您所在的位置: 上海有色 > 有色金属产品库 > 焦炭粉

焦炭粉

抱歉!您想要的信息未找到。

焦炭粉价格

更多
抱歉!您想要的信息未找到。

焦炭粉厂家

更多

郑州荣昊环境科技有限公司

焦炭粉专区

更多
抱歉!您想要的信息未找到。

焦炭粉百科

更多

无需焦炭的非高炉炼铁技术

2019-03-07 09:03:45

珀斯──澳大利亚西澳州首府,从前被称为“国际上最孤单的城市”。但是,这些年来,我国客人却对这“最孤单的城市”情有独钟,一再到访。2007年9月4日,领导在相关人员的陪同下,观赏了澳大利亚力拓矿业集团的直接熔融复原炼铁工厂。炼铁车间观看了复原铁的冶炼进程,并就环保、出产成本、工艺先进性,以及非高炉炼铁技能在我国使用的远景等具体询问了技能人员。此前,我国人大常委会委员长,以及我国多家大型钢铁厂商的管理者都观赏过这个炼铁项目。“熔融复原”炼铁技能有何奇特之处,引得许多政界商界要人的垂青? 资源压力下的新路当今国际的干流高炉炼铁技能仍然是自古就有的竖炉炼铁,这种办法炼制的铁占国际铁产值的95%以上。         我国钢研科技集团公司先进钢程及材料国家重点实验室郭培民教授介绍,通过数百年开展,现代高炉炼铁工艺现已适当老练,但流程杂乱、能耗高、环境污染严峻和出资巨大这些高炉炼铁与生俱来的问题仍未处理。更要害的是,高炉炼铁对冶金焦炭依赖性太强,从现在已探明国际煤炭储量中,焦煤仅占5%,且散布很不均匀,正是这个资源约束,催生了无高炉炼铁技能。北京科技大学冶金与生态工程学院副院长张建良教授介绍说,现在的无高炉炼铁首要有两种办法,即直接复原法和熔融复原法,国际上现已根本老练的三大非高炉炼铁技能,别离是奥钢联的COREX、韩国浦项的INEX、力拓矿业的HIsmelt,都选用熔融复原法。真实完成了商业化出产的非高炉炼铁技能的只要一家,即奥钢联的COREX技能。它是在奥地利和德国政府的财务支持下,于20世纪70年代开端研制,1989年完成商业出产。榜首代完成商业化出产的非高炉炼铁COREX-1000工厂年产能40万吨,1989年在南非完工。1995年至1999年间,国际上又先后建成四座年产能60万~80万吨的第二代COREX-2000出产厂,别离坐落韩国的浦项、南非的撒丹那(Saldanha)和印度的两个城市。全球专一在建的第三代COREX工厂是我国宝钢年产能150万吨的COREX-3000工程,该工厂方案2007年下半年开端商业化出产。          非高炉炼铁技能间的竞赛奥钢联的COREX尽管先行一步,却也存在先天缺点:国际上大部分铁矿资源是粉矿,并且粉矿比块矿报价低,奥钢联开发的COREX技能却只能炼块矿。可以炼粉矿的熔融复原技能随即应运而生,韩国浦项制铁研制的“FINEX”和力拓矿业的“HIsmelt”就是在这样的布景下诞生的。韩国浦项制铁公司于1992年和奥钢联签署协议,引进COREX-2000技能,并在此基础上研制出以粉矿为复原目标的FINEX技能。2007年5月30日,FINEX商业化项目正式开工。这个历时15年之久的项目共花费7亿美元研制经费,取得300多项专利。澳大利亚力拓矿业集团亚洲及我国区总裁路久成介绍,力拓矿业集团从上世纪80年代初开端研制HIsmelt技能,历经20余年,累计出资已超越10亿美元。现在实验性的HIsmelt工厂发展程度“已到达试营产值的80%,估计到2008年到达年产80万吨的设计能力,并进行商业化运营”。 我国的非高炉炼铁远景1996年我国钢铁产值初次超越1亿吨大关,跃居国际榜首位后,现已接连10年保持着国际榜首,一起,我国仍是专一钢铁总产值超越2亿吨的最大钢铁出产国、最大钢铁消费国、最大钢铁净进口国和最大铁矿石进口国。拿到这些“桂冠”的一起,我国也顶着一顶“钢铁能耗全球榜首”的帽子,在首要炼钢国中,我国吨钢能耗排在首位,是日本的3倍,美国的1.7倍。而非高炉炼铁技能的首要优势就是节能环保。力拓矿业集团亚洲及我国区总裁路久成说,力拓的HIsmelt技能,不只比奥钢联的COREX技能能耗低,也比国际上绝大多数传统高炉炼铁技能能耗低20%左右,废气排放更是远远低于高炉炼铁。

活性炭粉磨机加工细度可以达到多少目?

2019-02-28 11:46:07

活性炭的主要原料简直可所以一切富含碳的有机材料,如煤、木材、果壳、椰壳、核桃壳等。这些含碳材料在活化炉中,在高温文必定压力下通过热解效果被转换成活性炭。在此活化进程中,巨大的表面积和杂乱的孔隙结构逐步构成,而所谓的吸附进程正是在这些孔隙中和表面上进行的,活性炭中孔隙的巨细对吸附质有挑选吸附的效果,这是因为大分子不能进入比它孔隙小的活性炭孔径内的原因。近年来跟着经济全球化趋势的深化、国际经济的迅猛发展,环境问题也日益凸显。为了维护人类赖以生存的自然环境,绿色环保经济已经成为国际经济发展的干流思潮。活性炭作为环保材料之一,在环保问题不断发起与注重下,使用规模越来越广,需求量也越来越大。 活性炭需求与使用规模的加大,也使得活性炭粉磨机的供应市场日益火爆。一般活性炭的产品规格有:4-8目、6-12目、8-16 目、10-20目、20-40目、30-60目、40-80目、100-150目等,而这些都需求活性炭粉磨机加工处理后才能够到达这些规格。活性炭因其具有孔隙结构兴旺,比表面积大、表面光滑的特色,所以普通的粉磨机不适用于损坏活性炭,即便传统的4R3117型雷蒙磨粉机加工325意图活性炭,每小时的产值只要一吨多,产值很低,性炭特别轻很简单进入到雷蒙磨的磨辊总成里,损坏轴承的光滑,终究使得光滑油脂变硬,轴承磨损发热不能正常作业。简直每周都要有一批磨辊总成损坏。出产成本高,出产功率低,我公司出产线活性炭粉磨机针对活性炭的特色,改变了原有的磨辊总承密封和磨辊磨环等易损件的原料,改善后的活性炭粉磨机磨辊总成不易进灰、不易损坏,使用寿命延伸5-10倍。 磨辊选用高耐磨的组合磨辊,使用寿命延伸5-10倍。活性炭粉磨机作为一种将活性炭等矿藏材料加工成粉的粉体加工设备,能够将活性炭研磨成不同规格细度,使其更好的发挥成效使用于多种范畴职业。如水净化及污水处理;去除异味及有害气体、净化空气;食物的精制、脱色、提纯、除臭等。作为国内一家专业的矿石制粉出产线研制制造供应商,上海科利瑞克出产高压磨、超细磨、砂粉磨等大型磨粉机及相关辅佐设备。其间砂粉磨是新式锥形磨粉机,也是专用的活性炭粉磨机。与此同时,还可适用于粉磨(或超细碎)水泥、水泥生料、铁矿、矿渣、石灰石、白云石、长石、石英、蛇纹石、重晶石、萤石、页岩、煤矸石、原煤、石灰、石膏、等各类矿石。

矿热炉碳热还原一步法冶炼稀土硅化物合金

2019-02-20 09:02:00

矿热炉冶炼稀土中间合金工艺中,炉料的质量包含其化学成分、物理和力学功能、粒度组成等。它们对炉况顺行、电能耗费和产质量量有着重要作用。炉料的破碎和恰当的造块是强化熔炼进程的有用途径之一,因为材料的涣散提高了它的表面能,增加了化学活性;粉料的充沛混合则显着提高了复原反响的速度和完全程度。但在工业实践中仍是选用破碎和挑选块状物料,只要粉状的稀土精矿和稀土化合物才进行造块。 碳热复原一步法冶炼稀土硅化物合金新工艺和在4150kVA矿藏热中选用该工艺工业出产稀土硅化物合金的工艺进程  质料     (1)稀土质料  该工艺选用的稀土质料,为四川冕宁氟碳铈型稀土精矿,其主要化学组成为:REO>55%,BaO<8%。该稀土精矿中稀土元素的配分值列于表2中。由表1可以看出,冕宁矿不同矿点稀土配分值的改变比较大。                             表1 稀土硅铁合金化学成分要求(GB4137-84)牌   号化学成分/%RESiMnCaTiFe不 大 于FeSiRE21 FeSiRE24 FeSiRE27 FeSiRE30 FeSiRE33-A FeSiRE33-B FeSiRE36-A FeSiRE36-B FeSiRE39 FeSiRE42 FeSiRE4520.0~<23.0 23.0~<26.0 26.0~<29.0 29.0~<32.0 32.0~<35.0 32.0~<35.0 35.0~<38.0 35.0~<38.0 38.0~<41.0 41.0~<44.0 44.0~<47.040.0 45.0 43.0 40.0 40.0 40.0 39.0 39.0 39.0 37.0 35.04.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 3.0 3.0 3.05.0 5.0 5.0 4.0 4.0 4.0 4.0 4.0 3.0 3.0 3.03.5 3.5 3.5 3.5 3.5 1.0 3.0 1.0 3.0 3.0 3.0余量 余量 余量 余量 余量 余量 余量 余量 余量 余量 余量   表2  冕宁氟碳铈矿稀土配分组分ΣREOLa2O3CeO2Pr6O11Nd2O3Sm2O3Eu2O3Gd2O31 265.46 51.1627.5 49.9238.75 46.384.5 4.0014.0 10.221.25 0.490.25 <0.100.58 0.16组分Tb2O3Dy2O3Ho2O3Er2O3Tm2O3Yb2O3Lu2O3Y2O31 20.042 0.100.11 <0.010.058 <0.010.072 <0.01  <0.010.032 <0.01  <0.010.76 <0.01       稀土精矿的粒度,重选矿一般小于0.5mm,浮选矿的粒度为-200目。从球团的功能来看,浮选矿更好一些。表3为一重选矿粒度散布的实测值。 扮演3  重选氟碳铈精矿粒度散布①筛网+20~-20~+40-40~+50-50~+70-70~+100-100~+140-140粒径/mm 质量/g 散布/%0.8 0.35 0.35<0.8 6.05 6.04<0.4~0.3 7.05 7.04<0.3~0.2 42.40 42.34<0.2~0.15 2.45 2.45<0.15~0.1 14.70 14.68<0.01 27.70 27.66 ①称量总质量100.15g,分样合重100.20g,差错0.05%。        (2)硅石  原则上讲,冶炼硅铁合金所运用的硅石,均可用作本工艺所用的含硅质料,其化学成分应契合ZBD53001-90GS-98标准,SiO2≥98%,Al2O3<0.5,P2O5<0.02%。硅石的块度为25~80mm。     要求硅石具有比较好的抗爆裂功能,依照吉林铁合金厂Q/JJ-研02-86标准,抗爆率大于80%     (3)碳质复原剂  各类焦炭(冶金焦、煤气焦、石油焦等)、木炭、木块等均可用作本工艺的碳质复原剂。考虑到冶炼工艺进程的需求,要运用那些反响活性好、比电阻大的碳质复原剂,一起又要考虑出产成本。实践出产中,往往调配运用。     ①焦炭  冶金焦固定碳含量高,焦块强度大,蒸发分低,但反响活性不如煤气焦,比电阻比较低。本工艺优先选用冶金焦筛下焦粒,粒度为0~25mm,其间3~8mm占一半以上。固定碳含量大于80%。     ②木炭和木块  木炭的运用,主要是为调整炉料的透气性。运用硬木类木炭,块度3~50mm,小于10mm的数量不大于20%。     木块选用木材加工厂的下脚料,或干树枝,最好是硬木类。块度20~60mm,固定碳含量一般≥26%。  工艺进程     碳热复原氟碳铈矿一步法出产稀土硅化物合金新工艺的工艺进程如图1所示。   氟碳铈精矿(REO>55%)        ↓        焦碳粉 焙 烧   硅石焦炭木炭     ↓    ↘↓↙  木炭粉→混 合   →矿热炉冶炼           ↓     ↓   黏结剂 制 团   ↓   ↓    ↓   合 金   烟 气    干 燥   ↓   ↓    ↓   合金包   净 化   稀土精矿球团   ↓   ↓        浇 铸   排空        ↓            精 整            ↓          稀土硅化物合金制品      图1  碳热复原氟碳铈矿制取稀土硅化物合金新工艺流程        在4150kVA矿热炉中冶炼稀土物合物合金的工业实验         4150kVA矿热炉为山东淄博有机化工厂的炉,经改造后进行冶炼稀土硅化物合金的工业实验[27]。[next]     (1)质料     ①硅石  选用临沂硅石,其主要化学成分SiO298.63%,Al2O30.25%,CaO0.63%,Fe2O30.40%。块度25~80mm,其间40~50mm块度大于50%,抗爆率86%。     ②焦炭  济宁冶金焦末和枣庄冶金焦粒。其主要化学组成见表9-16。济宁冶金焦末粒度为0~15mm,枣庄冶金焦粒为3~15mm。     ③木炭  河南产,固定碳77.24%,蒸发分11.76%,灰分10.32%。     ④稀土精矿  四川冕宁氟碳铈精矿,为浮选矿,REO60%。     (2)冶炼设备  4150kWA矿热炉基本参数如下。     ①炉体     外径×炉高=φ5000×3000mm     内径×炉深=φ3880×1500mm     炉缸直径×高=φ3580×700mm                     表4 焦炭化学组成                         单位:%产地种 类固定碳C固蒸发分灰分灰分组成SiO2CaOMgOAl2O3+Fe2O3枣庄冶金焦粒83.330.8615.81    济宁冶金焦末81.271.4616.8913.510.780.141.38        ②变压器参数     类型BHST1800/10×2。经强制水冷却,实践运转容量4150kWA。     一次侧电压10kW     二次侧电压可调85V,90V,95V,100V     二次侧电流≤25300A     ③电极     自焙电极直径φ650mm     电极中心距1516mm     极心圆直径φ1750mm     电极距离876mm    (3)稀土球团的设备  前已述及,稀土精矿需求经焙烧,分化排出二氧化碳,然后再进行配料、混合、制团、稀土团块枯燥后堆积,预备入炉。     ①稀土精矿焙烧  稀土精矿焙烧是在地道窑中进行。该地道窑用硅碳棒加热,窑内设置氧化铝陶瓷地道,物料装入用钢板焊接的料盘中,料盘置放于铸铁底板上,用机械推杆守时推进,使物料经预热带、加热带、冷却带后出炉。在加热区停留时刻1h。该地道窑长度为10400mm,其间国热带长度4300mm,预热带长度3050mm,冷却带长度3050mm。功率85kVA,运用温度在850℃以下可调。机械推杆推进,类型为DT300500I型,行程300mm,推力500kg。     ②稀土精矿球团制备     配料  经焙烧合格的稀土精矿,入炉前要进行制团。依据在矿热中稀土化合物的物理化学反响进程,制团时要配入必定份额的碳质复原剂和黏结剂。制团的意图,其一可以避免和削减粉状稀土物料的飞扬丢失,改进炉料的透气性;其二是可以强化稀土与碳的化合反响,优先生成碳化物。     配料时,碳质复原剂选用焦炭粉和木炭粉,其粒度控制在0.1mm以下。所参加的碳质复原剂的理论碳量按以下反响式进行核算:        RE2O3+7C→2REC2+3CO                             (1)             BaO+3C→BaC2+CO                            (2) 依据核算出的理论碳量,再依据木炭粉、焦炭粉的固定碳含量、水分含量,核算出实践应配入的木炭粉和焦炭粉量。     混合  将配好的物料参加混料机中,并参加总物料量10%左右的纸浆废液(相对密度大于1.14),经15min拌和,混合均匀。其温度按以下办法断定:抓起混合物于手中,攥紧,松开手掌,试样坚持外形,一起手掌不留下可见的湿气(黏结剂过剩有湿气)或许固体颗粒(黏结剂缺乏有颗粒)。     制团  用制团设备为煤球机,其压力大于17MPa。球团尺寸长轴35mm,短轴25mm,为椭球形。     烘干  所制湿球经天然枯燥或烘干。实验中选用焙烧窑烘干,湿度200℃,经30min,出炉,堆积后自硬。新压出的湿球不能堆积,堆积后会结块或破坏。     球团含水率在3%以下即为合格干球。成球质量检验,应到达2m高度自在落下到水泥     (4)冶炼工艺实践  冶炼工艺进程可概括为开炉、配料、转炼、浇铸和停炉几个部分。     ①开炉  开新炉,首要冶炼硅铁,冶炼45﹟硅铁两昼夜,再冶炼75﹟硅铁三昼夜,使整个炉子受热平衡,使炉膛充沛预热。     冶炼硅铁的工艺进程,依照惯例的冶炼办法进行。需求引起留意的是,在开炉初期加料,要在炉缸周围沿碳砖炉墙参加不带焦炭和钢屑的物料,即只加硅石,使沿炉缸周围的炉墙部分构成150~200mm厚的硅石假炉衬,以堵截或削减冶炼进程中由电极经炉缸碳砖循环的旁路电流,使冶炼电流的绝大部分集中于电极-炉底和电极-三角区,使炉内能确保有用的高温度。     ②配料核算  配料精确与否,决议整个冶炼进程的顺畅或不顺畅。配料核算时所所的要素不周全或不合理,会形成配料不合理,影响整个炉况。     依据方程式(3)进行理论配碳量核算, RE2O3+21.5SiO2+46C====[2RE-21.5Ci]+46CO          (3)     再依据球团中的含碳量、炉口碳的烧损以及工艺中的亏碳操作原理等要素,核算出实践配碳量。     ③转炼  通过五昼夜的硅铁冶炼,炉子温度渐趋平衡,停加硅铁料,平整料面,出最终一炉硅铁,完全捣炉,再参加按配比配好的稀土硅化物合金炉料。稀土炉料在炉台上铺料应按必定次序,其顺行为硅石、焦炭、木炭,最上层为稀土球团。加料时选用平铺切取法参加炉中,加料要均匀,不得偏加料。     因为炉中存在硅铁质料,从转炼稀土硅化物合金开端到产出合金中稀土含量高于27%,所需时刻大约一昼夜。表5为转炼产出过渡合金的状况。             表5  4150kVA矿热炉转炼产出过渡合金状况             出炉时刻10:4512:4013:5014:3016:5018:0021:0023:003:204:506:107:20合金RE/%15.614.3614.1315.0318.6519.6923.9122.6321.8732.1631.6330.64        转炼过渡时刻的长短,与转炼开端之前硅铁炉料料面下降的状况有关。实践出产中,不期望料面降得太低,炉况简单把握。     正常冶炼进程中,炉料比较松懈,透气性好,下料、捣炉都比较简单进行。因为是亏碳操作,一氧化硅逸出量大,其烟尘量比冶炼硅铁好。     ④出炉  每隔1.5~2.0h出一炉合金,合金放入经预热的中间包内,倒入用石墨涂覆的铸铁锭模中,浇铸时铸不宜过厚,避免偏析,一般浇铸8~10cm。合金呈赤色,即可脱模。     ⑤停炉  正常停炉时,因为炉中全部是冶炼稀土硅化物合金的炉料,所以要先下降料面,然后向炉内参加冶炼硅铁的炉料。从这时开端,要每炉分析合金中稀土的含量,直到合金中稀土含量在5%以下时,再依照冶炼硅铁时的正常操作进行停炉。     (5)实验成果  在4150kVA矿热炉中,变压器二次电压85V,一次电流200A,选用硅石、稀土精矿球团、焦炭、木炭作为炉料冶炼稀土硅化物合金,连续出产5个月,炉况顺畅,炉底不上涨;参加炉中稀土进入合金的稀土收率高于95%;标准吨合金电耗低于9500kW·h;可以出产高品位的稀土合金,实验中合金的稀土含量最高到达42%。这些技能经济指标在世界上处于领先地位。参 考 文 献27、任存治,涂赣峰等,碳热复原法制取稀土硅铁合金,内部资料,1993

中性氧化铝

2017-06-06 17:50:09

氧化铝分为三类:中性氧化铝,酸性氧化铝,碱性氧化铝 如何将中性氧化铝活化再利用:本发明是层析中性氧化铝活化再利用方法。实现了层析中性氧化铝的再生,实现循环利用。具体工艺如下:(1)将使用后的层析中性氧化铝原料投入反应釜内,加水,再加入氢氧化钠,充分搅拌清洗,使颗粒表面吸附物脱离载体;(2)将清洗后的层析中性氧化铝用清水充分冲洗,清除吸附物,加入盐酸中和,用离心机脱水,将其取出;(3)将脱水的层析中性氧化铝投入锅中,加热,载体表面残留杂质焦化或气化,彻底清除载体表面,使孔道全部通畅;(4筛除熔烧过程中的焦炭粉尘颗粒,将其净化;(5)在氧气空间降温,使颗粒表面游离稳定.层析中性氧化铝还原成颗粒,恢复活性。本发明不但降低了生产成本。还充分考虑环保概念,生产过程基本无污染。 以上是上海 有色 网为您提供有关中性氧化铝的内容 详细请查阅本网站

磁炭法提金

2019-02-14 10:39:39

炭浆法(炭浸法)存在的首要问题之一,是细微载金活性炭易随尾矿丢失。为处理这一问题,近来实验用磁性活性炭替代一般活性炭。这就是磁炭法。    磁炭法与炭浆法的差异在于活性炭带不带磁性。所以磁炭法可称为是用磁性活性炭吸附金的炭浆法,也就是磁性炭炭浆法。它与普通炭浆法的不同之处,就在于矿浆与炭的别离是用磁选机而不是用细孔筛。其首要长处是:比普通活性炭耐磨,因此可削减活性炭粉化形成的丢失。因为耐磨,故可运用细粒炭,然后加快金的吸附,利于处理较粗粒的矿浆,因为选用磁选机别离,故可削减因机械筛分带来的活性炭丢失和金的丢失。    磁炭法的载金活性炭与矿浆的别离,不是靠颗粒的巨细被筛分,而是靠自身带磁性与非磁性的矿浆别离。若靠颗粒巨细而筛分,就有小颗粒载金炭随尾矿丢失问题,而磁炭法无此问题。    选用磁炭法,须预先除掉矿石中的磁性物质,避免磁性物质混在载金炭中形成贫化。    磁性活性炭的制备大体上有两种办法。一是将活性炭颗粒与磁性颗粒粘结在一同;二是将炭粒与磁性颗粒一同制成活性炭。用榜首种办法制备磁性炭时,多用硅酸钠做粘结剂,因为硅酸钠不溶于化矿浆,具有很高的耐热耐碱功能。    最好的磁性炭是用果核或果壳炭以及必定方式的焦炭与磨细的磁铁矿,用硅酸钠作胶合剂制成。磁铁矿与炭粒粘合后要枯燥,也需求活化处理。    用磁炭吸附,能够运用粒度较小的炭粒吸附金,然后进步了吸附率;细微载金炭粒也不易随矿浆丢失,然后进步金的吸附回收率;矿浆中较粗的矿粒也易与炭粒别离,故矿石不用磨得很细;磁炭强度较高,不易磨损。    在实验中就可看到,磁炭法也存在一些问题:炭的吸附容量较小,这是因为磁性组分形成的;磁选机的出资比中间筛高;矿石中的磁铁矿等天然磁性物要预先除掉,不然也搀杂到载金磁性炭中,影响下一工序。    因为该法需求用磁选机,出资较大,最佳工业生产条件尚待研讨,故现在仍处于实验阶段。

从粗铜渣中提取铜、铅、锑试验研究

2019-01-24 17:45:48

一、前言 韶关冶炼厂利用贵铅炉吹炼反射炉产出的冰铜,产出含铜90%左右粗铜,粗铜渣中含有较高的铜、锑、铅等有价金属,本文所阐述的就是从吹炼后的粗铜渣中回收铜、铅、锑等有价金属的试验研究。 粗铜渣经破碎筛分后,采用两段氧化酸浸生产硫酸铜,浸出渣还原熔炼得铅锑多元合金的工艺来处理,经小试及扩验,均可得到二级品以上的硫酸铜产品和主成份大于80%的铅锑合金。 二、方案选择 贵铅炉吹炼冰铜产出的粗铜渣主要成份如表1所示。 表1  粗铜渣主要成分从表1可知,粗铜渣中有价金属品位较低,采用火法处理比较困难,而用湿法工艺来处理该渣是比较合适的。在湿法工艺中,可根据产品结构不同而有多种方案。据我们研究分析及探索性试验,决定采用氧化酸浸,使铜、砷、钠进液,从液中分离出As、Na,生产硫酸铜产品,浸出渣中的铅、锑经还原熔炼生成铅锑合金。试验工艺流程如图1所示。 三、试验结果及讨论 (一)粗铜渣的酸浸 浸出的目的是将铜尽可能的浸出,铅、锑在渣中进一步富集。图1  试验工艺流程图 在探索试验中,进行了水洗、酸浸,铜的浸出率都很低;在一次氧化酸浸过程中,发现酸度越高,浸出时间越长,铜的浸出率越高;但同时由于浸出液终酸越高,下一步液的中和除杂所用的中和剂量就越大,铜的损失也就越大。 为了使浸出液酸度低而浸出率又高,我们最终采用两段逆流氧化酸浸。两段逆流氧化酸浸的技术条件如下: 一段酸浸:液固比4∶1,浸出温度70~80℃,浸出时间:4h,鼓入空气量46L/min,始酸浓度40g/L。 二段酸浸:液固比4∶1,浸出温度70~80℃,浸出时间:8h,鼓入空气量46L/min,始酸浓度98g/L。 根据表2数据可计算出,两段氧化酸浸铜的浸出率为85.56% 表2  粗铜渣酸浸小试数据一览表注:1.中和时取酸浸液量1000mL,沉铜时取中和后液量1150mL;2.液体浓度以g/L计,固体以百分含量计。 (二)酸浸液的中和 中和的主要目的是降低溶液酸度,同时除去As、Fe等杂质。Cu2+的水解pH0值为3.88(t=70℃),而Fe[3+]的水解pH0值(t=70℃)为0.99,因此中和终点pH值控制在2.5~3.0,将酸浸液加热至70~80℃后向烧杯内壁上方喷射石灰乳,慢慢加入石灰乳中和。 中和除杂时铜的直收率为95.3%(按渣计)。 (三)中和后液的沉铜与沉铜渣的漂洗、溶解 将中和后液加热至50℃,加入Na2CO3沉铜,终点pH值控制在5.5~6.0左右,到终点后继续搅拌10min即可过滤,沉铜过程主要反应为: 2CuSO4+3Na2CO3+2H2O=Cu(OH)2 CuCO3↓+2NaHCO3+2Na2SO4 过滤得到的沉铜渣在70~80℃下用渣中铜量30倍的水漂洗30min,洗后的渣加入铜量的1.8倍浓H2SO4溶解,30倍的水,搅拌溶解20min即可。过程主要反应为:中和后液沉铜及沉铜渣的溶解过程中,铜的直收率为95.69%。 (四)硫酸铜溶液的浓缩、结晶及离心过滤 将溶解沉铜渣得到的硫酸铜溶液加热蒸发浓缩至比重1.38~1.41后冷却结晶,离心过滤即可得到二级品硫酸铜过滤时要加水淋洗确保产品质量。 从粗铜渣浸出至产出硫酸铜产品,铜的总回收率78.02%。 (五)酸浸渣的还原熔炼 从表2可知,酸浸渣中含铅、锑高,必须再回收。我们初步探索了还原熔炼法来回收其中的铅和锑,即将酸浸渣配以焦炭粉、纯碱和铁屑,装在石墨坩锅放入井式电炉进行还原熔炼,过程主要反应为:还原熔炼主要技术条件: 焦炭粉:渣量的10%,纯碱:渣量的10%,铁屑:渣量的2%,温度1150℃,时间:3~4h。 酸浸渣:粗Pb-Sb合金和还原炉渣主要成份如表3所示。还原熔炼铅、锑直收率分别为90.1%和81.3%。 表3  还原熔炼各物料主要成份含量(%)(六)扩大试验 1、粗铜渣提铜 每次浸出物料5000g,试验条件与小试相同,试验数据如表4所示。扩大试验铜的浸出率为88.2%,总回收率达到81.8%,产出的硫酸铜达到二级品以上。 表4  粗铜渣提铜扩大试验数据一览表  注:1.中和时取酸浸液量3000mL,沉铜时取中和后液量3060mL;2.液体浓度以g/L计,固体以百分含量计 2、酸浸渣的还原熔炼 每次取扩大试验的酸浸渣900g来还原熔炼,条件与小试相同,各成份含量见下表5。实验结果:Pb直收率84.2%,Sb直收率77.3%。 表5  酸浸渣还原熔炼扩大试验数据四、主要技术经济指标 (一)主要技术指标(见表6)。 表6  主要技术指标(%)(二)原材料消耗和费用结算 1、每吨硫酸铜原材料消耗(见表7) 表7  每吨硫酸铜原材料消耗2、每吨粗Pb-Sb合金原材料消耗(见表8) 表8  每吨粗Pb-Sb合金原材料消耗五、结论和讨论 小试和扩大试验表明,两段氧化酸浸处理粗铜渣,综合回收其中的铜、铅、锑等有价金属的工艺是可行的,可产出二级品以上的硫酸铜和主成份大于80%的Pb-Sb合金,铜、铅、锑回收率高。 粗铜渣中含铜有0.2%左右,具有很高的回收价值,有待今后进一步考虑其回收问题;另外,酸浸渣还原熔炼后的还原渣含锑高,如何改变渣型,降低渣中锑含量,提高锑的回收率,仍需进一步实验研究。

碳热还原法制取稀土硅铁合金的基本原理

2019-02-20 14:07:07

现出产中广泛运用的碳热复原法制取硅铁合金工艺特点是:可运用报价比较廉价的含有高于55%REO的氟碳铈精矿;选用优先强化经焙烧的氟碳的氟碳铈矿中稀土的碳化进程,改进假炉衬的绝缘功能;运用较低的操作电压和较高的极心圆功率;在冶炼进程中挑选适合的配料组成,亏碳操作,使电极深刺进炉猜中,确保炉底具有较高的温度,避免炉底碳化物的生成和集结,达到了炉况顺行、炉底不上涨、无渣冶炼的作用;产品合金成分均匀,不夹渣,不粉化;稀土复原进入合金的收率高于95%;含有30%稀土金属的稀土硅化物合金每吨工艺电耗低于9500kW·h,与出产一吨FeSi75合金电耗适当。 碳热复原法制取稀土硅铁合金的根本原理     金属氧化物与碳相互作用的复原机制是杂乱的,乃至对一种金属来说,在不同的条件下和反响的不同阶段,其首要反响就不同,往往几种复原机制一同存在。一般说来,碳热复原的首要进程不外乎以下三个进程:气相参与的相互作用;固相的相互作用;液相反相互作用。在稀土中间合金熔炼进程中气相参与的反响或许有着重要意义。也就是说凝集的氧化物和气态复原剂,气态氧化物和凝集的复原剂以及气态氧化物和气态复原剂之间的相互作用都是或许的。     碳热复原制取稀土中间合金的首要反响能够表达为:              MxOy+C ====MxOy-1+CO↑                     (1)            MxOy+(z+y)C ====MxCz+yCO↑                    (2)          zMxOy+yMxCz ==== x(z+y)M+xyCO↑               (3) 式中,M为稀土,硅、钙等合金元素。低氧化物可进一步复原,直至构成金属。中间产品碳氧化物也是存在的。它可进一步与氧化物和碳反响,终究构成金属。以研讨得比较充沛的碳从二氧化硅中复原出硅的进程为例,能够简略列成下式[18]:SiO2(s)CSiO(g )CSiC(s)SiO2,SiOSi(1)SiO2SiO(g)    (4)→→→→>1600℃<1800℃1800~1580℃>1850℃       对Si-O-C-Ce(Y)系统的热力学和动力学研讨标明,下列反响是存在的:          Ce2O3+7C ==== 2CaC2+3CO↑            (5)       Y2O3+7C ==== 2YC2+3CO↑             (6)         SiC+SiO ==== 2Si+CO↑               (7)         SiC+SiO2 ==== Si+SiO+CO↑             (8)  CeC2+2SiO ==== CeSi2+2CO↑             (9)  SiC+CeO ==== CeSi+CO↑              (10)     当温度高于1600℃时,开始将复原出硅,一同有中间产品SiO、SiC和稀土碳化物等生成。而复原稀土金属则需求更高的温度(高于1800℃)。     复原硅和稀土金属的中间凝集产品是碳化物,它们可与一氧化硅或二氧化硅相互作用而分化。在其他条件相同的情况下,生成碳化硅比生成稀土碳化物简单;跟着稀土硅化物的构成,稀土碳化物比碳化硅更简单分化。碳化硅等的集合,若不及时分化,极易构成炉底堆积,构成炉瘤,在碳热复原进程的实践条件下生成和分化的稀土金属和硅的数量比将由热力学和动力学要素的总和决议。     与碳热复原时总要配入许多的硅石,一方面复原产品硅能够与稀土、钙构成安稳的硅化物,降低了这些伤心原元素的开始复原温度;另一方面不可避免地将发作安稳的硅酸盐和其他杂乱氧化物,这些氧化物恶化了复原元素的热力学和动力学条件。     用碳热复原法出产稀土硅化物合金的根本原理,首要包含二氧化硅被碳复原为硅和一氧化硅及稀土化合物碳化生成碳化物和稀土物被一氧化硅复原为稀土金属这两部分。当然还有其他一些副反响和中间反响,如碳化硅的生成和损坏,硫酸的分化与复原,杂质钙、铝化合物的复原,还有稀土金属与硅生成稀土硅化物等。     (1)碳复原二氧化硅的根本化学进程  用碳复原二氧化硅的根本化学理论,自硅铁合金面世和工业硅出产以来,已经有许多学者进行过充沛的研讨,已是比较老练的理论,现概括为以下几个根本化学反响。     SiO2+2 C ==== Si+2CO                      (11)     SiO2+C ==== SiO+CO                       (12)                         SiO+2C ==== SiO+CO                    (13)                           2SiO ==== Si+SiO2                               (14)                        2SiC+3SiO2 ==== Si+4SiO+2CO              (15)     式(11)为总反响式。在碳量缺乏的条件下,二氧化硅的反响进行得不充沛,可许多生成一氧化硅[式(12)];在碳量过剩的条件下,会许多生成碳化硅[式(13)]。现实上,在矿热炉中,一氧化硅生成经炉料过滤与焦炭跌碳反响首要生成的是SiC[式(13)],这些碳化硅再被分化和复原生成硅。式(14)为一歧化反响,有许多学者证明这个反响在炉中存在。     (2)稀土精矿在炉中的化学反响  氟碳铈矿的化学式原则上可写为REFCO3,为稀土碳酸盐和稀土氟化物的复合矿藏,在自然界以晶体存在。在必定的温度条件下,稀土碳酸盐发作分化,生成稀土氟氧化物[19~21]。REFCO3====REFO+CO2                         (16)           △ 式(17)就是稀土碳化反响的化学方程式。     在矿热炉中,实践存在的系统为Si-O-C-RE系统,会有以下首要反响发作[22~26]:             REFO+3C ==== REC2+CO+[F]                   (17) 1REC+SiO====1[RE]si+CO(18)22        至于式(17)中的稀土碳化反响是生成REC2仍是生成RE2C3或者是生成REC,有待进一步去研讨和承认,但稀土合物与碳反响生成碳化物已是被实践所证明的现实。     复原出的稀土金属与硅生成稀土硅化物合金,氟则与二氧化硅或一氧化硅化合生成氟硅化物随炉气排出。     在稀土精矿入炉之前,要进行焙烧,分化放出二氧化碳[式(16)],添加稀土化合物的活性;一同避免了所制稀土球团入炉后,因为氟碳铈矿剧烈分化放出二氧化碳而使球团破坏。     为了加快完成稀土碳化物的生成,在稀土精矿制团时,参加高活性复原剂-焦炭粉和木炭粉,使得稀土化合物充沛与碳触摸,在炉中的高温下,使稀土首要生成碳化物[式(17)]。为了强化稀土在团块中生成碳化物的进程,在将稀土焙烧矿与碳复原剂一同制团时,所配入碳量为稀土化合物彻底转变为稀土碳化物(REC2)所需碳量的1~3倍。     从反响[式(18)]的要求动身,要在炉中构成生成满足SiO的条件,以利于稀土碳化物被一氧化硅所复原。要构成SiO气氛,必须在碳量缺乏的条件下,这就是工艺中要求亏碳操作的根本化学原理。     当然,在炉中,稀土氧化物被硅复原的反响也会存在,但不构成主反响。      参 考 文 献    18、清华大学稀土铸铁课题组.稀土铁合金和碱土铁合金,北京:冶金工业出版社,1991    19、涂赣峰,任存治等,氟碳铈精矿的煅烧分化,有色矿冶,1999,6:18~20    20、张世荣,涂赣峰等,氟碳铈矿热分化行为的研讨,稀有金属,1998,22(3):185~187    21、涂赣峰,张世荣等,粉状氟碳铈矿热分化反响动力学模型,我国稀土学报2000,18(1):24~26

含钽铌的冶炼渣的冶金富集工艺

2019-02-11 14:05:38

难选的低档次钽铌矿,特别是含钽铌的冶炼渣(如锡渣、铁渣、钨渣等),因为档次低,难处理,一般需选用冶金办法进行富集,取得的钽铌富集物可用惯例办法别离和提取钽铌。 一、酸浸出-酸分化法处理锡渣 含钽铌的锡渣组成如下(%):                  Ta2O5   Nb2O5    TiO2      ZrO2    WO3     Sn    SiO2    CaO 3~9    3~10   15~40    3~13   3~12   2~6  5~15   2~7 将上述锡渣用0.5%~10%的硫酸于50℃以上浸出,浸出得到的钽铌富集物用硫酸分化,1㎏物料用98%的浓硫酸,一同参加1.5㎏硫酸铵,在180℃下拌和1h,能够得到含Ta2O5 16.2%,Nb2O5 7.2%和TiO2 13.1%的矿石产品。 二、复原-氧化法处理锡渣 复原-氧化法处理工艺流程见图1。图1  锡渣处理工艺流程 锡渣组成如下(%)Ta2O5Nb2O5CaOSiO2TiO2FeOAl2O3WO3MnOMgOZrO2V2O53.853.8523.121.310.72108.183.281.281.20.850.21 进程首要分为四步 (一)将锡渣和焦碳在敞开式电弧炉内进行复原熔炼,得到含(TaNb)2O5 20%~25%的碳化钽铌富集物; (二)将碳化物和一同进行氧化熔炼,得到氧化熔炼产品; (三)氧化熔炼产品经破碎后,用热水于95℃拌和浸出2h,以除掉过量的碱和其他水溶性钠盐(硅酸钠,钨酸钠等),得的首要含钽酸钠、铌酸钠、氢氧化铁、碳酸钙等的滤饼。 (四)将滤饼再用20%,在75~100℃拌和浸出2~4h,这时铁被溶解除掉,而钽酸钠、铌酸钠转变为含水的氢氧化物。 三、复原-电解法处理锡渣 质料是用反射炉冶炼马来西亚锡沙矿所得的锡渣,其成分如下(%):Ta2O5Nb2O5WO3Y2O3SnTiO2ZrO21.7~2.12.3~3.51.0~3.00.20.7~2.57~103~6FeSiO2CaOMgOAl2O3MnOP2O54~726~2924~263~59~130.5~1.00.5~1.0 将锡渣1000㎏、硫酸渣(焙烧硫化铁产品含Fe 60%,Cu 0.2%,S 2%)700㎏、焦炭粉150㎏、石灰石100㎏,参加到电炉内,在1400℃下进行熔融复原,可得到含Nb3.6%、Ta3%、W2.9%的铁合金,以FeCl2、HCL、(NH4)2SO4的混合液作为电解液,铁合金作为阳极进行电解,钽、铌、钨呈细微颗粒得到浓缩而收回。 电解的反应为:3FeCl→Fe+2FeCl3 当FeCl3添加时,可参加铁屑,使FeCl3被复原成FeCl2,在电解进程中,FeCl3是循环运用的,铁合金的溶解残渣先用石油再用苏打水洗刷脱硫,得到Ta 25%、Nb 30%、W 24%的钽铌浓缩物。

低品位钽铌原料的冶金富集工艺

2019-03-05 10:21:23

难选的低档次钽铌矿,特别是含钽铌的冶炼渣(如锡渣、铁渣、钨渣等),因为档次低,难处理,一般需选用冶金办法进行富集,取得的钽铌富集物可用惯例办法别离和提取钽铌。 一、酸浸出-酸分化法处理锡渣 含钽铌的锡渣组成如下(%):                  Ta2O5   Nb2O5    TiO2      ZrO2    WO3     Sn    SiO2    CaO 3~9    3~10   15~40    3~13   3~12   2~6  5~15   2~7 将上述锡渣用0.5%~10%的硫酸于50℃以上浸出,浸出得到的钽铌富集物用硫酸分化,1㎏物料用98%的浓硫酸,一同参加1.5㎏硫酸铵,在180℃下拌和1h,能够得到含Ta2O5 16.2%,Nb2O5 7.2%和TiO2 13.1%的矿石产品。 二、复原-氧化法处理锡渣 复原-氧化法处理工艺流程见图1。图1  锡渣处理工艺流程 锡渣组成如下(%)Ta2O5Nb2O5CaOSiO2TiO2FeOAl2O3WO3MnOMgOZrO2V2O53.853.8523.121.310.72108.183.281.281.20.850.21 进程首要分为四步 (一)将锡渣和焦碳在敞开式电弧炉内进行复原熔炼,得到含(TaNb)2O5 20%~25%的碳化钽铌富集物; (二)将碳化物和一同进行氧化熔炼,得到氧化熔炼产品; (三)氧化熔炼产品经破碎后,用热水于95℃拌和浸出2h,以除掉过量的碱和其他水溶性钠盐(硅酸钠,钨酸钠等),得的首要含钽酸钠、铌酸钠、氢氧化铁、碳酸钙等的滤饼。 (四)将滤饼再用20%,在75~100℃拌和浸出2~4h,这时铁被溶解除掉,而钽酸钠、铌酸钠转变为含水的氢氧化物。 三、复原-电解法处理锡渣 质料是用反射炉冶炼马来西亚锡沙矿所得的锡渣,其成分如下(%):Ta2O5Nb2O5WO3Y2O3SnTiO2ZrO21.7~2.12.3~3.51.0~3.00.20.7~2.57~103~6FeSiO2CaOMgOAl2O3MnOP2O54~726~2924~263~59~130.5~1.00.5~1.0 将锡渣1000㎏、硫酸渣(焙烧硫化铁产品含Fe 60%,Cu 0.2%,S 2%)700㎏、焦炭粉150㎏、石灰石100㎏,参加到电炉内,在1400℃下进行熔融复原,可得到含Nb3.6%、Ta3%、W2.9%的铁合金,以FeCl2、HCL、(NH4)2SO4的混合液作为电解液,铁合金作为阳极进行电解,钽、铌、钨呈细微颗粒得到浓缩而收回。 电解的反应为:3FeCl→Fe+2FeCl3 当FeCl3添加时,可参加铁屑,使FeCl3被复原成FeCl2,在电解进程中,FeCl3是循环运用的,铁合金的溶解残渣先用石油再用苏打水洗刷脱硫,得到Ta 25%、Nb 30%、W 24%的钽铌浓缩物。

钨精矿除杂质5大方法

2019-02-25 14:01:58

依据钨精矿的质量标准,除WO3的含量廊大于65%以上外,其他有害杂质的含量要低于相应标准,特级品钨精矿质量要求还高。钨精矿中的S、P、As、Mo、Ca、Mn、Cu、Sn、SiOl2等杂质均有相应标准,当物理选矿办法达不到要求时则选用化学选矿办法,这样不只能够进步钨精矿质量等级,一起还能够归纳利用其他有用组分。  (1)钨精矿除锡办法锡矿石中的锡以锡石的单体存在时,可用强磁选和电选办法使其别离与黑钨矿及白钨矿别离。出产中常用固体氯化剂对超锡的钨粗精矿进行氯化焙烧,使锡蒸发以到达除锡的意图。进程的首要反应为: SnO2 +CaCl2+C=SnCl2↑CaO+CO↑(850℃效果下) 2FeWO4+2CaO+1/2O2 =2CaWO4+Fe2O32FeWO4+6CaCl2+1/2O2 =6CaWO4+4FeCl2+Fe2O3钨粗矿氯化焙烧除锡时常用的氯化剂为腐蚀性小并且易收回的氯化铵、等。为了确保反应在复原气氛中进行,配料时需参加必定数量的木炭粉或锯木屑,反应式如下: SnO2 + 2NH4Cl+3C+O2 =SnCl2↑+2NH2↑+3CO↑H2O(850℃效果下) 焙烧时氯化铵的参加量视钨精矿含锡量的不同而异。氯化焙烧温度为850℃左右,进程可在反射炉或回转窑中进行。为了进步脱锡功率,氯化焙烧2~4小时后可翻料一次,保温一段时间以进行氯化焙烧,脱锡率可达90%以上,锡含量可降至0.2%以下。  (2)钨精矿除砷办法 钨精矿中含砷首要以毒矿(FeAsS)、雄黄(AsS)、雌黄(As2S3)、石(As2O3)和各种盐的形状存在,脱除砷的办法有:  ①浮选法能够脱除大部分硫化砷;  ②弱氧化焙烧或复原焙烧法脱砷。焙烧前配料时依据原猜中砷含量的凹凸参加质料质量的2%~6%的木炭粉或煤粉,在700~800℃的温度下焙烧2~4小时,焙烧在反射炉或回转窑中进行,假如木炭粉达不到脱砷要求可参加少数硫黄。进程首要反应为:2FeAsS+6O2+C=As2O3+Fe2O3+2SO2+CO2 2As2S3+10O2+C=2As2O3+6SO2+CO2CaO·As2O5+C=As2O3+CaO+CO2砷的贱价氧化物(As2O3)为易蒸发物。高价砷氧化物(As2O5)较难蒸发,它能够与某些碱性氧化物生成安稳的盐: As2O3+SiO2+O2=As2O5+SiO2 FeO(CaO)+As2O5=FeO·As2O5(或CaO·As2O5) 因而.川焙烧法脱砷宜在弱氧化气氛中或复原气氛中进行,此刻方可使砷呈贱价砷氧化物蒸发,并使高价砷氧化物(或盐)复原为贱价砷氧化物,然后进步脱砷率。 (3)钨精矿脱磷办法钨精矿中含磷常以磷灰石Ca5(PO4)3(F、Cl、OH)、磷钇矿YPO4和独居石(Ce、La、Th)PO4等磷酸盐的形状存在。 脱磷办法有两种  ①稀浸出法脱磷此法适用于脱除磷灰石,一般用1:(3~5)的稀作浸出剂,粗粒精矿用渗浸法,细粒精矿用拌和浸出,能够使磷含量降到0.05%以下。  ②浮选法脱磷若钨精矿中以磷钇矿、独居石等形状存在磷杂质时,则无法用稀除磷,可用浮磷抑钨的办法,用和油酸混合捕收剂,草酸作抑制剂,碳酸钠作调整剂,可到达降磷意图,并归纳收回了磷钇矿。  (4)钨精矿除钼办法钨精矿中的钼常呈辉钼矿和钼氧化物(钼酸钙、钼华等)形状存在。一般用抬浮或浮选能够脱除钼的硫化物或许用次氯酸溶液浸出,亦可除掉辉钼矿形状存在的钼。浸出宜在低于40℃温度下进行,此刻铁、铜硫化物的氧化速度比辉钼矿小,且有较高的选择性。若钼以氧化物形状存在,降钼比较困难,现在尚无经济有用的办法。一般可用酸浸或碱浸办法处理,如用20%~30%的在加热条件下可使悉数钼酸盐转变为易溶于的钼酸钙,部分铜和钨也转入溶液中,钨的酸溶量随浓度和温度的添加而添加。(5)钨精矿脱铜办法 在钨精矿中的铜若呈硫化物形状存在时,一般用浮选或浮办法将其脱除。选用上述办法除掉某一杂质时,皆可随同除掉适当部分的其他杂质,如氯化焙烧降锡或复原焙烧除砷时均可除掉适当数量的硫。酸浸法除钼、磷时,可除掉适当量的钙、铋、铜等杂质。有时可从酸浸液中收回铋,用次溶液除钼时可除掉部分铜、砷硫化物等。钨精矿中其他杂质超支状况罕见,一般用物理选矿法屡次精选及化学选矿法除杂质,可使钨精矿中杂质含量降到标准规定值以下。