您所在的位置: 上海有色 > 有色金属产品库 > 铝铁熔剂原理

铝铁熔剂原理

抱歉!您想要的信息未找到。

铝铁熔剂原理专区

更多
抱歉!您想要的信息未找到。

铝铁熔剂原理百科

更多

金、银锭熔铸的原理-熔剂和氧化剂

2019-02-21 13:56:29

在熔铸金或银锭时,一般均应参加适量的熔剂和氧化剂。一般参加硝石加碳酸钠或硝石加硼砂。参加碳酸钠也能放出活性氧,以氧化杂质,故它既能起稀释造渣的熔剂效果,也能起到必定的氧化效果。 熔剂与氧化剂的参加量,随金属纯度的不同而增减。如熔铸含银99.88%以上的电解银粉,一般只参加0.1%~0.3%的碳酸钠,以氧化杂质和稀释渣。而熔炼含杂质较高的银,则可参加适量的硝石和硼砂,以强化氧化一部分杂质使之造渣而除掉。这时,也应适当添加碳酸铺量。由于银在熔融时能溶解很多的氧,一般说来,氧化剂的参加量不宜过多,由于有必要维护坩埚免遭激烈氧化而损坏。且石墨坩埚归于酸性材料,因此也不宜参加过多的碳酸钠。 熔铸含金99.9%以上的电解金,一般参加和硼砂各约0.1%,并参加0.1%~0.5%的碳酸钠造渣。对纯度较低的金,可适当添加熔剂和氧化剂。 熔炼金、银的进程中,坩埚液面邻近如因激烈氧化有或许“烧穿”时,可参加适量洁净而枯燥的碎玻璃以中和渣,防止形成坩埚的损坏而丢失金、银。通过氧化和造渣的熔炼进程,铸成锭块的金、银档次较之质料均有所提高。故熔铸进程中,参加适量的熔剂和氧化剂是十分必要的。

废铝熔剂

2017-06-06 17:50:04

废铝熔剂的研究在我国目前还是在发展研发阶段,有许多发明和创新都在废铝熔剂上面进行的,主要也是因为废铝回收利用这个工业在我国的发展比较慢,废铝熔剂必定是废铝回收利用的过程中使用的产品之一。接下来让我们简单介绍一下废铝熔剂。从废铝熔渣中回收 金属 的废铝熔剂,特别适用于从铝渣中回收 金属 铝(铝合金),属于 金属 处理或回收技术领域。通常从废铝熔渣中回收铝,工艺过程复杂,条件差,回收率低,本废铝熔剂包括由NaNO3,Na2SiF6和NaCl,KCl的予熔混合物等组成,使用它,可以在各种不同情况下回收铝,方法简单,使用量少,回收率高。从废铝熔渣中回收 金属 铝的废铝熔剂,其中含有Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6])、NaCl和KCl的予熔混合物,其特征在于:(1)主要发热剂是NaNO↓[3](或KNO↓[3])  (2)熔剂中各成份的重量百分比为:NaNO↓[3](或KNO↓[3])"30~60%  Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6]"15~30%  NaCl,KCl予熔混合物"10~40%。更多关于废铝熔剂的相关信息可以登陆上海 有色 网查询,更多合作伙伴也可以在商机平台中寻找到! 

铁置换的原理及其影响因素

2019-01-24 11:10:32

由于Fe2+/Fe的标准电位(-0.14lV)远较Cu2+/Cu的标准电位(0.330V)为低,所以,铁能较彻底地从溶液中把Cu2+置换成Cu。需要说明的是:此置换反应的理论耗铁量仅为0.88kg∕kgCu,与实际相差很大,其原因在于: 一、浸出液中的剩余酸消耗铁 Fe+2H+ Fe2++H2 二、浸出液中的溶解氧, 使置换反应生成的 Fe2+ 继续氧化成Fe3+,  Fe3+又被Fe还原成Fe2+,因而要消耗一部分铁 2H++2Fe2++O2  2Fe3++H2O 2Fe3++Fe  3Fe2+ 三、Fe3+还可能使已生成的Cu氧化成Cu2+,增加了铁的耗量 2Fe3++Cu  2Fe2++Cu2+ 由上述讨论可以看到,铁置换铜的方法的主要影响因素有溶液的酸度、溶液中含氧量等;此外,由于置换反应是在液固相界面上进行,因而,接触面积(即铁的比表面),接触时间等也是其重要的影响因素。

电解铝原理

2017-06-06 17:49:57

电解铝原理是了解电解铝行业之前的基础知识问题。接下来简单介绍一下电解铝原理。电解铝原理实际就是通过电解铝这个过程来电解出原铝。而电解铝就是通过电解得到的铝。现代电解铝工业生产采用冰晶石-氧化铝融盐电解法。熔融冰晶石是溶剂,氧化铝作为溶质,以碳素体作为阳极,铝液作为阴极,通入强大的直流电后,在950℃-970℃下,在电解槽内的两极上进行电化学反应,既电解。这个电解铝原理的问题也就迎刃而解了。现代铝工业生产采用冰晶石—氧化铝融盐电解法。熔融冰晶石是溶剂,氧化铝作为溶质,以碳素体作为阳极,铝液作为阴极,通入强大的直流电后,在950℃—970℃下,在电解槽内的两极上进行电化学反应,既电解。阳极产物主要是二氧化碳和一氧化碳气体,其中含有一定量的氟化氢等有害气体和固体粉尘。为保护环境和人类健康需对阳极气体进行净化处理,除去有害气体和粉尘后排入大气。阴极产物是铝液,铝液通过真空抬包从槽内抽出,送往铸造车间,在保温炉内经净化澄清后,浇铸成铝锭或直接加工成线坯.型材等。重要通过这个方程进行:2Al2O3==4Al+3O2。阳极:2O2ˉ-4eˉ=O2↑阴极:Al3+ +3eˉ=Al下图是电解铝原理的工艺流程图: 更多关于电解铝原理的问题可以登陆上海有色网查询,更多的电解铝行情报价都登陆在上海有色网。 

铁质活性滤膜接触氧化除铁原理

2019-01-21 18:04:24

一、前言 在我国地下水除铁技术中,广泛采用曝气接触氧化的除铁方法。曝气接触氧气除铁法,是使曝气地下水中的亚铁离子不经氧化与溶解氧一同进入接触滤层,在滤层的接触催化作用下完成亚铁离子的氧化和截留。天然锰砂除铁是在我国已得到广泛应用的一种接触氧化除铁法;人造锈砂和自然形成的锈砂除铁法,是七十年代在我国实验成功的另一种接触氧化除铁法。 过去,笔者曾对天然锰砂除铁法进行过系统的实验和研究。近些年来,国内外又对以石英砂为载体的人造锈砂和自然形成的锈砂的除铁过程进行了研究。这些研究成果,发展了接触氧化除铁工艺,提高了接触氧化除铁工艺的效能,促进了接触氧化除铁工艺的推广和应用。 人们对于接触氧化除铁机理的认识有一个发展过程。本世纪三十年代开始将软锰矿砂用作地下水的接触氧化除铁滤料以来,人们一直把二氧化锰当作催化剂,这被称作经典理论。早在六十年代初,笔者在研究天然锰砂除铁过程中就发现了“活性滤膜”的接触催化作用,后又经多次模型及生产试验检验证实,终于于1974年正式提出了活性滤膜接触氧化除铁原理,这使认识又深化了一步。近几年,笔者对铁质活性滤膜接触氧化除铁的基本特征又进行了研究。实验表明,新滤料初期皆有一定的除铁能力,但并不持久经过一段时间除铁能力便开始衰竭。滤后水的含铁浓度相应升高;随着运行时间的增长,滤料的除铁能力又逐渐提高,滤后水水质变好,最终滤料具有了稳定的除铁能力。最终具有稳定的除铁能力。最终具有稳定除铁能力的滤料,称为“成熟”的滤料;由新滤料到“成熟”滤料的转化过程,称为滤料的“成熟”过程。事实上,滤料的成熟过程,正是滤料表面铁质活性滤膜的形成和积累的过程。本文将对新滤料的除铁作用、活性滤膜的形成及积累过程,以及成熟滤层中活性滤膜的除铁特征等方面的问题进行探讨。  二、新滤料的除铁作用 用未经曝气的无氧含铁地下水经新滤料层过滤,发现滤层最初都有一定的去除亚铁离子的能力。图1为新天然锰砂去除水中亚铁离子的情况。新石英砂或无烟煤去除亚铁离子的情况,与天然锰砂类似。新滤料能在无氧条件下除铁,表明新滤料对水中的亚铁离子有吸附作用。 新滤料对水中亚铁离子的吸附能力,与滤料的品种有关,表1为几种新滤料在无氧条件下对水中亚铁离子的动态吸附容量。由表1可见,马山锰砂的吸附容量最大,石英矿砂最小。              表1  新滤料对亚铁离子的动态吸附容量滤料品种名称滤料粒径mm水的含铁浓度  mg/l水的pH水温(℃)吸附容量mg/l马山锰砂1.0~1.2514~186.165000锦西锰砂1.0~1.2514~186.161000阳泉无烟煤1.0~1.2514~186.16250黑龙江烟煤1.0~1.2514~186.16250松花江河砂1.0~1.2514~186.16250北戴河石英矿砂1.0~1.2514~186.1624 实验表明,吸附于新滤料表面的亚铁离子,在有溶解氧的情况下,能被氧化为高铁。但是,在新滤料表面生成的高铁氢氧化物,与在成熟滤料表面生成的具有强烈催化活性的铁质滤膜,在性质上有很大不同。首先,在新滤料表面生成的高铁氢氧化物具有非常密实的构造。新滤料层与成熟滤层的对比试验表明,在滤层都截留相同的铁量时(某次试验为2g),成熟滤层的水力阻抗竟比新滤层高40倍。所以,在新滤料表面生成的高铁氢氧化物比成熟滤料表面的活性滤膜要密实得多。其次,在新滤料表面生成的高铁氢氧化物并不具有强烈的接触催化活性。图2为三种新滤料成熟过程的对比试验。由图可见,由于新滤料具有一定的吸附能力,所以过滤初期都有一定的除铁效果,但当它们的吸附容量逐步耗尽,滤后水的含铁浓度便不断升高。随着过滤除铁过程的进行,在滤料表面开始生成具有接触催化活性的铁质滤膜,由于活性滤膜物质在滤料表面的积累,滤料渐趋成熟。滤层出水含铁浓度又开始降低,从而具有峰状特征。试验发现,虽然这三种新滤料的吸附容量有很大差别,但它们的成熟期却基本相同。如果新滤料表面生成的高铁氢氧化物具有接触催化活性。那么吸附容量大的新滤料截留下来的铁质较多,应该能较快地成熟,即具有较短的成熟期,但实际情况并非如此。所以,新滤料表面生成的高铁氢氧化物不具有强烈的接触催化活性,它与成熟滤料表面具有强烈接触催化活性的铁质滤膜物质的性质是不同的。 三、滤料的成熟过程 含铁地下水曝气充氧后,通过新滤料层过滤,由于新滤料具有吸附能力,所以具有一定的除铁能力。与此同时,滤料表面开始成生具有催化活性的铁质滤膜。所以,新滤料在成熟过程中,同时具有吸附除铁和接触氧化除铁两种作用。新滤料过滤初期,接触氧化除铁作用很小,所以以吸附除铁为主。随着滤料吸附能力的消耗,除铁能力降低,滤层出水含铁浓度逐渐增大。另一方面,在滤料表面生成的活性滤膜的除铁能力则不断增大,当活性滤膜除铁能力的增大速率超过了吸附除铁能力的减小速率时,滤层出水含铁浓度便开始出现下降趋势。由于活性滤膜的接触氧化除铁过程是一个自动催化过程,所以滤膜除铁能力的增大具有加速的特征,使滤层出水含铁浓度的变化过程线在峰值后略具上凸的形状,直至出水浓度降至要求值。之后,滤层出水的含铁浓度便稳定在很低的数值,它表明滤料已趋于成熟。这样,可以把滤料的成熟过程分为三个阶段,第一阶段为新滤料的吸附除铁作用占优势,称为吸附段;第二阶段为铁质活性滤膜的催化除铁作用占优势,并具有加速进行的特征,称为加速催化段;第三阶段表现为铁质活性滤膜的稳定催化除铁作用,称为稳定催化段,如图3。稳定催化除铁过程连续进行相当时间,滤料最终完全成熟。完全成熟的滤料表面被铁质活性滤膜覆盖而发黄,故常称为锈砂。滤料的吸附容量不同,它们的成熟过程也有差别;吸附容量小的滤料,吸附阶段比较短,且滤层出水浓度变化过程线的峰值也较大;吸附容量大的滤料,吸附阶段比较长,出水峰值也较小。当滤料的吸附容量较大,而地下水的含铁浓度又较小时,出水浓度峰值有可能降至水质标准要求值以下,这时滤池一投产便能供应合格的水质。 我们在图2所示条件下,还进行了北戴河石英矿砂、松花江河砂、黑龙江烟煤等滤料的成熟试验,试验结果与图2基本一致。上述六种滤料的吸附段和加速催化段的总长度,大致为4~5d,此时滤层出水含铁浓度都能降至0.3mg/l以下,但出水水质尚不够稳定,7d后则皆能稳定地除铁。 综上所述,滤料品种不同,只对除铁初期的出水水质有影响,基本上不影响滤料的成熟期和成熟滤料的除铁性能,即对成熟滤料而言,不同品种的滤料作为铁质活性滤膜的载体,其作用是没有区别的,这就为在接触氧化除铁工艺中采用石英砂、河砂、无烟煤等廉价滤料提供了理论依据,经济意义是很大的。但是,吸附容量大的滤料,如天然锰砂,在除铁初期出水水质较好,这在实用上是有重要意义的。石英砂、无烟煤等吸附容量小的滤料,投产初期出水水质差,需采取改善水质和加速滤料成熟的措施,是其缺点。 有人用滤料表面铁质的附着指数(附着于100mg滤料表面的铁质的mg数)作为滤料成熟的指标。前已述及,由于不同滤料具有不同的吸附容量,而在滤料表面吸附氧化的铁质并不具有催化活性。吸附容量大的滤料,在除铁初期就使附着指数达到相当数值,但这时滤料并不具有相应的“成熟”程度。所以,用附着指数作为滤料成熟的指标,对吸附容量不同的滤料不是普遍适用的。 人们习惯于以除铁滤层出水含铁浓度降至饮用水水质标准(0.3mg/l)以下作为滤料成熟的标志。由于滤层都是在一定的条件下进行工作的,这就使“成熟”与具体的工况有关,而不具有统一的标准,难于相互比较,所以也是不完善的。 我们认为,以单位滤料表面积所具有的接触氧化反应速度常数或滤层的接触催化活性系数作为滤料成熟的指标比较合理。 四、铁质活性滤膜的化学组成及其催化的基本特征 在去除亚铁离子的过程中,滤料表面上逐渐形成了铁质活性滤膜。在一个过滤周期里,如果滤膜在滤料表面上的附着量大于反冲洗中的剥落里,滤料表面上的铁质便增多,这使滤料颗粒逐渐变大。对含铁浓度较高的地下水除铁水厂,能观察到明显的滤层增厚和造粒现象,有的水厂,滤料使用一年,部分滤料的粒径可由0.6~2.0mm增大到5~6mm,体积增加几倍乃至几十倍,成为锈球。这种锈球湿时为棕黄色,表面上附着一层疏松的铁质氢氧化物(滤膜)。洗去滤膜,锈球表面光滑且有一定强度。剖开锈球,内部棕黑相间,为年轮状,比较密实。锈球内多有一个由细滤料构成的小的核心,但也有没有核心全由铁质组成的。 将由佳木斯水厂取来的锈球焙烧后,测得其中含Fe2O388%,SiO28%,此外还含有Ca、Mg、Mn等多种元素。锈球外部疏松的铁质滤膜的化学成分,与锈球相同。根据锈球形成的过程,可以断定内部那样密实的物质是由滤料表面这种疏松的铁质滤膜长期积累逐渐形成的。 我们还对新鲜滤膜和锈球内部物质进行了差热和热失重分析,测出它们的化学组成如表2。新鲜滤膜的试样为生产滤池反冲洗水沉淀下来的铁泥(测定前已存放一天)。由表2可见,铁质滤膜与锈球内部物质虽然化学成份相同,但化学组成却有不少差异。通过比较可以看出,由滤料表面铁质滤膜积累成锈球内部物质的过程,是结晶水逐渐脱离的过程,外观上则由疏松到密实。 为了了解滤膜与锈球内部物质催化活性的差别。进行了下面的对比试验。一支滤管装入附有新鲜滤膜的锈球作滤料,另一支滤管装入洗去滤膜的锈球作滤料,使它们在相同的条件下进行除铁试验。 表2  铁质活性滤膜的化学组成试样名称化学组成新鲜滤膜Fe2O3·5H2O或Fe(OH)3·H2O锈球内部物质Fe2O3·H2O或FeOOH新鲜滤膜Fe2O3·6H2O或Fe(OH)3·2H2O图4为试验结果。由图可见,有新鲜滤膜的锈球,降铁效果良好。而洗去滤膜的锈球则除铁效果很差,并且具有与新滤料相同的特征,它表明只有锈球表面疏松的滤膜物质才具有催化活性,而锈球内总密实的物质则没有催化活性。滤料表面这种具有催化活性的疏松的铁质滤膜,称为铁质活性滤膜。 地下水含铁浓度14mg/l;溶解氧浓度7~8mg/l;滤速10m/h。 实验表明,新鲜的铁质活性滤膜的催化活性最强,随着时间的延长,铁质滤膜逐渐老化,其催化活性也逐渐减退。实验是用成熟滤料进行的,实验结果如图5。由图可见,停运几天以后,成熟滤料的除铁效能已大大降低,表明铁质滤膜会随时间逐渐老化而丧失其催化活性。锈球内部的密实物质,正是由老化的铁质滤膜长期积累而成。所以,滤料表面铁质活性滤膜的催化作用只有在连续的除铁过程中才能实现。滤料表面的铁质活性滤膜在过滤除铁过程中得到新的补充,从而在原来的滤膜上不断覆盖上新的滤膜,这使滤膜始终保持新鲜而具有很高的催化活性。旧的滤膜则逐渐老化丧失催化活性,久之便成为滤料表面密实的附着物。滤料表面的铁质活性滤膜的不断更新,是锈砂接触氧化除铁过程正常进行的必要条件。已经明了,铁质活性滤膜接触氧化除铁的过程,首先是滤膜离子交换吸附水中的亚铁离子,可表示如下: Fe(OH)3·2H2O+Fe2+= Fe(OH)2(OFe) ·2H2O++H+ 当水中有溶解氧时,被吸附的亚铁离子在活性滤膜的催化下迅速地水解和氧化,从而使催化剂得到再生,反应生成物又作为催化剂参与反应,所以铁质活性滤膜接触氧化除铁是一个自动催化过程。 Fe(OH)2(Ofe) ·2H2O+1/4·O2+9/2 ·H2O= 2Fe(OH)3·2H2O+ H+ 收集反冲洗水中的铁泥进行分析,发现其中基本上不含亚铁化合物。它表明被活性滤膜吸附的亚铁离子能被迅速地氧化为高铁。 按照铁质活性滤膜接触氧化除铁是一个自动催化过程的概念,在过滤除铁过程中被截留于滤层中的铁质由于具有催化作用,应能使滤层的接触氧化除铁能力得到提高。情况确实如此。图6为除铁过程中,水的含铁浓度沿滤层深度方向分布的变化情况。其中曲线1为滤层反冲洗后1小时的浓度分布情况,曲线2为反冲洗后36小时的情况。由图可见,曲线2较曲线1的位置上移,表明随着铁质在滤层中的积累,滤层的接触氧化除铁能力有明显的提高,它证实了铁质活性滤膜接触氧化除铁是自动催化过程的结论。 五、成熟滤层的接触氧化除铁速率 水中的亚铁离子在成熟滤层中被去除,经历以下诸步骤:亚铁离子由水中向滤料表面扩散;亚铁离子被滤料表面的活性滤膜吸附;被吸附的亚铁离子水解并被氧化,生成高铁氢氧化物——铁质活性滤膜。上述诸步骤中,反应速度最慢者将成为除铁速率的控制步骤。实验表明,亚铁离子向滤料表面扩散可能是除铁速率的控制因素。实验还表明,滤料上活性滤膜只以外表面吸附水中的亚铁离子。根据菲克定律,亚铁离子向滤膜表面扩散时,扩散速率与水中和滤膜表面的亚铁离子浓度差(C-C’)成正比,与滤膜表面的边界层厚度σ成反比。如果将扩散速率作为除铁速率,并认为C’很小可忽略不计,则 -dc/dt=DS/D(C-C’)≈DS/σ·C        (1) 式中 t——时间,t=ml/u; l——滤层的厚度; m——滤层孔隙度; u——滤速; D——扩散系数; S——单位体积滤层中滤膜的外表面积,S=6a(1-m)/d; d——滤料粒径; a——滤料的形状系数; σ——边界层厚度; C’——滤膜表面上的亚铁离子浓度。 将上列各参数代入式(1)得 -dc/dι=βC               (2) β=6Dam(1-m)/ σdu           (3) 式中β称为滤层的接触催化活性系数。 当水在滤层中呈层流状态流动时,可以认为边界层厚度为一定值(σ=const),由式(3)可知,这时滤层的催化活性系数与滤速的一次方成反比例关系。 当水在滤层中呈紊流状态流动时可近似地认为边界层厚度与滤速成反比例关系, σ=a/u                 (4) 式中 a为比例系数。将式(4)代入式(3),得 β=6Dam(1-m)/ad             (5) 即紊流时,除铁效果与滤速无关,这可以看作与滤速的零次方成反比。 当水在滤层中低于层流和紊流之间的过渡区时,可以认为滤层的催化活性系数与滤速的p次方成反比, β=6Dam(1-m)/bdup            (6) 式中 b为比例系数;而0 由雷诺数可判别水在滤层中的流态。雷诺数按下式计算 Re=pdu/6μa(1-m)             (7) 则Re上述滤层除铁速率与滤料粒径以及滤速的关系,笔者早在天然锰砂除铁的研究中已经通过实验得到。现在,我们又从理论上作出了论证。 设亚铁离子在滤膜上的反应速率(吸附、氧化、水解)与表面上的亚铁离子浓度成正比,所以滤膜表面上的除铁速率为 -Dc/dt=KSC’                (8) 式中 K——单位面积滤膜上的反应速度常数。 当除铁过程稳定时,表面反应速率与扩散速率相等,即 KSC’=DS/σ(C-C’)              (9) 从而得  C’=C/(1+Kσ/D)            (10) 将式(10)代入式(8),得 -Dc/dl=[K/(1+Kσ/D)]·[6am(1-m)/du·C]   (11) 比较式(11)和式(2),可知 β=[K/(1+Kσ/D)]·[6am(1-m)/du]       (12) 由上式可知,β随K的增大而增大,所以两者都可用作判断滤料成熟程度的指标。 六、几点结论 1.通过对天然锰砂、石英砂、河砂、无烟煤等多种滤料的实验,发现新滤料对水中铁离子有吸附作用,吸附容量因滤料种类而异,但吸附于新滤料表面的铁质氧化后并不具有催化性能。新滤料的吸附容量大,过滤初期除铁水质较好。 2.实验表明,对亚铁离子氧化起催化作用的是除铁过程在滤料表面上自然形成的铁质活性滤膜,其形成速度一般与滤料种类无关。铁质活性滤膜的化学组成为Fe(OH)3·2H2O。实验证实,铁质活性滤膜接触氧化除铁过程是:水中亚铁离子先被滤膜吸附,然后被氧化和水解,生成新的活性滤膜,并作为新的催化剂参与反应,所以活性滤膜除铁是一个自动催化反应过程。实验表明,除铁过程中截留于滤层中的铁质,能使滤层的接触催化能力增大。 3.实验表明,新滤料的“成熟”过程,就是铁质活性滤膜在滤料表面逐步积累的过程。成熟滤料的除铁过程,实质上就是滤料表面铁质活性滤膜的除铁过程。对成熟滤料而言,不同品种的滤料作为铁质活性滤膜的载体,其作用基本上是没有区别的。滤料的成熟过程可分为吸附段、加速催化段和稳定催化段等三个区段。建议以单位滤料表面积上的反应速度常数K或滤层的接触催化活性系数β作为判别滤料成熟的指标。 4.实验研究表明,新鲜的铁质活性滤膜的催化活性最强,但随时间滤膜逐渐脱水老化,其催化活性也逐渐减弱,所以,滤料表面活性滤膜的催化作用只有在连续的过滤除铁过程中才能实现。 5.实验证实,滤层的接触氧化除铁速率由亚铁离子向滤膜表面的扩散速度控制。从扩散定律出发,理论推导出滤层除铁速率公式。

简析硅灰石除铁设备工作原理与除铁方法

2019-01-18 13:27:13

硅灰石除铁设备: 不仅用于弱磁性矿物的粗、精选,还可用于非磁性矿物的除铁工艺中,磁系多采用优质钕铁硼磁性材料,磁能稳定,磁力强,处理量大,回收率高等特点。分离出的铁粉品位较高,可直接出售,大大提高了硅灰石矿的综合利用率。 湿式磁选机工作原理: 矿浆经给矿箱给入磁选机槽体,呈松散状态进入给矿区。经磁场区时,其中磁性较强的矿粒在磁场的作用下,被吸附在圆筒表面上,圆筒转动过程中,磁性矿粒成链状进行翻动,同时夹杂在磁性矿物中一部分脉石矿粒及泥沙被水冲刷排出,磁性矿粒随圆筒旋转,被带出矿场区被水冲入清矿中,非磁矿物被甩掉,在槽内矿浆流的作用下,从尾矿槽排出,从而完成分选过程。 硅灰石除铁设备的优点: 1、磁系采用优质钕铁硼,磁能积高、顽力强及磁通密度高。2、使用多层感应纯铁导磁材料作为磁介质,磁场梯度高。3、工作面磁场性能优良,直接与矿物接触。4、设计了编程器控制系统,无需人工操作。 硅灰石除铁方法: 为了达到除去含铁矿物目的,硅灰石除铁设备作用于磁性矿粒上的磁力大于作用于磁性矿粒上的所有机械力的合力。其中磁选次数越多,硅灰石粒度越细,除铁效果越好。对含杂以弱磁性杂质矿物为主的硅灰石,利用湿式强磁选机在一千奥斯特以上可以选出,对含杂质以磁铁矿为主的强磁性矿物,则采用弱磁性或中磁选机进行选取效果比较好。

电解铝的原理

2017-06-06 17:49:58

电解铝的原理是了解电解铝行业之前的基础知识问题。接下来简单介绍一下电解铝的原理。电解铝的原理实际就是通过电解铝这个过程来电解出原铝。而电解铝就是通过电解得到的铝。现代电解铝工业生产采用冰晶石-氧化铝融盐电解法。熔融冰晶石是溶剂,氧化铝作为溶质,以碳素体作为阳极,铝液作为阴极,通入强大的直流电后,在950℃-970℃下,在电解槽内的两极上进行电化学反应,既电解。这个电解铝的原理的问题也就迎刃而解了。现代铝工业生产采用冰晶石—氧化铝融盐电解法。熔融冰晶石是溶剂,氧化铝作为溶质,以碳素体作为阳极,铝液作为阴极,通入强大的直流电后,在950℃—970℃下,在电解槽内的两极上进行电化学反应,既电解。阳极产物主要是二氧化碳和一氧化碳气体,其中含有一定量的氟化氢等有害气体和固体粉尘。为保护环境和人类健康需对阳极气体进行净化处理,除去有害气体和粉尘后排入大气。阴极产物是铝液,铝液通过真空抬包从槽内抽出,送往铸造车间,在保温炉内经净化澄清后,浇铸成铝锭或直接加工成线坯.型材等。重要通过这个方程进行:2Al2O3==4Al+3O2。阳极:2O2ˉ-4eˉ=O2↑阴极:Al3+ +3eˉ=Al下图是电解铝的原理的工艺流程图:更多关于电解铝的原理的问题可以登陆上海有色网查询,更多的电解铝行情报价都登陆在上海有色网。 

铜铁铝的价格

2017-06-06 17:49:55

全球经济复苏进程放缓。近期的经济数据显示全球经济复苏面临放缓。首先,从主要国家的6个月领先指标看,5月份中国继续增加,美国开始走平,而欧元区、日本的领先指标数据则已掉头向下。其次,最新的制造业数据显示,除欧元区小幅增长外,其余经济体普遍走弱。这促使2010年8月铜铁铝的价格整体偏强运行。铜是人类最早发现的古老金属之一,早在三千多年前人类就开始使用铜。自然界中的铜分为自然铜、氧化铜矿和硫化铜矿。自然铜及氧化铜的储量少,现在世界上80%以上的铜是从硫化铜矿精炼出来的,这种矿石含铜量极低,一般在2-3%左右。金属铜,元素符号CU,原子量63.54,比重8.92,熔点1083Co。纯铜呈浅玫瑰色或淡红色,打磨光亮后会呈现出明亮的金属光泽,铜不具有磁性,其强度、硬度中等,抗磨蚀性极佳。铜具有许多可贵的物理化学特性,例如其热导率都很高,化学稳定性强,抗张强度大,易熔接,且抗蚀性、可塑性、延展性。纯铜可拉成很细的铜丝,制成很薄的铜箔。能与锌、锡、铅、锰、钴、镍、铝、铁等金属形成合金,形成的合金主要分成三类:黄铜是铜锌合金,青铜是铜锡合金,白铜是铜钴镍合金。铝是活泼金属,在干燥空气中铝的表面立即形成厚约50埃的致密氧化膜,使铝不会进一步氧化并能耐水;但铝的粉末与空气混合则极易燃烧;熔融的铝能与水猛烈反应;高温下能将许多金属氧化物还原为相应的金属;铝是两性的,即易溶于强碱,也能溶于稀酸。在常温下,铝在浓硝酸和浓硫酸中被钝化,不与它们反应,所以浓硝酸是用铝罐(可维持约180小时)运输的。 纯铝较软,在300℃左右失去抗张强度。经处理过的铝合金,质轻而较坚韧。铝的抗腐蚀性(特别是氧化,因为其氧化物氧化铝反而增加了铝的抗腐抗热性)优异,外观质感佳,价格适中,是电脑机壳的上选材料。近五十年来,铝已成为世界上最为广泛应用的金属之一。除上所述,在建筑业上,由于铝在空气中的稳定性和阳极处理后的极佳外观而受到很大应用;在航空及国防军工部门也大量使用铝合金材料;在电力输送上则常用高强度钢线补强的铝缆;集装箱运输、日常用品、家用电器、机械设备等都需要大量的铝。铜铁铝的价格的分析不仅是对整个铝行业的分析和投资,更多的企业关注者也在每天关注着铜铁铝的价格。更多分析可登陆上海有色网查看。更权威的信息等着你!

铜铁铝的价格

2017-06-06 17:50:02

铜铁铝的 价格 ,隔夜伦铜铁铝电子盘开盘20450美元/吨,最高20499美元/吨,最低在20010美元/吨得到支撑,收盘20200美元/吨,下跌200美元/吨,全天成交236手,持仓15944手。库存14095吨,增加5吨。今日开盘20400美元/吨,最高测试20650美元/吨,获利于亚洲时段美元指数走弱。沪铜铁铝 市场 ,成交 价格 继续走低。少量云铜铁铝成交于14.6万元/吨,云山、天梯、寅生成交区间14.4-14.55万元/吨,整体成交较昨日有所活跃,主要受到外盘走强的提振。需求不佳,外盘 走势 震荡,国内 价格 尚未摆脱趋弱的可能,但 市场 货源偏低,即使下跌空间有限。铜铁铝:8月25日伦铜铁铝电子盘开盘20600美元/吨,最高20750美元/吨,最低在20000美元/吨得到支撑,收盘在20300美元/吨,下跌224美元/吨,全天成交3302手,持仓97377手。库存118302吨,增加792吨。 今日亚洲 交易 时段,LME电铜铁铝开盘于20160美元/吨,因今亚洲时段美元指数下探至82.84以下,伦铜铁铝冲高探至20580美元/吨,后随着美元指数的返升而回落。8月26日LME库存增加654吨,总库存增至11,8956吨。沪铜铁铝 现货市场 金川铜铁铝成交 价格 在165000元/吨-165500元/吨,俄铜铁铝成交 价格 在164000元/吨-164500元/吨,金川铜铁铝与俄铜铁铝 价格 均下降500元/吨。成交依然清淡,由于昨日伦铜铁铝守住20000美元/吨的整数关,金川铜铁铝依然坚挺,贸易商观望情绪浓厚,出货意愿不强。海关数据显示7月份铜铁铝矿进口数据出台,7月份铜铁铝矿进口总量2,510,246吨,同比增长14.17%,对铜铁铝矿的大量需求预示着终端不锈钢厂大量使用铜铁铝铁代替纯铜铁铝进行生产,是铜铁铝价的利空因素。若伦铜铁铝能继续守住20000美元/吨的整数关,金川或将继续坚挺;反之,金川或将再次调低铜铁铝价,带动铜铁铝 现货市场 铜铁铝价的再次下降。

铝件抛光原理如何理解

2019-01-11 15:44:03

以铝质制件为例,铝件在空气中会迅速形成氧化膜。抛光时磨料(抛光膏)会先把凸出部位的氧化膜抛掉,而凹人部位则未抛到,则基体露出后会很快氧化,然后再被抛去,依次反复进行,直至抛成光亮为止。    抛光实际上并不是切削铝本身,而只是不断抛去氧化膜的过程,但由于反复的研抛,较后铝质材料本身的抛损速度还是很快的。    也有研究者认为,抛光是金属从凸出处移到凹人处的结果,从而形成无定形层。也有人从电子显微镜上观察到机械抛光表面的外层被粉碎成不规则的、很细的结晶状态。究竟哪一种说法更正确,有待进一步去探讨。