粉。表里管间设有螺旋形导流片,助燃空气(或富氧空气)从此通道中以大于两倍音速呈旋涡状流出,加大了体与气体间的传热,从而在喷外表面构成一层冷却的渣壳,此渣壳维护喷,延长了喷的使用寿数。
顶吹熔池熔炼炉对入炉物料要求不高,不论是粒状物料仍是粉状精矿、烟尘返料等,只需水分小于10%,均可直接入炉。若为粉状物料,经配料、制粒后入炉有利于下降烟尘率。该法因为主体设备结构简略,辅佐、附属设备不杂乱,与基夫赛特法、QSL法比较,基建出资较低。氧气顶吹浸没熔炼法归于二段炉炼铅法,用氧化炉熔炼替代了传统炼铅工艺的烧结,氧化炉烟气量小、烟气SO2浓度高,处理了烧结进程低浓度SO2的污染问题,90%以上的硫得到收回使用,对环境污染小,且劳作卫生条件比传统法有很大改进。但因为氧化段只有约40%的铅以粗铅方式产出,富铅渣不能直接复原而有必要浇注成渣块,高温富铅渣的很多显热无法使用,而在鼓风炉复原熔炼又需求配入很多的焦炭,因而其能耗很高。氧气顶吹浸没熔炼法基本上归于熔池熔炼法,熔池气、固、液搅动剧烈,对炉体冲刷严峻,炉寿较短。
别的,艾萨炉喷造价很高。两段炉直接炼铅不是完全、完善的直接炼铅工艺,假如澳斯麦特法进一步改进完成熔融物料搬运在第2台竖炉中复原,不必鼓风炉复原,则可进一步改进劳作条件,减轻污染,节省能耗,但直至现在一些澳斯麦特法炼铅供应商对竖炉复原未予认同,依然选用鼓风炉复原。所以从炉寿数、能耗、出产操作条件方面考虑,现阶段的氧气顶吹浸没熔炼法还不是抱负的直接炼铅计划。
值得重视的是,澳斯麦特公司再印度锌公司已用1台澳斯麦特炉进行氧化熔炼、复原熔炼、炉渣烟化处理,1炉3用,粗铅出产能力达50kt/a,获得工业化成功,已开端实践原研制主旨。这种1炉多用的澳斯麦特炉,质料适应性广、备料简略、工序少,出资省,是一种较好的工艺技能,但复原期、烟化期烟气要配入SO2方能接连制酸是其美中不足的当地。
从铅中提取贵重金属的新方法问世
2019-01-24 17:45:54
英国一家公司发明了一种从铅中提取贵重金属的新方法"下部吹氧法"。采用这种方法,可以节省能源消耗成本60%以上,还可实现工艺过程的高速化。 传统的提取方法"吹灰法",是往熔融金属的表面吹入空气流,使铅氧化。由于银不会被氧化,因而可去除铅渣层,得到纯度99%以上的白银。这种方法耗能大,时间较长。 英国这家公司发明的新方法,不是向金属表面吹空气,而是使用特制的倾斜炉,从吹灰容器的下部向液体金属吹入纯氧。使用这种方法,银的纯度不会降低,但氧化处理时间比传统方法大大缩短,耗能成本大幅度降低。据报道,这种方法虽然是以从铅中提取银为目的而研究的,但也适用于提取其它贵金属。
羰基镍渣的熔炼和灰吹
2019-03-05 09:04:34
加拿大大都工厂在选用蒙德(Mond)工厂的法出产纯镍过程中,产出的含贵金属总量4%的残渣,运往伦敦阿克顿工厂处理。
阿克顿工厂处理渣的办法是向渣中参加氧化铅和碳酸钠,经混匀后于容量100kg的小反射炉中熔炼,产出贵铅锭和含少数贵金属的炉渣。炉渣回来加拿大镍厂处理。
贵铅于容量100kg的煤气加热灰吹炉中灰吹。产出的氧化铅渣铸锭后送熔炼铅。烟气经洗刷塔除尘后排放。合金中含80%银,铂族金属富集3倍。将合金水淬成粒,称为一号贵金属合金。
合金用热的浓硫酸处理以溶解银和部分钯。过滤后,滤液中的银呈氯化银收回,然后送还原熔炼。再加铜置换钯,所得的沉淀物并入浓硫酸不溶渣(铂精矿)中,送收回金及铂族金属。
阿克顿精粹厂也运用熔炼、灰吹法处理英国克利德赫(Clydach)工厂的镍阳极泥,这是由于该质猜中含有很多铅。假如质猜中首要含镍,则选用二次电解法或其他办法处理更为有利。
发改委推广3项有色金属冶炼节能技术
2018-12-10 09:46:24
据了解,目录涉及煤炭、电力、钢铁、有色金属、石油石化、化工、建材、机械、纺织、建筑、交通等11个行业,共30项高效节能技术。相关行业涉及矿热炉烟气余热利用技术、铅闪速熔炼技术、氧气侧吹熔池熔炼技术3项技术,主要用于金属硅、铜、铅、锡、镍、锑等金属的冶炼。 矿热炉烟气余热利用技术主要应用于硅铁类铁合金矿热炉余热利用,通过余热回收装置,利用生产过程中产生的高温烟气及辐射热量,进行二次回收利用,在余热锅炉内产生中低压蒸汽,进而推动发电设备进行发电。 据了解,该技术已在部分铁合金企业使用,技术成熟,节能效果显着。以青海百通高纯材料开发有限公司为例,16台14000kVA矿热炉余热利用系统,年发电量可达1.92亿度。预计2015年该技术可在钢铁、化工等行业推广到60%,总节能能力约105万tce/a。 我国现有铅冶炼厂400余家,半数以上的产能由传统的烧结——鼓风炉还原熔炼工艺完成,该工艺能耗高、污染大,属于落后淘汰的工艺,用用闪速熔炼工艺替代传统的炼铅工艺是必然的选择。 以河南灵宝市华宝集团公司为例,利用闪速熔炼工艺的话,节能技改投资额为6000万元,建设期1.5年,年可节能10200tce,年节能经济效益1700万元,投资回收期3.5年。预计到2015年,该技术推广比例可达30%,总投入3.84亿元,总节能量约15万tce/a。 氧气侧吹熔池熔炼技术适用于铜、镍、铅、锑、锡等金属的冶炼,在铅冶炼过程中取消了鼓风炉还原工段,节省了大量焦炭;且氧化炉产生的高铅渣是以液态进入还原炉,充分利用了高铅渣的显热,节约了能源。2009年铜的综合能耗366kg/t-Cu ,使用该技术可降低铜的综合能耗150kgce/t-Cu,节能能力可达30万tce/a。 氧气侧吹炼铜技术目前已有2家采用并投产,预计2015年采用该技术的冶炼厂将达到8~12家,改造产能超过180万吨。 (miki)
铜阳极泥的蒸硒和湿法-电解法流程
2019-03-05 09:04:34
此法是贵溪、富春江、武汉、铜陵二冶等厂选用的工业流程。阳极泥首要经硫酸盐化焙烧蒸硒,并从炉气顶用稀硫酸液吸收和通入SO2复原收回粗硒。蒸硒渣经稀硫酸加热并鼓风拌和浸出脱铜,浸液回来铜电解。脱铜渣选用浸分银,并用水含肼从浸液中复原出粗银送电解。分银渣进行碳酸钠硅化并用稀硝酸浸出除铅,并向铅液中加适量硫酸(不使过剩)使生成PbSO4沉积,滤液回来再浸铅。除铅渣运用HCl、NaCl和CaOCl浸出金,并通SO2复原为粗金送电解。终究渣回来铜火法冶炼。
国外铅冶炼技术了解
2019-03-07 10:03:00
铅的冶炼办法能够简略概括为传统法和直接冶铅法二大类。传统法即烧结—鼓风炉熔炼法(包含烧结机、烧结锅、烧结盘等);直接炼铅法即撤销硫化铅精矿烧结进程,生精矿直接入炉熔炼的办法。
多年来传统的烧结—鼓风炉熔炼法一直是铅的首要出产办法,即便到现在,其产值仍旧占国际铅产值的60%以上。但随着人类对环保、节能知道和要求的不断进步,烧结—鼓风炉熔炼法的缺点日显杰出,新建的铅冶炼厂已大都选用了直接炼铅工艺来出产。
直接炼铅法可概括为一段炉法,首要有前苏联开发的基夫赛特法和瓦纽科夫法、德国鲁奇公司开发的QSL法、瑞典波利顿公司开发的卡尔多法等,在一台炉中完结粗铅的冶炼进程。两段炉法有澳大利亚开发的氧气顶吹浸没熔炼法(又称澳斯麦特法、艾萨法),以及我国在20世纪80年代开发的水口山法(又称氧气底吹熔炼法—SKS),在两台炉中完结粗铅出产进程。
一、烧结—鼓风炉熔炼法
烧结—鼓风炉熔炼法运用时间长远、技能老练牢靠、出产安稳、建造出资少、收回率高。近年来又对鼓风烧结机和烧结操作准则作了许多改进,如烧结机选用刚性滑道,以削减漏风;选用返烟烧结进步SO2浓度—非稳态制酸等。但就全体工艺而言,在环保要求日益严厉的现状下,烧结—鼓风炉熔炼法仍存在一些较难持续承受的缺点:
(1)不管怎样改进,烧结烟气SO2浓度仍旧偏低,难以达到常规制酸工艺的要求;
(2)不管选用何种烧结办法,烧结块依然含有2%~3%的残硫,鼓风炉烟气的SO2浓度一般高达4g/m3,难以经济管理,对环境污染严峻;
(3)烧结返料量大(~80%),设备巨大,随烟气逸散的粉尘量大,这是导致铅污染事情时有发作的首要原因;
(4)烧结进程中很多氧化反响热不能得到收回运用,而烧结块冷却后在鼓风炉熔炼又要耗费很多的冶金焦,能耗高;
(5)操作环境差、劳作、工业卫生条件差、对员工身体健康有较大损害。
二、基夫赛特法
基夫赛特法研制于原苏联,1986年在哈萨克斯坦建成了日处理400~500t炉料的乌斯季—卡缅诺戈思克铅冶炼厂;1987年在意大利的埃尼利索斯公司建成了日处理600t炉料的威斯麦港铅冶炼厂,年出产粗铅80kt。1994年,加拿大科明科公司抛弃原QSL炉开端选用基夫赛特法建造规划为100kt/a的特雷尔铅冶炼厂,并于1996年12月投产。
基夫赛特法是一种一部闪速熔炼法。基夫赛特炉由两个反响区组成,炉内设以隔墙,隔墙一侧为氧化反响区,另一侧为复原区。氧化区设有方形反响塔,粒度
铅渣混合物再进入液相连通的电炉复原区,在电炉中参加焦炭,炉渣中的铅锌氧化物在强复原气氛下被二次复原,锌蒸汽在电炉出口段氧化为氧化锌,经过收尘收回,基夫赛特炉气相被隔墙分隔,氧化段烟气含SO2高,经过余热锅炉降温及收尘后送往制酸。炉渣与粗铅由复原区不同高位的出口放出。
基夫赛特法的特色如下:
(1)质料适应性强。含铅20%~70%,硫13.5%~28%,银100~8000g/t的质料都可用基夫赛特法处理,并可处理含锌炉料和锌冶炼渣料;
(2)炉子在运转接连安稳,炉寿长,维修费省;
(3)首要金属的收回率高,铅收回率可达98%,金银可达99%,质猜中的锌收回可达60%以上;
(4)烟气量小,烟气SO2浓度高(30%~40%),余热锅炉和电收尘小、热量丢失少;
(5)烟尘率低,仅为5%~6%;
(6)氧化复原在一台炉中完结,反响热运用充沛,加之热量丢失少,因而能耗很低;
(7)炉体密闭,易于完结自动化、机械化,炉体烟尘烟气逸散少、操作条件好、劳作安全、工业卫生条件好;
(8)基夫赛特炉能够处理湿法炼锌渣,收回铅锌、银、铟。基夫赛特炉产出的氧化锌可送炼锌体系处理作到铅锌互补,对铅锌联合厂商更具优势。
基夫赛特法有许多长处,但基夫赛特炉的隔墙因为二面受热,炉衬腐蚀比较快,并常常导致事端的发作。别的,在处理高锌物料时,因为氧化锌烟尘的堆积,常导致烟道的阻塞。
三、QSL法
QSL法为富氧底吹熔池熔炼,其QSL炉为可滚动的卧式长圆筒型炉,并向放铅口方向歪斜0.5%,并分为氧化区和复原区。在氧化和复原两个区域,别离配有浸没式氧气喷嘴和粉煤喷嘴。铅精矿经制粒后由顶部参加氧化区,与氧喷入的氧气在熔池中反响生成氧化铅和SO2,完结自热熔炼;氧化铅与硫化铅在氧化区发作交互反响生成一次粗铅由底部放出。
炉渣由氧化区进入复原区,其间的PbO被粉煤喷嘴喷入的粉煤复原,渣含铅逐步下降,一同还产出铅锌氧化物烟尘和二次粗铅。二次粗铅和一次粗铅兼并一同放出,炉渣逆向运动由反响器的另一端放出。为处理铅渣混流,在氧化段与复原段之间增设一道隔墙,耐火材料选用熔铸铬镁砖。
QSL法曾在德国斯托尔伯格、韩国温山、我国西北冶炼厂、加拿大特雷尔建厂运用,因为一个炉内氧化、复原气氛操控困难,加之操作难度大,炉衬冲刷腐蚀快,氧寿数短,结渣阻塞,烟尘率高(约25%)等问题,我国西北冶炼厂1992年投产,十多年间试车3次算计运转缺乏12个月而停产至今。
特雷尔冶炼厂1989年建成,投产后呈现了一系列的工艺和设备问题,喷寿数仅2~4天,内衬腐蚀严峻,投产3个月就被逼停产,后改造为基夫赛特法。韩国温山经过试车改造,将氧化与复原分隔为双室,至今出产正常。德国斯托尔伯格10年来历经屡次技能改造,正常至今出产。韩国和德国的出产实践证明,QSL仍是一种成功的直接炼铅办法。特色如下:
(1)设备简略,粗铅出产在一台设备内完结;
(2)质料适应性较好,可调配处理电池糊、铅银渣等含铅较高的二次物料。
四、卡尔多炼铅法
卡尔多炼铅法是瑞典波利顿公司开发一项铅冶炼技能。1979年用来处理含铅烟尘的首台有色金属卡尔多熔炼炉在瑞典的隆斯卡尔冶炼厂诞生。1992年伊朗曾姜铅锌总公司用卡尔多炉处理氧化铅精矿出产铅,年出产能力4.1万t。到现在为止,国际上已有12台卡尔多炉投产。我国西部矿业公司引进的卡尔多炉于2006年在青海建成投产,设计能力60kt/a粗铅。
卡尔多炉有多种类型,但根本结构相似,其炉子本体与炼钢氧气顶吹转炉的形状相似,由圆桶形的下部炉缸和喇叭形的炉口两部分组成,内衬为铬镁砖。炉子本体在电机、减速传动机的驱动下,可沿炉缸轴作反转运动。在正常作业的倾角部位,设有烟罩和烟道,将炉气引进收尘体系,运送燃油和氧气的焚烧喷以及运送精矿的加料喷经过烟罩从炉口刺进炉内。
卡尔多炉是一台歪斜氧气顶吹转炉,加料、氧化、复原、放渣/放铅四个冶炼进程在一台炉内完结,周期性作业。复原期炉烟气SO2很少,不得不在氧化期吸收、紧缩冷凝一部分SO2为液体,在复原期再气化后补充到烟气中以坚持烟气制酸体系的接连运转,操作费事。
五、氧化顶吹浸没熔炼法(澳斯麦特法、艾萨法)
氧化顶吹浸没熔炼法是20世纪70年代澳大利亚开发成功的铜冶炼技能,后移植于铅的冶炼。该熔炼技能是在一个圆桶形的炉内,经过炉子顶端斜烟道的开孔,刺进一支由空气冷却的钢制喷。
喷坐落内衬耐火材料的炉膛中心,头部埋于熔体中,燃料和空气经过喷直接喷射到高温熔融渣层中,发生焚烧反响并构成熔体的剧烈搅动,进行物料的氧化脱硫,产出部分粗铅和富铅渣。这样,在一个小空间内参加的炉料被敏捷加热熔化并完结化学反响。调整喷的刺进深度能够操控熔体拌和强度,操作灵敏,炉子能在较长时间内坚持热安稳。熔炼产出的富铅渣经过铸渣机浇注成渣块,再送入鼓风炉复原熔炼,出产粗铅和炉渣。
喷是该炉子的核心部件,它为双层套管结构,上段质料为45#钢,下段喷口为不锈钢。内管经过燃料即油或用定量空气带着的煤粉。表里管间设有螺旋形导流片,助燃空气(或富氧空气)从此通道中以大于两倍音速呈旋涡状流出,加大了体与气体间的传热,然后在喷外表面构成一层冷却的渣壳,此渣壳维护喷,延长了喷的运用寿数。
顶吹熔池熔炼炉对入炉物料要求不高,不论是粒状物料仍是粉状精矿、烟尘返料等,只需水分小于10%,均可直接入炉。若为粉状物料,经配料、制粒后入炉有利于下降烟尘率。该法因为主体设备结构简略,辅佐、附属设备不杂乱,与基夫赛特法、QSL法比较,基建出资较低。
氧气顶吹浸没熔炼法归于二段炉炼铅法,用氧化炉熔炼替代了传统炼铅工艺的烧结,氧化炉烟气量小、烟气SO2浓度高,处理了烧结进程低浓度SO2的污染问题,90%以上的硫得到收回运用,对环境污染小,且劳作卫生条件比传统法有很大改进。
但因为氧化段只有约40%的铅以粗铅方式产出,富铅渣不能直接复原而有必要浇注成渣块,高温富铅渣的很多显热无法运用,而在鼓风炉复原熔炼又需求配入很多的焦炭,因而其能耗很高。
氧气顶吹浸没熔炼法根本上归于熔池熔炼法,熔池气、固、液搅动剧烈,对炉体冲刷严峻,炉寿较短。别的,艾萨炉喷造价很高。
两段炉直接炼铅不是完全、完善的直接炼铅工艺,假如澳斯麦特法进一步改进完结熔融物料搬运在第2台竖炉中复原,不必鼓风炉复原,则可进一步改进劳作条件,减轻污染,节省能耗,但直至现在一些澳斯麦特法炼铅供应商对竖炉复原未予认同,依然选用鼓风炉复原。所以从炉寿数、能耗、出产操作条件方面考虑,现阶段的氧气顶吹浸没熔炼法还不是抱负的直接炼铅计划。
值得重视的是,澳斯麦特公司再印度锌公司已用1台澳斯麦特炉进行氧化熔炼、复原熔炼、炉渣烟化处理,1炉3用,粗铅出产能力达50kt/a,获得工业化成功,已开端实践原研制主旨。这种1炉多用的澳斯麦特炉,质料适应性广、备料简略、工序少,出资省,是一种较好的工艺技能,但复原期、烟化期烟气要配入SO2方能接连制酸是其美中缺乏的当地。
六、水口山炼铅法
水口山炼铅法又称氧气底吹熔炼法,是我国20世纪80年代在学习QSL法的基础上开发出来的。运用的反响器保留了QSL法的氧化段,而撤销了复原段,氧气由熔池底部吹入,产出富铅渣和部分粗铅,富铅渣相同需求经铸渣机浇注成渣块,再送入鼓风炉复原熔炼,产出粗铅和炉渣。
但和氧气顶吹浸没熔炼法不同,氧气底吹熔炼法的炉体结构简略,建造出资较小。
和烧结—鼓风炉复原熔炼工艺比较,氧气底吹熔炼尽管较好地处理了氧化段烟气SO2的污染问题,但因为氧气底吹熔炼技能自身的缺点,大部分铅只能以铅的我氧化物形状和石英、石灰石等溶剂一同造渣,铅一次复原率不到40%。
因为高铅液态渣直接复原技能现在尚不老练,然后不得不把约1200℃的高温熔融渣冷却成熔渣块后,再送鼓风炉内用焦炭加热至约1250℃进行高温复原熔炼,热能运用极不合理。
一同,氧气底吹熔炼只适用于含铅大于50%的高铅精矿的处理,而关于含铅40%左右或以下的低档次铅精矿,因为不能自热熔炼和无法再氧气底吹炉直接出产出粗铅,导致炉衬腐蚀严峻,是炉体运用寿数大为缩短。别的,和QSL相相似,氧气底吹熔炼的烟尘率相同较高,一般为25%。
再生铅小知识
2018-12-19 09:49:44
从废旧金属和工业金属废料中提取的金属称为再生金属,或称二次金属。可用来生产再生铅的原料很广泛,如回收的废蓄电池残片及填料,蓄电池厂及炼铅厂所产的铅浮渣,二次金属回收厂和有色金属生产厂所产的含铅炉渣,二次金属回收和贵金属冶炼厂所产含铅的烟尘,湿法冶金所产的浸出铅渣,铅熔炼所产的铅锍,铅消费部门的各种废料等,其中以废蓄电池的回收量最大。 再生铅原料一般由Pb、Sb、Sn、Cu、Bi等元素组成,其中铅含量通常大于80%。
铋的氧化精炼除砷、锑
2019-03-05 12:01:05
一、氧化机理
如图1所示,因为砷、锑的氧化物与铋的氧化物的自由焓相差甚大,所以在氧化精粹中,砷、锑会优先氧化而与铋液别离。
图1 金属氧化物的自由焓图
依据质量作用定律,首要铋被氧化为Bi2O3,Bi2O3再使砷、锑氧化为As2O3与Sb2O3,部分蒸发,余下的进一步氧化为As2O3与Sb2O5入渣。实践中,砷与锑约三分之一以三氧化物蒸发,约三分之一以五氧化物入渣。
从As-Bi系状态图可见(见图2),图中液相线从铋的熔点上升至砷的熔点,共晶点为270.3℃,正坐落纯铋熔点邻近。砷在铋中的可溶性,在共晶点温度时为0.42%(原子),在100℃时为0.24%(原子),在室温下为0.2%(原子),所以,铋与砷构成的共晶化合物中含砷量是不高的,剩余的砷与铋构成有限固熔体,选用鼓风氧化的办法,很简单除掉铋液中的砷。 图2 As-Bi系状态图
Sb-Bi系状态图列于图3。图3 Sb-Bi系状态图
图3中锑与铋在液态彻底互溶,液相线以上的区域为均匀的液相,而固相线以下的区域为固溶体,液相线与固相线之间区域为液相与分出固溶体两相共存,因为锑与铋在液相与固相均能彻底互溶,所以铋液中能溶解很多的锑。图中液相线接近于直线,阐明其组成与温度近似成正比联系。
氧化精粹受动力学条件分配。铋液中杂质金属的氧化进程由两阶段构成,即杂质金属氧化物在铋液与鼓入的压缩空气气泡界面上的构成进程,和生成的杂质金属氧化物在铋液中的分散进程。也就是说,铋液中杂质元素的氧化速度,取决于铋液中砷、锑与氧的触摸情况和生成的砷、锑氧化物的分散速度。铋液中杂质金属的浓度的改变速度v,与液-气两相界面处杂质元素的浓度c0,和铋液中杂质元素的浓度cx之差,以及液-气两相分界表面积F的联系,可用下式描绘:式中K-份额常数,为分散系数的函数。
由上式可知,添加气-液两相的触摸表面和使生成的杂质氧化物敏捷从铋液中别离,是加速杂质氧化的重要途径。
某厂实践中测定氧化特炼时铋液中砷、锑的氧化程度如图4所示。图4 砷、锑的氧化程度
在生产实践中间,氧化精粹一般选用压缩空气鼓风氧化,也有用压入湿木块与通入水蒸汽氧化。氧化精粹温度控制在700℃左右,此刻铋比砷、锑的氧化物的自由焓相差约105焦耳/摩尔氧分子,砷、锑氧化物自由焓的直线方位在铋的氧化物自由焓直线方位的下方,故砷、锑优先氧化蒸发。As2O3在500℃时已很多蒸发,Sb2O3在700℃以上时明显蒸发,而铋及铋的氧化物在800℃以上时才开端蒸发。所以,为了使砷、锑氧化蒸发而铋又不蒸发丢失,氧化除砷、锑温度控制在700℃是恰当的。即便有部分铅、铋氧化,只需铋液中还存在砷与锑,也会发生如下复原反响:鼓入之压缩空气中的氧与铋液中砷、锑触摸而将其氧化,生成的砷,锑氧化物又因为压缩空气鼓入时,使铋液激烈翻腾而被带出液面敏捷蒸发逸出。
因为粗铋中很多杂质铅存在,而铅的氧化物的自由焓又比铋的氧化物的自由焓更负,故在氧化精粹后期,过量的氧会使铅氧化成PbO,PbO熔点888℃,呈固态浮渣,捞渣时铋被机械夹藏而丢失,所以应把握好除砷、锑的结尾,以防止产出氧化铅渣。
有的工厂为了别离砷与锑,以求副产低砷的氧化锑烟尘,则选用碱性除砷后再氧化挥锑的工艺。
碱性除砷的机理是依据砷能优先与Na2O结组成盐。其反响为:碱性除砷温度控制在450~500℃之间,参加的NaOH量为铋液中含砷量的3倍,并参加适量NaNO3,鼓入压缩空气,时刻4~6小时。
二、氧化精粹实践
除铜后之铋液,升温至680~750℃,鼓入压缩空气,使砷、锑氧化蒸发,作业时刻依据粗铋中砷、锑含量而定,一般为4~12小时,至白烟淡薄,铋液表面呈现氧化铅渣时,则为除砷、锑的结尾。在操作中如渣掩盖液面时,可酌情捞出,避免影响气体蒸发逸出,渣稀时,可参加少数固体碱或谷壳、木屑,使渣变干,便于捞渣。除砷、锑氧化渣量,约为料重的4%~8%。氧化渣组成列于下表。
表 氧化精粹渣成分(%)
金川:白烟灰中提取有价金属
2018-12-17 14:19:53
近日,金川集团公司镍盐厂经过一年多的探索实验,从公司铜转炉白烟灰中提取铜、锌、铅、铋、铟等有价金属,成功开发出了氧化铋、氧化锌、金属铟、三盐基硫酸铅等产品,为金川发展循环经济、延伸产品链又添写了浓墨重彩的一笔。 建设西部最大综合利用和全球最大镍盐生产厂家,通过项目建设使产品种类由目前的5种增至15种以上;将镍都金川弃渣废液烟尘“吃干榨尽”,是镍盐人在发展循环经济的道路上孜孜奋斗的目标。基于金川铜精矿的来源不同,白烟灰成份复杂,且没有现成的工艺可借鉴。该厂于2006年11月成立了试验组,进行了一系列小型试验,并在实验中不断验证、补充和完善实验工艺流程,初步试验确定了具有自主知识产权的金川白烟灰处理新工艺,通过此工艺获得了四种产品、一种可有效利用的铜溶液。今年在公司大力支持下,该厂又根据小型试验确定的工艺流程,进行了300吨的工业试验,并以工业试验所产海绵铋和铅渣为原料开发出氧化铋和三盐基硫酸铅的实验室试验。 氧化铋产品在核反应堆燃料、压敏电阻、热敏电阻、避雷器、显像管、防火纸、电子陶瓷粉体材料、电解质材料、光电材料、高温超导材料、催化剂、高折光率玻璃和核工程玻璃的制造等领域被广泛应用。金属铟用于液晶和等离子显示器透明电极用ITO靶材及溅射靶材背板钎焊,用于电子工业中焊料、低熔合金、高性能发动机的轴承、低温和真空领域作密封件、可溶阳极和核反应堆控制棒等,每吨500万元,可谓价值连城。.
废旧铅酸电池回收利用方法
2018-12-12 13:51:05
自从19世纪五十年代由法国人发明以来,在汽车等方面得到了广泛应用,鉴于铅的毒害和它体大而易回收,故较早即再生利用。经不断改进和完善后,九十年代初采用的再生工艺技术如下: 解体,将硫酸放出后单独回收,将机壳用破碎机解体,用比重法选出塑料后,再分为极板、板柱、电池槽和盖等。 分类,将除去塑料的含铅部件破碎至(60mm的小块后分为4类:(a)铅粉,占重量的64%,含Pb占总量的约70%;(b)铅泥,占5%,含pb约3%;©小块铅合金,占7%,含Pb约26.5%;(d)铅渣,占14%,含Pb约0.5%。 再生,将(a)和制铅厂的烟尘一并处理,制成含锑1.7%~1.9%的电池用软铅再生利用;将(b)供转炉处理;将©作金属配料;将(d)填埋处理。 目前回收利用率已达90%~95%,主要原因如下: 结构单一,含铅量大易回收;耐蚀性能好,易作为金属再生利用;已建立起完善的回收和再生处理系统;治烟容易,即使混入锑亦可作电池用软铅利用。下一步是稳定提高回收率和改善回收过程中硫酸和铅尘的污染。
各种冶炼电解铅的利弊
2019-03-13 09:04:48
冶炼电解铅的办法有许多,八十年代以来,相继呈现了QSL法、闪速熔炼法、TBRC转炉顶吹法、基夫赛特汉和艾萨熔炼法等新的炼铅办法。1、QSL法QSL法是德国鲁奇公司七十年代开发的直接炼铅新工艺,加拿大、韩国和我国尽管先后购买了此专利建厂,但出产作用不甚抱负;2、闪速熔炼法闪速熔炼法没有完成工业化出产;3、TBRC法TBRC法是瑞典波里顿公司所创,但此法作业为间断性的,且炉衬腐蚀严峻;4、基夫赛特法基夫赛特法由原苏联有色金属研讨院研讨成功,现已有多个供应商完成了工业化出产,是一种各项目标先进、技能老练牢靠的炼铅新工艺,但选用该法单位出资大,只要用于较大出产规模的工厂时,才干充分发挥其效益;5、艾萨熔炼法艾萨炼铅技能根据由上方刺进的赛罗浸没喷将氧气喷射入熔体。发作涡动熔池,让激烈的氧化反响或许复原反响敏捷发作铅企在榜首段时,熔炼炉产出的高铅渣通过流槽送复原炉,氧化脱硫所产的烟气经除尘后送制酸体系。在第二段复原炉中,所产粗铅和弃渣从排放口接连放出,并在传统的前床中别离,所产烟气进行除尘处理后经烟囱排放。
冶炼中ZS-522耐高温自洁不粘覆涂料事半功倍
2019-01-09 09:34:23
冶炼中ZS-522耐高温自洁不粘覆涂料事半功倍,减少高温模具、耐火材料上高温金属、熔渣的粘附。耐高温抗粘付不沾漆防粘效果好,这种涂料要耐高温、耐冲击、硬度高、和高温液体不亲和,抗粘效果好。根据冶金冶炼行业的高温生产实际情况,一些钢水、铁水、铝水、铜液、铅液以及钢渣、铁渣、铝渣、铜渣、铅渣高温下粘附设备和仪器,导致原材料的大量损耗和设备频繁维修维护,给企业人力、财力造成很大的浪费,有时还会导致生产中断,给企业经济上带来的损失不可估量。北京志盛威华化工有限公司针对以上冶金冶炼的实际需求工况,投入大量的涂料科研专家、研发资金,观摩上百次的冶金冶炼粘附实际情况,经历上千次实验,克服重重困难,研发出了ZS-522志盛耐高温自洁不粘覆涂料。志盛威华高温不粘覆涂料选用志盛威华特制高温硅酸盐溶液、磷酸铝溶液,木质黄酸钠溶液、共晶熔融体、纳米石墨鳞片、碳化硅、碳化硼等材料经过纳米超声分散、高温下合成等工序加工而成,耐温高,长期耐温可以达到2000℃,不老化,不变色,涂层硬度高,耐冲击,附着力好,可以涂刷在各种高温冶炼设备表面上防止各种高温溶液、高温焦体粘附,增加设备的使用率和减少设备的维修时间。ZS-522志盛耐高温自洁不粘覆涂料科技含量高,水平处在世界化工研发技术前列。(企业供稿)
再生铅的生产工艺及流程
2018-09-04 11:04:50
随着国民经济的发展,铅的使用量也越来越多,因此,铅废件和废料势必日益增加。再生铅铅锌矿加工生产便是以这些铅废件和废料为原料,生产精铅、铅基合金或铅化合物铅锌矿生产工艺流过程。根据世界金属统计局公布的资料,世界产铅总量的51%用于生产蓄电池,而总铅产量的40%是由再生铅生产获得的,废蓄电池则占再生铅生产原料的90%。除铅蓄电池以外,再生铅原料还有各种废旧铅板,铅皮、铅管、蛇形管、电缆包皮、印刷铅合金、轴承铅合金、弹丸合金、焊料以及各种铅屑、下脚料和铅灰,铅渣等。这些原料来源不一,组成也极为复杂。表2-8-12所列为再生铅原料的典型成分。由于再生铅原料是作为各种各样的废品回收的,物理形态和化学组成相差都很大。而盛在各种铅废件和废料中经常混杂有不同的杂物,因此在熔炼前必须根据原料的不同特点进行预先处理。再生铅原料的炼前处理可包括分类、解体、分癣防爆检验,取样以及细小物料的烧结等。分类就是根据含铅废料的性质及其混杂程度和状态,分门别类储存。解体就是将含铅废料与其他材料和金属解离,并将其整理为合乎规定大小的铅块。如大块的铅皮、铅板、铅管、蛇形管等,应切成规定大小的废料块;废蓄电池的解体有的只将箱体和隔扳与铅料分开,有的则将铅料再分成栅板和填料,然后分别处理。铅废料的分选包括手眩电磁分选,重介质分选和浮选等方法,在原料分类、解体和分选过程中,将炮弹头、信管等爆炸危险物挑选出来,并妥为处理。如果采用鼓风炉熔炼,粉状或细粒含铅废料则需烧结或制团。由于废蓄电池是再生铅较主要的原料,所以其炼前处理也很受关注、从废蓄电池回收铅的整体熔炼,因其熔炼温度高,金属回收率低,渣含铅高,而且产生大量的含铅、二氧化硫和酸雾的烟气,很难处理使其达到排放标准的要求。因此,将废蓄电池解体后冶炼得到了广泛的应用。废铅酸蓄电池主要由金属(铅锑合金和活性铅粉),化合物(硫酸铅、 PbO2 、氧化铅和硫酸)和有机物(橡胶和塑料)三部分组成。解体便是蒋这三部分分开。再生铅熔炼可用坩埚炉、鼓风炉、反射炉、短窑、电炉等火法冶金设备,也可用湿法冶金处理。