铝合金熔铸测渣技术及应用
2018-12-19 17:39:35
一熔体质量影响 熔体纯净化是提高铝材质量的共性技术基础,也是提升铝材品质的关键技术。熔体中气体和非金属夹杂物的存在均有显着的影响。主要包括:坯料的后续加工成形性能,最终产品的物理性能,力学性能,抗腐蚀性能,结构完整性与外观质量。 二影响熔体质量的因素 1外部材料:原辅材料质量,废料类别和添加比例; 2熔炼及在线处理: 熔体温度,静置时间,炉内精炼,扒渣作业,炉子清洁程度,铝液转炉/浇筑,流槽卫生及干燥程度,工具干燥程度; 除气,过滤,细化添加剂; 3铸造过程:分配袋,金属流量,金属温度,操作不规范。 三杂质分类 1气体杂质:H2 2碱性杂质:Na,Ca,Li等。 3非金属杂质:通常说的夹杂物 Al2O3,尖晶石,MgO,FeO,MnO; AlN,TiB2,(Ti,V)B2,Al4C3; MgCl2,NaCL2,CaCl2盐类; 4液态杂质:低熔点的氯化物,氟化物及其混合物。 四如何判断熔体质量的好坏 1高质量的产品必须以减少或消除铝熔体中的非金属夹杂物为最终目的; 2国内外熔体处理的手段非常多,但是处理后的效果如何就需要一个准确点评价体系; 3熔体内夹杂物评价是对所使用的熔体处理系统进行综合的判断与分析,在全面系统地对全流程的熔体处理进行定量分析的基础上建立评价标准,使过滤器的选择与使用更具科学性,寻求以最经济合理的过滤方式达到铝制品性能的最优化。 五熔体内夹杂物评价方法 1目前主要的评价手段以离线分析为主,即将过滤前后熔体取样后,测定夹杂含量并进行对比,常规方法包括定量金相法,化学分析法,图像扫描法(IA),容量法,扫描电镜法(SEM),激光衍射颗粒尺寸分析法(LDPSA),非破坏超声法(CUS),激光显微探针质谱分析法(LAMMS),X射线衍射法(XPD),光电扫描法,俄歇电子光谱法(AES)等。离线分析虽准确性高,但检测结果滞后于熔铸过程,仅能表达取样时刻的过滤效率,无法及时跟踪过滤效率低变化情况并做出调整。 2西方发达国家针对高端铝制品对质量对严格要求,开发了多种用于生产现场的新的评价技术。 11LiMCA11液态金属洁净度分析仪,由加拿大ABB公司发明。 22PoDFA装置,由加拿大铝业公司发明; 33LAIS法,由美国联合碳化物公司发明; 44Prefil—Footprinter装置,由加拿大ABB公司发明。 东北大学副教授:王向杰
王向杰:铝合金熔铸测渣技术及应用
2019-01-10 09:43:59
12月3日,以“聚焦熔铸技术、引领加工未来;专注技术探讨、实现利益共赢”为主题的2015(第二届)中国国际铝熔铸峰会在哈尔滨召开。会议由上海易贸商务发展有限公司联合中国有色金属加工工业协会、哈尔滨东盛金属材料有限公司举办,作为业内熔铸行业交流平台,会议聚集了业内资审专家学者与生产技术精英,就行业前沿工艺与生产技术展开探讨,共同推动熔铸行业技术升级,推进行业发展。 东北大学副教授王向杰在会上发表了《铝合金熔铸测渣技术及应用》的主题演讲。(原定演讲者为中铝瑞闽股份有限公司技术质量部主任工程师罗筱雄,因其有事未能出席)。演讲内容涉及熔体质量影响,影响熔体质量的因素,杂质分类,如何判断熔体质量好坏,熔体内夹杂物评价方法等内容。 一 熔体质量影响 熔体纯净化是提高铝材质量的共性技术基础,也是提升铝材品质的关键技术。熔体中气体和非金属夹杂物的存在均有显著的影响。主要包括:坯料的后续加工成形性能,较终产品的物理性能,力学性能,抗腐蚀性能,结构完整性与外观质量。 二 影响熔体质量的因素 1 外部材料:原辅材料质量,废料类别和添加比例; 2 熔炼及在线处理: 熔体温度,静置时间,炉内精炼,扒渣作业,炉子清洁程度,铝液转炉/浇筑,流槽卫生及干燥程度,工具干燥程度; 除气,过滤,细化添加剂; 3 铸造过程:分配袋,金属流量,金属温度,操作不规范。 三 杂质分类 1 气体杂质:H2 2 碱性杂质:Na,Ca,Li等。 3 非金属杂质:通常说的夹杂物 Al2O3,尖晶石,MgO,FeO,MnO; AlN,TiB2,(Ti,V)B2,Al4C3; MgCl2,NaCL2,CaCl2盐类; 4 液态杂质:低熔点的氯化物,氟化物及其混合物。 四 如何判断熔体质量的好坏 1 高质量的产品必须以减少或消除铝熔体中的非金属夹杂物为较终目的; 2 国内外熔体处理的手段非常多,但是处理后的效果如何就需要一个准确点评价体系; 3 熔体内夹杂物评价是对所使用的熔体处理系统进行综合的判断与分析,在全面系统地对全流程的熔体处理进行定量分析的基础上建立评价标准,使过滤器的选择与使用更具科学性,寻求以较经济合理的过滤方式达到铝制品性能的较优化。 五 熔体内夹杂物评价方法 1 目前主要的评价手段以离线分析为主,即将过滤前后熔体取样后,测定夹杂含量并进行对比,常规方法包括定量金相法,化学分析法,图像扫描法(IA),容量法,扫描电镜法(SEM),激光衍射颗粒尺寸分析法(LDPSA),非破坏超声法(CUS),激光显微探针质谱分析法(LAMMS),X射线衍射法(XPD),光电扫描法,俄歇电子光谱法(AES)等。离线分析虽准确性高,但检测结果滞后于熔铸过程,仅能表达取样时刻的过滤效率,无法及时跟踪过滤效率低变化情况并做出调整。 2 西方发达国家针对高端铝制品对质量对严格要求,开发了多种用于生产现场的新的评价技术。 11LiMCA11液态金属洁净度分析仪,由加拿大ABB公司发明。 22PoDFA装置,由加拿大铝业公司发明; 33LAIS法,由美国联合碳化物公司发明; 44Prefil—Footprinter装置,由加拿大ABB公司发明。(记者 邵琦萍)
富锰渣价格
2017-06-06 17:49:50
富锰渣价格,上海有色网资讯:什么是富锰渣?你说的是工业冶炼方面的问题.就是冶炼后的废弃物,里面的锰含量很高.国家提倡要提高资源的利用率.可以将富锰渣里面的锰再提炼出来或者锰的化合物加以利用.富锰渣的用途只要有四个方面:1用作生产硅锰合金的原料 2 用作生产金属锰的原料 3 用作生产电炉锰铁和中低锰铁的配料 4 用作冶炼高炉锰铁的配料品名规格钢厂/产地出厂含税价(元/吨)涨跌备注相关资源富锰渣Mn30% Fe<3.5%广西1450--查看富锰渣Mn33%广西1550--查看富锰渣Mn30%湖南1450--查看富锰渣Mn40-42% Fe<2%P0.02Si20广西2000-2200<td nowrap="now
镍渣的回收处理方法以及设备
2019-01-24 09:36:35
镍渣是冶炼镍铁合金时产生的固体冶炼废渣,这些冶炼废渣中仍存在少量的镍铁合金颗粒,由于镍铁价格高昂,回收这些镍铁冶炼渣中的镍铁颗粒可获得较为可观的经济效益,同时也减少了对固体废渣对土地的侵占和对环境的污染,那么镍渣的处理方法和处理设备是什么呢?
镍渣按照其形成的方法可分为干渣和水渣,干渣多成块状,性脆易碎。水渣的形成是干渣在融熔状态下淬水形成的细小颗粒,比重较小,性硬脆。因此,干渣和水渣的处理方法上也存在一定的区别,例如:干渣多为块状,镍铁颗粒嵌布在块状干渣中,要想回收这些合金颗粒,必须经过破碎,研磨打破连生体状态,使渣与合金颗粒分离。而水渣由于淬水后渣与合金已全部单体解离,基本不需要破碎与研磨即可进入分选流程。
区分了干渣与水渣之后,我们再来了解一下镍铁合金的组成。镍铁合金中镍含量高于7则称为是高镍,低于7则称为低镍。而这些合金随镍含量的提高导磁性逐渐下降,当镍含量达到14时,镍铁合金颗粒几乎没有任何磁性。因此要想分选出这些镍铁合金颗粒,处理需要知道镍渣是干渣还是水渣之外,还需知道合金为低镍合金还是高镍合金。
对于高镍合金,由于其导磁性较差,采用磁选方法和磁选设备难以获得较好的分选指标因此需要考虑采用重选的方法予以回收处理。镍铁合金的比重较大,废渣的比重较小,利用重选的方法很容易从镍渣中回收镍铁合金,但前提是必须使镍铁合金与固体废渣单体解离。
对于低镍合金,其自身带有磁性,采用中等强度磁场的磁选设备即可对其进行高效的分选,使分选过程更为简单方便。
回收了镍铁合金后的固体废渣可以销向新型建材厂作为新型建材的原材料,添加剂等,基本实现对固体冶炼废渣的全部回收利用,且整个回收处理过程不对环境产生二次污染。
铅的鼓风炉熔炼主要设备渣铅沉淀分离设备
2019-01-07 07:51:24
一、电热前床我国无炉缸鼓风炉用电热前床进行渣铅分离;有炉缸鼓风炉用电热前床使渣进一步沉淀并起到保温作用,结构形式一般为长圆形、长方形或圆形,长圆形前床采用较广泛。
电热前床的计算包括三部分:炉用变压器的选择计算、电极直径和前床主要尺寸的确定。
(一)炉用变压器
1、炉用变压器的功率,即电热前床的功率,按下式计算: (1)
式中 P-炉用变压器功率,kVA;
A-液态渣的电能消耗,kW·h/t;
Q-液态渣的最大处理量,t/d;
K1-功率利用系数,一般为0.93~0.96;
K2-时间利用系数,一般为0.85~0.94;
cosφ-功率因素,一般为0.9~0.95。
由于电热前床的功率一般均较小,通常采用一台三相炉用变压器即可。
2、炉用变压器的二次电压,主要与炉渣的电导系数有光,一般炼铅炉渣的电导系数为0.4~1.3Ω-1·cm-1,但通常是根据同类型工厂的实践经验进行选择。
电热前床的炉用变压器的二次电压可做成5~8级,级差为8~12V。虽然工作电压一般在40~50V之间,但考虑到烘炉起弧电压比正常生产电压要高,因此,最高一级电压不宜小于90V。
电热前床采用石墨电极时,炉用变压器可采用手动无载调压。
(二)电极直径
电极直径按下式计算确定: (2)
式中 D-电极直径,mm;
Imax-炉用变压器最大电流强度,A;
j-电极许用电流密度,A/cm2。
表1为石墨电极许用电流密度。
表1 石墨电极许用电流密度,A/cm2级别石墨电极直径,mm75100150200250300350400500优级262824201817161513一级262621181616151412二级242418161515141311
三相炉用变压器的最大电流强度按下式计算。 (3)
式中 Imax-炉用变压器的最大电流强度,A;
P-炉用变压器的功率,kVA;
Vmin-炉用变压器二次电压中的最小一级电压,V。
(三)电热前床主要尺寸的确定
1、炉膛长度 前床长度按下式计算: (4)
式中 L-渣线处炉膛的长度,m;
l-电极中心距,m,通常为3~4D;
l1-渣线处入渣口端墙至最近电极中心的距离,m,通常为4.5~5.5D;
l2-渣线处出渣口端墙至最近电极中心的距离,m,通常为2.5~3.5D。
2、炉膛宽度 前床的炉膛宽度按下式计算:
(5)
式中 B-渣线处的炉膛宽度,m。
3、炉膛高度 前床的炉膛空间高度,当不在炉墙上设排烟孔时,可按下式计算:
(6)
式中 H -炉膛空间高度,m;
h-熔池深度,m,其中包括放一次渣的渣层高度和炉内存留的熔体(炉渣、粗铅、铜锍)的高度。通常每次放渣后,存留在前床内的熔体高度为0.75~0.85m。
4、床面积 前床的面积按下式计算:
长方形 (7)
长圆形 (8)
式中 F-床面积,m2。为了进一步检验炉用变压器的功率与床面积是否匹配,可用经验公式进行验算。 (9)
式中 ΔP-单位床面积功率,kVA/m2,一般为45~60。
最后还要参照同类工厂的电热前床的实际资料,进行一些必要的调整。表2为电热前床炉用变压器实例。
表3为电热前床的主要技术性能实例。
图1为13㎡电热前床示意图。
表2 电热前床炉用变压器性能实例床面积,㎡相数级数高压侧低压侧功率,kVA电压,V电流,A电压,V电流,A10316000
Y/Δ接线44.235.97600400258.647.87600610372.159.37600750472.171.06370750572.182095490750672.193.64810750133110000
Δ/Δ接线40508000694/248608000830356.2708000970464.18080001105572.29080001250110000
Y/Δ接线28.98000400234.68000480340.48000560446.280006405528000724
表3 电热前床技术性能实例项目单位床面积,㎡项目单位床面积,㎡101316.75①101316.75①前床内部尺寸:长
宽
高㎜520056006200电极中心距㎜120012001200㎜200026002700电极直径㎜400400500㎜175019602390变压器功率kVA7501250750电极数量根333①扩大前的床面积为14㎡。图1 13㎡电热前床
1-进渣口;2-放渣口;3-放铅门;4-电极
(因故图表不清,需要者可来电免费索取)
二、沉淀锅
有炉缸铅鼓风炉在炉内完成渣铅分离,从鼓风炉放出来的炉渣如采用回转窑挥发或堆存时,则先经沉淀锅分离出被渣夹带出的少量铅后,在进行水碎。
沉淀锅一般需要两台,分二级串联配置在不同标高上。沉淀锅的容积视鼓风炉渣量而定,为使渣与粗铅和铜锍沉淀分离得好,每台锅的生产能率可取10~14t/(m3·h)。
表4为铅鼓风炉沉淀锅尺寸实例
表4 铅鼓风炉沉淀锅尺寸实例名称单位鸡街冶江西冶炉渣产量t/d175~20040~50沉淀锅级数22沉淀锅容积m3/个0.770.38沉淀锅直径m1.261.00沉淀锅深度m0.750.66
铅的鼓风炉熔炼主要设备粗铅浇铸设备及排渣设施
2019-01-07 17:37:58
一、粗铅浇铸设备
粗铅浇铸设备目前有三种:
(一)铸锭车 一般在铸锭车上放置两个大锭模交替使用,用卷扬机牵引,冷却后用起重设备起吊脱模。
(二)圆盘铸锭机 在铸锭机上可设8~10个大锭模,顺次浇铸,冷却和脱模,其效率较高,运行也可靠。
(三)直线型铸锭机 该机用于浇铸小块铅锭(每块重45~50kg),该机效率高,运行可靠,且易配置。 二、排渣设施
炼铅、炼锌鼓风炉产出的炉渣,其主要成分为SiO2、FeO、CaO、Al2O3和ZnO;炼铅鼓风炉炉渣熔化温度为1000~1100℃,炼锌鼓风炉炉渣熔化温度为1200~1300℃;密度为3.3~3.6g/cm3;炼铅鼓风炉产出的炉渣量为粗铅量的0.8~1.5倍,炼锌鼓风炉产出的炉渣量为粗铅量的2~2.5倍。
1、炉渣用烟化炉吹炼 从鼓风炉放出来的炉渣,我国大中型厂用电热前床进行渣铅分离或进行保温。当烟化炉加料时,才将炉渣从电热前床中放出来注入渣包中,再用双钩桥式起重机将盛有熔渣的渣包吊运至烟化炉前并将熔渣倾入烟化炉。国外则多用大渣包盛放渣铅分离后的炉渣,烟化炉加料时,将大渣包中的炉渣倾入烟化炉。
烟化炉检修时,炉渣通常进行水碎,鼓风炉水碎渣通常作为烟化炉冷料,也可作烧结配料时用的返渣。
2、炉渣不用烟化炉吹炼 从沉淀锅流出来的炉渣直接进行水碎,水碎渣推存或用回转窑挥发以回收渣中的锌、铅、锗等有价金属;若回收不经济时,可予以丢弃。
(一) 炉渣水碎
1、炉渣水碎时的用水量一般按经验确定,通常炉渣与水的重量比为1∶6~10,冲渣水可以循环使用,即碎渣后的水由水碎渣池流入沉淀池,澄清和稍微冷却后流入中间水池,经循环水泵升压后再行冲渣;进入循环水泵时的水温应低于80℃。炉渣水碎的耗水量一般为1~1.5t/t。
铅鼓风炉水碎时水的压力为0.1~0.2MPa;炼锌鼓风炉渣水碎时水的压力为0.5MPa;水压越高,水碎渣的粒度越细;炉渣的熔化温度越高,要求水压越高。
2、水碎渣的粒度
水碎渣的粒度组成实例见表1。
水碎渣的堆积密度为1.7~2.0t/m3。表1 水碎渣粒度组成实例,%炉渣种类粒度,mm>22~0.50.5~0.250.25~0.10.01~0.05<0.05铅鼓风炉42.053.02.81.70.40.1锌鼓风炉10.044.025.08.02.90.1 3、炉渣水碎时对水的要求
炉渣水碎循环水中除含有炉渣固体物外,尚含有金属离子,化合物及其他杂质。株冶铅鼓风炉炉渣水碎循环水的水质分析如下(mg/L):
Cl Fe Cu Pb Zn Bi Ph
17.0 16.0 1.1 10.6 1.9 无 7.0
表2为铅锌冶炼炉渣用蒸馏水浸泡后的水质分析资料。
表2 铅、锌冶炼炉渣蒸馏水浸泡后的水质分析,mg/L成分炼铅鼓风炉
水碎渣炼锌鼓风炉水碎渣烟化炉水碎渣烟化炉水碎渣锌挥发窑窑渣竖罐炼锌罐渣Hg0.0010.00080.0018Cd0.00350.0010.0050.017As0.120.360.0570.0120.025Pb0.640.550.020.3~0.360.17Zn4.297.530.200.23Cu0.010.250.200.037F0.510.2151.700.007~0.01912.70 (二)水碎溜槽和水喷嘴
水碎溜槽不长时可用一段,太长时可分成数段,各段藉凸缘连接起来。炉渣水碎溜槽的深度一般为200~300mm,宽度为250~400mm。溜槽断面呈U形,其两侧壁厚20mm,底厚30mm,材质一般为HT28-48。溜槽安装角度不宜小于7°。
水喷嘴一般采用鱼尾状,喷嘴的水流方向与溜槽夹角为30°,使渣能与水充分接触,粒化效果最佳。
图1为鱼尾状喷嘴示意图
图2为喷嘴、渣流和溜槽的相对位置图1 鱼尾状喷嘴示意图图2 喷嘴、渣流和溜槽的相对位置示意图 (三)水碎渣池
水碎渣池容积大小与炉渣量和采用的捞渣设备有关。大中型厂采用扒渣机捞渣时,水碎渣池为长方形,长10~15m,宽3~4m,深2.5~3m;目前大中型多采用抓斗桥式起重机捞渣,其水碎渣池布置示意图见图3。图3 水碎渣池布置示意图 中小型厂多采用斗式提升机,水碎渣池容积较小,长2.5m,宽1.5m,深0.5~1.0m。
(四)捞渣设备
捞渣设备除与渣量多寡有关外,还与运渣设备有关,如小型厂用手推矿车或汽车运渣,宜用斗士提升机捞渣;大中型厂用汽车运渣,即可用抓斗桥式起重机,也可用扒渣机;但若用火车运渣,则应选用抓斗桥式起重机。
常用捞渣设备的适应性及其特点比较列于表3。
表3 常用捞渣设备的适应性及其特点比较设备名称(适用范围)设备特点抓斗桥式起重机(大中型厂)(1)生产效率高,装卸方便
(2)可将渣直接装入火车或汽车
(3)投资较大斗式提升机(中小型厂)(1)可用于垂直或倾斜方向运输
(2)设备简单,占地面积小
(3)需设中间渣仓,仓下环境不佳
(4)机电设备易被锈蚀,链条和料斗磨损严重,维修量大。扒渣机(大中型厂)(1)设备结构简单
(2)耗电量高,占地面积较大
(3)需设中间渣仓,仓下环境不佳
(4)钢丝绳、扒斗、滑道衬板磨损严重
(5)渣池清理困难且频繁
1、抓斗桥式起重机
抓斗桥式起重机捞渣方式通常是将水碎渣从水碎渣池中抓起来,在空中停留片刻,沥出大量的水后直接装入自卸汽车或火车车厢中运往渣场或烧结系统的精矿仓。也可将水碎渣抓出后先放置在水碎渣池旁边的地坪上将水沥干,再抓入运载车辆中,这样可降低水碎渣含水量,从而减少运输时的漏洒水量,减轻对运渣道路的污染。
水碎渣池和装载场地通常采用露天布置,因此抓斗桥式起重机应选用露天作业型,在南方多雨地区,尚需在桥式起重机上交雨棚,或可驶入有屋檐的避雨场所。
2、斗式提升机
用斗式提升机捞渣时,水碎渣从水碎渣池中被捞出并提升至贮渣中间仓。炼铅(锌)炉渣磨损性高,宜选用带斗式斗式提升机,对于硅酸盐含量高的炉渣可选用链斗式。提升铅鼓风炉水碎渣的斗式提升机性能实例如下:
斗容积 提升容积 生产能力 电动机功率 运行速度
4.4L 9.0M 4~8t/h 5.5Kw 0.7m/s 图4为斗式提升机提升水碎渣示意图。图4 斗式提升机提升水碎渣示意图
1-渣仓 2-斗式提升机 3-水碎渣池 4-渣溜槽 3、扒渣机
扒渣机的卷扬系统,多数工厂已实现自动控制。
扒渣机扒斗容积按下式计算:
式中 V-扒斗容积,m3;
Q-扒渣机的生产能率,t/h;
γ-水碎渣的堆积密度,t/m3;
φ-扒斗的充满系数,一般取0.6~0.9;
v1-重扒斗运行速度,m/s,一般取0.9~1.2;
v2-空扒斗运行速度,m/s,一般取1.4~1.7;
tn-扒斗扒料和卸料时间和,s,此值根据实际情况确定;
L-扒斗运行距离,m
表4为扒渣机技术性能实例。
表4 扒渣机技术性能实例性能甲厂乙厂扒斗有效容积,m30.280.6扒渣机生产能率,t/h21~2840滑道倾角23°30°滑道衬板规格,mm1920×1000×601850×820滑道衬板块数2519滑道衬板材料HT15-32HT12—28电动机功率,kW2230设备总重,t5236占地面积,㎡6555 图5为扒渣机布置示意图。
图5 扒渣机布置示意图
1-渣池;2-扒斗;3-渣仓;4-导向轮;5-双筒卷扬机;
6-滑道;7-尾部滑轮
钒渣的浸取及浸取设备
2019-02-21 15:27:24
一、浸取
依据钒渣来历及性质的不同,浸取的溶剂可所以中性、酸性或碱性。
(一)焙烧熟料的中性浸取
通过高温下化焙烧的熟料,钒现已转化为五价钒的钠盐,易溶于水。因而,大部分的钒均可溶解。因为熟猜中残留少数的碱,故溶液呈碱性,pH值约为7.5~9。一些可溶性离子如Fe2+、Fe3+、Cr3+、Mn2+、Al3+等均将水解而构成沉积。上述各离子的水解pH值如下:离子Fe2+Fe3+Mn2+Cr3+水解pH值6.5~7.51.5~2.37.8~8.83.3~44~4.9
(二)焙烧熟料的酸性浸取
当酸度增加时,将使贱价钒酸盐如Ca(VO3)2、Mn(VO3)2、Fe(VO3)2、Fe(VO3)3部分溶解。为此残渣在第2段浸取时将选用酸性浸取,以进步钒的浸取率。
四价钒用硫酸浸取时,可生成安稳的VOSO4:
VO2+H2SO4=VOSO4+H2O
进步酸度虽使钒浸取率进步,但浸取液中的杂质也相应增加,给净化工序增加了困难。
(三)焙烧熟料的碱浸及碳酸化浸取
含钙高的质料及增加氧化钙焙烧的熟料可选用碱性溶液浸取钒。例如:因为CaCO3的溶度积小于Ca(VO3)2,故在上述复分化反应中,使Ca(VO3)2分化构成CaCO3沉积,而 被浸取。通过CO2则可使溶液pH值下降,更有利于Ca(VO3)2的分化与浸取。
(四)直接酸浸
含钒质料的直接酸浸,首要用于处理含钒铀矿,一起收回铀和钒。浸取时一起增加氧化剂如二氧化锰或。运用浓硫酸在挨近沸点下浸取。铀、钒的浸取率可别离到达98%、85%。
(五)加压碱浸
含钒质料的直接碱浸,可在高压下200℃左右,通入压缩空气,使贱价钒氧化为五价钒而溶解。最终以Na3VO4·(5~12)H2O的结晶收回。
含钒原猜中的钒若以五价钒的状况存在,则亦可用浸取法提取。可选用50~300℃,0.1~20MPa,NH32~8mol/L的条件进行浸取。
二、浸取设备
在焙烧进程中会发生烧结及结团现象,为此浸取时仍需细磨以进步浸取率。一般是将熟料先水淬,再进湿球磨,细磨至-100目以下,然后可明显进步钒的浸取率,缩短钒的浸取时刻。一般通过湿球磨后,浆料即已完结浸取,进而送至稠密机进行固液别离。
焙烧熟料的碱浸,湿球磨后需要碳酸化浸取,一般是在机械拌和槽内进行,在槽底鼓入CO2气体(焙烧熟料的尾气或石灰窑气)。也能够运用气体拌和槽,俗称巴秋卡槽。假如质料是疏松多孔的块矿或焙烧球团,则可用渗滤浸取器。以上均参见图1。图1 浸取槽
a-气体拌和槽(巴秋卡槽);b-浸滤浸取槽
硅锰合金冶炼渣处理工艺及设备
2019-01-24 09:36:35
硅锰合金冶炼渣是冶炼硅锰合金时产生的固体废渣,一般呈绿色,硬脆,含有一定量的硅锰合金颗粒嵌布其中。硅锰合金冶炼渣如果不及时经过客户有效的处理,会对环境和人类健康造成一定的危害,这里公开一种新型的硅锰合金冶炼渣处理工艺流程及设备配置,不仅有效解决了硅锰合金渣的处理,还能够产生可观的经济效益。处理过程对环境不产生二次污染,具有高效,节能,环保等优势。基本可实现废渣的全吸收。
硅锰合金冶炼渣中存在一定量的硅锰合金颗粒,回收这些合金颗粒即可产生相当可观的经济效益,利用此工艺流程及设备配置投资小,见效快,是一种科学有效的硅锰渣处理工艺流程。下面详细介绍该工艺流程及设备配置。
回收硅锰渣中的合金颗粒就必须使合金颗粒和固体废渣基本单体分离,这就要求将废渣进一步破碎或研磨,选择破碎或者研磨需要根据废渣的具体情况确定,如果废渣中合金颗粒嵌布粒度较小,则考虑采用棒磨或者球磨,如果合金颗粒嵌布粒度较粗,直接进行破碎即可,选用高效细碎机或者细破碎机即可完成破碎过程。
破碎后的废渣中合金颗粒和废渣基本单体解离,由于合金颗粒具有较大的比重而废渣的比重较小,两者有较大的比重差,利用这一特点,我们可以采用重选的方法使合金颗粒和固体废渣分离。金属颗粒可再次冶炼或直接出售,其余废渣则销向水泥厂或新型建材厂作为新型建材产品的原材料。
硅锰合金冶炼渣的具体分选设备为跳汰机。跳汰机是一种重力选矿设备,它可以根据矿物与脉石的比重差进行分选,比重差越大分选效果越好,处理量越大。
硫酸烧渣提金新工艺和新设备
2019-02-21 15:27:24
一、硫酸烧渣提金技能现状与研讨方向
现在我国黄金资源的运用显着呈现勘探跟不上出产要求的局势,限制着我国黄金产量的进步,与此同时,从含金废料中和难选矿石中收回金的技能和扶持方针却不行抱负,这部分金资源没有得到充沛的运用.含金硫酸烧渣收回金技能急待开发。
我国每年发生含金硫酸烧渣几十万吨,现在仅大于3克/吨的烧渣得以运用.每年仅有7.5万吨的处理才能,其他烧渣或废崐弃或以十几元/吨的报价出售给水泥厂做质料,所含黄金白白丢失,非常惋惜。
从国内外的技能文献看,从烧渣中收回金的技能也只限于化工艺,重选、浮选、磁选、工艺等均处于研讨阶段。
现时的化工艺仅合适处理金档次高于2.5克/吨的硫酸烧渣,档次再低则赢利太低,出资难以在短期内收回,因而尽管具有较好的社会效益,但经济效益不显着而无建提金厂的积极性;堆浸法尽管能使出产本钱下降,但不能连续出产并且冬天无法出产,因而这种工艺也难以推行;重选、磁选和浮选均能崐收回烧渣中的一部分金,但收回率不如化法高并且从发生的精矿中再收回金时收回率不抱负,也难以推行。法药剂本钱高且浸出条件不易控制,溶液中金的收回尚满足的办法,还处在探究阶段,距工业运用尚远。
咱们以为,影响从烧渣中提金的主要因素有两个,一是出资过大、二是出产本钱过高.假如能处理这两个问题,低档次硫酸烧渣提金技能将被顺畅推行。
通过对我国推行运用的化法工艺进行研讨,发现该工艺存在如下问题:
(一)长春黄金研讨院的多年研讨证明,硫酸烧渣不须再磨化浸出率就能确保,选用磨矿工段的意图只是是为了确保化反响时矿浆被拌和均匀,不沉槽.磨矿工段出资达40余万元,出产本钱高达15元/吨,假如能通过其它办法砍掉该工段,化法的崐出资和出产本钱会大幅度下降。
(二)因为靠排放磨矿后稠密机溢流进行洗矿-除掉烧渣中溶出的铁铜等杂质,在磨矿进程中就不能加,因而贫液也不能悉数循环运用,贫液处理后排放不光使出产本钱进步,还发生环境污染问题,在一些环境质量要求高的区域,环保部门就不会同意建化厂。
(三)不少硫酸厂建在城市内,无满足的场所建较大的尾矿库.选用现在的化工艺时,不管用锌粉置换仍是用炭浆法,都有必要过滤尾别离出废渣,用机动车把渣运到它处。过滤工段添加了出资,又因磨矿使渣粒度变细添加了过滤难度、添加了出产本钱。
(四)选用锌粉置换将使贫液中锌浓度不断添加,恶化浸出条件,形成金收回率下降;因为烧渣硬度大,用炭浆法炭磨损大,金丢失多,出产本钱增高。
(五)化法的最大缺乏不在于反响时刻太长,一般至少要16小时,这就要求建很大体积的浸出槽,出资增大、电耗添加,厂房面积添加。
综上所述,从低档次硫酸烧渣中提金有必要开发新的浸出技能或新的工艺,下降出资和本钱。其详细研讨内容包含以下几个途径:
1、运用新的浸出设备,不磨矿即可确保浸出反响顺畅进行。并且浸出电耗不添加或添加较少。
2、运用浸出速度快的浸出办法,浸出时刻仅几小时或更短。可添加拌和强度来确保浸出效果,因为反响时刻短,单位电耗也不会添加许多。
3、选用贫液全循环工艺,不外排废水,节省废水处理费用,节省浸出药剂。
4、用固定床吸附法从贵液中收回金,不设洗刷工段或炭浆工段,浸后直接过滤,进步贵液金浓度以使吸附剂上金档次进步,削减设备出资和出产本钱。
通过很多的研讨和实验,挑选了水氯法工艺.小试结果表明,浸出率比化法高,其原因是化进程中烧渣颗粒上金表面发生阻止金浸出和分散的膜。均由烧渣的性质决议-尾渣制酸时的焙烧温度致关重要。二、新工艺和新设备的技能经济目标
(一)技能工艺目标
金收回率:55%
浸出时刻:3min 石灰耗量:3kg/t
电 耗:15kwh/t水 耗:0.15m3/t 耗量:3kg/t
投 资:80万元
出产本钱:38.6元/t 出产人员:35人
(二)黄金产量和产量、赢利
按每年出产300天,处理才能为100m3/d,烧渣金档次1.5g/t,收回率55%计,产金量如下:
每吨烧产金量: 1×1.5×55%=0.825g
日产黄金: 100×0.825=82.5g
年产金量: 300×82.5=24750g
每吨烧渣产量: 0.825×96=79.2元
日产量: 100×79.2=0.792万元
年产量: 300×0.792=237.6万元
年赢利: 300×100×(79.2-38.6)=120万元
按100万元出资核算,返还期为10个月。
用本工艺提金的最低经济档次为0.75g/t。
(三)新工艺与惯例化工艺比较
新工艺:
┌──除杂──┐ ↓ │ 烧渣→ 浸出→别离─→吸附→冶炼→制品金 ↓ 废渣 原化工艺: ┌────┬───────┐ ↓ ↓ │ 烧渣→球磨→分级→稠密→浸出→过滤或洗刷──┐ │ ↓ │ │ 废渣 │ │ │ │ 制品金←冶炼←吸附或置换←─┘ │ │ │ │ │ └───────┘
(四)新式固液别离设备的特色惯例固液别离设备有板框压滤机、带式过滤机、稠密机,板框压滤机的配套高压泵易损不易防腐,并且在压滤前要设拌和槽平衡流量,设备出资达150万元,电耗大;带式真空过滤机过滤带易损,不易防止氯的腐蚀,出资达200万元;稠密机不易处理大颗粒物料。并且防腐也不易,占地大,出资达150万元。
新式固液别离设备相似池浸用的浸出池,多池串联,上部设溢液口,下部设散布板,矿浆进入后,大颗粒物料很快沉降到池下部,水颗粒物料将通过溢液口向后面的池中流去,通过较长时刻的沉降,较清的贵液从固液别离设备中流出,进入吸附工段。待前面的池中充溢浸渣后,翻开散布板下面的排液阀并从池上部加水洗刷,从散布板下液出的贵液也进入吸附工段。新设备用混凝土制成,涂以防腐材料即可。出资仅30万元。
三、新工艺和设备的长处
浸出办法的长处:
(一)本浸出办法运用工业上广泛运用的(开始运用少数食盐)做浸出药剂及少数助剂,防止了的污染,运用的助剂下降的耗费,使其药剂本钱低于化法。
(二)本办法浸出时刻仅3分钟,因而浸出设备有用容积仅为化法的0.2%~0.4%,以处理才能100t/d的工厂为例,浸出设备有用容积仅0.3立米。不光出资可削减20%,浸出的电耗也可下降4~5kwh/t。
新式浸出设备的长处:
选用新式反响器,习惯大颗粒物料的浸出。惯例浸出设备只适用于处理200目以下的矿浆,不然就会呈现“沉槽”、压拌和浆等毛病。本设备容积很小,选用其它办法处理反响器问题,防止拌和不均。
新式固液别离设备具有出资少、出产本钱低、易防腐等特色。现有的过滤设备不能解防腐问题,并且报价很高,大约需求出资100万元,新式固液别离设备出资仅30万元。
新工艺的长处:
(一)省去了磨矿及相应的分级、稠密设备,削减出资40%左右;节省占地400平米;削减材料耗费10元/t;削减电费5元/t;削减操作工3~6人。
(二)不磨的烧渣自身粒度较大,一般在-80目占70%以上,40-80目占25%左右,其他5%在20-40目之间,沉降速度快。特别合适用新式固液别离设备进行液固别离。这种设备易于操作。与化工艺比较,省去了稠密机和压滤机,易于控制浸出液物量平衡。
(三)选用活性炭吸附法收回浸出液中的金,考虑到在吸附进程中或许发生沉积物,选用我单位已获专利的吸附槽。吸附设备出资仅2万元。
(四)因为在酸性含氯溶液中吸附金氯络合物,并使金离子终究转变为单质金。因而载金炭上金档次至少可富集到10kg/t,选用燃烧-溶解-复原的联合工艺即可出产出纯金。冶炼工艺设备简略,仅运用惯例药剂,与化法比,冶炼工段节省设备出资30万元,冶炼本钱也低于惯例工艺。
(五)贫液中杂质主要是铁、锌和铜,可用石灰沉积,别离掉杂质的溶液可循环运用;因为不断加氯,浸出液的酸度将不断添加,加石灰除杂的进程还会起到调理酸度的效果。
(六)与惯例化工艺比较,选用本工艺建造100t/d处理才能的提金厂,可节省设备出资80万元,下降出产本钱30元/t。使那些用化法处理没有赢利的低档次烧渣提金成为或许,换句话说,使烧渣的提金经济档次大幅度下降。
以处理才能100t/d的工厂为例,出资60~80万元,供电不超越50kw,处理本钱约40元/t,即便烧渣档次低至1.5g/t,浸出率为55%,年赢利也可到达100万元。
我国有这类烧渣的工厂至少10座,金档次都在2g/t以下,假如推行本工艺,每年至少收回金250kg。赢利1000万元以上。
四、硫酸烧渣提金工艺规划
(一)工艺数据
1、处理才能: 100t/d 2、浸出液浓度: 1.5kg/M3 PH=1.5-2.5 Cl-4kg/M3
3、液固比: 2~5∶1
4、反响时刻: 3 分钟
5、反响类型: 全返混
6、液固别离办法:新式固液别离设备
7、贵液中金收回办法:活性炭固定床吸附法
8、贫液循环办法:石灰中和沉积杂质后再循环
9、金浸出率:55%
10、废气处理办法: 烧碱液吸附再运用
(二)质料
1、烧渣金档次:1.67克/t
2、
3、石灰
4、活性炭:木质炭或果核炭
5、自来水
6、烧碱
(三)物料流量
1、硫酸烧渣: 4.17t/h
2、浸出液流量: 8.34~20M3/h
3、活性炭吸附剂用量: 1t
4、废气处理 排气量: >500M3/h
5、吸收液流量: 2-4M3/h
(四)工艺流程
┌──────────────────────────┐ ↓ │螺旋加料机─→浸出设备─→别离器─→炭吸附槽─→石灰中和─→杂质别离 ─┘ ↑ ↓ │ ↓ │ 废烧渣 └─────┐ 重金属 └────────────┐ ↓ │ 焙烧含氯废气─→固液吸附塔─→次溶液─— ┘ │ ↑ ↓ │ 提纯铸锭
铬铁冶炼渣处理工艺流程及设备配置
2019-01-04 09:45:48
铬渣是冶炼铬铁合金时产生的固体废渣,这些固体废渣如果不及时经过科学有效的处理,不仅会对环境和人类健康造成威胁,同时也会造成有用资源的浪费,这里简单介绍一下铬铁渣处理的工艺流程和设备配置。铬铁渣多为干渣,硬度较大,嵌布有粗,细布均匀的铬铁合金,回收这些铬铁合金可以产生可观的经济效益,也为铬铁渣的进一步处理打下铺垫,以下为铬铁渣处理工艺流程图:铬铁渣处理工艺流程简介:
该铬铁渣处理工艺流程以重力选矿的方法从铬铁矿渣中回收铬铁合金,采用两次跳汰机分选,分别获得粗粒和细粒铬铁合金颗粒,使铬铁回收的利益最大化。首先大块铬铁矿渣经过粗鄂式破碎机破碎成小块,小块铬铁矿渣进入细鄂式破碎机进行细破,使最终粒度控制在30mm以内,之后进入料仓,料仓下方设电磁振动给料机,将破碎后的铬铁渣均匀给入AM30跳汰机进行粗粒跳汰分选,得到粗粒铬铁合金和尾矿,尾矿中因嵌布有不少细粒铬铁合金,需采用棒磨机将AM30跳汰机尾矿进行研磨,得砂状铬铁矿渣,进入LTA1010/2跳汰机进行二次跳汰分选,得到细粒铬铁合金和废渣。该工艺流程对铬铁合金的总回收率在90%以上,是国内广泛应用的铬铁渣处理回收工艺流程。 铬铁渣处理设备配置清单:名称型号功率(KW)数量(台)粗鄂式破碎机PE400*600301细鄂式破碎机PEF250*1000371跳汰机AM3031LTA1010/231棒磨机Φ1200*4500551输送机600型5.5——给料机GZ30.351料仓20m³——1回收过铬铁合金后的铬铁渣中铬铁含量极低,均呈细粒状,可再次销售向水泥厂,新型建材厂等企业,制成新型建材,整个处理过程实现了对铬铁渣固体废料的全部回收利用,不仅减少了有用资源的浪费,同时也降低的固体废渣对土地的占用,对环境和人类健康的危害。我厂对铬铁渣,镍铁渣,不锈钢渣,硅锰渣等多种金属冶炼矿渣的处理和回收有丰富的经验和独到的见解,欢迎广大客户朋友到厂参观指导,共同探讨。