无需焦炭的非高炉炼铁技术
2019-03-07 09:03:45
珀斯──澳大利亚西澳州首府,从前被称为“国际上最孤单的城市”。但是,这些年来,我国客人却对这“最孤单的城市”情有独钟,一再到访。2007年9月4日,领导在相关人员的陪同下,观赏了澳大利亚力拓矿业集团的直接熔融复原炼铁工厂。炼铁车间观看了复原铁的冶炼进程,并就环保、出产成本、工艺先进性,以及非高炉炼铁技能在我国使用的远景等具体询问了技能人员。此前,我国人大常委会委员长,以及我国多家大型钢铁厂商的管理者都观赏过这个炼铁项目。“熔融复原”炼铁技能有何奇特之处,引得许多政界商界要人的垂青? 资源压力下的新路当今国际的干流高炉炼铁技能仍然是自古就有的竖炉炼铁,这种办法炼制的铁占国际铁产值的95%以上。
我国钢研科技集团公司先进钢程及材料国家重点实验室郭培民教授介绍,通过数百年开展,现代高炉炼铁工艺现已适当老练,但流程杂乱、能耗高、环境污染严峻和出资巨大这些高炉炼铁与生俱来的问题仍未处理。更要害的是,高炉炼铁对冶金焦炭依赖性太强,从现在已探明国际煤炭储量中,焦煤仅占5%,且散布很不均匀,正是这个资源约束,催生了无高炉炼铁技能。北京科技大学冶金与生态工程学院副院长张建良教授介绍说,现在的无高炉炼铁首要有两种办法,即直接复原法和熔融复原法,国际上现已根本老练的三大非高炉炼铁技能,别离是奥钢联的COREX、韩国浦项的INEX、力拓矿业的HIsmelt,都选用熔融复原法。真实完成了商业化出产的非高炉炼铁技能的只要一家,即奥钢联的COREX技能。它是在奥地利和德国政府的财务支持下,于20世纪70年代开端研制,1989年完成商业出产。榜首代完成商业化出产的非高炉炼铁COREX-1000工厂年产能40万吨,1989年在南非完工。1995年至1999年间,国际上又先后建成四座年产能60万~80万吨的第二代COREX-2000出产厂,别离坐落韩国的浦项、南非的撒丹那(Saldanha)和印度的两个城市。全球专一在建的第三代COREX工厂是我国宝钢年产能150万吨的COREX-3000工程,该工厂方案2007年下半年开端商业化出产。
非高炉炼铁技能间的竞赛奥钢联的COREX尽管先行一步,却也存在先天缺点:国际上大部分铁矿资源是粉矿,并且粉矿比块矿报价低,奥钢联开发的COREX技能却只能炼块矿。可以炼粉矿的熔融复原技能随即应运而生,韩国浦项制铁研制的“FINEX”和力拓矿业的“HIsmelt”就是在这样的布景下诞生的。韩国浦项制铁公司于1992年和奥钢联签署协议,引进COREX-2000技能,并在此基础上研制出以粉矿为复原目标的FINEX技能。2007年5月30日,FINEX商业化项目正式开工。这个历时15年之久的项目共花费7亿美元研制经费,取得300多项专利。澳大利亚力拓矿业集团亚洲及我国区总裁路久成介绍,力拓矿业集团从上世纪80年代初开端研制HIsmelt技能,历经20余年,累计出资已超越10亿美元。现在实验性的HIsmelt工厂发展程度“已到达试营产值的80%,估计到2008年到达年产80万吨的设计能力,并进行商业化运营”。 我国的非高炉炼铁远景1996年我国钢铁产值初次超越1亿吨大关,跃居国际榜首位后,现已接连10年保持着国际榜首,一起,我国仍是专一钢铁总产值超越2亿吨的最大钢铁出产国、最大钢铁消费国、最大钢铁净进口国和最大铁矿石进口国。拿到这些“桂冠”的一起,我国也顶着一顶“钢铁能耗全球榜首”的帽子,在首要炼钢国中,我国吨钢能耗排在首位,是日本的3倍,美国的1.7倍。而非高炉炼铁技能的首要优势就是节能环保。力拓矿业集团亚洲及我国区总裁路久成说,力拓的HIsmelt技能,不只比奥钢联的COREX技能能耗低,也比国际上绝大多数传统高炉炼铁技能能耗低20%左右,废气排放更是远远低于高炉炼铁。
活性炭粉磨机加工细度可以达到多少目?
2019-02-28 11:46:07
活性炭的主要原料简直可所以一切富含碳的有机材料,如煤、木材、果壳、椰壳、核桃壳等。这些含碳材料在活化炉中,在高温文必定压力下通过热解效果被转换成活性炭。在此活化进程中,巨大的表面积和杂乱的孔隙结构逐步构成,而所谓的吸附进程正是在这些孔隙中和表面上进行的,活性炭中孔隙的巨细对吸附质有挑选吸附的效果,这是因为大分子不能进入比它孔隙小的活性炭孔径内的原因。近年来跟着经济全球化趋势的深化、国际经济的迅猛发展,环境问题也日益凸显。为了维护人类赖以生存的自然环境,绿色环保经济已经成为国际经济发展的干流思潮。活性炭作为环保材料之一,在环保问题不断发起与注重下,使用规模越来越广,需求量也越来越大。
活性炭需求与使用规模的加大,也使得活性炭粉磨机的供应市场日益火爆。一般活性炭的产品规格有:4-8目、6-12目、8-16 目、10-20目、20-40目、30-60目、40-80目、100-150目等,而这些都需求活性炭粉磨机加工处理后才能够到达这些规格。活性炭因其具有孔隙结构兴旺,比表面积大、表面光滑的特色,所以普通的粉磨机不适用于损坏活性炭,即便传统的4R3117型雷蒙磨粉机加工325意图活性炭,每小时的产值只要一吨多,产值很低,性炭特别轻很简单进入到雷蒙磨的磨辊总成里,损坏轴承的光滑,终究使得光滑油脂变硬,轴承磨损发热不能正常作业。简直每周都要有一批磨辊总成损坏。出产成本高,出产功率低,我公司出产线活性炭粉磨机针对活性炭的特色,改变了原有的磨辊总承密封和磨辊磨环等易损件的原料,改善后的活性炭粉磨机磨辊总成不易进灰、不易损坏,使用寿命延伸5-10倍。
磨辊选用高耐磨的组合磨辊,使用寿命延伸5-10倍。活性炭粉磨机作为一种将活性炭等矿藏材料加工成粉的粉体加工设备,能够将活性炭研磨成不同规格细度,使其更好的发挥成效使用于多种范畴职业。如水净化及污水处理;去除异味及有害气体、净化空气;食物的精制、脱色、提纯、除臭等。作为国内一家专业的矿石制粉出产线研制制造供应商,上海科利瑞克出产高压磨、超细磨、砂粉磨等大型磨粉机及相关辅佐设备。其间砂粉磨是新式锥形磨粉机,也是专用的活性炭粉磨机。与此同时,还可适用于粉磨(或超细碎)水泥、水泥生料、铁矿、矿渣、石灰石、白云石、长石、石英、蛇纹石、重晶石、萤石、页岩、煤矸石、原煤、石灰、石膏、等各类矿石。
矿热炉碳热还原一步法冶炼稀土硅化物合金
2019-02-20 09:02:00
矿热炉冶炼稀土中间合金工艺中,炉料的质量包含其化学成分、物理和力学功能、粒度组成等。它们对炉况顺行、电能耗费和产质量量有着重要作用。炉料的破碎和恰当的造块是强化熔炼进程的有用途径之一,因为材料的涣散提高了它的表面能,增加了化学活性;粉料的充沛混合则显着提高了复原反响的速度和完全程度。但在工业实践中仍是选用破碎和挑选块状物料,只要粉状的稀土精矿和稀土化合物才进行造块。
碳热复原一步法冶炼稀土硅化物合金新工艺和在4150kVA矿藏热中选用该工艺工业出产稀土硅化物合金的工艺进程
质料
(1)稀土质料 该工艺选用的稀土质料,为四川冕宁氟碳铈型稀土精矿,其主要化学组成为:REO>55%,BaO<8%。该稀土精矿中稀土元素的配分值列于表2中。由表1可以看出,冕宁矿不同矿点稀土配分值的改变比较大。 表1 稀土硅铁合金化学成分要求(GB4137-84)牌 号化学成分/%RESiMnCaTiFe不 大 于FeSiRE21
FeSiRE24
FeSiRE27
FeSiRE30
FeSiRE33-A
FeSiRE33-B
FeSiRE36-A
FeSiRE36-B
FeSiRE39
FeSiRE42
FeSiRE4520.0~<23.0
23.0~<26.0
26.0~<29.0
29.0~<32.0
32.0~<35.0
32.0~<35.0
35.0~<38.0
35.0~<38.0
38.0~<41.0
41.0~<44.0
44.0~<47.040.0
45.0
43.0
40.0
40.0
40.0
39.0
39.0
39.0
37.0
35.04.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
3.0
3.0
3.05.0
5.0
5.0
4.0
4.0
4.0
4.0
4.0
3.0
3.0
3.03.5
3.5
3.5
3.5
3.5
1.0
3.0
1.0
3.0
3.0
3.0余量
余量
余量
余量
余量
余量
余量
余量
余量
余量
余量
表2 冕宁氟碳铈矿稀土配分组分ΣREOLa2O3CeO2Pr6O11Nd2O3Sm2O3Eu2O3Gd2O31
265.46
51.1627.5
49.9238.75
46.384.5
4.0014.0
10.221.25
0.490.25
<0.100.58
0.16组分Tb2O3Dy2O3Ho2O3Er2O3Tm2O3Yb2O3Lu2O3Y2O31
20.042
0.100.11
<0.010.058
<0.010.072
<0.01
<0.010.032
<0.01
<0.010.76
<0.01
稀土精矿的粒度,重选矿一般小于0.5mm,浮选矿的粒度为-200目。从球团的功能来看,浮选矿更好一些。表3为一重选矿粒度散布的实测值。
扮演3 重选氟碳铈精矿粒度散布①筛网+20~-20~+40-40~+50-50~+70-70~+100-100~+140-140粒径/mm
质量/g
散布/%0.8
0.35
0.35<0.8
6.05
6.04<0.4~0.3
7.05
7.04<0.3~0.2
42.40
42.34<0.2~0.15
2.45
2.45<0.15~0.1
14.70
14.68<0.01
27.70
27.66
①称量总质量100.15g,分样合重100.20g,差错0.05%。
(2)硅石 原则上讲,冶炼硅铁合金所运用的硅石,均可用作本工艺所用的含硅质料,其化学成分应契合ZBD53001-90GS-98标准,SiO2≥98%,Al2O3<0.5,P2O5<0.02%。硅石的块度为25~80mm。
要求硅石具有比较好的抗爆裂功能,依照吉林铁合金厂Q/JJ-研02-86标准,抗爆率大于80%
(3)碳质复原剂 各类焦炭(冶金焦、煤气焦、石油焦等)、木炭、木块等均可用作本工艺的碳质复原剂。考虑到冶炼工艺进程的需求,要运用那些反响活性好、比电阻大的碳质复原剂,一起又要考虑出产成本。实践出产中,往往调配运用。
①焦炭 冶金焦固定碳含量高,焦块强度大,蒸发分低,但反响活性不如煤气焦,比电阻比较低。本工艺优先选用冶金焦筛下焦粒,粒度为0~25mm,其间3~8mm占一半以上。固定碳含量大于80%。
②木炭和木块 木炭的运用,主要是为调整炉料的透气性。运用硬木类木炭,块度3~50mm,小于10mm的数量不大于20%。
木块选用木材加工厂的下脚料,或干树枝,最好是硬木类。块度20~60mm,固定碳含量一般≥26%。
工艺进程
碳热复原氟碳铈矿一步法出产稀土硅化物合金新工艺的工艺进程如图1所示。
氟碳铈精矿(REO>55%) ↓ 焦碳粉 焙 烧 硅石焦炭木炭 ↓ ↘↓↙ 木炭粉→混 合 →矿热炉冶炼
↓ ↓ 黏结剂 制 团 ↓ ↓ ↓ 合 金 烟 气 干 燥 ↓ ↓ ↓ 合金包 净 化 稀土精矿球团 ↓ ↓ 浇 铸 排空 ↓ 精 整 ↓ 稀土硅化物合金制品 图1 碳热复原氟碳铈矿制取稀土硅化物合金新工艺流程
在4150kVA矿热炉中冶炼稀土物合物合金的工业实验
4150kVA矿热炉为山东淄博有机化工厂的炉,经改造后进行冶炼稀土硅化物合金的工业实验[27]。[next]
(1)质料
①硅石 选用临沂硅石,其主要化学成分SiO298.63%,Al2O30.25%,CaO0.63%,Fe2O30.40%。块度25~80mm,其间40~50mm块度大于50%,抗爆率86%。
②焦炭 济宁冶金焦末和枣庄冶金焦粒。其主要化学组成见表9-16。济宁冶金焦末粒度为0~15mm,枣庄冶金焦粒为3~15mm。
③木炭 河南产,固定碳77.24%,蒸发分11.76%,灰分10.32%。
④稀土精矿 四川冕宁氟碳铈精矿,为浮选矿,REO60%。
(2)冶炼设备 4150kWA矿热炉基本参数如下。
①炉体
外径×炉高=φ5000×3000mm
内径×炉深=φ3880×1500mm
炉缸直径×高=φ3580×700mm
表4 焦炭化学组成 单位:%产地种 类固定碳C固蒸发分灰分灰分组成SiO2CaOMgOAl2O3+Fe2O3枣庄冶金焦粒83.330.8615.81 济宁冶金焦末81.271.4616.8913.510.780.141.38
②变压器参数
类型BHST1800/10×2。经强制水冷却,实践运转容量4150kWA。
一次侧电压10kW
二次侧电压可调85V,90V,95V,100V
二次侧电流≤25300A
③电极
自焙电极直径φ650mm
电极中心距1516mm
极心圆直径φ1750mm
电极距离876mm (3)稀土球团的设备 前已述及,稀土精矿需求经焙烧,分化排出二氧化碳,然后再进行配料、混合、制团、稀土团块枯燥后堆积,预备入炉。
①稀土精矿焙烧 稀土精矿焙烧是在地道窑中进行。该地道窑用硅碳棒加热,窑内设置氧化铝陶瓷地道,物料装入用钢板焊接的料盘中,料盘置放于铸铁底板上,用机械推杆守时推进,使物料经预热带、加热带、冷却带后出炉。在加热区停留时刻1h。该地道窑长度为10400mm,其间国热带长度4300mm,预热带长度3050mm,冷却带长度3050mm。功率85kVA,运用温度在850℃以下可调。机械推杆推进,类型为DT300500I型,行程300mm,推力500kg。
②稀土精矿球团制备
配料 经焙烧合格的稀土精矿,入炉前要进行制团。依据在矿热中稀土化合物的物理化学反响进程,制团时要配入必定份额的碳质复原剂和黏结剂。制团的意图,其一可以避免和削减粉状稀土物料的飞扬丢失,改进炉料的透气性;其二是可以强化稀土与碳的化合反响,优先生成碳化物。
配料时,碳质复原剂选用焦炭粉和木炭粉,其粒度控制在0.1mm以下。所参加的碳质复原剂的理论碳量按以下反响式进行核算:
RE2O3+7C→2REC2+3CO (1)
BaO+3C→BaC2+CO (2)
依据核算出的理论碳量,再依据木炭粉、焦炭粉的固定碳含量、水分含量,核算出实践应配入的木炭粉和焦炭粉量。
混合 将配好的物料参加混料机中,并参加总物料量10%左右的纸浆废液(相对密度大于1.14),经15min拌和,混合均匀。其温度按以下办法断定:抓起混合物于手中,攥紧,松开手掌,试样坚持外形,一起手掌不留下可见的湿气(黏结剂过剩有湿气)或许固体颗粒(黏结剂缺乏有颗粒)。
制团 用制团设备为煤球机,其压力大于17MPa。球团尺寸长轴35mm,短轴25mm,为椭球形。
烘干 所制湿球经天然枯燥或烘干。实验中选用焙烧窑烘干,湿度200℃,经30min,出炉,堆积后自硬。新压出的湿球不能堆积,堆积后会结块或破坏。
球团含水率在3%以下即为合格干球。成球质量检验,应到达2m高度自在落下到水泥
(4)冶炼工艺实践 冶炼工艺进程可概括为开炉、配料、转炼、浇铸和停炉几个部分。
①开炉 开新炉,首要冶炼硅铁,冶炼45﹟硅铁两昼夜,再冶炼75﹟硅铁三昼夜,使整个炉子受热平衡,使炉膛充沛预热。
冶炼硅铁的工艺进程,依照惯例的冶炼办法进行。需求引起留意的是,在开炉初期加料,要在炉缸周围沿碳砖炉墙参加不带焦炭和钢屑的物料,即只加硅石,使沿炉缸周围的炉墙部分构成150~200mm厚的硅石假炉衬,以堵截或削减冶炼进程中由电极经炉缸碳砖循环的旁路电流,使冶炼电流的绝大部分集中于电极-炉底和电极-三角区,使炉内能确保有用的高温度。
②配料核算 配料精确与否,决议整个冶炼进程的顺畅或不顺畅。配料核算时所所的要素不周全或不合理,会形成配料不合理,影响整个炉况。
依据方程式(3)进行理论配碳量核算,
RE2O3+21.5SiO2+46C====[2RE-21.5Ci]+46CO (3)
再依据球团中的含碳量、炉口碳的烧损以及工艺中的亏碳操作原理等要素,核算出实践配碳量。
③转炼 通过五昼夜的硅铁冶炼,炉子温度渐趋平衡,停加硅铁料,平整料面,出最终一炉硅铁,完全捣炉,再参加按配比配好的稀土硅化物合金炉料。稀土炉料在炉台上铺料应按必定次序,其顺行为硅石、焦炭、木炭,最上层为稀土球团。加料时选用平铺切取法参加炉中,加料要均匀,不得偏加料。
因为炉中存在硅铁质料,从转炼稀土硅化物合金开端到产出合金中稀土含量高于27%,所需时刻大约一昼夜。表5为转炼产出过渡合金的状况。
表5 4150kVA矿热炉转炼产出过渡合金状况 出炉时刻10:4512:4013:5014:3016:5018:0021:0023:003:204:506:107:20合金RE/%15.614.3614.1315.0318.6519.6923.9122.6321.8732.1631.6330.64
转炼过渡时刻的长短,与转炼开端之前硅铁炉料料面下降的状况有关。实践出产中,不期望料面降得太低,炉况简单把握。
正常冶炼进程中,炉料比较松懈,透气性好,下料、捣炉都比较简单进行。因为是亏碳操作,一氧化硅逸出量大,其烟尘量比冶炼硅铁好。
④出炉 每隔1.5~2.0h出一炉合金,合金放入经预热的中间包内,倒入用石墨涂覆的铸铁锭模中,浇铸时铸不宜过厚,避免偏析,一般浇铸8~10cm。合金呈赤色,即可脱模。
⑤停炉 正常停炉时,因为炉中全部是冶炼稀土硅化物合金的炉料,所以要先下降料面,然后向炉内参加冶炼硅铁的炉料。从这时开端,要每炉分析合金中稀土的含量,直到合金中稀土含量在5%以下时,再依照冶炼硅铁时的正常操作进行停炉。
(5)实验成果 在4150kVA矿热炉中,变压器二次电压85V,一次电流200A,选用硅石、稀土精矿球团、焦炭、木炭作为炉料冶炼稀土硅化物合金,连续出产5个月,炉况顺畅,炉底不上涨;参加炉中稀土进入合金的稀土收率高于95%;标准吨合金电耗低于9500kW·h;可以出产高品位的稀土合金,实验中合金的稀土含量最高到达42%。这些技能经济指标在世界上处于领先地位。参 考 文 献27、任存治,涂赣峰等,碳热复原法制取稀土硅铁合金,内部资料,1993
中性氧化铝
2017-06-06 17:50:09
氧化铝分为三类:中性氧化铝,酸性氧化铝,碱性氧化铝 如何将中性氧化铝活化再利用:本发明是层析中性氧化铝活化再利用方法。实现了层析中性氧化铝的再生,实现循环利用。具体工艺如下:(1)将使用后的层析中性氧化铝原料投入反应釜内,加水,再加入氢氧化钠,充分搅拌清洗,使颗粒表面吸附物脱离载体;(2)将清洗后的层析中性氧化铝用清水充分冲洗,清除吸附物,加入盐酸中和,用离心机脱水,将其取出;(3)将脱水的层析中性氧化铝投入锅中,加热,载体表面残留杂质焦化或气化,彻底清除载体表面,使孔道全部通畅;(4筛除熔烧过程中的焦炭粉尘颗粒,将其净化;(5)在氧气空间降温,使颗粒表面游离稳定.层析中性氧化铝还原成颗粒,恢复活性。本发明不但降低了生产成本。还充分考虑环保概念,生产过程基本无污染。 以上是上海
有色
网为您提供有关中性氧化铝的内容 详细请查阅本网站
磁炭法提金
2019-02-14 10:39:39
炭浆法(炭浸法)存在的首要问题之一,是细微载金活性炭易随尾矿丢失。为处理这一问题,近来实验用磁性活性炭替代一般活性炭。这就是磁炭法。 磁炭法与炭浆法的差异在于活性炭带不带磁性。所以磁炭法可称为是用磁性活性炭吸附金的炭浆法,也就是磁性炭炭浆法。它与普通炭浆法的不同之处,就在于矿浆与炭的别离是用磁选机而不是用细孔筛。其首要长处是:比普通活性炭耐磨,因此可削减活性炭粉化形成的丢失。因为耐磨,故可运用细粒炭,然后加快金的吸附,利于处理较粗粒的矿浆,因为选用磁选机别离,故可削减因机械筛分带来的活性炭丢失和金的丢失。 磁炭法的载金活性炭与矿浆的别离,不是靠颗粒的巨细被筛分,而是靠自身带磁性与非磁性的矿浆别离。若靠颗粒巨细而筛分,就有小颗粒载金炭随尾矿丢失问题,而磁炭法无此问题。 选用磁炭法,须预先除掉矿石中的磁性物质,避免磁性物质混在载金炭中形成贫化。 磁性活性炭的制备大体上有两种办法。一是将活性炭颗粒与磁性颗粒粘结在一同;二是将炭粒与磁性颗粒一同制成活性炭。用榜首种办法制备磁性炭时,多用硅酸钠做粘结剂,因为硅酸钠不溶于化矿浆,具有很高的耐热耐碱功能。 最好的磁性炭是用果核或果壳炭以及必定方式的焦炭与磨细的磁铁矿,用硅酸钠作胶合剂制成。磁铁矿与炭粒粘合后要枯燥,也需求活化处理。 用磁炭吸附,能够运用粒度较小的炭粒吸附金,然后进步了吸附率;细微载金炭粒也不易随矿浆丢失,然后进步金的吸附回收率;矿浆中较粗的矿粒也易与炭粒别离,故矿石不用磨得很细;磁炭强度较高,不易磨损。 在实验中就可看到,磁炭法也存在一些问题:炭的吸附容量较小,这是因为磁性组分形成的;磁选机的出资比中间筛高;矿石中的磁铁矿等天然磁性物要预先除掉,不然也搀杂到载金磁性炭中,影响下一工序。 因为该法需求用磁选机,出资较大,最佳工业生产条件尚待研讨,故现在仍处于实验阶段。
从粗铜渣中提取铜、铅、锑试验研究
2019-01-24 17:45:48
一、前言
韶关冶炼厂利用贵铅炉吹炼反射炉产出的冰铜,产出含铜90%左右粗铜,粗铜渣中含有较高的铜、锑、铅等有价金属,本文所阐述的就是从吹炼后的粗铜渣中回收铜、铅、锑等有价金属的试验研究。
粗铜渣经破碎筛分后,采用两段氧化酸浸生产硫酸铜,浸出渣还原熔炼得铅锑多元合金的工艺来处理,经小试及扩验,均可得到二级品以上的硫酸铜产品和主成份大于80%的铅锑合金。
二、方案选择
贵铅炉吹炼冰铜产出的粗铜渣主要成份如表1所示。
表1 粗铜渣主要成分从表1可知,粗铜渣中有价金属品位较低,采用火法处理比较困难,而用湿法工艺来处理该渣是比较合适的。在湿法工艺中,可根据产品结构不同而有多种方案。据我们研究分析及探索性试验,决定采用氧化酸浸,使铜、砷、钠进液,从液中分离出As、Na,生产硫酸铜产品,浸出渣中的铅、锑经还原熔炼生成铅锑合金。试验工艺流程如图1所示。
三、试验结果及讨论
(一)粗铜渣的酸浸
浸出的目的是将铜尽可能的浸出,铅、锑在渣中进一步富集。图1 试验工艺流程图
在探索试验中,进行了水洗、酸浸,铜的浸出率都很低;在一次氧化酸浸过程中,发现酸度越高,浸出时间越长,铜的浸出率越高;但同时由于浸出液终酸越高,下一步液的中和除杂所用的中和剂量就越大,铜的损失也就越大。
为了使浸出液酸度低而浸出率又高,我们最终采用两段逆流氧化酸浸。两段逆流氧化酸浸的技术条件如下:
一段酸浸:液固比4∶1,浸出温度70~80℃,浸出时间:4h,鼓入空气量46L/min,始酸浓度40g/L。
二段酸浸:液固比4∶1,浸出温度70~80℃,浸出时间:8h,鼓入空气量46L/min,始酸浓度98g/L。
根据表2数据可计算出,两段氧化酸浸铜的浸出率为85.56%
表2 粗铜渣酸浸小试数据一览表注:1.中和时取酸浸液量1000mL,沉铜时取中和后液量1150mL;2.液体浓度以g/L计,固体以百分含量计。
(二)酸浸液的中和
中和的主要目的是降低溶液酸度,同时除去As、Fe等杂质。Cu2+的水解pH0值为3.88(t=70℃),而Fe[3+]的水解pH0值(t=70℃)为0.99,因此中和终点pH值控制在2.5~3.0,将酸浸液加热至70~80℃后向烧杯内壁上方喷射石灰乳,慢慢加入石灰乳中和。
中和除杂时铜的直收率为95.3%(按渣计)。
(三)中和后液的沉铜与沉铜渣的漂洗、溶解
将中和后液加热至50℃,加入Na2CO3沉铜,终点pH值控制在5.5~6.0左右,到终点后继续搅拌10min即可过滤,沉铜过程主要反应为:
2CuSO4+3Na2CO3+2H2O=Cu(OH)2 CuCO3↓+2NaHCO3+2Na2SO4
过滤得到的沉铜渣在70~80℃下用渣中铜量30倍的水漂洗30min,洗后的渣加入铜量的1.8倍浓H2SO4溶解,30倍的水,搅拌溶解20min即可。过程主要反应为:中和后液沉铜及沉铜渣的溶解过程中,铜的直收率为95.69%。
(四)硫酸铜溶液的浓缩、结晶及离心过滤
将溶解沉铜渣得到的硫酸铜溶液加热蒸发浓缩至比重1.38~1.41后冷却结晶,离心过滤即可得到二级品硫酸铜过滤时要加水淋洗确保产品质量。
从粗铜渣浸出至产出硫酸铜产品,铜的总回收率78.02%。
(五)酸浸渣的还原熔炼
从表2可知,酸浸渣中含铅、锑高,必须再回收。我们初步探索了还原熔炼法来回收其中的铅和锑,即将酸浸渣配以焦炭粉、纯碱和铁屑,装在石墨坩锅放入井式电炉进行还原熔炼,过程主要反应为:还原熔炼主要技术条件:
焦炭粉:渣量的10%,纯碱:渣量的10%,铁屑:渣量的2%,温度1150℃,时间:3~4h。
酸浸渣:粗Pb-Sb合金和还原炉渣主要成份如表3所示。还原熔炼铅、锑直收率分别为90.1%和81.3%。
表3 还原熔炼各物料主要成份含量(%)(六)扩大试验
1、粗铜渣提铜
每次浸出物料5000g,试验条件与小试相同,试验数据如表4所示。扩大试验铜的浸出率为88.2%,总回收率达到81.8%,产出的硫酸铜达到二级品以上。
表4 粗铜渣提铜扩大试验数据一览表
注:1.中和时取酸浸液量3000mL,沉铜时取中和后液量3060mL;2.液体浓度以g/L计,固体以百分含量计
2、酸浸渣的还原熔炼
每次取扩大试验的酸浸渣900g来还原熔炼,条件与小试相同,各成份含量见下表5。实验结果:Pb直收率84.2%,Sb直收率77.3%。
表5 酸浸渣还原熔炼扩大试验数据四、主要技术经济指标
(一)主要技术指标(见表6)。
表6 主要技术指标(%)(二)原材料消耗和费用结算
1、每吨硫酸铜原材料消耗(见表7)
表7 每吨硫酸铜原材料消耗2、每吨粗Pb-Sb合金原材料消耗(见表8)
表8 每吨粗Pb-Sb合金原材料消耗五、结论和讨论
小试和扩大试验表明,两段氧化酸浸处理粗铜渣,综合回收其中的铜、铅、锑等有价金属的工艺是可行的,可产出二级品以上的硫酸铜和主成份大于80%的Pb-Sb合金,铜、铅、锑回收率高。
粗铜渣中含铜有0.2%左右,具有很高的回收价值,有待今后进一步考虑其回收问题;另外,酸浸渣还原熔炼后的还原渣含锑高,如何改变渣型,降低渣中锑含量,提高锑的回收率,仍需进一步实验研究。
碳热还原法制取稀土硅铁合金的基本原理
2019-02-20 14:07:07
现出产中广泛运用的碳热复原法制取硅铁合金工艺特点是:可运用报价比较廉价的含有高于55%REO的氟碳铈精矿;选用优先强化经焙烧的氟碳的氟碳铈矿中稀土的碳化进程,改进假炉衬的绝缘功能;运用较低的操作电压和较高的极心圆功率;在冶炼进程中挑选适合的配料组成,亏碳操作,使电极深刺进炉猜中,确保炉底具有较高的温度,避免炉底碳化物的生成和集结,达到了炉况顺行、炉底不上涨、无渣冶炼的作用;产品合金成分均匀,不夹渣,不粉化;稀土复原进入合金的收率高于95%;含有30%稀土金属的稀土硅化物合金每吨工艺电耗低于9500kW·h,与出产一吨FeSi75合金电耗适当。
碳热复原法制取稀土硅铁合金的根本原理
金属氧化物与碳相互作用的复原机制是杂乱的,乃至对一种金属来说,在不同的条件下和反响的不同阶段,其首要反响就不同,往往几种复原机制一同存在。一般说来,碳热复原的首要进程不外乎以下三个进程:气相参与的相互作用;固相的相互作用;液相反相互作用。在稀土中间合金熔炼进程中气相参与的反响或许有着重要意义。也就是说凝集的氧化物和气态复原剂,气态氧化物和凝集的复原剂以及气态氧化物和气态复原剂之间的相互作用都是或许的。
碳热复原制取稀土中间合金的首要反响能够表达为:
MxOy+C ====MxOy-1+CO↑ (1)
MxOy+(z+y)C ====MxCz+yCO↑ (2)
zMxOy+yMxCz ==== x(z+y)M+xyCO↑ (3)
式中,M为稀土,硅、钙等合金元素。低氧化物可进一步复原,直至构成金属。中间产品碳氧化物也是存在的。它可进一步与氧化物和碳反响,终究构成金属。以研讨得比较充沛的碳从二氧化硅中复原出硅的进程为例,能够简略列成下式[18]:SiO2(s)CSiO(g )CSiC(s)SiO2,SiOSi(1)SiO2SiO(g)
(4)→→→→>1600℃<1800℃1800~1580℃>1850℃
对Si-O-C-Ce(Y)系统的热力学和动力学研讨标明,下列反响是存在的:
Ce2O3+7C ==== 2CaC2+3CO↑ (5)
Y2O3+7C ==== 2YC2+3CO↑ (6)
SiC+SiO ==== 2Si+CO↑ (7)
SiC+SiO2 ==== Si+SiO+CO↑ (8)
CeC2+2SiO ==== CeSi2+2CO↑ (9)
SiC+CeO ==== CeSi+CO↑ (10)
当温度高于1600℃时,开始将复原出硅,一同有中间产品SiO、SiC和稀土碳化物等生成。而复原稀土金属则需求更高的温度(高于1800℃)。
复原硅和稀土金属的中间凝集产品是碳化物,它们可与一氧化硅或二氧化硅相互作用而分化。在其他条件相同的情况下,生成碳化硅比生成稀土碳化物简单;跟着稀土硅化物的构成,稀土碳化物比碳化硅更简单分化。碳化硅等的集合,若不及时分化,极易构成炉底堆积,构成炉瘤,在碳热复原进程的实践条件下生成和分化的稀土金属和硅的数量比将由热力学和动力学要素的总和决议。
与碳热复原时总要配入许多的硅石,一方面复原产品硅能够与稀土、钙构成安稳的硅化物,降低了这些伤心原元素的开始复原温度;另一方面不可避免地将发作安稳的硅酸盐和其他杂乱氧化物,这些氧化物恶化了复原元素的热力学和动力学条件。
用碳热复原法出产稀土硅化物合金的根本原理,首要包含二氧化硅被碳复原为硅和一氧化硅及稀土化合物碳化生成碳化物和稀土物被一氧化硅复原为稀土金属这两部分。当然还有其他一些副反响和中间反响,如碳化硅的生成和损坏,硫酸的分化与复原,杂质钙、铝化合物的复原,还有稀土金属与硅生成稀土硅化物等。
(1)碳复原二氧化硅的根本化学进程 用碳复原二氧化硅的根本化学理论,自硅铁合金面世和工业硅出产以来,已经有许多学者进行过充沛的研讨,已是比较老练的理论,现概括为以下几个根本化学反响。
SiO2+2 C ==== Si+2CO (11)
SiO2+C ==== SiO+CO (12)
SiO+2C ==== SiO+CO (13)
2SiO ==== Si+SiO2 (14)
2SiC+3SiO2 ==== Si+4SiO+2CO (15)
式(11)为总反响式。在碳量缺乏的条件下,二氧化硅的反响进行得不充沛,可许多生成一氧化硅[式(12)];在碳量过剩的条件下,会许多生成碳化硅[式(13)]。现实上,在矿热炉中,一氧化硅生成经炉料过滤与焦炭跌碳反响首要生成的是SiC[式(13)],这些碳化硅再被分化和复原生成硅。式(14)为一歧化反响,有许多学者证明这个反响在炉中存在。
(2)稀土精矿在炉中的化学反响 氟碳铈矿的化学式原则上可写为REFCO3,为稀土碳酸盐和稀土氟化物的复合矿藏,在自然界以晶体存在。在必定的温度条件下,稀土碳酸盐发作分化,生成稀土氟氧化物[19~21]。REFCO3====REFO+CO2 (16) △
式(17)就是稀土碳化反响的化学方程式。
在矿热炉中,实践存在的系统为Si-O-C-RE系统,会有以下首要反响发作[22~26]:
REFO+3C ==== REC2+CO+[F] (17) 1REC+SiO====1[RE]si+CO(18)22
至于式(17)中的稀土碳化反响是生成REC2仍是生成RE2C3或者是生成REC,有待进一步去研讨和承认,但稀土合物与碳反响生成碳化物已是被实践所证明的现实。
复原出的稀土金属与硅生成稀土硅化物合金,氟则与二氧化硅或一氧化硅化合生成氟硅化物随炉气排出。
在稀土精矿入炉之前,要进行焙烧,分化放出二氧化碳[式(16)],添加稀土化合物的活性;一同避免了所制稀土球团入炉后,因为氟碳铈矿剧烈分化放出二氧化碳而使球团破坏。
为了加快完成稀土碳化物的生成,在稀土精矿制团时,参加高活性复原剂-焦炭粉和木炭粉,使得稀土化合物充沛与碳触摸,在炉中的高温下,使稀土首要生成碳化物[式(17)]。为了强化稀土在团块中生成碳化物的进程,在将稀土焙烧矿与碳复原剂一同制团时,所配入碳量为稀土化合物彻底转变为稀土碳化物(REC2)所需碳量的1~3倍。
从反响[式(18)]的要求动身,要在炉中构成生成满足SiO的条件,以利于稀土碳化物被一氧化硅所复原。要构成SiO气氛,必须在碳量缺乏的条件下,这就是工艺中要求亏碳操作的根本化学原理。
当然,在炉中,稀土氧化物被硅复原的反响也会存在,但不构成主反响。
参 考 文 献 18、清华大学稀土铸铁课题组.稀土铁合金和碱土铁合金,北京:冶金工业出版社,1991 19、涂赣峰,任存治等,氟碳铈精矿的煅烧分化,有色矿冶,1999,6:18~20 20、张世荣,涂赣峰等,氟碳铈矿热分化行为的研讨,稀有金属,1998,22(3):185~187 21、涂赣峰,张世荣等,粉状氟碳铈矿热分化反响动力学模型,我国稀土学报2000,18(1):24~26
含钽铌的冶炼渣的冶金富集工艺
2019-02-11 14:05:38
难选的低档次钽铌矿,特别是含钽铌的冶炼渣(如锡渣、铁渣、钨渣等),因为档次低,难处理,一般需选用冶金办法进行富集,取得的钽铌富集物可用惯例办法别离和提取钽铌。
一、酸浸出-酸分化法处理锡渣
含钽铌的锡渣组成如下(%):
Ta2O5 Nb2O5 TiO2 ZrO2 WO3 Sn SiO2 CaO 3~9 3~10 15~40 3~13 3~12 2~6 5~15 2~7 将上述锡渣用0.5%~10%的硫酸于50℃以上浸出,浸出得到的钽铌富集物用硫酸分化,1㎏物料用98%的浓硫酸,一同参加1.5㎏硫酸铵,在180℃下拌和1h,能够得到含Ta2O5 16.2%,Nb2O5 7.2%和TiO2 13.1%的矿石产品。
二、复原-氧化法处理锡渣
复原-氧化法处理工艺流程见图1。图1 锡渣处理工艺流程
锡渣组成如下(%)Ta2O5Nb2O5CaOSiO2TiO2FeOAl2O3WO3MnOMgOZrO2V2O53.853.8523.121.310.72108.183.281.281.20.850.21
进程首要分为四步
(一)将锡渣和焦碳在敞开式电弧炉内进行复原熔炼,得到含(TaNb)2O5 20%~25%的碳化钽铌富集物;
(二)将碳化物和一同进行氧化熔炼,得到氧化熔炼产品;
(三)氧化熔炼产品经破碎后,用热水于95℃拌和浸出2h,以除掉过量的碱和其他水溶性钠盐(硅酸钠,钨酸钠等),得的首要含钽酸钠、铌酸钠、氢氧化铁、碳酸钙等的滤饼。
(四)将滤饼再用20%,在75~100℃拌和浸出2~4h,这时铁被溶解除掉,而钽酸钠、铌酸钠转变为含水的氢氧化物。
三、复原-电解法处理锡渣
质料是用反射炉冶炼马来西亚锡沙矿所得的锡渣,其成分如下(%):Ta2O5Nb2O5WO3Y2O3SnTiO2ZrO21.7~2.12.3~3.51.0~3.00.20.7~2.57~103~6FeSiO2CaOMgOAl2O3MnOP2O54~726~2924~263~59~130.5~1.00.5~1.0
将锡渣1000㎏、硫酸渣(焙烧硫化铁产品含Fe 60%,Cu 0.2%,S 2%)700㎏、焦炭粉150㎏、石灰石100㎏,参加到电炉内,在1400℃下进行熔融复原,可得到含Nb3.6%、Ta3%、W2.9%的铁合金,以FeCl2、HCL、(NH4)2SO4的混合液作为电解液,铁合金作为阳极进行电解,钽、铌、钨呈细微颗粒得到浓缩而收回。
电解的反应为:3FeCl→Fe+2FeCl3
当FeCl3添加时,可参加铁屑,使FeCl3被复原成FeCl2,在电解进程中,FeCl3是循环运用的,铁合金的溶解残渣先用石油再用苏打水洗刷脱硫,得到Ta 25%、Nb 30%、W 24%的钽铌浓缩物。
低品位钽铌原料的冶金富集工艺
2019-03-05 10:21:23
难选的低档次钽铌矿,特别是含钽铌的冶炼渣(如锡渣、铁渣、钨渣等),因为档次低,难处理,一般需选用冶金办法进行富集,取得的钽铌富集物可用惯例办法别离和提取钽铌。
一、酸浸出-酸分化法处理锡渣
含钽铌的锡渣组成如下(%):
Ta2O5 Nb2O5 TiO2 ZrO2 WO3 Sn SiO2 CaO 3~9 3~10 15~40 3~13 3~12 2~6 5~15 2~7 将上述锡渣用0.5%~10%的硫酸于50℃以上浸出,浸出得到的钽铌富集物用硫酸分化,1㎏物料用98%的浓硫酸,一同参加1.5㎏硫酸铵,在180℃下拌和1h,能够得到含Ta2O5 16.2%,Nb2O5 7.2%和TiO2 13.1%的矿石产品。
二、复原-氧化法处理锡渣
复原-氧化法处理工艺流程见图1。图1 锡渣处理工艺流程
锡渣组成如下(%)Ta2O5Nb2O5CaOSiO2TiO2FeOAl2O3WO3MnOMgOZrO2V2O53.853.8523.121.310.72108.183.281.281.20.850.21
进程首要分为四步
(一)将锡渣和焦碳在敞开式电弧炉内进行复原熔炼,得到含(TaNb)2O5 20%~25%的碳化钽铌富集物;
(二)将碳化物和一同进行氧化熔炼,得到氧化熔炼产品;
(三)氧化熔炼产品经破碎后,用热水于95℃拌和浸出2h,以除掉过量的碱和其他水溶性钠盐(硅酸钠,钨酸钠等),得的首要含钽酸钠、铌酸钠、氢氧化铁、碳酸钙等的滤饼。
(四)将滤饼再用20%,在75~100℃拌和浸出2~4h,这时铁被溶解除掉,而钽酸钠、铌酸钠转变为含水的氢氧化物。
三、复原-电解法处理锡渣
质料是用反射炉冶炼马来西亚锡沙矿所得的锡渣,其成分如下(%):Ta2O5Nb2O5WO3Y2O3SnTiO2ZrO21.7~2.12.3~3.51.0~3.00.20.7~2.57~103~6FeSiO2CaOMgOAl2O3MnOP2O54~726~2924~263~59~130.5~1.00.5~1.0
将锡渣1000㎏、硫酸渣(焙烧硫化铁产品含Fe 60%,Cu 0.2%,S 2%)700㎏、焦炭粉150㎏、石灰石100㎏,参加到电炉内,在1400℃下进行熔融复原,可得到含Nb3.6%、Ta3%、W2.9%的铁合金,以FeCl2、HCL、(NH4)2SO4的混合液作为电解液,铁合金作为阳极进行电解,钽、铌、钨呈细微颗粒得到浓缩而收回。
电解的反应为:3FeCl→Fe+2FeCl3
当FeCl3添加时,可参加铁屑,使FeCl3被复原成FeCl2,在电解进程中,FeCl3是循环运用的,铁合金的溶解残渣先用石油再用苏打水洗刷脱硫,得到Ta 25%、Nb 30%、W 24%的钽铌浓缩物。
钨精矿除杂质5大方法
2019-02-25 14:01:58
依据钨精矿的质量标准,除WO3的含量廊大于65%以上外,其他有害杂质的含量要低于相应标准,特级品钨精矿质量要求还高。钨精矿中的S、P、As、Mo、Ca、Mn、Cu、Sn、SiOl2等杂质均有相应标准,当物理选矿办法达不到要求时则选用化学选矿办法,这样不只能够进步钨精矿质量等级,一起还能够归纳利用其他有用组分。
(1)钨精矿除锡办法锡矿石中的锡以锡石的单体存在时,可用强磁选和电选办法使其别离与黑钨矿及白钨矿别离。出产中常用固体氯化剂对超锡的钨粗精矿进行氯化焙烧,使锡蒸发以到达除锡的意图。进程的首要反应为: SnO2 +CaCl2+C=SnCl2↑CaO+CO↑(850℃效果下) 2FeWO4+2CaO+1/2O2 =2CaWO4+Fe2O32FeWO4+6CaCl2+1/2O2 =6CaWO4+4FeCl2+Fe2O3钨粗矿氯化焙烧除锡时常用的氯化剂为腐蚀性小并且易收回的氯化铵、等。为了确保反应在复原气氛中进行,配料时需参加必定数量的木炭粉或锯木屑,反应式如下:
SnO2 + 2NH4Cl+3C+O2 =SnCl2↑+2NH2↑+3CO↑H2O(850℃效果下)
焙烧时氯化铵的参加量视钨精矿含锡量的不同而异。氯化焙烧温度为850℃左右,进程可在反射炉或回转窑中进行。为了进步脱锡功率,氯化焙烧2~4小时后可翻料一次,保温一段时间以进行氯化焙烧,脱锡率可达90%以上,锡含量可降至0.2%以下。
(2)钨精矿除砷办法 钨精矿中含砷首要以毒矿(FeAsS)、雄黄(AsS)、雌黄(As2S3)、石(As2O3)和各种盐的形状存在,脱除砷的办法有:
①浮选法能够脱除大部分硫化砷;
②弱氧化焙烧或复原焙烧法脱砷。焙烧前配料时依据原猜中砷含量的凹凸参加质料质量的2%~6%的木炭粉或煤粉,在700~800℃的温度下焙烧2~4小时,焙烧在反射炉或回转窑中进行,假如木炭粉达不到脱砷要求可参加少数硫黄。进程首要反应为:2FeAsS+6O2+C=As2O3+Fe2O3+2SO2+CO2 2As2S3+10O2+C=2As2O3+6SO2+CO2CaO·As2O5+C=As2O3+CaO+CO2砷的贱价氧化物(As2O3)为易蒸发物。高价砷氧化物(As2O5)较难蒸发,它能够与某些碱性氧化物生成安稳的盐:
As2O3+SiO2+O2=As2O5+SiO2
FeO(CaO)+As2O5=FeO·As2O5(或CaO·As2O5)
因而.川焙烧法脱砷宜在弱氧化气氛中或复原气氛中进行,此刻方可使砷呈贱价砷氧化物蒸发,并使高价砷氧化物(或盐)复原为贱价砷氧化物,然后进步脱砷率。
(3)钨精矿脱磷办法钨精矿中含磷常以磷灰石Ca5(PO4)3(F、Cl、OH)、磷钇矿YPO4和独居石(Ce、La、Th)PO4等磷酸盐的形状存在。
脱磷办法有两种
①稀浸出法脱磷此法适用于脱除磷灰石,一般用1:(3~5)的稀作浸出剂,粗粒精矿用渗浸法,细粒精矿用拌和浸出,能够使磷含量降到0.05%以下。
②浮选法脱磷若钨精矿中以磷钇矿、独居石等形状存在磷杂质时,则无法用稀除磷,可用浮磷抑钨的办法,用和油酸混合捕收剂,草酸作抑制剂,碳酸钠作调整剂,可到达降磷意图,并归纳收回了磷钇矿。
(4)钨精矿除钼办法钨精矿中的钼常呈辉钼矿和钼氧化物(钼酸钙、钼华等)形状存在。一般用抬浮或浮选能够脱除钼的硫化物或许用次氯酸溶液浸出,亦可除掉辉钼矿形状存在的钼。浸出宜在低于40℃温度下进行,此刻铁、铜硫化物的氧化速度比辉钼矿小,且有较高的选择性。若钼以氧化物形状存在,降钼比较困难,现在尚无经济有用的办法。一般可用酸浸或碱浸办法处理,如用20%~30%的在加热条件下可使悉数钼酸盐转变为易溶于的钼酸钙,部分铜和钨也转入溶液中,钨的酸溶量随浓度和温度的添加而添加。(5)钨精矿脱铜办法 在钨精矿中的铜若呈硫化物形状存在时,一般用浮选或浮办法将其脱除。选用上述办法除掉某一杂质时,皆可随同除掉适当部分的其他杂质,如氯化焙烧降锡或复原焙烧除砷时均可除掉适当数量的硫。酸浸法除钼、磷时,可除掉适当量的钙、铋、铜等杂质。有时可从酸浸液中收回铋,用次溶液除钼时可除掉部分铜、砷硫化物等。钨精矿中其他杂质超支状况罕见,一般用物理选矿法屡次精选及化学选矿法除杂质,可使钨精矿中杂质含量降到标准规定值以下。
钨粗精矿除去有害杂质的常用方法有哪些
2019-02-26 09:00:22
依据钨精矿的质量标准,除的含量廊大于65%以上外,其他有害杂质的含量要低于相应标准,特级品钨精矿质量要求还高。钨精矿中的S、P、As、Mo、Ca、Mn、Cu、Sn等杂质均有相应标准,当物理选矿办法达不到要求时则选用化学选矿办法,这样不只能够进步钨精矿质量等级,一起还能够归纳利用其他有用组分。
(1)钨精矿除锡办法锡矿石中的锡以锡石的单体存在时,可用强磁选和电选办法使其别离与黑钨矿及白钨矿别离。
出产中常用固体氯化剂对超锡的钨粗精矿进行氯化焙烧,使锡蒸发以到达除锡的意图。进程的首要反应为:钨粗矿氯化焙烧除锡时常用的氯化剂为腐蚀性小并且易收回的氯化铵、等。为了确保反应在复原气氛中进行,配料时需参加必定数量的木炭粉或锯木屑,反应式如下:焙烧时氯化铵的参加量视钨精矿含锡量的不同而异。氯化焙烧温度为850℃左右,进程可在反射炉或回转窑中进行。为了进步脱锡功率,氯化焙烧2~4小时后可翻料一次,保温一段时间以进行氯化焙烧,脱锡率可达90%以上,锡含量可降至0.2%以下。
(2)钨精矿除砷办法 钨精矿中含砷首要以毒矿(FeAsS)、雄黄(AsS)、雌黄、石和各种盐的形状存在,脱除砷的办法有:
①浮和浮选法能够脱除大部分硫化砷;
②弱氧化焙烧或复原焙烧法脱砷。
焙烧前配料时依据原猜中砷含量的凹凸参加质料质量的2%~6%的木炭粉或煤粉,在700~800℃的温度下焙烧2~4小时,焙烧在反射炉或回转窑中进行,假如木炭粉达不到脱砷要求可参加少数硫黄。进程首要反应为:砷的贱价氧化物为易蒸发物。高价砷氧化物较难蒸发,它能够与某些碱性氧化物生成安稳的盐:因而.川焙烧法脱砷宜在弱氧化气氛中或复原气氛中进行,此刻方可使砷呈贱价砷氧化物蒸发,并使高价砷氧化物(或盐)复原为贱价砷氧化物,然后进步脱砷率。
(3)钨精矿脱磷办法钨精矿中含磷常以磷灰石、磷钇矿和独居石等磷酸盐的形状存在。脱磷办法有两种。
①稀浸出法脱磷此法适用于脱除磷灰石,一般用1:(3~5)的稀作浸出剂,粗粒精矿用渗浸法,细粒精矿用拌和浸出,能够使磷含量降到0.05%以下。
②浮选法脱磷若钨精矿中以磷钇矿、独居石等形状存在磷杂质时,则无法用稀除磷,可用浮磷抑钨的办法,用和油酸混合捕收剂,草酸作抑制剂,碳酸钠作调整剂,可到达降磷意图,并归纳收回了磷钇矿。
(4)钨精矿除钼办法钨精矿中的钼常呈辉钼矿和钼氧化物(钼酸钙、钼华等)形状存在。一般用抬浮或浮选能够脱除钼的硫化物或许用次氯酸溶液浸出,亦可除掉辉钼矿形状存在的钼。浸出宜在低于40℃温度下进行,此刻铁、铜硫化物的氧化速度比辉钼矿小,且有较高的选择性。若钼以氧化物形状存在,降钼比较困难,现在尚无经济有用的办法。一般可用酸浸或碱浸办法处理,如用20%~30%的在加热条件下可使悉数钼酸盐转变为易溶于的钼酸钙,部分铜和钨也转入溶液中,钨的酸溶量随浓度和温度的添加而添加。
(5)钨精矿脱铜办法 在钨精矿中的铜若呈硫化物形状存在时,一般用浮选或浮办法将其脱除。
选用上述办法除掉某一杂质时,皆可随同除掉适当部分的其他杂质,如氯化焙烧降锡或复原焙烧除砷时均可除掉适当数量的硫。酸浸法除钼、磷时,可除掉适当量的钙、铋、铜等杂质。有时可从酸浸液中收回铋,用次溶液除钼时可除掉部分铜、砷硫化物等。
钨精矿中其他杂质超支状况罕见,一般用物理选矿法屡次精选及化学选矿法除杂质,可使钨精矿中杂质含量降到标准规定值以下。
常用的钨粗精矿除去有害杂质方法
2019-02-26 16:24:38
依据钨精矿的质量标准,除的含量廊大于65%以上外,其他有害杂质的含量要低于相应标准,特级品钨精矿质量要求还高。钨精矿中的S、P、As、Mo、Ca、Mn、Cu、Sn等杂质均有相应标准,当物理选矿办法达不到要求时则选用化学选矿办法,这样不只能够进步钨精矿质量等级,一起还能够归纳利用其他有用组分。
(1)钨精矿除锡办法锡矿石中的锡以锡石的单体存在时,可用强磁选和电选办法使其别离与黑钨矿及白钨矿别离。
出产中常用固体氯化剂对超锡的钨粗精矿进行氯化焙烧,使锡蒸发以到达除锡的意图。进程的首要反应为:钨粗矿氯化焙烧除锡时常用的氯化剂为腐蚀性小并且易收回的氯化铵、等。为了确保反应在复原气氛中进行,配料时需参加必定数量的木炭粉或锯木屑,反应式如下:焙烧时氯化铵的参加量视钨精矿含锡量的不同而异。氯化焙烧温度为850℃左右,进程可在反射炉或回转窑中进行。为了进步脱锡功率,氯化焙烧2~4小时后可翻料一次,保温一段时间以进行氯化焙烧,脱锡率可达90%以上,锡含量可降至0.2%以下。
(2)钨精矿除砷办法 钨精矿中含砷首要以毒矿(FeAsS)、雄黄(AsS)、雌黄、石和各种盐的形状存在,脱除砷的办法有:
①浮和浮选法能够脱除大部分硫化砷;
②弱氧化焙烧或复原焙烧法脱砷。
焙烧前配料时依据原猜中砷含量的凹凸参加质料质量的2%~6%的木炭粉或煤粉,在700~800℃的温度下焙烧2~4小时,焙烧在反射炉或回转窑中进行,假如木炭粉达不到脱砷要求可参加少数硫黄。进程首要反应为:砷的贱价氧化物为易蒸发物。高价砷氧化物较难蒸发,它能够与某些碱性氧化物生成安稳的盐:因而.川焙烧法脱砷宜在弱氧化气氛中或复原气氛中进行,此刻方可使砷呈贱价砷氧化物蒸发,并使高价砷氧化物(或盐)复原为贱价砷氧化物,然后进步脱砷率。
(3)钨精矿脱磷办法 钨精矿中含磷常以磷灰石、磷钇矿和独居石等磷酸盐的形状存在。脱磷办法有两种。
①稀浸出法脱磷 此法适用于脱除磷灰石,一般用1:(3~5)的稀作浸出剂,粗粒精矿用渗浸法,细粒精矿用拌和浸出,能够使磷含量降到0.05%以下。
②浮选法脱磷 若钨精矿中以磷钇矿、独居石等形状存在磷杂质时,则无法用稀除磷,可用浮磷抑钨的办法,用和油酸混合捕收剂,草酸作抑制剂,碳酸钠作调整剂,可到达降磷意图,并归纳收回了磷钇矿。
(4)钨精矿除钼办法 钨精矿中的钼常呈辉钼矿和钼氧化物(钼酸钙、钼华等)形状存在。一般用抬浮或浮选能够脱除钼的硫化物或许用次氯酸溶液浸出,亦可除掉辉钼矿形状存在的钼。浸出宜在低于40℃温度下进行,此刻铁、铜硫化物的氧化速度比辉钼矿小,且有较高的选择性。若钼以氧化物形状存在,降钼比较困难,现在尚无经济有用的办法。一般可用酸浸或碱浸办法处理,如用20%~30%的在加热条件下可使悉数钼酸盐转变为易溶于的钼酸钙,部分铜和钨也转入溶液中,钨的酸溶量随浓度和温度的添加而添加。
(5)钨精矿脱铜办法 在钨精矿中的铜若呈硫化物形状存在时,一般用浮选或浮办法将其脱除。
选用上述办法除掉某一杂质时,皆可随同除掉适当部分的其他杂质,如氯化焙烧降锡或复原焙烧除砷时均可除掉适当数量的硫。酸浸法除钼、磷时,可除掉适当量的钙、铋、铜等杂质。有时可从酸浸液中收回铋,用次溶液除钼时可除掉部分铜、砷硫化物等。
钨精矿中其他杂质超支状况罕见,一般用物理选矿法屡次精选及化学选矿法除杂质,可使钨精矿中杂质含量降到标准规定值以下。
从黝锡矿中提取锡的新工艺研究
2019-03-07 09:03:45
我国广西、广东、湖南、江西等省的一些钨、锡矿床中都有黝锡矿(CuZS·FeS·Sng:)存在,但由于对这种矿石的选冶技能缺少满足的研讨,使得适当一部分黝锡矿资源没有得到有用的使用。国外没有独自处理黝锡矿的现成工艺和研讨报导。国内只要一家锡矿以小规模半工业实验方法。本文介绍了用湿法提取锡的新工艺研讨。在黝锡矿精矿中配入和炭粉进行烧结焙烧,然后用水浸出。对各种参数进行的实验标明,当用量为2吨/吨矿,在650℃焙烧1小时,可使97%以上的锡溶解。在电解经净化除砷的浸出液时,电解温度为55~60℃;当电解液含锡20~40克/升时,电流密度可取200安/米~2,槽电压为2.5~3.1伏;得到纯度为97.87%的阴极锡。锡的总回收率90%以上。
铁合金焦基础知识
2019-03-14 10:38:21
铁合金焦是用于矿热炉冶炼铁合金的焦炭。铁合金焦在矿热炉中作为固态复原剂参与复原反响,反响主要在炉子中下部的高温区进行。以冶炼硅铁合金为例,其反响式为SiO2(液)+2C(固)=Si(液)+2CO(气),跟着反响的进行,焦炭中的固定碳不断耗费,主要以CO方式从炉顶逸出。焦炭灰份中的三氧化二铝、氧化铁、氧化钙、氧化镁和等,部分或大部分被复原出来,进入合金中;未参与反响的部分进入炉渣。焦炭中的硫和硅生成硫化硅和二硫化硅后挥发掉。冶炼不同种类的铁合金,对焦炭质量的要求纷歧,出产硅铁合金时对焦炭质量要求最高,所以能满意硅铁合金出产的铁合金焦,一般也能满意其他铁合金出产的要求。
硅铁合金出产对焦炭的要求是:固定碳含量高,灰份低,灰中有害物质三氧化二铝和等的含量要少,焦炭反响性好,焦炭电阻率特别是高温电阻率要大,挥发份要低,有恰当的强度和粮食的块度,水分少而安稳。
我国冶标(YB/T034-92)规则了铁合金焦的技能要求,要求粒度为2-8mm,8-20mm,8-25mm。
镀镍层出现凹点情况的原因和解决方法
2019-03-12 11:03:26
在工作中经常会遇到镀镍层呈现凹点的状况,这是什么原因?该怎样处理这个问题?槽液遭到有机物污染时该怎样处理呢? 电镀镍大概是各种电镀中最简单发生凹点的制程了,因为氢离子的复原电位很挨近镍,故简单构成在阴极上的附着,这就有必要添加些潮湿剂,以下降槽液的表面张力,使气泡附着不牢,然后被拌和赶开,这样就能够削减此种缺点了。金手指上端线路区在镀镍时,需贴胶带当成阻剂,但却因胶布的厚度,也是构成泡驻留而构成金手指上端呈现凹点的原因。别的,当槽液遭到有机物污染时,需求找出污染来历,并加以改进,咱们能够将活性炭粉做全槽拌和处理,或用活性炭滤心接连处理。
锰矿石冶炼富锰渣和生铁工艺流程
2019-01-04 17:20:18
锰矿石冶炼富锰渣和生铁工艺流程: 小高炉开启,原材料:锰矿石、焦炭。选择合量41以上的锰矿石(mn:23左右,fe:18左右).和碳质还原剂(通常用二级焦碳).原矿石和焦炭的配比为3.5:1,加进治炼炉里,经过炉加热炼两个小时成液体状。经管道流进指定的加有耐热材料的模具里(生铁重些从底下的口子流出.富锰渣从上面口子流出) 冷却后得到富锰渣和生铁。富锰渣和生铁出炉比例约为10:1。1.5吨原矿石经冶炼得到约一吨富锰渣和0.1吨生铁及付生铁。 冶炼一万吨原矿石需要消耗约三千吨二级焦炭。锰矿原矿石价格:锰矿石(mn:23,fe:18) 400元/吨 加减一度锰50元,加减一度铁15元。 二级焦炭:1300元/吨 一级焦炭:1800元/吨富锰渣(mn:33):1150元/吨. 生铁(含碳量2.5%--4%):2750/吨小高炉锰矿原矿石富锰渣焦炭生铁
含钽和铌锡渣富集制取人造钽铌精矿
2019-03-05 12:01:05
钽铌常和锡、钨、钛、铁、锑等的矿藏共生或伴生,选矿办法难以将钽铌矿自别离出来,在锡、钨、铁等的熔炼中它们进入冶金渣中,虽然在过程中得到必定程度的富集,但仍达不到法说到钽铌所要求的高档次精矿的水平。而有必要选用冶金手法富集以制取人工钽铌精矿。此外,有些钽铌粗精矿,进一步精选的收回率很低,也要用冶金办法富集。这种钽铌质料品种繁式,档次凹凸纷歧,富集办法形形。下面大致按质料品种介绍一些较有代表性的办法。但应指出,用于一种质料的办法不完满是专用办法,它也可适用于其他质料。
一、含钽、铌锡渣
按钽、铌含量将锡渣分为高、中、低档次三种。高档次锡渣含(Ta,Nb)2O58%以上,中档次4%以上,2%以下为低档次锡渣。现在以经济地收回钽铌的限于中、高档次的锡渣。在泰国、马来西亚、印度尼西亚等国积存有很多历史上遗留下来的低档次锡渣,现在尚短少经济收回的办法,但它是未来钽的重要质料来历,迫切需要开发经济有用的钽铌收回工艺办法。各国锡渣典型成分见表1。
表1 各国锡渣的典型成分国家Ta2O5Nb2O5FeOTiO2SiO2CaOMnO刚果(金)12.29.914.21.821194.4泰国8.09.918.27.419210.7尼日利亚4.213.57.212.723235.0马来西亚3~44.011.211.020.9251.3
二、过原-氧化法
复原-氧化法适于处理中、高档次锡渣。由电弧炉复原、磁选别离、氧化和浸洗4部分组成,流程图见图1。质料锡渣组成为:Ta2O53.85%,Nb2O54.1%,TiO210.72%,WO33.28%,SiO2 21.3%,CaO21.3%。先将锡渣362kg、焦炭508kg、非磁性循环物料113kg混合均匀,在功率为3000kW的敞式电弧炉中在1650℃下复原熔炼2.5h,取得含(Ta,Nb)2O520%~25%的钽铌碳化物炉床富集物,杂质进入炉渣中,反响为:
(Ta,Nb)2O5+7C=2(Ta,Nb)C+5CO
然后使用钽铌碳化物具有弱磁性的特色,经过磁选机将钽铌碳化物和非磁性物分隔,所得磁性富集物的组成为:Ta2O510%~12%,Nb2O510%~12%,TiO213%,SiO214%,然后将碳化物磁性物料与氧化剂和碳粉按碳∶磁性碳化物∶=1∶5∶13份额配料,在无面料的铸铁坩埚内加火油焚烧使氧化,首要反响为:
10(Ta,Nb)C+14NaNO3=5(Ta,Nb)2O5+7Na2O+7N2+10CO
5WC+8NaNO3=5WO3+4Na2O+4N2+5CO
图1 处理锡渣工艺流程
氧化熔炼为放热反响,焚烧后温度主动升至1000℃,反响时间20~30min,熔体然后按液固比6∶1在90~95℃下进行水洗,除掉可溶性钠盐(铝酸钠、钨酸钠、硅酸钠等,其间95%钨以钨酸钠方式进入水溶液中)。铌和钽残留在水洗渣中,过滤后的滤渣再用20%HCl在75~100℃下酸浸2~4h以除掉铁、锰,一同使钽(铌)酸钠转化为氢氧化物,过滤枯燥后即得含(Ta,Nb)2O540%~50%的人工锟铌精矿。
三、铁合金法
先将锡渣(或低档次铌钽矿)和铁矿石一同反响使生成铌铁或铌钽铁,适当部分杂质进入渣中得以和钽铌取得开始别离。所得铌钽铁合金再用以下办法处理进一步富集。
(一)铁合金复原-电解法
该法是将锡渣或低档次钽铌矿复原所得铌(钽)铁合金进行电解,使钽铌在阳极堆积收回。质料锡渣的组成为:Ta2O51.7%~2.1%,Nb2O52.3%~3.5%,WO31.0%~3.0%,TiO27%~10%,ZrO23%~6%。出产中将锡渣1000kg、硫酸渣700kg(含Fe60%,S2%,为硫化铁矿焙烧制酸渣)和焦炭粉150kg、石灰石100kg混合均匀,在电炉内于1400℃复原,取得含钽3%、铌3.6%、钨2.9%的铁合金。然后以铌钽铁合金为阳极,在FeCl2-HCl-(NH4)2SO4电解液中进行电解,铁在阴极上分出,得电解铁粉产品,跟着铁合金的溶解,钽铌堆积在阳极泥中。最后用石油和苏打水洗去阳极泥中S,取得含Ta2O525%、Nb2O529%、WO324%的人工精矿。
(二)处理法
该法是用溶液浸出铌钽。工艺上是将铌钽铁研磨至0.1~0.2mm,在耐蚀钢反响器中于100℃下和浓溶液(1L水中加670g/L KOH)反响生成多铌钽酸钾:
6Nb+8KOH+11H2O=K8Nb6O19+15H2
6Ta+8KOH+11H2O=K8Ta6O19+15H2
Fe(OH)2和钛酸残存渣中,为促进Fe2+氧化成Fe3+,浸出时不断鼓入空气。过滤后的浸出液含铌达89g/L。然后往溶液中参加固体NaCl,铌和钽以难溶的多铌钽酸钠盐分出:
K8Nb6O19+8NaCl+nH2O=Na8Nb6O19·nH2O+8KCl
K8Ta6O19+8NaCl+nH2O=Na8Nb6O19·nH2O+8KCl
杂质钨、铝、硅、锡等留在碱性溶液中。沉积出的多铌钽酸盐用处理即可得铌钽的水合氧化物:
Na8Nb6O19·nH2O+8HCl+(2n-4)H2O=3Nb2O·nH2O+8NaCl
Na8Ta6O19·nH2O+8HCl+(2n-4)H2O=3Ta2O5·nH2O+8NaCl
四、碳酸钠培烧法
这是我国20世纪60年代针对广西栗木锡矿产的锡渣的特色而开发的办法。其长处是可以处理含(Ta+Nb)2O5<2%的锡渣,并可一同收回钽、铌、钨、锡等金属。钽铌收回率达70%。该办法首要由碳酸钠焙烧、水煮、除硅、酸浸等工序组成,工艺流程见图2。焙烧时将锡渣和碳酸钠按质量比1∶0.4混合,在回转窑中于800~900℃下焙烧30min,使渣中硅、钨等转化为钠盐,焙烧反响为(铌有相似反响):
4(Mn,Fe)(TaO)2+4Na2CO3+11O2=8NaTaO3+2(Fe,Mn)2O3+4CO2↑
4(Fe,Mn)WO4+4Na2CO3+O2=4Na2WO4+2(Fe,Mn)2O3+4CO2↑
SiO2+Na2CO3=Na2SiO3+CO2↑
焙料水煮(90℃)、过滤,90%钨进入溶液(再加CaCl2收回白钨),钽铌留滤查中。然后用7%~9%HCl在80~90℃下处理滤渣,脱去60%~70%的硅我铝,钽铌仍留渣中。最后用12%~15%HCl在95℃下浸出滤渣2h,锡等进入酸浸液(再用铁屑复原电积产出电积锡),浸出渣即为含(Ta+Nb)2O535%~55%的人工精矿,钽铌收回率达94%~99%。
图2 硫酸钠焙烧-酸洗流程简图
锰硅合金冶炼工艺操作(一)
2019-01-08 09:52:46
锰硅合金的生产与电炉高碳锰铁一样都是在矿热炉内进行的,采用有渣法冶炼。主要采用焦炭作还原剂,锰矿石、富锰渣和硅石作原料,石灰或白云石作熔剂在电炉内连续生产,操作方法与高碳锰铁相同;渣铁比受锰矿的金属含量波动影响较大,锰矿品位高,渣量则少,反之渣量就多,波动范围一般为0.8~1.5。 炉况掌握比冶炼高碳锰铁困难一些,为此在操作上更要求精心细致,正确地判断炉况并及时处理。为保证冶炼过程正常进行,在操作中需要特别重视还原剂的用量和炉渣成分。 一、炉况正常的标志和熔池结构 正常炉况的标志是:电极的插入深度合适,炉料均匀下沉,炉口冒火均匀,产品和炉渣成分稳定,各项技术经济指标良好。生产中密切观察炉况,及时正确地调整配料比例是保证正常炉况的关键。 锰硅合金矿热炉熔池是由炉料区、焦炭区、冶炼区和合金池四个不同区域构成。如图1所示,在炉料区锰和铁的高价氧化物被还原成低价氧化物,MnO与SiO2结合成复合硅酸盐,并在1250~1300℃熔化,锰和硅的还原主要是在焦炭区和冶炼区之间进行的。 二、焦炭层的作用 焦炭层对锰硅合金的冶炼是否正常起着关键的作用。焦炭层处于固态的炉料层与液态的冶炼层之间,其厚度和部位决定了电极工作端的位置和电炉操作的稳定性,不同容量或不同工艺参数的锰硅电炉都有着各自的最佳焦炭层厚度和部位。最佳焦炭层部位保证了电极能够在炉料中插入足够的深度和炉况的顺行;最佳的焦炭层厚度则保证MnO,SiO2等氧化物的直接还原反应得以顺利进行及其还原过程的稳定性。选择合适的焦炭粒度,适当的配炭量是维持焦炭层一定的厚度和部位的主要方式之一。[next] 三、配炭量对焦炭层和炉况的作用与影响 当炉料中的配炭量过量时,炉料电阻率减小,导电性增强,电表电流上涨,电极上抬,焦炭层增厚,焦炭层的部位上移,炉膛熔池坩埚缩小,刺火塌料现象增多,合金含硅量偏高。这种现象如果持续下去,则会由于电极插入深度不够,使高温区上移,炉口温度升高,电极上抬严重,炉内塌料增多,炉底温度降低SiO2得不到充分还原,合金中含硅量反而下降,同时出铁排渣不畅。对于封闭炉则会出现炉气压力升高且不稳定的现象。当炉况出现上述特征时,就可以判断为还原剂过剩,必须在料批中减碳,必要时配入不带焦炭的料批。 当炉料中焦炭量不足时,就会引起焦炭层减薄,此时虽然电极插入较深,但负荷会不足,炉料消耗速度慢,炉口翻渣频繁,炉口火焰低、发暗。由于还原剂不足,人炉SiO2还原率降低,炉渣中的SiO2和MnO含量增高。合金中的锰、硅含量偏低,磷含量升高,这时料批中应增加焦炭的配入量,或者单独附加焦炭。 因此,计算配料比,特别是还原剂焦炭的用量直接关系到合金的质量和炉况的顺行。焦炭层的厚度和部位不仅决定于配碳量,还决定于锰矿和焦炭的性质及粒度,以及电炉容量的大小和其他一些因素。在某一特定电炉和同样的原材料条件下,就主要决定于焦炭粒度和出铁工艺。 配碳量是先使用公式计算,再综合考虑炉子上的一些实际情况,进行具体修正后确定。例如炉渣碱度高时渣液较稀,出炉时带走的生料较多,配碳量可以稍多些;又比如炉眼较大时,出炉带走的残余焦炭较多,配碳量也应适当多一些。 四、矿渣碱度对炉况的作用与影响 在冶炼原理中已经介绍了锰和硅都是从液态硅酸锰中还原出来的。由于SiO2比MnO难还原得多,当SiO2能够被大量还原时,MnO的还原也是比较充分的。 为促使SiO2充分还原,需要提高SiO2的活度系数,炉渣碱度选择似乎应该越低越好;但是当碱度小于0.5时,虽然SiO2的活度大,但其炉渣的粘度也大(图2),熔液中SiO2的传质速度低;沪渣的导电性变差。炉内温度梯度大,距离电极稍远的一些区域渣液温度降低;还原SiO2所需的温度不够SiO2还原困难,硅的回收率降低;粘稠炉渣中的一些高熔点物质如SiC等在炉内积存结瘤,难以排出炉外。具体表现为:渣液粘稠,出炉排渣困难,排渣不彻底,熔池坩埚缩小,化料速度趋缓,生产效率低,合金中的硅低碳高,炉渣跑锰损失增大。 向炉料中添加适量的石灰或白云石等碱性物质,有利于改善炉渣的流动性和导电性,提高SiO2的还原率,改善炉况,提高产品冶炼的技术经济指标。[next] 当碱度小于0.75时,锰的回收率随碱度的提高而提高,硅的回收率也随着碱度的提高也有所提高(图3和图4).这说明在规定的限度范围内提高碱度可以改善炉渣的导电性和流动性,使输往炉内的电能可以在较大的范围内均匀分布,减小炉内反应区的温度梯度,有利于加快SiO2的传质速度,而不会由于碱度的提高SiO2活度下降而恶化SiO2还原的热力学条件。需要特别指出的是,为了提高炉渣碱度,不能只靠增加碱性物质来实现,重要的是要提高SiO2还原率。只有在提高SiO2还原率的前提下,炉渣跑锰量才低。单凭增加炉料中CaO,MgO的含量来提高炉渣碱度,往往限制了SiO2还原,也不能提高锰的回收率。通过增加炉料中的n(CaO+MgO)/n(SiO2)比值来提高炉渣碱度,其增加值是有限的,并且在这种情况下不但炉渣跑锰不低,渣量增大,而且由于SiO2活度随着碱度的提高而越来越小,SiO2还原的热力学条件严重恶化,导致硅的回收率迅速降低。分析图5可以得出如下结论:在生产锰硅合金时较高或合适的炉渣碱度是凭SiO2的还原度来达到的,只有SiO2的还原率得到提高,锰的回收率才能得到真正提高。 碱度过高时,成渣温度降低,炉内温度提不高,加上CaO与SiO2结合成硅酸钙,这些都造成SiO2还原的困难,合金含硅量上不去。此外,碱度过高,渣液过稀,不仅出炉时带走的生料多,而且出铁口容易烧坏,炉眼不好堵,因此,碱度太高不好。
铅阳极泥的火法-电解法流程
2019-03-05 09:04:34
铅阳极泥冶金的惯例办法是火法-电解法。火法熔炼前一般先脱除硒、碲(铜高时也包含脱铜),再经火法熔炼产出金银合金阳极板送电解银。
一、铅阳极泥的除硒、碲
大都工厂在火法熔炼前经预先焙烧除硒、碲,但有些工厂则于贵铅氧化熔炼中造渣收回。后者与铜阳极泥分银炉氧化熔炼造碲渣的操作类似。阳极泥预先除硒、碲的办法,一般经回转窑或马弗炉焙烧除硒,再从焙烧渣中浸出碲。
(一)回转窑焙烧除硒碲。该作业进程是将铅阳极泥与浓硫酸混合均匀,于回转窑中进行硫酸盐化焙烧。开端温度300℃,最终逐步升至500~550℃,使硒呈二氧化硒蒸发遇水生成亚。焙烧除硒和亚的复原与处理铜阳极泥相同。
焙烧渣经破碎,用稀硫酸浸出,可使70%左右的碲进入溶液,然后加锌粉置换取得碲泥。碲泥再经硫酸盐化焙烧使碲氧化,然后用浸出。并用电解法从浸出液中出产电解碲,碲的总收回率约50%。
(二)马弗炉焙烧除硒碲。阳极泥与浓硫酸混合均匀,置于焙烧炉内涵150~230℃下进行预先焙烧。然后将焙烧物料转入马弗炉内,在420~480℃温度下进行焙烧除硒。硒的蒸发率可达87%~93%。焙烧渣破碎后用热水浸出,并用锌粉置换取得碲泥,然后再进行提纯。
二、铅阳极泥的火法熔炼
火法熔炼铅阳极泥,除可独自进行外,在有铜电解精粹的工厂,还常常与铜阳极泥混合熔炼。
某厂铅、铜阳极泥混合处理的流程如图1。该流程是将铅阳极泥和浸出脱铜后的铜阳极泥按份额混合,于贵铅炉进行复原熔炼。配入的熔剂一般为碎焦屑(或粉煤)、石灰石、碳酸钠和铁屑。当阳极泥含铁高时,也可不配铁屑。配入铁屑,首要是为了在熔炼造渣进程中,将炉猜中的铅、铋从化合物中替代如来而造渣,铁的参加还能添加炉渣的流动性。但铁量过多,会使炉渣的比重增大。参加的磷酸钠,能与炉猜中的杂质造出密度小而流动性好的钠渣。但钠的存在易与碲生成碲酸盐渣,不利于碲的收回,故某些工厂常用萤石替代碳酸钠。参加石灰石,能够下降炉渣的密度,促进贵金属的沉积别离,但石灰石过多,则金进步炉渣的熔点。参加碎焦屑(或煤粉)首要是为了复原阳极泥中的铅、铋和碲,以捕集贵金属,并削减铅、铋、碲在炉渣中的丢失。因而,碎焦的参加量应为复原阳极泥中铅、铋、碲所需的理论核算量。为使炉内呈微复原气氛,不该参加过量的复原剂。不然,炉内呈强复原气氛,很多复原铅、铋、碲以外的其它金属杂质并使贵铅中金银含量下降,炉渣中二氧化硅的含量则会相对升高(有时达40%以上),使炉渣粘度大为添加,引起扒渣困难,延伸操作时刻,增大金、银在渣中的丢失。图1 铅、铜阳极泥混合处理流程
铅阳极泥,或铜、铅阳极泥混合料的复原熔炼,一般选用转炉或电炉,也有选用小型反射炉的。除电炉外,燃料多用重油或柴油,有条件的当地也可运用煤气。选用反射炉熔炼,加料前有必要扎好炉口。扎炉口是先将炉口上的贵铅或杂物铲除洁净,再将一份焦炭粉、二份粘土混合,加少数水和匀制成泥团放在炉口上,用铁管一层一层地厚实。扎炉口是一项极重要的操作,如炉口上的贵铅等铲除不洁净,当炉温升高后,因为低熔点贵铅的熔化会形成严峻的“跑炉”事端。炉料的熔炼经逐步升温至熔化后期,用扒子拌和熔池,以加快炉料的熔化。约8h炉料悉数熔化后,完全搅动熔池一次,避免炉料粘底。经弄清1h以上,放出上层的硅酸盐和盐稀渣,扒出粘渣。为削减粘渣中金属的丢失,也可在放完稀渣后,升温1h,使粘渣中搀杂的贵铅粒沉积后再扒粘渣。某些厂为进步贵铅档次,在除净渣后,坚持炉温900℃,用风管向金属液面吹风氧化,一向进行到熔池液面白烟很少时,才中止吹风,经沉积后出炉。产出的贵铅含金、银总量应在30%~40%以上。
于反射炉内独自处理铅阳极泥时,配入1%~2%碳酸钠,粉煤小于3%或不配,炉料在1150~1200℃熔化后,沉积2h放出稀渣。放完稀渣后,逐步降温至800℃左右扒出干渣(干渣回来下一炉作配料)后出炉。取得的贵铅送分银炉熔炼。含铅烟尘和稀渣,送铅体系作烧结配料,或从烟尘中制取钠;稀渣经复原熔炼后送精粹锑。
贵铅的分银炉熔炼,一般多用转炉,而较少运用小型反射炉。当贵铅往700~900℃的低温下熔析时,铜、铁及其化合物(包含锑化铜、砷化铜等)因为熔点高,而浮于液面。与此一起,不与贵铅组成合金的各种高熔点杂质也熔析别离,与铜、铁及其化合物一道组成干渣。捞出此干清后,再进行吹风氧化,并在吹风氧化后期加硝石强化氧化进程。熔炼进程中,关于含碲和铋高的质料,需收回碲和铋的工厂,则用铜阳极泥分银炉熔炼类似的办法造碲渣和放铋渣。
未经预先除硒的铅阳极泥,而硒含量又有收回价值时,则在造碲渣的一起收回硒。
经分银炉熔炼产出的金银合金阳极板,送电解精粹银后再从阳极泥中收回金。
钨精矿除杂质
2019-02-27 08:59:29
依据钨精矿的质量标准,除WO3的含量大于65%以上外,其他有害杂质的含量要低于相应标准,特级品钨精矿质量要求还高。钨精矿中的S、P、As、Mo、Ca、Mn、Cu、Sn、SiOl2等杂质均有相应标准,当物理选矿办法达不到要求时则选用化学选矿办法,这样不只能够进步钨精矿质量等级,一起还能够归纳利用其他有用组分。
(1)钨精矿除锡办法锡矿石中的锡以锡石的单体存在时,可用强磁选和电选办法使其别离与黑钨矿及白钨矿别离。
出产中常用固体氯化剂对超锡的钨粗精矿进行氯化焙烧,使锡蒸发以到达除锡的意图。进程的首要反应为:
SnO2 + CaCl2+C=SnCl2↑CaO+CO↑(850℃效果下)
2FeWO4+2CaO+1/2O2 =2CaWO4+Fe2O3
2FeWO4+6CaCl2+1/2O2 =6CaWO4+4FeCl2+Fe2O3
钨粗矿氯化焙烧除锡时常用的氯化剂为腐蚀性小并且易收回的氯化铵、等。为了确保反应在复原气氛中进行,配料时需参加必定数量的木炭粉或锯木屑,反应式如下:
SnO2 + 2NH4Cl+3C+O2 =SnCl2↑+2NH2↑+3CO↑H2O(850℃效果下)
焙烧时氯化铵的参加量视钨精矿含锡量的不同而异。氯化焙烧温度为850℃左右,进程可在反射炉或回转窑中进行。为了进步脱锡功率,氯化焙烧2~4小时后可翻料一次,保温一段时间以进行氯化焙烧,脱锡率可达90%以上,锡含量可降至0.2%以下。
(2)钨精矿除砷办法 钨精矿中含砷首要以毒矿(FeAsS)、雄黄(AsS)、雌黄(As2 S3)、石(As2O3)和各种盐的形状存在,脱除砷的办法有:
①浮和浮选法能够脱除大部分硫化砷;
②弱氧化焙烧或复原焙烧法脱砷。
焙烧前配料时依据原猜中砷含量的凹凸参加质料质量的2%~6%的木炭粉或煤粉,在700~800℃的温度下焙烧2~4小时,焙烧在反射炉或回转窑中进行,假如木炭粉达不到脱砷要求可参加少数硫黄。进程首要反应为:
2FeAsS+6O2+C=As2O3+Fe2O3+2SO2+CO2
2As2 S3+10O2+C=2As2O3+6SO2+CO2
CaO·As2O5+C=As2O3+CaO+CO2
砷的贱价氧化物(As2O3)为易蒸发物。高价砷氧化物(As2O5)较难蒸发,它能够与某些碱性氧化物生成安稳的盐:
As2O3+SiO2+O2=As2O5+SiO2
FeO(CaO)+As2O5=FeO·As2O5(或CaO·As2O5)
因而.川焙烧法脱砷宜在弱氧化气氛中或复原气氛中进行,此刻方可使砷呈贱价砷氧化物蒸发,并使高价砷氧化物(或盐)复原为贱价砷氧化物,然后进步脱砷率。
(3)钨精矿脱磷办法 钨精矿中含磷常以磷灰石Ca5(PO4)3(F、Cl、OH)、磷钇矿YPO4和独居石(Ce、La、Th)PO4等磷酸盐的形状存在。脱磷办法有两种。
①稀浸出法脱磷 此法适用于脱除磷灰石,一般用1:(3~5)的稀作浸出剂,粗粒精矿用渗浸法,细粒精矿用拌和浸出,能够使磷含量降到0.05%以下。
②浮选法脱磷 若钨精矿中以磷钇矿、独居石等形状存在磷杂质时,则无法用稀除磷,可用浮磷抑钨的办法,用和油酸混合捕收剂,草酸作抑制剂,碳酸钠作调整剂,可到达降磷意图,并归纳收回了磷钇矿。
(4)钨精矿除钼办法 钨精矿中的钼常呈辉钼矿和钼氧化物(钼酸钙、钼华等)形状存在。一般用抬浮或浮选能够脱除钼的硫化物或许用次氯酸溶液浸出,亦可除掉辉钼矿形状存在的钼。浸出宜在低于40℃温度下进行,此刻铁、铜硫化物的氧化速度比辉钼矿小,且有较高的挑选性。若钼以氧化物形状存在,降钼比较困难,现在尚无经济有用的办法。一般可用酸浸或碱浸办法处理,如用20%~30%的在加热条件下可使悉数钼酸盐转变为易溶于的钼酸钙,部分铜和钨也转入溶液中,钨的酸溶量随浓度和温度的添加而添加。
(5)钨精矿脱铜办法 在钨精矿中的铜若呈硫化物形状存在时,一般用浮选或浮办法将其脱除
选用上述办法除掉某一杂质时,皆可随同除掉适当部分的其他杂质,如氯化焙烧降锡或复原焙烧除砷时均可除掉适当数量的硫。酸浸法除钼、磷时,可除掉适当量的钙、铋、铜等杂质。有时可从酸浸液中收回铋,用次溶液除钼时可除掉部分铜、砷硫化物等。
钨精矿中其他杂质超支状况罕见,一般用物理选矿法屡次精选及化学选矿法除杂质,可使钨精矿中杂质含量降到标准规定值以下。
究竟该做哪些实验?
1、简易探究选矿实验——实用于购买矿权之前,满意出资分析,下降出资危险开始价值判定。
2、矿石的可行性实验——实用于地质详查分析,满意点评,断定合理流程合理工艺目标。
3、体系工艺流程实验——实用于选厂建造之前,满意规划定案,找出规则断定最佳工艺目标。
4、技能攻关研讨实验——实用于矿难技能未解,满意提高效益,产品不合格收回低成本高时。
5、工艺流程验证实验——实用于矿石性质比照,满意药厂挑选,矿山有不同矿石断定适应性。
6、工艺流程考察实验——实用于现已出产选厂,满意现厂查因,进行选厂体检分析选厂问题。
究竟该化验哪些项目?
1、断定矿石类型----需做光谱分析及稀贵元素化验。
2、查明矿石详细性质--需做多元素分析,断定有价及有害元素含量。
3、搞清矿石中各矿藏间联系,含量及成分--需做岩矿判定,对选矿有严重指导意义。
4、断定元素在矿石中的详细存在方式及散布--需做物相分析,对选矿有指导意义。
5、精矿、尾矿化验---需做有价元素及有害元素。
6、原矿及精矿水份、矿石比重断定---选矿实践计量运用。
高炉锰铁的生产---高炉锰铁冶炼操作
2019-01-25 15:49:34
锰铁高炉冶炼操作与生铁高炉相似,但锰铁高炉具有以下不同特点: ①锰矿中MnO含量较铁矿中FeO含量低,MnO较FeO难还原。冶炼过程中渣量大,锰的回收率较低。 ②由于锰与氧的亲和力比铁强,还原MnO时需要较高的温度和较大的能量,因此高炉锰铁的冶炼焦比要比生铁冶炼高得多,焦炭负荷轻。 ③由于焦比高、焦炭负荷轻,焦炭和矿石之间粒度相差大。边缘气流易于发展,造成煤气流紊乱,易产生偏行管道。 ④锰铁高炉煤气量大,发热值高,造成炉顶温度高,煤气含尘量大,净化困难。 ⑤炉衬侵蚀快,炉底易堆积,使得炉衬寿命低于生铁高炉。 以上特点决定了锰铁高炉的操作制度有别于生铁高炉而具有自身的特点。 1.高炉锰铁冶炼的装料制度 高炉锰铁冶炼中原料、燃料及熔剂的装入方法直接影响高炉断面料层分布及上升煤气流的分布,高炉装料制度包括料线、料批、装料顺序和布料器工作制度。 (1)料线,即大钟下降后的下沿至料面距离,根据锰矿粒度小、密度大、滚动性差,焦炭粒度大、滚动性好的特点,锰铁高炉的料线选在碰焦点以下,通过反弹布料,使矿石布到边缘,焦炭布到中心,有利于中心煤气流的发展。 (2)批重,指每一批料矿石重量。小料批加重边缘,大料批发展边缘。根据锰铁高炉的冶炼特点,一般采用小料批加重边缘。 (3)装料顺序,指一批料中矿石、焦炭、熔剂装入料斗的顺序。矿石先装为正装(加重边缘),焦炭先装为倒装(发展边缘)。此外还有分装、半正装、半倒装等。 (4)布料器工作制度,采用布料器是使炉料在高炉断面分布均匀的一项措施,它还可用来纠正炉料下降和煤气上升的不均匀。锰铁高炉通常采用六点式布料器布料,即每批料旋转60度。 生产实践证明:锰铁高炉采用深料线、较小料批、正装或正分装为主的装料制度有利于炉况顺行。 2.送风制度 锰铁高炉的送风制度直接影响煤气的初始分布及炉况。送风制度的确定体现为鼓风动能,即风压、风量、风温及风口尺寸等参数的选择。 在原料强度好、粒度均匀且粉末少的情况下,可采用大风量及较小风速(大风口)。反之则采用小风量、较大风速(小风口)。高炉容积与鼓风动能成正比。即高炉容积越大、鼓风动能也越大。冶炼产品含Mn量越高,炉缸越易堆积,为此需要的鼓风动能也越大。 在高炉锰铁冶炼中,为保炉缸活跃,要采取措施吹透中心。除力争全风操作外,还应保持较高风速和较大的鼓风动能,以及调节风口长度和角度来实现这一目的。 3.热制度 高炉锰铁冶炼的热制度是指冶炼中炉温水平及维持手段。炉温水平的确定应建立在保证锰的还原率及有利于降低焦比的基础上。 炉温的高低主要取决于焦炭负荷、风温、煤气热能和化学能的利用情况。 焦炭负荷与矿石中的锰、铁含量,冶炼中的渣量,熔剂消耗量以及风温、高炉容积和工作状态有关。在以上条件较稳定的前提下,应保持较合适而稳定的焦炭负荷。当以上条件变化时应根据变化相应调整焦炭负荷,以保证炉温的稳定。 在高炉锰铁冶炼中,热风带入的热量是高炉热量的主要来源之一。提高风温可降低焦比,减少煤气生成量,有利炉况顺行。因此在设备条件许可下应尽量提高风温。 4.造渣制度 高炉锰铁造渣制度与原料条件有关。当锰矿品位高,Mn,Fe质量比高时,可采用无熔剂或少熔剂法生产高碳锰铁,此时炉渣为低磷、低铁富锰渣,可作为硅锰合金的原料。我国锰矿石含锰品位低,国内以熔剂法生产高碳锰铁,以碱性渣操作为主。炉渣碱度一般控制在生产实践表明:渣中MgO含量由5%提高到8%时,渣中MnO由8%降至5%。为此,在高炉锰铁冶炼中合适的炉渣成分为:CaO为30%~44%;SiO2为25%~30%;MgO为8%~12%;Al2O3为10%~15%,MnO为3%~7%。
金铜合金
2017-06-06 17:50:09
金铜合金gold-copper alloys,金和铜的二元合金,在高温下为连续固溶体,在约400℃发生无序有序转变。采用感应炉在炭粉保护下熔炼,铸锭经均匀化和水淬后,塑性好,可冷加工成线材、片材和板材。真空中退火和水淬。 金铜合金大多用作真空钎料。钎接铜与铜、铜与不锈钢。AuCu20应用最广,对铜、铁、镍、钻、钨、钼、钽和铌等均有良好的润湿性。此外,也用作货币、装饰品和齿科材料。 在仿金铜合金腐蚀行为的研究中,科研人员从10种仿金铜合金中优选出一种抗变色性及耐腐蚀性的较好的铜合金,对其进行了电化学和表面分析研究,结果认为合金中某些微量元素可在合金表面膜中富集,使表面氧化物膜保持钝性,从而抑制腐蚀。
脱铁除磷过程的配料计算
2019-01-29 10:09:41
稀土精矿球团脱铁除磷制备稀土精矿渣过程中,各种原料的入炉配比必须经过准确的计算,所用原料要进行化学分析。当稀土精矿球团中铁、磷、锰、钛全部为碳还原时,则焦炭量可按下式计算。
C=Q(0.21Fe+0.22Mn+0.97P+0.5Ti) [1]C固(1-A)
式中 C——焦炭入炉量,kg;
Q——稀土精矿球团入炉量,kg;
C固——焦炭中含碳量,%;
A——焦炭烧损量,%;
Fe、Mn、P、Ti——分别为稀土精矿球团中根据化学分析数据换算出的含铁、锰、磷、钛元素,%。
在实际生产中,为了简化计算过程,焦炭加入量可按下列经验公式计算:
C=1.2Q(0.58Fe+0.32P) [2]
式中 C——焦炭入炉量,kg;
Q——稀土精矿球团入炉量,kg;
Fe、P——分别为稀土精矿球团中含铁、磷量,%。
为了提高铁、锰和钛等的还原率,可向炉内加入占稀土精矿球团总量2%~3%的75硅铁。如果稀土精矿含铁量低于6%,可以加入占稀土精矿球团量2%~5%的生铁或废钢。
高炉锰铁的生产---高炉锰铁冶炼用原料
2019-01-25 15:49:34
高炉锰铁冶炼用原料主要有锰矿、焦炭和熔剂。 1.锰 矿 高炉冶炼用的锰矿有氧化矿、碳酸盐矿、焙烧矿和烧结矿。 矿石中的锰是高炉锰铁冶炼中的主要回收元素。锰矿石含锰量的高低直接影响锰铁冶炼技术经济指标。高炉生产实践表明,锰矿中含锰量波动1%,焦比波动50~80kg,产量波动3%~5%,因此对入炉矿中含锰量要求越高越好。 锰矿中SiO2的含量是影响渣量的主要因素。据分析,入炉锰矿中的m(SiO2)/m(Mn)波动10%,相当于含锰量波动1%,应当尽量选用m(SiO2)/m(Mn)低的矿石入炉。我国各厂家入炉混合矿的m(SiO )/m(Mn)一般控制在0.3~0.8。 锰矿中的m(Mn)/m(Fe)决定产品的含锰量,生产不同牌号的锰铁,需用不同m(Mn)/m(Fe)比值的锰矿。 锰矿中的磷是高炉锰铁生产中的控制元素,希望越低越好。磷在钢铁产品中大都属有害元素。磷在高炉冶炼中理论上百分之百还原。因此锰铁产品中的磷含量取决于矿石、焦炭中的含磷量。但在高炉冶炼中,Mn的回收率和锰矿石的品位会在较大范围内变化,因此产品中的含磷量也随之变化。 锰矿石中允许的含磷量按下式计算: w(P矿)={[P]/np-(w′pK+w″pФ+w″pD)}÷H 式中 w(P矿)——入炉锰矿石的含磷量,%; [P]——产品中允许含磷量上限,%; np——磷在高炉中的还原率(理论上100%,实际上80%左右); w′p,w″p,w″p——分别为焦炭,熔剂 和其他附加物的含磷量,%; H,K,Ф,D——分别为冶炼每吨锰铁所需矿石、焦炭、熔剂和其他附加物单耗,kg/t. 某厂高炉锰铁冶炼对入炉锰矿的m(Mn)/m(Fe)及m(P)/m(Mn)要求下见表。 各牌号高炉锰铁对锰矿m(Mn)/m(Fe)、m(P)/m(Mn)的要求牌号锰铁成分 (%)对入炉锰矿要求MnPm(Mn)m(P)/m(Mn)Ⅰ组Ⅱ组m(Fe)Ⅰ组Ⅱ组≥≤≥≤FeMn78780.330.56.220.003750.00493FeMn74740.380.54.680.003960.00521FeMn68680.40.63.590.004410.00662FeMn64640.40.62.90.004690.00703FeMn58580.50.62.380.006250.0075
锰矿中的铅在冶炼时易还原也易挥发,还原后沉积在炉底,严重时会破坏炉底,炉温高时易挥发,在高炉上部结瘤。一般为要求锰矿中Pb含量<0.1%。锰矿中的锌易挥发在高炉上部沉积,对炉墙砖衬和炉壳有破坏作用,也可能和炉衬混合形成炉瘤。通常要求锰矿中Zn含量<0.2%。 锰矿石入炉粒度一般为5~60mm,含粉率要求小于5%。 2.焦 炭 焦炭在高炉冶炼中不但是还原剂和发热剂,而且是整个高炉料柱的骨架。焦炭质量的好坏一方面要看其化学成分,另一方面要看其物理性能——粒度和强度。锰铁高炉冶炼用焦炭主要有冶金焦、气煤焦和土焦。不同焦炭质量差别较大,使用时应综合考虑。 对焦炭的基本技术要求: (l)高而稳定的固定碳含量。固定碳含量越高,作为还原剂和发热剂的能力越大,对降低焦比,改善技术经济指标有利。 (2)较低的灰分可以减少渣量及灰分带入的磷含量。 (3)较高的机械强度,可防止和减轻焦炭在炉内下降过程中产生粉末、恶化料柱透气性。挥发分低的焦炭机械强度比较好。 焦炭中的水分虽然对高炉冶炼过程无影响,但水分波动会影响配料的准确性。因此,希望焦炭水分稳定为好。焦炭入炉粒度一般为20~60mm。 3.熔 剂 高炉锰铁冶炼所用熔剂为石灰石、生石灰、白云石等。 对石灰石和生石灰要求CaO含量越高越好。CaO含量高,带入的渣量相对减少。使用白云石调节渣时,要求白云石的MgO含量尽量高。 熔剂入炉粒度要求:石灰石和白云石15~75mm,生石灰为20~l00mm,小高炉偏下限,中型高炉偏上限。
富锰渣冶炼的有关计算
2019-01-25 15:49:32
一、高炉冶炼富锰渣的配料计算 正常炉况下的富锰渣成分,主要决定于配矿,富锰渣中的锰主要决定于矿石含锰量和锰铁比,或锰加铁总量。富锰渣中的磷含量和铁含量主要决定于炉温,前者主要由配料控制,后者主要由操作控制。在正常炉况下,都不会造成铁、磷出格,因此主要是搞好配料计算以解决锰合格问题。 1)配料计算的一般过程 (1)首先决定各元素和氧化物的分配率,根据理论分析和生产实践,各元素和氧化物的分配如表1。表1 富锰渣治炼各元素和氧化物的分配元素和氧化物入渣率/%入铁率/%吹损/%Mn85~903~83~8Fe2~585~903~8P2~585~903~8Al2O3,CaO,MgO92~9703~8SiO2其余以Si0.5计3~8
(2)确定矿石配比 ①根据原料的化学成分,确定初步配比。 ②计算入炉混合矿成分(用加权平均法)。 ③根据数理统计,含量35%的富锰渣入炉矿石的Mn和Fe的关系式如下: m(Fe)≥81.5-2.6m(Mh矿) 式中:m(Mn矿)为计算出的混合矿含锰量;m(Fe)为混合矿含m(Mn矿)时,得到含Mn35%的富锰渣要求含Fe的最小值。 计算确认m(Fe矿)≥m(Fe)时,一般可得到合格富锰渣。 (3)确定焦炭负荷。焦炭负荷根据生产实践经验来确定,理论计算复杂,日常生产中极少应用。焦炭负荷与入炉矿石含铁密切相关,一般混合矿含铁高,焦炭负荷轻。一般矿石含铁量20%左右,焦炭负荷取3~3.5,当含铁30%左右时,焦炭负荷取2.5~3.0。 (4)富锰渣和副产生铁成分的计算 ①以100kg矿石和相应的焦炭量,按入渣率计算成渣物量,并将其中锰、铁和磷换算成低价氧化物。 ②各种渣物量相加即为100kg矿石的渣量,然后进一步计算成分。 ③由渣量计算焦比和矿比。 ④同样以100kg矿石和相应的焦炭量,按入铁率计算铁量,并以生铁含碳4.5%折算出100kg矿石所得的铁量。 ⑤检验渣成分是否合格,若合格就计算出铁渣比。锰成分不合格或渣中A12O3大于20%,则调整配比后,再进行计算。 2)富锰渣配矿计算实例 以A,B,C三种不同类型的矿配矿,冶炼含锰35%以上,38%以下的富锰渣。[next] (1)矿石成分及焦炭成分见表2。表2 矿石成分及入炉混合矿成焦炭灰分及成分(%)矿种MnFePSiO2CaOMgOAl2O3配比A28.015.00.2525.01.00.57.060B18.534.00.110.02.01.58.030C28.527.50.19.501.50.54.510混合矿25.1521.950.1918.951.350.87.05100焦炭灰分(含量20%) 0.2508.0 42.0
(2)拟定配矿比为:A矿60%,B矿30%,C矿10%; (3)计算入炉混合矿成分,m(Mn)/m(Fe)=1.14,W(Mn+Fe)=47.1%; (4)计算m(Fe):m(Fe)=81.5-2.6 m(Mn矿)=16.11,m(Fe矿)≥m(Fe) 可知冶炼所得的富锰渣可以含Mn量≥35% (5)计算富锰渣成分 ①假定焦炭负荷为3.3,即100kg矿石需用30kg焦炭。 ②按100kg矿石和相应30kg焦炭计算渣量。 a.进入渣中的锰和氧化亚锰(锰入渣率按90%计算)。 m(Mn)=25.15×90%=22.64kg m(MnO)=22.64×71÷55=29.22kg b.进入渣中的铁和氧化亚铁(铁入渣率取3%计算)。 m(Fe)=21.95×3%=0.66kg m(FeO)=0.66×72÷56=0.8kg c.进入渣中的SiO2量,以SiO2入渣,其总量是入炉量的95%。 计算铁量,副产品铁含量80%~90%,以88%计算,铁元素进入生铁取92%计算, 则生铁量为:Q=21.95×92%÷88%=22.9kg 生铁Si含量为0.5%,则铁中Si量为 m(Si)=22.94×0.5%=0.12kg 还原需要SiO2量为 0.12×60÷28=0.25kg 则进入渣中的SiO2量: m(SiO2)=18.95×95%+30×20%×50%×95%-0.25 =20.6kg d.进入渣中的Al2O3量,Al2O3入渣率取95%计: m(Al2O3)=7.05×95%+30×20%×42%×95%=9.09kg e.进入渣的CaO和MgO量,CaO,MgO的入渣率取95%计: m(CaO)=1.35×95%+30×20%×8%×95%=1.73kg m(MgO)=0.8×95%=0.76kg f.进入渣中的P2O5量 m(P2O5)=(0.19+30×20%×0.2%)×3%×144÷62 =0.014kg表3 富锰渣量及成分成分MnOFeOSiO2Al2O3CaOMgO质量/kg29.20.8420.69.091.730.76含量/%46.951.3433.114.62.771.22成分P2O5总和m(Mn)m(Fe)m(P) 质量/kg0.01462.2422.640.660.0075 含量/%0.02810036.361.050.012
[next]
(6)检验:富锰渣m(CaO+MgO)/m(SiO2)=0.12,m(SiO2)/m(Al2O2)=2.26,含Mn,Fe,P均符合要求。 (7)副产生铁成分计算 a.锰入铁量,锰入铁率取5% m(Mn)=25.15×5%=1.26kg b.铁入铁量,铁入铁率取92%计 m(Fe)=21.95×92%=20.19kg c.还原入铁的Si量 m(Si)=0.12kg d.P入铁量,P入铁率取92%计 m(P)=(0.19+30×20%×0.2%)×92%=0.19kg表4 生铁量与成分表元素MnFeSiPC总和质量/%1.2620.190.120.190.12522.89含量/%5.5488.20.520.834.9499.99
(8)矿比、焦比计算 矿比:1000÷62.24×100=1607kg/t 焦比:1607÷3.3=487kg/t 二、电炉富锰渣冶炼配料计算 比实例介绍一种简易计算方法 1)计算的原始条件 (1)锰矿石的化学成分 化学成分 Mn Fe P SiO2 Al2O3 CaO MgO 含量/% 24.50 31.00 0.03 12.5 12.5 0.6 0.5 (2)焦炭成分 固定碳:80%;灰分:17%表5 各元素的分配率/%项目MnFeP炉渣中8555生铁中139575挥发2 20
(3)焦炭的利用率为92%。 (4)设定由Fe2O3→FeO和MnO2→Mn3O4全为受热分解,不直接消耗焦炭。而由FeO→Fe,Mn3O4→MnO和MnO→Mn全部用焦炭还原。Si和P等还原耗焦炭甚少,由电极消耗来补充,而不另外耗焦炭,以简化计算。 2)简易配料计算 以100kg矿石为基础的计算方法,100kg锰矿石消耗干焦炭约13.5kg. (1)富锰渣含量按下式计算 式中 w(Mn(矿))、w(Fe(矿))——锰矿石中含锰量、含铁量,%; ηMn(入)、ηFe(入)——锰的入渣率、铁的入渣率,%; A——每100kg矿所用焦炭灰分的重量,kg; B——每100kg矿含SiO2,Al2O3,CaO,MgO的总重量,kg。[next] 将原始数据代入上式,则得富锰渣的含锰量为 从上述计算得出: 100kg锰矿石生产的富锰渣和生产铁数量和主要成分见表6。表6 富锰渣和生铁的数量与成分名称化学成分(%)产量/kgMnFeP富锰渣39.112.910.00353.25生铁9.2685.640.134.39
(3)焦炭消耗量的计算 焦碳消耗主要用于铁、锰的还原和生铁的渗碳等方面。 还原进入富锰渣的锰所需碳量:Mn3O4+C=3MnO+CO 53.25×0.391×12÷165=1.15kg 还原进入生铁的锰所需碳量:MnO+C=Mn+CO 34.29×0.0926×12÷55=0.68kg 还原进入生铁的铁所需碳量:FeO+C=Fe+CO 34.39×0.8564×12÷56=6.31kg 副产生铁中渗碳量:34.39×0.045=1.55kg 上面四项合计需碳量为 1.51+0.68+6.31+1.55=10.05kg 折合成干焦炭量为:10.05÷0.90×0.80=13.96kg (4)锰矿石与焦炭的配料比为 锰矿石量/焦炭量=100/13.96 (5)每吨富锰渣消耗 锰矿石:1000÷53.25×100=1878kg 焦 碳:1878÷13.96=262kg
赤泥选铁工艺研究现状
2019-01-21 18:04:35
赤泥是氧化铝生产过程产生的最大废弃物,也是氧化铝厂最大的污染源。因生产方法和铝土矿品位的不同,每生产1t氧化铝大约要产生0.5~2.0t的赤泥,以霞石为原料的烧结法厂,每生产lt氧化铝产出的赤泥量多达5.5~7.5t,每吨赤泥还附带3~4m3的含碱废液。随着铝工业的发展和铝矿石品位的降低,赤泥量将越来越大,必须对赤泥再处理加以利用,才能变废为宝减少污染[1]。
据估算,全世界年产赤泥量约为4000万t,我国的赤泥年产量约100万~150万t。目前国内外氧化铝厂大都将赤泥输往堆场,筑坝湿法堆存,且靠自然沉降分离对溶液返回再用。如此大量的赤泥未能得到有效充分的利用,其所带来的社会和经济问题是相当复杂的:①建造赤泥堆场要占用大片土地,使基建投资增加。据俄罗斯资料介绍,仅此一项,使氧化铝生产成本每吨增加2~3卢布;②赤泥中含碱和少量放射性物质,长期堆存,经晒干后造成粉尘飞扬,严重污染大气和环境;③由于风吹雨淋,致使赤泥流人江河湖泊,造成淤塞,毒化水质,直接影响农业和渔业生产。随着社会对环境保护工作的重视,迫切要求氧化铝工业实现无害排放或零排放,使赤泥资源化,并研究其中各有价组分的综合回收利用,是一项具有重要现实意义的课题[2]。
一、赤泥的性质及铁的赋存状态
(一)赤泥的基本性质
赤泥是一种不溶性的残渣,主要由细颗粒的泥和粗颗粒的砂组成,其化学成分因铝土矿产地和氧化铝生产方法的不同而有所差异。大部分从工厂设备排出的赤泥,如以固体重量浓度计,系一种约为2 0%~3 0%的泥浆。母液是以铝酸钠(Na2O·3A12O3·5SiO2·nH2O)苛性纳为主的碱性液体,pH为12~13。赤泥中的固体部分是赤铁矿(32%~48%)、铝硅酸钠(32%~50%)、金红石(5%~8%)、金刚砂(约5%)、石英(约4%)和钛磁铁矿(约2%)等微粒子混合物。
经检测,某拜尔法赤泥的物相组成为:方钠石型含水铝硅酸钠:Na2O·Al2O3·1.7SiO·2.4H20;针铁矿:FeOOH;赤铁矿:Fe2O3;石英:SiO2。其化学组成见表1。(二)赤泥中铁的储存状态
铁在赤泥中主要以Fe2O3为主,含有少量的FeO,前者与后者的比例几乎以9:1的含量出现。这是天然铝土矿中所伴生的黄铁矿(FeS2)氧化水解后形成的胶体Fe(OH)3沉淀物;Fe(OH)2胶体在强碱度和加热条件下性质不稳定,具有转化为针铁矿FeOOH的趋势,在新鲜赤泥中针铁矿与胶体Fe(OH)3可能并存,而Fe则主要以赤铁矿分散在赤泥里,经堆放干燥后,一部分Fe2O3会转变成铁的复合硅酸盐[3]。
二、赤泥中选铁的工艺研究现状
关于从赤泥中选铁工艺的研究,国外如日本、美国、德国等,在20世纪70年代便已着手。针对拜耳赤泥氧化铁含量高的特性,美国很早提出利用赤泥生产铁的方法,并申请了专利。该专利提出用还原焙烧处理赤泥,将赤泥含水率控制在30%以下,再自然蒸发,干赤泥在还原气氛下流态化焙烧,氧化铁转化成磁铁矿,经过磁性分离制成高纯冶金团块。另外,美国Mcdowell Wellman工程公司开发了用圆盘烧结机处理赤泥生产铁的方法,该法将赤泥和煤制团烧结后,用电炉熔炼,铁的回收率高达98%~99%,1t生铁消耗5~8t赤泥[4]。
日本专利提出还原焙烧处理赤泥,将氧化铁转化为磁铁矿,其余部分回收氧化铝[5]。先将赤泥过滤至含水率30%,再进行自然蒸发,然后在流化床中进行焙烧。在流化床中物料用还原气体还原,将氧化铁变成磁化铁。磁性物质经磁性分离,浓缩制成高纯冶金团块。试验中发现,在控制严格的条件下,焙烧赤泥的还原反应可一直进行到,使赤泥中的赤铁矿完全转化为海绵铁,而后进行磁性分离。获得海绵铁制团后,可以直接用于电炉炼钢,比使用磁铁矿更为简便而经济。
俄罗斯、匈牙利、加拿大、西班牙等国对赤泥的性质,及从中选铁的方法也进行了大量的研究工作。匈牙利学者提出氯化焙烧处理赤泥熔渣工艺,该工艺通过还原--氧化两阶段的反应,获得TiO2含量高的炉渣,Al2O3和V2O5也在炉渣中得到富集[6]。
我国对赤泥选铁的研究起步较晚,在20世纪80年代末期才开始。广西冶金研究院以平果铝土矿拜耳法赤泥为原料,以广西煤炭为还原剂进行了直接还原炼铁的研究[7]。该工艺是将拜耳法赤泥和煤混合制团,干燥后进行还原焙烧,最后磁选可制取高品位的海绵铁。
刘万超等[8]以拜耳法赤泥为原料,经直接还原焙烧一磁选回收铁,磁选残渣用于生产建筑材料。该赤泥中的氧化铁含量27.93%,并以赤(褐)铁矿为主要存在状态。在探讨了焙烧温度、焙烧时间、炭粉及添加剂用量等因素对实验结果影响的基础上,得出较理想的焙烧条件。在该条件下,经磨细磁选后所得精矿中,总铁含量89.05%,金属化率96.98%,回收率81.40%,可用作海绵铁。磁选残渣掺入硝石灰经压力成形、蒸汽养护,试件抗压强度可以达到24.10MPa,可用于生产蒸养砖等建材。残渣在蒸养前后主要矿物组成由霞石转化为钙铝黄长石,热力学分析证明了在实验条件下该反应发生的可能性。
高建阳[9]利用赤泥,配入自制添加剂,采用煤基直接还原焙烧-渣铁磁选分离-冷固成型的新工艺流程,研究了拜尔法赤泥煤基直接还原过程中金属铁晶粒长大特性,并着重讨论了添加剂种类、焙烧条件对金属铁晶粒长大特性的影响,生产出优质的海绵铁,产品的金属化率为92.9%,含铁品位为93.7%,铁回收率为94.42%,可作电炉炼钢的半钢原料,为赤泥的综合利用开辟了新途径。
管建红 针对平果铝业公司拜尔法赤泥组分复杂、粒度细的特点,采用了SLon型立环脉动高梯度磁选机回收赤泥中的铁,经小型试验和半工业性试验,获得了含TFe54.70%的铁精矿,回收率为35.36%。所得合格铁精矿可作高炉炼铁原料,为赤泥中铁的回收,寻找到了一条可工业实施的途径。
廖春发等[11]妇采用焦炭作还原剂,确定出焙烧工艺最佳参数:赤泥:焦炭的比值为80:15;还原焙烧温度为1150℃;焙烧时间为1.5h;磁选的磁场强度为0.9kt。能富集得到56.5 %的铁精矿;其一次回收率达到63.3%,剩下的铁在酸浸后回收。
从实验结果来看,稀有金属在分离渣中得到了进一步的富集,有效的分离了稀土。之后再采用酸浸从分离渣中分离稀有金属,物料的处理量会大大的减少。
姜平国等[12]采用湿法脉动高梯度磁选来回收拜耳法赤泥中的铁矿物。其工艺方法是将含13%三氧化二铁的铝土矿,先低温焙烧,再经拜耳法溶出,赤泥进行磁选,磁选后的铁精矿可作为高炉炼铁的原料。
宫连春[13]阳发明了一种直接利用赤泥制备氧化铁红的方法,具体涉及颜料生产领域,其工艺如图1所示。李亮星[14]等在赤泥经过加入碳酸钠还原焙烧时,在焦炭作还原剂的情况下,对铁的回收率和品位的影响做了研究。实验得到的最佳条件是:赤泥、碳酸钠与焦炭的质量比为5:5:1;还原焙烧温度为1000℃;焙烧时间为60min。
赤泥经过还原焙烧后,磁选得铁精矿,磁选精矿所含杂质极少,主要为单质铁。铁的回收率可以达到80%,品位在70%以上。
三、结语
自氧化铝工业发展起来以后,赤泥的处理与综合利用一直是世界急需解决的难题之一,回收赤泥中的铁更是赤泥综合利用的重要一项。
(一)研究赤泥物相证明,铁在赤泥中是主要以赤铁矿和针铁矿形式存在,前者占到90%以上。同时各矿物多以Fe、Al、Si胶结体形式存在,晶粒微细,结晶极不完整,对铁的分选和提取造成很大的困难。
(二)从热力学和动力学上来说,赤泥中还原铁完全可行。在50~1250℃左右进行还原焙烧,完成晶体结构重整,可使细粒分布的铁铝分离。
(三)同时,赤泥中含铁矿物因受氧化铝原料及生产工艺条件的变化,主要含铁矿物针铁矿和赤铁矿的比例也随之变化。在赤泥物相组成中,赤铁矿含量可由19.0%~33.5 %之间波动,而针铁矿含量也由16.0%~3.9%之间波动,针铁矿为隐晶或微晶,多与其他矿物胶结,因此针铁矿转化程度会影响到铁的回收效果。
(4) 从高铁赤泥中回收铁工艺技术难度不高,最主要的问题,是在考虑赤泥的化学成分与原铝土矿的成分及氧化铝的生产工艺,针对不同赤泥的特性,要有相对优化的提取工艺,减少资源浪费以及能源消耗,降低回收成本,真正实现经济的可持续发展。在环保和经济两方面,取得赤泥综合利用双赢。
参考文献
[1]王文忠.关于冶金资源综合利用研究的几点思考[J].中国冶金,1996,(2):35-37.
[2]杨志民.我国氧化铝生产的综合回收与利用[J].世界有色金属,2002,(2):35-38.
[3]景英仁,景英勤,杨 奇.赤泥的基本性质及其工程特性[J] .轻金属,2001,(4):20-23.
[4] Luige Piga,Pausto Pochettj, Luisa Stoppa.Recovering metals from red mud generate during A in a production[J] .Jom,2004,45(11):54-59.
[ 5 ] Xiang Qinfang,Liang Xiao hong,SchiesingerMarkE,etal.Low temperature reduction of ferriciron in red[J].Light Metals:Proceeding of Session,TMS Annual Meeting Feb 11 Novl5 2000:157-162.
[6] Agrawal,K.K.Sahu,B.D. Pandey.Solid waste manage ment in non-ferrous industries in India[J].Resources,Conservation and Recycling,2004,42 (2):400-403.
[7]余启名,周美华,李茂康,等.赤泥的综合利用及其环保功能[J].江西化工,20007,(4):125-127.
[8]刘万超,杨家宽,肖 波.拜耳法赤泥中铁的提取及残渣制备建材[J].中国有色金属学报,2008,18(1):187-192.
[9]高建阳.采用拜尔法赤泥直接还原海绵铁的研究[J],济南,2007年全省有色金属学术交流会论文集,2007,210-214.
[10]管建红.采用脉动高梯度磁选机回收赤泥中铁的试验研究[J].江西有色金属,2000,14(4):1 5~18.
[11]廖春发,姜平国,焦芸芬.从赤泥中回收铁的工艺研究[J].中国矿业,2007,16(2):93-95.
[12]姜平国,王鸿振.从赤泥中回收铁工艺的研究进展[J].四川有色金属,2005,(2):23-25.
[13]官连春.一种利用赤泥制备氧化铁红的方法[P].CNl01077793,2007-11-28.
[14]李亮星,黄茜琳,罗 俊.从赤泥中回收铁的工艺研究[J].上海有色金属。2009.30(1).19-21.
钨精矿除杂质5大方法及类型
2019-02-26 09:00:22
特级品钨精矿中的S、P、As、Mo、Ca、Mn、Cu、Sn、SiOl2等杂质均有相应标准,当物理选矿办法达不到要求时则选用化学选矿办法,这样不只能够进步钨精矿质量等级,一起还能够归纳利用其他有用组分。
依据钨精矿的质量标准,除WO3的含量廊大于65%以上外,其他有害杂质的含量要低于相应标准,特级品钨精矿质量要求还高。钨精矿中的S、P、As、Mo、Ca、Mn、Cu、Sn、SiOl2等杂质均有相应标准,当物理选矿办法达不到要求时则选用化学选矿办法,这样不只能够进步钨精矿质量等级,一起还能够归纳利用其他有用组分。
(1)钨精矿除锡办法锡矿石中的锡以锡石的单体存在时,可用强磁选和电选办法使其别离与黑钨矿及白钨矿别离。
出产中常用固体氯化剂对超锡的钨粗精矿进行氯化焙烧,使锡蒸发以到达除锡的意图。进程的首要反应为:
SnO2 + CaCl2+C=SnCl2↑CaO+CO↑(850℃效果下)
2FeWO4+2CaO+1/2O2 =2CaWO4+Fe2O3
2FeWO4+6CaCl2+1/2O2 =6CaWO4+4FeCl2+Fe2O3
钨粗矿氯化焙烧除锡时常用的氯化剂为腐蚀性小并且易收回的氯化铵、等。为了确保反应在复原气氛中进行,配料时需参加必定数量的木炭粉或锯木屑,反应式如下:
SnO2 + 2NH4Cl+3C+O2 =SnCl2↑+2NH2↑+3CO↑H2O(850℃效果下)
焙烧时氯化铵的参加量视钨精矿含锡量的不同而异。氯化焙烧温度为850℃左右,进程可在反射炉或回转窑中进行。为了进步脱锡功率,氯化焙烧2~4小时后可翻料一次,保温一段时间以进行氯化焙烧,脱锡率可达90%以上,锡含量可降至0.2%以下。
(2)钨精矿除砷办法 钨精矿中含砷首要以毒矿(FeAsS)、雄黄(AsS)、雌黄(As2S3)、石(As2O3)和各种盐的形状存在,脱除砷的办法有:
①浮和浮选法能够脱除大部分硫化砷;
②弱氧化焙烧或复原焙烧法脱砷。
焙烧前配料时依据原猜中砷含量的凹凸参加质料质量的2%~6%的木炭粉或煤粉,在700~800℃的温度下焙烧2~4小时,焙烧在反射炉或回转窑中进行,假如木炭粉达不到脱砷要求可参加少数硫黄。进程首要反应为:
2FeAsS+6O2+C=As2O3+Fe2O3+2SO2+CO2
2As2 S3+10O2+C=2As2O3+6SO2+CO2
CaO·As2O5+C=As2O3+CaO+CO2
砷的贱价氧化物(As2O3)为易蒸发物。高价砷氧化物(As2O5)较难蒸发,它能够与某些碱性氧化物生成安稳的盐:
As2O3+SiO2+O2=As2O5+SiO2
FeO(CaO)+As2O5=FeO·As2O5(或CaO·As2O5)
因而.川焙烧法脱砷宜在弱氧化气氛中或复原气氛中进行,此刻方可使砷呈贱价砷氧化物蒸发,并使高价砷氧化物(或盐)复原为贱价砷氧化物,然后进步脱砷率。
(3)钨精矿脱磷办法钨精矿中含磷常以磷灰石Ca5(PO4)3(F、Cl、OH)、磷钇矿YPO4和独居石(Ce、La、Th)PO4等磷酸盐的形状存在。脱磷办法有两种。
①稀浸出法脱磷此法适用于脱除磷灰石,一般用1:(3~5)的稀作浸出剂,粗粒精矿用渗浸法,细粒精矿用拌和浸出,能够使磷含量降到0.05%以下。
②浮选法脱磷若钨精矿中以磷钇矿、独居石等形状存在磷杂质时,则无法用稀除磷,可用浮磷抑钨的办法,用和油酸混合捕收剂,草酸作抑制剂,碳酸钠作调整剂,可到达降磷意图,并归纳收回了磷钇矿。
(4)钨精矿除钼办法钨精矿中的钼常呈辉钼矿和钼氧化物(钼酸钙、钼华等)形状存在。一般用抬浮或浮选能够脱除钼的硫化物或许用次氯酸溶液浸出,亦可除掉辉钼矿形状存在的钼。浸出宜在低于40℃温度下进行,此刻铁、铜硫化物的氧化速度比辉钼矿小,且有较高的选择性。若钼以氧化物形状存在,降钼比较困难,现在尚无经济有用的办法。一般可用酸浸或碱浸办法处理,如用20%~30%的在加热条件下可使悉数钼酸盐转变为易溶于的钼酸钙,部分铜和钨也转入溶液中,钨的酸溶量随浓度和温度的添加而添加。
(5)钨精矿脱铜办法 在钨精矿中的铜若呈硫化物形状存在时,一般用浮选或浮办法将其脱?。
选用上述办法除掉某一杂质时,皆可随同除掉适当部分的其他杂质,如氯化焙烧降锡或复原焙烧除砷时均可除掉适当数量的硫。酸浸法除钼、磷时,可除掉适当量的钙、铋、铜等杂质。有时可从酸浸液中收回铋,用次溶液除钼时可除掉部分铜、砷硫化物等。
钨精矿中其他杂质超支状况罕见,一般用物理选矿法屡次精选及化学选矿法除杂质,可使钨精矿中杂质含量降到标准规定值以下。
钨粗精矿除去有害杂质的常用方法
2019-02-25 15:59:39
依据钨精矿的质量标准,除WO3的含量应大于65%以上外,其他有害杂质的含量要低于相应标准,特级品钨精矿质量要求还高。钨精矿中的S、P、As、Mo、Ca、Mn、Cu、Sn、SiO2等杂质均有相应标准。当物理选矿办法达不到要求时则选用化学选矿办法。这样不只能够进步钨精矿质量等级,一起还能够归纳利用其他有用成分。
一、钨精矿除锡办法
锡矿石中的锡以锡石的单体存在时,可用强磁选和电选办法使其别离与黑钨矿及白钨矿别离。
出产中常用固体氯化剂对超锡的钨粗精矿进行氯化焙烧,使锡蒸发以到达除锡的意图。进程的首要反应为:
SnO2+CaCL2 +C = SnCl2↑+CaO +CO↑(850)
2FeWO4+2CaO +1/2 O2 = 2CaWO4+Fe2O3
2FeWO4+6CaCl2 +3/2 O2 = 6CaWO4+ 4FeCl2 +Fe2O3
钨粗矿氯化焙烧除锡时常用的氯化剂为腐蚀性小并且易收回的氯化铵、等;为了确保反应在复原气氛中进行,配料时需参加必定数量的木炭粉或锯木屑,反应式如下:
SnO2 + 2NH4Cl +3C +O2 = SnCl2 ↑+2NH3↑ +3CO ↑+H2O
焙烧时氯化铵的参加量视钨精矿含锡量的不同而异。氯化焙烧温度为850左右,进程可在反射炉或回转窑中进行。为了进步脱锡功率,氯化焙烧2-4小时后可翻料一次,保温一段时刻以进行氧化焙烧,脱锡率可达90%以上,锡含量可降至0.2%以下。
某矿钨精矿氯化焙烧除锡时的配料比
nequot="" medium="" collapse="">含锡量(%)木屑用量(千克)氯化铵(千克)矿量(千克)复原焙烧时刻氧化焙烧时刻(小时)1-234510-2010-2010-2010-201220242817517517517523442344二、钨精矿除砷办法
钨精矿中含砷首要为毒砂(FeAsS)、雄黄(AsS)、雌黄(As2S3)、石(As2O3)和各种盐的形状存在。脱除砷的办法:
(1)浮和浮选法能够脱除大部分硫化砷:
(2)弱氧化焙烧或复原焙烧法脱砷。
焙烧前配料时据原猜中砷含量的凹凸参加质料分量的2-6%的木炭粉或煤粉,在700-800度的温度下焙烧2-4小时,焙烧在反射炉或回转窑中进行。假如木炭粉达不到脱砷要求可参加少数硫黄,进程首要反应为:
2FeAsS+6O2 +C = As2O3+Fe2O3+2SO2+CO2
2As2S3+10O2 +C = 2As2O3+6SO2 +CO2
Fe3(AsO4)2+C =As2O3 +3FeO +CO2
CaO ·As2O5+C =As2O3+CaO +CO2
砷的贱价氧化物(As2O3 )为易蒸发物。高价砷氧化物(As2O5)较难蒸发,它能够与某些碱性氧化物生成安稳的盐:
As2O3 +SiO2 +O2 =As2O5 +SiO2
FeO·CaO)+As2O5 =FeO·As2O5(或CaO·As2O5)
因而,用焙烧法脱砷宜在弱氧化气氛中或复原气氛中进行,此刻方可使砷呈贱价砷氧化物蒸发,并使高价砷氧化物(或盐)复原为贱价砷氧化物,然后进步脱砷率。
三、钨精矿脱磷办法
钨精矿中含磷常以磷灰石Ca5(PO4)3(F、Cl、OH)、 磷钇矿YPO4 和独居石(Ce、La、Th)PO4等磷酸盐的形状存在。脱磷办法有:
(1)稀浸出法脱磷。此法适用于脱除磷灰石,一般用1:3-5的稀作浸出剂,粗粒精矿用渗浸法,细粒精矿用拌和浸出,能够使含磷量降到0。05%,以下。
(2)浮选法脱磷。若钨精矿中含磷钇矿、独居石等形状存磷杂质时,则无法用稀除磷,可用浮磷抑钨的办法,用和油酸混合捕收剂,草酸作抑制剂,碳酸钠用调整剂,可到达降磷意图,并归纳收回了磷钇矿。
四、钨精矿除钼办法
钨精矿中的钼常呈辉钼矿和钼氧化物(钼酸钙、钼华等)形状存在。一般用浮或浮选能够脱除钼的硫化物或许用次氢酸溶液浸出,亦可除掉辉钼矿形状存在的钼。浸出宜在低于40度温度下进行,此刻铁、铜硫化物的氧化速度比辉钼矿小,且有较高的选择性。若钼以氧化物形状存在,降钼比较困难,现在尚无经济有用办法。一般可用酸浸或碱浸办法处理,如用20-30%的在加热条件下可使悉数钼酸盐转变为易溶于的钼酸钙,部分铜和钨也可转入溶液中,钨的酸溶量随浓度和温度的添加而添加。
五、钨精矿脱铜办法
在钨精矿中的铜若呈硫化物形状存在时,一般用浮选反浮选办法将其脱除。
选用上述办法除掉某一杂质时,皆可随同除掉适当部分的其他杂质,如氯化焙烧降锡或复原焙烧除砷时均可除掉适当于数量的硫。酸浸法除钼、磷时,可除掉适当量的钙、铋、铜等杂质。有时可从酸浸液中收回铋,用次溶液除钼时,可除掉部分铜、砷硫化物等。
钨精矿中其他杂质超支状况罕见,一般用物理选矿法屡次精选及化学选矿法除杂质,可使钨精矿中杂质含量降到标准规定值以下。
火法炼铜(四)
2019-03-05 09:04:34
铜锍中的杂质Pb和Zn在吹炼中简直悉数进入烟尘,As和Sb大部分以氧化物形状或蒸发除去或进入炉渣,少数残留于粗铜中,贵金属Au和Ag则悉数转入粗铜。 2.转炉结构 现代锍吹炼转炉均为水平卧式转炉,又称PS型转炉(见图7)。炉壳用锅炉钢板制成圆筒状,内衬优质耐火砖,炉壳外固定有两圈钢环,借此钢圈将转炉体支撑在4对滚轮上。炉体一端有齿轮圈,电动机和减速器组成的驱动组织经过小齿轮操控滚动的作业方位。在转炉作业方位后侧沿炉子轴线方向设有等距离的一系列风口,风口上装有可用于整理风口结渣的风盒,压缩空气经由风口进入炉内。转炉上部中心开有炉口,这是进料、出料、烟气出炉的必经之路。炉口上有水冷或汽化冷却烟罩。转炉首要尺度规格见表3。表3 主转炉规格目标规格粗铜容量/t155080100直径×炉长/mФ(2.2×4.3)Ф(3.6×7.7)Ф(4×9)Ф(4×10.7)风口直径×个数/mmФ(50×13)Ф(48×34)Ф(49×48)Ф(49×48)送风量/(m3/min)140340500540处理铳量/(t/炉)20100160204[next]
3.工艺操作 铜锍转炉吹炼成粗铜的进程分为两个周期。榜首周期是从参加榜首包铜锍开端,经过分批参加铜锍和熔剂吹炼,直到所加铜锍到达额外容量,并悉数吹炼成由Cu2S组成的白冰铜倒出最终一批炉渣止。这一周期的效果是将铜锍中的FeS组分别离以2FeO·SiS2炉渣和SO2方式除去,一同除去部分杂质元素。第二周期炉内不加任何物料,只经过风口鼓风使部分Cu2S氧化成Cu2O和SO2,再靠Cu2O与Cu2S反响取得粗铜。第二周期有必要严厉把握吹炼结尾,当炉内粗铜档次到达98.5%-99%时,即可滚动转炉风口显露液面、停风,将粗铜倒入铜水包中,或送精粹炉精粹,或送浇铸机铸锭。为进步生产率和烟气SO2浓度,现遍及选用转炉富氧鼓风吹炼。 首要技能经济目标:送风时率80%-90%;粗铜档次98.5%-99.1%;送风压力60-120kPa;粗铜工艺能耗0.87-0.91标煤/t;氧气浓度23%-28%(造渣期);炉渣含铜4%-4.5%。 (三)铜的精粹 这是除去粗铜中的杂质产出精铜的炼铜进程。粗铜精粹分为火法精粹和电解精粹。 1.铜火法精粹 矿产粗铜或紫杂铜在精粹炉中氧化除杂和复原熔炼产出精粹铜,铸成阳极板供电解精粹用。有些含杂质低、不含贵金属的紫杂铜,经过火法精粹后,即可直接直销商场。 矿产粗铜常含有S、Fe、Pb、Zn、Ni、As、Sb、Sn、Bi等杂质,其总量约占粗铜总量的1%-2%。这些杂质均具有易氧化、氧化物比Cu20安稳和在铜液中溶解度低的特性。使用杂质元素的这些性质,先向熔铜中鼓入空气,将杂质氧化成氧化物,或成气体蒸发或和参加的熔剂造渣除去。因为少数杂质散布于主体铜水中,所以鼓入空气中的氧首要氧化的是铜,所生成的Cu2O作为一种氧化剂再将杂质氧化,氧化除去杂质后,再通以碳氢质复原剂除去铜水中的氧,产出契合电解要求的精粹铜。火法精粹包含氧化和复原两个进程。 (1)氧化进程空气吹炼时,铜首要被氧化: 4Cu+O2====2Cu2O 生成的Cu2O可溶于铜水中,经再与熔铜中杂质元素效果,将它们氧化,自身被复原成金属: Cu2O+Me====MeO+2Cu[next] 杂质中的Zn和As、Sb的贱价氧化物均可在高温条件下变成气体蒸发除去,而Fe、Pb、Co、Sn以及As、Sb高价氧化物则与参加的石英、石灰、碳酸钠等熔剂生成各种盐类进入炉渣。当金属杂质氧化完毕时,Cu2S开端剧烈氧化,放出SO2气体: Cu2S+O2====2Cu+SO2 经核算,当氧化精粹后期铜液中含氧0.6%、系统温度1373 K时,铜液中S含量可降到0.001%。以Cu2O形状存在的氧鄙人一步复原进程除去。 (2)复原进程 通常以重油和作复原剂,这些有机物受热分化发作H2、CO和C等强复原剂,它们再和Cu2O效果发作以下复原反响: Cu2O+H2====2Cu+H2O Cu2O+CO====2Cu+CO2 Cu2O+C====2Cu+CO 复原期结尾判别十分重要,复原缺乏或过复原,都会下降用火法精粹铜铸成的阳极板的成分和物理性质。别的要求铜中氧量降到0.05%-0.1%的水平。 (3)精粹炉结构 我国现有两种精粹炉炉型:反射炉和回转式炉。前者使用遍及,后者使用时刻较晚,至1999年全国只要2家冶炼厂选用。精粹炉首要技能特色见表4。表4 我国要为法精粹炉首要参数目标参数炉子容量/t2680120150240100炉型反射炉反射炉反射炉反射炉回转炉回转炉炉床面积/m210152123Ф3.9m×9.2mФ3.4m×7.5m复原剂品种柴油重油重油木炭粉重油复原剂用量/(kg/t)1198137 阳极板重/(kg/块)125150220210370 [next]
①反射炉精粹 精粹炉外形与铜熔炼反射炉类似,但尺度相对较小,炉顶密闭无加料口,炉料是从炉墙上的加料口参加。炉子巨细由生产能力而定,每炉产铜可在20-150t规模,大型炉的长一般有15m,宽5m,炉体用耐火砖砌筑在钢筋混凝土支撑的钢板上,四周用钢板拉杆固定,炉头设置供热燃烧器,炉尾开设竖直烟道,烟道下有放渣口,侧墙有放铜口,炉子中部侧墙上开有尺度较大的加料口和操作门,并设可升降的门盖。 精粹作业包含质料预备、加料、熔化、氧化、复原、阳极浇铸等。炉料中一般加粗铜量占80%,回来残阳极占20%,收回的废紫杂铜少数。热粗铜用溜槽参加,冷料用加料机参加。加料后行将炉温进步到1623℃,熔化炉料,然后扒出炉渣。氧化是火法精粹进程中的一项关键步骤,压缩空气是经过外面涂有耐火泥的刺进铜水中的长铁管鼓入铜水,在吹炼的一同还要参加石英等造渣熔剂,为了有用除去Zn等蒸发元素,熔池面还需盖上一层木炭粉或焦炭末。氧化完毕扒净炉渣即进入复原操作。复原剂重油用空气或蒸汽雾化喷入铜水除去Cu2O中的氧,复原终了时铜水含氧0.05%-0.1%。复原完毕时炉内坚持1390-1423K、零负压即可浇铸。 ②回转式精粹炉 我国贵溪冶炼厂和大冶冶炼厂备有1台回转式精粹炉。前者为引入的芬兰技能和设备。后者为自行设计制造的设备。回转炉呈圆筒形,外面为钢板制成,内衬耐火砖。炉子中上部设置炉口,用于加料和倒渣,其上有盖,平常盖上。炉子一端有燃烧器,相对一端有排烟口。炉口下方有2个Ф50mm的圆孔风嘴,用于插管通气氧化或通复原剂复原,风嘴对侧有放铜口,转炉炉子将铜口转到液面以下即可放铜。整个炉体支在滚轮上。 回转炉是一种新式铜精粹设备,它的密封性好,无烟气走漏,环境清洁,能耗低,机械化程度高,但比反射炉一次出资大。 2.铜的电解精粹 在电解槽中将火法精粹铜提炼成电解精铜的进程。火法精粹所得的铜一般仍含有0.5%左右的杂质成分,选用电解精粹可将火法精铜中的杂质进一步下降到契合产品质量标准的要求。 (1)铜电解的根本进程 铜电解精粹是以硫酸性硫酸铜溶液为电解质,以火法精铜为阳极,纯铜片或不锈钢板作阴极,在电解槽中进行电解。电解时在直流电压效果下,阳极铜发作电化学溶解溶入电解液,电解液中铜离子Cu2+趋向阴极,并在阴极上沉积为金属铜。电极反响是: 阳极 Cu-2e====Cu2+ 阴极 Cu2++2e====Cu[next] 电解进程中,电位比铜正的金、银不被溶解而沉落于阳极泥。与铜电位挨近的As、Sb可与铜一同溶入电解液,当堆集到必定程度时就会在阴极上分出,下降电解铜的质量。因而有必要对电解废液进行净化处理,除去对电解铜质量有害的杂质。 (2)电解设备首要设备有电解槽、阴极片、阳极板、整流电源、阳极作业线、阴极作业线以及核算机操控系统等。电解槽为一长方形槽体,多用混凝土制造,内衬耐酸防腐的铅板、PVC或玻璃钢等材料。槽子一端上边有进液口,另一端稍低处有排液口,槽底歪斜最低处有排泥斗。阳极机械化作业线已彻底替代以往靠手艺完结的一切作业,如压平、矫耳、铣耳、摆放极板等。阴极作业线有始极片整形、穿孔、吊耳、穿导电棒等。阴极洗刷、打捆也由机械完结。大型电解槽的尺度为:长5-5.5m,宽11-1.3m,深1.2-1.4m;阳极板重370kg,尺度0.98m×0.96m;阴极(始极)片6-7kg,尺度1m×lm。
超硬质合金高温回收钨钴法
2018-12-07 13:58:01
9月16日消息:高温处理回收钨钴法:超硬质合金是由钨、钴和炭粉混合成型烧结加工制成的。日本新金属公司开发的超硬质合金高温处理法可以回收钨钴再生粉末,年产可达80吨。 超硬质合金碎屑洗净后,在1800~2300℃高温下的惰性气体中进行热处理,超硬质合金中的钴呈易于粉末化的海绵状态。在热处理温度下,超硬质合金中钴在1800℃以下不呈海绵状态,而在2300℃以上合金中的碳化钨将分解并生成第三相,结果不好。
热处理后的块状碎屑,用颚式破碎机或滚筒破碎机进行粗碎到-850μm,其后再微粉碎成再生粉末。本法得到的再生粉末,因经过粗大粒子化过程,烧结时有易于粒子成长的倾向。其中的钴含量、碳含量处理后几乎没有变化,仅杂质铁、硅量增加,对制造硬质合金没有影响。再生粉末粒度据粉碎条件,可能微粉碎到1μm以下。
本法用比较容易的工序,不损害超硬质合金的原组成,任何品种的超硬质合金均可再生成一定粒度的粉末,不需特殊设备,为经济的回收方法。较以往加化学试剂精炼后回收利用的方法,有很大优越性。