您所在的位置: 上海有色 > 有色金属产品库 > 铜管挤压模具 > 铜管挤压模具百科

铜管挤压模具百科

挤压工模具的翻新

2018-12-28 09:57:22

为了节约贵重的工模具资料,削减加工工时,进步工模具的运用寿命,降低生产成本,除了修正东西和模具以外,某些已失效或作废的工模具可“废物利用”,某些过期的工模具可“旧件复生”。当前工厂里常用的办法有:   (1)大件改小。如将大标准的实心揉捏轴、穿孔针、揉捏垫片等改成小标准运用。   (2)小件改大。如将小标准的揉捏筒作业内套、空心垫片、棒材和管材模孔等改成大标准运用。   (3)补接、补焊。首要用于长形件的拼接。   (4)部分替换。如替换揉捏筒的某一层套;替换组合模中的上模或下模等。   (5)从头热处理和从头下料加工。将已废的大型东西(如大型揉捏轴、揉捏针等)从头退火。锯切成模子、揉捏垫片、模支承、小型揉捏轴、揉捏针或揉捏筒内套等工模具坯料,然后,按常规技术加工成合格的工模具运用。   ?

怎样修好铝型材挤压模具

2018-12-19 17:40:03

怎样修好模具?概括来讲就是:正确的分析和判断、合理调整金属的流速。  挤压模具修正的主要工作是:采用调整金属流量分配比例(如:分流孔或导流槽的大小调整,电蚀引流槽的深浅调整等)、调整接触摩擦系数、阻碍拦截等方法(如:拦基阻碍等)以及调整模孔工作带的长短等各种方法来改变金属流出模孔的速度,从而使金属均匀地流出模孔,生产出合格的挤压产品。因此修模人员必须熟练地掌握有关的检查技术,才能正确地分析和判断制品缺陷产生的原因,从而进行有效的模具修正。  金属供给量的分配比例,主要是由模具设计师和制造来确定的。当模具制造出来之后,金属的分配比例就基本固定了。设计人员必须力求合理分配。如果分配不合理,导致型材各部分流速不均匀,给修模带来一定困难,严重时甚至无法修模。就多数模具而言,虽然金属分配量已经确定,但金属与模具之间的摩擦阻力是可以改变的。从而达到调整金属流速的目的。金属与模具之间的摩擦力由三个部分组成:金属与模面的接触摩擦力、模孔工作带之间的接触摩擦力、金属与金属之间相对运动的摩擦力。改善金属与模面的摩擦条件,能够起到调整金属流动速度的作用。改变金属的分配量、摩擦条件、工作带的长度和挤压速度均可调整金属流出模孔的速度。模具修正主要侧重调整金属分配比例,接触摩擦条件及模孔工作带长度等各种行之有效的方法来改变金属的流动特性,使金属均匀地流出模孔,生产出合格的型材制品。为克服金属流动不均而产生的缺陷,必须研究如何使型材断面上各部分的金属流出速度一致,这是模具设计应遵循的原则,也是修模人员所遵循的基本原则。虽然影响金属流出模孔速度的因素很多,但可归纳为两个基本因素:a.供给型材断面各部分的金属分配流量是否合适。即型材各部分断面积之比与相应供给部分的金属流量之比是否相等;b.金属流动时,所受摩擦阻力的大小,当供给型材某一部分的金属量越多,摩擦阻力越小时,型材这一部分模孔的流出速度就越快,反之就越慢。

挤压模具原因造成的挤压大帽

2018-12-25 14:53:30

挤压模具原因造生的大帽一般是模面不平导致剪切不净,铝逐步向外粘连后造成的,以下是几个挤压模具的原因可能导致挤压大帽:   1、挤压模具端面不平或有缺损口使锁紧面有缝隙,铝窜流。模具缺损口要及时补焊,模面一定要铣平。   2、进料腔外接圆太大(模距过短),模筒锁紧面积就小------进料腔外接圆同筒壁距离正常留单边10mm 极限不少于5mm,挤压比过高的模具不要简单地只用扩大分流腔的办法来卸压。用这样的挤压模具生产时上下左右中心一定要对齐,防止模距再出现偏差。   3、挤压模具没有铣水口,模具闭合面太大,单位面积受压值偏小---小于出口压力,模面跑铝粘铝后剪切不净,造成模面不平。此种大帽很难做干净。注意筒面要适当涂油不再粘铝,模面的铝是可多次剪切掉的,在模面上筒的压痕处可涂油,使模面跑铝不粘模具,剪切切除。做到偶有小飞边就算成功。   4、挤压模具水口尺寸小于筒工作面尺寸,筒模闭合面积就小,也易损筒工作面。注意小机模具改装到大机台时模具水口直径同大筒工作面直径的大小。   5、挤压模具厚度不够,挤压筒受力在模套上了。模具和模套厚度要符合前3后1原则,即模具导流面要突出模套1mm。------模套永远不直接受挤压力的,否则,模套易损易变形。   6、模套和模具配合间隙过大,间隙内粘铝导致剪切不净而使模面不平。这种情况一般常见于从小机台改装过来的模具。   7、挤压比过高,出口阻力大于挤压力,锁紧面不平,铝从锁紧面流出。此种情况多数会发生闷车现象,可适当提高棒温和模温,筒温。必要时可对模套甚至垫片作加温处理后再上机生产,同时,可适当减短棒长,减少定尺。铝棒过短时可冲压生产而不要一味增加棒温,棒温高也易出帽,也限制了速度的提升。

如何修好铝型材挤压模具

2018-12-20 09:35:33

铝型材挤压模具修正的主要内容包括:调整金属流量分配比例(如:模具分流孔或导流槽的大小调整,电蚀引流槽的深浅调整等)、调整接触摩擦系数、阻碍拦截等方法(如:拦基阻碍等)以及调整模孔工作带的长短等各种方法来改变金属流出模孔的速度,从而使金属均匀地流出模孔,生产出合格的挤压产品。因此修模人员必须熟练地掌握有关的检查技术,才能正确地分析和判断制品缺陷产生的原因,从而进行有效的模具修正。  金属供给量的分配比例,主要是由模具设计师和制造来确定的。当模具制造出来之后,金属的分配比例就基本固定了。设计人员必须力求合理分配。如果分配不合理,导致型材各部分流速不均匀,给修模带来一定困难,严重时甚至无法修模。就多数模具而言,虽然金属分配量已经确定,但金属与模具之间的摩擦阻力是可以改变的,从而达到调整金属流速的目的。金属与模具之间的摩擦力由三个部分组成:金属与模面的接触摩擦力、模孔工作带之间的接触摩擦力、金属与金属之间相对运动的摩擦力。改善金属与模面的摩擦条件,能够起到调整金属流动速度的作用。改变金属的分配量、摩擦条件、工作带的长度和挤压速度均可调整金属流出模孔的速度。模具修正主要侧重调整金属分配比例,接触摩擦条件及模孔工作带长度等各种行之有效的方法来改变金属的流动特性,使金属均匀地流出模孔,生产出合格的型材制品。为克服金属流动不均而产生的缺陷,必须研究如何使型材断面上各部分的金属流出速度一致,这是模具设计应遵循的原则,也是修模人员所遵循的基本原则。虽然影响金属流出模孔速度的因素很多,但可归纳为两个基本因素:  a.供给型材断面各部分的金属分配流量是否合适。即型材各部分断面积之比与相应供给部分的金属流量之比是否相等;  b.金属流动时,所受摩擦阻力的大小,当供给型材某一部分的金属量越多,摩擦阻力越小时,型材这一部分模孔的流出速度就越快,反之就越慢。  如何修好铝型材挤压模具,总结来讲就是:正确的分析和判断、合理调整金属的流速。

铝型材挤压模具的性能要求

2018-12-27 16:25:57

A、硬度和红硬性(热稳定性):硬度是模具的重要指标。模具在工作中承受应力的作用下,保持形状和尺寸不会迅速发生变化。红硬性是指模具在受热或高温下工作,能保持组织和性能的稳定,具有抗软化的能力。   B、耐磨性:模具在工作中要承受相当大的压应力和摩擦力,要求模具仍能保持其形状尺寸不变,持久耐用。   C、强度和韧性:模具在工作中承受负荷以及冲击、震动等复杂应力。要求模具应具有足够高的强度和一定的韧性。强度太高,模具易开裂;强度太低,模具容易塌陷。因此,要求强度和韧性有一个最佳配合,否则,会造成模具的早期失效。   D、还要考虑模具的高温强度、热疲劳、导热性及耐磨性。

铝型材挤压模具设计

2019-01-11 10:52:02

模具,是以特定的结构形式通过一定方式使材料成型的一种工业产品,同时也是能成批生产出具有一定形状和尺寸要求的工业产品零部件的一种生产工具。大到飞机、汽车,小到茶杯、钉子,几乎所有的工业产品都必须依靠模具成型。用模具生产制件所具备的高精度、高一致性、高生产率是任何其它加工方法所不能比拟的。模具在很大程度上决定着产品的质量、效益和新产品开发能力。所以模具又有“工业之母”的荣誉称号。    铝型材是采用铝及铝合金为主要原料加工制造而成的生活用品、工业用品的统称。而铝型材应用又比较广泛,旧有建筑改造需求较大,目前中国存量住房中约有40%建造于1990年代以前,随着国内经济的发展和人民生活水平的提高,对住房的改善性需求逐步增加,带动建筑更新、改造,从而促进对建筑铝型材的大量需求。欧洲、北美和日本的铝型材消费结构中,工业耗用比例分别为60%、55%和40%左右,高于我国目前32%左右的耗用比例,消费结构差异较大,预示着我国工业铝型材消费具有较大的增长空间。铝型材在工业领域主要应用于交通运输业(包括汽车制造业、轨道交通业)、装备和机械设备制造业、耐用消费品业等,目前分别在我国铝型材应用中占比约10%、10%和12%。

浅谈多孔挤压模具生产要素

2019-01-09 09:33:47

铝挤压多孔模是提高生产效率的有效方法,较能影响多孔模生产的环节包括模具设计、模具制作、挤压生产和模具维修,本文简短介绍各环节的注意事项和生产经验。 1  模具设计 1.1 模具型腔缩水给定: 先按单孔缩水原则给出整体缩水(不同合金缩水率不同,如6063材质缩水率为1%),再按模孔摆放位置给出抵消模具弹变的预变形量,如图; 1.2 模具结构设计 1.2.1型腔放置 双孔型腔一般放置方法有:左右出料(对称或同向)和上下出料(对称或同向)。 三孔型腔一般放置方法有:三孔平放出料、品字形出料、倒品字形出料。 其它多孔型腔摆放基本按双孔和三孔原理放置。 对称出料:入料和出料完全一致,模具设计上长短不需考虑,挤压后锯为便于表面处理操作方便,需使用多个不同的料框存放素材,影响后锯人员工作效率。 同向出料:各孔出料方向一致,不需要在后锯进行特别区分,后锯人员操作比较简单,但对设计流速要求高,各孔出料长短较难控制。 1.2.2分流孔设计 现有多孔模较常用多孔单独供料和多孔整体供料两种结构。如图:多孔单独供料结构(图3):挤压时先把整棒分成两支一模一样的仿形棒,再进入分流孔。优点:各孔出料长短差异小,模具防弹变能力强。缺点:经济性较低。相对其它结构需要更大的模具规格,同规格铝棒直径生产型材外截圆小。 多孔整体供料结构(图4):挤压时铝流直接进入各分流孔,通过单独的焊合室达到各型孔的供料平衡。优点:经济性高,模具设计时布孔方便。缺点:各孔出料长短差异大,需要更高的加工精度;模具防弹变能力较弱。 1.2.3桥厚设计 桥厚(图6)与桥跨(5)成正比。桥跨越长,桥厚越厚,模具需更好的强度保证,模具规格随之增大,挤压力也会增加,因此只需保证足够铝流焊合,桥跨越短越好。1.3 工作带给定 个人认为型材流出快慢主要靠分流孔的配比,工作带只作为辅助成形,但是“U”字型料的开口,“T”字形部位色差和大平面表面质量与工作带给定有较大关系。工作带比例一般在壁厚的1.2——3.5倍。 1.4 材料选择 多孔模较单孔模前者在挤压过程中弹变更大,为模具的稳定及使用寿命提供好的基础,需要选用韧性较好的钢材。 2  制作加工 2.1 加工要点 大部分使用CNC加工,除慢走线割型腔、外圆,电火花加工下模工作带及清角。上模工作带需做出高低点;加工下模工作带时各孔需同时放电加工。模具配全止口采用间隙配合,配合间隙一般在0.02mm——0.06mm之间。 2.2 热处理要点 硬度保持在48——50HRC之间,模具上任意位置硬度相差在2HRC之间。注意硬度检测时取点位置,避免影响模具强度和贴合支撑。 3  挤压工艺 3.1 挤压工艺参数 多孔模较容易出现出料长短不均,为不影响修模判断,挤压工艺必须按标准执行。模具各位置点温度差异在5℃以内。通过调整挤速和铝棒温度来达到出口温度持续一致,6063材质挤压出口型材温度控制在520℃——530℃。挤压速度(挤压机主缸前进速度)应按阶段调整,订单完成前较后两支棒进行提速,记录提速后情况,找寻较大挤压速度,我司目标型材流出速度为30m/min。 我司挤压参数如表3.2 分料装置使用 为防止在挤压过程中各孔挤出的型材出现相互刮擦现象,需要在接料台安装多组分料装置,给每支挤出的型材创造一个单独的运动区间,避免相互接触,减少因擦划伤造成的报废。如图73.3 冷却风速调整: 型材在接料台流出时常会出现刀弯现象,造成各孔型材分料后再重叠在一起,同时矫直拉伸率会变大才能削除刀弯现象,造成型材擦划伤、矫直过度表面桔皮和尺寸达不到要求。为达到同时冷却,可在接料台加装气管或出口使用氮气冷却方式。 4  模具维修 多孔模较大问题在于各孔出料长短和壁厚不均,模具维修靠前步要仔细检查模具,确认各模孔完全符合图纸要求,再做修模方案,模具维修理念为以快修慢、先修长短再修形状。 5  结束语 影响多孔模出料原因有设计因素、模具加工、挤压设备精度、工艺和操作等原因,其中模具加工、挤压设备精度、工艺和操作都可以直接管控,确保符合标准,只有这样才能真实反映模具设计问题以及后续的稳定生产。根据几年的生产跟踪,多孔模生产较单孔模效率提升50%以上,特别是单次订单量大的型材,多孔挤压效率远远超出单孔挤压效率,因此多孔模生产对生产效率提升有较大优势。 每家公司都有自己的主打产品,但也有很多产品单次订单量不多,如单次订单量少,用双孔模挤压棒数过少会造成生产成本过高,未来可能实现一模多型的模具,特别是现有穿条隔热料,两个穿条子件一般都会同时接到订单,若能实现一模多型,可以减少生产中的很多流转环节。 因此多孔模的开发仍有很大的发展空间,也有很多技术提升空间,需要同行业相互沟通,共同努力,推动铝行业发展。 来源:Lw2016论坛文集 作者:肖文辉,颜廷柱

如何才能修好铝型材挤压模具

2019-01-10 10:47:01

想要修好铝型材挤压模具,除了需要具备正确的分析与判断,还需要合理调整金属的流速大小。   我们先从挤压模具的主要工作入手。挤压模具修正的主要工作是:采用调整金属流量分配比例(如:分流孔或导流槽的大小调整,电蚀引流槽的深浅调整等)、调整接触摩擦系数、阻碍拦截等方法(如:拦基阻碍等)以及调整模孔工作带的长短等各种方法来改变金属流出模孔的速度,从而使金属均匀地流出模孔,生产出合格的挤压产品。因此修模人员必须熟练地掌握有关的检查技术,才能正确地分析和判断制品缺陷产生的原因,从而进行有效的模具修正。   接下来是金属供给量的分配比例,主要是由模具设计师和制造来确定的。当模具制造出来之后,金属的分配比例就基本固定了。设计人员必须力求合理分配。如果分配不合理,导致型材各部分流速不均匀,给修模带来一定困难,严重时甚至无法修模。就多数模具而言,虽然金属分配量已经确定,但金属与模具之间的摩擦阻力是可以改变的。从而达到调整金属流速的目的。金属与模具之间的摩擦力由三个部分组成:金属与模面的接触摩擦力、模孔工作带之间的接触摩擦力、金属与金属之间相对运动的摩擦力。改善金属与模面的摩擦条件,能够起到调整金属流动速度的作用。改变金属的分配量、摩擦条件、工作带的长度和挤压速度均可调整金属流出模孔的速度。模具修正主要侧重调整金属分配比例,接触摩擦条件及模孔工作带长度等各种行之有效的方法来改变金属的流动特性,使金属均匀地流出模孔,生产出合格的型材制品。为克服金属流动不均而产生的缺陷,必须研究如何使型材断面上各部分的金属流出速度一致,这是模具设计应遵循的原则,也是修模人员所遵循的基本原则。虽然影响金属流出模孔速度的因素很多,但可归纳为两个基本因素:a.供给型材断面各部分的金属分配流量是否合适。即型材各部分断面积之比与相应供给部分的金属流量之比是否相等;b.金属流动时,所受摩擦阻力的大小,当供给型材某一部分的金属量越多,摩擦阻力越小时,型材这一部分模孔的流出速度就越快,反之就越慢。   只有真正具备了以上的要求,才能具备修好铝型材挤压模具。

铝型材挤压模具制模技术

2019-01-11 09:43:31

铝型材挤压工模具的制造也是决定其品质和使用寿命的关键因素之一。由于铝挤压工模具具有一系列特点,因此对铝型材模具制模技术提出了一些特殊要求:    (1)由于铝合金挤压工模具的工作条件十分恶劣,在挤压过程中需要经受高温、高压、高摩擦的作用,因此,要求使用高强耐热合金钢,而这些钢材的熔炼、铸造、锻造、热处理、电加工、机械加工和表面处理等工艺过程都非常复杂,这给模具加工带来了一系列的困难。    (2)为了提高工模具的使用寿命和保证产品的表面品质,要求模腔工作带的粗糙度达到0.8-0.4μm,模子平面的粗糙度达到1.6μm以下,因此,在制模时需要采取特殊的抛光工艺和抛光设备。    (3)由于挤压产品向高、精、尖方向发展,有的型材和管材的壁厚要求降到0.5mm左右,其挤压制品公差要求达到±0.05mm,为了挤压这种超高精度的产品,要求模具的制造精度达到0.01mm,采崩传统的工艺足根本无法制造出来的,因此,要求更新工艺和采用新型专用设备。    (4)铝型材断面十分复杂,特别是超商精度的薄壁空心铝型材和多孔空心壁板铝型材,要求采用特殊的挤压模具结构,往往在一块模子上同时开设有多个异形孔腔,各截面的厚度变化急剧,相关尺寸复杂,圆弧拐角很多,这给模具的加工和热处理带来了很多麻烦。    (5)铝型材挤压产品的品种繁多,批量小,换模次数频繁,要求模具的适应性强,因此,要求提高制模的生产效率,尽量缩短制模周期,能很快变更制模程序,能准确无误地按图纸加工出合格的模了,把修模的工作量减少到较低程度。    (6)由于铝合金挤压产品应用范围日趋广泛,规格范围十分宽广,因此,有轻至数千克的外形尺寸为100mm×25mm的小模子,也有重达2000kg以上的外形尺寸为1800mm×450mm的大模子。有轻至几千克的外形尺寸为65mmx800mm的小型挤压轴,也有重达100t以上外形尺寸为2500mmx2600mm的大型挤压筒。工模具的规格和品质上的巨大差异,要求采用完全不同的制造方法和程序,采用完全不同的加工设备。    (7)挤压工模具的种类繁多,结构复杂,装配精度要求很高,除了要求采取特殊的加工方法和采用特殊的设备以外,尚需采用特殊的工装卡具和刀具以及特殊的热处理方法。    (8)为了提高工模具的品质和使用寿命,除了选择合理的材料和进行优化设计以外,尚需采用较佳的热处理工艺和表面强化处理工艺,以获得适中的模具硬度和高的表面品质,这对于形状特别复杂的难挤压制品和特殊结构的模具来说显得特别重要。    由此可见,挤压模具的加工工艺小同于一般的机械制造工艺,而是一门难度很大涉及面很广的特殊技术。为了制造出高质量和高寿命的模具,除了要选择和制备优质的模具材料外,尚需要制定合理的冷加工工艺、电加工工艺、热处理工艺和表面处理工艺。

如何合理使用及维修铝材挤压模具,增加模具寿命

2019-01-02 16:39:00

铝型材挤压模具的寿命已成为我国铝型材工业发展的主要瓶颈。铝型材挤压模具的设计与制造成本占总生产成本的20%左右,是铝型材挤压工业变数多、发展快的关键技术之一,涉及了材质、设计、制造、检测、修模、管理等诸多环节,也是发展潜力较大的领域之一。  不同的铝合金模具设计使用极限次数相差也很大,一般数千次到数十万次不等。这与模具的材料及热处理,铝合金的材料,形状及精度要求等等关系很大,具体可查阅相关行业相关产品的设计规范。  如何才能更合理地使用这类分流模具?我们可以从以下几方面入手:  1、严格执行铝型材生产工艺规章  必须严格按照相应的铝型材挤压工艺执行,开机过程中铝棒炉中段温度设定在530-550℃,出口段温度设定在480-500℃,保温时间要足够,确保铝棒够温且透心(即心部及表面都够温),避免因为铝棒温度表里不一(心部温度不足)而使模具弹性变形增大,从而加剧“偏壁”和“长短不一”的现象发生,甚至使挤压模具发生塑性变形而报废。  2、确保“三心合一”  挤压筒中心、挤压杆中心和模座中心目视必须同心,不允许有明显的偏心现象,否则会影响制品各处的流速,甚至影响制品成型或者使挤压制品左右两支长短相差更大而无法挤压生产。  3、合理选用支承垫  必须选择大小适当的双孔专用支承垫,以减小下模的弹性变形,使挤压制品成型稳定,尺寸变化小;而且必须在模具出炉前把双孔专用支承垫找好备用,以免模具出炉后因为找支承垫耗时过长而使模具降温过多而出现闷车。  4、加强铝型材挤压过程中的信息反馈  A:挤压模具塞模的信息反馈  塞模的原因有很多种,没有经过专门训练的人一般难以表达清楚,最好经过相应的修模人员亲自查看过后并找到原因才可以煲模。  B:出料成型情况反馈  除了要有挤压模具号码标识清楚的料头之外,还要在料头上标识料头难以看出来的整体流向情况,如a、“相交出料”(表示在实际挤压过程中是两孔内侧慢外侧快引起);b、“相离出料”(表示在实际挤压过程中是两孔内侧快外侧慢引起);c、“左长右短”表示左支长右支短,并且要注明长短相差的量,因为中断锯到出料口的距离大约6米,所以通常“A米/6米”的形式表示长短相差的分量为每6米就相差A米,这样完善准确的表达才有利于修模人员的正确判断和维修。  C:尺寸超差的信息反馈  遇到出料成型正常但是尺寸超差的情况,必须取一段样品做好完整的正确的标识(挤压模具编号、出料方向、尺寸缺陷等等),其中任何一项标识错误都可能会导致修错模具,所以必须高度注意。  只有这样完整的使用情况信息反馈,才有利于修模人员的正确判断和维修,才能提高模具维修的效率,才能减少修模次数和不必要的试模。  5、模具损坏检查  ①选用制造成型模具零件的材料不适应工作条件要求,造成模具工作一段时间后变形,腐蚀或严重磨损。  ②安装、拆卸成型模具中零件时,用锤子敲击零件,造成模具零件变形或光洁面被破坏、工作面有撞击伤痕。  ③分流锥角过大,对熔料流动阻力大,造成分流锥支架筋折断。  ④口模、芯轴的工作面硬度低,使光洁面磨损严重,造成表面粗糙。  ⑤调整模具时,工作程度有错误会造成模具调整螺钉折断,口模或定径套变形,不能使用。

镁合金型材挤压模具研究

2019-01-15 09:51:32

镁及镁合金具有质量轻,比强度高,弹性模具小,导热性能好,易于回收,对环境污染小等优点,在汽车、机械电子、航空航天、国防军工、交通运输等领域具有重要的应用价值。镁合金塑性成形困难,通常采用具有优良的变形力学条件的挤压方法成形。随着科学技术的进步,市场对制品质量的要求不断提高,模具在镁合金挤压成形中占的重要地位。文献资料表明,国内外对镁合金挤压模具结构的研究较少,特别是对型材挤压模具研究尚未见报道。本试验通过不同的模具结构对镁合金型材挤压成形过程的影响进行探讨。   1 模具结构特点与挤压成形工艺   由于高温下挤压镁合金所需的变形力较大,而且散热片型材带有较高的齿,因此,高温挤压中模具容易在悬臂处出现断裂、压塌等失效现象。本研究以计算机用散热片型材(图1)为研究对象,采用三种典型的模具进行镁合金的挤压成形研究。模具材料选用4Cr5MoSiV1 2008_08/temp_08080511396019.jpg">   1.1 模具结构特点   平模是生产实心型材的较普通的一种模具,其结构简单,成形所需挤压力大。图2是在平模基础上改进了的锥形模结构,与平模相比,锥模中的锥角有助于金属变形时的流动,可降低挤压力。   图3是前置式模具。其特点是上模的两个分流孔对称分布,焊合室在下模;同时由于上模的分流桥对下模悬臂部分的遮挡作用,减小了挤压力对下模悬部位的直接冲击作用,达到保护模具作用。   图4是桥式模具。其下模是一个简单的矩形孔,上模模芯上有若干个成形槽,对镁合金超导流和成形作用。与前置式模具相比,这种模具结构中没有悬臂,模芯与下模矩形孔互相配合,挤压中成形散热片上的齿。作用力全部转移到上模的矫和模芯上,从而保证了模具强度。  1.1  挤压成形工艺   挤压设备为3MN立式油压挤压机。镁合金铸锭尺寸直径82mmX150mm,铸锭的加热温度依据镁合金的相图、塑性图及再结晶图定为420℃,挤压速度控制在15mm/s~25mm/s之间,挤压筒和模具的预热温度分别为350℃和400℃。   2 试验结果及分析   图5和表1分别是图1所示制品在挤压试验中挤压力与行程的关系曲线和模具结构与较大挤压力间的关系。  图5可知:锥形模在挤压行程达到7mm左右,挤压力达到较大值1850kn,前置式模具和桥式模具在挤压行程达到12mm左右时,挤压力分别达到较大值2400kn和2800kn。在挤压的初始阶段,挤压力随行程的增加而急剧升高,使用锥形模具挤压时,挤压力达到极值所需行程较长,这是因为制品挤出前有一个金属充满模具焊合室及金属的焊合过程,因此,挤压力的峰值出现得较晚且较大。三种模具结构形式,其载荷与行程曲线的形状基本上是一致。  由图5可知,模具结构对挤压影响较大,桥式模所需要的挤压力较大,前置式模具次之,所需挤压较小的的是锥模挤压。   锥模挤压成形过程中,锥形腔起着导流作用,且金属成形过程中无需焊合,原所需的挤压力相对来说要小些。从结构上来说,由于组合模比锥模多一个分流和焊合过程,故组合模比平模和锥模所需的挤压力要大。   桥式模具结构有模芯,且模芯上有多条成形制品的导流槽,金属材料在导流槽中焊合所需的力较大,相应的挤压力也大。   采用各种模具挤出的AZ31镁合金散热片的制品如图6所示。由于采用桥式模具和前置式模具挤出过程经过分流和焊合过程,为确定制品的焊合情况,采用电子扫描镜观察分析金属在模具焊合室和型材焊合部位微观组织形貌。结果表明,制品在焊合部位没有焊缝,在焊合区的组织致密,与基体组织无明显差别,说明焊合状况较好。   前置式分流模在试验后悬臂处未出现任何塌陷及其他变形。虽然所需根的挤压力较大,但由于分流桥对悬臂的遮挡起了保护作用,故模具悬臂未出现任何变形。   桥式模具成形较困难。挤压过程中金属在模具芯头上导流槽处的流动阻力较大,使金属流出模孔困难;同时由于产品的不同部位壁厚差别较大,金属流动不均匀,造成模具芯头的受力不均匀,对芯头产生很大的剪切力和扭矩,导致挤压较大。   3  结论   1 在所设计的三种模具挤压过程中,锥模所需的压力较小,前置保护模次之,桥式模具的较大。   2 锥模和前置保护模成形质量较好,桥式模由于金属的模芯上的小槽处流动阻力大,挤压焊合困难,导致成形时所需挤压力很大。   3 从组合模结构挤压成形来看,AZ31镁合金在焊室中是能够完全焊合的,用扫描电镜观察焊合室部位和制品焊合处发现,其组织致密,与基体组织无明显差别,焊合质量较好,说明组合模挤压AZ31镁合金散热器是可行的,可推广应用于其他实心型材或中空型材制品的挤压成形。

如何合理使用铝型材挤压模具

2019-01-11 09:43:31

铝型材挤压模具的寿命已成为我国铝型材工业发展的主要瓶颈。铝型材挤压模具的设计与制造成本占总生产成本的20%左右,是铝型材挤压工业变数多、发展快的关键技术之一,涉及了材质、设计、制造、检测、修模、管理等诸多环节,也是发展潜力较大的领域之一。   如何才能更合理地使用这类模具,我们可以从以下几方面入手。   (1)严格执行铝型材生产工艺规章   必须严格按照相应的铝型材挤压工艺执行,开机过程中铝棒炉中段温度设定在530-550℃,出口段温度设定在480-500℃,保温时间要足够,确保铝棒够温且透心(即心部及表面都够温),避免因为铝棒温度表里不一(心部温度不足)而使模具弹性变形增大,从而加剧“偏壁”和“长短不一”的现象发生,甚至使挤压模具发生塑性变形而报废。   (2)确保“三心合一”   挤压筒中心、挤压杆中心和模座中心目视必须同心,不允许有明显的偏心现象,否则会影响制品各处的流速,甚至影响制品成型或者使挤压制品左右两支长短相差更大而无法挤压生产。   (3)合理选用支承垫   必须选择大小适当的双孔专用支承垫,以减小下模的弹性变形,使挤压制品成型稳定,尺寸变化小;而且必须在模具出炉前把双孔专用支承垫找好备用,以免模具出炉后因为找支承垫耗时过长而使模具降温过多而出现闷车;   (4)加强铝型材挤压过程中的信息反馈   A:挤压模具塞模的信息反馈   塞模的原因有很多种,没有经过专门训练的人一般难以表达清楚,较好经过相应的修模人员亲自查看过后并找到原因才可以煲模。   B:出料成型情况反馈   除了要有挤压模具号码标识清楚的料头之外,还要在料头上标识料头难以看出来的整体流向情况,如a、“相交出料”(表示在实际挤压过程中是两孔内侧慢外侧快引起);b、“相离出料”(表示在实际挤压过程中是两孔内侧快外侧慢引起);c、“左长右短”表示左支长右支短,并且要注明长短相差的量,因为中断锯到出料口的距离大约6米,所以通常“A米/6米”的形式表示长短相差的分量为每6米就相差A米,这样完善准确的表达才有利于修模人员的正确判断和维修。   C:尺寸超差的信息反馈:   遇到出料成型正常但是尺寸超差的情况,必须取一段样品做好完整的正确的标识(挤压模具编号、出料方向、尺寸缺陷等等),其中任何一项标识错误都可能会导致修错模具,所以必须高度注意。   只有这样完整的使用情况信息反馈,才有利于修模人员的正确判断和维修,才能提高模具维修的效率,才能减少修模次数和不必要的试模。

铝型材挤压模具设计分析

2019-01-09 11:26:51

近年来,随着我国大规模的基建投资和工业化进程的快速推进,铝型材全行业的产量和消费量迅猛增长,而我国也一跃成为世界上较大的铝型材生产基地和消费市场。经过长达近10年的高速增长,我国铝型材行业步入了新的发展阶段,并展现出了诸多新的发展趋势。    而且,随着建筑、交通、汽车以及太阳能和LED等产业的迅速发展,对铝合金挤压产品的高精度、高性能要求与日俱增,型材断面形状随之复杂化、多样化,按常规常见形式设计,存在许多不足。所以,要得到优质型材,就得在生产、生活中不断地学习和积累、不断地改造和创新。    模具设计是重要环节,因此,须对挤压型材模具设计进行系统分析,并通过生产实践逐步解决问题。    一.铝型材模具设计的六大要点    1.铝挤压件的尺寸分析    挤压件的尺寸及偏差是由模具、挤压设备和其他有关工艺因素决定的。其中,受模具尺寸变化的影响很大,而影响模具尺寸变化的原因有:模具的弹性变形、模具的升温、模具的材料及模具的制造精度和模具磨损等。    (1)铝型材挤压机吨位的选择    挤压比是以数值表示模具实现挤压的难易,一般来说,挤压比在10-150之间是可适用的。挤压比低于10,产品机械性能低;反之,挤压比过高,产品容易出现表面粗糙或角度偏差等缺陷。实心型材常推荐挤压比在30左右,中空型材在45左右。    (2)外形尺寸的确定    挤压模具的外形尺寸是指模具的外圆直径和厚度。模具的外形尺寸由型材截面的大小、重量和强度来确定。    2.挤压模具尺寸的合理计算    计算模孔尺寸时,主要考虑被挤压铝合金的化学成分、产品的形状、公称尺寸及其允许公差、挤压温度,以及在此温度下模具材料与被挤压合金的线膨胀系数,产品断面上的几何形状的特点,及其在拉伸矫直时的变化,挤压力的大小及模具的弹性变形等因素。    对于壁厚差很大的型材,其难于成形的薄壁部分及边缘尖角区应适当加大尺寸。    对于宽厚比大的扁宽薄壁型材及壁板型材的模孔,桁条部分的尺寸可按一般型材设计,而腹板厚度的尺寸,除考虑公式所列的因素外,尚需考虑模具的弹性变形与塑性变形及整体弯曲、距离挤压筒中心远近等因素。此外,挤压速度、有无牵引装置等对模孔尺寸也有一定的影响。    3.合理调整金属的流动速度    所谓合理调整,就是在理想状态下,保证制品断面上每一个质点应以相同的速度流出模孔。    尽量采用多孔对称排列,根据型材的形状,各部分壁厚的差异和比周长的不同及距离挤压筒中心的远近,设计不等长的定径带。一般来说,型材某处的壁厚越薄,比周长越大,形状越复杂,离挤压筒中心越远,则此处的定径带应越短。    当用定径带仍难于控制流速时,对于形状特别复杂、壁厚很薄、离中心很远的部分可采用促流角或导料锥来加速金属流动。相反,对于那些壁厚大得多的部分或离挤压筒中心很近的地方,就应采用阻碍角进行补充阻碍,以减缓此处的流速。此外,还可以采用工艺平衡孔、工艺余量,或者采用前室模、导流模、改变分流孔的数目、大小、形状和位置来调节金属的流速。    4.保证足够的模具强度    由于挤压时模具的工作条件十分恶劣,所以,模具强度是模具设计中的一个非常重要的问题。除了合理布置模孔的位置、选择合适的模具材料、设计合理的模具结构和外形之外,准确地计算挤压力和校核各危险断面的许用强度也是十分重要的。    目前,计算挤压力的公式很多,但经过修正的别尔林公式仍有工程价值。挤压力的上限解法,也有较好的适用价值,用经验系数法计算挤压力比较简便。    至于模具强度的校核,应根据产品的类型、模具结构等分别进行。一般平面模具只需要校核剪切强度和抗弯强度;舌型模和平面分流模则需要校核抗剪、抗弯和抗压强度,舌头和针尖部分还需要考虑抗拉强度等。    强度校核时的一个重要的基础问题是,选择合适的强度理论公式和比较准确的许用应力。近年来,对于特别复杂的模具,可用有限元法来分析其受力情况与校核强度。    5.工作带宽度尺寸    确定分流组合模的工作带要比确定半模工作带复杂得多,不仅要考虑到型材壁厚差、距中心的远近,而且必须考虑到模孔被分流桥遮蔽的情况。处于分流桥底下的模孔,由于金属流进困难,工作带必须考虑减薄些。    在确定工作带时,首先要找出在分流桥下型材壁厚较薄处即金属流动阻力较大的地方,此处的较小工作带定为壁厚的两倍,壁厚较厚或金属容易达到的地方,工作带要适当考虑加厚,一般按一定的比例关系,再加上易流动的修正值。    6.模孔空刀结构    模孔空刀就是模孔工作带出口端悬臂支承的结构。型材壁厚t≥2.0mm时,可采用加工容易的直空刀结构;当t<2mm时,或者带有悬臂处,可用斜空刀。    二.模具设计中的常见问题    1.二级焊合室的作用    挤压模具在铝型材挤压生产中起到至关重要的作用,直接影响挤压产品的质量。然而,在实际生产中,挤压模具的设计更多依赖设计师的经验,模具设计质量难以保证,需要多次试模和修模。    根据模具设计的不足,提出在下模开设二级焊合室优化设计方案,弥补模具加工中打供料不到位的缺陷,避免了供料不足引起的开口、收口及出材前后形状不一等缺陷,并有效地解决了设计中速度分布不均的问题。从而在优化方案中,型材截面上的温度分布和应力分布更加均匀,对出材有较大改善。    2.二级导流的作用    在挤压模具设计中,对于壁厚差很大的实心型材,采用二级导流。例:初始模具设计由普通的模子和模垫组成,靠前次上机非常不理想,角度偏小、薄壁部分尺寸超薄、超小。模具返修即使加大薄壁部分、打低工作带仍然不理想。    针对初始模具设计的不足,第二次采用导流板设计,提出在模子开设二级导流优化设计方案,有效地解决了初始模具设计中速度分布不均的问题。    具体通过对薄壁部导流直冲,厚壁部分在出料口宽展30度,并将厚壁部分模孔尺寸稍微加大尺寸,另将模孔尺寸90度角预收口开为91度,定径工作带也适当作了些修改。    三.小结    经过不断地学习、积累,不断地查询相关的模具设计资料,经过改造、创新来优化模具设计,并通过生产实践来验证是否成功。

如何提高铝材产量延长挤压模具寿命

2018-12-28 11:21:19

铝型材正常模具正常寿命   模具正常失效前,生产出的合格产品的数目,叫模具正常寿命,简称模具寿命,模具首次修复前生产出的合格产品的数目,叫首次寿命;模具一次修复后到下一次修复前所生产出的合格产品的数目,叫修模寿命。模具寿命是首次寿命与各次修复寿命的总和。   模具寿命与模具类形和结构有关,它是一定时期内模具材料性能、模具设计与制造水平.模具热处理水平以及使用及维护水平的综合反映。模具寿命的高低在一定程度上反映一个地区、一个国家的冶金工业、机械制造工业水平。   模具失效形式及机理   但失效形式归纳起来大致有三种,即磨损、断裂、塑性变形。   (1)磨损失效   模具在服役时,与成形坯料接触,产生相对运动。由于表面的相对运动,接触表面逐渐失去物质的现象叫磨损。磨损失效可分为以下几种:   (2)断裂失效   模具出现大裂纹或分离为两部分和数部分丧失服役能力时,成为断裂失效。断裂可分为塑性断裂和脆性断裂。模具材料多为中、高强度钢,断裂的形式多为脆性断裂。   脆性断裂又可分为一次性断裂和疲劳断裂。   (3)塑性变形失效   模具的塑性变形是模具金属材料的屈服过程。是否产生塑性变形,起主导作用的是机械负荷以及模具的室温强度。在高温下服役的模具,是否产生塑性变形,主要取决于模具的工作温度和模具材料的高温强度。   随着铝行业趋势的发展,近年来大家都在寻求更优更好的发展模式以提高效率、节约成本、增加效益。对于铝型材的产出挤压模具无疑是一个重要的控制节点。要提高其寿命当然是一个系统性的问题,在实际的生产使用过程中,一般将从优化设计、模具加工、使用维护等最主要的几个方面着手。   一、优化设计   对于挤压模具来讲,设计的水准直接影响着出料的状况更在一定程度上关乎着模具的使用寿命。挤压模的设计首先是要根据型材情况选择一个合适的挤压比确定机台吨位和孔数,使之设计出来的分流孔形成一个出料平衡的状态,另外要尽量的避免应力集中的设计构造,要使模具各部分受力均匀以保证其稳定。下面就几个典型的实际例子简要说明:对于(如图1)这样的型材,在设计时一般会在悬臂处设计有桥位避免直冲,因其这类模具容易偏塌。   对于悬臂两边壁厚差较大的一般会设计成高低工作带(如图2),这样能有效的调节两边的流量,可以一定程度的避免偏塌。   一些工头较小的模具容易偏摆或断裂,通常会设计成零下空刀(如图3),有效增加其强度。   针对工头较复杂螺丝孔又较多的工头一般上空刀会适当加长,目的是加强螺丝孔位置的强度。鉴于热处理更好的淬透模具、更好的释放应力及更好的加温透彻等因素,对于一些大型的方管、矩形工头中间会加钻孔(如图4)。   如果型材对角线较长且为方管类型,一般会将上模厚度加厚以更好的保证其强度,桥位也将适当加宽,从而有效的避免过早的裂角等问题。 12后一页

几种铝型材挤压模具的优化设计

2018-12-25 13:45:15

前 言:铝型材生产的质量和效率与挤压模的设计和结构密切相关,笔者根据几年来的工作实践和生产经验,简要介绍几种在实际生产中经常出现问题的铝材挤压模的优化设计实践,与同行们共讨论。    1、部分大断面空心型材模具的优化 断面空心比较大的空心型材在常规设计情况下,常出现大面起波,平面间隙超差,明显焊缝等缺陷,出现这些问题,通常是缘于模具设计结构的不合理性。为此,笔者在模具设计上:上模采用偏桥,下模在料仓内加凸筋的设计方案。 由于在生产过程中,型材大面起波、平面间隙超差等缺陷-般是因为大面分流孔接近中心,金属流速快而引起的,因此在焊合室中大面模孔前置一适当长度的凸筋,这样,当金属流向模孔时,凸筋象一道矮墙对金属的流动起到阻碍作用,若阻碍作用太过,也便于修模。 同时,相应地对某些焊缝的质量也起到了优化作用。 对于一些矩形腔,长宽比比较大的方管型材,焊合线常明显的出现在大面装饰面上。现可将对称式桥改为偏桥式,焊缝是由于金属流动通过分流孔在分流桥下进入摸孔前没有得到充分焊合而形成的。获得高强优质焊缝当然是我们理想所在。但是如果在生产过程中,焊缝不可避免的出现在型材大面或装饰面上,那不妨使其尽量远离大面或装饰面。在如(图1-2)形式分流孔情况下,使模桥中线向外偏移,(a:b=2:1、a1=a2)。通常,由于大面分流孔中的金属流动速度快,当分流桥的形式设计为偏桥式时,这样,增加了大面分流孔中的料流向两侧填充的空间,且随着分流桥中心线的向外偏移,则料流焊台位置也随之外移。因此,这样即调整了大面金属流速,又使焊缝远离中心大面。    2、双模孔易偏壁空心型材模具的优化 通常情况下,无论两模孔是上下排放,还是左右排放,都会由于靠近中心一侧的金属流速快,供料充足而使上模模芯向外发生弹性变形造成型材远离中心一则壁薄的偏壁缺陷。因此在模具设计过程中,在型材断面尺寸放量时,将通常产生偏壁的断面尺寸预先留出偏移余量。如果两模孔共用中心分流孔,为了两模孔的供料保证相对稳定,在料仓中两孔中间位置可以加一隔板式分流筋,也有利于修模。    3、小开口、悬壁面积大的平面型材模具的优化 此种型材在通常全面直给料的平面模设计情况下,很容易出现悬臂弹性变形大,以至于发生断裂、掉块等情形。此种情况下,可以将其设计成吊芯模,只是修模不很容易。有些型材开口非常小,几乎闭合,此种可采用组合模式,但开口处需要配合紧密。 一般的开口小,恳臂面积大的平面型材可将直给供料板设计为桥式供料板或悬壁桥式供料板、将受力的悬壁面置于桥下,这样可以对型材悬臂进行保护,当金属料流填充模孔时,来自供料板的金属流通过桥式供料板的桥对悬臂的遮挡不用直接作用其上,即减轻了模具悬臂所承受的正压力,从而改善悬臂的受力状态。延长了模具的使用寿命。    4、长厚比比较大的长断面平面型材模具的优化设计 因型材长厚比比较大,壁厚有时比较薄,靠近中心的金属流速比较快,仅仅用工作带的长短来调整模孔各处的料流速度是有限的,所以易产生变形缺陷。现采用(图4-2)所示的桥式供料饭,这样可以有效的调整中间的金属流速,从而使模孔各处料流速度均衡,能够收到良好效果。    5、结论     实践证明,以上几种铝型挤压模具设计的优化在实际生产中都是行之有效的。挤出的铝合金型材较之过去相比,成形好、尺寸精度、易保证、表面质量也得到了良好的改善。从而,大大提高了型材挤压的生产效率和降低了产品生产成本。 对于铝型材产品挤压模具设计,随着社会各行业的飞速发展,型材断面形状随之复杂化、多样化,按常规常见形式设计,存在许多不足。所以,要得到优质型材,就得在生产、生活中不断地学习、积累,不断地改造和创新。删除

铝型材挤压模具的使用与维护

2019-01-14 14:52:41

(1)用先进的仪器仪表在线和离线检测模子的尺寸精度、硬度和表面粗糙度。检测验收合格的模具进行登记,人库上架,使用时领出抛光模孔工作带,并将导流模、型材模、模垫进行组装检查,确认无误时发到机台加热;  (2)工模具上机前加热温度规定:挤压筒:400~450℃,挤压垫:350℃,模垫:350~400℃,平模:450~470℃,分流模:460~480℃,保温时间按模具厚度计算(l.5~2分钟/mm);  (3)工模具在炉内加热时间不允许超过10小时,时间过长,模孔工作带容易腐蚀或变形;  (4)在铝合金型材挤压开始阶段,需缓慢加压力,因为冲击力很可能引起堵模。如果发生堵模时,需立即停机,以防压烂模孔工作带;  (5)模子卸机后,待冷至150~180℃时再放人碱槽煮,因为模子在高温下碱煮,容易被热浪冲击开裂。并应采用先进的蚀洗方法,以回收节省碱液,缩短腐蚀时间和实现无污染清洗;  (6)修模工在对分流模装配时,应用铜棒轻轻颠打,不允许用大铁锤猛击,避免用力过大,震烂模具;  (7)模具氮化前需对模孔工作带仔细抛光至表面粗糙度Ra0.8~0.4μm;  (8)模子氮化前要求清洗干净,不允许有油污带入炉内;氮化工艺要合理(依设备特性与模具材料而定),氮化后表面硬度为HV900~1200,氮化层过厚、过硬会引起氮化层剥落。一套模具一般允许氮化3~5次;复杂的高倍齿散热器型材模不进行氮化工序;  (9)对老产品的新模子、棒模、圆管模可不经试模直接进行氮化处理;新产品及复杂型材模必须经试模合格后才能进行氮化处理;  (10)新模试模合格后,较多挤压10个铸锭就应卸机进行氮化处理,避免将工作带拉出沟槽;两次氮化之间不可过量生产,一般平模为60~100个锭,分流模为40~80个锭为宜,过多会将氮化层拉穿。  (11)使用后的模子抛光后,涂油人库保管。

铝型材挤压模具热处理的要点

2018-12-28 09:57:31

1、铝型材挤压模具热处理质量好坏直接影响挤压模具的使用寿命,模具是经过淬火“+”多次回火达到硬度要求的。淬火是为了提高模具硬度,多次回火是为了提高模具韧性,稳定内部组织。模具热处理的硬度值规定:   大型铝挤压模具(F>500mm ),HRC45-48;中型模子(F300~500mm ),HRC47-50;小型挤压模具(F   2、挤压模具热处理过程中要特别注意几点:   a、高温区段升温速度要快,保温时间不可过长,以防挤压模具产生过烧或过热,过热—晶粒粗大,过烧—低熔点元素和夹杂产生溶解;   b、铝挤压模具淬火后要及时回火,以防产生裂纹;   c、挤压模具热处理后发现硬度不够或硬度不均匀时,应进行退火,按工艺重新进行热处理(当硬度值   d、对大型铝挤压模具或型腔复杂的成品模具应增加一次去应力回火工序(消除电加工、机加工应力,也就是消除热应力和组织应力);   e、模具淬火油温应?100°C,以确保淬火效果。

铝挤压模具电火花操作准则

2018-12-28 15:58:44

1、电火花加工前,仔细了解产品图纸加工工艺及技术要求,严格按图纸加工。   2、操作前首先检查加工设备及数控系统运行是否正常,工装工具、量具、检测工具等是否完好达到工艺使用要求。电极加工前必须核对图纸,无误后方可上机加工。   3、电火花加工空刀位偏差:端面≤100㎜,对称公差﹤±0.1㎜;端面100≥,对称公差﹤±0.2㎜。   4、工作带高低点偏差:J最低点±0.1㎜,最高点±0.3㎜以下,过度位±0.3㎜。   5、上模芯头槽位、螺丝孔、中横等比下模焊合室工作带高出0.3~0.5㎜。   6、未注相邻工作带圆弧过度位R2,不允许有尖角位。   7、常规模具槽位、螺丝孔、钉位等供水槽长度:焊合室10㎜=h供水槽8㎜;15㎜= h供水槽10~13㎜;20㎜≥= h,供水槽≤20㎜;引流槽宽度单边≥1.5㎜,深度2.5㎜≥,对称度±0.3㎜。特殊多孔复杂模具按图加工或由相关人员现场指导加工,不得随意加工。   8、电火花粗加工每分钟不得超50c,精加工每分钟不得超20c,下模加工完后工件外观没有粗糙的电极放电痕迹,模芯精打完后加工面粗糙度达到12.5?m   9、特殊散热器型材电火花加工每分钟不得超20c,精加工每分钟不得超10c。   10、上模精打完后工作带高低点落差超过5㎜时,必须加工高低点工作带(上空刀)。   11、下模、平模精铣电极过度倒角R1~R2,电火花加工后必须圆角过度,不能留尖角。   12、精加工好的上、下模必须自检,达不到要求的及时返工,加工超差及时上报质检员处理。

挤压黄铜管材典型工艺

2019-05-29 17:27:57

揉捏黄铜管材典型技术&nbsp; &nbsp;因为俐及炯合金的揉捏沮度较高.工模其的工作条件恶劣,杂乱断面的实心与空心型材的成型十分困难,实践加工中的型材一般限于揉捏简略断面型材。型材揉捏时,揉捏速度应该恰当慢一些。黄铜管揉捏过程中的闷锭和夹揉捏轴的解决办法闷键的解决办法&nbsp; &nbsp;实践加工中因设备的原因、金润健坯运翰中的问题形成键坯降温、揉捏东西预热欠好等原因.或许形成锭坯在揉捏筒中挤不动&lsquo;闷健)事端。呈现挤不动状况应立即卸压,将揉捏轴后移.待锭坯温度下降,稍停后.选用专用设备(如横向移动模座的事端承受筒),再用揉捏轴将降沮后的锭坯推到专用设备内取出。若推不动,能够持续下降锭坯温度或一起采纳升高揉捏筒内衬温度的办法,稍停后再将其推出。处理闷锭毛病时千万不能够硬推,并谨防揉捏筒内衬一起被推出。

大型铝合金挤压型材挤压模具设计制作与修理

2018-12-27 09:37:01

大型铝合金挤压型材挤压模具设计制作与修理 右键下载:大型铝合金挤压型材挤压模具设计制作与修理.pdf删除

铝型材挤压模具故障及处理方法

2019-01-09 09:34:05

型材由于热胀冷缩,出料后,其规格会比模具规格小约1丝米=10忽米。方管、圆管,新模来了先测壁厚均匀否,再看工作带平否,才能开始使用或修。   1、快了(鼓起来):堵快的地方或者磨慢的地方,在工作带快的那边进料方向磨导口(减慢),工作带慢的那边出料方向磨导口或把工作带变窄(加快);   2、慢了(凹进去,也有慢鼓):磨慢的地方或者堵快的地方,同上反方向(实心与空心在同一铝型材上出现,实心比空心出料开始要慢,后来就跟上了);   3、料头不快,后来快为假快:工作带不平,往让它慢的方向磨,让它工作带平;   4、料头不慢,后来慢为假慢:工作带不平,往让它快的方向磨,让它工作带平;   5、带齿的扭曲:往它扭曲的方向反方向磨(因为你往哪个方向磨,它就会往哪个方向扭);   6、带凹槽槽小了、大了:把凹槽附近的工作带侧面磨个储料洞,反之堵该地区周围;   7、型材有划痕:新模氮化试模后抛光前先导口,棒不好,工作带有垃圾;   8、铝合金型材有筋:模具工作带开裂,冲掉,有微小划痕解决办法返厂维修,用磨针在工作带划痕周围左右平磨,让它微凹;   9、壁厚不均匀:敲上模壁厚薄的那边,磨壁厚厚的那边;   10、散热器和类似散热器牙慢了、快了:慢了在牙顶上附近开储料洞、快了就堵;   11、带螺丝孔及差不多同类的小孔慢了、快了:开导流板孔,抛光小孔工作带、堵导流孔。

铝型材挤压模具热处理的要点及模具钢设计分析

2019-01-09 10:13:40

近年来,随着我国大规模的基建投资和工业化进程的快速推进,铝型材全行业的产量和消费量迅猛增长,而我国也一跃成为世界上较大的铝型材生产基地和消费市场。经过长达近10年的高速增长,我国铝型材行业步入了新的发展阶段,并展现出了诸多新的发展趋势    而且,随着建筑、交通、汽车以及太阳能和LED等产业的迅速发展,对铝合金挤压产品的高精度、高性能要求与日俱增,型材断面形状随之复杂化、多样化,按常规常见形式设计,存在许多不足。所以,要得到优质型材,就得在生产、生活中不断地学习和积累、不断地改造和创新。    铝型材挤压模具热处理质量好坏直接影响挤压模具的使用寿命,模具是经过淬火“+”多次回火达到硬度要求的。淬火是为了提高模具硬度,多次回火是为了提高模具韧性,稳定内部组织。大型铝型材模具(f>500mm),hrc45-48;中型模子(f300~500mm),hrc47-50;小型挤压模具(f<300mm),hrc48-51;在一套模具的同平面上检测三点,每一点的硬度值都应在规定范围内方算合格。    挤压模具热处理过程中要特别注意几点:    a、高温区段升温速度要快,保温时间不可过长,以防挤压模具产生过烧或过热,过热—晶粒粗大,过烧—低熔点元素和夹杂产生溶解;    b、铝挤压模具淬火后要及时回火,以防产生裂纹;    c、挤压模具热处理后发现硬度不够或硬度不均匀时,应进行退火,按工艺重新进行热处理(当硬度值    d、对大型铝挤压模具或型腔复杂的成品模具应增加一次去应力回火工序(消除电加工、机加工应力,也就是消除热应力和组织应力);    e、模具淬火油温应?100°c,以确保淬火效果。

铝合金挤压模具的表面强化处理

2019-01-11 15:44:08

工业铝型材中挤压模具在挤压力大.温度高的条件下使用,且承受着强烈的摩擦磨损。尽管选用优质的耐热工具钢作模具材料,但经传统的热处理后,其硬度、耐磨性及热疲劳抗力等性能仍不高。致使模具使用寿命不长,此外,由于表面硬度低,易于被磨损,工作带表面光洁度逐渐降低,而且抗粘合性能差,工作带易粘合小馅瘤。这格导致被挤出的型材表面出现麻点、划痕甚至擦伤,严重地影肉建筑铝型材的表面质量。    对铝型材挤压模具施行恰当的表面强化处理是改善模具使用性能、延长使用寿命的较有效的方法之一。气体氮化是早期的一种模具表面强化处理技术,但由于氮化处理时间长且氮化层质脆,所以对改善铝型材挤压模具的使用寿命效果不理想。    我国挤压模具表面强化处理技术还是比较落后的,与国外先进水乎相比有比较大的差距。由于近年来我国铝型材特别是建筑铝型材工业的飞速发展,使人们对铝型材挤压模具表面强化问题予以极大的重视,纷纷开展挤压模具表面强化处理新工艺的研究工作。

国内外铝型材挤压模具发展情况概述

2019-01-02 09:41:22

对铝型材的挤压过程进行数值模拟可以预测实际挤压过程中可能出现的缺陷,及早优化挤压模具结构设计、调整挤压工艺参数和有针对性的指明技术解决方案。国内外研究者们对此已做了许多工作。韩国的HyunWooShin等在1993年对非轴对称挤压过程进行了有限元分析,他们利用二维刚塑性有限元方法结合厚板理论将三维问题进行了简化,对整个挤压过程进行了不失准确的数值模拟,同时也减少了计算量。   对于变形模拟,于沪平等采用塑性成型模拟软件DEFORM,结合刚粘塑性有限元法函数法对平面分流模的挤压变形过程进行了二维模拟,得出了挤压过程中铝合金的应力、应变、温度以及流动速度等的分布和变化。刘汉武等利用ANSYS软件对分流组合模挤压铝型材进行了有限元分析和计算,找出了原模具设计中不易发现的结构缺陷。周飞等采用三维刚粘塑性有限元方法,对一典型铝型材非等温成型过程进行了数值模拟,分析了铝型材挤压的三个不同成形阶段,给出了成形各阶段的应力、应变和温度场分布情况以及整个成形过程中模具载荷随成形时间的变化情况。对于压力场,闫洪等在2000年利用ANSYS软件作为平台,对壁板型材挤压过程进行了三维有限元模拟和分析,获得了型材挤压过程的位移场、应变场、应力场。   对实际铝型材挤压中工艺参数选择和模具结构尺寸的修正起到了重要指导作用。对于挤压过程的摩擦与润滑分析,1997年,俄罗斯的VadimL.Bereshnoy等[13]对摩擦辅助在直接和间接挤压成型硬质铝合金中的技术进行了研究。该技术的发展和应用使生产效率和质量都得到了大大提高。美国的PradipK.Saha[14]在1998年对铝型材挤压成型中热动力学和摩擦学进行了研究。他采用热力学数值模拟法构造了3种不同的实验模型,分析了模具工作带和流动金属接触面上的摩擦特性,还对坯料温度和挤压过程中产生的热量对模具工作带所产生的温升的影响、并进行了实际测量验证;研究表明,挤压过程中的摩擦对铝型材的精度和表面质量有直接影响,模具工作带的磨损过程取决于挤压过程中的热动力学性能,挤压热动力学性能又受到挤压变量的严重影响。   在二次开发方面,国内的一些研究进展也值得关注。陈泽中、包忠诩等通过系统集成和二次开发,建立了基于UG和ANSYS的铝型材挤压模CAD/CAE/CAM系统,并对分流组合模进行了CAD/CAE/CAM研究,有效提高了模具设计制造效率。深圳大学的李积彬用C语言编写了铝型材挤压模具参数设计的程序,以流程图的形式详细引导铝型材挤压模具的设计过程;以人机对话的形式实现铝型材挤压模具参数的优化设计。兰州铁道学院的段志东通过ANSYS提供的强大的前后处理和求解功能平台,通过在ANSYS应用程序中添加自己的铆钉有限元程序,介绍并总结了用UIDL对ANSYS进行图形用户界面二次开发的一般步骤和规律,铝型材为用户在扩充ANSYS功能、建立自己专用程序的同时建立起对应的图形驱动界面提供了有益的帮助。江苏戚墅堰机车车辆工艺研究所的盛伟以ANSYS软件为平台,进行金属塑性成形过程模拟软件的二次开发,并应用该软件对锻件塑性成形过程进行了模拟,为提高锻件质量、预测金属成形中的缺陷、制定合理工艺提供了理论依据。   但总的说来,这些研究多侧重于理论化,一种真正适合普通设计制造人员使用的挤压模有限元分析软件在国内几乎还没有。有些二次开发在具体应用上也有很大的局限性,所以对现行有限元软件的用户化研究,使之能更好的应用于挤压模具的设计就成为当务之急。

铝材挤压模具的使用条件及其损坏原因分析

2018-12-29 09:42:51

在挤压过程中,挤压工、模具的工作条件是十分繁重的。随着挤压产品品种的增加和规格大型化、形状复杂化、尺寸精密化、材料高强化以及大型的高比压挤压筒和新的挤压方法的不断出现,挤压工模具的工作条件变得更为恶劣了,对它们的要求也越来越高了。下面概括地分析一下铝合金挤压工模具的使用条件及其损坏原因:   (1)承受长时高温作用。在挤压过程中,直接与高温铸锭接触并参与变形的挤压工具(挤压筒、挤压垫片、针后端、冲针等)和模具(模子、模垫、针尖、舌模套、模支承等)的表面温度有时局部可高达550℃以上。承受高温作用的时间一般为几分钟到几十分钟,对于挤压速度慢的难变形铝合金来说,有时长达数小时以上。长时间的高温作用,大大地恶化了金属与工具之间的摩擦条件,降低了工模具材料的强度,以至于产生塑性变形,加速其破损。   (2)承受长时高压作用。表4—1—2列出了铝合金挤压成形时所需的最小单位压力。为了获得不同的比压以满足不同合金和品种变形的要求,设计和制造了具有不同比压的挤压机和挤压筒。表4—1—3列出了部分挤压筒的比压。  (3)承受激冷激热作用。穿孔针、模子和挤压垫片等工具,工作时间和非工作时间的温差,挤压铝合金时可达200~300℃以上。而在水冷模挤压、穿孔挤压时,工模具中的温度梯度更大,变化更激烈。加之,工模具材料的传热能力较低,很可能在工模具中产生大的热应力,使其工作条件更为恶化。在激冷激热作用下,工模具极易产生微裂或热疲劳裂纹。   (4)承受反复循环应力作用。在工作时间,工模具要承受很高的压力,而在非工作时间里则突然卸载,应力下降到零,而且,有的工具(如穿孔系统的工具)在挤压过程中有时受压,有时受拉,因此,工模具部件中的应力状态是极其复杂和极不稳定的。在这种反复循环,拉压交变的应力作用下,工模具极易产生疲劳破坏。   (5)承受偏心载荷和冲击载荷作用。在穿孔和挤压时,特别在挤压复杂断面型材、空心型材、大直径小内孔的厚壁管材时,工模具内会产生很大的附加应力,或引起很高的应力集中。在细长件、薄壁空心件(如实心和空心挤压轴,穿孔针组件等)中,还会受到偏心载荷、冲击载荷、扭曲和横向弯曲应力的作用。主应力和这些附加应力迭加,会形成很高的工作应力。在这种复合应力的作用下,工模具最易丧失其稳定性、产生弯曲、扭断或折断。   (6)承受高温高压下的高摩擦作用。铝合金在挤压时的主要特点之一是极易与工模具表面产生“粘结”作用,即在高温高压作用下,合金中的V、Fe、Si等溶质原子渗透到工模具表面层而产生焊合作用,在与高温金属直接接触的挤压筒内套、穿孔针和模子等的表面粘附一层金属。在高温高压作用下,这些粘附的金属层不断形成,又不断被破坏,经多次反复磨损,而引起工模具失效。   (7)承受局部应力集中的作用。由于新产品形状比较复杂,相应的模具和工具(如扁挤压筒、轴、舌模和平面分流组合模等)的形状和结构也比较复杂,因而在高温高压下容易产生局部的应力集中,从而引起局部变形或局部压塌。   总之,在穿孔或挤压时,工模具的工作条件是十分恶劣的,引起其变形和损坏的因素也是错综复杂的。因此,在设计时应尽可能考虑各种不利因素的影响,选择合理的结构,进行可靠的强度校核,规定合理的加工工艺和热处理工艺,选择合适的材料。

铝挤压模具的加工质量及控制

2019-01-14 13:50:17

1前言    在铝合金型材挤压生产过程中,模具起着至关重要的作用。合理的模具结构,是产品成型和尺寸精度的重要保证,特别是在控制空心铝型材的焊缝组织和力学性能方面尤其重要。而模具加工是实现模具设计者的理念和保证模具结构精度的重要环节。但由于加工设备的性能和精度的限制,再加上加工人员的水平参差不齐,往往是使制造出来的模具存在着或多或少的缺陷,给后续的挤压生产带来不必要的困扰,也使得有些产品的交货日期延误。我公司通过采取一系列措施,使模具的加工质量得到控制,模具的加工精度稳步提高。下面就我公司在模具加工过程中碰到的质量问题及采取的控制措施作具体阐述。    2模具加工的质量状况    2.1加工过程的容易出现加工缺陷    由于制造设备的性能与精度以及操作人员的水平等因素。造成加工的模具与设计图纸不完全相符但又不报废,这样就生产出了不完全合格的模具,既是有加工缺陷的模具。这些模具在挤压生产中会造成型材产品的质量问题。例如;模具的加工空刀精度对型材产品的起骨,拖铝,偏壁,线纹等质量问题生产影响;工作带的角度不正。会影响型材产品的成形等。图2为我公司统计的加工缺陷对产品品质质量影响的比例状况。由图可以看出工作带与空刀缺陷占得比例较大,其余缺陷影响较均衡    2.2缺陷的成因及对质量影响    2.2.1工作带精度不高    工作带直接与金属铝接触摩擦,对型材的成型与尺寸起着关键的作用。但由于加工人员在铣电极时,工作带分段不准确,高低工作带之间不采用圆弧过渡,会造成成型材表面起骨或骨影。另外,工作带角度不正,平面度不够,往往是由于线切割纹比较粗,抛光量过大,抛光人员的水平和习惯造成工作带的正角度或负角度,使得模具在使用中出料变得阻慢或加快,给模具设计或修模人员以误导,并使型材的成形变得困难。工作带的光洁度差及进出口的倒角不够易造成型材表面的机械纹变多。    2.2.2空刀尺寸过大或过小    在铣加工多模芯空刀时,由于粗铣模芯为整体,各模芯之间壁厚没有加工出来,加工人员经常按图纸事先预定的空刀尺寸加工,极易造成小模芯处的空刀过大而稳定性变差,形成型材的壁厚不均即偏壁。而在加工空刀尺寸较小的悬臂部分尤其是接近工作带部分,电火花没有精打造成塞模,或拖铝纹粗,或是电极在对刀时偏离中心,使悬臂部分的空刀不均匀,即一边空刀大,一边空刀小,挤压时悬臂偏向一边或者断裂,致使模具报废。    2.2.3分流孔、焊合室、导流的光洁度,平整度及锥度不够    分流模加工,在分流模模芯与分流桥处常常出现三角形的死区位,这主要是因为铣刀在摆度时不到位或者摆的角度次数太少引起的。挤压生产时该区域金属流动不畅,焊合性能差,使型材产生阴阳面或者该处的表面线纹增多。焊合室导流的光洁度与平整度(有些带锥度)不够。主要是精铣或者磨平面时,工件摆放不平,或铣加工转速过慢,锥度不够时是磨铣刀时锥度没有磨准,这些缺陷会引起型材的线纹增粗增多。    2.2.4分流桥倒角不圆润,供料孔(槽)不顺畅

挤压黄铜管、棒、型材典型工艺

2019-05-29 17:56:52

揉捏黄铜管、棒、型材典型技术揉捏黄铜棒材典型技术&nbsp; &nbsp;&nbsp;揉捏黄铜棒材时为避免锭坯表面缺点压人到制品内,形成揉捏缩尾过长现象,一般多选用脱皮揉捏技能。揉捏棒材时,压余的厚度能够依照技术规程中的上限操控。&nbsp; &nbsp;铜及铜合金捧材多选用平模揉捏,为了削减棋孔的磨拐,避免棋孔变形一般将模孔人口处规划成半径为2-5 nun的圆弧。揉捏黄铜管材典型技术&nbsp; &nbsp;穿孔揉捏黄铜管材的首要缺点有表里表面缺点和壁厚不平等,为保证揉捏黄铜管材表里表面无氧化物压人、无气泡等.现代揉捏技能中管材也选用脱皮揉捏。管材脱皮揉捏时,应该考虑挑选合理的脱皮揉捏垫片。如选用定心脱皮垫片、组合脱皮揉捏垫片等,避免呈现揉捏管材偏疼凌品。为避免某些金属的揉捏制品流出摸孔后发生高温氧化,能够选用水封揉捏技能和保护性气体揉捏等办法。&nbsp; &nbsp;&nbsp;揉捏紫铜、黄铜时,管材内径大于们20 mm以上的揉捏管材能够选用堵板揉捏技能.削减因穿孔形成的料头(萝卜头》丢失,进步其管材的成品率。揉捏大直径管材时,如管材直径在声300 mm以上的制品.也能够在大型正向揉捏机上完成反向揉捏甘材。选用这种办法不光能够获得大直径管材,并且还能够大大削减穿孔废品,可是揉捏管材的长度受揉捏轴长度和设备结构的约束,管材的表面质量也比较差。&nbsp; &nbsp;黄铜管材揉捏时的压余厚度能够依照技术规程中的下限操控。管材揉捏多选用圆锥模。

空心铝型材挤压模具的几种修模方法

2018-12-20 09:35:33

铝型材挤压模具在铝型材挤压工序中举足轻重,是保证产品成形,使其具有正确形状、尺寸和精度的基本工具。在实际生产中,针对挤压空心铝型材可能出现的几个问题,我们一一给出相应的修模方法。  一、有缝角或焊合不良  空心铝合金型材采用平面分流组合模挤压,金属经过分流、焊合的过程,所以空心型材是存在焊合线的,如果金属焊合不好出现缝隙,则是一种缺陷。  产生缝隙的原因有两个,一是分流孔、焊合室狭小,金属供流不足,金属在焊合室没有形成足够的静水压力,产品未焊合好而流出模孔,导致制品存在焊合缝隙;二是过量润滑和不良润滑引起空心型材焊合不良导致。前者可采用研磨或铣削扩大分流孔和焊合室面积,加大金属供流,使金属在焊合室内能够形成足够的静水压力加以解决,后者采用无润滑挤压工艺即可。  二、铝合金型材壁出现下凹或上凸的弓形面  1、空心铝合金型材壁下凹弓形面产生原因:模芯工作带低于下模模孔工作带,模芯工作带的有效长度过短所引起。  修正方法:在模芯和下模之间放置隔环,使模芯工作带在受力状态下与下模模孔定径带等高。同时,在下模的出口部位减掉同一厚度。  2、空心铝合金型材壁外凸产生原因:模具使用时间过长,模芯工作带严重磨损,出现沟槽,加大了摩擦阻力,金属流动缓慢引起空心型材壁外凸。  修正方法:如果型材壁厚公差允许的话,可以锉修或打磨模芯的工作带表面,降低摩擦阻力;如果模芯工作带磨损程度很严重,且型材壁厚已达到上偏差时,可将模子预热到300℃左右,补焊模芯外形,再锉修到要求尺寸并抛光后使用;如果模芯工作带没有被磨坏,则锉一锉模芯工作带外侧阻碍处和内侧的滞留处即可。  三、铝合金型材表面条纹  挤压型材外表面出现条纹,在阳极氧化后表现更为明显。该缺陷多见于型材壁厚差大的部位、分流桥下金属的焊合部位和内侧带有“枝杈”处及螺纹孔处的背面上。  产生原因:  1、型材内侧的“枝杈”和螺纹孔部位因金属供流不足或过量引起表面条纹;  2、模具分流桥下的焊合区部位引起的型材表面条纹;  3、型材断面图设计存在的问题,由于型材的壁厚差大,工作带长度突变处的部位在阳极化后产生条纹状色差;  4、因机台冷却能力不够,造成阳极化后黑色斑纹区域;  5、铸坯本身的质地不好,影响挤压材阳极化后条纹色差。  修正方法:  1、检查客户的图纸上在型材装饰面是否存在诸如型材壁厚差大、枝杈和螺纹孔;  2、分流桥应设计在型材非装饰面上,在保证模子强度的同时,焊合室应尽可能大一些,使金属能够形成足够的静水压力;  3、大直径管材或大尺寸空心型材模,在阳模上可设有上焊合室;  4、型材内侧的“枝杈”或螺纹孔处条纹,其修模方法是抛光这些部位的模孔工作带、打磨光滑,或者修改或减少这些部位的连接过渡半径;  5、有时条纹是由铸坯材质本身形成的,要求铸坯的加热温度均匀,均匀化退火彻底;  6、挤压材出模孔之后,其晶粒度取决于进入淬火区的温度和淬火区冷却速度。如果冷却温度过低、冷却速度不均匀会造成晶粒过大或晶粒大小不均,在阳极化后色差会更加明显,要求操作人员及时调整冷却系统的风压和冷却水压的大小。  四、铝合金型材弯曲和扭拧  产生原因:  1、模芯和下模孔的工作带配合不合理,引起型材各部位金属流速不均;  2、对称空心型材模的分流孔大小和位置加工不对称,金属供流不均衡,引起金属流速不均匀;  3、分流孔加工不规整或者在模芯上有阻碍物阻碍金属流动。  修正方法:  1、用适当的方法打磨模芯或分流孔的出口部位,必要时适当扩大这些分流孔使供料均衡。  2、用打磨方法去掉阻碍物。

工业铝型材挤压模具设计思路与步骤

2018-12-25 10:08:17

一、工业铝型材挤压模具设计时应考虑的因素  工业铝型材挤压模具设计是介于机械加工与压力加工之间的一种工艺性设计。除了应参考机械设计所需遵循的原则以外,尚需考虑热挤压条件下的各种工艺因素。  (1)由模子设计者确定的因素  工业铝型材挤压机的结构,压型嘴或模架的选择或设计,模子的结构和外形尺寸,模子材料,模孔数和挤压系数,制品的形状、尺寸及允许的公差,模孔的形状、方位和尺寸,模孔的收缩量、变形挠度、定径带与阻碍系统的确定,以及挤压时的应力应变状态等。  (2)由模子制造者确定的因素  模子尺寸和形状的精度,定径带和阻碍系统的加工精度,表面光洁度,热处理硬度,表面渗碳、脱碳及表面硬度变化情况,端面平行度等。  (3)由挤压生产者确定的因素  模具的装配及支承情况,铸锭、模具和挤压筒的加热温度,挤压速度,工艺润滑情况,产品品种及批量,合金及铸锭品质,牵引情况,拉矫力及拉伸量,被挤压合金铸锭规格,产品出模口的冷却情况,工模具的对中性,工业铝型材挤压机的控制与调整,导路的设置,输出工作台及矫直机的长度,工业铝型材挤压机的能力和挤压筒的比压,挤压残料长度等。  在设计前,拟订合理的工艺流程和选择最佳的工艺参数,综合分析影响模具效果的各种因素,是合理设计挤压模具的必要和充分条件。  二、铝型材模具设计的原则与步骤  在充分考虑了影响设计的各种因素之后,应根据产品的类型、工艺方法、设备与模具结构来设计模腔形状和尺寸,但是,在任何情况下,模腔的设计均应遵守如下的原则与步骤。  (1)确定设计模腔参数  设计正确的挤压型材图,拟订合理的挤压工艺,选择适当的挤压筒尺寸,挤压系数和工业铝型材挤压机的挤压力,决定模孔数。这一步是设计挤压模具的先决条件,可由挤压工艺人员和设计人员根据生产现场的设备条件、工艺规程和大型基本工具的配备情况共同研究决定。  (2)模孔在铝型材模子平面上的合理布置  所谓合理的布置就是将单个或多个模孔,合理地分布在模子平面上,使之在保证模子强度的前提下获得最佳金属流动均匀性。单孔的棒材、管材和对称良好的型材模,均应将模孔的理论重心置于模子中心上,各部分壁厚相差悬殊和对称性很差的产品,应尽量保证模子平面x轴和l,轴的上下左右的金属量大致相等,但也应考虑金属在挤压筒中流动特点,使薄壁部分或难成形部分尽可能接近中心,多孔模的布置主要应考虑模孔数目、模子强度(孔间距及模孔与模子边缘的距离等),制品的表面品质、金属流动的均匀性等问题。一般来说,多孔模应尽量布置在同心圆周上,尽量增大布置的对称性(相对于挤压筒的X、Y轴),在保证模子强度的条件(孔间距应大于30~50mm,模孔距模子边缘应大于25~50mm),模孔间应尽量紧凑和尽量靠近挤压筒中心(离挤压筒边缘大于20~40mm)。  (3)模孔尺寸的合理计算  计算模孔尺寸时,主要考虑被挤压合金的化学成分、产品的形状和公称尺寸及其允许公差,挤压温度及在此温度下模具材料与被挤压合金的热膨胀系数,产品断面上的几何形状的特点及其在挤压和拉伸矫直时的变化,挤压力的大小及模具的弹塑性变形情况等因素。对于型材来说,一般用以下公式进行计算:  A=A0+M+(KY+KP+KT)A0(4—3—1)  式中A0——型材的公称尺寸;  M——型材公称尺寸的允许偏差;  KY——对于边缘较长的丁字形、槽形等型材来说,考虑由于拉力作用而使型材部分尺寸减少的系数;  KP——考虑到拉伸矫直时尺寸缩减的系数;  KT——管材的热收缩量。  KT=t·(α-t1)·α1(4—3—2)  式中t和t1——分别为坯料和模具的加热温度;  α和α1——分别为坯料和模具的线膨胀系数。  对于壁厚差很大的型材,其难于成形的薄壁部分及边缘尖角区应适当加大尺寸。对于宽厚比大的扁宽薄壁型材及壁板型材的模孔,桁条部分的尺寸可按一般型材设计,而腹板厚度的尺寸,除考虑公式(4—3—1)所列的因素外,尚需考虑模具的弹性变形与塑性变形及整体弯曲,距离挤压筒中心远近等因素。此外,挤压速度,有无牵引装置等对模孔尺寸也有一定的影响。  (4)合理调整金属的流动速度  所谓合理调整就是在理想状态下,保证制品断面上每一个质点应以相同的速度流出模孔。尽量采用多孔对称排列,根据型材的形状,各部分壁厚的差异和比周长的不同及距离挤压筒中心的远近,设计不等长的定径带。一般来说,型材某处的壁厚越薄,比周长越大,形状越复杂,离挤压筒中心越远,则此处的定径带应越短。当用定径带仍难于控制流速时,对于形状特别复杂,壁厚很薄,离中心很远的部分可采用促流角或导料锥来加速金属流动。相反,对于那些壁厚大得多的部分或离挤压筒中心很近的地方,就应采用阻碍角进行补充阻碍,以减缓此处的流速。此外,还可以采用工艺平衡孔,工艺余量或者采用前室模、导流模、改变分流孔的数目、大小、形状和位置来调节金属的流速。  (5)保证足够的模具强度  由于铝型材挤压时模具的工作条件十分恶劣,所以模具强度是模具设计中的一个非常重要的问题。除了合理布置模孔的位置,选择合适的模具材料,设计合理的铝型材模具结构和外形之外,精确地计算挤压力和校核各危险断面的许用强度也是十分重要的。目前计算挤压力的公式很多,但经过修正的别尔林公式仍有工程价值。挤压力的上限解法,也有较好的适用价值,用经验系数法计算挤压力比较简便。至于模具强度的校核,应根据产品的类型、模具结构等分别进行。一般平面模具只需要校核剪切强度和抗弯强度。舌型模和平面分流模则需要校核抗剪、抗弯和抗压强度,舌头和针尖部分还需要考虑抗拉强度等。强度校核时的一个重要的基础问题是选择合适的强度理论公式和比较精确的许用应力。近年来,对于特别复杂的模具可用有限元法来分析其受力情况与校核强度。  三、铝型材模具设计的技术条件及基本要求  模具的结构、形状和尺寸设计计算完毕之后,要对模具的加工品质、使用条件提出基本要求。这些要求主要是:  (1)有适中而均匀的硬度,模具经淬火、回火处理后,其硬度值为40~52HRC(根据模具的尺寸而定,尺寸越大,要求的硬度越低)。  (2)有足够高的制造精度,模具的形位公差和尺寸公差符合图纸的要求(一般按负公差制造),配合尺寸具有良好的互换性。

铝型材挤压模具电加工时要注意的几点

2018-12-25 14:53:30

铝型材挤压模具电加工时要注意的以下几点:   1、线切割挤压模具模孔工作带时电流要稳定,使切割后的模孔尺寸均匀、孔壁平整;   2、切割铝挤压模具模孔工作带时电流不易过大,以防熔融层过厚,因为熔融层是模孔工作带脆裂性剥落的主要原因之一,加工放电间隙控制在0.01mm;   3、电火花加工挤压模具工作带空刀时,电流不易过大,以防烧伤加工面,放电间隙控制在0.05~0.1mm, 粗打空刀时在距工作带最高处1mm时卸下电极磨平,根据模孔工作带的宽度修正电极的工作面成曲面形(要求其面平正,粗糙度要低),调换极性,进行精加工,这样可确保加工到位,且空刀垂直面光洁平整,减少制品表面模线。