您所在的位置: 上海有色 > 有色金属产品库 > 钴酸锂比容量 > 钴酸锂比容量百科

钴酸锂比容量百科

钴酸锂

2017-06-02 15:15:40

锂离子二次 电池 正极材料(钴酸锂)的液相合成工艺,它采用聚乙烯醇(PVA)或聚乙二醇(PEG)水溶液为溶剂,锂盐、钴盐分别溶解在PVA或PEG水溶液中,混合后的溶液经过加热,浓缩形成凝胶,生成的凝胶体再进行加热分解,然后在高温下煅烧,将烧成的粉体碾磨、过筛即得到钴酸锂粉。与现有技术相比,本发明具有合成温度低,得到的产品纯度高、化学组成均匀等优点。  钴酸锂特点1、电化学性能优越  a.每循环一周期容量平均衰减﹤0.05%   b.首次放电比容量﹥135mAh/g   c.3.6V初次放电平台比率﹥85%   2、加工性能优异   3、振实密度大, 有助于提高电池体积比容量   4、产品性能稳定, 一致性好   产品型号   R747 振实密度2.4-3.0g/cm3, 典型值为2.5,粒度 D506.0-8.5um;  R757 振实密度2.4-3.2g/cm3, 典型值为2.6, 粒度D506.5-9.0um;   R767 振实密度2.3-3.0g/cm3, 典型值为2.5, 粒度D508-12um;   钴酸锂用途:主要用于制造手机和笔记本电脑及其它便携式电子设备的锂离子电池作正极材料。本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。

钴酸锂电池

2017-12-27 15:15:01

钴酸锂电池结构稳定、容量比高、综合性能突出、但是其安全性差、成本非常高,主要用于中小型号电芯,广泛应用于笔记本电脑、手机、MP3/4等小型电子设备中,标称电压3.7V。钴酸锂的用途:主要用于制造手机和笔记本电脑及其它便携式电子设备的锂离子电池作正极材料。钴酸锂的技术标准1、名称: 钴酸锂 分子式: LiCoO2 分子量: 97.88 2、主要用途: 锂离子电池 3、外观要求: 灰黑色粉末, 无结块 4、X射线衍射: 对照JCDS标准( 16-427) , 无杂相存在 5、包 装: 铁桶内塑料袋包装 6、化学成分与物化性能指标: 镍 Ni 0.05% max (wt%) 锰 Mn 0.01% max (wt%) 铁 Fe 0.02% max (wt%) 钙 Ca 0.03% max (wt%) 钠 Na 0.01% max (wt%) 酸碱性 PH 9.5-11.5 含水量( 105ºC干燥失重量, %) Moisture (wt% loss at 105ºC) <0.05 比表面积( m2/g) BET surface Area (m2/g) 0.2-0.6 振实密度 (g/cm3) Tap Density (g/cm3) 1.7-2.9 粒径大小-D50 (μm) PSD- D50 (μm) 5-12 粒径大小-D10 (μm) PSD- D10 (μm) 1-5 粒径大小-D90 (μm) PSD-D90 (μm) 12-25钴酸锂电池的应用还是比较少的,小电池用钴锂的技术很成熟,但现在钴锂的成本太高,很多公司用锰锂来代替,有的全是锰锂的。钴酸锂性能稳定,目前应用于手机等的技术最为成熟,但应用的最大缺点就是成本高,钴是比较稀缺的战略性金属;另外应用于动力电池方面也有一定的难度。

钴酸锂价格

2017-06-02 15:15:12

钴酸锂价格受进来利好的影响,开始上涨。由于最近欧美经济数据利好于预期,LME基本 金属 连续上涨四个交易日。昨夜,伦敦钴市 现货 买价小幅上涨975美元/吨至38575美元/吨,卖价39575美元/吨上升975美元/吨;三月期买价上涨1000美元/吨至38000美元/吨,卖价39000美元/吨亦上涨1000美元/吨。国内氧化钴最低价从21.8万元/吨下滑至21.5万元/吨,最高报价22万元/吨维持不变,市场交易平淡。四氧化三钴报价在22.8-23.0万元/吨左右。虽然大厂今日都有成交,但由于下游钴酸锂厂交易平淡,四钴厂商已经采取减产措施。由于钴酸锂持市场持续冷清,今日钴酸锂最低价下滑0.1万元/吨至23.7万元/吨。    钴是一种化学元素,符号为Co,原子序数27,属过渡金属,具有磁性。钴的英文名称“Cobalt”来自于德文的Kobold,意为“坏精灵”,因为钴矿有毒,矿工、冶炼者常在工作时染病,钴还会污染别的金属,这些不良效果过去都被看作精灵的恶作剧。 钴矿主要为砷化物、氧化物和硫化物。此外,放射性的钴-60可进行癌症治疗。    在常温下不和水作用,在潮湿的空气中也很稳定。在空气中加热至300℃以上时氧化生成CoO,在白热时燃烧成Co3O4。氢还原法制成的细金属钴粉在空气中能自燃生成氧化钴。1735年瑞典化学家布兰特(G.Brandt)制出金属钴。1780年瑞典化学家伯格曼(T. Bergman)确定钴为元素。长期以来钴的矿物或钴的化合物一直用作陶瓷、玻璃、珐琅的釉料。到20世纪,钴及其合金在电机、机械、化工、航空和航天等工业部门得到广泛的应用,并成为一种重要的战略金属,消费量逐年增加。中国于50年代开始从钴土矿、镍矿和含钴黄铁矿中提钴。    钴酸锂价格走势需要看后市情况而定。目前从市场交易情况来看,国内钴市仍处消费淡季。近期商家纷纷拜访客户,欲了解市场。近期虽然大家情绪稍有平静,下游 电池 商频频询价,但对市场交易还是持谨慎态度,以致钴酸锂成交持续平淡。预计钴酸锂价格还有小幅下调空间,其他钴产品近期走势将平稳。 本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。

一张图看懂钴酸锂

2019-01-03 15:20:52

三元材料取代钴酸锂任重而道远

2019-03-06 10:10:51

现在三元材料可谓是锂电池中的宠儿,开展速度十分快,在渐渐侵入整个使用商场。钴酸锂通过多年的开展,现已占有了锂电池商场的半壁河山。三元材料何时可以替代钴酸锂?       三元材料是镍钴锰酸锂Li(NiCoMn)O2,三元复合正极材料前驱体产品,是以镍盐、钴盐、锰盐为质料。钴酸锂一般使用作锂离子电池的正电极材料。电池结构安稳、容量比高、归纳功能杰出、可是其安全性差、本钱十分高。 从上以上两个图表可以看出,三元材料不管在性价比仍是在环保安全功能上远超钴酸锂。 三元材料替代钴酸锂之路依然负重致远? 三元首要冲击的是钴酸锂的中心使用范畴——数码产品商场。据工业研究所(GBII)数据显现,在2013年的正极材料商场,中国商场关于三元材料的需求,现已到达15600吨,其间80%用于笔记本电脑、平板电脑、手机等数码产品。三元材料如此大行动地进攻钴酸锂的“要害”,其来势汹汹的态势,不由让业内人士猜想技能路途风向正在反转。但需求留意的是,比较于三元材料,钴酸锂具有一系列功能与技能优势,更受商场喜爱。因而,大部分业内人士对现在的钴酸锂商场依然持积极态度,他们以为三元材料能否成功替代钴酸锂,商场取向起决定作用。三元材料中,钴的质量分数一般控制在20%左右。尽管三元材料到达“少钴化”的要求,本钱也得到明显的下降,可是其在压实密度、高电压、高容量、耐高温等功能方面仍与钴酸锂有必定的距离。数码设备日趋轻浮化规划,对电池容量的要求也日益提高。正极材料的压实密度作为影响锂电池容量的要素之一,钴酸锂的单晶颗粒状形状,现在可以做到4.2 g/cm3的压实密度,是作为小颗粒二次聚会体的三元材料无法幻想的高难度应战,成为三元材料拓宽蓝图的“硬伤”。事实上,现在可以满意移动设备待机要求的老练电池也只要钴酸锂电池,在消费类数码产品范畴,钴酸锂电池依然处于主导地位。尽管三元材料商场需求有所增加,但比起钴酸锂而言,其商场份额依然不可同日而语。何况三元材料在以下几个方面存在短板。      三元材料厂商多而不强。GGII计算,截止2016年末国内三元材料出货量逾越8000吨的厂商没有出现,各大厂商产品同质化严峻,均以523、111类型为主。一起受Tesla带动,国内三元动力电池掀起一场扩张高潮,材料厂商方面自2015下半年至今已新增一批三元材料厂商。未来跟着技能的不断进步,长续航路程电池需求加大,三元材料商场需求出现产销两旺时期,在利好布景下,商场将会出现一大批新进入者。中心专利缺失,低端产能重复建造。现在全球镍钴锰酸锂专利主要在美国3M及阿贡实验室手中,巴斯夫、美丽科、瑞翔等均有购买3M或阿贡实验室专利有用权,而国内专利一时相对单薄。未来大规模开展后,在出口商会发生专利胶葛。      现在国内三元材料类型以523为主。不管数码仍是动力电池用三元材料,使用量最多的仍为523类型。从电池形状上来看,国内原装三元电池遍及选用NCM523,选用叠片工艺的三源动力电池选用NCM111,其间三元圆柱的产值大于方形叠片电池。      从上图看出,三元材料未来商场中潜力巨大,现在处于上升期。跟着技能的开展,厂商的不断自我完善,未来商场用量也极有或许逾越钴酸锂。只能说逾越钴酸锂的路途比较绵长。

钴酸锂电池优劣势分析

2018-10-11 10:06:06

钴酸锂电池是以合成的钴酸锂(化学分子式LiCoO2)化合物作为正极材料活性物质的锂离子电池,在所有的充电锂电池中,钴酸锂是最早应用的正极材 料,钴酸锂电池也是循环性能最好的。一、钴酸锂电池的优势:钴酸锂电池是电化学性能优越的锂电池,容量衰减率小于0.05%,首次放电比容量大于135mAh/g,电池性能稳定,一致性好,另外,在工艺上容易合成 ,安全性能好。钴酸锂电池的工作温度为-20~55℃。二、钴酸锂电池的不足:1、钴的价格高,仅产于非洲的一部分地区,有地域纷争及价格变动的风险;2、LiCoO2的岩盐性结构,可去除的锂仅为原来比例的大约50%,就是说,过充时基本结构会发生破坏,失去可逆充放电循环,这使得钴酸锂电池存在过充安全隐患,需要附加电路保护板;3、热稳定性和毒性指标不够理想, 对策较为复杂。三、钴酸锂电池的制备,主要技术表现在锂粉的制造上:钴酸锂电池使用液相合成工艺,将锂盐、钴盐分别溶解在聚乙烯醇和聚乙二醇溶液中,混合 后的溶液经加热浓缩成凝胶,凝胶体在高温下煅烧形成的粉体碾磨过筛即得到钴酸锂粉。四、钴酸锂电池的应用:钴酸锂电池因具有容易合成、电压平台高、比能量适中,特别是循环性能优越,而成为锂离子电池的主流。但是钴储量的不 足和制备中对其毒性与过充的克服,加大了钴酸锂电池的成本,因而钴酸锂的市场一般定位于便携式设备而不适用于大型动力。

新型多孔铝材料可增加3倍电池容量

2018-12-27 09:30:12

住友电气工业株式会社近日开发出一种新型的多孔铝材料铝-Celmet,可将锂离子电池的容量增加1.5-3倍。    “里程焦虑”一直是阻碍电动汽车广泛推广的主要因素,人们总是担心电动汽车电力不足时,会将乘客滞留在途中。现在,由日本住友电工公司开发的这种新的材料可以帮助消除这种担忧,新材料可以将电动汽车的电池容量提高1.5至3倍,从而大大延长电动车的续航时间和里程。    从40倍放大镜下可以看到,铝-Celmet是一种立体网眼状结构,充满互连、开放、的球形微孔的材料,这种结构的材料非常容易通过切割、冲压等方式进行形状上的加工。虽然住友电气之前生产的镍-Celmet也是这种多孔性结构,但铝-Celmet的密度只有镍-Celmet的三分之一,电阻也不到镍的一半,并且还具有超高抗腐蚀性等特点,更加适宜用在锂离子或其它需要频繁充放电的电池中。  住友电工表示,铝-Celmet已经在日本大阪进行小规模生产,并努力实现大规模生产和商业化投入使用。  删除

镍钴锰酸锂

2017-06-06 17:50:12

镍钴锰酸锂镍钴锰酸锂是一种电池材料,锂电池用正极材料--镍钴锰酸锂,俗称三元材料,化学成分Li1+zM1-x-yNixCoyO2,是由氢氧化镍钴锰和锂原材料混合均匀后经三温区烧结得到。该材料比容量高,循环特性好,晶体结构理想,且制备工艺简单,运行成本低,生产周期短,产品性能稳定,是一种更经济,更安全的锂离子电池的正极材料,必将取代其他锂离子电池正极材料。高密度锂离子电池正极材料镍钴锰酸锂的制备方法,一种高密度锂离子电池正极材料镍钴锰酸锂的制备方法,其特征在于:包括将镍化合物、钴化合物、锰化合物混合、造粒,以3~10℃/min的升温速率,通过在一定温度和一定时间下进行第一次烧结,得到中间产物镍钴锰的氧化物(Ni↓[1/3]Co↓[1/3]Mn↓[1/3])↓[3]O↓[4];然后将镍钴锰的氧化物与一定比例的锂化合物均匀混合,以3~10℃/min的升温速率,在高温下,通过一定时间进行第二次烧结,再将烧结产物经过粉碎、粒度分级后得到高密度的镍钴锰酸锂。镍钴锰酸锂在电池材料方面的应用十分广泛。锂离子电池是新一代的绿色高能电池,具有电压高、能量密度大、循环性能好、自放电小、无记忆效应等突出优点,广泛应用于各种便携式电动工具、电子仪表、移动电话、笔记本电脑、摄录机、武器装备等,在电动汽车中也具有良好的应用前景.正极材料是锂离子电池的重要组成部分,是目前锂离子电池中成本最高的部分。钴酸锂(LiCoO2)是目前唯一已经大规模 产业 化并广泛应用于商品锂离子电池的正极材料,然钴酸锂的年需求量已超过1万吨,从而导致钴价大幅攀升,钴资源短缺已开始制约 产业 发展。新型锂离子正极材料----复合氧化物镍钴锰酸锂是一种容量比较高的材料,其比容量比钴酸锂高出30%以上,和钴酸锂有相同的上下限电压,而且安全性也相对较好, 价格 相对较低,与电解液的相容性好,循环性能优异,更为重要的是其成本仅为钴酸锂的一半,是非常有前途的正极材料。此材料正逐步取代钴酸锂而成为在小型通讯和小型动力领域应用的主流正极材料。复合氧化物镍钴锰酸锂材料制备的关键是保证镍、钴、锰三元素的分子级混合,并控制其合理的粒度大小和分布。

锂离子电池正极三元材料的研究进展及应用

2019-03-08 09:05:26

锂离子电池是20世纪90年代敏捷开展起来的新一代二次电池,广泛用于小型便携式电子通讯产品和电动交通工具。电池材料分为正极材料、负极材料、隔阂、电解液等。正极材料是制作锂离子电池的要害材料之一,占有电池本钱的25%以上,其功能直接影响了电池的各项功能指标,在锂离子电池中占有中心方位。 现在已产业化的锂离子电池用正极材料首要有钴酸锂、改性锰酸锂、三元材料、磷酸铁锂。研讨发现,以LiNi1/3Co1/3Mn1/3O2为代表的层状氧化镍钴锰系列材料(简称三元材料)较好地兼备了上述材料的长处,并在必定程度上补偿其缺乏,具有高比容量、循环功能安稳、本钱相对较低、安全功能较好等特色,被认为是用于混合型动力电源的抱负挑选,以及能替代LiCoO2的最佳正极材料。 三元材料的组成结构和特性 三元材料有着与LiCoO2类似的α-NaFeO2单相层状结构,其间,Li原子在3a方位,金属原子Ni、Co和Mn自在散布在金属层的3b方位,而O原子坐落6c位。 Ni是材料的首要活性物质之一,在充放电进程中,首要是Ni2+和Ni4+发作彼此转化。经过引进Ni,可进步材料的容量。 Co也是材料的首要活性物质之一,能很好地安稳材料的层状结构,一同Co3+的掺入能够按捺Ni2+进入Li+的3a方位,便于材料深度放电,然后进步了材料的放电容量。 Mn4+有着杰出的电化学慵懒,不同于Mn3+。Mn3+在材料充放电进程中会参加电极的氧化-复原反响,Mn4+在循环进程中不参加氧化-复原反响,使材料一直坚持着安稳的结构。 因而,层状结构的三元材料归纳了单一组分材料的长处,其功能优于单一组分,具有显着的三元协同效应。其根本物性和充放电渠道与LiCoO2附近,却又具有报价和环境友好优势,具有很好的市场前景。 三元材料的制备 三元材料中各元素的化学计量等到散布均匀程度是影响材料功能的要害因素,偏离了化学计量比或组成元素散布不均匀,都会导致材料中杂相的呈现。不同的制备办法对材料的功能影响较大。现在组成三元材料的办法首要有高温固相法、共沉积法、喷雾干燥法、水热法、溶胶凝胶法等。其间水热法和溶胶凝胶法因为受制备办法的约束,不适合于工业化出产。下面介绍完成产业化的几种制备办法。 高温固相法 高温固相法一般先将金属盐和锂盐按化学计量比以各种方式混合均匀,然后高温烧结直接得到产品。常用金属盐首要有金属氧化物、金属氢氧化物等。 共沉积法 共沉积法以沉积反响为根底,研讨证明,共沉积法是制备球形三元材料的最佳办法,也是现在工业化遍及选用的制备工艺。依据运用沉积剂的不同能够分为氢氧化物共沉积法、碳酸盐共沉积法。 喷雾干燥法 喷雾干燥法也是现在材料工业化制备比较看好的一种办法。该法制备的材料非常均匀,颗粒纤细,在材料的化学计量组成、描摹和粒径散布上具有优势,并且能够自动化操控,可连续出产,制备能力强。 三元材料的研讨现状 在曩昔的十几年间,镍钴锰三元材料已得到较为深入细致的研讨,功能水平不断进步。现在的研讨除了对镍钴锰三元材料动力电池的功能进行测验外,更多的是对镍钴锰三元材料进行改性,进一步进步材料的循环寿数和安全性。 不同组分的三元材料 除了LiNi1/3Co1/3Mn1/3O2正极材料的研讨外,该系统其他计量比的正极材料也有必定的研讨成果。国海鹏等[5]制备了正极材料LiNi1/2Co1/6Mn1/3O2并研讨了其功能,选用固相法得出了具有Co含量梯度的层状LiNi1/2Co1/6Mn1/3O2。 三元材料与其他材料的混粉 三元材料和LiMn2O4混合用于锂离子动力电池正极,在商业上已有使用。混合材料不只能够满意动力电池安全性的需求,并且碱性较强的三元材料还能按捺电解液中微量对LiMn2O4的溶解效果,改进正极材料的高温功能。 核 - 壳结构的三元材料 LiNi0.8Co0.1Mn0.1O2具有较高的比容量,而LiNi0.5Mn0.5O2具有很好的热安稳性。将两种材料掺合到一同,构成一种核(Li-Ni0.8Co0.1Mn0.1O2)-壳(LiNi0.5Mn0.5O2)结构的三元材料,归纳了两种材料的长处,能有效地按捺材料中Co的溶解,进步循环安稳性。该材料在1C、3.0~4.3V、600次充放电后容量坚持率为96%,一同具有杰出的热安稳性。 结语 现有产业化的钴酸锂、改性锰酸锂和磷酸铁锂在根底研讨方面现已没有技能打破,其能量密度和各种首要技能指标现已挨近其使用极限,三元材料是未来研制和产业化的干流,依据其使用范畴的不同,分别向高密度化和高电压化开展。未来的开展方针是将三元材料的压实密度进步到3.9g/cm3以上,充电电压到达4.5V,可逆比容量到达200 mAh/g,电极能量密度比钴酸锂高25%,然后全面替代钴酸锂,成为小型通讯和小型动力范畴使用的干流正极材料。

锂离子电池磷酸铁锂正极材料的研究进展

2019-01-04 13:39:36

锂离子电池因其具有能量密度高、自放电流小、安全性高、可大电流充放电、循环次数多、寿命长等优点,越来越多地应用于手机、笔记本电脑、数码相机、电动汽车、航空航天、军事装备等多个领域。锂电池产业已经成为国民经济发展的重要产业方向之一。目前,锂离子电池正极材料分为以下几类:①具有层状结构的钴酸锂、镍酸锂正极材料;②具有尖晶石结构的锰酸锂正极材料;③具有橄榄石结构的磷酸铁锂正极材料;此外还有三元材料。磷酸铁锂正极材料的理论比容量为170mA/g,电压平台为3.7V,在全充电状态下具有良好的热稳定性、较小的吸湿性和优良的充放电循环性能,因此成为现今动力、储能锂离子电池领域研究和生产开发的重点。LiFePO4基本性能LiFePO4基本结构磷酸铁锂正极材料具有正交的橄榄石结构,pnma空间群,如图1所示。在晶体结构中,氧原子以稍微扭曲的六方紧密堆积的方式排列。Fe与Li分别位于氧原子八面体中心4c和4a位置,形成了FeO6和LiO6八面体。LiFePO4充放电原理磷酸铁锂电池充放电的过程是在LiFePO4与FePO4两相之间进行的,如图2所示,其具体机理为:在充放电过程中,Li+在两个电极之间往返嵌入和脱出。充电时,Li+从正极脱出,迁移到晶体表面,在电场力的作用下,经过电解液,然后穿过隔膜,经电解液迁移到负极晶体表面进而嵌入负极晶格,负极处于富锂状态。与此同时,电子经正极导电体流向正极电极,经外电路流向负极的集流体,再经负极导电体流到负极,使负极的电荷达到平衡。锂离子从正极脱出后,磷酸铁锂转化为磷酸铁;而放电过程则相反。其充放电反应式可表示成式(1)和式(2)充电时放电时LiFePO4改性由于磷酸铁锂正极材料本身较差的导电率和较低的锂离子扩散系数,国内外研究者在这些方面进行了大量的研究,也取得了一些很好的效果。其改性研究主要在3个方面:掺杂法、包覆法和材料纳米化。掺杂法掺杂法主要是指在磷酸铁锂晶格中的阳离子位置掺杂一些导电性好的金属离子,改变晶粒的大小,造成材料的晶格缺陷,从而提高晶粒内电子的导电率以及锂离子的扩散速率,进而达到提高LiFeP04材料性能的目的。目前,掺杂的金属离子主要有T14+、CO2+、Zn2+、Mn2+、La2+、V3+、Mg2+。包覆法在LiFeP04材料表面包覆碳是提高电子电导率的一种有效方法,碳可以起到以下几个方面的作用:①抑制LiFeP04晶粒的长大,增大比表面积;②增强粒子间和表面电子的导电率,减少电池极化的发生;③起到还原剂的作用,避免Fe的生成,提高产品纯度;④充当成核剂,减小产物的粒径;⑤吸附并保持电解液的稳定。材料纳米化相较在导电性方面的限制,锂离子在磷酸铁锂材料中的扩散是电池放电的最主要也是决定性的控制步骤。由于LiFeP04的橄榄石结构,决定了锂离子的扩散通道是一维的,因此可以减小颗粒的粒径来缩短锂离子扩散路径,从而达到改善锂离子扩散速率的问题。纳米材料的优点主要有:①纳米材料具有高比表面积,增大了反应界面并可以提供更多的扩散通道;②材料的缺陷和微孔多,理论储锂容量高;③因纳米离子的小尺寸效应,减少了锂离子嵌入脱出深度和行程;④聚集的纳米粒子的间隙缓解了锂离子在脱嵌时的应力,提高了循环寿命;⑤纳米材料的超塑性和蠕变性,使其具有较强的体积变化承受能力,而且可以降低聚合物电解质的玻璃化转变温度。Ren等对纳米化的磷酸铁锂制备进行了详细的研究,他们利用亲水性的碳纳米颗粒作为模型制备出介孔磷酸铁锂正极材料。发现其具有亚微米大小的颗粒中心在2.9nm和30nm的双峰孔分布,介孔的引入也有利于电解质的流动和锂离子的扩散。在1C倍率下,放电比容量为137mA·h/g。在30C高倍率充放电后,材料的容量仍能恢复到160mA·h/g。可以看出纳米化的磷酸铁锂电化学性能得到了显著地提升。从长杰等利用液相沉淀法合成了纳米级磷酸铁,并以此为铁源,通过碳热还原技术制备了粒径均匀的纳米级球形磷酸铁锂正极材料。经分析检验结果表明,材料的首次放电比容量达161.8mA·h/g,库仑效率为98.3%,室温下在0.2℃、0.5℃,1℃, 2℃及5℃倍率充放电其首次放电比容量分别为156.5mA·h/g, 144mA·h/g,138.9mA·h/g,125.6mA·h/g和105.7mA·h/g,材料具有较好的电化学性能。Chen等以偏磷酸亚铁和石墨的纳米层状模板,通过水热法制备出拥有纳米层状形态的LiFeP04颗粒。通过SEM分析,尽管原纳米层模板LiFeP04纳米层模板之间存在差异,但最终得到的LiFeP04模板的纳米层状态保存完好。拉曼光谱表明,原纳米有机基团的分层模板成功地转换成细小的具有有序石墨结构的碳颗粒,并很好地分散在层状LiFeP04颗粒之间。经使用循环伏安法和电阻抗法评估,锂离子扩散系数分别是1.5X10-11cm2/s和3.1X10-13cm2/s,而电子电导率为3.28mS/cm,远远高于普LiFeP04的电导率(结语采用离子掺杂、包覆、材料纳米化3种改性方法对磷酸铁锂正极材料在电导率低、锂离子扩散速率慢、低温放电性能差等方面的不足有很大的改进。其中离子掺杂通过掺杂导电性好的离子,改变了颗粒大小,造成材料的晶格缺陷,从而提高了材料电子的电导率和锂离子的扩散率;包覆主要以碳包覆为主,抑制LiFeP04晶粒的长大,增大了比表面积,从而增强粒子间和表面电子的导电率;材料的纳米化一方面增大了材料的比表面积,为界面反应提供更多的扩散通道,另一方面,缩短了离子扩散的距离,减小了锂离子在脱嵌时的应力,提高循环寿命。此外,磷酸铁锂正极材料改性方面仍存在一些不足,如离子掺杂改进材料的导电率和锂离子扩散速率方面仍存在分歧;纳米材料的制备工艺、生产成本要求较高;此外,除了考虑实验室条件下的可行性研究外,还要考虑大规模工业化的生产要求,这些都有待于进一步研究。因此,通过以上方法来全面提高磷酸铁锂的综合性能仍然是当前和今后该领域研究和应用的主要发展方向之一。文章选自:《化工进展》 作者:张克宇,姚耀春

石墨烯基锂电池有了新突破

2019-03-08 09:05:26

深圳市来历新材料科技有限公司、秦皇岛市太极环纳米制品有限公司选用智能制作新技能,干法机械剥离石墨烯。并以机械石墨烯为首要新材料制成正极,以涂层金属锂为负极,组成锂烯电池,通过一千屡次循环,成果证明,比容量初始最高可达1800mAh/g,100次时稳定在1200mAh/g以上,约等于一般锂电池的4~5倍,至200次时稳定在1100mAh/g,400次一向到600次也一向稳定在1000mAh/g以上,至700至800次,都是在900mAh/g以上,至1100次时,也还有700mAh/g以上的比容量,也还比一般的锂电池高出两三倍。是行业界石墨烯基锂电池研制以来最好的数据。 “千呼万唤始出来”的石墨烯锂电池,是怎么面世的呢?原因是中国人自己的一个科学发现导致了一个范畴的技能。这就是落地发作的多边应力连动的二次加力,这一力学原理带来了智能制作的创意,发作了Gpa级的超高能冲击式球磨纳米技能,见图2,原因是选用原创的干法机械剥离石墨烯(以下简称机械烯)技能。 干法机械烯的特点是:石墨层间的碱金属不丢失、密度大、表面缺点多、与金属片可衔接成千层饼结构,多层层叠后微孔大增,所以容量高、效率高、寿命长。从图能够看出石墨烯的层厚散布在0.224-0.952纳米之间,其间40%微片进入量子点尺度,石墨烯外观体现极不规矩。 最大的长处是高性价比。大型机可宏量出产,出产成本仅几毛钱1克,使石墨烯天价落地。 锂烯电池是以石墨烯复合纳米材料制成正极,以涂层金属锂为负极,再运用陶瓷纤维隔阂,滴防燃爆电解液组成,涂层的锂片按捺了锂枝晶的成长,陶瓷纤维隔阂可防止意外的枝晶穿透、防燃爆电解液按捺了起火,爆破的意外发作。 以上是2016年研究成果,本年又有了明显发展,在比容量提升至2700mAh/g以上的一起,也感触到了锂烯电池的能量还有很大的上升空间。 新能源要害是新材料,谁能把握新材料,谁就能执锂电商场之盟主,而机械石墨烯及纳米合金新材料最急需是制备要害技能及要害设备的智能制作渠道。 石墨烯剥离机、纳米磨天磨及机械制备石墨烯全纳米材料电池的量产项目是彻底自主立异的新科学发现、新科学理念、新工艺、新技能、新要害制作设备,推翻人们观念的方法学打破,机器的力学规划合理,多边连动,动能巨大,又节约资源,可将石墨烯剥离,可宏量制作石墨烯,确保新材料的宏量。是配备制作与新能源纳米新材料聚合发力的制作渠道。 此外,咱们在秦皇岛一起启动了收回废物废品制成石墨烯负极,成本可低至几分钱1克,比容量是碳负极的两倍,是环保、新能源、新材料的好项目。希有志同路成为合作伙伴。

中科院制备出新型石墨烯-多孔碳球复合纳米材料

2019-01-04 17:20:18

近日,中国科学院马衍伟团队开发出一种具有多级次微观结构的新型石墨烯-多孔碳球复合纳米材料。该碳复合材料兼具石墨烯纳米片和多孔碳纳米球的优点,具有3182m2/g的超高比表面积和1.93 cm3/g的大孔隙率。采用该碳纳米材料,制备出了高性能锂硫电池正极。 从微观结构来看,这种碳复合材料以石墨烯纳米片作为骨架,表面分散附着直径约为200nm的碳球,其内部含有主要为1-3nm的多级次介微纳米多孔结构,共同构成多级次的碳-碳复合纳米结构(如下图1所示)。 图1 基于石墨烯多级次复合材料的碳硫正极结构示意图以及电化学性能  由于超高的比表面积和孔隙率,制备的碳硫复合正极即使在大的硫负载率(74.5%)下,仍可发挥1250mAh/g的比容量(0.2C)。循环充放电100次后,仍可保持916mAh/g的比容量。在2C电流下循环充放电450次,容量保持率约为98%。这表明该研究提出的零维&二维多级次复合纳米结构设计,发挥了石墨烯和多孔碳球的协同效应,有效地分散、限域硫正极,提高了电化学活性、避免了硫的穿梭效应,为开发高容量、长循环性能锂硫电池以及其它储能器件提供了新的思路。

深圳先进院研发出基于核壳结构铝碳负极的双离子电池

2019-01-08 17:01:40

近日,中国科学院深圳先进技术研究院功能薄膜材料研究中心研究员唐永炳及其研究团队,联合中科院物理研究所研究员谷林,研发出具有核壳结构的铝@碳纳米球复合材料,并应用于高效、低成本双离子电池。这种新型结构有效解决了铝负极材料在充放电过程中的体积膨胀、循环性能差等问题。相关研究成果以Core–Shell Aluminum@Carbon Nanospheres for Dual-Ion Batteries with Excellent Cycling Performance under High Rates为题,在线发表在Advanced Energy Materials上。 随着便携式电子设备和电动汽车市场规模的发展,人们对高能量密度、低成本二次电池的需求日益迫切。目前,商用锂离子电池多采用石墨类负极材料,其理论比容量仅为372mAh/g,且压实密度较低,限制锂离子电池能量密度的进一步提升。通过与锂离子的合金化/去合金化反应,廉价金属负极通常具有更大的比容量,有望获得更高的能量密度。其中铝的理论比容量高达2234mAh/g(Li9Al4), 且储量丰富,价格低廉。然而,铝负极在电池反应过程中会产生一定的体积膨胀,导致材料粉化,从而影响电池的循环稳定性。 基于上述考虑,唐永炳研究团队研发出一种具有核壳结构的铝@碳纳米球复合材料,并将其作为负极材料,天然石墨作为正极材料,研发出一种新型高效、低成本双离子二次电池。相对于传统锂离子电池,该新型二次储能电池具有更高的工作电压(平均放电电压为——4.2V),且环境友好。此外,由于核壳纳米结构有效缓解了铝负极在合金化过程中产生的体积膨胀,并获得了高度稳定的SEI膜,使该电池的循环稳定性大幅提升。研究结果表明,该新型电池在15C充放电速率下(4分钟充放电),循环1000圈后容量保持率高达94.6%;即使在功率密度高达3701W/kg时,该电池的能量密度仍有148Wh/kg,远高于大多数商用的锂离子电池。该成果对廉价金属负极材料的改性研究具有指导意义,有望促进基于廉价金属负极的高能量、低成本二次电池的快速发展。(a) 核壳结构铝@碳纳米复合材料的设计、制备示意图;(b)所制备双离子电池在15C充放电速度下的长循环稳定性曲线。

基于核壳结构铝碳负极的双离子电池应用技术解析

2019-01-08 17:01:40

近日,中国科学院深圳先进技术研究院功能薄膜材料研究中心研究员唐永炳及其研究团队,联合中科院物理研究所研究员谷林,研发出具有核壳结构的铝 碳纳米球复合材料,并应用于高效、低成本双离子电池。这种新型结构有效解决了铝负极材料在充放电过程中的体积膨胀、循环性能差等问题。相关研究成果以Core–Shell Aluminum Carbon Nanospheres for Dual-Ion Batteries with Excellent Cycling Performance under High Rates为题,在线发表在Advanced Energy Materials上。图1核壳结构铝 碳纳米复合材料的设计、制备示意图图2所制备双离子电池在15C充放电速度下的长循环稳定性曲线 【研究内容】 随着便携式电子设备和电动汽车市场规模的发展,人们对高能量密度、低成本二次电池的需求日益迫切。目前,商用锂离子电池多采用石墨类负极材料,其理论比容量仅为372mAh/g,且压实密度较低,限制锂离子电池能量密度的进一步提升。通过与锂离子的合金化/去合金化反应,廉价金属负极通常具有更大的比容量,有望获得更高的能量密度。其中铝的理论比容量高达2234mAh/g(Li9Al4),且储量丰富,价格低廉。然而,铝负极在电池反应过程中会产生一定的体积膨胀,导致材料粉化,从而影响电池的循环稳定性。 基于上述考虑,唐永炳研究团队研发出一种具有核壳结构的铝碳纳米球复合材料,并将其作为负极材料,天然石墨作为正极材料,研发出一种新型高效、低成本双离子二次电池。相对于传统锂离子电池,该新型二次储能电池具有更高的工作电压(平均放电电压为——4.2V),且环境友好。此外,由于核壳纳米结构有效缓解了铝负极在合金化过程中产生的体积膨胀,并获得了高度稳定的SEI膜,使该电池的循环稳定性大幅提升。研究结果表明,该新型电池在15C充放电速率下(4分钟充放电),循环1000圈后容量保持率高达94.6%;即使在功率密度高达3701W/kg时,该电池的能量密度仍有148Wh/kg,远高于大多数商用的锂离子电池。该成果对廉价金属负极材料的改性研究具有指导意义,有望促进基于廉价金属负极的高能量、低成本二次电池的快速发展。

锰酸锂

2017-06-06 17:50:13

 锰酸锂,合成性能好、结构稳定的正极材料锰酸锂是锂离子蓄电池电极材料的关键,锰酸锂是较有前景的锂离子正极材料之一。但其较差的循环性能及电化学稳定性却大大限制了其 产业 化,掺杂是提高其性能的一种有效方法。掺杂有强M-O键、较强八面体稳定性且离子半径与锰离子相近的 金属 离子,能显著改善其循环性能。 锰酸锂与钴酸锂,三元等其他正极材料相比最大的优点是 价格 便宜,最大的缺点是容量低(只能发挥到100-110,河南思维典型值:105),压实低,导致不太好压.是钴酸锂和三元材料的过渡产品.在动力电池方面 很有可能被三元取代 。   锰酸锂-特点:锰酸锂与钴酸锂,三元等其他正极材料相比最大的优点是 价格 便宜,最大的缺点是容量低(只能发挥到100-110,河南思维典型值:105),不太好压.是钴酸锂和三元材料的过渡产品.锰酸锂比表面积研究是非常重要的,锰酸锂的比表面积检测数据只有采用BET方法检测出来的结果才是真实可靠的,国内目前有很多仪器只能做直接对比法的检测,现在国内也被淘汰了。目前国内外比表面积测试统一采用多点BET法,国内外制定出来的比表面积测定标准都是以BET测试方法为基础的,请参看我国国家标准(GB/T19587-2004)-气体吸附BET原理测定固态物质比表面积的方法。比表面积检测其实是比较耗费时间的工作,由于样品吸附能力的不同,有些样品的测试可能需要耗费一整天的时间,如果测试过程没有实现完全自动化,那测试人员就时刻都不能离开,并且要高度集中,观察仪表盘,操控旋钮,稍不留神就会导致测试过程的失败,这会浪费测试人员很多的宝贵时间。真正完全自动化智能化比表面积测试仪产品,才符合测试仪器 行业 的国际标准,同类国际产品全部是完全自动化的,人工操作的仪器国外早已经淘汰。真正完全自动化智能化比表面积分析仪产品,将测试人员从重复的机械式操作中解放出来,大大降低了他们的工作强度,培训简单,提高了工作效率。真正完全自动化智能化比表面积测定仪产品,大大降低了人为操作导致的误差,提高测试精度。F-Sorb2400比表面积测试仪是真正能够实现BET法检测功能的仪器(兼备直接对比法),更重要的F-Sorb2400比表面积测试仪是迄今为止国内唯一完全自动化智能化的比表面积检测设备,其测试结果与国际一致性很高,稳定性也很好,同时减少人为误差,提高测试结果精确性。   锰酸锂主要为尖晶石型锰酸锂,尖晶石型锰酸锂LiMn2O4是Hunter在1981年首先制得的具有三维锂离子通道的正极材料,至今一直受到国内外很多学者及研究人员的极大关注,它作为电极材料具有 价格 低、电位高、环境友好、安全性能高等优点,是最有希望取代钴酸锂LiCoO2成为新一代锂离子电池的正极材料。   锰酸锂的生产目前 市场 上主要的锰酸锂有AB两类,A类是指动力电池用的材料,其特点主要是考虑安全性及循环性。B类是指手机电池类的替代品,其特点主要是高容量。  锰酸锂的生产主要以EMD和碳酸锂为原料,配合相应的添加物,经过混料,烧成,后期处理等步骤而生产的。从原材料及生产工艺的特点来考虑,生产本身无毒害,对环境友好。不产生废水废气,生产中的粉末可以回收利用。因此对环境没有影响。   

一文了解纳米级硅负极材料

2019-01-04 13:39:38

随着新能源汽车在实际应用中对续航里程要求的不断提高,动力电池相关材料也向着提供更高能量密度的方向发展。负极材料是锂离子电池的重要组成部分,它直接影响着电池的能量密度、循环寿命和安全性能等关键指标。 目前市场上锂电池使用的多为石墨负极材料,从石墨的比容量和压实密度看,负极材料的能量密度很难再得到提高。此外,石墨片还存在易发生剥离、循环性能不理想等问题。 传统锂离子电池的石墨负极已经无法满足现有需求,高能量密度负极材料成为企业追逐的新热点。硅基负极材料由于丰富的储量和超高的理论比容量正逐渐成为电池企业和锂电材料商改善负极的最优先选择,是最具潜力的下一代锂离子电池负极材料之一。 石墨类负极材料VS硅负极材料 石墨类碳材料的锂离子电池其理论比容量只有372mAh/g,因而限制了锂离子电池比能量的进一步提高,不能满足日益发展的高能量便携式移动电源的需求。并且碳材料存在充放电容量低,高倍率充放电性能差,在电解质中稳定性较差等问题。 与石墨负极材料相比,硅负极材料的能量密度优势明显。石墨的理论能量密度是372mAh/g,而硅负极的理论能量密度超其10倍,高达4200mAh/g。但是,硅基材料也存在较为明显的缺点,主要有以下两方面:一是充放电过程中会引起硅体积膨胀;二是硅是半导体材料,导电性较石墨差很多。 纳米级硅负极材料 为改善硅基负极材料的循环性能,提高材料在循环过程中的结构稳定性,通常将硅材料纳米化。用于锂离子电池的纳米级硅负极材料主要分为四类:纳米硅颗粒、纳米硅薄膜、硅纳米线和硅纳米管、3D多孔结构硅和中空多孔硅。 纳米硅颗粒当合金材料的颗粒达到纳米级时,充放电过程中的体积膨胀会大大减轻,性能也会有所提高。但是纳米颗粒材料具有较大的表面能,容易发生团聚,反而会使充放电效率降低并加快容量的衰减。 纳米硅薄膜纳米硅薄膜制备方法有化学气相沉积法、物理气相沉积法和磁控溅射法等。它具有无定型结构而不是晶体结构,在充放电循环中允许均质化的膨胀-收缩,能够更加有效的适应锂的嵌入和脱嵌过程。但其薄膜厚度不能提供足够的活性材料,抑制了其商业化应用。 硅纳米线&硅纳米管将硅制备成纳米线,电子传导在1D方向进行,所有硅得到利用,纳米线之间缝隙,预留了膨胀空间,有效的改善了材料的循环性能。但其所采用的集流体质量远大于活性物质硅的质量。 3D多孔结构硅&中空多孔硅3D多孔结构硅核中空多孔硅在一定程度上可以抑制材料的体积效应,同时还能减小锂离子的扩散距离,提高电化学反应速率。但它们的比表面积都很大,增大了与电解液的直接接触,导致副反应及不可逆容量增加,降低库仑效率。此外,硅活性颗粒在充放电过程中很容易团聚,发生“电化学烧结”,加快容量衰减。 展望 尽管硅基材料具有脱/嵌锂体积变化大、循环性能不理想的缺点,但是仍然具有较大的应用潜能。纳米级别的硅负极材料是目前广泛研究并且效果比较理想的方法。通过研究各种纳米硅的制备方法,进一步优化材料的制备工艺,实现具有更高容量和优良循环性能的纳米硅基材料的低成本制备。相信随着锂电产业的快速发展,有望将纳米硅基负极材料应用于商业化锂离子电池中。

硅纳米技术有望成新一代电池代表性技术

2019-01-04 17:20:24

[导读] 现有的锂电池负极技术已经接近极限,Si负极由于超高的比容量和丰富的储量,能够满足新一代的能源需求,有望成为最具代表性的新技术之一。中国粉体网讯  现有的锂电池负极技术已经接近极限,为了满足新一代的能源需求,开发新型的锂电负极技术迫在眉睫。Si负极由于超高的比容量和丰富的储量,成为最具代表性的新技术之一。 和传统的石墨负极相比,Si负极技术在产业化道路上遇到的一个重大障碍在于:含胶量较少导致电极混炼效果不理想。图1. SGC复合负极材料结构及其优势图2. SGC复合负极材料制备示意图 有鉴于此,Ko等人综合石墨负极技术和Si纳米技术,开发了一种全新的、可大规模生产的C-纳米Si-石墨复合负极材料。锂化过程中,Si纳米壳层可以随着体积变化而膨胀,不论是石墨内部的空心纳米Si壳层,还是石墨和碳之间的纳米Si中间层,均可以保持形状完好,不会破裂或者残留于Si和石墨之间。 这种特殊的结构构筑一方面确保了Si和天然石墨之间的兼容性,另一方面有效避免了传统机械混合中石墨粉和残留的Si颗粒引发的严峻的副反应。 按照工业算法,在电极密度为1.6 g cm-3,面积容量>3.3 mAh cm-2,含胶量 进一步,研究人员以LiCoO2作为正极材料组成全电池,发现其能量密度高达1043 Wh l-1,优于现有标准的商业化石墨负极。图3. 各种电极的电化学性能表征图4. 石墨负极和SGC复合负极全电池性能对比

高镍三元前驱体制备过程中的影响因素

2019-03-08 12:00:43

三元材料镍钴锰(NCM),具有高比容量、长循环寿数、低毒和廉价的特色。此外,三种元素之间具有杰出的协同效应,因而受到了广泛的使用。NCM 中,镍是首要的氧化复原反响元素,因而,进步镍含量能够有用进步NCM的比容量。高镍含量NCM材料(Ni的摩尔分数≥0.6)具有高比容量和低成本的特色,但也存在容量坚持率低,热稳定功能差等缺点。高镍 NCM材料的功能和结构与前驱体的制备工艺严密相关,不同的条件直接影响产品的终究结构和功能。图1:Li[NixCoyMnz]O2(NCM,x=1/3, 0.5, 0.6, 0.7, 0.8,0.85)的放电容量、热稳定性和容量坚持率联系图制备工艺条件对高镍前驱体物化功能的影响高镍三元前驱体首要的制备工艺条件有:浓度、pH值、反响温度、固含量、反响时刻、成分含量、杂质、流量、反响气氛、拌和强度等。图2:三元前驱体的出产工艺流程图1.浓度对高镍前驱体物化功能影响是反响络合剂,首要作用是络合金属离子,到达操控游离金属离子意图,下降系统过饱和系数,然后完成操控颗粒长大速度和描摹。所以制备不同组成的三元前驱体,所需的浓度也不同。图3:不同浓度高镍前驱体产品的SEM图(左:含量:2g/L,右:含量:7g/L)从上图能够看出浓度较低时颗粒描摹疏松多孔,细密性差,而较高的浓度得到的前驱体颗粒细密。可是络合剂的用量也不是越多越好,络合剂用量过多时,溶液中被络合的镍钴离子太多,会形成反响不完全,使前驱体的镍、钴、锰的份额违背规划值,并且被络合的金属离子会随上清液排走,形成糟蹋,给后续废水处理形成更大的困难。综上,浓度需操控在5~9g/L。2.沉积pH对高镍前驱体影响沉积进程中的pH直接影响晶体颗粒的生成、长大。图4:pH对前驱体描摹的影响因为镍、钴、锰的沉积pH值不同,所以不同组分的三元材料前驱体的最佳反响pH值不同。图5:不同组分前驱体的适合浓度和pH值跟着沉积pH值升高,一次粒子逐步细化,颗粒球形度变好,前驱体样品振实密度逐步升高。图6:pH对前驱体振实密度的影响综上,需依据实践出产工艺的需求选取适宜的沉积pH值,不行过高,也不行过低。3.沉积温度对高镍前驱体物化功能影响温度首要是影响化学反响速率。在前驱体的反响中,温度越高反响速率越快,可是温度过高会形成前驱体氧化,进而形成反响进程无法操控、前驱体结构改动等问题,所以在不影响反响的前提下温度尽量高一点。在反响进程中pH会跟着温度的下降而升高,所以保持温度的稳定也很重要。图7:温度与高镍前驱体描摹联系(左:反响温度50℃,右:反响温度60℃)4.固含量对高镍前驱体物化功能影响这儿的固含量是指在前驱体反响进程中,前驱体浆料的固体质量和液体质量的比值。恰当进步料浆固含量可优化产品描摹、进步产品的振实密度。图8:不同固含量条件下出产高镍811前驱体SEM(左:固含量低,右:固含量高)从上图能够看出高固含量下制备得到高镍前驱体,颗粒细密性好,球形度更好,粒度散布更为会集,一次粒子晶界含糊。5.拌和速度对高镍前驱体物化功能影响拌和速度对晶体结晶进程影响较大,然后影响前驱体的振实密度。图9:拌和转速与振实密度联系图从上图能够看出跟着拌和转速的升高,高镍前驱体的振实密度逐步增大,在拌和转速>300rpm后,振实密度趋于稳定,所以反响釜系统拌和转速操控300~360rpm之间较为适宜。6.杂质对高镍前驱体物化功能影响在实践出产进程中,少数的有机溶剂会对共沉积反响形成很大困扰,而镍钴锰质料提纯进程中会用到有机溶剂,少数的有机溶剂会带到前驱体的反响中。料液油分越高,振实密度越低,前驱体的描摹变得疏松,无法成球,形成颗粒无法成长,粒度散布宽化。图10:料液对高镍前驱体描摹影响,沉积时刻36h(左:油分为9.5ppm右:油分为2ppm)研讨结果表明,若得到高振实高镍前驱体,料液油分操控有必要≤5ppm。小结目前国内各大车企与电池供应商争相迈向高镍之路,此前报导宁德年代估计下一年将推出高镍三元811电池。钴价的继续上涨削弱了电池厂商的盈余才能,而NCM811的钴分子含量为6.06%,仅为NCM523和NCM622一半左右。因而,NCM811单吨对应钴的用量下降50%左右。可是高镍三元材料的技能难题一直是阻挠其开展的重要问题,未来还需要继续针对高镍三元材料的功能,尤其是安全功能做很多研讨。仿制查找 发动方便查找设置

备受瞩目的能源颗粒:硅碳负极材料

2019-03-07 11:06:31

近年来,跟着动力电池商场急速增加,带动上游材料范畴快速开展,一起也对负极材料功能提出了更高的要求,石墨类技能道路已逐渐不能满意高比容量的要求。不少负极材料出产厂商开端调整本身的战略方向,加大对新式负极材料布局,其间硅系负极备受瞩目。 一、分析硅单质负极材料 硅是现在已知的比容量最高的锂离子负极材料,能够到达4200mAh/g,远超石墨负极理论比容量372mAh/g十倍有余,然而其低的循环寿数严峻阻止了其商业化运用。详细充放电原理如下:硅负极低的循环寿数源于其在充放电过程中存在巨大体积胀大。充电时锂离子从正极材料脱出嵌入硅晶体内部晶格间,形成了很大的胀大(可达300%,石墨仅为10%),构成合金;而放电时锂离子从晶格间脱出,又构成了很大的空地。这种现象将导致如下成果: 1、颗粒粉化,循环功能差2、活性物质与导电剂粘结剂触摸差 3、表面SEI重复成长,耗费电解液和Li源,循环变差为战胜硅胀大引发的缺点,研讨者运用复合材料各组分间的协同效果,选用“缓冲骨架”来补偿材料胀大。在Si/C复合系统中,Si颗粒作为活性物质,供给储锂容量;C既能缓冲充放电过程中硅负极的体积改变,又能改进Si质材料的导电性,还能防止Si颗粒在充放电循环中发作聚会。 二、硅碳负极材料的结构设计 一般依据碳材料的品种能够将复合材料分为两类:硅碳传统复合材料和硅碳新式复合材料。其间传统复合材料是指硅与石墨、MCMB、炭黑等复合,新式硅碳复合材料是指硅与碳纳米管、石墨烯等新式碳纳米材料复合。 01 包覆结构 包覆结构是在活性物质硅表面包覆碳层,缓解硅的体积效应,增强其导电性,依据包覆结构和硅颗粒描摹,包覆结构可分为核壳型、蛋黄-壳型以及多孔型。 (1)核壳型 核壳型硅/碳复合材料是以硅颗粒为核,在核外表面均匀包覆一层碳层。(2)蛋黄-壳型 蛋黄-壳结构是在核壳结构基础上,在内核与外壳间引进空地部分,进而构成的一种新式纳米多相复合材料。它的空腔关于硅体积胀大有包容效果,可完成硅核愈加自在的胀大缩短。(3)多孔型 多孔硅常用模板法来制备,硅内部空地能够为锂硅合金化过程中的体积胀大预留缓冲空间,缓解材料内部机械应力。由多孔硅构成的硅碳复合材料,在循环过程中具有愈加安稳的结构。02 嵌入结构 嵌入型硅碳复合材料是将硅颗粒经过物理或许化学手法涣散到碳载体中,硅颗粒与碳基体结合严密,构成安稳的两相或许多相系统,依托碳载体为电子和离子供给传输通道和支撑骨架,供给材料结构的安稳性。三、限制硅碳负极的三大要素 “人无完人,物无完物”!看似简略的硅碳负极,要想完成产业化并不简略。不少厂商也清晰表明,假如单纯完成“2020年,电池单体比能量达300瓦时/公斤”的方针并不难,可是要想在保证电池的安全性的一起进步比能量,的确存在必定难度。详细有以下三点: 一是硅碳负极材料循环性和安全性差 硅碳负极首效做到86-91%的难度并不是很大,要害是之后循环的库伦功率依然比石墨低不少。硅基材料两相别离的合金化机理不只使得硅基材料很难获得象石墨材料那样优异的循环功能,而且难以发生快速的锂离子搬迁通道,在大倍率充放电状况下必然会丢失较大容量而且带来安全危险。 二是硅碳负极研讨及出产本钱极高 出产实践证明,要想获得比较抱负的电化学功能,复合材料中的硅颗粒粒径不能超过200-300纳米。除此之外,在比表面、粒径散布、杂质以及表面钝化层厚度等要害目标技能壁垒都很高,国内供应商现在还达不到,而外购纳米硅粉本钱极高。 三是硅碳复合材料的高胀大率危险 硅的不断胀大,在电池内部发生很大的应力,这种应力对极片形成揉捏,循环屡次后或许呈现极片开裂的状况。而下降胀大率需求优化复合工艺,运用粒径更小的纳米硅粉而且尽或许均匀地复合到石墨颗粒的表面,这也是硅碳负极产业化的一大难题。 小记 负极材料商场集中度高,从全球规模来看,我国和日本是首要的产销国,相较于日本的技能优势,我国作为负极材料质料的首要产地,近年来跟着出产技能的不断提高,商场占有率不断进步。关于硅碳负极,业界普遍认为其足以“担此大任”。 因为硅碳负极材料具有较高的技能门槛,因而职业集中度十分高,现在国内厂商在硅碳负极产业化方面动作较慢,除贝特瑞的硅碳复合负极材料已有国外批量订单外,CATL、比亚迪、国轩高科、力神、比克、杉杉股份、星城石墨等厂商硅碳负极的产业化运用都在推动中。 关于

一文了解非石墨类碳负极材料

2019-03-07 09:03:45

现在,非石墨类碳负极材料首要分为软碳和硬碳,没有显着的面衍射峰,均为无定形结构,由石墨微晶和无定形区组成,无定形区中存在很多的微孔结构,微孔可作为可逆贮锂的库房,可逆容量在适宜的热处理条件下,均大于372mAh/g,有的乃至超越1000mAh/g。 软碳软碳即易石墨化碳,是指在2000℃以上的高温条件下能石墨化的无定形碳。结晶度低,晶粒尺度小,晶面距离较大,与电解液的相容性好。初次充放电的不可逆容量较高,输出电压较低,无显着的充放电渠道电位。常见的软碳有石油焦和针状焦等。软碳不直接用作负极材料,是制造人造石墨的质料,或许作为包覆材料改行天然石墨、合金等负极材料。 硬碳硬碳又称尴尬石墨化碳,是高分子聚合物的热解碳,这类碳在3000℃的高温也难以石墨化。硬碳有树脂碳、有机聚合物热解碳、碳黑。 聚树脂碳现已被日本索尼公司用作锂离子负极材料,比容量可达400mAh/g,其晶面距离恰当,有利于锂的嵌入而不会引起结构明显胀大,具有很好的充放电循环功能。硬碳SEM图 锂嵌入无定形碳材料中,首要嵌入到石墨微晶中,然后进入石墨微晶的微孔中。在脱嵌过程中,锂先从石墨微晶中发作嵌脱,然后才是微孔中的锂通过石墨微晶发作嵌脱,因而锂在发作嵌脱的过程中存在电压滞后现象。 没有通过高温处理,碳材料中残留有缺点结构,锂嵌入时与这些结构发作反响,导致初次充放电功率低,此外,缺点结构在循环时不稳定,容量跟着循环的进行而衰减。

铝电解电容器特点及面临的机遇和挑战

2018-12-27 09:30:12

它是由铝圆筒做负极,里面装有液体电解质,插入一片弯曲的铝带做正极制成。还需要经过直流电压处理,使正极片上形成一层氧化膜做介质。它的特点是容量大,但是漏电大,误差大,稳定性差,常用作交流旁路和滤波,在要求不高时也用于信号耦合。电解电容有正、负极之分,使用时不能接反。有正负极性,使用的时候,正负极不要接反。  铝电解电容器——Aluminium Electrolytic Capacitor   铝电解电容器的结构特点   铝电解电容器的芯子是由阳极铝箔、电解纸、阴极铝箔、电解纸等4层重迭卷绕而成;芯子含浸电解液后,用铝壳和胶盖密闭起来构成一个电解电容器。同其它类型的电容器相比,铝电解电容器在结构上表现出如下明显的特点:   (1)铝电解电容器的工作介质为通过阳极氧化的方式在铝箔表面生成一层极薄的三氧化二铝(Al2O3),此氧化物介质层和电容器的阳极结合成一个完整的体系,两者相互依存,不能彼此独立;我们通常所说的电容器,其电极和电介质是彼此独立的。   (2)铝电解电容器的阳极是表面生成Al2O3介质层的铝箔,阴极并非我们习惯上认为的负箔,而是电容器的电解液。   (3)负箔在电解电容器中起电气引出的作用,因为作为电解电容器阴极的电解液无法直接和外电路连接,必须通过另一金属电极和电路的其它部分构成电气通路。   (4)铝电解电容器的阳极铝箔、阴极铝箔通常均为腐蚀铝箔,实际的表面积远远大于其表观表面积,这也是铝质电解电容器通常具有大的电容量的一个原因。由于采用具有众多微细蚀孔的铝箔,通常需用液态电解质才能更有效地利用其实际电极面积。   (5)由于铝电解电容器的介质氧化膜是采用阳极氧化的方式得到的,且其厚度正比于阳极氧化所施加的电压,所以,从原理上来说,铝质电解电容器的介质层厚度可以人为地精确控制。   铝电解电容器的性能特点   同其它类别的电容器相比,铝电解电容器的优越性表现在以下几个方面:   (1)单位体积所具有的电容量特别大。工作电压越低,这方面的特点愈加突出,因此,特别适应电容器的小型化和大容量化。例如,CD26型低压大容量铝电解电容器的比容量约为300μF/cm3,而其它在小型化方面也颇具特色的金属化纸介电容器的低压片式陶瓷电容器的比容量一般不会超过2μF/cm3。   (2)铝电解电容器在工作过程中具有“自愈”特性。所谓“自愈”特性是指介质氧化膜的疵点或缺陷在电容器工作过程中随时可以得到修复,恢复其应具有的绝缘能力,避免招致电介质的雪崩式击穿。   (3)铝电解电容器的介质氧化膜能够承受非常高的电场强度。在铝电解电容器的工作过程中,介质氧化膜承受的电场强度约为600kV/mm,这一数值是纸介电容器的30多倍。   (4)可以获得很高的额定静电容量。低压铝电解电容器能够非常方便地获得数千乃至数万微法的静电容量。一般来说,电源滤波、交流旁路等用途所需的电容器只能选用电解电容器。   当然,铝电解电容器也有以下显著缺点:   (1)绝缘性能较差。可以这样说,铝电解电容器是所有类别的电容器中绝缘性能最差的。对铝电解电容器而言,通常采用漏电流来表征其绝缘性能,高压大容量铝质电解电容器的漏电流可达1mA以下。   (2)损耗因子较大,低压铝电解电容器的DF通常在10%以上。   (3)铝电解电容器的温度特性及频率特性均较差。   (4)铝电解电容器具有极性。使用在电子线路中时,铝电解电容器的阳极要接电路中的电位高的点,阴极接电位低的点,才可能正常发挥电气功能。如果接反了,电容器的漏电流急剧增大,芯子严重发热,导致电容器失效,并有可能燃烧爆炸,损害线路板上的其它器件。   (5)工作电压有一定的上限。根据铝电解电容器介质氧化膜的特殊生成手段,其最高工作电压一般为500V,且发展潜力十分有限;而对其它非化学电容器而言,只要适当加厚其电介质的厚度,理论上的工作电压可以达到任意上限值。   (6)铝电解电容器的性能容易劣化。使用经过长期存放的铝电解电容器,不宜突然施加额定工作电压,而应逐渐升压至额定电压。   (7)传统铝电解电容器由于采用电解液作为阴极,在片式化方面存在较大的障碍,故其片式化进程落后于陶瓷电容器及金属化薄膜电容器。   铝电解电容器的电性能参数   铝电解电容器的额定容量接E6系列的优选数确定,即:  (N=0,1,2…5);共有6个数值:1?0,1?5,2?2,3?3,4?7,6?8。与E6系列相对应的允许偏差为±20%,但对通用的电解电容器而言,其正偏差常放宽至+50%。   铝电解电容器的损耗因子的定义为:在规定频率的正弦电压下,电容器所消耗的有功功率和无功功率的比值,即:   其中,f为正弦电压的频率,C为在该频率下电解电容器串联模型的容量,r为电解电容器的等效串联电阻(ESR)。   铝电解电容器的漏电流通常定义为施加额定工作电压若干分钟以后流过电容器的电流。通常,铝电解电容器容许的最大漏电流可以用下式界定:   Il=KCU(μA)   其中,C为电容器的容量(μF),U为所施加的直流电压值(V),K是与电容器类型有关的常数,通常的取值范围为0.01~0.1,低漏电流的系列品也有取值小于0.002的情况。   额定工作电压是指在规定的环境温度范围内所能施加到电解电容器上的最大直流电压值。按GB2472?81的规定,适用于电解电容器的额定电压序列为:4.0,6.3,10,16,25,35,50,63,100,125,160,250,300,450,500,630。根据实际的需要,有时也用到200V及350V的产品。   铝电解电容器面临的挑战与机遇   20世纪80年代,当LSI、VLSI蓬勃发展的时候,有人曾经对电容器的前景极为悲观,随后的事实证明,这些看法有一些杞人忧天的味道:自上个世纪80年代中期起,电容器产业的年平均增长率均在20%以上,1993年全球电容器的销售产值已达130亿美元。铝质电解电容器的销售产值占整个电容器产业的1/3多。但是,随着电子技术及材料制造工艺的进步,传统型铝电解电容器不仅受到电子技术发展的压力,也面临其它类别电容器挑战其龙头老大地位的压力。   电子技术对电容器小型化、片式化的需求,使得传统铝电解电容器产业倍感压力。传统铝电解电容器采用电解液作为阴极,这使得其片式化进程受到极大的阻碍。片式化通常采用迭层结构、树脂包封的形式,而如何将电解液完好地密封起来一直是铝电解电容器研发人员倍感头痛的事。钽电解电容器采用固态半导体材料MnO2作为阴极材料,其片式化的进展颇为迅速,已经对铝电解电容器构成一定的市场威胁。   超大比表面积(2000m2/g~3000m2/g)炭纤维布工业化制造技术的成熟,使得近年来双层电容器的研发与制造迅速成长,并成为极低压和低压铝电解电容器的一个有力的竞争对手。EDLC可以轻而易举地获得法拉级的容量,其储能密度高于铝电解电容器,因而在储能用的领域正在逐步打破铝电解电容器的垄断地位,并有可能后来居上。   金属化纸介、金属化薄膜电容器的出现,使得纸介、塑料薄膜电容器在减小体积、增大比容量方面迈出历史性的一步。目前,金属化纸介、金属化薄膜电容器小型化、片式化的发展较为活跃,并向低压小容量的铝电解电容器发出挑战。同样,片式陶瓷电容器由于中低温烧结技术的开发,垂直迭层工艺的发展,能够获得的电容量范围也在逐步扩大,也在逐步蚕食低压小容量铝电解电容器所占的市场份额。   虽然铝电解电容器面临着前所未有的压力和挑战,但是也不必过于悲观地认定铝电解电容器已经穷途末路,必定要退出历史舞台。然而新技术、新材料的发展,在给其它类别电容器带来发展机遇的同时,也必定会为铝电解电容器的创新突破打开方便之门。有机半导体材料、导电聚合物材料的出现及其合成技术的成熟,已经为铝电解电容器的更新换代奠定了物质基础。将有机半导体材料、导电高分子材料用作铝电解电容器阴极的尝试,得到的频率特性、温度特性可以和片式陶瓷电容器媲美,甚至高出固态铝电解电容器。另外,对于传统型铝电解电容器而言,在一段时间内不可相比的容量价格比仍足以使其维持主流产品的地位。删除

浅析鳞片石墨在锂离子电池中的应用

2019-01-04 15:16:49

鳞片石墨是一种非金属矿物质,结晶完整,片薄且韧性好,物化性能优异,具有耐高温、耐氧化、抗腐蚀、导热、导电性能强等特有的物理、化学性能。 鳞片石墨的导电性比一般非金属矿高100倍,是运用范围极为广范的导电材料。其中,锂离子电池就是利用鳞片石墨粉的导电性进行工作的。 在锂离子电池材料中,负极材料是决定电池性能的关键。作为一种高结晶度的石墨材料,鳞片石墨的粒度直接影响电极比表面积和边缘碳原子所占的比例,这与首次充电时的不可逆比容量有很大的影响,所以鳞片石墨在电池中起到至关重要的作用。 一、鳞片石墨具有电子导电率高、锂离子扩散系数大、嵌埋容量高和嵌埋电位低等诸多优点,所以鳞片石墨是锂电池最重要的材料之一。 二、鳞片石墨可以使锂电池电压平稳,减小锂电池中的内阻,可以使电池中电量储存时间长。增加电池的利用时间。 三、鳞片石墨可以减少锂电池中鳞片石墨粉的用量,使电池成本大大降低。 综上所述,鳞片石墨对锂离子电池来说,不仅能够延长电池使用时间,促使电压平稳,增强导电率,还可降低电池成本。

如何提高磷酸铁锂材料的振实密度

2019-01-03 09:36:46

磷酸铁锂作为常用的锂离子电池正极材料以其安全性能好、循环性能优异、环境友好、原料来源丰富等优点,成为当前锂离子电池正极材料的研究热点之一。但是磷酸铁锂的缺点也制约着它的发展,振实密度低、实际比容量低是其相对于另一大热的正极材料三元材料的一大短板。 下面介绍一些改善磷酸铁锂振实密度的途径。 1 合成方法 目前制备LiFePO4方法很多,不同制备方法对LiFePO4的振实密度影响很大。不规则的粉末颗粒不能紧密堆积,如果合成的LiFePO4粉末颗粒为不规则形貌,会造成产物的振实密度很低。一般来说,由规则的球形颗粒组成的粉体,因其不会有团聚和粒子架桥现象,从而具有较高的振实密度。得到规则球形颗粒的方法如下: ①用高密度球形FePO4前驱体合成球形LiFePO4颗粒 制得高密度球形前驱体是得到高密度球形产物的有效途径之一。先合成高密度球形FePO4前驱物,再与其他原料混合均匀,通过高温反应,使锂通过球形前驱体颗粒表面的微孔向各方向均匀、同步地渗入前驱体的中心,保持球形形貌。此方法中,球形前驱体可以消除反应过程中由于扩散途径不同引起的微观组分差异,生成组成均匀的LiFePO4,从而提高材料的性能。 ②喷雾干燥法制备球形LiFePO4颗粒 喷雾干燥(热解)法是将各金属盐按制备复合型粉末所需的化学计量比配成前驱体溶液,经雾化器雾化后,由载气带入设定温度的反应炉中,在反应炉中瞬间完成溶剂蒸发、溶质沉淀形成固体颗粒、颗粒干燥、颗粒热分解和烧结成型等一系列的过程,最后形成规则的球形粉末颗粒。 ③熔盐法制备球形LiFePO4颗粒 熔盐法通常采用一种或数种低熔点的盐类作为反应介质,合成过程会出现液相,反应物在其中有一定的溶解度,这大大加快了反应物离子的扩散速率,使反应物在液相中实现原子尺度混合,反应就由固-固反应转化为固-液反应。反应结束后,采用合适的溶剂将盐类溶解,经过滤洗涤后即可得到合成产物。 2 粒径分布 LiFePO4的振实密度与颗粒的粒径之间存在着密切的联系。如果由球形颗粒组成的粉体具有理想的粒径分布,使得小颗粒能尽量填补大颗粒之间的空隙,则可以进一步提高其振实密度,从而有利于提高电池的体积比容量。研究表明,纳米级别的LiFePO4振实密度一般较低,而微米级别的LiFePO4具有较高的振实密度。 多孔材料可以实现高的振实密度:大颗粒的产物振实密度一般较高,但也会导致锂离子在固体材料中的扩散路径变长,材料的电化学性能也变差。研究发现多孔的LiFePO4具有相互连接的三维孔通道,且孔之间的距离是纳米级的,孔隙之间相互连接的三维通道缩短了锂离子的脱嵌距离;且多孔材料这种独特的微观结构,使材料具有更大的比表面积,可使材料与电解液充分接触,增大了锂离子的扩散面积,提高了锂离子的迁移速率,有利于解决LiFePO4扩散系数小所导致的电化学性能差的问题。由于制备多孔材料时得到的都是尺寸较大且形貌良好的颗粒,所以多孔材料在保证了材料有较高振实密度的同时,也能具有良好的电化学性能。 3 碳包覆 研究表明碳包覆能增强LiFePO4颗粒之间的导电性,使其电化学性能有明显改善。但是过量的碳将严重降低LiFePO4的振实密度。选择合适的碳源,改进制备工艺,都可以使碳包覆层更加均匀,从而提高材料的振实密度。 4 金属离子掺杂 金属离子掺杂是在LiFePO4中掺杂金属离子,改变其晶格结构,从而提高其自身的导电能力。近年来部分研究表明,掺杂特定种类的金属离子能提高材料的振实密度,从而提高LiFePO4的体积比容量。 目前在提高LiFePO4振实密度的研究方面取得了一定的进展,但还存在一些问题。LiFePO4的形貌和粒度控制工艺通常很复杂,要想稳定大批量制备具有特定形貌和粒径分布的材料存在一定的难度。且不同的制备工艺,不同的原料对LiFePO4的振实密度也有很大影响,因此需要继续探索出简单、低成本且能控制LiFePO4材料的形貌和粒径分布的制备方法。

改性钛酸锂负极材料的研究进展

2019-03-08 09:05:26

现在,嵌锂碳材料因为具有杰出的循环稳定性、抱负的充放电渠道和较高的性价比,常被作为锂离子电池负极材料。但因为碳电极的电位与金属锂的电位很挨近,当电池过充时,在碳电极表面易分出锂枝晶而发作短路;当温度过高时,易引起热失控,且锂离子在进行重复脱嵌的进程中,会使碳材料结构遭到损坏,致使容量衰减。因而,寻觅能在碳负极电位稍正的电位下嵌入锂,且具有高比容量、安全可靠的新式负极材料,成为极有含义的课题。钛氧基类化合物也是现在研讨得比较多的一类负极材料,包含TiO2、LiTi2O4、Li4Ti5O12、Li2Ti3O7以及它们的掺杂改性材料。其间运用尖晶石型Li4Ti5O12作为负极材料,近年来成为国内外研讨的热门。 改性 尖晶石型钛酸锂尽管具有许多优秀的功能,但也存在缺陷,如:电子电导率低,大电流放电易发生较大的极化等,约束了其商业运用。因而,对Li4Ti5O12进行改性成为现在的研讨要点。研讨者选用纳米化、引进导电碳、金属元素掺杂、阴离子掺杂以及复合改性等办法,对Li4Ti5O12进行改性,进步导电性和倍率功能,坚持高可逆容量和杰出的循环稳定性。 纳米化 Li等以TiO2和LiOH为质料,经过低温水热反响制得纳米管(线、棒、带)状钛酸,并以此为前驱体参加LiOH,进行锂离子交流反响制备了形状可控、电化学功能优秀的纳米管、线状Li4Ti5O12。测验标明,与选用传统高温固相法制备的钛酸锂材料比较,水热组成法制备的材料,电荷转移阻抗及动力学数据都得到了改进。 Chen等经过水热反响法,运用CTAB作为模板,以水溶性的钛的复合物[NH4+]4、[H+]2、[Ti4(C2H2O3)4(C2H3O3)2(O2)4O2]6-作为钛的前驱体,制备了层状介孔网状结构Li4Ti5O12。 Jin等经过固相组成法,选用比表面为250m2g-1的锐钛矿TiO2作为前驱体,制备了尖晶石型Li4Ti5O12纳米颗粒,粒径散布为50~100nm。XRD和TEM测验了Ti02到Li4Ti5O12的相及描摹的改动,电化学功能测验研讨了纳米化Li4Ti5O12的倍率功能和循环稳定性。 引进导电碳 引进导电碳能够进行碳包覆和碳掺杂。碳包覆是一种将含碳增加物进行热分化,从而在颗粒表面涣散或包覆导电碳,以充任导电桥的改性办法;碳掺杂行将碳粉以必定的份额与质料进行均匀混合后再进行高温焙烧。在制备Li4Ti5O12的进程中增加碳,可使反响前驱体更为严密、均匀的混合,进步材料的导电性,下降电阻、极化,进步电池的能量密度。 Cheng等选用热蒸腾分化,在Li4Ti5O12表面包覆了均衡的石墨化碳,在其研讨进程中,C首要起进步电导率的效果。Hun等选用固相组成法,运用纳米孔状球形TiO2, Li2CO3和沥青作为质料,制备了高振实密度的C- Li4Ti5O12颗粒,并研讨了碳包覆用量对材料的物理化学功能和电化学功能的影响。 Jian等人选用溶胶-凝胶法以TiOCl2、NH3、Li2CO3和导电碳黑为质料组成了球形Li4Ti5O12/C复合材料,并对材料进行了TG/DSC、SEM、XRD、BET比表面积分析、激光粒度分析、振实密度测验和电化学测验。 金属元素掺杂 对Li4Ti5O12进行金属掺杂的首要意图是进步材料的导电性,下降电阻和极化。 金属离子掺杂 (1) Li 位掺杂 Chen等用Mg2+一部分替代制备了Li4-xMgxTi5O12尖晶石型材料。XRD图谱显现Mg2+进入了四面体8a和八面体16c方位。 (2) Ti位掺杂 Yi 等选用固相组成法制备了Mo6+掺杂的Li4Ti5-xMoxO12(0≤x≤0.2)材料,进行了XRD、RS、SEM、CV、EIS和充放电测验。结果标明,Li4Ti5-xMoxO12归于纯相结构,可是当x≥0.1时,能够观察到几个杂质峰的存在。Mo掺杂没有改动材料的电化学反响进程和Li4Ti5O12的尖晶石结构。 金属单质掺杂 Li等选用了一种简易、绿色的办法,使钛的乙醇酸盐在LiOH溶液中转化,组成了介孔Au/Li4Ti5O12球形材料。与Ti02前驱体比较,钛的乙醇酸盐具有以下优势:(1)反响快且易于制备,(2)直接与LiOH进行反响,而不会引进Ti02杂质。在组成的进程中,仅存在和EG混合溶剂的化学糟蹋,而这些溶剂可经过蒸馏,收回利用到下次的组成进程中。 金属氧化物掺杂 Yan等经过把不同量的纳米一SnO2装载在Li4Ti5O12上,得到了电化学功能优异的复合材料Li4Ti5O12-SnO2。 阴离子掺杂 Qi等经过固相反响法组成了Br掺杂的尖晶石型Li4Ti5O12-xBrx(0≤x≤3)材料,研讨了Li4Ti5O12-xBrx(x=0,0.05,0.2,0.3)材料的结构和电化学特性。 复合改性 纳米化和碳包覆掺杂 Zhu等报导了一种简易的制备进程,经过碳包覆进程和喷雾干燥办法,制备了碳包覆Li4Ti5O12纳米孔状微球(CN-Li4Ti5O12-NMS)。经过碳包覆纳米级的开始颗粒得到微米巨细的二次球形材料。纳米级的开始颗粒和纳米厚度的碳包覆层连同内部纳米孔状结构,较好地进步了材料的比容量。 结语 综上所述,本文论述了纳米化、引进导电碳、金属元素掺杂、阴离子掺杂以及复合改性等办法对钛酸锂材料进行改性的研讨近况。对材料进行纳米化时,较小的粒径既有利于电子传输,进步材料的电子传输才能,还有利于缩短锂离子的分散途径,进步锂离子的分散才能;引进导电碳进行掺杂和包覆时,在电极上形成了有用的导电网,进步了材料的电子电导率,改进了循环和倍率功能;对钛酸锂进行金属元素掺杂时,适量的掺杂,能够下降电荷搬迁阻抗,进步材料的电功能,但是掺杂量过多,会下降样品的比容量;在对材料进行纳米化和碳包覆掺杂复合改性时,结合了纳米化和导电碳的长处,不只进步了锂离子的分散才能,并且还在电极上形成了有用的导电网,进步了电子电导率;在复合离子掺杂时,Al3+进步了材料的可逆容量和循环稳定性,而F-却下降了可逆容量和循环稳定性。

天然石墨VS人造石墨,谁才是动力电池真正的宠儿?

2019-01-03 09:36:39

近几年,下游新能源汽车市场的繁荣拉动了锂离子电池需求的增长,负极材料作为锂离子电池的四大关键材料之一,也迎来了更广阔的市场。而在负极材料中石墨类碳材料占据最主要市场。天然石墨负极VS人造石墨负极石墨负极材料分为人造石墨和天然石墨,二者结构相近,物理化学性质相同,但在实际应用中有较大差异,那么天然石墨和人造石墨究竟谁是锂离子电池的宠儿?定义(1)天然石墨石墨属复六方双锥晶类,呈六方板状晶体,常见单形有平行双面、六方双锥、六方柱,但完好晶形少见,一般呈鳞片状或板状,集合体呈致密块状、土状或球状。天然石墨的种类较多,根据结晶形态不同,工业上将天然石墨分为致密结晶状石墨、鳞片石墨和隐晶质石墨三类。我国主要有鳞片石墨和隐晶质石墨两大类。天然石墨负极材料一般采用采用天然鳞片晶质石墨为原料。(2)人造石墨一切通过有机炭化再经过石墨化高温处理得到的石墨材料均可称为人造石墨,狭义上的人造石墨通常指以杂质含量较低的炭质原料为骨料、煤沥青等为粘结剂,经过配料、混捏、成型、炭化和石墨化等工序制得的块状固体材料。人造石墨的骨料分为煤系、石油系以及煤和石油混合系三大类。其中煤系针状焦以及石油焦应用最广:一般来讲,高比容量的负极采用针状焦作为原材料,普通比容量的负极采用价格便宜的石油焦作为原料,沥青作为粘结剂。理化性质在理化性质方面,天然石墨与人造石墨既有共性,也存在性能上的差异。如天然石墨与人造石墨都是热和电的良导体,但对于相同纯度和粒度的石墨粉体来说,天然鳞片石墨的传热性能和导电性能最好、天然微晶石墨次之,人造石墨最低。两者性能有着各自的优缺点,应用领域也有所不同。天然石墨克容量较高、工艺简单、价格便宜,但吸液及循环性能差一些;人造石墨工艺复杂些、价格贵些,但循环及安全性能较好。微观形貌从上图中就可以看出天然石墨和人造石墨在形貌上的区别。天然石墨大小颗粒不一,粒径分布广,未经处理的天然石墨是不能作为负极材料直接使用的,需要经过一系列的加工后才能使用。而人造石墨在形貌以及粒径分布上就一致多了,一般认为,天然石墨的容量高,压实密度高,价格也比较便宜,但是由于颗粒大小不一,表面缺陷较多,与电解液的相容性也比较好,价格也会贵一些。生产制备天然石墨负极材料是采用天然鳞片晶质石墨,经过粉碎、球化、分级、纯化、表面等工序处理制得,其高结晶度是天然形成的。人造石墨是将骨料和粘结剂进行破碎、造粒、石墨化、筛分而制成。基本的工序流程是一致的。某厂人造石墨制备流程动力电池更加宠爱人造石墨目前市场上负极材料主要以人造石墨与天然石墨为主,受益于动力电池的强劲需求,人造石墨以其可靠性和安全性成为了负极材料的市场主流。中国负极材料市场结构变动我国负极材料市场产量结构变化(吨)天然石墨和人造石墨负极材料性能不同,在实际应用中也会产生较大差别。根据最近几年负极材料市场结构和产量结构的变化可以看出,2013年,中国负极材料市场天然石墨占据主导。2014年以后,在负极材料市场的争夺中,更适用于动力电池的人造石墨市场占比超过天然石墨,并且逐年递增。预计未来几年,受新能源汽车应用影响,人造石墨占比将继续上升:目前国内新能源汽车锂电池所采用的负极材料大多使用人造石墨,新能源汽车在国家政策的扶持下呈爆发式增长阶段,带动动力电池的大幅增长,未来几年动力电池将是拉动人造石墨产量大幅上升的主要引擎。

氧化镍钴锰锂

2017-06-06 17:49:58

一种新型高比能量锂离子电池正极用氧化镍钴锰锂材料,日前由天津电源研究所研制成功。并获得了信息产业部电子基金的资金支持,随即建成年产200吨氧化镍钴锰锂生产线,在国内率先实现了产业化生产。目前市场上的锂离子电池大多以氧化钴锂为正极,其材料的稳定性和产品的安全性比较差。天津电源研究所针对氧化钴锂存在的突出问题,采用价格相对低廉的镍、锰替代钴,并研发独特的烧结工艺,仅用了一年多时间就成功解决了这一难题。据了解,这种新型材料具有容量高、寿命长、安全系数高、无污染等优点。与氧化钴锂相比,制造成本降低了10%至15%,每克容量由140毫安时可提升到220毫安时,由此不仅提高了产品的安全性能,而且增大了电池容量,一举突破了锂离子电池发展的瓶颈制约。该产品现已得到多家用户的认可,并实现了为出口欧盟的高端电池产品生产厂家供货。为了研制在电性能、安全性和成本价格等三方面均能较好地满足电动汽车需求的锂离子电池,选择了在氧化钴锂中掺杂氧化镍锰钴锂三元材料的方法,研制了新的50Ah动力型锂离子电池。通过对研制电池进行电性能和安全性试验,各项性能均满足电动汽车的技术要求,加上氧化镍锰钴锂三元材料的价格仅为氧化钴锂的50%左右,所以掺杂氧化镍锰钴锂三元材料是解决电动汽车对动力型锂离子电池严格需求的理想途径之一。近期有一种锂离子电池正极材料氧化镍钴锰锂及其制备方法。本发明属于锂离子电池技术领域。锂离子电池正极材料氧化镍钴锰锂为富锂型层状结构,化学成分Li↓[1+z]M↓[1-x-y]Ni↓[x]Co↓[y]O↓[2],其中0.05≤z≤0.2,0.1<x≤0.80.1<y≤0.5。制备方法:镍、钴、锰的可溶性盐为原料;氨水或铵盐为络合剂,氢氧化钠为沉淀剂;加水溶性分散剂,加水溶性抗氧化剂或用惰性气体控制和保护;将溶液并流方式加到反应釜反应;碱性处理,陈化,固液分离,洗涤干燥;氧化镍钴锰和锂原材料混合均匀;将混合粉体分三温区烧结得到氧化镍钴锰锂粉体。本发明比容量高,循环特性好,晶体结构理想,生产周期短,功耗低,适合产业化生产等。 

石墨烯在锂硫电池中的应用

2019-01-03 09:36:39

随着便携式电子设备和电动汽车等产业的快速发展,人们对高能量密度电池的需求日益迫切,然而在传统锂离子电池中,正极材料因“插层式”的储锂机制导致其容量普遍较低,无法满足快速增长的市场需求。因此,新型高能量密度二次电池的探索和研发成为了储能领域的研究热点,锂硫电池就是其中之一。 一、锂硫电池简介 锂硫电池的工作原理基于硫和Li+可以发生可逆的氧化还原反应,两者之间的电化学反应式如下:基于该反应的硫正极的理论比容量高达1675mAh/g,是传统锂离子电池正极材料的10倍,同时硫储量丰富、成本低,因此锂硫电池受到了广泛关注,然而硫及多硫化物本身性质的缺陷,使得锂硫电池仍存在很多问题。 首先,硫是绝缘体,导电性差,给电荷传递过程带来困难;其次,多硫化锂可以溶解在电解质中,易迁移到金属锂一侧被还原成不溶性Li2S沉积在金属锂电极表面发生“shuttleeffet”现象;再次,可溶性多硫化锂被完全还原成不溶性硫化物时,会阻碍电子和离子的有效传输;最后,单质硫转化为不溶性硫化物后,由于两种物质密度的差异,会造成体积效应,降低电极稳定性。因此,锂硫电池存在实际容量低、循环性能差和信率性能不佳等缺点。 二、石墨烯在锂硫电池中的应用 针对上述问题,为了获得高性能的锂硫电池,研究者对硫正极进行了多种手段的复合与改性研究,设计并制备了一系列具有新颖结构和优异性能的复合硫正极材料。其中,碳材料因其导电性高、结构丰富、比表面积大等优势而得到了广泛应用,而石墨烯这一新型碳材料在提升锂硫电池性能方面有优异表现。 石墨烯是优异的电子导体,同时具有机械强度高、比表面积大等优点,同时化学改性的石墨烯及石墨烯衍生物具有一系列能为负载提供诸多活性位点的表面官能团,因此石墨烯在复合硫正极材料中得到了广泛的应用。 一方面,石墨烯被用作硫正极的导电载体,弥补硫导电性差的缺陷;另一方面,通过合理的结构设计与表面改性,石墨烯还能够抑制多硫化物的溶解。此外,在最近的研究中,科学家还发现通过石墨烯功能涂层的设计,能够减缓多硫化物在正负极之间的穿梭,抑制“shuttleeffet”现象。 1、石墨烯/硫复合正极材料研究进展 石墨烯极高的电导率可以弥补硫颗粒导电性差的问题,因此石墨烯材料多被设计成负载硫单质的导电基体或者导电网络,比如石墨烯泡沫结构可实现石墨烯与硫在纳米尺度的均匀复合,能够为硫提供快速与高效的电子传输通道,同时纳米孔还能够有效束缚多硫化物。 常规条件下获得的三维石墨烯尽管结构丰富,但极为蓬松,表观密度很低,导致硫负载后复合电极材料体积能量密度严重不足,为此,中科院沈阳金属所成会明院士利用CVD方法在泡沫镍上获得三维多孔石墨烯泡沫。图1 (a)柔性石墨烯/硫复合材料的制备流程;(b、c、d、e)石墨烯/硫复合电极材料照片及柔性展示 该方法不仅能够负载高比例的硫,而且硫的含量能够在3.3~10.1mg/cm2范围内进行调控,特别是负载量为10.1mg/cm2的电极,能够获得极高的比面积容量(13.4mAh/cm2)。 另外,考虑到石墨烯独特的二维片状纳米结构,采用以石墨烯纳米片作为包裹材料,构筑具有“核壳”结构的复合电极材料也是固定多硫化物,缓解其溶解的重要方式。先在碳纳米纤维表面均匀负载上硫,再使用石墨烯包覆在硫表面是一种很有效的方法。图2 具有同轴结构石墨烯/S/碳纳米纤维复合电极制备图 2、石墨烯功能涂层在锂硫电池中的应用 为提高锂硫电池的循环稳定性,除了对硫正极材料的组成与结构进行调控以抑制多硫化物的溶解,通过极片结构的设计来减弱“shuttleeffect”也是一条重要途径。例如,在硫正极和隔膜间添加一层缓冲层能够极大的提高锂硫电池的寿命。图3 石墨烯隔膜涂层有效阻挡多硫化物迁移示意图 石墨烯/硫/石墨烯-隔膜的创新极片结构设计,一方面将集流体由传统的Al箔改为石墨烯;另一方面对隔膜进行改性,改变了原有隔膜与硫正极直接接触的方式,在隔膜表面涂布一层石墨烯材料。 采用传统的极片结构,在循环过程中多硫化物溶解在电解液后,会穿过隔膜进入金属Li一侧,而在这一新颖结构中,存在于隔膜与正极材料之间的石墨烯层能够有效阻止多硫化物的迁移。另外,由于石墨烯材料优异的力学性能,石墨烯改性隔膜能够有效缓解硫正极在充放电过程中的体积变化,保持极片结构的完整性。 综述: 电化学储能在当今人们的生产生活中占有重要地位,无论是可再生能源的大量存储还是便携式设备的高密度存储,对电化学储能器件和材料的成本、储能密度、稳定性等指标都提出了较高的要求。 锂硫电池由于其理论比容量、比能量高,原料价廉易得,在未来电化学储能领域中将极具竞争力,如果通过石墨烯的应用能够改善锂硫电池实际容量低、循环性能差和信率性能不佳等缺点,在不远的将来,锂硫电池的表现可能会给我们带来更多惊喜。

纳米研究在锂电池负极材料中的应用现状

2019-01-04 15:16:49

新能源汽车在政策诱导下的一直呈现出迅猛的发展趋势,而作为新能源汽车技术关键的动力电池行业,也开始了大踏步发展的道路,而纳米技术的作为新时代的领军技术,将其应用于锂电池负极材料必然会给该行业带来新一轮的技术突进。 一、硅基材料硅基材料由于具有高化容量、相对较低的充放电平台及储量丰富等优点,是目前负极材料的研究热点之一。在该研究方向上,斯坦福大学崔毅团队表现突出,设计制备了核壳、空心硅纳米球、中空硅纳米管、硅纳米线阵列等不同结构,进一步优化了其电化学性能。 二、锗锗拥有比硅更高的电子电导率和锂离子扩散率,因此锗是高功率锂离子电池负极材料强有力的候选者。目前,研究人员尝试制备各种锗纳米结构材料以改进其电极性能。韩国学者Park等获得了零维的空心锗纳米颗粒以及三维的多孔锗纳米颗粒,显示出较好的循环性能。 三、金属锡金属锡作为锂离子电池负极材料时的理论容量高达994mAh/g,但其容量易迅速衰减、循环性能差。近年来研究人员开发出一系列纳米颗粒、纳米管、纳米片、纳米纤维、多孔结构等多种形貌的锡氧化物的合成与制备方法,显著改善了其循环性能和倍率性能。 四、二氧化钛二氧化钛是有望替代石墨电极的锂离子电池理想负极材料。近年来,研究人员围绕不同形貌纳米结构的TiO2负极材料进行了大量的研究工作。新加坡南洋理工大学楼雄文研究团队在该方向表现突出,通过将TiO2和高导电性的石墨烯复合,获得了具有较高的可逆比容量、优异的循环和倍率性能的复合材料。 五、氧化铁氧化铁由于其理论容量高、资源丰富、价格便宜等优势吸引了研究人员的极大关注。新加坡南洋理工大学楼雄文研究团队对α-Fe2O3应用于锂电池负极材料进行了大量研究,团队制备的α-Fe2O3纳米管、α-Fe2O3纳米盘,其中空和多孔的结构一方面增加了储锂空间,提高了嵌锂容量,另一方面对充放电过程中电极材料的体积变化均有缓解作用,从而显示出较优异的电化学性能。 六、石墨烯石墨烯具有很高的杨氏模量和断裂强度,同时还具有很高的电导率和热导率、优异的电化学性能以及易功能化的表面,这些特点都使石墨烯成为锂离子电池负极材料的首先研究材料。中国在该领域表现突出,主要研究机构有南开大学、复旦大学、中科院化学所、国家纳米科学中心、中科院上海硅酸盐所、上海大学、浙江大学等。 七、二维MoS2 二维MoS2纳米片作为锂离子电池负极材料时显示了较高的电化学储锂容量和较好的循环性能。中国研究人员在该领域较为活跃,浙江大学陈卫祥教授研究团队通过多种手段制备了MoS2/石墨烯复合材料并用作锂离子电池负极材料,不仅具有较高的可逆容量,而且其循环稳定性和倍率性能也十分优异。

铌和钽 金属中的“孪生兄弟”

2019-03-13 11:30:39

稀有金属钽和铌在元素周期表中归于本家元素,因为它们的物理和化学性质很类似,并且又一起生长在同一个矿体内,因而被人们称为金属中的"孪生兄弟"。      钽和铌是英国化学家查尔斯•哈切特与瑞典化学家艾克贝格在1801年和1802年先后发现的。钽铌铁矿是钽和铌的首要矿石,在钨矿和某些稀土矿中也有少数的钽和铌存在。钽却呈银白色,铌的外表很象钢。钽和铌都是高熔点金属,它们的熔点分别为2996℃和2468℃。钽和铌的化学性质极端安稳,不只不怕硝酸、,也不怕。钽赋有延展性,能够拉成比头发丝还要细的钽丝,或许碾成比纸还要薄的钽箔。钽和铌都具有抗压、耐磨损的特性,也都是杰出的超导材料。      因为钽和铌具有上述种种优异的功用,因而被广泛用于各个范畴。        钽的表面能构成细密安稳、介电强度高的无定形氧化膜,易于精确方便地操控电容器的阳极氧化工艺,一起钽粉烧结块能够在很小的体积内取得很大的表面积,因而钽电容器体积小、容量大、漏电流低、运用寿命长、归纳功用优异,是最优异的电容器,不只在惯例条件下比陶瓷、铝、薄膜等其它电容器体积小、容量高、功用安稳,并且能在许多为其它电容器所不能担任的严峻条件下正常作业。因为钽电容用具有其它许多电容器不行比较的优异特性,在微电子科学和表面贴装技术范畴,简直无可等效替代的其它电容器与之竞赛,因而60~65%的钽以电容器级钽粉和钽丝的方式用于制造钽电容器。钽电容器已日益广泛应用于通讯(程控机、交换机、手机、传呼机、传真机、无绳电话)、计算机、轿车、家用和工作用电器、仪器仪表、航天航空、国防军工等范畴.因为铌与钽是同属一族的伴生金属,功用上有许多类似之处,用于制造电容器功用仅次于钽,其相对于铝电容器,具有比容高、等效串联电阻低、易于片式化等长处,经开展有或许替代铝电容器的10%左右;铌与钽比较,制造电容器的首要缺陷是漏电流大(一般是钽的5~10倍)、击穿电压低(<10V)、作业温度低(<105℃),不适合制造牢靠性要求高和额外电压      高的电容器,但在低电压(<10V)、大容量(>100μF)的规模,铌电容器有或许部分替代该层次的钽电容器。铌电容器的开发利用,对钽铌职业来说是一件大好事,能够取得新的开展机会。      近十年来,我国钽铌冶炼与加工也取得了突破性的开展。各钽铌冶炼厂(院),加强了科研作业,进行了技术改造,不断完善工艺和配备,调整了产品结构,开发新产品,使产品质量大大进步。宁夏东方有色金属集团公司从1990年开端先后进行了钽粉、钽丝出产技术改造,引进了国外要害配备,使钽粉及钽丝的出产技术大大进步了一步,钽粉比容达到了12000~30000~50000~70000μFV/g,研发水平达150000μFV/g。钽丝出产达到了直径Φ0.3~0.17mm,研讨水平已达到Φ0.10mm,我国的钽粉、钽丝质量水平已达到了国际水平。      在冶金工业中,铌首要用于制造耐高温的合金钢和进步钢的强度。在冶炼碳素钢时,只需增加万分之几的铌,便能够使钢的强度进步三分之一以L。用铌和钽与钨、铝、镍、钴、钒等一系列金属组成的超级合金,是超音速喷气式飞机、火箭和等的杰出结构材料。      在机械工业中,用碳化铌、碳化钽等硬质合金制造的刀具,能饱尝近3000℃的高温,其硬度能够与世界上最坚固的物质---金刚石相媲美。      在医学上,钽是抱负的生物适应性材料。它与人体的骨骼、肌肉组织以及液体直接触摸时,能够与生物细胞相适应,具有极好的亲和性,简直不对人体发生影响和副作用。钽不只可用于制造医治骨折用的接骨板、螺钉、夹杆等,并且能够直接用钽板、钽片修补骨头和用钽条来替代因外伤而折断的骨头。钽丝和钽箔能够缝合神经、肌健以及1.5毫米以上的血管,极细的钽丝能够替代肌腱乃至神经纤维。用钽丝织成的钽纱、钽网能够用来修补肌肉组织。

铌和钽—金属中的孪生兄弟

2018-11-30 16:01:34

稀有金属钽和铌在元素周期表中属于同族元素,由于它们的物理和化学性质很相似,而且又共同生长在同一个矿体内,因而被人们称为金属中的“孪生兄弟”。钽和铌是英国化学家查尔斯•哈切特与瑞典化学家艾克贝格在1801年和1802年先后发现的。钽铌铁矿是钽和铌的主要矿石,在钨矿和某些稀土矿中也有少量的钽和铌存在。钽却呈银白色,铌的外表很象钢。钽和铌都是高熔点金属,它们的熔点分别为2996℃和2468℃。钽和铌的化学性质极其稳定,不怕硝酸。钽富有延展性,可以拉成比头发丝还要细的钽丝,或者碾成比纸还要薄的钽箔。钽和铌都具有抗压、耐磨损的特性,也都是卓越的超导材料。由于钽和铌具有上述种种优异的性能,因而被广泛用于各个领域。钽的表面能形成致密稳定、介电强度高的无定形氧化膜,易于准确方便地控制电容器的阳极氧化工艺,同时钽粉烧结块可以在很小的体积内获得很大的表面积,因此钽电容器体积小、容量大、漏电流低、使用寿命长、综合性能优异,是最优秀的电容器,不仅在常规条件下比陶瓷、铝、薄膜等其它电容器体积小、容量高、功能稳定,而且能在许多为其它电容器所不能胜任的严峻条件下正常工作。由于钽电容器具有其它诸多电容器不可比拟的优异特性,在微电子科学和表面贴装技术领域,几乎无可等效替代的其它电容器与之竞争,因此60~65%的钽以电容器级钽粉和钽丝的形式用于制作钽电容器。钽电容器已日益广泛应用于通讯(程控机、交换机、手机、传呼机、传真机、无绳电话)、计算机、汽车、家用和办公用电器、仪器仪表、航天航空、国防军工等领域.由于铌与钽是同属一族的伴生金属,性能上有许多相似之处,用于制作电容器性能仅次于钽,其相对于铝电容器,具有比容高、等效串联电阻低、易于片式化等优点,经发展有可能替代铝电容器的10%左右;铌与钽相比,制作电容器的主要缺点是漏电流大(一般是钽的5~10倍)、击穿电压低(<10V)、工作温度低(<105℃),不适合制作可靠性要求高和额定电压 高的电容器,但在低电压(<10V)、大容量(>100μF)的范围,铌电容器有可能部分替代该档次的钽电容器。铌电容器的开发利用,对钽铌行业来说是一件大好事,可以获得新的发展机遇。近十年来,我国钽铌冶炼与加工也取得了突破性的发展。各钽铌冶炼厂(院),加强了科研工作,进行了技术改造,不断完善工艺和装备,调整了产品结构,开发新产品,使产品质量大大提高。宁夏东方有色金属集团公司从1990年开始先后进行了钽粉、钽丝生产技术改造,引进了国外关键装备,使钽粉及钽丝的生产技术大大提高了一步,钽粉比容达到了12000~30000~50000~70000μFV/g,研制水平达150000μFV/g。钽丝生产达到了直径Φ0.3~0.17mm,研究水平已达到Φ0.10mm,我国的钽粉、钽丝质量水平已达到了国际水平。在冶金工业中,铌主要用于制造耐高温的合金钢和提高钢的强度。在冶炼碳素钢时,只需添加万分之几的铌,便可以使钢的强度提高三分之一以L。用铌和钽与钨、铝、镍、钴、钒等一系列金属合成的超级合金,是超音速喷气式飞机、火箭等的良好结构材料。在机械工业中,用碳化铌、碳化钽等硬质合金制造的刀具,能经受近3000℃的高温,其硬度可以与世界上最坚硬的物质———金刚石相媲美。在医学上,钽是理想的生物适应性材料。它与人体的骨骼、肌肉组织以及液体直接接触时,能够与生物细胞相适应,具有极好的亲和性,几乎不对人体产生刺激和副作用。钽不仅可用于制作治疗骨折用的接骨板、螺钉、夹杆等,而且可以直接用钽板、钽片修补骨头和用钽条来代替因外伤而折断的骨头。钽丝和钽箔可以缝合神经、肌健以及1.5毫米以上的血管,极细的钽丝可以代替肌腱甚至神经纤维。用钽丝织成的钽纱、钽网可以用来修补肌肉组织。