您所在的位置:
上海有色 >
有色金属产品库 >
粉体烧结助熔剂
粉体烧结助熔剂
鼓风烧结配料所采用的熔剂
2019-01-07 17:38:01
鼓风烧结配料所采用的熔剂粒度小于6mm。配加的熔剂和数量须根据鼓风炉渣成分(即渣型)计算确定。
一、硅质熔剂 一般用石英石,含SiO290%以上。若用河砂或含金石英石,SiO2含量可适当降低,但不小于75%。
二、铁质熔剂 多用烧渣,含Fe45%以上。也可用铁屑或铁矿石。
三、块状石英石(尤其含金石英石)、铁矿石粒度大于30mm时,也可直接加入鼓风炉。
表1为熔剂的化学成分实例。
表1 熔剂的化学成分实例,%熔剂名称FeCaOSiO2Al2O3MgOPbZnSAuAg石灰石10.5754.330.95 石灰石20.4155.731.340.330.59 石灰石30.353.970.620.230.89 石英石10.191.0891.80.14 石英石20.52.2197.12 石英石31.261.0894.86 河砂12.41.3575.853.04 河砂21.510.687.48 河砂33.02.074~80 0.30.10.1 烧渣147.44.158.2 烧渣243.866.29.31 烧渣347.554.3510.21 平江金精矿38.120.0433.975.62 0.150.195.67133.815.4灵宝精矿14.230.640~60 0.2~1.80.2718~2430~70100~400秦岭精矿16.980.6347.47 5~131.5920.270150浸出渣银精矿8.243.214.241.41 4.8341.124.62.0560铜浸出渣30~40 30~35 0.01 8~10140
注:Au、Ag的单位为g/t。
粉体粒径对陶瓷烧结的致密化有什么影响?
2019-01-03 09:37:07
在2150 ℃烧结温度下,酚醛树脂2.0%+碳化硼2.5%,按配方依次选用A2 : A1(4 : 1)、A2、A3 : A1(4 :1)、A3四种粉体进行试验,平均粒径依次约为0.8 μm、1.0 μm、1.6 μm、2.0μm,研究粉体粒径对碳化硅陶瓷烧结致密化的影响。下面来为大家分析结论。
粗/细混合粉体烧结后SiC陶瓷颗粒结合相比单一粉体烧结而言晶粒细小,结合更加紧密,由于使用的粗、细粉体粒径差别适中,使细颗粒可以较好地填充至粗颗粒之间的孔隙处,故烧结后晶粒大小较为一致,碳和气孔分布较均匀,没有明显的聚集和异常晶粒长大;
使用的粗颗粒相比粒径较大,使细颗粒的填充不够充分,因此可以观察到烧结后存在晶粒结合不够紧密,尺寸大小不一,气孔分布不均等现象,使用单一粉体烧结时,粉体粒径较细的粉体烧结后晶粒交织生长,结合较为紧密,气孔分布较为均匀,而粉体粒径较粗的粉体烧结后存在部分晶粒生长大小不一,气孔分布不均且有增大的趋势。
采用粗/细混合粉体进行烧结的样品抗弯强度和密度均高于使用单一粉体烧结的样品,这一结果与显微结构相吻合。其中进行烧结的SiC陶瓷样品的密度和抗弯强度达到3.11g/cm3和428 Mpa,略大于使用单一粉体进行烧结后样品。
尽管它的力学性能距离单一粉体进行烧结的样品还存在较大的差距,但这依然可以为低成本常压烧结SiC陶瓷提供一个思路,表明若粗/细粉体的颗粒分布优化出合理的比例之后,将极有可能使用部分混合粉体替代全部为细颗粒的粉体实现SiC陶瓷常压致密化烧结。
铝合金熔体的熔剂精炼
2019-01-02 15:29:20
本文介绍了熔剂精炼在铝合金熔体净化过程中的作用,熔剂的分类和要求,常用熔剂的组成,适用范围及使用方法等。
在铝及铝合金熔炼过程中,氢及氧化夹杂是污染铝熔体的主要物质。铝极易与氧生成A1202或次氧化铝(Al2O及A10).同时也极易吸收气体(H)其含量占铝熔体中气体总量的70—90%,而铸造铝合金中的主要缺陷——气孔和夹渣,就是由于残留在合金中的气体和氧化物等固体颗粒造成的。因此,要获得高质量的熔体,不仅要选择正确合理的熔炼工艺,而且熔体的精炼净化处理也是很重要的。
铝及铝合金熔体的精炼净化方法较多,主要有浮游法、熔剂精炼法、熔体过滤法、真空法和联合法。本文介绍熔剂精炼法在铝合金熔炼中的应用。
1 熔剂的作用
盐熔剂广泛地用于原铝和再生铝的生产,以提高熔体质量和金属铝的回收率[1。2]。熔剂的作用有四个:其一,改变铝熔体对氧化物(氧化铝)的润湿性,使铝熔体易于与氧化物(氧化铝)分离,从而使氧化物(氧化铝)大部分进入熔剂中而减少了熔体中的氧化物的含量。其二,熔剂能改变熔体表面氧化膜的状态。这是因为它能使熔体表面上那层坚固致密的氧化膜破碎成为细小颗粒,因而有利于熔体中的氢从氧化膜层的颗粒空隙中透过逸出,进入大气中。其三,熔剂层的存在,能隔绝大气中水蒸气与铝熔体的接触,使氢难以进入铝熔体中,同时能防止熔体氧化烧损。其四,熔剂能吸附铝熔体中的氧化物,使熔体得以净化。总之,熔剂精炼的除去夹杂物作用主要是通过与熔体中的氧化膜及非金属夹杂物发生吸附,溶解和化学作用来实现的。
2 熔剂的分类和选择
2.1熔剂的分类和要求
铝合金熔炼中使用的熔剂种类很多,可分为覆盖剂(防止熔体氧化烧损及吸气的熔剂)和精炼剂(除气、除夹杂物的熔剂)两大类,不同的铝合金所用的覆盖剂和精炼剂不同。但是,铝合金熔炼过程中使用的任何熔剂,必须符合下列条件[3。8]。
①熔点应低于铝合金的熔化温度。
②比重应小于铝合金的比重。
⑧能吸附、溶解熔体中的夹杂物,并能从熔体中将气体排除。
④不应与金属及炉衬起化学作用,如果与金属起作用时,应只能产生不溶于金属的惰性气体,且熔剂应不溶于熔体金属中。
⑤吸湿性要小,蒸发压要低。
⑥不应含有或产生有害杂质及气体。
⑦要有适当的粘度及流动性。
⑧制造方便:价格便宜。
2.2熔剂的成分及熔盐酌作用
铝合金用熔剂一般由碱金属及碱土金属的氯化物及氟化物组成,其主要成分是KCl、NaCl、NaF.CaF,.、Na3A1F6、Na2SiF6等。熔剂的物理、化学性能(熔点、密度、粘度、挥发性、吸湿性以及与氧化物的界面作用等)对精炼效果起决定性作用。
2.2.1。氯盐:氯盐是铝合金熔剂中最常见的基本组元,而45%NaCl+55%KCl的混合盐应用最广。由于它们对固态Al2O3,夹杂物和氧化膜有很强的浸润能力(与Al2O3,的润湿角为20多度)且在熔炼温度下NaCl和KCl的比重只有1。55g/cm3和l。50g/cm3,显著小于铝熔体的比重,故能很好地铺展在铝熔体表面,破碎和吸附熔体表面的氧化膜。但仅含氯盐的熔剂,破碎和吸附过程进行得缓慢,必须进行人工搅拌以加速上述过程的进行。 氯化物的表面张力小,润湿性好,适于作覆盖剂,其中具有分子晶型的氯盐如CCl4
,SiCl4,A1C13,等可单独作为净化剂,而具有离子晶型的氯盐如LiCl、NaCl毛KCl、MgC12:等适于作混合盐熔剂。
2。2.2.氟盐:在氯盐混合物中加入NaF.Na3A1F6、CaF2。等少量氟盐,主要起精炼作用,如吸附、溶解Al2O3,。氟盐还能有效地去除熔体表面的氧化膜,提高除气效果。这是因为:a)氟盐可与铝熔体发生化学反应生成气态的A1F,、SiF4,、BF3,等,它们以机械作用促使氧化膜与铝熔体分离,并将氧化膜挤破,推入熔剂中;
b)在发生上述反应的界面上产生的电流亦使氧化膜受“冲刷”而破碎。因此,氟盐的存在使铝熔体表面的氧化膜的破坏过程显著加速,熔体中的氢就能较方便的逸出;c)氟盐(特别是CaF2:)能增大混合熔盐的表面张力,使已吸附氧化物的熔盐球状化,便于与熔体分离,减少固熔渣夹裹铝而造成的损耗, 而且由于熔剂——熔体表面张力的提高,加速了熔剂吸附夹杂的过程。
3铝合金熔炼中常用熔剂
熔剂精炼法对排出非金属夹杂物有很好的效果,但是清除熔体中非金属夹杂物的净化程度,除与熔剂的物理、化学性能有关外,在很大程度上还取决于精炼工艺条件,如熔剂的用量,熔剂与熔体的接触时间、接触面积、搅拌情况、温度等。
3.1常用熔剂
为精炼铝合金熔体,人们已研制出上百种熔剂,以钠、钾为基的氯化物熔剂应用最广。对含镁量低的铝合金广泛采用以钠钾为基的氯化物精炼剂,含镁量高的铝合金为避免钠脆性则采用不含钠的以光卤石为基的精炼熔剂。
铝合金熔炼过程中常用熔剂的成分及作用如表1(4-7)。
表1 常用熔剂的成分及应用
溶剂种类 组分含量,%
NaCl KCl MgCl2 Na3AlF6 其它成分 适用的合金
覆盖剂 39 50 6。6 CaF2 4。4 Al-Cu系,Al-Cu-Mg
系,Al-Cu-Si系Al-Cu-Mg-Zn系
Na2CO385。CaF15 一般铝合金
50 50 一般铝合金
KCl,MgCl280 CaF220 Al-Mg系Al-Mg-Si系合金
31 14 CaF210 CaCL244 Al-Mg系合金
8 67 CaF210,MgF215 Al-Mg系合金
精炼剂 25-35 40-50 18-26 除Al-Mg系,Al-Mg-Si系以外的其它合金
8 67 MgF215,CaF210 Al-Mg系合金
KCl,MgCl260,CaF240 Al-Mg系Al-Mg--Si系合金
42 46 Bacl26 (2号熔剂) Al-Mg系合金
22 56 22 一般铝合金
50 35 15 一般铝合金
40 50 NaF10 一般铝合金
50 35 5 CaF210 一般铝合金
60 CaF220,NaF20 一般铝合金
36-45 50-55 3-7 CaF 21。5-4 一般铝合金
Na2SiF630-50,C2Cl650-70 一般铝合金
40。5 49。5 KF10 易拉罐合金
从上表中可以看出,有些熔剂组分的含量变化范围较大,可以根据实际情况来确定。首先要根据合金元素的含量来确定[8],因为大多数铝合金中主要元素含量都可在一定范围内变化,其次要根据所除杂质成分及含量来确定。因此,使用厂家除使用熔剂厂生产的熔剂外,最好根据所熔炼铝合金的成分调正熔剂组分比例,以找出最佳熔剂组成。
综合以上各种熔剂不难看出,当要熔制的铝合金成分确定后,熔剂成分的设计首先是主要成分(如氯化物)用量配比的选择,其次是添加组分(如氟化物)的选择。熔剂配好后,最好是经熔炼、冷凝成块、再粉碎后使用,因为机械混合状态的效果不好。
3。2熔剂用量 .
熔炼铝合金废料时,废料质量不同,覆盖剂及精炼剂的用量也不同。
3。2。1.主覆盖剂用量
a)熔炼质量较好的废料,如块状料、管、片时覆盖剂用量(见表2)。表2 覆盖剂种类及用量炉料及制品 覆盖剂用量(占投料量的%) 覆盖剂种类电炉熔炼:一般制品特殊制品 0。4-0。5%0。5-0。6% 普通粉状溶剂普通粉状溶剂煤气炉熔炼:原铝锭废 料 1-2%2-4% KC1:NaC1 按1:1混合KC1:NaC1 按1:1混合
注:对高镁铝合金,应一律用不含钠盐的熔剂进行覆盖,避免和含钠的熔剂接触。
b)熔炼质量较差的废料,如由锯、车、铣等工序下来的碎屑及熔炼扒渣等时,覆盖剂用量(见表3)。
表3: 覆盖剂用量
类 别 用量(占投料量的%)
小碎片碎 屑号外渣子 6-810-1515-20
3.2.2精炼剂用量
不同铝合金、不同制品,精炼剂用量也各不相同(见表4)。
表4 精炼剂用量
合金及制品 熔炼炉 静置炉
高镁合金 2号熔剂5-6kg/t 2号熔剂5-6kg/t
特殊制品除高镁合金 普通熔剂5-6kg/t 普通熔剂6-7kg/t
LT66、LT62、LG1、LG2、LG3、LG4 出炉时用普通熔剂、叠熔剂坝
其它合金 普通熔剂5-6kg/t
注:①在潮湿地区和潮湿季节, 熔剂用量应有所增加
②对大规格的圆锭,其熔剂用量也应适当增加。
3。3熔剂使用方法
熔剂精炼法熔炼铝合金生产中常用以下几种方法
①熔体在浇包内精炼。首先在浇包内放入一包熔剂,然后注入熔体,并充分搅拌,以增加二者的接触面积。
②熔体在感应炉内精炼。熔剂装入感应炉内,借助于感应磁场的搅拌作用使熔剂与熔体充分混合,达到精炼的目的。
③在浇包内或炉中用搅拌机精炼,使熔剂机械弥散于熔体中。
④熔体在磁场搅拌装置中精炼。,该法依靠电磁力的作用,向熔剂——金属界面连续不断地输送熔体,以达到铝熔体与熔剂间的活性接触,熔体旋转速度越高,其精炼效果越好。 ⑤电熔剂精炼。此法是使熔体通过加有电场(在金属——熔剂界面上)的熔剂层,进行连续精炼。
在这五种方法中,电熔剂精炼效果最好。
粉体:石墨术语大全
2019-01-04 15:47:49
石墨素有黑金之称,广泛应用于电子、汽车、医药、航空航天、海洋和核能等领域,是极其重要的的战略性资源。
一、天然石墨
天然石墨是富碳有机物在高温高压的地质环境长期作用下转变而成的,是大自然的恩赐。天然石墨的工艺特性主要决定于它的结晶形态。结晶形态不同的石墨矿物,具有不同的工业价值和用途。
二、人造石墨
广义上,一切通过有机炭化再经过石墨化高温处理得到的石墨材料均可称为人造石墨。而狭义上的人造石墨通常指以杂质含量较低的炭质原料为骨料、煤沥青等为粘结剂,经过配料、混捏、成型、炭化和石墨化等工序制得的块状固体材料,如石墨电极、等静压石墨等。
三、晶质石墨
晶质石墨(鳞片石墨),矿石结晶好,晶体粒径大于1μm,属六方晶系,呈层状结构,具有良好的耐高温、导电、导热、润滑、可塑及耐酸碱等性能。
将鳞片石墨按固定碳含量分为四类:高纯石墨,高碳石墨,中碳石墨,低碳石墨。
高纯石墨:石墨的含碳量≥99.9%。
高碳石墨:94.0≤石墨的含碳量
中碳石墨:80.0≤石墨的含碳量
低碳石墨:50.0≤石墨的含碳量
四、隐晶质石墨
隐晶质石墨(土状石墨、无定形石墨、微晶石墨),晶体粒径大于1μm,只有在电子显微镜下才能观察到其晶型。矿石可选性差,工业应用范围较小。
五、可膨胀石墨
可膨胀石墨(酸化石墨),由天然晶质鳞片石墨,经酸性氧化剂处理后得到的一种石墨层间化合物,亦称为石墨酸、酸化石墨、氧化石墨。
六、膨胀石墨
可膨胀石墨在一定的温度下可以迅速膨胀为膨胀石墨。
七、柔性石墨
膨胀石墨具有良好的可塑性、柔韧延展性和密封性。膨胀石墨可进一步加工制成纸、箔等制品,具有不同于普通石墨的柔韧性,称为柔性石墨。
八、氟化石墨
氟化石墨是层间化合物的一种,它具有两种稳定的化合物形态:一种为聚单氟碳,另一种为聚单氟二碳。
九、胶体石墨
胶体石墨分为水基胶体石墨(锻造石墨乳),油基胶体石墨,硅基胶体石墨等。
水基胶体石墨:由高纯超细石墨粉、水、高温黏结剂、悬浮液、分散剂和涂膜增强剂等组成。其生产分为提纯、超细粉碎、配置、包装等工序。
油基胶体石墨与硅基胶体石墨的生产工艺与水基胶体石墨基本相同。
十、石墨乳
石墨乳是将高纯超细石墨粉加入液体中并呈分散状态。
十一、等静压石墨
等静压石墨是指采用等静压成型方式生产的石墨材料。由于成型过程中通过液体压强均匀不变施压,制得的石墨材料性质优异,具有:成型规格大;坯料组织结构均匀;密度高,强度高;向同性(特性与尺寸、形状、取样方向无关)等优点,因此等静压石墨也称为“各向同性”石墨。
十二、浸硅石墨
目前仅德、美、俄生产。该产品是一种在宽温度区内具有高硬度和高机械强度、耐磨、耐腐蚀、润滑性好的新材料。与碳化硅制品相比,最大的特点是成品率高,价格较低廉。
十三、球形石墨
球形石墨是以优质高碳天然鳞片石墨为原料、采用先进加工工艺对石墨表面进行改性处理,生产的不同细度,形似椭圆球形的石墨产品。
十四、纳米石墨
纳米石墨是采用特殊的生产设备,先进的检测仪器,生产出的高纯、高碳纳米级石墨粉,经润滑、润滑油、拉丝、导电、油墨等行业应用,效果极佳。
粉体的表面能
2019-01-03 09:37:04
粉体的表面能与粉体的结构、原子之间的键型和结合力、表面的原子数、表面官能团等有关。
物料粉碎后产生了新的表面,部分机械能转变为新生表面的表面能。粉体的表面能与以下两点关系很大:(1)表面改性剂和粉体表面的作用。(2)粉体的应用性能。
通常:表面能越高,吸附性越强,越容易团聚,越不易在高聚物中均匀分散。对无机填料进行有机表面改性实际上就是降低其表面能,使其不产生团聚。
CIS系粉体的应用
2019-01-03 09:36:51
CuInSe2(简称CIS)及其衍生物因其低成本、高的光吸收系数(105/cm)和良好的稳定性被认为是最有潜力的薄膜太阳能吸收层材料,近年来逐渐受到研究者的重视。目前CIS系粉体的制备多集中于实验室规模,量产化工艺有待进一步研究和改进。CIS系粉体的应用例举如下。
1 涂覆法制备太阳能电池吸收层
涂覆法是一种很有前景的的CIS系吸收层薄膜低成本制备工艺,该方法先制备出符合原子计量比的前驱物,使用各种涂覆工艺沉积在基板上后在控制气氛下热处理而转变为CIS系薄膜。以CIS系纳米粉末作为涂覆原料可保证薄膜原子计量比接近既定计量比,有利于提高薄膜质量,并且工艺简洁。Ahn等将Cu0.90In0.64Ga0.23Se2.0(15nm)溶于甲醇,使用喷雾的方法沉积到Mo/Glass基板上并在160℃热处理,后经固态源硒化成膜。升高硒源蒸发温度和增加载气流速均有利于形成结晶良好的大尺寸CIGS晶粒,但同时也在Mo和CIGS之间形成MoSe2层。Guo等采用“墨水印刷”的工艺制备CIS系薄膜,将CIS系纳米粉体溶于有机溶剂作为“墨水”,将其直接涂覆于基板上经硒化处理成膜。基于CuInSe2的电池器件达到了3.2%的转换效率;而基于Cu(In1–xGax)(S1–ySey)2的电池器件转换效率为4.76%(有效面积效率5.55%)。
2 纳米晶–聚合物太阳能电池
纳米晶–聚合物太阳能电池又称为混合太阳能电池(Hybrid SolarCell),是将n型半导体纳米晶植入p型掺杂的聚合物而得的新型异质结太阳能电池。该类太阳能电池近年来成为国内外研究的热点。由于CIS系材料的导电类型依赖于自身的缺陷种类,调整其原子计量比就可以得到所期望的导电类型。Arici等[34]将n型CuInSe2纳米颗粒植入p型P3HT聚合物,在ITO玻璃上制得了异质结。当CISe/P3HT质量比为6:1时,其光电响应较好;所制得的器件开路电压最高值为1V,光电流为0.3 ×10–3 A/cm2。Arici等同时研究了基于CuInS2纳米颗粒的异质结,该工作中,作者采用了不同的聚合物体系。
铜基粉体材料种类用途
2018-12-18 10:15:46
据专家介绍,铜基粉体材料包括电解铜粉、低松装密度水雾化铜粉、铜合金粉、氧化铜粉、纳米铜粉和喷涂用抗氧化仿金铜合金粉等六大类。 电解铜粉呈浅玫瑰红树枝状粉末,在潮湿空气中易氧化,能溶于热硫酸或硝酸。广泛应用于金刚石工具,粉末冶金制品,磨擦材料,电碳制品,导电油墨等。 低松装密度水雾化铜粉呈浅玫瑰红不规则粉末。主要应用于金刚石工具、粉末冶金零件、化学催化剂、碳刷、磨擦材料及焊接电极。 铜合金粉包括锡青铜粉和黄铜粉。锡青铜粉:广泛用于粉末冶金含油轴承及金刚石工具。黄铜粉广泛用于轴套材料、金刚石工具等。 氧化铜粉用作油漆及化学试剂,陶瓷、搪瓷的颜料等。 纳米铜粉粒径均匀、球形状、结晶度大、分散性好等。主要用于制造多层陶瓷电容器的终端和内部电极、电子元件的电子浆料等。 喷涂用抗氧化仿金铜合金粉主要用于高档装饰、装潢、加点表面喷涂、摩托车、汽车表面涂装、纺织物印染、陶瓷及工艺美术制作及塑料复合材料制造业等领域。近年来,高档建筑内外墙体、室内装饰均开始使用高品质仿金铜合金粉,同时,受日趋严格的环保要求,化学镀铜和电镀铜行业将逐步被喷涂高品质仿铜合金粉所替代,从而为这种产品应用开辟了十分广阔的市场前景。 .
弹性体中无机粉体填料的选择原则
2019-03-07 11:06:31
填料的挑选应归纳考虑制品的功能、成型工艺和本钱等几方面要素。填料的吸油值、颗粒度巨细和散布、填充量、相对密度、触变性、填料报价等都会影响到填料的挑选。01吸油值
吸油值也称树脂吸附量,表明填充剂对树脂吸收量的-种指数。在实践运用中,大多数填料用吸油值这个目标来大致预測填料对树脂的需求量。颗粒相同的填料,带空地的比不带空地的填料颗粒吸油值要髙,所以油吸附量小的填料在树脂中的用量就可添加。吸油值对挑选填料具有必定的指导意义,它直接影响到模塑料的本钱和加工功能。填料吸油值大,有可能会"吃掉"几倍乃至几十倍于本身报价的树脂,这无形中提髙了物料的本钱。吸油值上升,树脂的黏度随即上升,这会严重影响其对钎维的浸渍,乃至会改动模塑料的流变功能,使其成型工艺功能变差。所以,为进步填料在模塑猜中的含量。所挑选的填料以较低的吸油值为好。为了下降填料对树脂的吸湿性,进步填料的运用量,应该对填料进行表面处理。例如,碳酸钙表面可涂一层脂肪酸、树脂或湿润剂等。
2颗粒度巨细和散布
颗粒是填料的根本单元。填料的颗粒度一般用其经过某号筛网所给定的百分数来分级。如99.8%的颗粒经过127.95网孔数(325目)的网筛,此填料的细度称为325目。与网筛目相对应的也有用微米表明填料细度的,假如构成网筛金属细丝间间隔为44um,那么经过网筛的填料也可称为直径为44um的填料。直径比44um大的粒子不能在网筛中经过,但比44um小的粒子却能经过网筛并混在一同,因而,实践上所运用的填料的粒径巨细是不等的。关于填料颗粒度的要求有两项:一是均匀颗粒度;二是颗粒度散布。—般均匀颗粒度以5um左右为好,最大颗粒度不宜超20um,颗粒表面应润滑。超越20um的颗粒会给制品功能形成不良影响。填料的颗粒巨细与吸油值有必定的联系。颗粒较大、均匀颗粒为8um填料的总表面就较小,吸油值亦较低,易被树脂所滋润,能够有很高的参加量,如碳酸钙、二氧化硅和粗的滑石粉等。较细的填料、均匀颗粒为5um或更小的填料有高表面积和吸油值,对给定填料量的树脂体系的黏度添加大,参加量必定少,如高岭土、细滑石粉、沉积碳酸钙等。颗粒的粒径散布对填料运用也有重要的影响。假如填料颗粒尺度散布较宽,那么较小颗粒能够嵌人中等巨细颗粒中,而中等巨细颗粒又能同样地嵌入较大颗粒中,然后使填料能够摆放得比较严密,这样只需最小量的树脂便可填满颗粒间的空地。在颗粒间充以适量的树脂(不要太多,避免颗粒分隔),在经济上是最划箅的,一起还可取得最佳的力学功能。
3填充量
填充量即指填料的参加量,填料是很廉价的质料,它能够大幅度下降模塑料及其制品的本钱,因而人们常期望尽可能向模塑猜中多加填料,使填料的填充率高些。但填料的不同类型、颗粒度及其分散性等都将影响树脂混合料的流动性,因而影响到各种填料的参加。实践上,填充率与吸油值有着直接的联系,在黏度必定的条件下,值愈小,填充率就愈髙。当然,实践的填充率是有极限的,要到达最大的填充率是不可能的。在考虑填充率时,应根据树脂混合料的黏度和填料的吸油值来决议其用量。关于吸油值高的填料,能够对其表面进行化学处理。填料经处理后能明显下降吸油值,添加参加量。尽管填料经表面处理后添加了本钱,但由于充填量:的上升而使本钱下降更多,所以终究仍是能够节约本钱。
4触变性
触变是一种种物理现象,即当-种物料遭到振动时,其黏度明显下降,而当振动中止时,物料又康复到本来的黏度。触变性灵敏的物料,在模塑压力的效果下会形成整个物料黏度过低,物料丢失大,乃至使树脂与增强材料别离。在填料含量髙时,应发生中等程度的触变性。
5特殊功能
有些填料的参加能够改进模塑料的物理功能。如水合氧化铝能够赋予模塑料自熄性和抗漏电件;硫酸能够改进模塑料的耐腐蚀性;滑石粉能进步模塑料的耐电弧性等。
6填料的调配
在运用进程中还能够将两种或多种填料相混合,扬长避短,以取得比较抱负的效果。这种调配能够是不同品种填料的调配,也能够是以不同品种、细度上的调配或许不同吸油化值的调配等。如碳酸钙有低的油吸附值,但流动性稍差,而瓷土具有杰出的流动性,因而,人们往往把二者混合运用,扬长避短,使幣个体系既有较高的填料含量,又具有杰出的流动性和上色才能。有时也可参加少数油吸附值髙的填料(如石棉、滑石粉等)以改进体系的流动性。填料的品种、颗粒度巨细和用量对制品的缩短率都有较大的影响。在一般情况下,填料用量多,缩短率低。改动填料的品种和用量能够调理模塑料的黏度,操控物料的成型工艺,然后取得满足的模压制品。归纳各种要素,挑选相对密度小、吸油值低、颗粒尺度散布较宽(1-20um)、均匀颗粒尺度大约为5um、水分含量低、无研磨效果(否则在加工进程中会磨损模具)、本钱低的填料。
废铝熔剂
2017-06-06 17:50:04
废铝熔剂的研究在我国目前还是在发展研发阶段,有许多发明和创新都在废铝熔剂上面进行的,主要也是因为废铝回收利用这个工业在我国的发展比较慢,废铝熔剂必定是废铝回收利用的过程中使用的产品之一。接下来让我们简单介绍一下废铝熔剂。从废铝熔渣中回收
金属
的废铝熔剂,特别适用于从铝渣中回收
金属
铝(铝合金),属于
金属
处理或回收技术领域。通常从废铝熔渣中回收铝,工艺过程复杂,条件差,回收率低,本废铝熔剂包括由NaNO3,Na2SiF6和NaCl,KCl的予熔混合物等组成,使用它,可以在各种不同情况下回收铝,方法简单,使用量少,回收率高。从废铝熔渣中回收
金属
铝的废铝熔剂,其中含有Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6])、NaCl和KCl的予熔混合物,其特征在于:(1)主要发热剂是NaNO↓[3](或KNO↓[3]) (2)熔剂中各成份的重量百分比为:NaNO↓[3](或KNO↓[3])"30~60% Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6]"15~30% NaCl,KCl予熔混合物"10~40%。更多关于废铝熔剂的相关信息可以登陆上海
有色
网查询,更多合作伙伴也可以在商机平台中寻找到!
粉体干燥工艺研究与实践
2019-03-06 10:10:51
1现在粉体枯燥体系枯燥工艺现状
一向以来,粉体的枯燥都是沿袭传统的枯燥设备和工艺,经过燃煤炉、燃油炉或许电热炉来发作热量,对预枯燥的粉体进行闪蒸枯燥,整套枯燥设备存在能耗高、本钱高、污染环境等一系列的问题。龙宇钼业有限公司原规划的钼精粉枯燥体系,也是沿袭了传统的粉体枯燥工艺,经过燃煤炉来发作热量,对钼精粉进行枯燥。依照公司现在的出产情况,每枯燥1t钼精粉需求190kg 煤,耗电100kWh,煤报价为900 元/t,电费为0.6 元/kWh,则枯燥1t 钼精粉的本钱为231 元,一起,发作大约83.6kg 的CO2,对环境形成严峻污染。项目建成后环评检验遇到困难,对此公司成立了项目组,进行选型规划处理问题。意图为了能够下降钼精粉枯燥本钱,一起处理因为燃煤带来的环境污染问题,
粉体的枯燥都是沿袭传统的枯燥设备和工艺,经过燃煤炉、燃油炉或许电热炉来发作热量,对预枯燥的粉体进行闪蒸枯燥,整套枯燥设备存在能耗高、本钱高、污染环境等一系列的问题。怎么有用下降枯燥本钱,一起削减污染成了业界遍及重视的问题。工艺道路如下:(1)类枯燥工艺,为闪蒸枯燥工艺,枯燥作用较好,被枯燥物含水量一般在1.5- 3%之间,缺陷是因为引进了过量的空气,废气中带走很多的热能,丢失较大。一起因为被枯燥物料在枯燥时处于欢腾状况,需求配备大功率的鼓风机和引风机。该种枯燥工艺糟蹋热源也糟蹋动力。以每小时枯燥1.5t 物料规划,设备配备与能量损耗、枯燥本钱见表2.
(2)种枯燥工艺蒸汽螺旋枯燥工艺,它消除了a 种工艺的坏处,将闪蒸枯燥工艺改为普通的焙炒工艺,消除了使被枯燥物料的欢腾状况改为一般速度极低的拌和,被枯燥物料在枯燥过程中的速度由每小时几十公里下降到每小时几米,大大下降了物料欢腾动能,从根本上取消了鼓风机。因为选用了蒸汽锅炉作为热源,蒸汽温度遭到锅炉压力的约束,加热功率不及直接枯燥速闪蒸枯燥,因为加热介质温度与被加热物料温度差较低,在200℃以内,枯燥作用差强人意,运转本钱16 元/t。故该种枯燥工艺在市场上只是稍纵即逝,就被筛选了。
2 项目研讨主要内容和办法
依据对传统粉体枯燥工艺设备的分析研讨,以及对本公司的各种出产指标和数据的把握,发现传统的普通焙炒工艺能够使用钼精粉的枯燥中。一起,使用民用电磁炉加热的高效性、快速、节能性,并学习市场上从前呈现的蒸汽螺旋枯燥机的作业原理,对一向沿袭的粉体枯燥工艺进行优化。理论上具有高效节能的枯燥工艺。新工艺道路如下(计划c):计划施行
经查找查询,西安航大炉业也在做相似的研讨,很快树立其合作关系。经过长期的研讨探究,多种计划比较分析,筛选出两种最优的计划进行实验,第一种计划为微波加热枯燥工艺,经实验发现微波加热速度太快,含水物料升温敏捷,被加热物料很快加热到700℃以上,形成钼精粉在炉内分化,发作化学变化,变成了氧化钼。一起形成钼精粉中粘附的火油自燃,经过屡次实验没有获得抱负作用,实验以为微波电磁枯燥工艺不太适用于惯例枯燥,更适合于焙烧工艺。
第二种计划选用中频电磁加热工艺进行实验,很快获得了抱负的枯燥作用,炉温操控从30℃~500℃之间恣意可调,升温时刻从几非常钟至120 分钟之间恣意可调,契合惯例操控习气,此枯燥工艺能够在滤饼含水20%以下时,将其枯燥到3%以下,枯燥作用较为抱负,终究加热温度能够操控在450℃~500℃之间,功率高,且炉内钼精粉不分化,含油气氛不自燃,计划获得成功。样机为1t/h,在龙宇钼业有限公司进行工业实验,经过23天实验,产能达到了1.25t/h 的才能,运转耗费均匀枯燥一吨钼精粉耗电140kWh(见表1),作用非常抱负。经过枯燥工艺的优化,使体系的可靠性大大提高,接连无故障运转超越7 天以上。研讨实践结果表明,对本公司制品车间的钼精粉枯燥工艺和设备进行优化改造,将本来的经过燃煤进行闪蒸枯燥改为电进行中频电磁加热,来对钼精粉进行焙炒,具有电磁炉加热的高效、快速、节能等特性。枯燥作用及功能见表1。新的枯燥工艺燥机结合了焙炒工艺、电磁炉原理,以及蒸汽螺旋枯燥机原理,具有枯燥均匀、枯燥功率高、自动化水平高级特色,经过近半年的实验完善,以完全能够替代传统的钼精粉枯燥工艺。
3 作用点评
对粉体枯燥工艺进行研讨和优化改造,新工艺结合了焙炒、电磁加热、螺旋枯燥等技能,将其使用于钼精粉的枯燥,其功率在50kW~150 kW 内可调;除尘收回作用杰出,收回率不低于99.99%;标准工况条件下,每吨钼精粉电耗为:136kWh/t;每小时可处理1.5t,全天处理量大于24t;一起,在进料钼精矿含水为20%时,枯燥后含水可小于5%, 精矿粒度小于0.074mm,精矿松懈密度为1.1~2.0t/m3。各项参数完全契合钼精粉的枯燥要求,能够很好的替代原有的烧煤闪蒸枯燥体系,满意10000t 选厂的出产需求。在研讨实验中,该种枯燥工艺与传统枯燥工艺比较从配备上本钱、运转本钱都具有优势,功能比照见表2。
4 效益分析4.1 经济效益
关于龙宇钼业有限公司,在将新的粉体枯燥工艺使用于钼精粉枯燥之前,枯燥1t 钼精粉需耗费190kg 煤,100 度电,煤的报价按900 元/t,电费为0.6 元/kWh,则枯燥1t 钼精粉的本钱为:190×900/1000+100×0.6=231 元使用之后,枯燥1t 钼精粉需耗费140 度电,不需求使用煤,枯燥1t 钼精粉的本钱为:140×0.6=84 元。每年选矿公司可出产6200t 钼精粉,前后比照可得,每年能为公司节省出产本钱:(231-84)×6200=911400 元。
4.2 社会效益
该种粉体枯燥工艺使用于钼精粉的枯燥,在国内尚属首例,全国每年钼金属产值超越17 万t,钼精粉产值超越30 万t,在全国钼职业推行后每年可节省本钱4400 万元以上。钼金属在有色金属中归于小金属,若推行到其他金属精矿枯燥,以2007 年全国氧化铝产值超越1000 万t 预算,可节省本钱15亿元。因为该种枯燥工艺枯燥温度在550℃以下恣意可调,其适用范围能够包含粮食枯燥和干果焙炒,推行之后,估计每年可为国家节省上百亿元。
5 定论
粉体枯燥工艺的研讨和实践,探究出了一条新的粉体枯燥工艺,此工艺在钼精粉枯燥中的使用,很好地处理了龙宇钼业有限公司原钼精粉体系存在的一系列问题。一起,新工艺在国内钼职业、整个有色金属职业、以及粮食枯燥等职业都具有很大推行和使用价值,市场前景非常宽广。